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Abstract

A familiar problem in machine learning is to determine which data points
are outliers when the underlying distribution is unknown. In this pa-
per, we adapt a simple algorithm from Zhouet al[3], designed for semi-
supervised learning, and show that it not only can automatically detect
outliers by using local and global consistency of data points, but also au-
tomatically select optimal learning parameters, as well as predict class
outliers for points introduced after training.

1 Introduction

Given a set of data points drawn from some probability distribution, anoutlier with respect
to that distribution is an unlikely point. A familiar problem in machine learning is to deter-
mine which data points are outliers when the underlying distribution is unknown. In this
paper, we examine a simple algorithm from Zhouet al[3], designed for semi-supervised
learning, and show that it also can automatically detect outliers by using local and global
consistency of data points. This algorithm has several notable features: (1) it performs at
least as well as the best known outlier-detection algorithms; (2) it allows for theautomatic
selection of optimal learning parameters; (3) it predicts class outliers; and (4) it predicts
class outliers forpoints introduced after training.

2 Algorithm

2.1 The Original Semi-Supervised Learning Algorithm

Let X be a set{x1, . . . , xn} ⊂ Rm of data points, and letL be a set{1, . . . , c} of labels.
Let the firstl < n points inX be labeled, the rest unlabeled. We wish to predict the labels
of the points{xl+1, . . . , xn}. To this end, consider a nonnegativen × c matrix F . By
assigning a pointxi to classj just in casearg maxj≤c = Fij , we obtain a classification on
X. The original algorithm of Zhouet al [3] makes use ofX and knowledge of the labels
of x1, . . . , xl, with the aim of finding anF that gives us a good prediction of the labels of
the unlabeled points inX.

The algorithm works as follows. Construct an affinity matrixW such thatWij =
exp(−‖xi − xj‖2/2σ2) if i 6= j andWii = 0. Now, letD be the diagonal matrix such



thatDii is the sum of thei-th row of W : thenD−1/2WD−1/2 normalizes the rows of W.
Finally, letY be then×c matrix such thatYij = 1 if xi has labelj, andYij = 0 otherwise.

We may now define the cost function:
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1
2
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Dii
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Djj

Fj

∥∥∥∥∥
2

+ µ
n∑
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‖Fi − Yi‖2

 , (1)

whereFi is the i-th row of F andµ > 0. Then for variable candidate matricesF , our
classifying function is:

F ∗ = arg min
F

Q(F ). (2)

The first term term inQ(F ) maintains local consistency by constraining classification of
nearby points to not change too much (recall thatWij encodes nearness ofxi andxj).
The second term constrains classification to not stray too far from the initial assignment of
labels. The algorithm tries to maintain global consistency by balancing between the two
terms, asQ(F ) is punished by points differing in class from nearby initially labeled ones:
the initially labeled points serve as reference anchors for classification. And we respect the
fact that these constraints may compete by incorporating the weighting parameterµ.

It can be shown by differentiatingQ(F ) with respect toF and doing some algebraic ma-
nipulation that

F ∗ = β (I − αS)−1
Y, (3)

whereα = 1/(1 + µ) andβ = µ/(1 + µ): F ∗, then, is the matrix that allows for a
good classification onX. Several experiments in [3] show that this algorithm yields good
classifications on data sets.

In [4], this algorithm is applied to the task of determining a weighted relevance metric
that respects both local and global consistency. In particular, it is applied to show that it
yields the same ranking list as Google’s PageRank algorithm. Notably, queries and pages
are represented as vectors, and a query plays the role of an initially labeled point. What
makes the analogy between queries and initially labeled points notable is that, inQ(F ),
labelings constrain the final assignment of labels to points. Looking at labelings in this
way suggests a natural use of the algorithm to detect outliers: if labeled points are regarded
as paradigmatic instances of a class, and we construct an empirical cdf of the values inF∗
that lead to classifications, those points that lie below a given threshold can be considered
to be outliers. This is what we see in Figure 1:

Thus, points distant from labeled points are more prone to being identified as outliers. A
significant disadvantage of this approach that it makes outlierness relative to our choice of
points to label. If we are to use this algorithm to identify outliers objectively, we need to
somehow separate the main work of the algorithm from the initial assignment of labels. In
the next section, we see how this is done.

