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Abstract. We retrieve aerosol optical thickness (AOT) in-
dependently for brown carbon, dust and sulfate from hyper-
spectral image data. The model, a neural network, is trained
on atmospheric radiative transfer calculations from MOD-
TRAN 6.0 with varying aerosol concentration and type, sur-
face albedo, water vapor, and viewing geometries. From a set
of test radiative transfer calculations, we are able to retrieve
AOT with a standard error of better than ± 0.05. No a pri-
ori information on the surface albedo or atmospheric state is
necessary for our model. We apply the model to AVIRIS-NG
imagery from a recent campaign over India and demonstrate
its performance under high and low aerosol loadings and dif-
ferent aerosol types.

1 Introduction

Remotely sensed surface spectral reflectance is used in many
scientific disciplines including geology, forestry, water stud-
ies and urban studies (Davis et al., 2002; Rencz and Ry-
erson, 1999). The surface reflectance can either be directly
measured at the ground with portable field spectrometers
or indirectly measured from airborne and spaceborne plat-
forms. Observations at airborne and spaceborne instrument
altitudes are sensitive not only to the signal from the sur-
face but also the intervening atmosphere between the surface
and sensor. Thus, to derive surface reflectance from airborne
and spaceborne observations, the data must be corrected for
atmospheric absorption and scattering effects. The main ob-
jective of atmospheric correction is the accurate removal of
absorption and scattering by aerosols and gases. While ab-
sorption by water vapor and other gases is highly wavelength
dependent, with relatively strong, discrete absorption bands,
aerosol extinction (the sum of absorption and scattering) is

a smooth, continuous function of wavelength. This makes it
challenging to separate it from the surface contribution. Most
current atmospheric corrections ignore the aerosol variabil-
ity within a scene. Instead, aerosol properties are approxi-
mated from visibility (e.g., Gao et al., 1993; Adler-Golden
et al., 1999) or derived from climatology. Such approxima-
tions can lead to large errors in retrieved surface reflectance,
particularly for aerosol optical thickness (AOT) larger than
0.4, commonly found, for example, over east Asia (Bilal et
al., 2014; Van Donkelaar et al., 2010). While instrument per-
formance has steadily improved over the years, resulting in
higher signal-to-noise ratios, improvements in the treatment
of aerosols in atmospheric correction routines has not kept
pace. To improve the retrieval of surface reflectance prod-
ucts from airborne or spaceborne observations, the spatial
variability of AOT, wavelength-dependent single-scattering
albedo, and phase function or its moments within a scene
have to be known.

Aerosols also pose a major uncertainty in climate predic-
tions through their direct scattering and absorption of solar
and thermal radiation as well as indirect effects on cloud
albedo (Twomey, 1977) and cloud lifetime (Albrecht, 1989;
Pincus and Baker, 1994). Their contribution to radiative forc-
ing is now the biggest uncertainty in the total anthropogenic
forcing between 1750 and 2011 (IPCC, 2014). The magni-
tude of the direct interaction of aerosols with radiation de-
pends not only on their abundance, but also their single-
scattering properties and the spectral reflectance of the un-
derlying surface (Haywood and Boucher, 2000; Nan and A,
2015). Better quantification of the global distribution and op-
tical properties of aerosols is a top priority to further improve
climate projections.

Finally, aerosols are an important health risk factor (Pope
et al., 2009). For eastern Asia, the World Health Organization
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Air Quality PM2.5 (amount of aerosols with a diameter less
than 2.5 µm) Interim Target-1 (World Health Organization,
2006) is exceeded for 50 % of the population (Van Donkelaar
et al., 2010), leading to an increase in mortality of approxi-
mately 15 %. On a global scale, an estimated 7 million deaths
were attributed to air pollution in 2016 (World Health Orga-
nization, 2018). A better understanding of aerosol sources
and their mixing in urban areas can inform decision makers
and perhaps mitigate these hazards.

Currently, aerosols are routinely retrieved from ground
and spaceborne platforms. Ground-based aerosol retrievals
from the AErosol RObotic NETwork (AERONET) (Holben
et al., 1998) have the lowest uncertainty in retrieved AOT
of less than 0.02 (Eck et al., 1999) but are spatially re-
stricted. Spaceborne instruments like the Moderate resolu-
tion Imaging Spectroradiometer (MODIS) (Salomonson et
al., 1989) and the Multiangle Imaging SpectroRadiometer
(MISR) (Diner et al., 1998) provide near-global coverage,
but retrievals from their measurements require separating the
aerosol signal from the surface contribution. This results in
large differences between the derived aerosol products from
different instruments (Chu et al., 2003; Levy et al., 2005,
2013; Prasad and Singh, 2007; Remer et al., 2005). Other
approaches aim to use the vast information content from
spaceborne multiangle polarimetric observations that provide
enhanced capability of separating the aerosol signal from
the surface signal and a better sensitivity to aerosol micro-
physical parameters. However, retrieving aerosol properties
from such observations is highly complex, and operational
products have not yet reached the accuracy implied by the-
oretical calculations (Dubovik et al., 2019; Kokhanovsky et
al., 2015). Hence, accurate aerosol retrieval from spaceborne
platforms is still an active research topic.

To increase the accuracy of global aerosol retrievals, we
propose a retrieval algorithm that will be applicable to cur-
rent and future hyperspectral spaceborne instruments, such
as the Hyperspectral Precursor and Application Mission
(PRISMA) (Labate et al., 2009), EO-1 Hyperion (Folkman
et al., 2001), the Climate Absolute Radiance and Refrac-
tive Observatory (CLARREO) (Wielicki et al., 2013) and the
Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015).
Exploiting the large data volumes and hundreds of spectral
bands of these instruments requires new fast retrieval algo-
rithms. To meet these needs, we propose using neural net-
works. In this study, we present a neural network that is
used to independently retrieve dust, carbonaceous and sul-
fate aerosols from hyperspectral imagery over land, with no
a priori knowledge of the surface type or atmospheric state.
The neural network can retrieve multiple collocated aerosol
types and their contribution to the total AOT within a given
scene. After fitting the neural network parameters, also re-
ferred to as training, the model can be used to retrieve AOT in
real time without further radiative transfer calculations. We
apply the neural network to Airborne Visible/Infrared Imag-
ing Spectrometer Next Generation (AVIRIS-NG) (Hamlin

et al., 2011) imagery from a recent campaign over India
and demonstrate its performance under high and low aerosol
loadings and different aerosol types. AVIRIS-NG, a follow-
on to the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) (Green et al., 1998), has a spectral range of 380–
2510 nm, a spectral resolution of 5 nm and spatial resolution
of 4 to 20 m depending on flight altitude.

