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This thesis consists of three distinct projects. The first is a study of microbial aggregate

fragmentation, in which we develop a dynamical model of aggregate deformation and breakage and

use it to obtain a post-fragmentation density function. The second and third projects deal with

dimensionality reduction in machine learning problems. In the second project, we derive a one-pass

sparsified Gaussian mixture model to perform clustering analysis on high-dimensional streaming

data. The model estimates parameters in dense space while storing and performing computations

in a compressed space. In the final project, we build an expert system classifier with a Bayesian

network for use on high-volume streaming data. Our approach is specialized to reduce the number of

observations while obtaining sufficient labeled training data in a regime of extreme class-imbalance

and expensive oracle queries.
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Chapter 1

Introduction

This thesis is a compilation of three distinct projects. In the first project, “Fragmentation

Distribution for Microbial Aggregates in Shear Flow” [Chapter 2], we develop a modeling framework

to simulate microbial aggregate fragmentation, and then apply the model to compute a post-

fragmentation density function. In the second project, “One-Pass Sparsified Gaussian Mixtures”

[Chapter 3], we derive a clustering algorithm for use in conjunction with a dimensionality reduction

scheme. In the third project, “Oracle Epiphany in Bayesian Networks” [Chapter 4], we present a

method to simultaneously obtain labels for use in supervised learning and reduce the number of

datapoints for a classification task using Bayesian networks.

Chapter 2 is a stand-alone project independent of the rest of the thesis. Chapters 3 and 4 are

related in that both have to do with applying machine learning methods in a regime characterized

by high volumes of data. In both cases, the fundamental difficulty we face is that the data are

too large to process. Let {xi}Ni=1 be a set of observations, with xi ∈ RP . Either the number of

data points (N) or the latent dimension (P ), or both, could be prohibitively large. In chapter 3 we

develop a technique to perform clustering analysis while reducing the latent dimension of the data:

we reduce the size of each datapoint xi ∈ RP from P to Q with Q � P . We do so in the context

of streaming data and our method is one-pass, meaning that we obtain estimates for statistics

in the full P -dimensional space while storing and performing computations in the much-smaller

Q-dimensional space. In chapter 4 we concern ourselves with the orthogonal problem of reducing

the number of datapoints N . We do so in the domain-specific context of classifying cyber security
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threats, where we face the additional problems of a severe paucity of labeled data, a high cost to

obtaining a label for a given observation, and extreme class imbalance. To address these we combine

recent work on oracle epiphany with Bayesian networks to reduce the number of datapoints

we need to consider while simultaneously increasing the relative frequency of the minority class and

facilitating the expensive process of label acquisition.

Here we briefly introduce each project, providing motivation and a summary of our main

findings and contributions. Each project is then discussed independently in the subsequent chapters.

1.1 Project 1: Fragmentation Distribution for Microbial Aggregates in Shear

Flow

1.1.1 Motivation

Microbial flocculation refers to the process by which single-celled microorganisms intermit-

tently persist in multicellular aggregates suspended in an aqueous solution, a phenomenon ubiqui-

tous in industry and nature. In industrial applications the goal is either for the microbes to consume

an unwanted substance, such as in wastewater treatment, or to excrete a desired substance, such as

in beer fermentation and algal biofuel production. Typically, the microbes do some portion of their

work as free-floating individual cells, but begin to clump together as the process proceeds closer to

completion. In beer brewing, for instance, yeast cells aggregate as the alcohol content grows, and

ultimately settle out of solution.

The dynamics of how these aggregates form and break apart, including their distribution in

time, space, and size, can have a significant impact on the effectiveness of the intended process. If

the aggregates grow too quickly, they can settle out of solution before they have converted enough

of the contents of the solution. There are many mechanical and chemical procedures to prevent

this; of particular interest to us is the mechanical mechanism of shear flow. On the other hand,

care must be taken to ensure that these safeguards do not prevent aggregation entirely, since it is

usually necessary to remove the microbes from the suspension before the product can be further
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processed.

Significant efforts have therefore been devoted to the study of flocculation dynamics. The

component of these dynamics in which we are interested here is aggregate breakage or fragmenta-

tion. Specifically we want to study whether aggregates tend to break into equally-sized daughters

(splitting) on one extreme or one large and one small daughter (erosion) on the other. To sim-

ulate fragmentation we develop a model of aggregate fragmentation in shear flow and to use this

model to estimate a post-fragmentation density function, a distribution for aggregate size as

shear flow exhaustively breaks apart an aggregate into smaller and smaller daughters.

1.1.2 Main Contributions

We develop a dynamical model of aggregate dynamics in shear flow. To do so we couple

constituent models for the deformation of a droplet in shear flow and for the surface forces on

a solid ellipsoid. Our model tracks the position, velocity, shape, deformation, and surface force

density on an idealized aggregate tumbling in shear flow. We use this model to simulate aggregate

fragmentation by choosing to break the aggregate at predetermined locations if the surface force

exceeds a minimum threshold. We test three different fragmentation regimes, finding that erosion

tends to be the dominant fragmentation mechanism. This work is published in [1].

1.2 Project 2: One-Pass Sparsified Gaussian Mixtures

1.2.1 Motivation

Clustering is a common statistical data analysis task in which observations are grouped

together according to some indicator of similarity. In the context of machine learning we often

seek to assign observations to clusters as well as to learn some parametric representation of these

clusters. We may wish to use this process as a generative model from which to sample more

data, to classify or cluster future observations, as a feature engineering tool, or as a component of

exploratory analysis and descriptive statistics.
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It is often the case that we will wish to reduce the size of the dataset, both to reduce stor-

age space as well as to speed up data processing. There is a vast and growing range of methods

to do so. Our approach is inspired by the classical Johnson-Lindenstrauss lemma and its appli-

cations in the field of compressed sensing. Modern interpretations of the lemma guarantee that

certain low-dimensional embeddings Ω : RP → RQ, with Q < P , will preserve relative pairwise

distances between points to within a small tolerance with high probability. These embeddings can

be computed and applied quickly, typically in O(P logP ) operations per datapoint as FFT-like

transformations. The idea is thus to pay an upfront cost of O(NP logP ) so that in subsequent

computations we can replace P 7→ Q. These subsequent computations can often be quadratic

or cubic in P (e.g. P × P inversions), and hence the overall algorithm speed can be improved

significantly even including the initial O(P logP ) cost.

In the classical regime, one potential drawback of such compression is that it is usually

impossible to recover statistics in the original P -dimensional space without accessing all of the

original, dense data. This requires storing that data, as well as whatever computational cost is

needed to obtain the statistic. Such is the case for statistics as simple as the sample mean. Our line

of work avoids this problem by using a different projection P 7→ Q (which we call sparsification)

for each datapoint xi, so that we can perform approximate computations in the dense P -dimensional

domain using only Q-dimensional objects. We therefore do not need to access the original data

ever again after obtaining the projections, whence the phrase one-pass. The material presented

in Chapter 3 builds on previous work from our group in which the one-pass projection scheme was

developed and various probabilistic bounds were established on the low-dimensional embeddings.

In that work the scheme was applied to k-means clustering, a simple and yet often very effective

clustering algorithm. Our work here extends this concept to a more sophisticated clustering model,

Gaussian mixture models.
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1.2.2 Main Contributions

We present an algorithm to perform sparsified one-pass Gaussian mixture modeling (SGMM).

This algorithm uses Q-dimensional embeddings of P -dimensional data (N datapoints) to fit a K-

component Gaussian mixture model in O(KNQ) operations for diagonal or spherical covariances.

The algorithm uses Expectation-Maximization to find a local stationary point of the likelihood

function. We derive the maximum likelihood estimators for model parameters under sparsification.

On example data, SGMM is able to recover over 90% peak accuracy for a GMM using < 10% of

the data (Q/P < 0.1). This work has been submitted to an IEEE conference and the manuscript

is available on arXiv [2].

1.3 Project 3: Oracle Epiphany in Bayesian Networks

1.3.1 Motivation

Perhaps the most common goal in machine learning is the task of classification: given an

observation x and possibly many classes {T1, T1, . . . , Tk}, we want to know of which class x is an

example. This is conceptually related to the clustering task discussed in the preceding chapter;

however, classification is typically a supervised task, in the sense that we assume k meaningful and

distinct classes, and we have examples for each from which we will learn a predictive model, called

a classifier, that we can use to predict the class of unseen examples.

Classification problems arise in many fields and applications, such as computer vision and

natural language processing. Typically a classifier is a parametric model with parameters that are

inferred from a training set of labeled examples. It is often the case, however, that labeled training

examples are very rare, even when unlabeled examples are ubiquitous. Several approaches have

been developed to address this problem, including one-shot learning in computer vision, generative

adversarial networks, and oracle query methods in active learning.

In this chapter we consider developing a classifier in a regime starting with no labeled data.

Our goal is domain-specific: we want to build a classifier to detect cyber security threats. In
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addition to the problem of having no labeled data, we also face insurmountably high volumes of

streaming data and extreme class imbalance. Furthermore, the process to obtaining a label for

a given observation is extremely expensive. To address these issues we build a Bayesian network

classifier and use it in an iterative fashion, in an approach similar to feature engineering, in order

to reduce the number of datapoints while increasing the relative frequency of the minority class in

the training set.

1.3.2 Main Contributions

We build a Bayesian network using domain expert knowledge for use as a classifier in a

regime characterized by extreme class imbalance and expensive oracle queries. We do so using an

iterative approach to model construction and label acquisition, leveraging the concept of oracle

epiphanies to simultaneously increase the relative frequency of the minority class and decrease the

number of observations, each by two orders of magnitude. We apply the process to obtain a labeled

dataset, train the Bayesian network classifier, and obtain high accuracy on the training and test

sets (7/8 minority events correctly identified) while compressing the dataset from > 200K to 494

observations.



Chapter 2

Fragmentation Distribution for Microbial Aggregates in Shear Flow

This chapter is adapted from [1]. Research was supported by the following National Science Foun-

dation grants and fellowships: NSF IGERT 1144807, NSF GRFP DGE 1144083, and NSF DMS

1225878.

We present a model for the force acting to fragment a biofilm-seeded microbial aggregate

in shear flow, which we derive by coupling an existing model for the shape and orientation of a

deforming ellipsoid with one for the surface force density on a solid ellipsoid. The model can be

used to simulate the motion, shape, surface force density, and breakage of colloidal aggregates in

shear flow. We apply the model to the case of exhaustive fragmentation of microbial aggregates in

order to compute a post-fragmentation density function, indicating the likelihood of a fragmenting

aggregate yielding daughter aggregates of a certain size.

2.1 Introduction

Microbial flocculation, the process whereby single-celled microbes in suspension persist as

multicellular aggregates for a portion of their life-cycle, is ubiquitous in nature and industry [3,

4, 5, 6]. Important applications of flocculation include beer fermentation [7, 8, 9, 10], wastewater

treatment [11, 12, 13], and biofuel production [14, 15, 16, 17]. In the fermentation of beer, yeast

cells consume sugar in wort and excrete alcohol (among other things not nearly as interesting to

a stressed PhD student). During this process the free-floating yeast cells will eventually flocculate

into large aggregates and sink to the bottom of the liquid. The point at which they do so is critical
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to the quality of the beer produced: if the aggregates form too early, not enough of the sugars will

have been consumed, and the beer will be sweet, or even worse, not very strong. Conversely, if the

aggregates do not flocculate sufficiently, the flavor and quality will suffer (rest easy here though;

it seems the beer still works in this case). The rate of flocculation and sedimentation are traits

selected for through (un)natural selection, and this topic continues to be an active area of research

[9, 8].

A critical but often under-appreciated component in the life-cycle of beer consumption is

wastewater treatment, which also depends on microbial flocculation [11, 12, 13]. Bacteria are intro-

duced into wastewater in order to consume sludge1 and remove phosphorus and other nutrients. A

variety of species of both aerobic and anaerobic bacteria are used, and the ecosystem must be del-

icately managed to ensure proper treatment; in particular, the size and shape of these aggregates,

as well as the rate at which they form, are important factors [18, 19, 20, 21].

The same concepts apply to algal biofuel production, where algae is used to convert solar

energy into fuel [14, 15, 16, 17]. The algae cells flocculate throughout the process, and it is again

important to maintain appropriate size distributions of aggregates for optimal efficiency. Consider-

able attention has therefore been devoted to modeling the dynamics of flocculating [22, 23, 24, 25].

One popular approach is to solve some variation of a population-balance equation (PBE) for the

size distribution of aggregates as a function of space and time [26].

Such models generally account for the fact that the microbial aggregates can break apart,

for example with the inclusion of a fragmentation kernel and post-fragmentation distribution in

the population balance equation. Microbial aggregate fragmentation, however, remains a relatively

poorly understood phenomenon. There exists a rich literature in rheology devoted to the study of

fluid-fluid emulsions, and in particular to modeling the breakage and resulting size distributions of

dispersed droplets (see [27] for a review), and for this reason microbial aggregates are sometimes

treated like ellipsoidal (hydrodynamically equivalent) droplets for the purposes of approximating

their shape and motion [28, 29, 30, 31, 32]. It is not clear, though, that the corresponding breakage

1 This is, surprisingly, actually the technical term.
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and size-distribution models from the rheology literature on emulsions are equally applicable. The

inhomogenous nature of microbial aggregates may mean that some breakage patterns are more

likely than others, and we may wish to use knowledge about the structure and composition of the

colloid when modeling how and where they break.

This current work is a part of our long term efforts to develop a more accurate fragmentation

model for use in PBE-based models. We have approached this problem using both bottom-up mi-

croscale modeling of individual flocs (this work and [33]) as well as a complementary top-down in-

verse problem methodology. The top-down approach takes time series of aggregate size-distributions

and infers a post-fragmentation distribution [34] but does not incorporate any information about

the heterogeneities in individual flocs. Here we extend the bottom-up approach that we initially

proposed in [33]. As described in [33], we have used confocal microscopy to identify 3D positions of

bacteria in a small number (39) of suspended aggregates. However, it is infeasible to experimentally

obtain these types of 3D images for large populations of flocs. In [35] we used the 3D positions

of bacteria in an aggregate to simulate the tumbling and deformation of bacterial flocs in laminar

flow. However, it is also infeasible to perform large numbers of these simulations. Accordingly, we

have pursued a hybrid approach merging models for the physics of viscous ellipsoids in flow with an

analysis of the locations of high negative Gaussian curvature in the polysaccharides encapsulating

the microbes.

Toward this end, we present a model to compute the force acting to break a microbial

aggregate at a specified location. We call aggregate fragmentation the process in which a

parent aggregate containing m microbes (its size) breaks into two daughters of sizes k and m−k.

This is an extension of our earlier work in which we began to develop a framework for identifying

likely breakage locations [33], and the present work expands upon this by introducing deformation

to the model and by refining the computation of the fragmentation force. We construct our model

by coupling a model for the deformation of a fluid droplet [36, 37] (hereafter, the Deformation

Constituent Model or DCM) with one that computes the surface force density on a solid ellipsoid

[38] (hereafter, the Force Constituent Model or FCM). We restrict ourselves to the case of
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viscous shear under the assumption of Stokes’ flow, and our choice of deformation model is further

guided by the requirements that (1) the surface remain ellipsoidal and (2) there be a restorative

force (in this case interfacial tension) acting to oppose the deformation imposed by the shear field.

We then apply the model to the problem of generating a post-fragmentation density

function Γ(k | m), a conditional distribution giving the probability that an aggregate fragmenta-

tion event will yield a daughter aggregate of size k given that a parent of size m fragments. This

density is often assumed to be normal or log-normal in the literature. The normal distribution is a

model for the single event of an aggregate fragmenting into two (roughly) evenly-sized daughters.

