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Thesis directed by Prof. Mark Rast

We examine the effect of deep convection and magnetic fields on solar supergranulation. While

supergranulation was originally identified as a convective flow from relatively great depth below the

solar surface, recent work suggests that supergranules may originate near the surface. We use the

MURaM code to simulate solar-like surface convection with a realistic photosphere and domain size

up to 197× 197× 49 Mm3. This yields nearly five orders of magnitude of density contrast between

the bottom of the domain and the photosphere which is the most stratified solar-like convection

simulations that we are aware of.

Magnetic fields were thought to be a passive tracer in the photosphere, but recent work sug-

gests that magnetism could provide a mechanism that enhances the supergranular scale flows at the

surface. In particular, the enhanced radiative losses through long lived magnetic network elements

may increase the lifetime of photospheric downflows and help organize low wavenumber flows. Since

our simulation does not have sufficient resolution to resolve increased cooling by magnetic bright

points, we artificially increase the radiative cooling in elements with strong magnetic flux. These

simulations increase the cooling by 10% for magnetic field strength greater than 100 G. We find

no statistically significant difference in the velocity or magnetic field spectrum by enhancing the

radiative cooling. We also find no differences in the time scale of the flows or the length scales of

the magnetic energy spectrum. This suggests that the magnetic field is determined by the flows

and is largely a passive tracer.

We use these simulations to construct a two-component model of the flows: for scales smaller

than the driving (integral) scale (which is four times the local density scale height) the flows follow

a Kolmogorov (k−5/3) spectrum, while larger scale modes decay with height from their driving

depth (i.e. the depth where the wavelength of the mode is equal to the driving (integral) scale).
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This model reproduces the MURaM results well and suggests that the low wavenumber power in

the photosphere imprints from below. In particular, the amplitude of the driving (integral) scale

mode at each depth determines how much power imprints on the surface flows. This is validated

by MURaM simulations of varying depth that show that increasing depths contribute power at

a particular scale (or range of scales) that is always at lower wavenumbers than shallower flows.

The mechanism for this imprinting remains unclear but, given the importance of the balances

in the continuity equation to determining the spectrum of the flows, we suggest that pressure

perturbations in the convective upflows are the imprinting mechanism.

By comparing the MURaM simulations to SDO/HMI observations (using the coherent struc-

ture tracking code to compute the inferred horizontal velocities on both data sets), we find that

the simulations have significant excess power for scales larger than supergranulation. The only way

to match observations is by using an artificial energy flux to transport the solar luminosity for all

depths greater than 10 Mm below the photosphere (down to the bottom of the domain at 49 Mm

depth). While magnetic fields from small-scale dynamo simulations help reduce the rms velocity

required to transport the solar luminosity below the surface, this provides only a small reduction

in low wavenumber power in the photosphere.

The convective energy transport in the Sun is constrained by theoretical models and the solar

radiative luminosity. The amplitude or scale of the convective flows that transport the energy,

however, are not constrained. The strong low wavenumber flows found in these local simulations

are also present in current generation global simulations. While local or global dynamo magnetic

fields may help suppress these large-scale flows, the magnetic fields must be substantially stronger

throughout the convection domains for these simulations to match observations. The significant

decrease in low wavenumber flow amplitude in the artificial energy flux simulation that matches the

observed photospheric horizontal velocity spectrum suggests that convection in the Sun transports

the solar luminosity with much weaker large-scale flows. This suggests that we do not understand

how convective transport works in the Sun for depths greater than 10 Mm below the photosphere.
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Chapter 1

Introduction

1.1 Quiet Sun Convection

The outer 30% of the Sun by radius (approximately 200,000 km) is unstable to thermal

convection and, consequently, called the solar convection zone (Christensen-Dalsgaard et al., 1996).

At the bottom of the convection zone the radiative energy flux (which transports the solar luminosity

below the convection zone) continues to transport a significant amount of energy (Miesch, 2005).

This radiative flux decays with height up to ∼ 1/3 of the way into the convection zone where the

convection dominates the energy transport. From this point convection transports the energy up

to the surface where it is radiated away.

Observations suggest that there are three length scales of convection on the surface of the

Sun: granulation, mesogranulation and supergranulation. Granulation has well defined properties:

1000 km diameter, 1 km s−1 vertical flow, and a 0.2 hour lifetime (Rieutord & Rincon, 2010).

Observations have shown that within granules the vertical velocity is correlated with intensity, a

fact that confirms its convection nature (Richardson & Schwarzschild, 1950; Stuart & Rush, 1954;

Plaskett, 1954; Canfield & Mehltretter, 1973).

Mesogranulation is an intermediate length scale of convection with a length scale of 5000 km,

60 m s−1 vertical flows and a lifetime of 3 hours (Rast, 2003). There is debate about the origin

and existence of mesogranulation. It was originally suggested that the mean depth of hydrogen

and helium ionization represent length scales of the system and, consequently, ionization enhances

the amplitude of convection on these scales (Simon & Leighton, 1964; November et al., 1981).
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Thus granular, mesogranular and supergranular scales would reflect the mean depth of hydrogen,

helium I, and helium II ionization, respectively. The mechanism underlying this relationship,

however, is unclear. Mesogranulation has been observed as a time-averaged feature in Doppler

images (November et al., 1981), but there is no enhancement of power at mesogranular scales

observed in the velocity spectrum of the photosphere (Hathaway et al., 2000; Rieutord et al.,

2010).

The properties of supergranulation are quite different: 32,000 km diameter, 400 m s−1 hor-

izontal flow, and a roughly 1.8 day lifetime (Rieutord & Rincon, 2010). While there have been

measurements that successfully correlate the vertical velocity with the intensity (finding a 0.1%

contrast between cell center and border), the magnetic network makes these measurements difficult

(Goldbaum et al., 2009). Supergranules have a scale of motion that does not correspond to any

obvious length scale in the convective flow; it is much smaller than the depth of the convection

zone and much larger than the scale height at the surface.

Due to the large scale height deep in the convection zone (e.g. density scale height reaches

HD ∼ 100 Mm Christensen-Dalsgaard et al., 1996) we expect larger scale convection with slower

speeds (due to the increased density) typically called giant cells. These giant cell flows are found

in global simulations of the solar convection zone with flow amplitudes roughly matched in one-

dimensional mixing length models (Miesch, 2005; Christensen-Dalsgaard et al., 1996). The deep

convection is difficult to measure in observations as they are dominated by surface convection;

observations have only recently found a weak signal of giant cell convection by tracking the motions

of supergranules across the solar surface for several days (Hathaway et al., 2013).

The observed solar magnetic field is dominated by the 11 year activity (sunspot) cycle. While

the sunspots and other regions with large magnetic flux imbalances are common during times of

maximum solar activity, there are ubiquitous magnetic fields present even during times of minimum

solar activity with very small flux imbalances (Mart́ınez Pillet, 2013). This suggests two possible

origins for the field we observe at the surface: a global dynamo creating buoyant flux ropes that

rise from the bottom of the convection zone which produce magnetic features with strong flux
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imbalances in the photosphere (Fan, 2009) and a local dynamo near the surface which generates

small-scale magnetic field with no net flux imbalance on large-scales (de Wijn et al., 2009). We call

the regions of the solar surface with small magnetic flux imbalance (whether during solar maximum

or minimum) the quiet Sun which are either a product of the local dynamo or decaying active

regions from the global dynamo (Lamb et al., 2010). This quiet Sun magnetic field is advected

to the vertices of supergranules where it concentrates into the magnetic network (see §1.1.4.1).

While the magnetic network visually dominates observations of quiet Sun magnetic field, there is

field observed on smaller scales (these scales are typically called the internetwork) down to the

minimum resolution of the current generation of solar telescopes.

1.1.1 Length Scales of Surface Convection

The convection near the surface is both very turbulent and highly stratified. The fluid

Reynolds number (Re = LV/ν where L is the depth of the convective layer in the Sun, V is

the typical velocity and ν is the viscous dissipation) of solar convection is between 1010 and 1013

while laboratory experiments, for a reference point, can achieve root-mean-square (rms) Re < 107

(Rieutord & Rincon, 2010). The largest direct numerical simulation (DNS) that solves the Navier-

Stokes equations with a physical viscosity (that we are aware of) has reached Reynolds number of

5000 (Lee et al., 2013). The convection zone as a whole is extremely stratified with a density ratio

between the bottom of the convection zone and photosphere close to 106 with half of this change

occurring in the uppermost 20 Mm (Nordlund et al., 2009).