The structure of our paper is as follows: Sect. 2 describes
the forward radiative transfer calculations used to train an
inverse model, the neural network. Sections 3 and 4 de-
tail the architecture, training procedure and performance of
the inverse model. Furthermore, we explore how instrument
noise and sampling resolution influence model performance.
In Sect. 5 we apply the inverse model to AVIRIS-NG ob-
servations and compare results to AERONET- and MODIS-
retrieved AOT and the CAMS analysis product. In Sect. 6 we
provide our conclusion.

2 Forward model

To train a neural network for aerosol retrieval we need a
dataset consisting of the model input – output pairs, or sam-
ples, of the inverse model. These samples need to span a wide
variety of atmospheric states, viewing geometries and surface
albedos. To generate such a dataset, we employ a forward
model described in the following section.

2.1 Radiative transfer calculations

The forward model radiative transfer calculations were per-
formed with the MODerate spectral resolution atmospheric
TRANSmittance algorithm and computer model (MOD-
TRAN) 6.0 (Berk et al., 2014) from 400 to 2500 nm. Multiple
scattering was implemented with MODTRAN’s DISORT al-
gorithm (Stamnes et al., 1988), utilizing a conservative num-
ber of 32 streams. We chose the “tropical” atmospheric pro-
file. The solar zenith angle (SZA) was varied between 25 and
50◦, and water vapor varied between 0.4 and 4.1 g cm−2. The
distance between the ground and sensor (ground distance)
was varied between 3 and 6 km and the ground elevation be-
tween 0 and 2000 m. The AOT at 550 nm varied between 0
and 1.0. Three types of aerosols, brown carbon, dust and sul-
fate (see Sect. 2.3), were modeled as an external mixture,
with a fraction between 0 % and 100 %. For every parameter
permutation we perform three radiative transfer calculations
for a constant surface albedo of 0, 0.5 and 1. In the following,
the calculated at-sensor radiances for a surface albedo of 0,
0.5 and 1 are denoted as L0, L0.5 and L1. The three simu-
lations are then used to calculate at-sensor radiance for any
given surface albedo, which is assumed to be Lambertian,
utilizing the MODTRAN interrogation technique (Verhoef
and Bach, 2003). We first extract three atmospheric parame-
ters, namely the spherical albedo, ρ, two-way transmittance,
τ , and path radiance, LP.
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ρ =
2

1
f−1 + 2

with f =
L1−L0

2× (L0.5−L0)
(1)

τ = (L1−L0)× (1− ρ) (2)
LP = L0 (3)

Afterwards, we calculate the at-sensor radiance, L, for the
generated surface spectra, r (see the next section):

L= LP+
τ × r

1− r × ρ
. (4)

Finally, the radiance is convolved with a Gaussian kernel
with a full width at half-maximum (FWHM) of 5.6 nm in
the UV and 5.8 nm in IR, similar to the AVIRIS-NG spectral
resolution.

2.2 Surface spectra

To simulate a wide variety of surface types we need a multi-
tude of surface spectra. However, the number of freely avail-
able surface spectra is limited. The risk of using too few
surface spectra is that the model might not be able to ex-
tract general surface characteristics. Applied to scenes with
previously unseen surface spectra, the model would per-
form poorly. Furthermore, most catalogs provide pure sur-
face spectra from pure surface materials, also referred to as
end-member spectra. This case is not representative for most
airborne or spaceborne observations over land where mul-
tiple surface types are present in a single instrument pixel.
Therefore, we generate a catalog of mixed surface spectra
by randomly combining a limited number of measured spec-
tra from different sources. The combination is performed by
taking the randomly weighted mean of two randomly chosen
end-member spectra at a time until we have a total of 100 000
mixed surface spectra.

End-member spectra were obtained from https://ecosis.
org/ (last access: 8 November 2019) and https://speclib.jpl.
nasa.gov (last access: 8 November 2019). The datasets in-
clude 844 vegetation reflectance spectra from Hawaii (Denn-
sion and Gardner, 2000), 173 vegetation spectra from Hawaii
Volcanoes National Park (Grimm, 2017), 1065 urban sur-
faces from Santa Barbara (Herold et al., 2004b), and 270
rock and soil spectra (Meerdink et al., 2019; Baldridge et al.,
2009). To remove high-frequency noise in the surface spectra
due to low signal at some wavelengths (Herold et al., 2004a)
we smooth the surface spectra with a Gaussian kernel as done
by Thompson et al. (2018).

An example of soil, sand and vegetation reflectances from
the catalogs is shown in Fig. 1a. Figure 1b shows nine exam-
ples of how the three spectra are combined to generate mixed
surface spectra.

2.3 Aerosol parameterization

The optical properties of the three aerosol types that served
as inputs to MODTRAN were calculated using three size
distributions based upon Dubovik et al. (2002) and the in-
dices of refraction contained in HITRAN 2016 (Gordon et
al., 2017). While aerosols cannot be strictly separated into
types, we use these properties as representatives for dust,
carbonaceous and sulfate aerosols. HITRAN 2016 includes
H2SO4 indices at 300 K for sulfate aerosols and sand in-
dices for dust aerosols from the Air Force Cambridge Re-
search Laboratories (AFCRL) 1985 compilation (Fenn et al.,
1985). The indices for sulfate and dust were selected because
they cover the full wavelength range (0.2 to 40 µm), which is
convenient for the use with MODTRAN. For brown carbon
aerosols, from now on simply referred to as carbon, the in-
dices are reported up to 1.2 µm by Alexander et al. (2008).
For longer wavelengths we extrapolated the real and imagi-
nary parts.

Given the size distributions and the refractive indices, an
extended version of the HITRAN-RI program (Massie and
Hervig, 2013) was applied to calculate extinction, absorp-
tion, scattering spectra and the Legendre moments of the
phase function used in MODTRAN 6.0 calculations for car-
bon and sulfate. The calculations are based in Mie theory
and thus assume homogenous spherical aerosol particles. For
dust we had to account for its nonspherical shape. We ap-
plied the T-matrix code of Mishchenko (Mishchenko and
Travis, 1998) for randomly oriented particles to generate the
MODTRAN SAP files. The range of ratios of semimajor
to semiminor axes, or aspect ratios (ARs), was varied be-
tween 1.01 and 1.8. This range contains the representative
AR of 1.4 (Okada et al., 2001), while the aspect ratio of
1.01 corresponds to a nearly spherical particle. In our appli-
cation of the T-matrix code the second-mode parameters (i.e.,
Rad2 = 0.83 µm, σ2 = 1.84; see Table 1) were used to spec-
ify the size distribution, and the AFCRL 1987 sand indices
are utilized.

Table 1 summarizes the inputs to the aerosol calculations,
i.e., parameters for a size distribution with two lognormal
distributions. Given the input size distribution and indices,
the resulting extinction spectra were distributed uniformly
from the surface to 2 km of altitude, with an additional strato-
spheric sulfate aerosol optical thickness of 0.006 distributed
throughput the stratosphere.