The log-normal distribution is a model for the cumulative effect of repeated fragmentation events

(all with a normal post-fragmentation distribution) exhaustively until no more events are possible.

We refer to these forms of fragmentation as splitting. In our previous work we obtained a form of

Γ(k | m) corresponding to fragmentations yielding one daughter much larger than the other, which

we refer to as erosion [33]. Example distributions following each of these fragmentation mecha-

nisms can be seen in Figure 2.1. In our previous simulations we found that larger aggregates tended

to fragment by erosion whereas smaller ones tended to fragment by splitting. Here we reproduce

and expand upon these simulations with the improved fragmentation force model.

The paper is organized as follows. In Section 2.2 we present the methods: first describing

the DCM and FCM constituent models and how we couple them (Section 2.2.1), then using the

coupled models to define the concept of fragmentation force (Section 2.2.2), and lastly explaining

how we apply this concept to microbial aggregate fragmentation (Section 2.2.3). In Section 2.3 we

present the results of our simulations, beginning with an exploration of the motion and orientation

of an aggregate under the DCM (Section 2.3.1), followed by a discussion of the fragmentation force

(Section 2.3.2), and the application of this model to microbial aggregate fragmentation and the

generation of post-fragmentation density functions (Section 2.3.3). We finish with some concluding

remarks as well as a brief outline of our plans for upscaling these results for use in a PBE equation

(Section 2.4).
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Figure 2.1: Example post-fragmentation density functions corresponding to erosion and splitting
fragmentation mechanisms.

2.2 Methods

2.2.1 Constituent Models

Deformation Constituent Model (DCM)

The DCM is the model we use to describe the deformation and rotation motion of a fluid

ellipsoid in simple shear flow. This model is developed in [37, 36], to which the reader is referred

for a full development. Here we present only the material necessary for the coupling of the models.

An arbitrary ellipsoid centered at the origin can be represented by a shape tensor, a symmetric

3 × 3 tensor G such that xTGx = 1 for any point x on the surface of the ellipsoid. The shape

tensor is orthogonally diagonalizable, so that

D = RTGR (2.1)

where D is diagonal and R is a rotation. We can choose to construct G such that the diagonal

entries of D (the eigenvalues of G) λi are defined by λi = 1/a2
i where a = (a1, a2, a3) are the axes

lengths of the ellipsoid.
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The deformation constituent model consists of an ODE we can solve for such a shape ten-

sor G(t). Assuming constant volume and Stokes flow in an incompressible Newtonian fluid, the

governing equation for shape of the ellipsoid is

Ġ + LT
d ·G + G · Ld = 0 (2.2)

where G is the shape tensor of the ellipsoid, as described above, Ġ is the material derivative of G,

and Ld is the droplet velocity gradient.

To solve equation (2.2) for G, an expression for Ld is required; this expression must depend

only on the external velocity gradient L, the shape and orientation of the ellipsoid, and the input

parameters. The reader is referred to [37, 36] for derivations and the precise form of Ld. For our

purposes, it suffices to note that the output of solving the DCM will be a time-series of shape

tensors G(ti) satisfying equation (2.2).

Force Constituent Model (FCM)

Here we describe the FCM developed in [38]. Given an ellipsoid with axes lengths ai such

that a1 ≥ a2 ≥ a3, under the assumption of Stokes’ flow, the force density on the surface of a solid

ellipsoid in simple shear can be written as

f =

−p0I− 4µ
3∑
j=0

χjA
j
jI +

8µ

a1a2a3
AT

n (2.3)

where p0 is the external pressure, µ is the matrix viscosity, ai are the axes lengths, and n is normal

to the surface of the ellipsoid. The matrix A is in turn defined by

Aik =


3χ′′i E

i
i−

∑3
l=1 χ

′′
l E

l
l

6(χ′′1χ
′′
2+χ′′1χ

′′
3+χ′′2χ

′′
3 )

for i = k,

χiE
i
k+a2k

∑3
l=1 ε

iklχ′l(ε
iklΩi

k+ωl)

2(a2kχk+a2iχi)
∑3

l=1 |εikl|χ′l
for i 6= k

(2.4)

where E = 1
2(L + LT) is the rate-of-strain tensor, Ω = 1

2(L − LT) is the vorticity tensor, and ωl

is the lth component of the angular velocity ω of the ellipsoid. The elliptic integrals χj used are

defined by

χj =

∞∫
0

dξ

(a2
j + ξ)

√
(a2

1 + ξ)(a2
2 + ξ)(a2

3 + ξ)
(2.5)
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with

χ
′
i =

∑3
k,l=1 ε

ikl(χl − χk)∑3
k,l=1 ε

ikl(a2
k − a2

l )
(2.6)

and

χ′′i =

∑3a
k,l=1 ε

ikl(a2
kχk − a2

l χl)∑3
k,l=1 ε

ikl(a2
k − a2

l )
. (2.7)

Coupling the Constituent Models

The matrix A in Equation (2.4) depends upon the matrix velocity gradient L and the angular

velocity ω of the ellipsoid, both of which must be expressed in a frame of reference relative to the

center of the ellipsoid; i.e., one that rotates with respect to the external frame of reference. In the

case of a solid ellipsoid in shear flow, there are analytic representations for both of these quantities

[38], but in our model, the motion of the ellipsoid is dictated by the deformation constituent model,

and we must therefore compute L and ω numerically as they do not have closed-form solutions.

The rotation connecting the two reference frames is represented by the matrix R(t) in equation

(2.1) which we obtain by diagonalizing the solution G(t) to the DCM, equation (2.2). In simple

shear flow, the velocity gradient L is constant in time in an external frame of reference. If the

ellipsoid rotates according to R(t) in the external frame, then the shear field rotates according to

RT (t) in the ellipsoid frame. Thus we set LR(t) = R(t)LRT (t), and use LR in equation (2.3).

Expressing the angular velocity in the anti-symmetric matrix

[ω(t)]× ≡


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.8)

a straightforward calculation tracking the motion of an arbitrary point on the ellipsoid surface

yields the relation

[ω(t)]× =
(
R(t)R′(t)

)T
. (2.9)

We approximate R′(t) using the discretized solution R(ti) to equation (2.2) and then use equation

(2.9) to compute [ω(t)]×, giving ω, the angular velocity of the ellipsoid in the external frame. In
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the ellipsoid frame, the shear field is rotating in the opposite direction, with angular velocity −ω.

This is the quantity we use in equation (2.3).

2.2.2 Fragmentation Force

In this section we develop the concept of the fragmentation force, an approximation to the

force acting to pull apart a deformable ellipsoidal particle in shear flow. To do so we will use

the coupled models described in the preceding section to compute an integral of the force density

on the surface of the ellipsoid. We define the fragmentation force in such a manner as to permit

us to specify where we think breakage will occur by way of a fragmentation plane, P, which

intersects the ellipsoid. We introduced a similar concept in our previous work [33] for use on

non-deformable ellipsoidal approximations to microbial aggregates. In practice, the location and

orientation of P is to be chosen based upon structural information about the aggregate. In our

aforementioned application, for example, we preferentially chose planes corresponding to locations

where we expected the surface of the microbial aggregate to exhibit a more negative Gaussian

curvature.

Suppose that we have chosen some plane P defined by a normal vector np and interior point

xp, so that np · (xp − x) = 0. Let f(x) be the force density at point x on the surface E(t) to an

ellipsoid at time t, computed from equation (2.3) as described the preceding section. Define the

fragmentation force as defined as

F =

∫
E(t)

s(x, P ) |f(x) · np| dx (2.10)

where

s(x, P ) =


1 if f(x) acts to pull against P

−1 if f(x) acts to push into P

. (2.11)

The integrand is thus the signed magnitude of the component of f acting against P, where

s indicates whether this component acts to pull against or push into the plane. Thus s explicitly

accounts for the fact that some of the surface force density may in fact compress against the plane
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Figure 2.2: A sample ellipsoid shown at four characteristic time points. The ellipsoid is undergoing
periodic tumbling with mild deformation. First row: view from an external reference frame, with
surface forces and flow field. D = (a1− a3)/(a1 + a3) is the Taylor deformation parameter, θ is the
angle through which the ellipsoid has rotated. Second row: view from the ellipsoid reference frame,
with components of the surface force acting to push into (blue) and pull against (red) a sample
fragmentation plane. F is the relative fragmentation force with respect to the plane, and ωz is the
relative angular velocity.

and thus oppose breakage. Figure 2.2 shows snapshots of an ellipsoid in flow along with sample

force density vectors, as well as with a sample fragmentation plane and components of the surface

force density acting normal to it. As can be seen in the second row of the figure, sometimes the

force density acts to compress against the plane (blue arrows) and sometimes to pull against it (red

arrows). Figure 2.3 shows the same evolution projected into two dimensions along the x = 0 plane.

2.2.3 Aggregate Fragmentation

Having defined the fragmentation force, we now wish to apply it to the case of aggregate

fragmentation. To do so we begin with a dataset indicating the coordinates of bacterial centers of

mass in 39 Klebsiella pneumoniae aggregates (dataset described in [33]). Depicted in Figures 2.4

and 2.5 are two visualizations of a 3D reconstruction of one of the bacterial aggregates. In Figure

2.4, the green surface is the Klebsiella pneumoniae cell wall and the blue surface is an estimated
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Figure 2.3: A sample ellipsoid shown at four characteristic time points. The ellipsoid is undergoing
periodic tumbling with mild deformation. First row: view from an external reference frame, with
surface forces and flow field. D = (a1− a3)/(a1 + a3) is the Taylor deformation parameter, θ is the
angle through which the ellipsoid has rotated. Second row: view from the ellipsoid reference frame,
with components of the surface force acting to push into (blue) and pull against (red) a sample
fragmentation plane. F is the relative fragmentation force with respect to the plane, and ωz is the
relative angular velocity.

location of the edge of the extracellular polymeric substance (EPS) surrounding the bacteria (1

micron away from the cell wall). Practically speaking, the edge of the EPS is not well-defined and

as described in [39], the density of the EPS is highest near the wall and decays within a few microns

of the wall. In Figure 2.5, the same floc is shown with the Gaussian curvature (K) computed on

the approximate EPS surface. The regions with large negative K are energetically unfavorable for

soft matter [40] and are thus the best candidates for potential breakage.

To compute the forces on a tumbling and deforming aggregate is nontrivial.2 We choose to

approximate the forces on the aggregate surface with the forces on a hydrodynamically equivalent

2 See [35, 41] for illustrations of the challenges of simulating the biomechanics of communities of bacteria.
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Figure 2.4: Bacterial aggregate reconstructed from confocal microscopy slices. Green surface is
the cell wall. Blue surface is the approximate edge of the extracellular polymeric substance (EPS)
surface.

Figure 2.5: Same bacterial aggregate as in Figure 2.4. Colors correspond to the Gaussian curvature
computed on the EPS surface. The regions with the most negative curvature are energetically
unfavorable and are the best candidates for separation.
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ellipsoid. Thus the first task is to approximate an aggregate’s surface with an ellipsoid which can

then rotate and deform over time according to the deformation constituent model, equation (2.2).

At any particular time point, we further wish to specify a fragmentation plane P based on some

structural property of the aggregate, and then use equation (2.10) to compute the force acting

to break the aggregate along P. If the force is large enough, the aggregate will fragment into

two daughters. We proceed to describe the details of this process. Figure 2.6 shows the various

constructs derived below.

Ellipsoidal Representation In order to apply the model we have developed above, we

must represent the surface of an aggregate as a hydrodynamically equivalent ellipsoid. The justifi-

cation for this process is detailed in [33]. Beginning with the coordinates of an aggregate’s bacterial

centers of mass, we first translate them so they are centered about the origin. We then rotate the

coordinates using a principal components decomposition so that the maximal variation lies along

the x axis, then the y axis, and finally the z axis of the coordinate system. We take an ellipsoid

with axes lengths equal to twice the standard deviation along each axis. The ellipsoid axes lengths

specify the initial shape tensor G0 for the governing equation (2.2), and given the remaining pa-

rameters we can then solve this equation to obtain the shape and orientation of the ellipsoid over

time, which is fully specified by the axes lengths a(t) and a rotation R(t).

Location of Fragmentation Plane In order to check for fragmentation, we must specify

the intersecting plane used to compute the force in equation (2.10). To rapidly identify candidate

breakage locations, we will create a spanning tree connecting the bacterial centers of mass. If we let

M be a minimum spanning tree (MST) then longer edges in the tree will coincide with regions

of the most negative Gaussian curvature. As any fragmentation of the aggregate must sever at least

one edge ofM, we choose these edges as potential fragmentation locations. Given an edge e ofM,

we define the plane Pe that bisects e and is normal to it. Thus Pe is normal to x − y and passes

through 1
2(x − y), where x and y are the coordinates of the nodes of e. Supposing that we have

chosen an edge e, then at any time point t we can compute the fragmentation force using equation

(2.10), which we now denote as F (e, t).
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This procedure is illustrated in Figure 2.6. The red and blue dots are the centers of mass

of each bacteria in the aggregate, and the gray lines are the edges of a minimum spanning tree

connecting them. The highlighted edge near the center of the aggregate is an example candidate

edge for fragmentation. The blue plane is the fragmentation plane that bisects this edge and is

normal to it. The bacterial centers of mass are then color-coded according to which side of the

MST they belong to, so that if the aggregate were to fragment at this edge, the red centers of mass

would form one daughter aggregate and the blue centers of mass would form the other daughter.

Fragmentation of an Aggregate If the force F (e, t) exceeds some threshold fcrit then

the aggregate will fragment. We remove the edge e from the MST M, which will result in two

new trees. Each tree will become a new aggregate, which we construct by rotating and scaling

the original bacterial centers of mass according to the shape and orientation of the ellipsoid E at

time t. If x(0) are the coordinates of a bacterial center of mass at time t = 0, R(t) is the rotation

specifying the orientation of E(t), and a(t) are the axes lengths of the ellipsoid, then the location

of the center of mass at time t is

x(t) = R(t) · a(t)

a(0)

where the division is taken element-wise. In this manner we can transform the centers of mass in

each of the two new aggregates.

We have not yet specified how we wish to choose the edge e. Ultimately we will check all of

the edges, but the order in which we do so matters. We use three different methods for comparison.

In our simulations, the ellipsoid shape and orientation is cyclic in time, and hence it suffices to

compute the fragmentation force over a single period T . Suppose the edges in the MST are sorted

by their lengths at time t = 0. The first edge method gives the longest edge in the MST the chance

to break before checking any other edges, so that if at some time t in T we find that F (e1, t) > fcrit,

then the aggregate fragments at e1 at time t. Should F (e1, s) never exceed fcrit, then we check e2

at all time points, and so on. This is the method we employed in our previous work [33], arguing

that longer edges ought to be associated with surface regions possessing large negative Gaussian
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curvature, which in turn would thus be more likely to break. The next method, first time, still

gives preferential treatment to longer edges, but checks the force on each edge at time s before

moving on to time s+ ∆t, so that a shorter edge ej (j > 1) has the opportunity to break at time

s before any edge at time s + ∆t. Lastly, the global maximum method computes F (e, t) for all

edges and all times in the discretization, and chooses the largest one, Fmax, which occurs at some

edge d and time t. If Fmax > fcrit then the aggregate fragments along edge d and at time t. This

method gives no preferential treatment to either time or edge length.