The buoyancy driving in the solar convection zone is very strong compared to the thermal

and viscous diffusion (Rieutord & Rincon, 2010). The turbulent energy spectrum injection scale is

approximately equal to the local scale height (with a pre-factor of order one, Rincon, 2007). Since

the scale height increases with depth, this suggests that the length scale of the convection increases

with depth within the stratified convection zone. The pressure scale height ranges from Hp ≈ 150

km at the optical depth unity surface to nearly 60 Mm (where 1 Mm = 1,000 km) at the bottom of

the convection zone (Christensen-Dalsgaard et al., 1996). The length scale of granulation is related
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to both the local scale height through the energy injection and the width of the thermal boundary

layer (i.e. Lκ ∼ 1 Mm the thermal dissipation length scale, Rieutord & Rincon, 2010) through the

radiative cooling which generates the downflows. The other dissipation length scales (i.e. viscous

and magnetic) are much smaller and do not contribute to the observed scales of convection. The

only other length scale in the system is the depth of the convection zone, LSCZ ≈ 200 Mm, which

is much larger than either granular or supergranular scales and does not play a significant role in

regulating these surface flows.

The ionization of hydrogen also plays an important role in granulation. The depth of 50%

hydrogen ionization is very close to the surface and depends significantly on the local temperature.

The upflows are mostly ionized just below the photosphere and hydrogen recombination contributes

2/3 of the convective energy flux near the surface (Rast et al., 1993). The hydrogen is then mostly

neutral in the downflows until a few Mm below the surface. While helium is completely neutral near

the surface and does not directly affect the granular flows, He I and II play a role in the convection

and mean stratification within ∼ 30 Mm of the surface. Below this depth both hydrogen and helium

are mostly ionized and, since all other elements have such low abundance in the solar atmosphere,

the plasma behaves nearly as an ideal gas.

1.1.2 Giant Cell Convection

Theoretical work suggests that the deep convective velocities are much slower than surface

flows (Christensen-Dalsgaard et al., 1996) with large-scale, turbulent convective cells aligned with

the axis of rotation (Brun et al., 2004). Our understanding of convective energy transport yield

expected minimum flow speeds that transport the solar luminosity to the surface based on mixing

length models (Christensen-Dalsgaard et al., 1996) and global simulations (Miesch et al., 2000,

2008).

Since these deep convective flows are much slower than at the surface they have timescales

comparable to the solar rotation (∼ 1 month) which means the the Rossby number is close to one

and these flows feel the influence of rotation (Miesch, 2005). Correlations of orthogonal components
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of the velocity caused by the interaction of giant cell convection with the Coriolis force transports

angular momentum via convection. This angular momentum transport is required to maintain the

solar differential rotation and meridional circulation.

The solar differential rotation is one of the most reliable helioseismic measurements (Thomp-

son et al., 2003), and is, consequently, used to compare simulations and observations. The giant

cell flows must be rotationally constrained (with the Coriolis force comparable to the inertial force

of the flow) to transport angular momentum towards the equator which maintains the observed

solar differential rotation with faster rotating equator and slower rotating pole (Miesch et al., 2000,

2008; Hotta, 2014a). The Coriolis force (which is set by the solar rotation rate), consequently,

places upper limits on the flow velocities. This upper limit is weaker than the flow amplitudes

necessary to transport the solar luminosity in global convection simulations (Hotta, 2014a). This

suggests that the solar energy flux is transported with weaker flows or on smaller scales than these

simulations capture.

One of the primary issue with global simulations is that they have insufficient resolution

to reach the solar Reynolds number (a problem faced by all simulations of solar convection as the

largest Reynolds number that DNS can reach is 5000, Lee et al., 2013). As increased computational

resources allow for higher resolution and lower diffusivity these simulations enter new parameter

regimes. Decreasing the viscosity in global convection simulations requires a reduction of the max-

imum energy flux transported by the convection (to significantly less than the solar luminosity)

for flows to be rotationally constrained (Hotta, 2014a). Since the flows must be rotationally con-

strained to transport angular momentum equator-ward and maintain the solar differential rotation,

this suggests that the properties of the convection are changing as the simulations move closer to

the solar parameter regime.

1.1.2.1 Deep Convective Power Spectrum

The high cadence, high resolution observations from the Helioseismic and Magnetic Imager

(HMI) on board the Solar Dynamics Observatory (SDO) which launched in 2010, have allowed
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time-distance helioseismology to produce new measurements of the large-scale flows below the

solar surface. These techniques compare the travel times of waves traveling between a pair of

points across the solar surface. The travel times are sensitive to the subsurface flows and thus help

measure the convective pattern and flow amplitudes below the surface. These observations have

found an upper limit for giant cell flows that are a factor of 100 weaker than predicted by models

(Hanasoge et al., 2010, 2012). In Figure 1.1 we compare the spectrum measured by helioseismology

(at 0.96Rsun, solid black curve) to the global simulations of Miesch et al. (2008, dotted blue curve)

and local area simulations of Stein & Nordlund (2006, solid red curve, both simulation spectra are

at 0.98Rsun). Both the global and local area simulations are in good agreement but show excess

power several orders of magnitude above this helioseismic upper limit. The global simulations

have excess power compared to observations of the low wavenumber convection in the photosphere

(results from coherent structure tracking of HMI observations, long-dashed green curve, Roudier

et al., 2012) which suggests that the convection in the simulations must not imprint on the surface

or the amplitude of the convection in the Sun is weaker than in the simulations.

These helioseismic measurements place the strictest limit on giant cell flow velocities to date

and challenge the predicted flow speed of theoretical models of solar convection. Deriving the

minimum convective velocity required to maintain the Reynolds stress that transports angular

momentum provides an estimate of the lower limit on convective flows that is in disagreement

with this helioseismic limit (Miesch et al., 2012). It is important to note that these time-distance

helioseismic measurements have only been conducted by one group on one data set and have not

been reproduced. Preliminary measurements using ring analysis suggests that large-scale flows are

closer to the values found in theoretical models (Greer 2014, private communication). While there

is some uncertainty about the time-distance helioseismic measurements, this adds to the other

evidence (Hotta, 2014a) that deep convective flows in the Sun are weaker than previously thought.
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Figure 1.1 The kinetic energy spectrum of longitudinal solar velocities as a function of spherical
harmonic wavenumber, l. The solid (black) curve shows the observational upper limit measured
using time-distance helioseismology on SDO/HMI observations at 0.96 of the solar radius and 1-day
averaging from Hanasoge et al. (2012). The long-dash (green) curve is computed from applying the
granulation tracking (CST) method to SDO/HMI data (Roudier et al., 2012). The dotted (blue)
curve show results from an ASH global simulation at 0.98 of the solar radius (Miesch et al., 2008)
and the solid (red) curve show results from a local simulation using the stagger code with domain
size 96× 96× 20Mm3 (Stein & Nordlund, 2006). These results were originally published in Gizon
& Birch (2012).
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1.1.3 Supergranulation

The origin of supergranulation is the central theme of this thesis. Supergranulation does not

correspond to any preferred length scales of the system and understanding the origin of supergran-

ulation will likely provide new insight into turbulent magneto-convection.

1.1.3.1 Early Observations of Supergranulation

The Sun’s supergranulation was originally observed as a velocity fluctuation by Hart (1954)

who followed up this work with an initial estimate of 26 Mm for the length scale of these fluctua-

tions (Hart, 1956). This was later identified as convection in origin and named “supergranulation”

by Leighton et al. (1962), which they suggested as a pattern of convective cells “which come from

relatively great depths inside the Sun”. In this same work they identified the flow pattern as pri-

marily horizontal and provided initial estimates for the properties of the supergranules. This was

shortly followed by new observations which gave more precise measurements of the supergranules

that are consistent with the observed properties of supergranulation as found by modern instru-

ments: velocity between 300 − 500 m s−1, length scale ∼ 32 Mm and lifetimes ∼ 20 hrs (Simon

& Leighton, 1964). Finally, it was also noted in this early stage that there was high spatial corre-

lation between the boundaries of supergranular cells and the photospheric network magnetic field

(specifically observations of the Ca II K 393.4nm line which correlates with magnetic field strength,

Simon & Leighton, 1964).