To highlight the optical properties of the simulated
aerosols, Fig. 2 shows the MODTRAN-simulated radiances
for the three different aerosol types overlying a black surface.
The observed radiance is simulated at an altitude of 3 km
with an SZA of 25◦ and ground elevation at sea level. An
AOT of 1.0 was selected for each aerosol type. The single-
scattering albedos close to unity of sulfate and dust have a
larger effect on the simulated radiance compared to the lower
single-scattering albedo of carbon. For a highly reflective
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Figure 1. (a) Surface reflectance for three different surface types (soil, sand and vegetation) from measured and smoothed surface spectra.
(b) Nine surface spectra randomly generated from the three spectra on the left. Wavelengths with strong water vapor absorption are marked
in grey.

Table 1. Lognormal size distribution parameters for the three aerosol types considered.

Aerosol type Den1 Rad1 σ1 Den2 Rad2 σ2 Indices

Sulfate 1.00 0.64 1.58 1.25 0.37 2.13 AFCRL 1987 H2SO4 300 K
Dust – – – – 0.83 1.84 AFCRL 1987 sand
Brown carbon 1.00 0.086 1.49 – – – Alexander brown carbon

Figure 2. Radiance for a black surface, three different aerosol types
and no aerosols from an observed altitude of 3 km with an SZA of
25◦. Every aerosol type (dust with an AR of 1.5, carbon and sulfate)
is shown for an AOT of 1.0. No data are shown for the wavelengths
of two water vapor absorption bands (grey bars).

surface, the effects would be reversed, and we would see the
strongest deviation from the case of no aerosols for carbon.

2.4 Simulating instrument noise

Unlike radiative transfer calculations, the measured signal
from real instruments contains noise. Therefore, we add
noise to the radiative transfer calculations that is similar to
the noise in the AVIRIS-NG instrument.

The noise is approximated by a three-parameter fit (see
Eq. 5) (Thompson et al., 2018) and derived from more com-

plex AVIRIS-NG noise models (Mouroulis et al., 2000, 2003;
Tennant et al., 2008).

σ(L(λ)λ)= a(λ)× (b(λ)×L(λ))0.5+ c(λ) (5)

The computed noise, σ(L(λ)λ), is a function of three
wavelength-dependent parameters and observed radiance,
L(λ), which is a function of wavelength as well. Following a
normal distribution, we randomly add the calculated noise to
the radiative transfer calculated radiances:

Lnoise (λ)= L(λ)+X with X ∼N(0,σ (L(λ)λ)). (6)

On average, the signal-to-noise level for a typical scene
is about 100 in the ultraviolet, 200 in the visible and 300 in
the near infrared; it peaks at about 1600 nm with a signal-to-
noise level of 700.

3 Inverse model

After using the forward model to generate a dataset to train
the neural network, we are now able to train an inverse model
that relates radiance spectra to AOT for the three aerosol
types.

3.1 Model architecture

A subclass of neural networks, called multilayer perceptrons
(Werbos, 1974), have been shown to be able to approximate
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any linear or nonlinear function (Hornik et al., 1989). Af-
ter the training phase multilayer perceptrons can be used in
real time at low computational cost. This makes this model
architecture ideal for our application. Neural networks have
previously been used in many studies to extract information
from remote sensing observations: for example, to estimate
cloud optical thickness and type (Minnis et al., 2016; Tara-
vat et al., 2015), to unmix surface types (Licciardi and Del
Frate, 2011; Palsson et al., 2018), and to retrieve the bio-
physical properties of vegetation (Verger et al., 2011; Xiao
et al., 2014). Neural networks have also been applied to re-
trieve aerosol layer height from Ozone Monitoring Instru-
ment (OMI) observations (Chimot et al., 2017), used to esti-
mate multiple aerosol parameters as the prior for an iterative
Phillips–Tikhonov retrieval (Di Noia et al., 2017) and to es-
timate AOT from MODIS observations (Lary et al., 2009;
Radosavljevic et al., 2010).

A multilayer perceptron is comprised of many individual
functional elements, or neurons, that multiply their inputs by
a matrix, or weights, sum the results and add an additional
vector, called bias. A nonlinear function, the activation func-
tion, is applied to the results, or outputs, of these neurons,
permitting nonlinear projections from the input space to the
output space. In a network, the output of neurons can be
used as the input to other neurons. Hence, neurons are orga-
nized in layers. In general, more layers, and more neurons per
layer, allow for more complex information retrieval. How-
ever, if the network becomes too complex for a given dataset
and task, it will perform poorly for new model inputs. The
right number of neurons and layers as well as other param-
eters, or hyperparameters, has to be determined empirically
for every application. Thus, we altered the hyperparameters,
trained the neural network on the majority of the samples,
the training set, and evaluated the model performance with
samples that are separate from the training set, the valida-
tion set. Once we could no further reduce a user-defined cost
function, we froze the hyperparameters.

Our neural network consists of five layers between the in-
put and output layer, or hidden layers, containing 128 neu-
rons in the first four hidden layers each and 96 neurons in the
last hidden layer. The input layer consists of 322 neurons, and
the output layer consists of 3 neurons. The first five layers are
fully connected, meaning that all layer outputs are used as
layer inputs of the succeeding layer. The sixth layer is sepa-
rated into three groups with 32 neurons each (see Fig. 3). The
inputs to the neural network are the radiance at 319 wave-
lengths, the SZA, ground distance and ground elevation. The
output of the network is the independently retrieved AOT of
the three aerosol types.

Figure 3. Model architecture of the neural network for aerosol re-
trieval. The inputs consist of the SZA, ground distance, ground ele-
vation and the radiance at 319 individual wavelengths. The network
has five hidden layers with 128 neurons in the first four layers and
96 neurons in the last hidden layer. The outputs of the network are
the AOT for carbon, dust and sulfate aerosols.

To allow for nonlinearities we add a rectified linear unit
(ReLU) as the activation function, g(x), which can be ex-
pressed as

g (x)=

{
x, ifx ≥ 0
0, ifx < 0, (7)

where x is the output of a neuron. During training we mini-
mize the cost function given by

cost= α×R(θ)+
1

2n

n∑
j=1

(
Ŷj −Yj

)2
, (8)

R(θ)= ‖θ‖2 =

√√√√ m∑
i=1

θ2
i . (9)

For our network Ŷj and Yj are the n true and predicted
AOT, respectively. We further add the L2 norm ‖θ‖2 to the
vector of the m neural network weights, θ , to our cost func-
tion (see Eq. 9), also referred to as L2 regularization or
weight decay. This helps to avoid overfitting to the training
set. The L2 regularization term, R(θ), is weighted by α (see
Eq. 8), which is another hyperparameter that had to be deter-
mined empirically.