Post-fragmentation density function

Given an aggregate and a fragmentation method, we can check for fragmentation as de-

scribed above. If the aggregate fragments, we then have two new aggregates that we can submit

to the same procedure. Eventually fragmentation will stop, either because all of the aggregates

are reduced to singletons, which cannot fragment, or because all remaining aggregates experience a

maximum fragmentation force below the critical force fcrit. We refer to this process as exhaustive

fragmentation. Keeping track of the sizes of all intermediate flocs, we can then compute the den-

sity of fragmentations by the size of the parent aggregate. This in turn permits the construction

of a post-fragmentation density function Γ(k | m), which gives the probability of a fragmentation

resulting in daughters of size k and m − k given that an aggregate of size m fragments. We will

construct Γ(k | m) for each of the three fragmentation methods described above.

Model Parameters

The model parameters are described in Table 2.1. The DCM depends upon the initial axes

lengths ai of the ellipsoid, the velocity gradient L, the matrix viscosity µ, the viscosity ratio λ, which

is the ratio of the droplet viscosity over the matrix viscosity, and the interfacial tension Γ. The FCM

depends upon the axes lengths ai(t) at each time point, the angular velocity of the ellipsoid ω(t),

and the velocity gradient L(t), which now also has a dependence on time due to the rotating frame

of reference. In all of our simulations we set the external pressure p0 to 0. Under this parameter

regime, taking the external (matrix) fluid to be water, the Reynolds number is typically of order

10−2, although adversarial choices of the length scale and velocity can give a Reynolds number



21

Figure 2.6: Mathematical representation of an aggregate. Bacterial centers of mass (blue and red
points) are connected by a minimum spanning tree and sample force density vectors are shown on
the ellipsoidal surface. An intersecting plane bisects the (yellow) highlighted edge of the MST. The
centers of mass are color-coded (red and blue) to indicate the two daughter aggregates that would
result from a fragmentation at this edge.

Figure 2.7: Mathematical representation of an aggregate. Bacterial centers of mass are connected
by a minimum spanning tree and sample force density vectors are shown on the ellipsoidal surface.
An intersecting plane bisects a sample edge of the MST. Force vectors are sample surface force
densities.
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Figure 2.8: 2D Mathematical representation of an aggregate. Bacterial centers of mass are con-
nected by a minimum spanning tree and sample force density vectors are shown on the ellipsoidal
surface. An intersecting plane bisects a sample edge of the MST. Force vectors depict component
of surface force density normal to the fragmentation plane.

(a) (b)

Figure 2.9: Mathematical representation of an aggregate, including ellipsoidal surface approxima-
tion, bacterial centers of mass, and a minimum spanning tree. Sample surface force vectors are
shown in (a), and a sample fragmentation plane bisecting an arbitrary edge (red) along with normal
components of the surface forces are shown in (b).
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Symbol Parameter Model Range Units

a(t) axes lengths D, F 1-1000×10−6 m
ω(t) angular velocity F 0-100 1/s
L(t) velocity gradient D, F 0-10 1/s
µ matrix viscosity D, F 8.95× 10−4 Pa s
λ viscosity ratio D 1-100 -
Γ interfacial tension D 10−9 − 10−7 N / m

Table 2.1: Model parameters.

of order 1. Reducing the shear rate by an order of magnitude results in very little deformation

of the ellipsoids, which effectively reproduces our earlier simulations of the fragmentation of solid

ellipsoids. We use γ̇ ∼ 1s−1 to enforce some deformation, even though this increases the Reynolds

number beyond a desirable order for Stokes’ flow simulations.

We must make a further cautionary remark regarding the interpretability of the parameter

values in our model. The viscosity ratio and interfacial tension parameters serve to induce a

particular behavior in the system (oscillating deformation with tumbling, as we will discuss below),

but the mechanisms physically responsible for this behavior are more likely viscoelastic. There are

attractive and repulsive forces between the cells in the aggregates, for example, and the cohesion

and retraction of the ellipsoidal shape is surely due to these rather than interfacial tension. We

will later observe the qualitative dependence of our model’s behavior on its parameters, and in so

doing we must be careful not to overstate the physical interpretability of the specific values these

parameters take. Their ranges were chosen to induce the oscillating behavior we expect to see, and

should not be taken as representative of a physical regime of interest.

2.3 Results

2.3.1 Motion Under the DCM

Characteristic behaviors of the DCM An ellipsoid evolving according to the DCM

follows one of three characteristic behaviors: it can (1) collapse smoothly to a steady-state orienta-

tion and shape (Fig 2.10a), (2) collapse while oscillating to a steady-state orientation (Fig 2.10b),
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or (3) oscillate periodically (Fig 2.10c). The angular velocity of the oscillating collapse (Fig 2.10b)

can often exhibit a sudden “flip” in which the direction of rotation of the ellipsoid changes. This

occurs when two of the axes lengths are close in magnitude. In the remainder of the present work

we restrict ourselves to the case of periodic tumbling (see Figure 2.10c), which we believe to be the

most physically accurate for the case of microbial aggregates.

Futhermore, we expect it is unphysical for such an aggregate to become too elongated, and

even if it were to, there is no reason to expect under such a circumstance that the model we employ

here would accurately capture the physics responsible for such deformation. In such circumstances

we might instead turn to a viscoelastic model of suspended colloids, such as in [42]. We therefore

wish to restrict the maximum magnitude of axes length oscillations, which we can characterize

with the parameter dmax = max a1(t)/min a1(t). The magnitude of the axes length oscillations

depends primarily on the viscosity ratio and the shear rate, and we observe in practice that the

other restrictions we impose on these parameters (Table (1)) result in bounding dmax < 2.

Limiting viscosity In the oscillatory regime shown in Fig 2.10c, the behavior of the

deforming ellipsoid approaches that of a solid ellipsoid. In simple shear defined by du/dy = γ̇, the

angle θ(t) in the xy plane of a solid ellipsoid is given ([43] c.f. [38]) by

θsolid(t) = − arctan
a1

a2
tan

(
2πt

T

)
(2.12)

where

T =
2π(a2

1 + a2
2)

a1a2γ̇
(2.13)

is the period of the rotation. From this we can compute the angular velocity component ωz as

ωz,solid = −2π

T

a1a2 sec2 (2πt/T )

a2
2 + a2

1 tan2 (2πt/T )
. (2.14)

In the limit λ → ∞, a fluid droplet becomes a solid, in which case we expect that the axes

lengths will become constant and the angular velocity computed using equation (2.9) will approach

that given in equation (2.14). This is indeed what we observe; as the viscosity ratio increases, the

axis length oscillations decrease (Figure 2.11a) and the angular velocity converges to that of a solid

ellipsoid (Figure 2.11b).
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Figure 2.10: Characteristic behaviors of ellipsoids evolving in the DCM: (a) collapse (Ca ∼ .294),
(b) oscillating collapse (Ca ∼ 13.2), and (c) periodic tumbling (Ca ∼ 3441). Here Ca is the
capillary number, defined by Ca = µV/Γ, where µ is the dynamic viscosity of water, V ∼ ‖a‖γ̇ is
a characteristic velocity, and Γ is the interfacial tension.

Figure 2.11: Asymptotic behavior of the DCM as λ→∞ (dashed lines) compared to the behavior
of a solid ellipsoid with angular velocity given by equation (2.14) (solid line). Left: second axis
length (a2) over time, right: angular velocity component ωz over time.
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2.3.2 Fragmentation force

Qualitative behavior Figure 2.2 shows the evolution in time of a generic ellipsoid at four

time-points, including the surface force density as well as the component of this density acting

normal to a sample fragmentation plane. This ellipsoid is undergoing periodic tumbling, as in

Figure 2.10c, with mild deformation. In the first frame, at the initial time, we observe that the

surface force density points both outwards and inwards. This feature is responsible for the fact that

at the third time point, when the angular velocity is maximized which in turn causes the surface

force density magnitudes to be maximized, we nevertheless observe a net fragmentation force of

0. The maximum fragmentation force is observed at the second time-point, when all of the force

vectors act against the plane, and the minimum, which is negative, occurs at the fourth time point,

when all of the surface force vectors push into the plane.

Parameter dependence Intersect a generic ellipsoid E with a plane P defined by the nor-

mal np = (1, 0, 0) and interior point xp = (0, 0, 0); i.e., a plane in the yz plane passing through the

origin and normal to the longest major axis of E . We first explore the dependence of the fragmen-

tation force, equation (2.10), on the system parameters. We compute the maximum fragmentation

force as a function of the shear rate γ̇, the viscosity ratio λ (which we vary while holding the matrix

viscosity µ constant, changing only µ∗), and the interfacial tension Γ. As can be seen in Figure

2.12a, the fragmentation force increases with the shear rate. The shear rate appears directly in the

computation of the surface force density in equation (2.3), and indirectly as it affects the angular

velocity ω. At higher shear rates there is a greater dependence of fmax on the viscosity ratio, and

its dependence on λ is non-linear, changing more for smaller values of λ while being constant at

higher values of λ. The dependence of fmax on Γ and λ is shown in Figure 2.12b. Again, fmax

increases with λ; in addition, it can be seen to decrease with Γ. Neither of these terms appear

directly in the force equation (2.3), and so their influence on fmax manifests through their role in

shaping the motion and deformation of the ellipsoid as in equation (2.2).

Maximizing fragmentation force as a function of plane location We next consider
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Figure 2.12: Maximum normalized fragmentation force experienced by a sample ellipsoid as a
function of the shear rate γ̇ and the viscosity ratio λ (a) and the interfacial tension Γ and the
viscosity ratio (b). In (a), Γ = 40× 10−6 N/m, and in (b) γ̇ = 10 m/s.

the fragmentation force as a function of time and position of the intersecting plane. We construct

the ellipsoid as above, except that now we will slide the intersecting plane along the x axis. These

results are shown in Figure 2.13. The x axis corresponds to the position of the interior point on

the intersecting plane, so that at a point x on this axis, the intersecting plane is defined by normal

np = (1, 0, 0) and xp = (x, 0, 0). The y axis corresponds to time. The fragmentation force is

anti-symmetric about its horizontal center, which corresponds to the point in time at which the

ellipsoid has rotated through an angle of π/2. Past this point, the symmetry of the system results

in the surface forces being equal in magnitude but opposite in sign. As the plane slides along the

x axis to the midpoint, the fragmentation force increases, and then decreases again as the plane

moves from the center to the other end; again due to the symmetries of the system.

2.3.3 Aggregate Fragmentation

Figure 2.14 shows the results of exhaustive fragmentation on the initial set of 39 aggregates

for each of the three fragmentation methods. Each subplot shows a two dimensional histogram of

the normalized frequency of fragmentations, in which the horizontal axis corresponds to the size of

the parent aggregate, and the vertical axis to the ratio of the size of a daughter aggregate to its

parent. Because a fragmentation of an aggregate of size m into a daughter of size k also necessarily

gives rise to a daughter of size m − k, the plots are symmetric about the horizontal line r = 0.5.
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Figure 2.13: Normalized fragmentation force with respect to a plane normal to (1, 0, 0) and intersect-
ing a sample ellipsoid at x = (x, 0, 0) (horizontal axis) over time (vertical axis). a0 = (180, 140, 100)
µm.
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The probabilities are normalized by parent size, so that the entry corresponding to x = m on the

horizontal axis and r = k on the vertical axis indicates the probability that an aggregate of size m

fragments into daughters of size k and m− k, given that the parent is of size m and fragments.

Figure 2.14a shows the results for the first edge fragmentation method. Recall that this

method computes the fragmentation force for each edge, in order of length, over the entire period

of motion before proceeding to the next edge. As the parent size increases, erosion quickly becomes

the dominant fragmentation mechanism. This can be seen by the larger probabilities along the

vertical boundaries of the plot: parents fragment into one small and one large daughter. This is

the same pattern we observed in our original work on this problem, in which we used the first edge

method and treated the aggregates as non-deformable solids [33].

Figure 2.14b shows the results for the first time fragmentation method, in which the frag-

mentation force is computed at each time point for each edge before moving on to the next longest

edge. We still observe a tendency towards erosion as parent size increases, but it is less dominant

than in the first edge method, which is to say that we observe an increase in the frequency of frag-

mentations into more evenly-sized daughters. Finally, Figure 2.14c shows the post-fragmentation

density function for the global maximum method, which computes the fragmentation force at

all times for all edges and chooses the largest one. This method shows a significant shift towards

splitting in comparison to the other two methods, although erosion often still dominates.

We can make sense of these results as follows. The bacterial centers of mass tend be clustered

in a central area, so that the density of these points decreases with distance from the origin. A

minimum spanning tree taken on such a such a set of points is likely to have its longest edges

towards the periphery of the aggregate. These edges are in turn more likely to connect singletons

or smaller aggregates to the parent aggregate, as opposed to more central, shorter edges, which will

tend to separate the tree into two more evenly sized subtrees. An example of this can be observed

in Figure 2.6: the relatively short highlighted edge splits the tree into two subtrees of comparable

size (red and blue centers of mass) and is buried near the center of the aggregate.
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Figure 2.14: Post-fragmentation density functions for (a) the first edge method, (b) the first
time method, and (c) the global maximum method. The horizontal axis corresponds to the size
of the fragmenting aggregate, and the vertical axis to the ratio of daughter size to mother size.
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2.4 Conclusions and Future Plans

We have presented a method to check for fragmentation in free-floating aggregates in simple

shear flow which combines a model for the forces on the surface an ellipsoid with one for the

deformation of an ellipsoid in flow. We then used this method in a simulation of exhaustive

fragmentation on an initial dataset based on images of 39 microbial aggregates. We compared

three different methods for checking for fragmentation, one which we have used previously in a

simpler fragmentation simulation. The post-fragmentation density functions we obtain for each

method are different than the normal and log-normal distributions which are widespread in the

literature. In particular, the functions exhibit a range of behaviors from almost pure erosion in

the case of the first edge method to an erosion/splitting mix in the case of the global maximum

method. Even in the latter case, erosion remains an important fragmentation mechanism. These

results can inform the choice of fragmentation kernels in population-balance models, primarily by

suggesting a more important role for erosion than is generally assumed.

With this hybrid methodology, we are now ready to proceed with upscaling these results to

a population level model as well as comparing the predictions with experimental size-structured

population data.
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Chapter 3

One-Pass Sparsified Gaussian Mixtures

This chapter is adapted from [2] (under review at the time of publication). Research was supported

in part by NSF GRFP DGE 1144083.

We present a one-pass sparsified Gaussian mixture model (SGMM). Given P -dimensional

datapoints X = {xi}Ni=1, the model fits K Gaussian distributions to X and (softly) classifies each

xi to these clusters. After paying an up-front cost of O(NP logP ) to precondition the data, we

subsample Q entries of each datapoint and discard the full P -dimensional data. SGMM operates in

O(KNQ) time for diagonal or spherical covariances, independent of P , while estimating the model

parameters θ in the full P -dimensional space, making it one-pass and hence suitable for streaming

data. We derive the maximum likelihood estimators for θ in the sparsified regime, demonstrate

clustering on synthetic and real data, and show that SGMM is faster than GMM while preserving

accuracy.

3.1 Introduction

When performing clustering analysis on high-dimensional (P features), high-volume (N sam-

ples) data, it is common to employ simple clustering schemes like k-means and k-nearest-neighbors,

particularly during data exploration and feature engineering, because these techniques are fast and

return informative results [44]. Often each datapoint xi ∈ RP will be seen only once and must

then be discarded, necessitating one-pass algorithms [45]. Futher, the latent dimesion P may be

prohibitively large or the rate of data acquisition may be too high to permit analysis on the full
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data.