The decade between Hart (1954) and Simon & Leighton (1964) was the most productive for

the study of supergranulation to date with most of the primary features of supergranules being ob-

servationally constrained. While Simon & Leighton (1964) suggested an origin of supergranulation

below the surface related to the ionization of helium—due to instabilities caused by changes in the

mean molecular weight—theoretical work has been much slower catching up to the observations.

There is still no definitive result demonstrating what physical mechanism(s) determine the length

scale or lifetime of supergranulation, where supergranules originate (near the surface or deep in the
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convection zone), or what governs the relationship between supergranules and the magnetic field.

These are the primary questions addressed in this thesis.

1.1.3.2 Suggested Origins of Supergranular Length Scale

As discussed in §1.1.1, supergranulation does not correspond to any of the length scales of

the system. It is much smaller than the depth of the convection zone and much larger than the

dissipation length scale or the scale height at the surface. There is a depth with scale height equal to

32 Mm but the scale height increases continuously from the surface to the bottom of the convection

zone, so there is no a priori expectation that motions at a depth where the scale height is equal to

32 Mm should be selected as a scale of motion represented at the surface.

Given that the mean depth of hydrogen ionization (1 Mm) is similar to the length scale of

granulation, it was suggested that a secondary instability related to He II ionization excites super-

granular flows (Simon & Leighton, 1964), but this instability has not been found. This hypothesis

also suggested an unobserved length scale related to He I ionization which was first discovered by

November et al. (1981). The length scales of granulation, mesogranulation and supergranulation

suggests a hierarchy of convection which is related the mean depths of ionization of H and He,

with the depth of 50% He II ionization (20 Mm below the photosphere) inducing supergranular

convection. The identification of mesogranulation was made from time-averaged Doppler images

but observations of the photospheric velocity spectrum have not found any mesogranular signal

which suggests that it may not be a distinct scale of motion (Hathaway et al., 2000; Rieutord &

Rincon, 2010). This calls into question the hierarchy of scales based on the depths of H and He

ionization.

Ionization influences four thermodynamic properties of the plasma: the particle number,

the specific heat, the specific internal energy, and the opacity. Give that hydrogen is the most

abundant element in the Sun, all of these effects are most prominent in regions of partial hydrogen

ionization where these changes play a significant role in the energy transport (with the latent heat

flux of ionization transporting 2/3 of the enthalpy flux), radiative cooling of the photosphere (with a
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significant reduction in opacity due to recombination of hydrogen) and the creation and acceleration

of convective downflows (Rast et al., 1993). The ionization also induces instabilities that reduce

the thermal damping and enhance the buoyancy driving of the flows, but these instabilities favor

small-scale convective motions (Rast, 1991; Rast & Toomre, 1993). In addition, these changes are

much less significant at the depths of helium ionization where the thermodynamic perturbations

are small and the mean free path of a photon is limited by the increased density of the plasma (due

to the stratification) and free electrons from hydrogen. It remains unclear how helium ionization

may enhance the amplitude of surface flows at supergranular scales.

Another suggestion is that granular dynamics could organize long-lived downflows separated

by a sufficient distance that would then act as the vertices of supergranules. Previous work has

demonstrated that this self organization is possible. The mutual advection and interaction of down-

flow plumes on a horizontal plane (using an n-body simulation with the horizontal velocity profile of

downflows) with amplitude and lifetime similar to observed granular downflows can organize into a

larger scale convective pattern (Rast, 2003). By using the observed properties of magnetic elements,

specifically the advection and flux cancellation (via the collision of opposite polarity elements), to

increase the lifetime of the mutually advected particles in the n-body simulation, these elements

form a self-organized network of magnetic elements that outline supergranular scale cells with a

model that is independent of supergranular flows (Crouch et al., 2007). It has been suggested that

the magnetic elements that are organized by the granular flows may play a role in initiating the

supergranular flow pattern (Crouch et al., 2007). Such a photospheric self-organization would im-

ply that the surface layers drive supergranular convection and that these scales are then imprinted

down into the rest of the convection zone.

1.1.3.3 Radiative MHD Simulations of Supergranulation

Recent radiative hydrodynamic simulations with up to 98× 98 Mm2 horizontal and 20 Mm

vertical domain size have found that granulation is the only preferred length scale of convection

(Stein et al., 2006). These simulations are deep enough to reach the 50% ionization depth of
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He II and find no evidence that helium ionization enhances supergranular scale flows. Similar

magnetized simulations have found that magnetic field is advected into a network that is consistent

with supergranular cell sizes (Ustyugov, 2010), but limits to the horizontal domain (60× 60 Mm2)

leave questions as to whether these simulations capture supergranulation.

While radiative MHD simulations helped improve our understanding of granules, such as the

driving from the thermal boundary layer and the generation of downflows (Stein & Nordlund, 1998),

no simulations to date have found enhanced power in the photospheric velocity spectrum at the

length scales of supergranulation (Ustyugov, 2010; Stein et al., 2009). Similar to the global simula-

tions, these simulations are not able to reach the solar Reynolds number with current computation

resources. While the resolution and diffusivity are continuing problems with these simulations,

there are other aspects of the physics of solar surface convection that previous simulations did not

explore. The most important of these is the depth of the simulation, which (at 20 Mm) captures

part of the region of partial He II ionization, but does not include the larger scale deeper flows which

may affect the surface (see §1.1.3.5). The relationship of quiet Sun magnetism to supergranulation

has also not been confirmed and may prove important to the supergranular length scale.

1.1.3.4 Surface Power Spectrum

Observations of the doppler velocity in the solar photosphere from SOHO/MDI (Hathaway

et al., 2000) show the surface velocities (Figure 1.2). Since the supergranular flows are primarily

horizontal, we cannot observe the doppler velocities at disk center.

Comparing supergranular scale convection between simulations and observations have focused

on comparing the power spectrum of the photospheric horizontal velocities. The velocity spectrum

identifies the scale of the energy-containing structures in the photosphere (as compared to structure

identification which we discuss in §1.1.4.1). There are, however, limitations to this technique

primarily because the Fourier spectrum will identify power in both the size of the convective cell

(such as the granular upflows) and the size of the boundary between cells (the downflow lanes).

Furthermore, power is spread between modes, especially by any sharp features, which means that
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Figure 1.2 The doppler shift velocities using full-disk MDI data from 01:00 UT on 24 May 1996
(image from Hathaway et al. (2000)). Red-shifted plasma is in red and blue-shifted plasma is in
blue. The flows are dominated by the 300− 400 m s−1 horizontal flows of the supergranules.
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while we identify the power as coming from a single wavelength mode, there is not a one to one

correspondence between structure size and the wavenumber.

Since the early observations of supergranulation (Hart, 1954; Simon & Leighton, 1964), tech-

nological improvements have allowed the creation of instruments that provide continuous full-disk

observations that resolve motions in the photosphere from granular scales to the largest possible

convective scale. The spherical harmonic spectrum of the horizontal velocities computed from the

doppler velocities observed by one of these instruments, SOHO/MDI (shown in Figure 1.2), shows

a clear peak at both granular and supergranular scales (Hathaway et al., 2000). This peak con-

firms that supergranulation is a distinct scale of motion on the Sun and provides constraints on

the photospheric spectrum of motion that can be compared with the motions in radiative MHD

simulations. Other groups use correlation tracking of the continuum intensity to infer large-scale

horizontal motions in the photosphere and compute the spectrum of these motions for further

comparison (Nordlund et al., 2009).

We show the photospheric velocity spectrum, V (k) =
√
kP (k), in Figure 1.3 where P (k) is

the power spectrum of the horizontal velocity and k is the wavenumber of the spectrum (Nordlund

et al., 2009). Converting from a cartesian wavenumber (which are used in the simulations) to

spherical harmonic wavenumber uses the relationship λ = 2πRsun
kspherical

and kcartesian = 2π
λ . The

doppler velocity spectrum shows increased power at kspherical ≈ 120 which corresponds to λ ≈ 37

Mm. The simulations find no enhancement of power at supergranular scales (Stein et al., 2006).