3.2 Preprocessing

From the 425 AVIRIS-NG channels we exclude calculated
radiances at wavelengths with strong water vapor absorption.
At these wavelengths, the majority of the surface spectra used
in this study did not report or linear interpolate surface re-
flectance. Furthermore, we exclude radiances at wavelengths
that show strong signs of noise in the AVIRIS-NG data. A
total of 319 wavelength channels remain. We then scale the
radiance of a particular observation, Lj , by dividing through
the cosine of the SZAj and multiplying with the square of the
ratio between Sun–Earth distance, dj , and mean Sun–Earth
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distance, d0, (Eq. 10). This scales the magnitude of Lj while
preserving its spectral shape and is similar to deriving the
top-of-atmosphere reflectance. Afterwards, we standardize
the scaled observations, Rj , for the training process. During
training, this results in a better conditioned cost function and
allows the neural network to converge faster to a solution.
Standardizing is performed by subtracting the mean, µλ, and
dividing by the standard deviation, σλ, at every wavelength,
(Eq. 11). The mean and standard deviation were calculated
from the complete set of radiative transfer calculations.

Rj =
Lj ×

(
dj
d0

)2

cos(SZAj )
(10)

Rj =
Rj −µλ

σλ
with µλ =mean

(
Rj
)
λ

and σλ = std(Rj )λ (11)

3.3 Training, validation and test

The MODTRAN radiance samples were split into a train-
ing, validation and test set. The validation and test set con-
tain 10 000 randomly chosen samples each, and the training
set consists of 280 000 samples. Training is performed with
the Google TensorFlow framework (Abadi et al., 2016). We
gradually minimize the cost function by adjusting the ran-
domly initialized weights and bias terms with the gradient-
based optimizer Adam from Kingma and Ba (2014) at a
learning rate of 0.001. During training we evaluate the neu-
ral network performance on the validation set and update the
model architecture and training parameters. Once the cost
function cannot be further minimized, training is complete.

4 Results and discussion

After training of the neural network is completed, we eval-
uate its performance on the test set. For the samples in the
test set that were not present during training, we find a linear
correlation coefficient of 0.87, 0.98 and 0.96 for the AOT of
carbon, dust and sulfate, respectively (see Fig. 4). The stan-
dard error for carbon, dust and sulfate aerosols is 0.05, 0.02
and 0.03, respectively. Thus, the model has the smallest un-
certainties for the retrieval of dust and sulfate, which are less
strongly absorbing across most of the relevant spectral range
compared to carbon. Distinguishing the weaker signal from
carbon from the surface contribution might be more chal-
lenging for the neural network and lead to the overall larger
uncertainties for carbon. Additionally, the spectral signature
of carbon and sulfate shows high similarities at shorter wave-
lengths, except for a scaling factor (see Fig. 2). This might
further challenge the neural network in distinguishing the
two. For wavelengths ranging from 500 to 600 nm, absorp-
tion of dust increases with decreasing wavelength, while the
opposite is true for carbon and sulfate. This unique spectral

signature of dust, compared to the other two aerosol types,
might be another reason for the smaller standard error of its
retrieval.

We further investigate the model’s performance for re-
trieved AOT under varying amounts of the three aerosol
types. The absolute error in retrieved AOT for the three
aerosol types is shown in Fig. 5a–c. Horizontal gradients
(vertical bands) indicate that the model’s performance for the
retrieval of a single aerosol type depends on the concentra-
tions of the other aerosols in a given observation. Vertical
gradients indicate that the model’s performance is dependent
on the AOT of the aerosol that we are trying to retrieve. For
the error on retrieved carbon (Fig. 5a) and sulfate (Fig. 5c) we
find dependencies on AOT, while the error in the retrieval for
dust (Fig. 5b) appears insensitive to its AOT. Examining the
retrieval error in percent of AOT (Fig. 5d–f) we find that all
three aerosol retrievals have higher relative errors for lower
AOT and a standard error of about 40 % for an AOT of 0.1.
We further analyzed the model’s performance over an SZA
range from 25 to 50◦, ground elevation from 0 to 2000 m and
ground distance from 3000 to 6000 m. No significant cor-
relation between model error and the three parameters was
found.

4.1 Model performance for varying surface types

To investigate systematic, surface-dependent biases in the
model we derive AOT for the three aerosol types over vari-
ous unmixed surface types. The data consist of 250 000 sam-
ples. The standard error and mean between true and predicted
AOT for different surfaces types is summarized in Fig. 6.
For the retrieval of carbon, we find the largest standard er-
ror for asphalt with ±0.08 and the largest systematic bias
for grass of +0.02. For dust the largest systematic bias is
less than +0.01 and occurs for scenes with concrete. The
standard error is similar for all surface types and approxi-
mately ±0.02. The systematic biases for the retrieval of sul-
fate aerosols are mostly negative, with asphalt and concrete
causing the largest bias of −0.01. Overall, the standard error
for the retrieval of carbon over most surfaces is larger com-
pared to the other two aerosol types. This is not surprising,
considering the overall lower performance of the model for
the retrieval of carbon aerosols. Note that the model’s per-
formance should be evaluated from the more realistic case of
mixed surface spectra as was done in the previous section.

4.2 Effect of spectral resolution, sampling resolution
and instrument noise

Here we examine how spectral resolution, sampling resolu-
tion and instrument noise affect model performance. The un-
derlying motivation is to estimate the model’s performance
for instruments other than AVIRIS-NG, which might have a
10 nm spectral resolution, fewer wavelength channels, and a
higher or lower signal-to-noise ratio. Hence, we train and an-
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Figure 4. AOT for carbon, dust and sulfate aerosols retrieved by the model vs. true AOT from the test set. The cyan line shows the linear fit
to the data, with the slope and y intercept given in the respective titles.

Figure 5. Error in retrieved AOT for carbon, dust and sulfate aerosols on the test set. Panels (a), (b) and (c) show the absolute error, while
(d), (e) and (f) show the error in percent. The color mapping is held constant for each row and varies across the three columns.

alyze the model’s performance for an additional 23 networks
with varying noise, spectral resolution and sampling resolu-
tion.

To simulate the fewer wavelength bands, the training sam-
ples were reduced in sampling resolution, leaving 319, 107,
36 and 12 uniformly spaced wavelengths per sample. Fur-
thermore, to account for different signal-to-noise ratios, we
changed the simulated AVIRIS-NG equivalent noise level
(see Eqs. 5 and 6) by multiplying it with 0 (no noise), 1 and
3 before applying it to our training and test samples. Finally,
we performed all calculations once for the AVIRIS-NG spec-
tral resolution of approximately 5 nm and for a spectral res-
olution of 10 nm. All neural network parameters were kept
constant, except the input layer, which had to be adapted to
the reduced number of wavelengths. Training was stopped
when the error on the validation set could not be reduced
any further or we reached a maximum of 10 000 epochs,
meaning that every training sample was used during training

10 000 times. While we found dependencies of retrieval per-
formance on varying amounts of noise and numbers of wave-
length channels, the spectral resolution had no significant ef-
fect. On average the models trained with a spectral resolution
of 5 nm had a standard error in retrieved AOT that was only
0.001 smaller than for the cases with a spectral resolution of
10 nm. Therefore, we limit the following discussion to the
results of the 12 neural networks trained on radiative trans-
fer calculations with the AVIRIS-NG spectral resolution of
approximately 5 nm and note that these values are also repre-
sentative for an instrument with a 10 nm spectral resolution.