We present a clustering algorithm suitable for this regime: the sparsified Gaussian mixture

model (SGMM), building on our previous work in which we developed sparsified k-means clustering

[46]. GMM, in particular when using diagonal or spherical covariances, is a natural extension of

k-means: it increases generalizability by taking into account cluster size and covariance and by

performing soft clustering, while still being relatively inexpensive to compute [47].

SGMM works on compressed data, such that the computation and storage costs are measured

in Q � P , and yet is one-pass, meaning that the model parameters are estimated in the full P -

dimensional space. These requirements are seemingly orthogonal to each other; we are able to

provide both by a careful choice of how we compress the data, which we do using a sketch RT
i xi

of size Q � P . Our sketching scheme is motivated by the Johnson-Lindenstrauss lemma [48],

which states that certain random projections into lower dimensions preserve pairwise distances to

within a small error ε with high probability. In particular, these embeddings can be computed

efficiently in O(NP logP ) time [49], and the data are recoverable from the embeddings when they

are sparse in some basis [50]. The idea is to project the data into a lower dimension and perform

analyses there, where it is cheap to do so. A variety of approaches have been proposed to this end

[51, 52, 53, 54, 55], including applications of sketching to Gaussian Mixture models [56, 57]. Our

work is distinct from these approaches by virtue of being one-pass.

In general, such compressive approaches are two-pass, meaning that access to the full data is

required to estimate statistics in the original space, such as the sample mean. The contribution of

our method is that it is compressive and one-pass, meaning that we estimate statistics in the full

P -dimensional space using only Q-dimensional sketches of the data.

The chapter is organized as follows. In Section 3.2 we discuss the Johnson-Lindenstrauss

lemma with an emphasis on applications to dimensionality reduction for clustering. We also dis-

cuss the concept of one-pass algorithms and introduce our one-pass subsampling scheme. In Section

3.3 we introduce mixture models in general and Gaussian mixtures in particular, as well as the

Expectation-Maximization method used to estimate model parameters. In Section 3.4 we apply
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our sparsification scheme to Gaussian mixtures to derive our main result, the Sparsified Gaus-

sian mixture model (SGMM). We derive the maximum likelihood estimators for the Expectation-

Maximization algorithm applied to SGMM, and find the computational complexity of the overall

algorithm. In section 3.5 we present some results from simulations using SGMM on real and

synthetic data. Finally, in Section 3.6 we summarize our results and introduce future topics of

research.

3.2 Dimensionality Reduction and the Johnson-Lindenstrauss Lemma

3.2.1 The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss (JL) lemma ([48] cf. [58]) is:

Theorem 1 (Johnson-Lindenstrauss). For any 0 < ε < 1 and any integer N , let Q be a positive

integer such that

Q ≥ 4(ε2/2− ε3/3)−1 logN. (3.1)

Then for any set X of N points in RP , there is a map Φ : RP → RQ such that for all u, v ∈ X ,

(1− ε) ≤
‖Φ(u− v)‖22
‖u− v‖22

≤ (1 + ε). (3.2)

The map Φ embeds a set of N observations X from P -dimensional space into Q-dimensional

space without distorting any pairwise relative distances more than ε, where Q is bounded below by

a constant of size O(ε−2 logN). Note that this bound is independent of P , the original dimension

of the data.

Suppose that we wish to perform some sort of computation on X that depends on pairwise

distances between points u, v ∈ X rather than on the component entries {ui}Pi=1, for example,

nearest-neighbor searching. In such a case we could apply JL to embed X into Q-dimensional

space and then perform our analyses on a potentially much smaller dataset. This principle, known

as metric embedding, has been well-studied [59, 60, 61, 62], including applications to the specific

task of approximate nearest neighbor searches [63, 64].
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We have yet to discuss how expensive it is to find and apply the embedding f in Theorem

1. In the original proof ([48] cf. [49]) f is represented as a Q × P matrix Φ. The rows of Φ are

chosen iteratively to be orthogonal random unit vectors. Obtaining and applying such a transform

has a polynomial cost, which is the bottleneck in fast computations like nearest-neighbor searches.

Subsequent analyses improved upon this by finding simpler structure and introducing some sparsity

into Φ [51, 58, 63, 65].

It was shown that there is a hard lower-bound on Q of order O(1/ε) [66], motivating efforts

to introduce further sparsity into Φ. The central development in this line of research for our line

of work is the Fast Johnson-Lindenstrauss Transform (FJLT) [49], which speeds up the application

of the projection Φ by way of the Heisenberg principle, stating that a signal and its spectrum

cannot both be concentrated.

3.2.2 The Fast Johnson-Lindenstrauss Transform

The FJLT [49] defines the transform Φ as Φ = RHD, where:

• R is a Q× P sparse normal distribution matrix (details omitted; see [49])

• H is a P × P Hadamard matrix

• D is a P × P diagonal matrix with entries drawn from ±1 with equal probability.

Here R and D are random and H is deterministic. The application of R serves to preserve Q bits

from P , while HD is a preconditioning step. If we were to apply R without preconditioning, we are

relying on R to, by chance, extract the important information from xi. In the extreme case where

xi = el (an elementary unit vector), then P (Rxi) = 0 → 1 in the limit n → ∞. Preconditioning

with H distributes the information in xi. In particular, Hel will be smooth over its entries as the

image of a peaked distribution mapped to the Fourier domain. Conversely, however, if xi is already

smooth then its image in Fourier space might be peaked, in which case we risk losing the signal

through subsampling with R. The matrix D serves to scramble xi so that is it probabilistically
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not smooth, ensuring with high probability that the application of H does not give a peaked

distribution.

Using this compression scheme has the following bound on norm distortion:

Theorem 2 (FJLT for `2 cf. Ailon and Chazelle [49]). Let X = {xi}Ni=1 with xi ∈ RP , choose

ε < 1, and let Φ be a FJLT as described above. Then with probability at least 2/3, the following

holds. For all xi ∈ X:

c

(
1− ε
ε2

)
≤
‖Φxi‖2
‖xi‖2

≤ c
(

1 + ε

ε2

)
(3.3)

where c is a global constant that is easy to compute and can be can absorbed into Φ.

There are a wealth of results and guarantees about this type of preconditioning. The specific

example we discussed above comes with several such bounds discussed in detail in [49]. Thorough

monographs on the broader topic of randomized matricies give many more results [67, 68].

Previous work in our group establishes guarantees specific to our subsampling strategy [46], which

we introduce in the following section. For our purposes here it is sufficient to note that this type

of preconditioning and random subsampling is consistent with the JL bounds probabilistically, and

can be applied in O(NP logP ) operations.

We now discuss how we modify this approach to sparsification for use with one-pass algo-

rithms.

3.2.3 Sketching for One-Pass Algorithms

We will project xi into a lower dimension by keeping Q � P components chosen unformly

at random. Before doing so we precondition the data using a random orthonormal system (ROS):

xi = HDxrawi (3.4)

where D is diagonal with entries±1 chosen uniformly at random and H is a discrete cosine transform

matrix1 . The ROS transformation ensures that, with high probability, the magnitudes of the entries

1 other choices include Hadamard or Fourier
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of xi are relatively close to each other [69, 49], minimizing the risk of “missing” the information in

the vector when subsampling. The ROS can be applied and inverted in O(NP logP ) time, which is

the dominant cost in our algorithm for small enough sketches. A detailed discussion of convergence

properties and bounds of the ROS can be found in [46]. Henceforth, when we write xi we assume

the data have been preconditioned.

Following the preconditioning, we subsample Q � P entries chosen uniformly at random

from xi. This operation can be represented by the product RT
i xi where Ri ∈ RP×Q is sparse,

with Ri(p, q) = 1 if we are keeping the pth feature of xi and storing it in the qth dimension of

the sparsified vector, and 0 otherwise. Thus RT
i xi ∈ RQ are the entries we preserve from xi. In

practice we store only the Q entries of xi that the subsampling picks out as well as the indices

specifying which entries were preserved (the indices of the Q non-zero rows of Ri), though it will

facilitate our exposition to write quantities like RiR
T
i xi ∈ RP . Crucially, Ri is resampled for each

xi. This fact is what enables the method to estimate statistics in P dimensions with a single pass

through the data (i.e., one-pass).

3.3 Mixture Models

We now describe the modeling framework, beginning with a general mixture model [47].

Assume there are K components and that each datapoint xi belongs to one of them, indicated by

the hidden variable zi ∈ {1, 2, . . .K}. A mixture model [47] is fully specified by the component

distributions pk(xi | θ) = p(xi | zi = k,θ), the component weights π = {πk}Kk=1 with
∑
πk = 1,

and the parameters θ = {θk}Kk=1. The distribution for xi is given by

p(xi | θ) =

K∑
k=1

πkpk(xi | θ). (3.5)

For a mixture of Gaussians, θk = {µk,Sk} where µk ∈ RP is the mean and Sk ∈ RP×P is

the covariance of the kth cluster, and p(xi | zi = k,θ) is given by

pk(xi | θ) =
1

(2π)P/2
1

|Sk|1/2
exp

(
−1

2
Dθ(xi)

)
(3.6)
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where

Dθk(xi) =
(
xi − µk

)T
Λk

(
xi − µk

)
(3.7)

is the squared Mahalanobis distance and Λk = S−1
k is the kth precision matrix.

The goal is to simultaneously estimate the parameters θ, the weights π, and the cluster

assignments zi, which we do using the Expectation-Maximization algorithm.

3.3.1 Expectation Maximization

Suppose we have observed data x, a realization of a random variable X, with probability

distribution function pX(x; θ). Note that by x we mean the full dataset, so that if, for example, x

is a set of N measurements {yi}Ni=1 drawn IID from some distribution pY (y; θ) then

pX(x; θ) =
N∏
i=1

pY (y; θ) (3.8)

= L(θ;X) (3.9)

is the likelihood of x. Following the development in Appendix 1 of [70], we choose to use pX and

let x be the set of samples, rather than a single observation within the dataset, because this choice

simplifies notation. At later times we will want pX to be the likelihood of a mixture model and a

partially-observed Bayesian network.

In this context, the goal of maximum likelihood estimation is to find estimators θ̂ for param-

eters θ such that θ̂ maximize pX :

θ̂ = arg max
θ∈Θ

pX(x; θ). (3.10)

For many distributions there exist analytic expressions for θ̂. Suppose now, however, that we

introduce a hidden random variable Z with joint distribution pXZ

pX(x; θ) =

∫
Z
pXZ(x, z; θ)dz. (3.11)

Z is also sometimes called a latent variable or missing data. For our purposes Z will be the

class labels for X in the case of a mixture model, as well as the unobserved or hidden nodes in
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a partially-observed realization of a Bayesian network. These are only two examples of a wide

variety of useful choices for Z. Since we do not observe Z we resort to seeking the maximizer of

the marginal distribution:

θ̂ = arg max
θ∈Θ

∫
Z
pXZ(x, z; θ)dz. (3.12)

This quantity, however, can be prohibitively difficult to compute. In such cases it is common that

the marginal would be easy to compute given either Z or θ.

The Expectation-Maximization (EM) method [71] proposes a solution to this by leveraging

the fact that the problem would be solvable given either Z or θ. In Expectation-Maximization, one

of these quantities is held constant and an update is obtained for the other in an iterative manner.

The E step estimates the hidden variables Z given θt, the current estimates for the parameters θ

at step t. The M step then finds the next parameter iterate θt+1 using the esimates for Z from

the E-step. Expectation-Maximization has several desirable properties: the likelihood L (θ;X)

is non-decreasing in t, and the process is guaranteed to converge to a critical point of L (θ;X)

[72, 73, 74, 75], which in practice is almost always a maximum (as opposed to a saddlepoint) [70].

3.3.1.1 The Auxiliary Function

Expectation-Maximization does not use the likelihood function pX(x; θ) directly. Instead,

define the auxiliary function

Q
(
θ, θt−1

)
= EZ|X;θt−1 [log pXZ(x, z; θ)] (3.13)

=

∫
Z

log pXZ(x, z; θ) pZ|X
(
z|x ; θt−1

)
dz. (3.14)

This corresponds to the expectation of the log likelihood taken with respect to the conditional

density pZ|X , which is the density of Z conditioned on the observed data x using the parameter

estimate θt−1. Although it is not necessarily obvious from this formulation, equation (3.13) is often

more tractable to compute than the original formulation in equation (3.12).

Furthermore, we typically do not need to evaluate Q in equation (3.13) directly at all. Instead,
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we only need to compute enough to find

θt = arg max
θ∈Θ

Q(θ, θt−1). (3.15)

In many cases, notably when pX is an exponential family distribution, evaluating the relevant

parts of Q in equation (3.13) amounts to finding a sum of factored sufficient statistics with simple,

analytic expressions [72, 73, 74]. We will see an example of this in the case of Gaussian mixtures.

Expectation-Maximization proceeds in two steps, the E step and the M step. In the E step,

the necessary parts of Q are computed using current estmimates for θ and Z. In the M step, a new

update to θ is found by maximizing Q with respect to θ. The choice of Q is motivated intuitively

by the idea that we can more easily compute quantities conditioned on θ and x, but in order for

Expectation-Maximization to work as intended, the sequence θt must also maximize the likelihood

pX(x; θ). This is indeed the case; for a thorough derivation see [76].

3.3.1.2 E and M steps

E Step The E step is to compute the necessary components in the auxiliary function at time

t− 1; i.e., evaluate Q(θ, θt−1). We will see two different forms of Q. One is for a Gaussian mixture

mode, and the other for a Bayesian network. In both cases the distributions factorize and the E

step reduces to a closed-form evaluation of a sum of sufficient statistics.

M Step The M step is to find θ to optimize Q found in the E step:

θt = arg max
θ∈Θ

(Q(θ, θt−1)). (3.16)

In practice it turns out to be sufficient to set dQ/dθ = 0 and find the critical point. Sometimes

we will also need to find additional parameters that are not specified in the vector θ; for instance,

in the case of Gaussian mixtures we will seek the weights π = {πk}Kk=1, where K is the number of

components in the mixture. This is also done during the M step. The EM algorithm is presented

in Algorithm 3.1.



41
Algorithm 3.1: Expectation-Maximization

Inputs : x, observed data.
θ0, initial parameter estimate.
∆θtol, convergence tolerance.
tmax, maximum iterations.

Output: θt

1 initialize ∆θ, t;
2 while (∆θ > ∆θtol) and (t ≤ tmax) do
3 (E step): compute Q(θ, θt−1) or sufficient statistics;
4 (M step): θt ← arg maxθQ(θ, θt−1);
5 t← t+ 1;
6 ∆θ ←

∥∥θt − θt−1
∥∥;

7 end while

3.3.2 The EM Algorithm for Gaussian Mixtures

We now specialize the EM algorithm to the case of Gaussian Mixture Models. The log

likelihood for data X = {x1,x2, . . . ,xN} under the mixture distribution given in equation (3.5) is

`(θ) =
N∑
i=1

log

(
K∑
k=1

pk(xi | θk)

)
. (3.17)

In the case of GMM’s (as well as in many others) it is intractable to find the maximum likelihood

estimators (MLE’s) for θ because of the hidden z = {zi}Ni=1. Expectation-Maximization finds a

local optimum by iteratively holding one of the unknown quantities (θ or z) fixed and solving for

the other. At each iteration we obtain a new estimate {θt,πt} computed from the previous estimate

{θt−1,πt−1}. Specifically, define the auxiliary function

Q(θ,θt−1) = E
[
`c(θ) | X ,θt−1

]
(3.18)

where

`c(θ) =
∑
i,k

log p (xi, zi = k | θk) (3.19)

is the complete data log likelihood and X is the dataset.