We also refer back to the photospheric power spectrum in Figure 1.1, which shows the spec-

trum of supergranulation using the coherent structure tracking (CST) method (Roudier et al.,

2012). This method infers photospheric horizontal velocities by tracking the motion of granules

and computes the spectrum of these motions. This spectrum is the most up to date observations

of the solar horizontal velocity spectrum using the full-disk images from HMI (which has increased

resolution compared to the telescopes used for observations in Figure 1.3) and we use these results

to compare to simulations throughout the thesis. These observed spectra are one of the primary

methods for identifying supergranulation (the other, magnetic fields, is discussed in §1.1.4.1) and
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Figure 1.3 The surface horizontal velocity spectrum from observations and simulations as a function
of wavenumber from sub-granular scales to global scales. The observations use correlation tracking
on TRACE and SOHO/MDI continuum intensity images to compute the velocity spectrum (Shine)
or compute the spherical harmonic spectrum directly from MDI doppler images (Hathaway et al.,
2000). The simulation results are from two sets of stagger simulations: granulation scale in orange
symbols (Stein & Nordlund, 1998) and supergranulation scale in black symbols (Stein et al., 2006;
Stein & Nordlund, 2006). This image was originally published in Nordlund et al. (2009).
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a key comparison for simulations of supergranulation.

1.1.3.5 Deep or Shallow Supergranulation?

One of the primary unanswered questions about supergranulation is: does supergranular

convection originate near the surface or deep in the convection zone? Recent observations of

supergranules have been used to probe the properties of the deeper convection zone. By simulating

the motion of solar supergranules and comparing to the observed doppler velocities of the solar

disk (Figure 1.2), Hathaway et al. (2010) found that the motions of supergranules are consistent

with these convective cells being advected by the observed near surface shear of ∼ 30 m s−1 (a

∼ 3% change in the rotation rate) from the surface to 35 Mm depth (Howe et al., 2007). Based

on these results, Hathaway et al. (2010) suggests that supergranules must extend to at least 30

Mm depth. Later work expanded on this idea by tracking supergranules in doppler observations

and comparing the wavelength of the supergranule to the rotation profile as a function of depth

measured by global helioseismology. This comparison is consistent with the wavelength of the

supergranulation (ranging from ∼ 10 Mm to ∼ 100 Mm) equal to the depth at which the rotation

advects the supergranule (Hathaway, 2012a). This suggests that supergranules originate at least

∼ 10 Mm below the photosphere and imprint on the surface.

There is no a priori reason to expect the supergranular wavelength to be equal to its depth.

While the horizontal length scale of convection increases with depth, this may be related to the

increasing scale height which sets the integral scale of the flows (§1.1.1). This may be a consequence

of the originating depth of the supergranulation not equaling the depth at which rotation advects

the flow or the solar stratification (which determines the scale height with depth) by chance makes

the diameter of the convection equal to its depth.

Observers have also used time-distance helioseismology to directly measure supergranular

flows as a function of depth. One recent method uses large-separation rays (i.e. pressure waves

which travel 10-24 heliospheric degrees horizontally before returning to the photosphere) since they

approach the surface primarily in the vertical direction (i.e. with very little horizontal motion).
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While measurements using smaller rays cannot separate horizontal and vertical flows, by measuring

travel times between pairs of points on the surface with large separation and averaging over many

supergranules, this measurement is sensitive to the vertical flows (within a few Mm of the surface).

They then use an anelastic approximation to the continuity equation to create a model and find the

best fit to the model which gives the horizontal flows. Applying this method, Duvall & Hanasoge

(2013); Duvall et al. (2014) finds that supergranular flows peak very close to the surface (1.5-2.5

Mm below the photosphere) with horizontal flows ∼ 700 m s−1 and vertical flows ∼ 240 m s−1.

These flows are much faster than supergranular flows at the surface, where the vertical component

to supergranulation is estimated to be 30 m s−1 (Rieutord & Rincon, 2010). This shallow, high

speed supergranulation supports the suggestions that supergranulation originates very close to the

surface and does not require deeper flows (as in Rast (2003)).

Validating the methods of time-distance helioseismology by comparing to solar-like convection

simulations has encountered difficulty measuring the subsurface flow pattern or amplitude (DeGrave

et al., 2014). Using forward-modeling techniques (a separate method from ray theory of Duvall &

Hanasoge (2013); Duvall et al. (2014) but commonly used to validate the ray theory approach) in

MURaM simulations with domain size 98 × 98 × 20 Mm3, these methods could not measure the

large-scale flows in the simulation. This casts doubt on the measurements of large-scale solar flows

using time-distance helioseismology (including the results in Figure 1.1) and, while not nullifying

all measurements using these methods, suggests that the techniques must be carefully tested and

validated.

1.1.4 Quiet Sun Magnetic Field

The quiet Sun magnetic field is advected by horizontal supergranular motions in the photo-

sphere to the boundaries of the supergranular cells where it forms the magnetic network. We show

a full-disk image of the Ca II K line intensity to demonstrate this pattern in Figure 1.4 (with super-

granular sizes that compare favorably to Figure 1.2). The connection between magnetic field and

solar supergranules was discovered by Simon & Leighton (1964) and many observers use magnetic
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field (such as the Ca II K line intensity) to identify supergranular cells (Goldbaum et al., 2009;

McIntosh et al., 2011; Berrilli et al., 2013). Unlike the power spectrum, these cell identification

techniques can determine the diameter of the supergranules.

These magnetic elements are generally assumed to behave as passive tracers of the convective

motions since they are below equipartition field strength. This is because the plasma β, which is

the ratio of the gas pressure to the magnetic pressure, is much larger than one and the photosphere

is highly conductive which causes the field to be “frozen in”, i.e. carried by the motions of the

plasma (de Wijn et al., 2009). Recent observations, however, show a change in the length scale of

supergranules with solar cycle (McIntosh et al., 2011), suggesting that magnetic fields may play a

role in determining the supergranular length scale (Figure 1.5).

The increased diameter of supergranules with increased magnetic activity may indicate that

supergranulation is organized by the motions and magnetic element lifetimes in the photosphere

(Rast, 2003; Crouch et al., 2007), but this may also be related to changes in subsurface magnetic

fields.

1.1.4.1 Local Dynamo and Solar Convection

There is a continuing debate about the generation of quiet Sun magnetic field. The quiet

Sun magnetic field has two primary features: network field with flux imbalances on scales larger

than supergranulation (Lamb et al., 2010) and internetwork field with very small net flux on

supergranular scales (de Wijn et al., 2009). Regions with a large net magnetic flux are associated

with active regions (i.e. magnetic flux ropes created at the bottom of the convection zone that

buoyantly rise to the surface) generated by the global dynamo (Fan, 2009). As these active regions

decay, they contribute a net flux imbalance over large regions of the solar photosphere which

suggests that the magnetic network fields are the remnants decaying active regions (Lamb et al.,

2010).

Recent observations of internetwork field (i.e. field between the magnetic network) using

the Hinode spectropolarimeter (SP) instrument to measure the Zeeman effect (i.e. the splitting of
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Figure 1.4 The full-disk Ca II K (393.4 nm) intensity, a proxy for chromospheric network magnetic
field. Observations from the Precision Solar Photometric Telescope.