The standard error on the test set of the respective 12 neu-
ral networks is shown in Fig. 7. Figure 7a–c show the stan-
dard error for the complete test set (AOT is varied between
0 and 1), while panels (d)–(f) show the standard error for
low aerosol loadings, with AOT ranging between 0 and 0.3.
As expected, we find a decrease in model accuracy for fewer
wavelengths and more noise. This decrease in model accu-
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Figure 6. Mean error and standard error of retrieved AOT for carbon, dust and sulfate for various unmixed surface types from the test set.

racy, with respect to the idealized case of 319 wavelength
bands and no noise, is nearly symmetrical for our chosen test
cases. Thus, if we reduce the number of wavelength bands
by a factor of 3 the model has similar accuracy compared to
if we add AVIRIS-NG equivalent noise, and if we reduce the
number of wavelength bands by a factor of 9 the model has
similar accuracy compared to applying 3 times AVIRIS-NG
equivalent noise, and so on. This holds true for all aerosol
types. Overall, the model has the highest accuracy for the re-
trieval of dust. To put the calculated standard errors into per-
spective: if the model randomly guessed the combined AOT
of all three aerosols between 0 and 1 and simply divided by 3,
the standard error would be ±0.10. Thus, all trained models
show higher accuracy than guessing randomly. If we had a
model able to retrieve the combined AOT without error and
then simply divided by 3, the standard error would be±0.07.
For the retrieval of carbon, the models with 12 wavelength
bands and 3 times AVIRIS-NG equivalent noise show such a
standard error. This is an indication that the AOT from car-
bon aerosols cannot be isolated from other aerosols for in-
struments with only 12 wavelengths and 3 times AVIRIS-NG
equivalent noise. The retrieval of dust and sulfate requires
fewer wavelength bands and can tolerate more noise com-
pared to the retrieval of carbon.

For aerosol retrieval under low-AOT conditions (Fig. 7d–
f), a model that guessed the combined AOT randomly be-
tween 0 and 0.3 and divided by 3 would have a standard er-
ror of ±0.06, and a model that can determine the combined
AOT perfectly and then simply divide by 3 would have a
standard error of ±0.03. Most combinations of wavelength
bands and instrument noise have standard errors that exceed

this threshold of±0.03 for the retrieval of carbon. This high-
lights the limitations of the model for the separation of car-
bon aerosols for low levels of AOT. Additionally, it stresses
the importance of low noise hyperspectral instruments, such
as AVIRIS-NG.

4.3 Sensitivity analysis

It is inherently difficult to interpret the inner workings of neu-
ral networks. However, by perturbing the inputs and observ-
ing the changes in the outputs one can infer the relative im-
portance of an input for a given model (Blackwell, 2012).
We perform such a sensitivity analysis by increasing one in-
put at a time by 1 %, while keeping the other 321 inputs un-
changed. The model output is then calculated for the entire
test set and compared to the retrieval without the perturba-
tion. For example, AOT of carbon is derived while the model
input, representing the observed radiance at 500 nm, is in-
creased by 1 %. All other model inputs, for example radiance
at 600 and 700 nm or SZA, are kept unchanged. We perform
such a sensitivity analysis once for the model trained without
noise (an ideal instrument) and once for the model trained
with AVIRIS-NG equivalent noise. The sensitivity to every
input is shown in Fig. 8. For the model trained without noise
(top, third and fifth row) we find more sensitivity at 687 and
762–767 nm for the retrieval of carbon and dust while sulfate
shows more sensitivity to the latter. These wavelengths cor-
respond to the oxygen B and A band located at 685–695 and
759–771 nm, respectively. Multiple studies have suggested
the use of these absorption bands for the retrieval of AOT and
its vertical structure (Dubuisson et al., 2009; Heidinger and
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Figure 7. Standard error for retrieved AOT of 12 individually
trained neural networks with varying wavelength bands (319, 107,
36, 12) and a varying amount of simulated AVIRIS-NG equivalent
noise (0, 1, 3; see Eqs. 5 and 6) from the test set. Panels (a), (b) and
(c) show the standard error when AOT is varied between 0 and 1.
Panels (d), (e) and (f) show the standard error for AOT between 0
and 0.3.

Stephens, 2000; Min et al., 2004). The sensitivity to small
perturbations of SZA, ground distance and ground elevation
is small compared to the radiances. From these three model
inputs, surface elevation is indicated to be the most important
for the retrieval of dust and sulfate.

For the model trained with AVIRIS-NG equivalent noise
we find approximately an order of magnitude lower sensitiv-
ity at shorter wavelengths compared to their respective coun-
terparts trained without noise (note the different y scales for
the six sensitivity plots). This demonstrates how the model
adapted to small perturbations (noise) at individual wave-
lengths by becoming less sensitive to these perturbations.
For longer wavelengths, the change in sensitivity is less pro-
nounced. In general, we observe a relative shift in sensitivity
from shorter towards longer wavelengths when instrument
noise is added. The shift in sensitivity to longer wavelengths
might be a direct effect of the noise distribution of AVIRIS-

NG, which allows for a higher signal-to-noise ratio at longer
wavelengths. Additionally, there is an overall smoother shift
in sensitivity between neighboring wavelengths. This can
be interpreted as the model relying on multiple neighboring
wavelengths to obtain their shared information content rather
than interpreting wavelengths individually.

5 Applying the model to real imagery

We apply the trained neural network to AVIRIS-NG obser-
vations from a flight campaign in 2016 over India in collabo-
ration with the Space Applications Centre, Indian Space Re-
search Organization (SAC, ISRO). The results are compared
to MODIS- and AERONET-retrieved AOT and a reanalysis
product.