2.2 Clustering with Local and Global Consistency

From equation (3), it is evident that the solution to the semi-supervised learning problem
only depends on the labels after the the matrix(I−αS) has been inverted. This matrix only
contains the training data inputs,{x1, ..., xn}, and it is this property that we will exploit to
derive our clustering algorithm. We define a matrixU as:

U = β (I − αS)−1 =
[
uT

1 , ..., uT
n

]
(4)

and note thatU defines a graph or diffusion kernel (as described in [1], [2]). In addition,
the columns ofU , denoted byuT

i , define distances between training points on these graphs,
which can be interpreted as distances along a manifold [4]. The ordering of these distances
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Figure 1: Sample Google Query Graph

along each manifold is maintained independent of scaling. FromU , we create a new matrix
V , by scaling the columns ofU to have unit length. We define thisV matrix as:

V =
[
uT

1

∥∥uT
1

∥∥−1
, ..., uT

n

∥∥uT
1

∥∥−1
]

=
[
vT
1 , ..., vT

n

]
(5)

Note that, by definition,||vi|| = 1.

Based on this column normalized matrixV , we define the proposed version of semi-
supervised clustering:

F ∗
V = V Y =

[
fT

V 1, ..., f
T
V n

]
Finally, we further normalize the columns ofF ∗

V to give:

G∗ =
[
fT

V 1

∥∥fT
V 1

∥∥−1
, ..., fT

V n

∥∥fT
V n

∥∥−1
]

A class label is assigned to pointxi as:

yi = arg max
j≤c

G∗
ij

whereG∗
ij is the(i, j) element ofG∗.

2.3 Semi-Supervised Model Selection via Optimization

We define a distance (along a manifold specified byU ) between pointsxi andxj to be:

dM (xi, xj) = 1− viv
T
j (6)



The intuition behind this distance measure is that two points on a manifold are identically
if the order of distances between all other points in the training set is identically, and the
relative distances are identical. If this is the case for pointsxi andxj , thendM (xi, xj) = 0.
Conversely, the if pointxi have completely different distances alongU to other points in
the training data than pointxj , thendM (xi, xj) will approach 1. This leads to our definition
of a distance matrix:

DM = 1−
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T
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T
n

...
...

...
vnvT
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n
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dM (xn, x1) · · · dM (xn, xn)

 (7)

Next, letpj be the set of points that belong to classj. Using matrixDm we can define the
mean distance between points in classj as:

D
jj

M = E [DM (pj ,pj)]

whereDM (pj ,pj) denotes all entries ofDM corresponding to columns and rows of points
pj andE[]̇ is the average value of these. Similarly, The mean distance between points in
classj and points in classk is give by:

D
jk

M = E [DM (pj ,pk)]

Given that our goal is to find semi-supervised models that maximize the distances between
points in different classes, while minimizing the distances between points in the same class,
we can now state the optimization problem we are solving. Specifically,

Ω = max
α,σ

E
[
D

jk

M

](
k=1,...,c
j=1,...,c
i 6=j

) − E
[
D

jj

M

]
{j=1,...,c}

 (8)

2.4 Outlier Detection

We define a cluster independent outlier point to be one that is, on average, furthest away
to all other points. This can be directly calculated from equation (7) by taking the average
of the columns ofDM as follows and defining a outlier cluster independent vectorOd as
follows:

Od =
1
n

[∑
DT

M1, ...,
∑

DT
Mn

]
= [Od1, ..., Odn]

where the elementOdi is the average distance (in manifold space) between pointxi and
all the other points andDM =

[
DT

M1, ..., D
T
Mn

]
. Thus by ordering the vales ofOdi in

increasing order, we order the points from furthest to closest, and the points appearing first
in the list constitute the outliers.

Similarly, we can find outliers within a clusterj by looking at theDjj
M = DM (pj ,pj)

matrix defined above. Specifically, we obtain an outlierOj
d vector for clusterj as follows:

Oj
d = 1

n

[∑
DjjT

M1 , ...,
∑

DjjT
Mn

]
=

[
Oj

d1, ..., O
j
dn

]
whereOj

di is the mean distance ofxj

to all other points in its cluster. Thus the point which has maximumOj
di is the one which is

most insidethe cluster, while the point that has minimumOj
di is most outsideof the cluster.

2.5 Classifying New Points

In order to cluster a new point without adding it toS and re-inverting the matrix(I −αS),
we once more use the property that two points are similar if they have similar distances to



all other points. However, this time we measure similarity using theS matrix as follows.
Given a pointxk, we calculateWkj = exp(−‖xk − xj‖2/(2σ2)), for j = 1, ...n and
obtain a vectorWk. We then calculate theDk =

∑n
j=1 Wk(j) and compute the vector in

theS matrix that is associated withxk), asSk = D
−1/2
k WD−1/2. Finally we normalize

Sk to have length 1 and call itS1
k and similarly normalize the rows ofS to also have length

1, denoting this matrix byS1. We then obtain a set of coefficientsΘ = (θ1, ...., θn)T =
S1(S1

k)T . This vector has the property that ifxk = xi, thenθi == 1, but if xk is very
far away fromxi thenθi will approach zero. Therefore,θi measures the closeness ofxk

to xi in S matrix space (withθi = 1 being really close andθi = 0 really far). We use
this property to assignxk to a cluster by creating anFk = [v1ΘT , ..., vnΘT ] and assigning
yc = arg maxj≤c Fk.