Figure 1.5 The adjusted mean radius of supergranules as a function of time from the year 1996 to
2011. The black (SOHO/EIT), green (STEREO-A/EUVI), and blue (STEREO-B/EUVI) symbols
use the watershed segmentation to identify supergranules from the He II 304 Å which is an analog
for the chromospheric magnetic field. The red symbols use the medial axis transform method to
identify supergranules in the photospheric magnetic network using MLSO/PSPT Ca II K images.
The orange symbols are the SOHO/VIRGO TSI measurement which identifies solar maximum and
minimum. This figure was originally presented in McIntosh et al. (2011).
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atomic energy levels in the presence of magnetic fields) have made significant improvements to our

understanding of the quiet Sun magnetism. While internetwork field was traditionally described as

primarily vertical (with respect to the surface), Lites et al. (2008) measured transverse field that

was noticeably stronger than vertical field. Even with Hinode resolution, much of the magnetic field

is missed by these observations due to Zeeman canceling along the line of sight (Danilovic et al.,

2010). By computing a spectral synthesis on small-scale dynamo MURaM simulations (with much

higher resolution than observations to reduce the Zeeman canceling) and comparing to Hinode

observations, the measured unsigned vertical magnetic flux at optical depth unity is 〈|BV |〉 ∼ 60 G

G (Danilovic et al., 2010). Observations using inversion codes to infer the filling factor (the fraction

of the observed pixel that a real magnetic field component occupies) in Hinode data validate this

vertical flux measurement (〈|BV |〉 ∼ 64 G) and found a total unsigned flux in the photosphere

of 〈|B|〉 ∼ 220 G with transverse flux 〈|BT |〉 ∼ 198 G much stronger than vertical field (Orozco

Suárez & Bellot Rubio, 2012). This method is unable to determine a field strength in all pixels

(with nearly 75% of pixels ignored because the inversion could not determine the filling factor) but,

as this value does not depend on filling factor, this provides an additional estimate that we can

compare with simulations which suggests that the unsigned vertical flux is ∼ 60 G.

Much debate has centered on whether the quiet Sun magnetic field is generated from a local

small-scale dynamo or if this field comes from another source. The global dynamo generates active

regions that are primarily vertical magnetic field in the photosphere. It is difficult to explain

how the transverse field could be stronger than the vertical field without being generated by a local

dynamo, which suggests that a small-scale dynamo is active in (or near) the solar surface (Mart́ınez

Pillet, 2013).

A small-scale dynamo is expected to operate in very high magnetic Reynolds number regimes

where the magnetic field is generated from the stretching and twisting of the field by the plasma

flows. Several recent radiative MHD simulations with a realistic photosphere have an operational

small-scale dynamo (Mart́ınez Pillet, 2013). In particular, recent MURaM simulations with res-

olution up to 2 km computed small-scale dynamos that reached 〈|BV |〉 ∼ 60 G (similar to the
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measurements from Hinode using Zeeman splitting (Danilovic et al., 2010; Orozco Suárez & Bellot

Rubio, 2012)) and suggested that the local dynamo produces strong field, with magnetic energy

density comparable to the kinetic energy density below the photosphere (Rempel, 2014). Another

important aspect of these simulations is that more than half of the magnetic energy exists on scales

smaller than 100 km (Rempel, 2014) which is below the resolution limit of Hinode (but can be

explored by the upcoming DKIST).

The problem with all of these simulations, however, is that they operate in a regime where

the magnetic Prandtl number (the ratio of viscous to magnetic diffusion) is ∼ 1 while the Sun

has a magnetic Prandtl number ranging 10−3 to 10−7 (i.e. magnetic diffusivity is much stronger

than viscosity) (Mart́ınez Pillet, 2013). At small magnetic Prandtl number the ohmic dissipation

occurs on much larger scales than viscous dissipation. Thus, during the kinematic growth phase of

the dynamo, the motions on scales larger than the resistive length scale will stretch and bend the

magnetic field lines which causes the magnetic energy to grow, but the turbulent motions on scales

smaller than the resistive length scale will act as a turbulent diffusion and destroy magnetic energy.

Previous simulations have found that for magnetic Prandtl number << 1 the critical (i.e. minimum)

magnetic Reynolds number required for dynamo action increases and the asymptotic limit for the

critical magnetic Reynolds number may be infinite, meaning that a small-scale dynamo is not

possible in the Sun (Mart́ınez Pillet, 2013). Recent simulations, however, have found a small-scale

dynamo acting in a low magnetic Prandtl number regime with a compressible code (Brandenburg,

2011).

The ratio of kinetic to magnetic energy primarily depends on the magnetic Reynolds number

(ReM = LV/η where L is a typical convective length scale, V is the rms velocity and η is the

magnetic diffusivity). Thus large magnetic Reynolds number dynamos can have magnetic fields

that reach super-equiparitition when compared to the kinetic energy (Brandenburg, 2014). Dy-

namo simulations have the same limitations on magnetic Reynolds number as in the fluid Reynolds

number (with the maximum fluids Reynolds number reaching 5000 in the largest DNS simulation to

date, see §1.1.1). Furthermore, small-scale dynamo simulations suggest that low magnetic Prandtl
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number dynamos remove nearly all kinetic energy on scales smaller than the resistive length scale

and dissipate this energy via ohmic dissipation (Brandenburg, 2009, 2014). Therefore, if a small-

scale dynamo in the Sun reaches the saturated phase (as it would have in the Sun if a small-scale

dynamo is active) then the magnetic field in the solar convection zone, with magnetic Reynolds

number ∼ 105− 109 (Mart́ınez Pillet, 2013), may have super-equipartition field strength (i.e. mag-

netic energy density that exceeds kinetic energy density) and diffuse most energy on the magnetic

diffusion length scale, increasing the effective length scale of kinetic energy diffusion.

If a small-scale dynamo operates on the Sun and generates the network magnetic field, it is

unclear how this may interact with the global dynamo or how the small-scale dynamo field below

the photosphere may change with solar cycle. Since supergranulation is associated with network

magnetic field, the creation of surface magnetic field and its interaction with the flows may play an

important role in supergranular convection.



Chapter 2

The MURaM Code

As we stated in §1.1.3 this thesis is focused on three primary questions: what physical

mechanism(s) determine the length scale or lifetime of supergranulation, where do supergranules

originate (near the surface or deep in the convection zone), and what governs the relationship

between supergranules and the magnetic field?

To explore these questions in solar-like numerical convection simulations we require a code

that: provides wide enough domains to examine the supergranular length scale (32 Mm); allows

large enough domain depth to determine if supergranules originate from the deep flows; is op-

timized to examine multiple supergranular lifetimes (1.8 days) to find a statistically significant

result; computes the radiative transfer to create a realistic photosphere; and uses the equations of

magnetohydrodynamics (MHD).

Based on the length scale of supergranulation (32 Mm) we expect the required domain width

to be at least the same size as previous simulations 98 × 98 Mm2. This domain size allows ∼ 12

supergranules equal to the mean diameter which provides a marginal reduction in statistical noise.

The domain depth must be greater than 20 Mm depth to explore the assumption that width

of supergranules is equal to the depth at which they originate (Hathaway, 2012a). We need a

realistic photosphere to explore the suggestions that supergranules are generated in the surface by

organization of granular downflows or magnetic elements (Rast, 2003; Crouch et al., 2007).

Based on those criteria we chose to explore solar surface convection with the MURaM code.

The development of this code is detailed in Vögler et al. (2005); Rempel et al. (2009); Rempel
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(2014). While we primarily use the existing code, we added an artificial energy flux, a computation

of the Fourier transform power spectrum at any depth and iteration, a potential flow bottom

boundary condition (which was unstable and is not discussed further), and improved the data

output options. The MURaM code: computes radiative transfer with opacities that include the

elements important to photospheric radiative transfer; uses an equation of state with all elements

that have ionization states that influence the properties of the solar convection zone (especially H

and He ionization); and low enough diffusivity to induce a small-scale dynamo to explore quiet Sun

magnetic fields. These features allow us to compute simulations that are larger than any previous

solar-like simulations with a realistic photosphere with domain size up to 197× 197× 49 Mm3 with

5.5 days of relaxed data. We call the hydrodynamic simulation with the largest domain size the

reference simulation. These simulations are also the most stratified solar convection simulations

that we are aware of.

The primary limitation of the MURaM code is the open bottom boundary. Open boundaries

in convection simulations are universally problematic since they require assumptions about the

nature of the convection outside of the domain. We explore the smoothing of inflows and test

the boundary conditions by comparing simulations with varying domain depth to understand the

influence of the open boundary on the simulations.