5.1 Preprocessing of AVIRIS-NG observations

To remove remaining noise in the AVIRIS-NG observations
we use a principal component analysis (PCA) (Wold et al.,
1987) and inspect the generated eigen-images manually. The
PCA is only applied to the 319 wavelength channels that we
used to train the model on. As stated before, these channels
were down-selected from the 425 AVIRIS-NG channels to
avoid wavelength bands with strong water absorption and
instrument noise. The first 16 components explain approxi-
mately 99.9 % of the variability and are dominated by im-
age features (see Fig. 9). Most higher principal components
are dominated by systematic noise (vertical stripes along the
flight path). We reconstruct the AVIRIS-NG-observed radi-
ances from these first 16 principal components. This effec-
tively removes principal components higher than 16 from
all analyzed AVIRIS-NG imagery. Afterwards, the radiance
for every pixel is treated as an independent observation and
scaled and standardized (Eqs. 10 and 11) to match the train-
ing set. We acknowledge that the choice of retaining the first
16 principal components is rather arbitrary and should ide-
ally be made on a per flight basis. However, for practical rea-
sons we decided to use one threshold for all imagery con-
sidered in this study. The threshold is a trade-off between
removing valuable information and reducing noise. Experi-
ments with more and fewer principal components indicated
that the model was insensitive to the exact number of remain-
ing principal components.

5.2 Novelty detection

Our model is trained on a limited set of training examples.
The set of surface types available for training is not com-
plete. Generally speaking, library spectra of surface materi-
als vastly under-represent the spectral variability of surface
materials found in nature. The variety of surface materials is
just too great to include in any single library. Applying the
model to scenes with new surface types, which have signifi-
cant differences compared to the surface types in the training

www.atmos-meas-tech.net/12/6017/2019/ Atmos. Meas. Tech., 12, 6017–6036, 2019



6026 S. Mauceri et al.: Neural network for aerosol retrieval

Figure 8. Sensitivity for retrieved AOT of carbon, dust and sulfate to all model inputs. The x axis shows the model inputs (radiances at
shown wavelength, SZA, ground distance and ground elevation). The y axis shows the difference in retrieved AOT when increasing a given
input by 1 %, while keeping all other inputs unchanged.

set, can lead to false aerosol retrieval by the model. Hence, it
is important to measure the similarity of a given AVIRIS-NG
scene to the training examples and discard individual image
pixels that are far outside the training space. This is referred
to as novelty detection.

For this purpose, we train a second neural network pro-
posed by Japkowicz et al. (1995) on the training samples with
AVIRIS-NG equivalent noise. The network architecture is an
auto-associative multilayer perceptron (Kramer, 1992) with
three hidden layers, as shown in Fig. 10. All three hidden
layers use a ReLU activation function and consist of 512,
32 and 512 neurons each. The input and output layer con-
sist of 322 neurons each. The network takes 319 radiances at
individual wavelengths (measurements of one image pixel),
SZA, ground distance and ground elevation as input param-

eters and is trained to reproduce these parameters after some
computation by the network. The network is trained in a man-
ner similar to the model for aerosol retrieval and uses the
same optimization algorithm and cost function (see Eq. 8),
with n= 322 and Ŷj and Yj being the original and repro-
duced radiances and SZA, ground distance and ground ele-
vation. The first three layers (input, compression and bottle-
neck) act similarly to deriving the first 32 principal compo-
nents but are nonlinear. The last two layers (decompression
and output) can be interpreted as reproducing the radiances
only from their first 32 principal components but are again
nonlinear. After the replication of the input parameters we
compare those to the original inputs and calculate the mean
square error between the two. During training, the neural net-
work learns to minimize this error. For example, the neural
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Figure 9. First 36 eigen-images from an AVIRIS-NG flight on 10 January 2016 near Coimbatore, India. Shown is a spatially resolved scene
of 100× 100 ground pixels, approximately 500× 500 m. Instrument artifacts (vertical stripes) are visible for eigen-images numbered higher
than 16 (for example, 19 and 22).

network learns that the radiance at 2100 nm is highly corre-
lated with the radiance at 2300 nm. Thus, it can reconstruct
(decompress) both radiances with only one value passed in
from the bottleneck layer with little error. Once the neural
network is trained and applied to previously unseen features
it will compress and decompress features that are similar to
the training set (high correlation between 2100 and 2300 nm)
with a smaller error than features that are different (low cor-
relation between 2100 and 2300 nm). Finally, a threshold for
the error is determined as a trade-off between the number
of remaining aerosol retrievals and the number of remaining
outliers. Samples above the determined threshold are consid-
ered new and not considered for the aerosol retrieval.

5.3 Results

Figures 11 and 12 show the aerosol retrieval for two of the 21
analyzed AVIRIS-NG scenes. The scene in Fig. 11 was cap-
tured on 2 April 2016 near Kota, India. It shows a detail of the
flight with 100× 500 pixels and an approximate ground res-
olution of 5 m per pixel. The median and standard deviation
of the retrieval are indicated at the top of the first four panels,
showing the combined AOT and unmixed AOT for carbon,
dust and sulfate. The normalized mean square error from the
auto-associative neural network for novelty detection and a
true color image is shown on the right as well. Image pix-
els that lie above a user-defined threshold are highlighted in
red and discarded. For the scene shown in Fig. 11 the dis-
carded image pixels consist of water features in the middle
and bottom portions of the scene as well as some agricultural
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Figure 10. Auto-associative neural network used for novelty detec-
tion. The input and output layer consist of SZA, ground distance,
ground elevation and radiances at 319 wavelengths. The network
has three hidden layers with 512, 32 and 512 neurons per layer.

sites. The detection of water by the neural network for nov-
elty detection is to be expected, since the spectral shape of
water is very different to most land surfaces and was not part
of the training set. The aerosol retrieval still includes surface
features. For example, it overestimates carbon aerosols over
what appears to be a street (middle of second plot from the
left). Some residual surface features are not entirely unex-
pected as less challenging atmospheric retrievals from imag-
ing spectroscopy, for example water vapor (Thompson et al.,
2015), often contain surface reflectance artifacts. The detail
shown in Fig. 12 is from an AVIRIS-NG flight near Gundlu-
pet, India, from 10 January 2016. The model for novelty de-
tection mostly excluded individual fields with bare soil. Sim-
ilar to the figure above, we find some residual surface fea-
tures in the retrieval. Both images show the limitation of the
model in distinguishing small variations in AOT from differ-
ent surface types. To minimize the residual surface features a
median filter could be applied in post-processing at the cost
of lower spatial resolution.

5.4 Comparison to AERONET and MODIS

We compare the combined aerosol retrievals from AVIRIS-
NG to AERONET and MODIS retrievals. AERONET is a
network of ground-based sun photometers distributed around
the globe (Holben et al., 1998). AERONET instruments de-
rive AOT at multiple wavelengths with an uncertainty of 0.01
to 0.02 (Eck et al., 1999). These low uncertainties make
AERONET stations a common source for the validation of
airborne and spaceborne AOT retrieval (Bilal et al., 2014;
Chu et al., 2003; Levy et al., 2013). However, there are sparse
AERONET locations in India. We therefore add a second
source of AOT retrievals to the comparison from MODIS
observations. MODIS makes daily and nearly global obser-
vations from two platforms, Aqua and Terra. MODIS has a
spectral range from 410 nm to 14.5 µm over 36 discrete wave-
length bands. Its ground resolution is better than 1 km, de-
pending on the wavelength band (Salomonson et al., 1989).