The E step is then to compute the expected sufficient statistics in Q for θ, which is equivalent

to finding the responsibility rik = p(zi = k | xi,θt−1) for each datapoint xi and component k:

rik =
πkpk(xi | θt−1)∑K
j=1 πjpj

(
xi | θt−1

) . (3.20)



42

The auxiliary function in equation (3.18) can then be expressed in terms of the responsibility as

Q(θ,θt−1) =
∑
i,k

rik log [πkpk(xi | θ)] . (3.21)

The M step is to obtain the next iterate {θt,πt} by optimizing Q:

{θt,πt} = argmaxθ,πQ(θ,θt−1). (3.22)

For a mixture of Gaussians, Q is optimized by the the maximum likelihood estimators:

π̂k =
rk
N

(3.23)

µ̂k =

∑
i rikxi∑
i rik

(3.24)

Ŝk =

∑
i rik(xi − µ̂k)(xi − µ̂k)T∑

i rik
(3.25)

The E and M steps are repeated until (guaranteed) convergence to a local maximum or saddle

point of Q.

3.4 Sparsified Gaussian Mixture Models

We now derive the maximum likelihood estimators for πk and θk under sparsification, the

main theoretical result of this chapter. To do so we will need some specialized results from matrix

calculus. Collections of similar results can be found in appendix A.4.1 of [77] as well as in the

reference guide [78]. The latter is an exceptionally useful reference.

3.4.1 Some Specialized Results from Matrix Calculus

The parameters θ we seek to estimate are P -dimensional: µk ∈ RP and Sk ∈ RP×P , and

hence to find the maximum likelihood estimators for them we need to take derivates in P dimensions.

We can choose to compute these as P -dimensional operators acting on sparse arrays of the form

Ri
TRi(·)Ri

TRi ∈ RP×P or on dense arrays of the form Ri
T (·)Ri ∈ RQ×Q. Because we only need

to compute gradients of scalar functions, we can do so element-wise and rewrite the result in either

form, depending on which is most convenient.
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Definition 3 (Mask indicator). Let Ri be a sampling projection. The mask indicator δRi :

{1, 2, . . . P} → {0, 1} for Ri is the delta function defined by

δRi(p) =


1 if p is preseved by Ri,

0 else

(3.26)

When we apply a projection Rixi, some of the entries of xi are preserved, and we sometimes

want to refer to these by their index. An entry in the pth position of xi may get projected to the

qth position in Rixi. We want a map mi : IP 7→ {1, 2, . . . , Q} that identifies the projected index

for every preserved feature, the set of which we denote by IP . The map has a dependence on i

because the mask is different for each datapoint. For example, suppose we project

[y1, y2, y3, y4]→ [y2, y4].

Then Ip = {2, 4} and mi(2) = 1,mi(4) = 2, since y2 is now the first entry in the projection, and y4

is the second. This is invertible, so that m−1
i (1) = 2 and m−1

i (2) = 4.

Definition 4 (Mask index). Let Ri be a sampling projection. The mask index mi : IP 7→

{1, 2, . . . , Q} is the function that gives the index in RQ corresponding to each index in the set IP

indexing the entries preserved by Ri.

Derivatives of Sparsified Precision With Respect to Dense Covariance

We now consider derivatives of both subsampled and sparsified covariance (S) and precision

(Λ) matrices. To find the maximum likelihood estimators we will need to compute quantities such

as

∂

∂S(p1, p2)

(
Ri

TSRi

)−1
.

To begin we find the entrywise derivative of the subsampled covariance, which we will need

in our subsequent analyses.

Remark 5 (Entrywise Derivative of Subsampled Covariance). Let S ∈ RP×P be a symmetric

positive semi-definite matrix (such as a covariance matrix) and Ri be a sampling projection. Then
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∂

∂S(p1, p2)
Ri

TSRi = ERi
p1p2 (3.27)

where the elementary matrix ERi
p1p2 ∈ RQ×Q is defined entrywise by

[
ERi
p1p2

]
(q1, q2) =


1 if δRi(p1) = δRi(p2) = 1 and q1 = mi(p1), q2 = mi(p2)

0 else

(3.28)

where mi(p) is the mask index in definition 4.

This is pretty ugly, but conceptually simple. ERi
p1p2 has up to one non-zero entry. If Ri

doesn’t preserve indices p1 and p2, then ERi
p1p2 = 0. If Ri preserves both p1 and p2, then ERi

p1p2 has

a single 1 in it, in the row corresponding to the masked index of p1 and column corresponding to

the masked index of p2.

We will use the right action of ERi
p1p2 . For A ∈ RQ×Q, then (when ERi

p1p2 is not zero):

AERi
p1p2 =

[
0 0 . . . A(:,mi(p1)) 0 . . . 0

]
where the non-zero column has index mi(p2). Again the concept is simpler than the notation: ERi

p1p2

takes a column of A and puts it as a column in an otherwise-zero matrix. The column preserved

from A corresponds to the masked index of p1, and the column of the output into which it goes

corresponds to the masked index of p2.

Remark 6 (Derivative of A−1). For invertible A(t) ∈ RP×P ,

d

dt
A−1 = −A−1

(
dA

dt

)
A−1 (3.29)

In particular, when t = A(p1, p2), we have that[
d

dA(p1, p2)
A−1

]
(m,n) = −

[
A−1

]
(m, p1)

[
A−1

]
(p2, n) (3.30)

Our next lemma derives the analog of equation (3.30) in the case of the precision matrix

under sparsification.
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Lemma 7 (Entrywise Derivative of Sparsified Precision). Let S ∈ RP×P be a covariance matrix,

Ri be a subsampling matrix, and ΛRi be the sparsified precision:

ΛRi
k = Ri(Ri

TSkRi)
−1Ri

T ∈ RP×P (3.31)

Then,[
dΛRi

dS(p1, p2)

]
(n1, n2) = −

[
Ri

TSRi

]−1
(m−1

i (n1),mi(p1))
[
Ri

TSRi

]−1
(mi(p2),m−1

i (n2)). (3.32)

Proof. Applying remarks (6) and (5),

d

dS(p1, p2)
(Ri

TSRi)
−1 = −(Ri

TSRi)
−1ERi

p1p2(Ri
TSRi)

−1 (3.33)

Now, ERi
p1p2 is idempotent, so we can write the above as

d

dS(p1, p2)
(Ri

TSRi)
−1 = −(Ri

TSRi)
−1ERi

p1p2E
Ri
p1p2(Ri

TSRi)
−1 (3.34)

= −(Ri
TSRi)

−1ERi
p1p2

[
(Ri

TSRi)
−T (ERi

p1p2)T
]T

(3.35)

= −(Ri
TSRi)

−1ERi
p1p2

[
(Ri

TSRi)
−TERi

p2p1

]T
(3.36)

As discussed in the comments following remark (5), the right action of ERi
p1p2 is to take the mi(p1)

column of (Ri
TSRi)

−1 and put it in the mi(p2) column of a zero matrix. In the case of the second

first consider the argument to the transpose

(Ri
TSRi)

−TERi
p2p1

Here ERi
p2p1 takes the mi(p2) column of (Ri

TSRi)
−T , which is to say the mi(p2) row of (Ri

TSRi)
−1,

and puts it into the mi(p1) column of a zero matrix. Then

[
(Ri

TSRi)
−TERi

p2p1

]T
is a zero matrix with the mi(p2) row of (Ri

TSRi)
−1 in its mi(p1) row. Thus the product in equation

(3.36) is equivalent to the outer product of the mi(p1) column of (Ri
TSRi)

−1 and the mi(p2) row

of (Ri
TSRi)

−1:

d

dS(p1, p2)
(Ri

TSRi)
−1 = −(Ri

TSRi)
−1(:,mi(p1)) ◦ (Ri

TSRi)
−1(mi(p2), :) (3.37)
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Thus the m,nth entry[
d

dS(p1, p2)
(Ri

TSRi)
−1

]
(n1, n2) = −

[
(Ri

TSRi)
−1
]

(n1,mi(p1))
[
(Ri

TSRi)
−1
]

(mi(p2), n2)

(3.38)

For clarity define

Lp1,p2 =
d

dS(p1, p2)
(Ri

TSRi)
−1 (3.39)

= −(Ri
TSRi)

−1(:,mi(p1)) ◦ (Ri
TSRi)

−1(mi(p2), :) (3.40)

Then,

[
Ri

TLp1,p2Ri

]
(n1, n2) = −

Q∑
l,k

Ri
T (n1, l)Lp1,p2(l, k)Ri(k, n2) (3.41)

= Lp1,p2(m−1
i (n1),m−1

i (n2)) (3.42)

because of the stucture of Ri - the n1th row of Ri
T has exactly one non-zero entry, a 1 in the

m−1
i (n1) row indicating which dense feature is saved in the n1th compressed feature and so both

sums collapse. The desired result then follows.

Remark 8 (Jacobi’s formula). Let A(t) ∈ RP×P have (entry-wise) dependence on t ∈ R. Then

d

dt
det A = tr

[
adj(A)

dA

dt

]
. (3.43)

where adj(A) is the adjugate of A.

When A is invertible the adjugate is

adj(A) = det(A)A−1,

and so remark 8 gives that

d

dt
det A = tr

[
det(A)A−1dA

dt

]
.

This can be used to compute d
dA det A:

Remark 9 (Derivative of det A). The entrywise derivative of det A is

d

A(p, q)
det A = adj(A)(q, p) (3.44)
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and so the matrix derivative is

d

dA
det A = adj(A)T . (3.45)

When A is invertible,

d

dA
det A =

1

det A
A−T . (3.46)

In turn this can be used to find d
dA log det A

Remark 10 (Derivative of log det A). When A is invertible,

d

dA
log det A = A−T (3.47)

When applied to a covariance matrix S, which is symmetric, this gives

d

dS
log det S = Λ (3.48)

where Λ = S−1 is the precision matrix. Our goal now is to find the equivalent of this under

sparsification.

Lemma 11 (Derivative of log det under sparsification.). Let S ∈ RP×P be a covariance matrix and

Ri ∈ RP×Q be a sampling projection. Then

d

dS
log det

(
Ri

TSRi

)
= ΛRi (3.49)

where ΛRi is defined in equation (3.69).

Proof. By the chain rule for matrices,

d

dS
log det

(
Ri

TSRi

)
=

1

det
(
Ri

TSRi

) d
dS

det
(
Ri

TSRi

)
. (3.50)

Next, apply Jacobi’s formula from remark (8) to find the element-wise derivative:

d

dS(p1, p2)
det
(
Ri

TSRi

)
= tr

[
adj(Ri

TSRi)
d

dS(p1, p2)
(Ri

TSRi)

]
(3.51)

= tr

[
det(Ri

TSRi)(Ri
TSRi)

−1 d

dS(p1, p2)
(Ri

TSRi)

]
(3.52)
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assuming both p1 and p2 are preserved by the mask (otherwise the previous derivative is 0). Using

the notation in remark (5), then

d

dS(p1, p2)
(Ri

TSRi) = ERi
p1p2 ,

and following the same logic thereafter,

(
Ri

TSRi

) d

dS(p1, p2)
(Ri

TSRi) =

[
0 0 . . .

[
Ri

TSRi

]
(:,mi(p1)) 0 . . . 0.

]
The trace thus picks out one entry from this non-zero column; namely,

tr

[
d

dS(p1, p2)
(Ri

TSRi)

]
=
[
Ri

TSRi

]−1
(mi(p2),mi(p1)). (3.53)

This is the analog of equation (3.45). We can replace the masked indexing by projecting the matrix

back into P -space:

[
Ri

TSRi

]−1
(mi(p2),mi(p1)) =

[
Ri

(
Ri

TSRi

)−1
Ri

T
]

(p2, p1). (3.54)

This is valid whether p1 and p2 are preserved by the mask or not, since it correctly evaluates to 0

in the latter case. Susbtituting this into equation (3.52) we obtain

d

dS(p1, p2)
det
(
Ri

TSRi

)
= det(Ri

TSRi)
[
Ri

(
Ri

TSRi

)−1
Ri

T
]

(p2, p1). (3.55)

By definition, [
Ri

(
Ri

TSRi

)−1
Ri

T
]

= ΛRi

and since this is symmetric (by virtue of S and Ri both being so) we can swap the p1, p2 indices in

equation (3.55):

d

dS(p1, p2)
det
(
Ri

TSRi

)
= det(Ri

TSRi)
[
ΛRi

]
(p1, p2). (3.56)

Thus

d

dS
det
(
Ri

TSRi

)
= det(Ri

TSRi)Λ
Ri . (3.57)

Finally, substituting this back into equation (3.50), the determinants cancel and we obtain the

desired result.



49

Next we compute the derivative of a particular trace.

Remark 12 (“Trace trick”). For A ∈ RP×P and column vector a ∈ RP , then

aTAa = tr
[
aaTA

]
. (3.58)

The quantity aTAa is a scalar, so treating it as a 1 × 1 matrix, then aTAa = tr
[
aTAa

]
.

The trace is cyclic so we can cycle the order of the matrix products to obtain the result. This

reformulation helps compute derivatives of aTAa.

Remark 13 (Derivative of tr (MA)). For A,M ∈ RP×P ,

d

dA−1
tr (MA) = −

[
A−1MA−1

]T
. (3.59)

The sparsified equivalent is stated in Lemma (14):

Lemma 14 (Derivative of tr
(
MΛRi

)
). Let S be a covariance matrix, Ri a subsampling projection,

ΛRi be the sparsified precision as defined in equation (3.69), and M ∈ RP×P be symmetric. Then

d

dS
tr
[
MΛRi

]
= −ΛRiMΛRi (3.60)

Proof. We can write the trace in component form as

tr
[
MΛRi

]
=
∑
m,n

M(m,n)ΛRi(n,m) (3.61)

Then,

dtr
[
MΛRi

]
dS(p1, p2)

=
∑
m,n

M(m,n)

[
dΛRi

dS(p1, p2)

]
(n,m) (3.62)

=
∑
m,n

−M(m,n)ΛRi(n, p1)ΛRi(p2,m) (3.63)

by Lemma (7). We recognize that equation (3.63) is a matrix product:

∑
m,n

−M(m,n)ΛRi(n, p1)ΛRi(p2,m) = −
[
ΛRiMΛRi

]
(p2, p1) (3.64)

= −
[
ΛRiMΛRi

]T
(p1, p2) (3.65)

which is the equivalent of equation (3.59) in remark (13). Since ΛRi and M are symmetric, the

composition in equation (3.65) is also, and the desired result follows.
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This concludes the necessary expressions for the sparsified precision derivatives. Next we

obtain the requisite expression for derivatives with respect to the means. It turns out that the

standard case suffices, and we need not compute any sparsified analogs.

Remark 15. For A ∈ RP×P independent of column vector a ∈ RP ,

d

da

(
aTAa

)
=
(
AT + A

)
a, (3.66)

and by applying the chain rule to the special case,

d

dµ

[
(x− µ)TA(x− µ)

]
= −(AT + A)(x− µ). (3.67)

3.4.2 EM for Sparsified Gaussian Mixtures

We now present our main result, the EM algorithm for sparsified Gaussian mixtures; i.e.,

the equivalents to the responsibility in equation (3.20) and the parameter MLE’s in equations

(3.23-3.25) under sparsification.

The sparsified analog of the squared Mahalanobis distance in equation (3.7) is

DRθk(xi) =
(
xi − µk

)T
ΛRi
k

(
xi − µk

)
(3.68)

where

ΛRi
k = Ri(Ri

TSkRi)
−1Ri

T ∈ RP×P (3.69)

is the sparsified analog2 of the precision matrix Λk = S−1
k . The sparsified Gaussian density is:

pRk (xi | θk) =
1

2πQ/2
1

|Ri
TSkRi|1/2

exp

(
−1

2
DRθ (xi)

)
. (3.70)

This can be taken to be a Q-dimensional Gaussian with mean Riµk and covariance Ri
TSkRi

evaluated at Rixi. Both pR and DRθk(xi) are unbiased estimators of their dense counterparts when

scaled by P/Q (see Figure 3.1).