The main solar physics that we do not include in these simulations are rotation and the near

surface shear layer (a ∼ 30 m s−1 shear from the photosphere down to 35 Mm depth (Howe et al.,

2007)). We also do not include the change in gravity or energy flux with radius. The mean density is

increased by ∼ 15% compared to a hydrostatic stratification with gravitational acceleration (Gm(r)
r2

with G the gravitational constant, m(r) the mass interior to the current radius r) that accounts for

the change in mass and radius. The energy flux is weaker by ∼ 15% than we would expect from

approximating the solar energy flux as Lsun
4πR2 at the bottom of our 49 Mm deep reference simulation

(where R = 0.93Rsun).
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2.1 The Code

The MURaM code solves the MHD equations using a conservative 4th order spatial finite dif-

ference scheme and short characteristics to compute the radiative transfer. The code uses cartesian

coordinates with the positive z-direction as vertically outward (the direction of radiative flux out

of the simulation domain) and a tabulated OPAL equation of state (Rogers & Iglesias, 1996). The

horizontal boundaries are periodic, the top boundary is closed, and the bottom boundary is open

to mimic the influence of the deeper convection zone (for details see 2.1.4).

2.1.1 Modified MHD Equations

We adopt the notation of Rempel (2014) to show the equations that the code solves (a

modification of the MHD equations):

∂ρ

∂t
= −∇ · (ρv) (2.1)

∂ρv

∂t
= −∇ · (ρvv) +

fvA
4π
∇ · (BB− 1

2
IB2)−∇P + ρg (2.2)

∂EHD
∂t

= −∇ · [v(EHD + P )] + ρv · g +
η

4π
(∇×B)2 + (2.3)

v · fvA
4π
∇ · (BB− 1

2
IB2) +Qrad +∇ · Fartificial

∂B

∂t
= ∇× (v ×B− η∇×B) (2.4)

∂2φ

∂t2
+ β

∂φ

∂t
− α∇2φ = 0 (2.5)

where ρ is the density, v is the fluid velocity, P is the gas pressure, and B is the magnetic

field. The viscous terms are not solved within these equations with the diffusive fluxes added to
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the values in the grid cells in between timesteps in the integration scheme which is described in

§2.1.3.

Defining the other terms in the momentum equation (2.2): we use I to denote the identity

matrix, g to be the gravitational acceleration which is a constant in the z-direction equal to −2.74×

104 cm s−2, and fvA is a term that does not appear in the true MHD momentum equation that we

describe below.

In the energy equation (2.3) we use EHD, which is the internal (Eint) plus kinetic energy

(1
2ρv

2). We separate out the hydrodynamic and magnetic energy sources to decrease numerical

instability in regions with very strong magnetic energy (small plasma β = 8πP/B2). These regions

only occur above the photosphere where most of the internal energy of the plasma is radiated

away and the flows are not driven by convective instability. We include the magnetic diffusivity

η for completeness but it is set to zero and replaced by a numerical diffusivity (see §2.1.3) in

all simulations presented in this thesis. The term Qrad represents the radiative cooling and is

computed in the code as the divergence of the radiative flux in the radiative transfer scheme (see

§2.1.5). Finally, we include another term in some simulations which is not in the MHD equations,

∇·Fartificial, which is an optional artificial energy flux that can transport energy without affecting

any other part of the code (§2.1.6). Finally, we include the induction equation (2.4) is solved with

η = 0 in all simulations.

The fvA term in the momentum and energy equations is used to limit the Alfvén velocity

(vA = B/
√

4πρ):

fvA =
1√

1 + ( vA
vmax

)4
, (2.6)

where vmax = 31.6 km s−1 is the maximum Alfvén velocity that we allow. This limit was

originally created for simulations of sunspots with much stronger magnetic field than our quiet-Sun

field strength simulations. The term helps prevent regions with very low density (which only occur

above the photosphere and do not influence the surface dynamics) from reducing the timestep. In
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the simulations presented here, this term affects less than 3× 10−3% of grid cells. This limiting of

the Alfvén velocity increases the timestep of the magnetized simulations by a factor of ∼ 16.

We correct errors in the computation of ∇ ·B by iteratively solving a hyperbolic differential

equation (Dedner et al., 2002) to reduce the amplitude of any regions with non-zero magnetic

divergence. Equation 2.5 is derived from the relationships ∂φ
∂t = α∇ ·B− βφ and ∂B

∂t = ∇φ. This

is related to a damped wave equation with the maximum possible wave speed α = ∆x2/∆t2 and

damping term β = 0.65∆x/∆t which has been determined empirically.

2.1.2 Numerical Methods

We use a 4th order centered finite difference derivatives and an explicit 4th order accurate

time integration scheme.

2.1.2.1 Finite Difference Derivatives

Taking ui to be the value of a solution variable in the ith grid cell, the first spatial derivative

is given by

(
∂u

∂x
)i =

1

12∆x
(−ui+2 + 8ui+1 − 8ui−1 + ui−2) (2.7)

and the second derivative is

(
∂2u

∂x2
)i =

1

12∆x2
(−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2), (2.8)

where ∆x is the grid spacing in the direction that the derivative is applied. Horizontal

boundaries are periodic. The vertical derivatives require two ghost cells to compute the five grid

cell stencil for these derivatives (see §2.1.4). To compute mixed derivatives we apply equation 2.7

successively in the directions of the derivatives.
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2.1.2.2 Time Integration

Using a vector representation for the solution we have U0 = (ρ, ρv, EHD,B)(x, y, z, t0) at

time t0 and spatial position (x, y, z). Then the system of partial differential equations is

∂U

∂t
= R(U), (2.9)

where R(U) is the vector containing the spatial derivatives and source terms in the system

of equations. The timesteps of the 4th order integration scheme are then:

U 1
4

= U0 +
∆t

4
R(U0),

U 1
3

= U0 +
∆t

3
R(U 1

4
),

U 1
2

= U0 +
∆t

2
R(U 1

3
),

and finally the solution at the new timestep is

U1 = U0 + ∆tR(U 1
2
). (2.10)

2.1.3 Numerical Diffusion

Solar convection is highly turbulent with Re ≥ 1010 (Rieutord & Rincon, 2010), so simulations

of solar convection attempt to limit the viscosity as much as possible to reach the maximum

possible Reynolds number. There is a minimum viscosity, however, that is required to dissipate

kinetic energy so that this energy does not pile up on small scales and cause spurious oscillations

on the grid scale. To reach a minimum viscosity that is similar to the Sun (estimated as ν ∼

10−3 m2 s−1 (Rieutord & Rincon, 2010)) requires that the simulation resolve the diffusive length

scale (estimated as lν ∼ 0.1 cm (Rieutord & Rincon, 2010)) which is prohibitively expensive for
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current supercomputers. Thus, even the highest resolution simulations currently available that use

an explicit viscosity are much more diffusive than the solar photosphere.

Thus, in order to maintain the numerical stability but reduce the diffusivity on well resolved

features, we use a slope-limited diffusion scheme based on shock capturing diffusion schemes. This

scheme was designed by Rempel et al. (2009) and Rempel (2014) to diffuse energy only on small

scales while being minimally diffusive on large scales. Since the numerical instability caused by

insufficient viscosity manifests as a zig-zag pattern on the grid scale, our diffusion scheme uses a

piecewise linear reconstruction designed to diffuse small-scale features with monotonicity changes.

To compute the diffusion, we determine the slope between grid cells using the monotonized

central difference limiter. This limiter tests the slope computed from solution values in adjacent

grid cells and then comparing each adjacent grid cell both from the left and right to the central grid

cell. The limiter then selects the minimum of all tested slopes (and returns zero slope if the tested

slopes are both positive and negative). We then use the slope given by our limiter to extrapolate

the value at both the left and right interface between the cells. The goal of the slope limiter is to

prevent mismatches between the extrapolated interface values based on extreme slopes, but still

create maximum diffusion for any monotonicity changes where the reconstruction is disabled. We

compute the diffusive flux between cells by comparing the difference between the two extrapolated

interface values (extrapolated from the left side and right side of the interface).