Two algorithms are utilized to derive AOT from MODIS ob-
servations. The Dark Target (Kaufman et al., 1997) algorithm
is used for dark ground targets such as vegetation and water.
The Deep Blue (Hsu et al., 2004, 2006) algorithm is applied
to measurements over dark and bright surfaces, although it
was originally developed for the aerosol retrieval over bright
desert regions. Over land, MODIS-retrieved AOT has an ex-
pected standard error of 0.05+ 15 % of AOT (Levy et al.,
2013). MODIS has larger uncertainties than AERONET, but
the retrievals are in closer spatial and temporal proximity to
the AVIRIS-NG flights.

For the period of the 21 AVIRIS-NG flights only three
AERONET stations within India were operational. These are
Gandhi College (25.9◦ N, 84.1◦ E), Jaipur (26.9◦ N, 75.8◦ E)
and Pune (18.5◦ N, 73.8◦ E). We make use of the daily means
of their Level 2.0 data product, which is cloud-cleared and
manually inspected. The locations of all three stations are
shown in Fig. 13 together with the location of all 21 AVIRIS-
NG flights considered in the study. For a given flight we con-
sider the AOT retrieved from all three AERONET stations
within 1 and 2 d of the flight date. The time-averaged re-
trieved AOT of each AERONET station, τ aer_i , is weighted
proportionally to the square of the distance, di , between the
station and flight:

τ aer =

3∑
i=1
τ aer_i × d

−2
i

3∑
i=1
d−2
i

. (12)

The comparison between AOT retrieved by AERONET
and the AVIRIS-NG flights is shown in Figs. 14 and 15
for AERONET retrievals within 1 and 2 d, respectively. For
the comparison within 1 d of the AVIRIS-NG flights only
four AERONET stations reported their measured AOT. Only
one comparison falls within the specified 1 d window and
is within 2◦ (≈ 220 km) of the flight location (red circle).
The three other comparisons are for flights with a distance
ranging from 2 to 4◦ between the AERONET station and the
AVIRIS-NG flight. The standard deviation of all considered
AERONET retrievals that we compare to for a given flight is
indicated by the vertical bars. The standard deviation within
a scene for the analyzed AVIRIS-NG flights is shown with
horizontal bars. For the four comparisons we find a root mean
square difference (RMSD) of 0.09. However, due to the large
spatial distance between AERONET stations and the consid-
ered AVIRIS-NG flights this value has to be interpreted with
caution and comes with large uncertainties. Nevertheless, we
included this comparison for completeness and hope to have
more collocated flights of AVIRIS-NG and AERONET sta-
tions in the future.

Considering AERONET observations within 2 d of the
flights we are able to compare eight flights in total, with three
flights within 2◦ and five flights within 2 to 4◦. The RMSD
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Figure 11. Aerosol retrieval with the model from AVIRIS-NG imagery near Kota, India, 2 April 2016. The median and standard deviation of
the retrieval are indicated at the top of each panel. The normalized output of the neural network for novelty detection is shown in the panel
second from the right. Values above a chosen threshold are discarded from the aerosol retrievals and highlighted in red (e.g., a river in the
middle of the images). A true color image of the scene is shown as well for reference.

Figure 12. Aerosol retrieval with the model from AVIRIS-NG imagery near Gundlupet, India, 10 January 2016. The median and standard
deviation of the retrieval are indicated at the top of each panel. The normalized output of the neural network for novelty detection is shown
in the panel second from the right. Values above a chosen threshold are discarded from the aerosol retrievals and highlighted in red. A true
color image of the scene is shown as well for reference.
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Figure 13. Location of AERONET stations and AVIRIS-NG flights
on a topographic map of India. The AERONET stations are marked
with blue diamonds, and a 4 and 2◦ (approximately 440 and 220 km)
radius around each station is indicated with a black and blue circle.
The AVIRIS-NG flight locations are shown with a red x. AVIRIS-
NG flights outside the circles are not considered for the comparison
to AERONET.

for all eight comparisons is 0.08. Again, we caution that
the distance between AERONET stations and AVIRIS-NG
flights is significant. For the comparison within 2 d, the clos-
est comparison has a distance of about 40 km and is shown
in Fig. 15 (circled red and furthest to the right).

For the comparison to MODIS we make use of
the Collection 6 MODIS Terra and MODIS Aqua
Level 2 (L2) Aerosol Product (Levy et al., 2013,
2015a, b). More specifically, we use the science dataset
AOD_550_Dark_Target_Deep_Blue_Combined within the
specified aerosol product. These data have a spatial resolu-
tion of 10× 10 km and are derived utilizing the Dark Tar-
get and Deep Blue algorithm. All AOT retrievals come with
a quality assurance confidence (QAC), which is a measure
of the algorithm performance. The QAC is determined by
the number of examined pixels, fitting error and whether the
solution falls into realistic physical conditions (Levy et al.,
2013). In our study, we only consider derived AOT with the
highest QAC = 3 and consider retrievals within 1 d and 0.2◦

≈ 22 km of the AVIRIS-NG flights. The spatiotemporal cut-
off is chosen as close in time and space as possible, while
avoiding AVIRIS-NG flights with no collocated MODIS re-
trievals. This results in an average of 55 and minimum of
13 MODIS retrievals per AVIRIS-NG flight that we com-
pare to. The comparison for the 21 AVIRIS-NG flights to the

Figure 14. AOT retrieved by AERONET (see Eq. 12) and the AOT
retrieved from AVIRIS-NG with the model. The standard deviation
of the considered AERONET measurements is shown with verti-
cal bars and the standard deviation for the retrieval with AVIRIS-
NG with horizontal bars. All comparisons between AERONET and
AVIRIS-NG flights are located within 4◦ (≈ 440 km) and within 1 d
of each other. The one comparison within 2◦ (≈ 220 km) is circled
in red.