2 We note that ΛRi
k is not equivalent to RiRi

TΛkRiRi
T ; i.e., the sparsified embedding of the precision matrix

Λk
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The E-step is to compute the responsibility as given in equation (3.20). Under sparsification,

the responsibility becomes

rRik =
πkp
R
k (xi | θt−1)∑K

j=1 πjp
R
j

(
xi | θt−1

) (3.71)

and hence the sparsified auxiliary function Q in equation (3.21) is:

QR(θ,θt−1) =
∑
i,k

rRik log
[
πkp
R
k (xi | θ)

]
. (3.72)

Theorem 16 (Maximum Likelihood Estimators for Sparsified Gaussian Mixtures). The maximum

likelihood estimator for πk with respect to QR is

π̂Rk =

∑
i r
R
ik

N
. (3.73)

The maximum likelihood estimators for µk and Sk are the solutions to the system

µRk =

(∑
i

rRikΛ
Ri
k

)†∑
i

rRikΛ
Ri
k xi (3.74)∑

i

rRikΛ
Ri
k =

∑
i

rRikΛ
Ri
k MikΛ

Ri
k (3.75)

where

Mik =
(
xi − µk

)(
xi − µk

)T
. (3.76)

is the scatter matrix.

Proof. The component of QR with πk-dependence is

`R(πk) =
∑
i,k

rRik log πk

from which the MLE in equation (3.73) can be derived by setting ∂`R/∂πk = 0 for each k simul-

tanously and solving the resulting system. The components of QR with µk and Sk dependence are

`R(µk,Sk) =
∑
i

rRik
(
log |Ri

TSkRi|+DRθk(xi)
)
. (3.77)

To find ∂`R/∂µk, we observe that

∂

∂µk
DRθk(xi) = −2ΛRi

k

(
xi − µk

)
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by remark (15) and the symmetry of ΛRi
k . Equation (3.74) then follows by setting ∂`R/∂µk = 0

and rearranging.

We now find ∂`R/∂Sk. For the first term in the summand of equation (3.77), we have that

∂

∂Sk
log |Ri

TSkRi| = ΛRi
k (3.78)

by Lemma (11). For the second term, we apply the “trace trick” from Remark (12):

DRθk(xi) = tr
[
MikΛ

Ri
k

]
(3.79)

to find

∂

∂Sk
DRθk(xi) = −ΛRi

k MikΛ
Ri
k (3.80)

by Lemma (14). Setting ∂`/∂Sk = 0 from equation (3.77) and using equations (3.78) and (3.80)

we obtain equation (3.75).

Evaluating these MLEs does not require access to the full xi, as in each case such terms are

sparsified by the action of ΛRi
k . In the case of no sparsification; i.e., Ri = I for all i, we recover

the standard MLEs in equations (3.23 - 3.25). Equation (3.73) has only πRk dependence, and hence

gives the MLE for this parameter. Equation (3.74) gives the MLE for µRk in terms of the ΛRi
k . In

the standard case, the Λk terms cancel and we obtain the MLE for µk, which is then used in place

of µk to find the MLE for Sk; however, in the sparsified case we do not observe this cancelation, and

hence must solve equations (3.74) and (3.75) simultaneously. This can be done, for example, in an

EM-type iterative fashion, but such a procedure further requires the evaluation of ΛRi
k , involving

a Q×Q inverse, of which there are KN per iteration. These issues can be circumvented by using

diagonal or spherical covariances. We give the MLEs for the diagonal case, Sk = diag(sk) where

sk ∈ RP .

Corollary 17 (MLEs for diagonal Sk). When the Sk are diagonal, the system of equations (3.74
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- 3.75) yields the MLEs

µ̂k =

(∑
i

rRikPi

)†∑
i

rRikPixi (3.81)

ŝk = diag

(∑
i

rRikPi

)†∑
i

rRikPiMikPi

 (3.82)

where Pi ∈ RP×P is the sparse projection matrix:

Pi = RiR
T
i . (3.83)

Proof. When Sk = diag(sk), then

(
RT
i SkRi

)−1
= RT

i S−1
k Ri.

Since Ri is also diagonal, then we can commute diag(sk) out of the sum in the first term of equation

(3.74): (∑
i

rRikΛ
Ri
k

)†
=

(∑
i

RT
i Ri

)†
diag(sk)

where we have also used that RT
i Ri is idempotent. The same argument applies to the second term

in equation (3.74): ∑
i

rRikΛ
Ri
k xi = diag(sk)

−1
∑
i

RT
i Rixi.

Combining these results gives the MLE µ̂k in equation (3.81). A similar argument applies for Ŝk

in equation (3.82).

Corollary 18 (MLEs for spherical Sk). When the Sk are spherical, the system of equations (3.74

- 3.75) yields the MLEs

µ̂k =

(∑
i

rRikPi

)†∑
i

rRikPixi (3.84)

ŝk =
1

P

P∑
p=1

(∑
i

rRikPi

)†∑
i

rRikPiMikPi


pp

(3.85)

where Pi is as defined in equation (3.83).
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Proof. The MLE for µk is independent of Sk and is hence the same as in the diagonal case. Since

Sk = skI then, as in the diagonal case, we can factor this term out of both sides of equation 3.75

to obtain

ŝk = argmaxsk ‖skI−B‖ (3.86)

where

B =

(∑
i

rRikPi

)†∑
i

rRikPiMikPi. (3.87)

Choosing the Frobenius norm, the solution is

ŝk =
1

P

P∑
p=1

[B]pp ; (3.88)

i.e., the mean diagonal of B. Note that this is equivalent to the mean of sk, the diagonal MLE in

equation 3.82.

The EM algorithm for SGMM is presented in Algorithm 3.2. The algorithm begins with

sparsified, preconditioned data X , the mask indices M , and initial model parameters θ0. The E

and M steps are repeated until convergence or until the maximum iterations has been reached, and

returns the parameter estimates θt after t iterations.

3.4.3 Computational Complexity

In the case of diagonal covariances (as well as in the simpler spherical case in which Sk = skI),

the responsibilities rRik (E step) and the updates for µ̂k and Ŝk (M step) can be each be computed

in O(KNQ) time (see Table (3.1)). Thus the EM algoritm has time complexity O(KNQ) per

iteration, in contrast to the standard diagonal GMM’s complexity of O(KNP ) per iteration.

For concreteness we include complexity computations in Table 3.3 using characteristic pa-

rameter values given in Table 3.4.
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Algorithm 3.2: EM for sparsified Gaussian mixture model.

Inputs : RX, sparsified, preconditioned data.
M, mask indices.
θ0, initial parameter estimates.
∆θtol, convergence tolerance.
tmax, maximum iterations.

Output: θt

initialize ∆θ, t;
while (∆θ > ∆θtol) and (t ≤ tmax) do

// E step

for k = 1, 2, . . . ,K do
for n = 1, 2, . . . N do

compute responsibility rRnk using θt−1;
end for

end for
// M step

{θt,π} ← argmaxθ,πQ
R(θ, θt−1);

// Convergence checks

∆θ ←
∥∥θt − θt−1

∥∥;
t← t+ 1;

end while

Table 3.1: Computational complexity comparison between GMM and SGMM, for full and diagonal
covariances. See Table (3.2) for parameter descriptions.

Step GMM, full S SGMM, full S GMM, diag S SGMM, diag S

E step O(NKP 2 +KP 3) O(NKQ3) O(NKP ) O(NKQ)
M step O(NKP 2) O(NKQ2) O(NKP ) O(NKQ)
Total O(INKP 2 + IKP 3) O(INKQ3) O(INKP ) O(INKQ)

Table 3.2: Parameter descriptions.

Parameter Description

N number of points
K number of components
P ambient data dimension
Q compressed ambient data dimension
I number of EM iterations
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Table 3.3: Computational complexity of SGMM for characteristic parameter values.

Step GMM, full S SGMM, full S GMM, diag S SGMM, diag S

E step 106 104 10 .1
M step 106 100 10 .1
Total 107 105 100 1

Table 3.4: Characteristic parameter values for SGMM.

Parameter Description

N = 106 number of points
K = 5 number of components
P = 104 ambient data dimension
Q = 100 compressed ambient data dimension
I = 10 number of EM iterations
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Figure 3.1: Error in pRk as a function of compression. 10000 xi ∼ N (0, 1) in 100 dimensions per
trial. Inset: error in DRθk(xi).

3.5 Simulations

3.5.1 Accuracy and Timing on MNIST

Figure 3.2 shows the accuracy of the SGMM classifier on the subset {0, 3, 9} of the MNIST

dataset as a function of the percentage of features preserved. SGMM recovers close to full GMM

accuracy with only a small number of features in a fraction of the time. For instance, at the

gray dot, SGMM with 3.82% of the features preserved (30 out of 784) achieves a mean accuracy

of 0.86 (92% of the accuracy with all features) in 12.9% of the computation time excluding the

preconditioning cost (which took 0.52 seconds) or 19.9% including the preconditioning. We further

note that there is almost no variance in the accuracy over multiple trials; a consequence of our

sampling scheme that we also observed in our sparsified k-means classifier [46].

3.5.2 Small Cluster Recovery

In a regime where clusters have very different sizes, both in the sense of variance and number

of points, GMM (even with spherical covariance) can significantly outperform k-means. Figure 3.3

shows an example of this, where SGMM correctly identifies two small clusters from one large one on
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Figure 3.2: Accuracy and timing of diagonal SGMM on the subset {0,3,9} of MNIST (N = 18003)
as a function of compression. 3 initializations per trial, 20 trials per compression. Shaded regions
indicate standard deviation (dark) and extrema (light) taken over the trials.
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Figure 3.3: Small cluster recovery using spherical SGMM. See supporting text for details.

simulated data drawn from three Gaussians with ‖Sbig‖2 ∼ 10 ‖Ssmall‖2 and Nbig = 5Nsmall = 1000.

In this simulation P = 100 and Q = 10.

3.6 Conclusions

3.6.1 Summary

The sparsified Gaussian mixture model is an efficient clustering algorithm that reduces the

storage and computational cost of Gaussian mixtures while still being one-pass. After paying an

upfront cost of O(NP logP ) to precondition the data, SGMM compresses N samples from P to Q

dimensions, and with diagonal or spherical covariances, fits K clusters in O(KNQ) time per EM

iteration.

3.6.2 Extensions and Future Work

We conclude with several potentially fruitful extensions for this work.

One-step bounds

Our main theoretical result is the derivation of maximum likelihood estimators under spar-

sification for the M step of the EM algorithm. The sparsification scheme we use here has been

shown to satisfy several probabilistic bounds. It may be possible to extend some of the results to

the SGMM algorithm. One such result is that, when applied to k-means, the sparsification scheme
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satisfies a type of one-step update bound: the error between the update to a sample mean in one

iteration of the sparsified algorithm and the same sample mean without sparsification is bounded

probabilistically [46, Theorem 8]. Let x̄k denote the sample mean of the kth cluster. Then for all

t ≥ 0:

1√
P
‖µk − x̄k‖ ≤ t

(
1 +

1√
P ‖µ‖k

)
(3.89)

with probability greater than 1 − δ, where δ depends on the sample, P and Q, and t. It is likely

that we could establish a similar bound for the M step parameter estimation in the EM algorithm.

To do so we could apply other results in [46]; namely, (1) a theorem bounding

P

||∑
i∈Ck

RtR
T
i || ≤ t

 ≥ 1− δ (3.90)

for all t with failure probability δ, and (2) theorems bounding the mean and covariance of the

k-means clusters. This approach seems likely to be a straightforward but non-trivial extension of

the existing results on k-means.

Alternative initialization strategies

The EM algorithm requires that the parameters be initialized. We currently use a sparsified

variant of the well-known k-means++ initialization [79], in which a new initial mean is chosen

randomly from the dataset with probability proportional to the squared distance of each point in

the dataset from the current set of initial means. It may be possible to design an initialization

strategy that is closer in spirit to Gaussian mixtures, say by setting the probability of selecting a

point to instead be proportional to some Gaussian distribution. To do so we would need to devise

a way to bootstrap covariances and weights in addition to the means.

Low-rank, full-dimensional covariances

We currently do not use the full covariances in our SGMM, instead restricting ourselves to

the diagonal or spherical special cases. This is because it is computationally infeasible to compute

N matrix inversions of the Q × Q submatrices of the covariance Sk. As a result we lose some of

the generality and flexibility of Gaussian mixtures. The idea of using low-rank approximations to
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Sk is appealing; however, the quantities we need to compute in the updates,

ΛRi
k = Ri

(
RT
i SkRi

)−1
RT
i ,

require inversions of distinct submatrices of Sk. There are up to N such submatrices for each of K

covariance matrices. If there is a way to connect the quantity ΛRi
k with

(
RiR

T
i SkRiR

T
i

)−1

then perhaps we could devise a way to permit low-rank dense covariances in SGMM.

Gaussian processes

A Gaussian process is a stochastic process such that every finite linear combination of its

random variables is normally distributed [80]. Gaussian processes are widely used for regression

and classification tasks in machine learning, where they offer a computationally tractable approach

that is fully Bayesian in its reasoning. When the latent dimension is very high, however, Gaussian

processes are susceptible to same issues as Gaussian mixture models. We are interested to see if

the sparsification scheme we developed here, in particular the sparsified equivalents of distances

and Gaussian probability distributions in equations (3.68 - 3.70), could be applied to Gaussian

processes to create a faster and more memory-efficient classifier.



Chapter 4

Oracle Epiphany in Bayesian Networks

4.1 Introduction

In the previous chapter, we discussed a clustering algorithm designed for use on high-

dimensional, streaming datasets. The goal of that method was to perform unsupervised learning

on real-valued vector input {xi} ⊂ RP efficiently and quickly by reducing the latent dimension of

the data from P to Q with Q � P . In this chapter we focus on the related problem of needing

to reduce the number of observations. Our problem setting will again be that of streaming data,

and so it doesn’t always make sense to draw the simple parallel that we wish to use M datapoints

instead of N �M , but this description is accurate in spirit.

The work we present here is carried out with Respond software, a cyber security company

building an artificial intelligence analyst to monitor network traffic with potentially many users

(workstations at an office, for example) and identify cyber threats. For compliance with intellectual

property concerns and because much of the data is inherently sensitive, there are parts of the work

and the dataset that we do not discuss in detail. These omissions should not interfere with the

clarity of exposition nor with the communication of our main findings: the goal of this chapter is

to present a framework and an approach to solving a particular type of problem; and in this light

the data we use to demonstrate our approach is incidental.
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4.1.1 Problem Setting

The problem setting is the following. We observe a streaming flow of very high volume data,

say on the of order one billion datapoints per day. Each individual datapoint xi is not very large.