The equation for the monotonized central difference limiter based on the discrete solution ui

(where the subscript denotes the value in the ith grid cell) is:

∆ui = minmod[(ui+1 − ui−1)/2, 2(ui+1 − ui), 2(ui − ui−1)] (2.11)

where the minmod function returns the smallest absolute value of the inputs unless there are

both positive and negative inputs, in which case it returns zero. We call this quantity (∆ui) the

reconstruction slope. Using this slope we can extrapolate the value at the cell interfaces:
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ul = ui + 0.5∆ui (2.12)

ur = ui+1 − 0.5∆ui+1. (2.13)

These equations solve for the cell interface values, ul and ur, based on the reconstruction

slopes and cell-centered values of the solution on the left (for ul) and right (for ur) side of the

interface. Using the extrapolated interface values, we compute the diffusive fluxes of the numerical

scheme at the cell interface:

fi+ 1
2

= −1

2
ci+ 1

2
Φh(ur − ul, ui+1 − ui) · (ur − ul), (2.14)

where ci+ 1
2

is a characteristic velocity computed from the fluid velocity and Aflvén at the cell

interface. Since ci+ 1
2

does not include the sound speed, the scheme is less diffusive for low Mach

number flows than a scheme that includes the sound speed. The function Φh is

Φh = max[0, 1 + h(
ur − ul
ui+1 − ui

− 1)]. (2.15)

We set Φh = 0 for all regions where (ur − ul) · (ui+1 − ui) ≤ 0 to prevent anti-diffusion, i.e.

where quantities diffuse from cells with smaller values to larger values. This function was devised

by Rempel et al. (2009) and Rempel (2014) to decrease the diffusivity on well resolved features.

We use the parameter h = 2 in our simulations which sets the diffusive fluxes to zero for all regions

with |(ur − ul)/(ui+1 − ui)| < 1 − 1/h = 1/2. This choice of h = 2 prevents any diffusion for

well-resolved, smooth features (with small values of |(ur − ul)/(ui+1 − ui)|) but keeps the same

diffusion specified by the slope limiter for small-scale features with monotonicity changes. Testing

this diffusive scheme using a one-dimensional advection simulations we find that the diffusion is

zero for a sine wave that is resolved by more than six grid cells. Thus, though this scheme is not

physical, the diffusion is negligible for large-scale features, similar to the solar viscosity. This scheme

is not comparable to an effective diffusivity or Reynolds number because it is highly intermittent,

inhomogeneous and depends on scale.
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We apply the diffusion to the primitive variables log(ρ), vx, vy, vz, ε = Eint/ρ, Bx, By and

Bz and we implement this scheme in each dimension separately to maximize numerical stability.

We apply the diffusive fluxes to the solution after a full time-step update of the 4th order time

integration and add the artificial viscous and ohmic heating to the internal energy.

We apply our diffusion scheme to the mass density to prevent numerical instability. Since

there is no diffusion of mass in the MHD equations this numerical mass diffusion requires careful

accounting. We assume that the diffusive mass flux (fρ) transports both momentum and energy.

Thus our momentum flux has an additional fρv term and our energy flux has the additional term

fρε. Additionally, in regions of where the density contrast between adjacent grid cells exceeds a

factor of 10 we use the maximum velocity allowed by the CFL condition (see §2.1.3.1 for details on

the CFL condition) in place of ci+1/2 to maximize the diffusive flux.

We use a constant pressure at the bottom boundary (see §2.1.4) which causes spurious oscilla-

tions on the grid scale in the vertical direction that are too weak (compared to the stratification) to

cause monotonicity changes and, consequently, are not sufficiently diffused by the scheme outlined

above. In particular, these oscillations are caused by the different pressure in upflows and down-

flows which is forced to be equal at the boundary. We use an additional 4th order hyper-diffusion

term that scales with the vertical velocity to damp these oscillations. This additional diffusion is

applied to the log(ρ), vz and ε in the vertical direction.

2.1.3.1 CFL Condition

The Courant-Friedrichs-Lewy (CFL) condition limits the maximum timestep of the solution

to ∆tmax = fCFL
∆xmin
vmax,all

where the pre-factor fCFL is an empirically derived parameter, ∆xmin

is the minimum grid spacing in any direction and vmax,all is the maximum of all velocities (fluid,

sound and Alfvén velocity). This CFL condition depends on the numerical methods of the code

and typically uses a pre-factor value of fCFL < 1 (often 0.4 to 0.8) to ensure numerical stability.

Heuristically, the CFL condition prevents the maximum velocity from transporting a quantity (e.g.

mass, pressure waves, or Alfvén waves) to a grid cell that is greater than ∆xmin away. For our



31

code the maximum velocity is the speed of sound at the bottom boundary and minimum grid

spacing is in the vertical direction. If we used the maximum advective velocity we could achieve

approximately a factor of 7.5 improvement in the timestep.

It is a curious empirical result that the MURaM code with the specific time integration and

finite-difference derivative scheme outlined in §2.1.2 can operate with fCFL = 1.95 and maintain

numerical stability. The curiosity arrises from the fact that this violates the heuristic example

above, allowing a quantity to travel nearly two (vertical) grid cell lengths in one timestep. The

specific value of fCFL also depends on the ratio of the grid spacing in the horizontal and vertical

direction. All of our simulations use a horizontal grid that is three times larger than the vertical

grid spacing. Keeping this ratio greater than two prevents the maximum velocity from transporting

quantities past both a vertical and horizontal grid cell in one timestep which requires a reduction in

fCFL. To prevent problems with the numerical diffusion with fCFL = 1.95 we limit the maximum

velocity used in the diffusion scheme (ci+ 1
2
) to 0.975∆xmin

∆t , where 0.975 is a numerical safety factor

and ∆t is the timestep of the simulation. This prevents the maximum velocity in the diffusive

scheme from being capable of transporting quantities in the solution through one grid cell.

2.1.4 Upper and Lower Boundary Conditions

For both the upper and lower boundaries we use two ghost cells outside the simulation do-

main (to compute derivatives with our fourth order finite difference scheme, §2.1.2.1) with the

boundary positioned between the first ghost cell and the outermost grid cell. We apply symmetric

or anti-symmetric behavior to most variable values in the ghost cells for simplicity of implemen-

tation. Symmetric boundary conditions ensure that all odd derivatives are equal to zero whereas

anti-symmetric boundary conditions specify that the solution value is zero at the boundary. For

symmetric boundaries we take the values of the first, u1, and second, u2, grid cells and set the

values of the corresponding ghost cells to u∗1 = u1 and u∗2 = u2 (where u∗1 is the ghost cell nearest

to the boundary). For anti-symmetric behavior we set u∗1 = −u1 and u∗2 = −u2.

For both the upper and lower boundaries we enhance the viscosity in the outermost 8 grid
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cells by changing the computation of the reconstruction slope so that the diffusion operates on

large-scales, i.e. for regions where |(ur − ul)/(ui+1 − ui)| < 1/2 and the diffusion scheme in the

rest of the domain is turned off. This increases the effective diffusion in these regions significantly.

This results in inflows at the bottom boundary that are broad and slow. Without this enhanced

viscosity the resulting inflows have a very small-scale pattern (similar to the downflows) which

destroys the standard convection pattern at the bottom (see Figure 2.1 for comparison of the

normal and enhanced viscosity boundary condition). This smaller scale convection persists with

the large-scale pattern seen in the enhanced viscosity boundary simulations reforming near the

middle of the domain (though there are still smaller scale motions evident in the reduced viscosity

boundary simulation). The convection in the middle of the domain of a deeper simulation is more

consistent with the broad, slow upflows of the enhanced viscosity boundary condition. Additionally,

simulations with magnetic fields generated from a small-scale dynamo produces a similar smoothing

without any enhancement to the viscosity. For these reasons we use the enhanced viscosity boundary

conditions for all hydrodynamic simulations (and do not use the enhanced viscosity in magnetized

simulations).

2.1.4.1 Bottom Boundary

The bottom boundary conditions on the hydrodynamic variables are open to mimic the

presence of the deep convection zone beneath the domain. All three components of the mass

flux are set to be symmetric (resulting in all odd derivatives equal to zero on the boundary). The

pressure on the boundary (between the first domain cell and first ghost cell) PBND = Pgas+B
2
z/(8π)

is uniform and fixed at the boundary. For the values of the pressure in the first and second domain

grid cell P1 and P2 we extrapolate the ghost cell pressure values using the existing stratification:

P ∗1 = 1.5Pgas − 0.5
√
P1P2 (2.16)

P ∗2 = 2.5Pgas − 1.5
√
P1P2. (2.17)
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Figure 2.1 The vertical velocity at the bottom boundary (19.9 Mm below the τ = 1 surface) and in
the middle of the domain from the simulation with enhanced viscosity (used in all hydrodynamic
simulations) and reduced viscosity (where the viscosity is the same at the boundary as in the rest
of the domain). All figures use the same color table saturated at ±1 km s−1 with blue representing
upflows (towards the surface) and red representing downflows (away from the surface). Enhancing
the viscosity smooths the inflows at the bottom boundary which suppresses the high wavenumber
flows. If we do not enhance the viscosity then the high wavenumber flows at the bottom boundary
inflows propagate into the domain and reduce the amplitude of the low wavenumber flows. Simu-
lations with small-scale dynamo magnetic field smooth the inflows through the Lorentz force and
do not require enhanced viscosity.
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The entropy is symmetric in outflows and the inflows are given a uniform entropy value that

is empirically determined such that the simulation has photospheric radiative losses equal to the

solar luminosity to within a few percent (this entropy value is also used to initiate the simulation,

see §2.2). The density and internal energy are then determined by the equation of state.