MODIS-retrieved AOT is shown in Fig. 16. The two AOT re-
trievals have a significant correlation of 0.81 and an RMSD
of 0.12. However, the correlation might be mainly driven by
the few high-AOT comparisons. The correlation and RMSD
are similar to comparisons between AERONET and MODIS
for India, with a correlation of 0.86 and RMSD of 0.19
(Gupta et al., 2018). Furthermore, AVIRIS-NG shows a posi-
tive bias of 0.07 compared to MODIS, which itself has a pos-
itive bias compared to AERONET (Gupta et al., 2018; Wang
et al., 2019). This indicates that the AVIRIS-NG retrievals
might overestimate combined AOT. Whether this bias holds
true for a larger sample size and whether it is grounded in
the model or the calibration of AVIRIS-NG warrants further
investigation. Interestingly, the two outliers at the bottom of
Fig. 16, where MODIS reports almost no aerosols, are only
20 km and 1 d apart from each other. It has to be noted that the
presented model was trained purely on radiative transfer cal-
culations and not adjusted or calibrated to match the aerosol
retrieval from MODIS or AERONET in any way. As with the
comparison to AERONET, the comparison to MODIS comes
with caveats. In essence, MODIS faces the same challenges
as our model, namely detecting the weak signal of aerosols in
the presence of a strong signal from the underlying surface.
Furthermore, MODIS AOT retrievals have a different spatial
resolution and stem from observations recorded at different
times than the AVIRIS-NG flight tracks. Nevertheless, in the
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Figure 15. AOT retrieved by AERONET (see Eq. 12) and the AOT
retrieved from AVIRIS-NG with the model. The standard deviation
for AERONET is shown with vertical bars and the standard de-
viation for the retrieval with horizontal bars. All comparisons be-
tween AERONET and AVIRIS-NG flights are located within 4◦

(≈ 440 km) and within 2 d of each other. The three comparisons
within 2◦ (≈ 220 km) are circled in red.

absence of higher-accuracy collocated measurements we in-
cluded the comparison to MODIS.

5.5 Comparison to CAMS

We further compare the retrieved AOT to the Coperni-
cus Atmosphere Monitoring Service (CAMS) product. The
CAMS system provides global analysis and forecasting
of AOT for organic matter, dust and sulfate and is fur-
ther described in Morcrette et al. (2009) and Benedetti
et al. (2009). CAMS accounts for the aerosol emissions,
transport, sedimentation and deposition of various aerosol
types. In contrast to MODIS and AERONET, one can di-
rectly compare the CAMS AOT for a specified aerosol type
to the retrieved AOT. We make use of the CAMS “near-
real-time” product at a spatial resolution of 0.125◦ avail-
able at https://apps.ecmwf.int/datasets/data/cams-nrealtime/
levtype=sfc/ (last access: 8 November 2019).

Figure 17 shows the comparison for the three considered
aerosol types with the CAMS-modeled AOT on the y axis
and AVIRIS-NG-retrieved AOT on the x axis. There seems
to be general agreement between CAMS and AVIRIS-NG,
with AVIRIS-NG retrievals being on average 0.03 higher.
The standard deviation of the difference between CAMS and
AVIRIS-NG for the 21 analyzed scenes is 0.02, 0.04 and 0.05
for carbon, dust and sulfate, respectively. For AOT below 0.1,
CAMS and AVIRIS-NG differ significantly for carbon and
dust, with AVIRIS-NG retrieving higher AOT.

Figure 16. AOT retrieved by MODIS (y axis) vs. AOT retrieved
by AVIRIS-NG with the model (x axis). The standard deviation for
MODIS is shown with vertical bars and the standard deviation for
the retrieval with horizontal bars.

We further evaluate the agreement between AVIRIS-NG
and CAMS for which aerosol type has the largest, second
largest and smallest AOT in a given scene. For 16 out of the
21 compared scenes AVIRIS-NG and CAMS agree on which
aerosol type dominates with the largest AOT (see Fig. 18); 14
out of 21 compared scenes agree on which aerosol type has
the second largest AOT, and 16 out of 21 agree on which
aerosol type has the smallest AOT. Thus, if one were to
use the proposed neural network to classify the dominant
aerosol type from AVIRIS-NG observations, the neural net-
work would have an estimated accuracy of 76 %.

6 Conclusions

We demonstrated the retrieval of AOT from externally mixed
dust, sulfate and carbonaceous aerosols from hyperspectral
imagery with no a priori information on surface albedo or
atmospheric state. We showed how sampling resolution and
instrument noise influence the retrieval and, as expected, we
find a decrease in model performance for fewer wavelengths
and increased instrument noise. These results underline the
need for low-noise hyperspectral instruments. A sensitivity
analysis gave insight in which wavelengths are important and
how the neural network compensates for instrument noise:
shifting sensitivity to multiple neighboring wavelengths and
to longer wavelengths. We applied our model to AVIRIS-
NG observations from a recent campaign over India and
compared the retrieved AOT to AERONET and MODIS re-
trievals. The comparison to AERONET shows an RMSD in
AOT of 0.09 and 0.08 for collocated flights within 1 and 2 d,
respectively. The comparison to MODIS finds an RMSD of
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Figure 17. AOT modeled by CAMS (y axis) vs. AOT retrieved from AVIRIS-NG spectra with the neural network (x axis). The standard
deviation of the CAMS-modeled AOT within 6 h and 0.125◦ of the AVIRIS-NG observations is shown with vertical bars and the standard
deviation for the AVIRIS-NG retrievals with horizontal bars.

Figure 18. Number of scenes in which CAMS and AVIRIS-NG
agree and disagree for which aerosol type has the largest (first),
second largest and third largest AOT. The total number of analyzed
scenes is 21. Thus, the 16 in the bottom left corresponds to 16 scenes
in which AVIRIS-NG and CAMS identified the same aerosol type
as having the largest AOT out of 21 scenes.

0.12. From a test set of radiative transfer calculations, we
are able to retrieve AOT independently for dust, sulfate and
brown carbon with a standard error of 0.03, 0.03 and 0.05,
respectively. At execution time the presented neural network
methodology can be executed at almost no computational
cost. On a high-end consumer laptop (MacBook Pro CPU:
i7 at 2.6 GHz) one can extract AOT with the presented model
at about 250 000 spectra per second.

The results shown here are promising but also underline
the difficulties of retrieving aerosol properties, especially
over land: aerosol extinction is a weak, slowly varying spec-
tral signal. Hyperspectral measurements can reduce uncer-
tainty in aerosol remote sensing, and we demonstrate that
neural networks provide an efficient means for extracting
information from large, multidimensional datasets, such as
hyperspectral data cubes. As future satellite capabilities in-

crease to acquire high-spatial-resolution hyperspectral data,
there is a need to be able to process the large amount of data
in a reasonable amount of time. Neural networks can provide
a solution for this task.

6.1 Future work

The current set of AVIRIS-NG flights in India has only a
limited number of AERONET stations in close proximity to
the various flight paths. To further validate our model, more
collocated comparisons to AERONET observations are nec-
essary. Deployed on a global platform, such as the upcom-
ing CLARREO pathfinder or HyspIRI mission, many col-
located observations with AERONET could systematically
validate the retrieval and further improve the model perfor-
mance through fine tuning. Furthermore, in situ microphys-
ical measurements are necessary to validate the retrieved
aerosol types. Finally, the presented methodology can be ex-
panded in the future to retrieve other atmospheric and surface
properties, such as water vapor, cloud properties and surface
reflectance.

Code availability. The code is avail-
able at https://github.com/SteffenMauceri/
Aerosol-Retrieval-from-Hyperspectral-observations (last ac-
cess: 8 November 2019).
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