In our specific application xi consists of some short strings, a time-stamp, and maybe some vendor-

specific telemetry about a particular kind of cyber threat. In general the approach we take is

designed to handle multivariate categorical data. Additional structure, such as a natural language

processing approach to string contents, agent-based or network-style frameworks, and time-series

hierarchies, are each potentially relevant, but are not considered here. Thus, for our purposes, we

assume

x ∼ {C(1), C(2), . . . , C(Q)} (4.1)

where C(q) is a categorical random variable with Kq states. In general, we don’t know anything

a priori about the dependencies of the C(q); ultimately, however, we will use a Bayesian network,

formalizing very specific assumptions. Our ultimate goal is to construct a parametric classifier Φθ

to identify whether a particular observation constitutes a threat, which we formalize as a problem

of binary classification: we seek to define Φ and find an estimate of θ such that

T = Φθ(x), (4.2)

with T ∈ {0, 1}, identifies whether x is benign (T = 0) or malicious (T = 1). We make no

assumptions about the size of Q or {Kq}, but neither do we make any attempt for our method

to scale well with either. This is to say that it’s quite possible to run into trouble if either is too

large. Our focus is instead to reduce how many datapoints we have to look at. Our particular

domain of application, the identification of cyber threats, introduces a multitude of other practical

and statistical constraints and considerations, none of which is necessarily unique to the domain at

hand.

The biggest problem we face, in addition to the voluminous quantity of data, is that it is

very expensive to obtain the true labels Ti. Like, really, truly, astronomically expensive, in every

sense of the word. To begin with, the raw data we observe, call it xrawi , is at the outset impossible
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to label, probably comparably difficulty to looking at the array

241 241 242 . . . 246 246 246

243 243 244 . . . 246 246 246

245 245 246 . . . 246 246 246

...
...

...
. . .

...
...

...

169 171 174 . . . 20 19 18

173 173 174 . . . 20 19 18

181 179 175 . . . 20 19 18


and recognizing it as the red channel of this picture of a cat:

Figure 4.1: A cat. Image by Dogbert420 (a suspicious name for an uploader of cat pictures).

License: CC BY-SA 4.0. https://en.wikipedia.org/wiki/Cat#/media/File:Close_up_of_a_

black_domestic_cat.jpg

We do not have the equivalent of image rendering software, and we must therefore engage in feature

engineering before we know the labels Ti of any data. In practice, getting a label for a datapoint

requires processing the raw datapoint xrawi into something a human cyber security expert recognizes

as either benign activity (T = 0) or something scary enough to warrant a closer look (T = 1). For

our purposes here, we encapsulate the entirety of this activity under the title of querying the

oracle, terminology from the active learning literature [81].

The field of active learning concerns itself with the scenario in which the learning process

itself is somehow used to decide which data gets labeled to be incorporated into some supervised

https://en.wikipedia.org/wiki/Cat#/media/File:Close_up_of_a_black_domestic_cat.jpg
https://en.wikipedia.org/wiki/Cat#/media/File:Close_up_of_a_black_domestic_cat.jpg
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learning process [81]. Whence the name active learning: the personified learner actively chooses

what she will learn from next. This approach is useful to us because we begin our process with no

labeled data whatsoever, and it is excruciatingly difficult to get the labels. We therefore want to

choose as carefully as we can which data get labeled.

Typically in active learning the concern is to choose a datapoint that will inform a region

of parameter space about which we know little, or that will maximally improve the parameter

estimates in some sense. In our case, however, we face the practical reality that not all queries are

equivalently easy. We leverage recent work formalizing this concept into the framework of oracle

epiphany [82]. The Oracle may not know the labels to a series of datapoints until suddenly

something about the set triggers an epiphany, whereby she is instantaneously able to classify the

entire set at once. The actual practical matter of inducing such epiphanies is subjective and touches

on the vast domains of knowledge engineering [83] and expert systems [84].

We have so far described the related problems of expensive Oracle queries and no labeled

data, which are all the more troublesome because of the vast volume of streaming data we will

observe. The other major obstacle related to labeled data is that we observe extreme class

imbalance: almost all traffic is benign with only a tiny minority constituting a real threat:

P (Ti = 1 | xi)� P (Ti = 0 | xi). (4.3)

This only exacerbates the existing problems surrounding the acquisition of labeled data. These are

the crucial issues we seek to address in the content presented here, but the system at hand has

several other properties as well, which may consider in later work. These are:

• Extreme Class Imbalance: The vast majority of traffic is benign, incidents are very

rare.

• Mixed Datatype: Raw data includes textual, temporal, categorical, and real number

data types.

• Time Series: There is a clear temporal component to most of the data.
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• Heirarchical: Data can be organized into several heirarchies, including users, sources,

destinations, type of traffic, etc.

• No Labeled Data: We begin with no labeled data.

• Expensive Oracle Queries: Obtaining a label y for an event x is expensive.

• Dependent Data: Events are not independent; in particular, labeling an event in isolation

is impossible.

• Streaming Data: The volume of data grows without bound and therefore not all of it

can be kept. Data must be labeled in a streaming fashion.

• Online Learning: We need to be able to update the model parameters quickly, almost in

real time, as the nature and type of threats we observe are constantly in flux.

Some of the issues discussed above require significant and unrelated efforts to address, and much

of this work is presently ongoing.

4.1.2 Main Result and Chapter Overview

The main result we present in this chapter is a subset of the work described above. This is

the application of oracle epiphany to a Bayesian network in order to simultaneously:

(1) reduce the number of datapoints from N to M with M � N

(2) query the Oracle for increased label coverage

(3) increase the relative number of the minority class to address class imbalance

Our results are preliminary and experimental. The work herein is as much a proof-of-concept as

anything else. Luckily it seems to work OK, which is good since I hung both the completion of my

PhD and my subsequent employment on this idea.

The chapter is organized as follows. First, in Section 4.2, we discuss alternative and com-

plementary approaches to the labeled data problem. There are a lot of relevant ideas in the
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literature, unfortunately for us most of them are not easily generalized beyond their specific domain

of application and into ours. Then, we introduce Bayesian networks and discuss their applicability

to our problem in Section 4.3. In particular we discuss learning algorithms to estimate model pa-

rameters θ and sensitivity analysis, a tool which we use to help guide our search for new label

acquisition. In Section 4.4 we introduce active learning and oracle epiphany, and connect these

concepts to the framework of Bayesian networks. In Section 4.5 we show the results of applying

our approach to the problem of labeled data generation. Finally in Section 4.6 we discuss ongoing

and future work.

4.2 Other Approaches To The Labeled Data Problem

We now discuss potential approaches to solving the problem of labeled data acquisition: one-

shot learning, a Bayesian approach in computer vision to learn from very few training examples, the

application of reinforcement learning to the task of classification. We consider these alternatives

because each permits a form of classification in a scenario with little or no labeled data.

4.2.1 One-Shot Learning

One-shot learning is a classification task in which a category is learned from very few or even

a single example [85]. The idea is to use information from known categories to learn new ones

with much less training data by formulating the problem in a Bayesian framework. It originates in

computer vision and most of its applications are in that field [86, 87, 85]. In the original formulation

of the method [87, 85], the goal is to determine whether a given image I contains an example of

a foreground category, denoted Ofg, as opposed to the alternative of containing only generic

background clutter Obg, given a set of training images for the foreground category, It. This

decision is made using the ratio

R =
p (Ofg | I, It)
p (Obg | I, It)

(4.4)
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which by Bayes’ Rule is equivalent to

R =
p (I | It,Ofg) p (Ofg)
p (I | It,Obg) p (Obg)

. (4.5)

If R exceeds some specified threshold T then we conclude that I contains an instance of the

foreground category. Choosing a parametric model for the background and foreground categories,

with parameter vectors θbg and θ respectively, then R can be written

R ∝
∫
p (I | θ,Ofg) p (θ | It,Ofg) dθ∫

p (I | θbg,Obg) p (θbg | It,Obg) dθbg
. (4.6)

The learning phase consists of estimating p(θ | It,Ofg); i.e., the posterior for the foreground

category over θ given the training data for that categotry. In numerical experiments on image

data in the original publication, the authors were able to achieve 75-90% accuracy given only 1-5

training examples.

The parametric model used in the original work is a Constellation model, which is specific

to computer vision, for use with images represented as arrays of integers or floats. The framework

presented above up through equation (4.6) is general, and hence given a different choice of param-

eterized model it could, in theory, apply to our domain of interest. The one-shot aspect of the

method, however, seems to be intimately related to the Constellation model and image structure,

and it is not evident how to preserve this property using a different model. There is at least one

extension of one-shot learning to a different field: drug discovery in medicinal chemistry [88], and

we therefore aim to consider adapting the method to our domain in the future.

4.2.2 Reinforcement Learning

Reinforcement learning (RL) is an independent domain of machine learning, alongside unsu-

pervised learning and supervised learning, with the latter encompassing classification. Nevertheless

there have been applications of reinforcement learning to the task of classification [89, 90, 91, 92].

The primary appeal of RL for our task is that the learning process typically takes place in the

absence of labeled data. The standard framework for RL is a Markov decision process (MDP). An
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MDP consists of the state S of the process, a finite set A of actions, a Markovian transition model

P , and a reward function R (see for example [93] c.f. [89]). Denote by π(s) the action the agent

takes at state s, then the value of s under π is

Vπ(s) = E

[ ∞∑
t=0

γtR(st, π(st)) | s0 = s

]
(4.7)

where γ ∈ [0, 1] is the discount rate for future rewards. Vπ is the expected, total, discounted

reward for the policy π and initial state s. The goal is then to find π∗ that maximizes Vπ, called

an optimal policy.

Recently, reinforcement learning has been used to create AI with superhuman performance in

the game Go, called AlphaGo Zero [94]. This framework has since been extended to a more general

formulation, Alpha Zero, achieving the same results for the games of chess, Go, and Shogi [95]. In

addition to superhuman performance, this program also convincingly beat all state-of-the-art AI

game software (100-0 in the case of Go). The previous generation of AI game players were built

using supervised or semi-supervised methods, incorporating enormous quantities of historical game

data and domain knowledge. In contrast, RI approaches need only the rules of the game, learning

from random play. Our system does not afford an obvious set of rules nor a clear reward function,

and as such for the time being we will not consider reinforcement learning for our application.

4.3 Bayesian Networks

Bayesian networks are widely-used statistical models that represent dependencies between

random variables using a directed acyclic graph. They were first introduced in 1985 [96], and two

classical textbooks written shortly thereafter established their core theoretical foundation [97, 98].

A more recent textbook consolidates the main developments over the last three decades and presents

the material in a modern perspective [99]. Bayesian networks were originally introduced to provide

a tractable and intuitive formalization of human decision-making and reasoning about uncertainty

[96].

Let G be a directed, acyclic graph with nodes representing categorical random variables
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Figure 4.2: Example Bayesian network.

{X1, X2, . . . , XK}. A directed edge in G points from a parent to a child. If X is a parent of Y

we write X → Y . If Xi1 → Xi2 → . . . → Xim then {Xij}mj=2 are descendants of Xi1 . Let Pai

denote the parents of Xi and let pai enumerate all combinatoric states the parents can take. Note

that we are indifferent here to the order in which they are listed. The parameters of the model θ

are the conditional probabilities of each node given its parents:

θijk = P
(
Xi = xki | Pai = paji

)
. (4.8)

In words, θijk is the probability that Xi takes on state k given that the parents of Xi are in the

jth configuration.

It is easiest to understand this by way of an example. Figure (4.2) shows a simple Bayesian

network. This network models three random variables corresponding to (1) whether the grass is

wet (G), (2) whether the sprinkler was on (S), and (3) whether it rained (R). R is a Bernoulli

random variable with parameter α = 0.1; i.e., the probability that it will rain is 0.1. The edge

between R and S indicates a conditional dependency; the probability that the sprinkler was on

depends on whether or not it has rained. For instance, P (S = 1 | R = 0) = 0.8; i.e., the probability

that the sprinkler will go on given that it has not rained is 0.8, This is reflected in the (1,2) entry

of of the table associated with S. The node G has two parents, and hence a larger table - we must
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now account for all four possible combinations of parent states.

The parameters θijk are stored in tables in this example; in particular, θijk is the (j, k) entry

of the ith table. If there are n random variables, each Xi can assume ri states, and there are qj

combinations of parent states Pai, then there are

|θ| =
n∑
i=1

ri qi (4.9)

total parameters. The parameters θ and the graph G fully specify the Bayesian network.

One of the primary tasks we seek to do with a Bayesian network is to perform inference:

what is the probability of observing an instantiation x1, x2, . . . xn of the net? A fundamental

property of Bayesian networks is that this probability factors into local distributions:

p(X1, X2, . . . , Xn) =
n∏
i=1

p(Xi | Pai). (4.10)

This factorization permits fast and efficient computations to perform inference.

There are several benefits to using Bayesian networks in our problem setting:

(1) Missing Data: Bayesian networks admit a Bayesian approach to missing data by way of

belief updating on unobserved nodes. In our case, order 50% of the data is unobserved in

any given observations, even for observed nodes.

(2) Bayesian Reasoning: There are well-developed inference, prediction, and learning algo-

rithms for Bayesian networks, all compatible with missing data in the Bayesian sense.

(3) Interpretability: Bayesian networks do not suffer from the “black-box” problem of inter-

pretability. In our case this has tangible value, as we wish to provide human-interpretable

reasons as to why an observation is predicted to be malicious.

(4) Expert Knowledge: The structure of the network can be elicited from domain experts,

even in the absence of data.

This last point is crucial for us, as we will use the constructed net in an iterative fashion to

obtain labeled data. As we discussed in the introduction, it is at first very difficult for an expert to
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assess whether the raw data they see is associated with malicious activity. Constructing the network,

including identifying both (1) which nodes to include and (2) identifying their relationships to each

other, provides a means by which the expert can successfully provide labels T . Given the states of

the observed nodes the expert labels the observation, which is then used to train the network; in

particular to update estimates of the parameters for the hidden nodes. We discuss our procedure

for parameter learning next.

4.3.1 Parameter Learning in Bayesian Networks

Typically we must estimate the parameters θ because they are unknown, and there are a lot

of machine learning algorithms designed to do this under a variety of conditions and assumptions

[100, 101, 102, 103, 104, 105, 104, 106, 107]. Each datapoint y ∈ X is an observation consisting

of some states of the random variables {Xi} that were observed together. The simplest methods

to learn θ asusme that the observations y ∈ X are complete, meaning that every node Xi has a

value assigned to it. In this

4.3.2 Sensitivity Analysis in Bayesian Networks

Sensitivity analysis in Bayesian networks studies how much the model changes under small

perturbations to parameter values. In this section we present a specific formulation of sensitivity

and describe an application of this formulation to identify a subset of model parameters that are

the most important (in a precise sense), following [108]. The motivation for this is that typically

there are too many parameters (equation (4.9)) and not enough labeled data to learn them all

effectively. In the active learning scenario which we describe below, we will seek a way to choose

which datapoints for which we want to obtain labels; the sensitivity analysis presented here provides

a mechanism to make this choice.

Given evidence e, a query y, and a probability parameter x ∈ θ, then the posterior probability
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as a function of x can be expressed as

p(y | e)(x) =
αx+ β

γx+ 1
(4.11)

so the partial derivative is

∂p(y | e)
∂x

=
α− βγ

(γx+ 1)2
. (4.12)

The values of α, β and γ can be found by fixing three values of x, making an inference computation

for each, and solving the resulting system of equations. This motivates the following definition of

parameter sensitivity:

S(x | y, e) =
∂p(y | e)
∂x

. (4.13)

S, in turn, can be used to define the concept of parameter importance:

I(x) =
1

mk

∑
y,e

S(x | y, e) (4.14)

where m is the number of queries and k is the number of evidence scenarios.

The idea is then to find I for each parameter x and then identify the subset {x ∈ θ | I(x) > δ}

of “important” parameters for some threshold δ. There are two difficulties with this approach. First,

the inference computations needed to find α, β and γ in equation (4.11) require estimates of θ. Our

goal is to identify which parameters in θ are the most important to learn, and so we must have

a way to provide reasonable estimates in the absence of any learned parameters in the first place.