3 Experiments

We experimented on the Two Moons data set, the USPS digits data set, the 20 newsgroups
data set, and the 6-class synthetic data set. For each of the data sets, we ran two sets of
experiments: those that optimized bothα andσ, and those withα preset to 0.99.

3.1 Two Moons Data

Figure 2 depicts the toy data set consisting of points generated into two clusters of inter-
twining crescent moons. We wish to classify points in each moon in the same way, and
classify points in different moons differently. Also, if we look at the shape of the clusters,
it is evident that the further a point is from the center of the thickest part of each cluster,
the better candidate for outlierness it is.

The graphs in Figure 3 illustrate how our algorithm performs on this data set. Points 1 to
100 are in the top moon; points 101 to 200 are in the bottom. Moreover, points in a class
are ordered by their value along the x-axis. Whenα is optimized, it is impossible to see in
3a any difference in relative outlierness between points in a given class; relative outlierness
can be seen more clearly in 3b . The shape of the graph in that area mirrors the shapes of
the two moons, which is what we should expect.
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Figure 2: Class 1 Outlier Confidence

3.2 USPS Digits Data

In this set of experiments, we attempted to classify representations of handwritten digits,
using the USPS handwritten16 × 16 digits dataset. Our four classes comprised the digits



1, 2, 3, and 4. We used 800 examples, 200 per class. We ran the experiments with only
one labeled point from each class. The original algorithm run on this data set had an error
rate of 9.38 percent with unoptimizedα and an error rate of 6 percent with optimizedα; by
contrast, our algorithm, without optimizing forα, had an error rates of 3 percent without
and 1.25 percent with optimizedα. This is an encouraging sign that our algorithm can
reliably select a good model with very few labeled points.
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Figure 3: USPS Outliers for Digit 3

Figure 3 shows the algorithm’s confidence in class outlierness, given for each class, when
optimized or unoptimized, and for both clustering and semi-supervised versions. As with
the Two Moons data, the higher the y-value, the more confident the algorithm is that a
data point belongs to a given class. Note that optimizingα and labeling a small number of
examples yield significantly better estimates of outlierness.

3.3 20 Newsgroups Data

In this set of experiments, we used the 20 newsgroups data set (version 20-news-18828).
The topics were chosen fromrec, which containsautos, motorcycles, baseball,andhockey.
The articles were processed by the Rainbow software package, using options to skip head-
ers, remove tokens on SMART’s stoplist system, ignoring words in 5 or fewer docu-
ments, and stem words before counting. This yielded 3970 document vectors in a 8014-
dimensional space, which were normalized into TFIDF representation. We calculated dis-
tance between points by using 1 minus the cosine of the angle between them. Test errors
were averaged over 10 trials, and we used varying numbers of total labeled points, as indi-
cated in Table 1.

As it was impossible to make a reasonable guess as to what it meant for a document vector
to be an outlier, say, with respect to the classhockey, we did not estimate outlierness for
this data set.

3.4 Time Series Data

This set of experiments was performed on the Synthetic Control Time Series data set from
the UCI database. Let us note at the outset that this data set is notoriously difficult for
machine learning algorithms in general, so the high error rates should not be discouraging.
We used 100 examples from each of the 6 classes. As with the USPS data set, we labeled
only one example from each class.

The original algorithm, when run on this data set, had error rates of 31.2 and 35.5 with
unoptimized and optimizedα, respectively. (We optimized with respect to our algorithm
only.) Our algorithm, by contrast, had error rates of 14.5 and 10.2 percent with unoptimized



Pts Labeled α = 0.99 Optimalα Orig. Algorithm

4 33% 30% 46%
10 30% 29% 40%
15 28% 25% 37%
20 24% 20% 34%
25 22% 19% 31%
30 20% 18% 28%
40 20% 18% 26%
50 21% 18% 21%

Table 1: Accuracy of Text Classification on 20 Newsgroups Data Set

and optimizedα, respectively. Thus, normalization and optimization seems to dramatically
improve results. Figure 4 illustrates the algorithm’s confidence that a particular point be-
longs to a Class 1. Note the similarity between the variability here and the variability in the
hard-to-classify USPS digits.
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Figure 4: Time Series Outliers for Digit 3

4 Conclusion

Zhouet al’s algorithm from [4] represents an exciting starting point for research into semi-
supervised outlier detection. By normalizing and seeking to minimize class differences
between nearby points while maximizing class differences between distant points, the al-
gorithm discussed here improves on the very encouraging results from the original algo-
rithm. In further research, we will work on refining optimization procedures and further
theoretical analysis.
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