The second difficulty is that the importance as defined in equation (4.14) is expensive to compute:

we must make three inference computations per evaluation of S, which itself must be computed mk

times. Both m (the number of queries) and k (the number of evidence scenarios) grow exponentially

with the size of the network. This is prohibitive for even relatively small networks.

We are presently working to find ways to resolve both of these difficulties in order to apply

this approach to our work. We have currently implemented parameter bootstrapping methods to

resolve the first difficulty (unknown parameters). To resolve the scaling obstacle we currently rely
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on a related concept of sensitivity, the mutual information between two nodes in a network [97]:

I(X,Y ) =
∑
y,x

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(4.15)

This does not give as detailed an analysis as the preceding sensitivity results, as we obtain

instead a measure of the mutual information between a target node and every other node in the

network, instead of a per-parameter measure of importance, but it is computationally tractable.

Using this approach we can find which nodes will inform the posterior on the target node the most,

and focus our labeling efforts on those specific nodes.

4.3.3 Online Learning

In the standard classification task the goal is to learn a model f : X 7→ Y where X is the

set of observations and Y are the labels. It is almost always the case in practice, however, that

not all of X is known at the time of training. A simple approach is to regularly increase the size

of the training set and retrain the model from scratch periodically. This is impractical when the

dataset grows too large (in particular in the streaming limit). Moreover, this does not account for

time-dependence in the underlying true distribution. In such cases we wish for the memory of the

classifier to “fade” as new data become available.

Learning schemes that incorporate new data in a streaming fashion are known as online

learning mechanisms. There are well-established protocols to do so in the specific case of Bayesian

networks. Here our development follows [103]. The idea is as follows. We have a parameterized

Bayesian network with parameters θ, where we write θijk as defined in equation (4.8). We have a

current estimate θ̄, possibly obtained from previous data, and we wish to update θ̄ in light of a set

of new partial observations D = {y1, y2, . . . , yN}. The normalized data log likelihood is

`D(θ) =
1

N

N∑
l=1

logP (yl | θ). (4.16)

Define the objective function

F (θ) = η`D(θ)− d(θ̄, θ) (4.17)
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where d is some distance on the parameter space and η is the learning rate (to be defined). The

goal is then to find

θ′ = arg max
θ

F (θ) (4.18)

under the constraint ∑
k

θ′ijk = 1. (4.19)

In the absence of d, this is equivalent to finding the maximum likelihood estimators for `D. The

distance d is introduced to penalize updates that cause a large change in θ̄; a reflection of our

confidence in the existing parameters. The learning rate η is a tunable parameter that sets how

much we want to weight improving the data log likelihood given the new training data relative to

penalizing changes as captured by d.

The first-order Taylor expansion of `D about θ̄ is given by

`D(θ) ' `D(θ̄) +∇`D(θ̄) · (θ − θ̄) (4.20)

and the gradient is [109]

∇ijk`D(θ) =
Eθ(xki ,paji | D)

θijk
(4.21)

where

Eθ(xki ,paji | D) =
1

N

N∑
l=1

pθ(x
k
i ,paji | yl) (4.22)

is the sample-based average; i.e., the average probability of observing states xki ,paji given yl where

the average is taken over D.

In [103] three choices for d are discussed: `2 norm, KL-divergence, and χ2. Here we state

only the result for χ2, which is the one we will use. In this case, the solution to equation (4.18) is

given by

θijk = η
Eθ̄(xki ,paji | D)

Eθ̄(paji | D)
+ (1− η)θ̄ijk. (4.23)

The hyperparameter η sets how much we want to update the parameters to fit newly observed data;

the choice η = 1 will eliminate any previous learning by completely discarding θ̄ whereas η = 0 will

leave θ̄ unchanged.
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In practice we will use the update formula in equation 4.23 in two settings: for online learning,

when we observe a batch of new labeled and verified data, and also when training the model the

first time following the local learning phase.

4.4 Active Learning

Active learning is a subfield of machine learning in which the learning process is able to query

an external source for information [81]. Active learning is motivated by the scenario in which an

excess of unlabeled data is available but obtaining labels for these data is prohibitively expensive.

Goals of active learning include optimizing the acquisition process itself and optimally choosing

which data to label. Most research focuses on the latter, with the acquisition process typically

treated as a symbolic query to a conditional distribution p(y|x) asking for a label y given evidence

x [110]. The act of obtaining such a label is referred to as querying the oracle.

Often the queries are expensive and difficult, typically when the oracle is a human expert and

the labeling process requires expert knowledge. In this circumstance, the active learning setting is

closely related to the fields of knowledge engineering [83] and expert systems [84]. Broadly,

these fields deal with the creation of software that emulates human reasoning and decision-making.

For our purposes, we take active learning to be the component of the knowledge engineering process

focusing specifically on the acquistion of labeled data for use in machine learning algorithms. In

particular, we are concerned with (1) which data should get labeled and (2) how to efficiently and

accurately obtain labels for a given set of data.

Our learning and prediction framework, Bayesian networks, was one of the first to be applied

to this task in the genesis of expert systems and knowledge engineering. We begin by addressing

the second question: how to efficiently obtain labels. In Section 4.2 we introduced several potential

approaches to this problem and discussed obstacles to using them in our case. We now introduce

the approach we have taken, in the context of active learning: oracle epiphany.
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4.4.1 Oracle Epiphany

One of the major goals of active learning is to identify which observations to label next. The

multitude of ways to make this decision are often motivated by identifying observations that, when

used to update parameter values, will optimize some cost function formulated in terms of concepts

like mutual information or distance metrics on distribution spaces. For example, in Bayesian

networks we might choose a new observation based on the sensitivity analysis we presented in

Section 4.3.2 above.

These approaches do not take into account how difficult it is to obtain an answer for a given

query. In our case the oracle queries highly non-uniform in their difficulty. Some are very easy,

and some are too difficult to answer at all with the given information. Sometimes, however, an

observation in isolation may be too difficult for the oracle to label, but once the oracle sees enough

similar observations, her cognitive concept of the type of observation shifts and she is suddenly

able to label all such observations at once. This phenomenon was introduced in [111] as concept

evolution and formalized in [82] as oracle epiphany.

4.5 Proposed Method

We apply the concept of oracle epiphany to a specific data labeling task in the domain of

cybersecurity. The dataset we use contains sensitive information and is the intellectual property of

Respond Software, and as such we obscure specific information and details when necessary. The

dataset corresponds to logs and telemetry used to provide Web filtering security and monitoring.

Original, raw fields contain content such as time stamps and source and destination IP addresses;

however, in this analysis we do not have access to much of this raw data as it has been redacted for

privacy. This is consistent with the production environment, where such information would also be

obscured.
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4.5.1 Data

The original data consist of 224,724 events recorded over a 4 week time-span. Our ultimate

goal is to construct a classifier than can identify which events correspond to malicious activity, such

as the delivery of malware or spyware. The particulars of what constitutes malicious activity and

how to identify it are within the purview of cyber security and outside of the scope of this thesis.

Instead, our focus is on how to use oracle epiphany in conjunction with Bayesian networks in order

to create a classifier in the face of numerous statistical challenges.

In this section our focus is specifically on the acquisition of labeled data. We assume we have

access to an infinite supply of unlabeled datapoints X ∼ Dθ where Dθ is a parametric model and

X is a vector of categorical random variables. We assume the form of the distribution is given by

a Bayesian network with known structure, but the parameters θ are unknown. Our goals are:

(1) Identify a subset of data X = {x1, x2, . . . xn} for which to obtain labels

(2) Obtain the labels T = {T1, T2, . . . , Tn} where Ti ∈ {0, 1} via oracle queries

(3) Use the labels and data to estimate the model parameters θ

This is ongoing work, and as a practical matter we are currently iterating between steps

(1) and (2). Our results and discussion will therefore focus mainly on the acquisition of a labeled

dataset, with preliminary results on training the model Dθ.

We begin with no labeled data. The fundamental problem is cyclic: in order to apply the

principles of active learning we need to be able to compute (pseudo-)distances between conditional

distributions, but in order to do this we need estimates of θ. Furthermore, the nature of the data

is such that it is almost impossible to obtain a label for an isolated datapoint xi.

4.5.2 Bayesian Network Representation

The Bayesian network we use is shown in Figure (4.3). There are a total of 39 active nodes (a

few depicted are not currently implemented), of which 31 are observed and 8, including the target,
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Table 4.1: Positive targets in labeled dataset.

Featurized (ratio) Raw (ratio)

Positive 8 0.0162 25 0.0001
Negative 475 0.9615 211332 0.9404

Unlabeled 27 0.0547 13367 0.0595

Total 494 1.0000 224724 1.0000

are hidden.

4.5.3 Ameliorating Class Imbalance Through Epiphany

Using the epiphany data acquisition method improves, but does not eliminate, the class

imbalance problem. Recall that we have a binary target T ∈ {0, 1} with P (T = 1) � P (T = 0).

Tabel (4.1) shows the rate of positive targets in the original dataset and as acquired through the

epiphany method. Out of 224,724 raw events, only 25 were identified as positive, for a positive rate

of 1.11× 10−4. Through the epiphany labeling process this rate is improved almost 100-fold: there

are 8 positives out of 494 total observations, for a rate of 0.0162.

This rate is still in the regime of extreme class imbalance. Epiphany dramatically reduces

the number of datapoints, from over 220 thousand to under 500, and improves the positive rate

100-fold, but does so at the cost of positive count in the observations: there are only 8 positive

observations in the epiphany dataset. We therefore still need to use learning methods in the spirit

of one-shot learning. We discuss learning from such data in Section 4.5.5 below. Before doing so

we examine the labeled dataset in more detail.

4.5.4 Dataset Diversity

We first discuss the featurized data. Generally we still observe the problems of (i) high rates

of missing data, (ii) extreme class imbalance on most nodes, and (iii) low variability, though the

situation is improved in the featurized case. Figure (4.4a) shows the frequency of modal states

in the featurized domain for the training data. Each column corresponds to a node. Within a
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Figure 4.3: Structure of our Bayesian network.
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Table 4.2: Missing data rates in featurized and raw data.

Featurized Raw

All 0.42 0.53
Observable 0.50 0.63

Hidden 0.03 0.06

column, we show the relative frequency with which that node is [i] unobserved (dark gray), [ii]

observed in its most common (modal) state (light gray), and [iii] is observed in any other state

(light blue). All node are categorical and many are binary; for those that are, the light blue denotes

the frequency of the minority class. The nodes (columns) are sorted by the frequency with which

they are unobserved.

The average rate at which nodes are unobserved, across all nodes and all observations, is

0.42 for this data (Table (4.2)), which is fairly high (in the figure this corresponds to the fraction

of the plot filled by dark gray). This is one of the reasons a Bayesian approach is of value, since

given enough data we can obtain accurate priors to use when a node is not observed. The amount

of variation in the data is also low: the fraction of observations in a minority state is 0.068 (Table

(4.2)). Figure (4.4b) shows the same data with unobserved data excluded to emphasize the relative

frequency of minority classes.

An advantage of the oracle epiphany approach is that most of the hidden nodes in the training

set are labeled. This is shown in Figure (4.5), where the hidden nodes are grouped in purple on the

right. The expert was able to label almost all of the data: the fraction of unlabeled hidden nodes is

0.03 as opposed to 0.5 for observable nodes (Table (4.2)). The extreme class imbalance, however,

is even more pronounced on hidden nodes: the rate of minority classes is 0.014 as opposed to 0.081

Table 4.3: Minority class rates in featurized and raw data.

Featurized Raw

All 0.068 0.021
Observable 0.081 0.026

Hidden 0.014 1.5E-4
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Figure 4.4: Frequency of modal states. Each column corresponds to one of 39 features, depicting
the relative frequency of observing the modal state (light blue) as opposed to all other states (dark
blue). (a) including unobserved features, sorted by frequency of unobserved data, (b) excluding
unobserved features, sorted by frequency of modal state.
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Figure 4.5: Frequency of modal states. Each column corresponds to one of 39 features, depicting
the relative frequency of observing the modal state as opposed to all other states. Left (blue):
observed variables. Right (purple): hidden variables.

for observable nodes (Table (4.3)).

Finally, Figure (4.6) shows the effect of featurization on dataset diversity by removing it.

Here the counts are weighted by the number of events that generated the observation. Summary

statistics for this case are presented in Tables 4.2 and 4.3, second column.

4.5.5 Learning and Classification

We now present results on our classifier accuracy. We use the simple cross-validation strategy

of holding out 20% of the data for the test set, stratified by the target node T . Note that this means

that we expect only 2 positive examples in the test set. Table (4.4) shows the performance on the

training set. There are no false positives and only one false negative. Table (4.5) shows performance

on the test set - here there are no errors at all. Because the dataset is so small (N = 494) and

there are so few positive examples (Npos = 8) it is difficult to draw meaningful conclusions from

these results. At a minimum, however, the findings are indicative that there is simpler underlying

structure to the dataset.

If the features were continuous we could apply methods similar to those presented in Chapter

3, or even simpler dimensionality reduction techniques like an SVD, to find a lower-dimensional



84

Figure 4.6: Frequency of modal states weighted by occurrence. Each column corresponds to one of
39 features, depicting the relative frequency of observing the modal state as opposed to all other
states. Left (blue): observed variables. Right (purple): hidden variables.
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Table 4.4: Confusion matrix, training set.

True Positive True Negative

Predicted Positive 5 1

Predicted Negative 0 356

space that still captures the variability in the data. If we could transform the data into this space

efficiently (e.g. random projection style) then we could combine this with the oracle epiphany

featurization used here to shrink the data in both latent dimension and number of observations.

Unfortunately it is not obvious how to perform such transformations on categorical data. There

are, however, some approaches available, which we are in the process of implementing (see Section

(4.6) for details).

We predict T = 1 for an observations e if p(T = 1 | e) > 0.5. Since there is only one error

across both the training and test set, it is natural to investigate the empirical distribution of T .

This is shown in figure (4.7), for both (a) the featurized data and (b) the raw data. In (a) we

see that the vast majority of observations have p(T = 1 | e) < 0.05 (note that the y-axis is a

log scale), with a few other non-zero bins. Importantly, there are no observations in the range

0.25 < p(T = 1 | e) < 0.75. Taking these probabilities as a measure of the confidence of the

model, we see that there are no “hard” cases for the model, it is always very confident about T .

Figure (4.7b) shows the same distribution over the raw data. Out of 224,724 events only

30 have p(T = 1 | e) > 0.002 (not enough to have visible bars in the log plot shown here). The

oracle epiphany featurization process thus leads to greater variability in p(T = 1 | e), though this

distribution is still highly-peaked and strongly suggestive of a simpler underlying structure.

Table 4.5: Confusion matrix, test set.

True Positive True Negative

Predicted Positive 2 0

Predicted Negative 0 119
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Figure 4.7: Probability that T=1 over X for (a) featurized and (b) raw data.

4.6 Conclusions

By applying Oracle epiphany to both the feature engineering and labeling tasks we reduced

the number of data points to consider from 2.2× 105 down to 494. We also increased the relative

rate of the minority class by order 100, from 0.0001 to 0.0162. We trained a Bayesian network

classifier on the labeled data to obtain promising preliminary results for anomaly detection. This

work is ongoing, and we are currently in the process of refining the epiphany process as well as

obtaining more labeled data. In the short term we aim to identify more minority class observations

manually, though we intend to pursue some type of cluster analysis on unlabeled data in order

to facilitate this process in the near future. We will also investigate other approaches to anomaly

detection. An interesting mathematical consideration is whether the bounds in [82] for general

Oracle epiphanies can be adapted to our specific case.
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