Since the pressure is fixed across the boundary this does not allow for a different pressure in

upflows and downflows which we find dynamically throughout the rest of the simulation domain.

Thus, this boundary underestimates the horizontal divergence in inflows than we would expect from

the upflows at this depth in a deeper simulation (caused by the positive pressure perturbation in

the upflows). By keeping a constant pressure, however, we maintain the mass of the box and the

stability of the simulation. The pressure at the bottom boundary is a measure of the total mass

in the simulation (gravitational force per area). Thus, if mass is leaving the domain without being

replaced the pressure in the bottom grid cells will be lower than a hydrostatic stratification. This

creates a stronger than hydrostatic pressure gradient that increases the mass flux of inflows and

slows the outflows. Thus the pressure that we choose for the bottom boundary determines the total

amount of mass in the simulation domain (aside from variations over short timescales).

The properties of these inflows are based on several assumptions. While some of these

assumptions are based on the expected physical properties of the convection (e.g. the constant

entropy in inflows is a good approximation for the entropy in upflows throughout the simulation

domain), other choices are used primarily for numerical stability or mass conservation. Currently,

there is no method to create an open boundary with realistic physics. All open boundaries include

implicit and explicit assumptions about the properties of the inflows. One of the best ways to test

the effect of the boundary is to compare the properties of the solution in simulations with different

domain depths. Thus, we compute simulations at several depths (see §2.2) to validate our results.

2.1.4.2 Magnetic Bottom Boundary

Using an open boundary with the magnetic field requires additional consideration. While

recent global simulations have found evidence of a small-scale dynamo operating throughout the



35

convection zone (Hotta et al., 2014; Hotta, 2014b), we do not have an a priori expectation for the

amount (or scale) of field is advected into the near-surface layers. The most conservative magnetic

boundary would not allow any horizontal field to be advected into the simulation domain to replace

what is lost via the outflows (Pietarila Graham et al., 2010). This boundary, however, underes-

timates the magnetic field strength produced by a saturated dynamo throughout the convection

zone (Rempel, 2014). To experiment with increased field strength Rempel (2014, see this work for

further details) developed a boundary condition to allow horizontal magnetic field to be advected

into the domain by using a symmetric boundary condition for all three components of the magnetic

field. We employ this boundary condition in all magnetized simulations.

This introduces the possibility that we are increasing the root-mean-square (rms) field strength

throughout the simulation through the boundary condition and not via dynamo action. Therefore,

we set an upper limit to the root-mean-square (rms) field strength in inflow regions which changes

based on domain depth and limit the maximum local horizontal magnetic field strength to three

times the maximum rms value. This upper limit increases roughly as the equipartition field strength

Beq =
√

4πρvrms (for the 49 Mm deep 〈Bz〉 = 0 G simulation this value was Bmax = 3400 G). The

net horizontal magnetic flux is set to zero in inflow regions and we rescale the vertical magnetic

field such that the horizontal and vertical rms field strength are identical in inflow regions. Based

on small-scale dynamo simulations we expect the magnetic field in the deep convection zone to be

nearly isotropic (Hotta et al., 2014; Hotta, 2014b), but our simulations underestimate the horizon-

tal divergence of inflows which leads to a vertical field that is too strong in inflows without this

constraint.

The small-scale dynamo magnetic field also suppresses small-scale motions in the bottom

of the domain. Thus any simulation with magnetic field does not use enhanced viscosity at the

bottom boundary, instead using the Lorentz force to smooth the flows.
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2.1.4.3 Upper Boundary

The upper boundary is placed at 700 km above the τ = 1 surface. This boundary is closed

with antisymmetric vertical velocity condition which sets vz = 0 on the boundary. The horizontal

magnetic field condition is also anti-symmetric to ensure that Bx = By = 0. All other variables

have symmetric boundary conditions which ensures that all odd derivatives of the density, internal

energy, horizontal velocity, and vertical magnetic field are set to zero at the boundary.

2.1.5 Radiative Transfer

We use the same radiative transfer scheme that solves the equation of radiative transfer along

rays (with short characteristics) described in Vögler et al. (2005, for further details on this method

see this text). The equation of radiative transfer is dIν
dτν

= Sν − Iν where ν denotes the frequency,

I denotes the radiative intensity, τ is the optical depth and Sν is the source function. In all of our

simulations we use a grey atmosphere (no frequency dependence of the radiation) but still label the

quantities as frequency dependent in this text since the code possesses the capability of computing

non-grey atmospheres. The solution to the radiative transfer equation gives the intensity Iν(µ)

in the ray direction described by the unit vector µ(ω) as a function of solid angle ω. From the

intensity the radiative flux is given by

Fν =

∫
4π
Iν(µ)µdω (2.18)

and the average intensity is

Jν =
1

4π

∫
4π
Iν(µ)dω, (2.19)

where ω is the unit of solid angle. By assuming that we are in local thermodynamic equi-

librium we can set the source function equal to the Planck Function, i.e. Sν = Bν , and solve

for
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Qrad = −
∫
ν
(∇ · Fν)dν = 4πρ

∫
ν
κν(Jν −Bν)dν (2.20)

where κ is the opacity of the plasma given by the ATLAS9 stellar atmosphere package (Ku-

rucz, 1993). We use both of these equations to solve for Qrad with the first equation used for optical

depth τν > 0.1 and the second equation used above the photosphere in optically thin regions.

2.1.6 Artificial Energy Flux

We add an optional artificial energy flux term, Fartificial, to equation 2.3 in order to test the

properties of the convection with reduced energy flux (without changing the stratification). The

artificial flux influences the energy equation when the divergence of the flux is non-zero and we

only examine artificial fluxes with purely vertical profiles so that there is no horizontal variation

in the divergence of the flux. Thus, in regions of non-zero divergence, Fartificial heats upflows and

downflows equally (see §4.2.3 for details).

2.2 Simulations

To initiate simulations we compute an isentropic (adiabatic), hydrostatic stratification with

zero velocity. The entropy value is determined empirically to be the entropy required in inflows

at the bottom boundary to maintain the solar radiative energy flux escaping from the simulation

top boundary. Since the mean entropy of the upflows is nearly independent of depth, we use the

same entropy value for all simulations (unless there is an equation of state change). Before the

simulation begins, we add a random noise component to the internal energy equal to less than 1% of

the mean value for the layers above the mean optical depth one surface. As the simulation relaxes

from its initial state this mean optical depth one surface will shift. Thus we can only determine

the geometric depth of the optical one surface after the simulation is running.

We then start the simulation and the radiative transfer begins cooling the surface plasma

which begins to form overdense, low entropy downflows that descend deeper into the domain.
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These downflows then start convection as they penetrate the adiabatic stratification. The simu-

lation is considered relaxed when the flows reach a statistically steady state which is determined

by examining time series of the Fourier power spectra of the velocity. If we are computing a mag-

netic simulation we add the field after the flows have reached a statistically steady state to save

computational resources.

An additional consideration for relaxation is that the energy flux is balanced but this happens

in our simulations before the flows are dynamically relaxed. The traditional thermal relaxation time

(i.e. taking the full energy content of the simulation divided by the radiative energy flux out of the

domain) is much longer than the entire simulation time, but this overestimates the time it takes

for the energy flux to be balanced. Since the superadiabatic gradient is very close to the initial

adiabatic gradient, the relaxation time of the energy flux is the time it takes for the stratification

to reach the final superadiabaticity. Empirically we find this time to be shorter than the dynamical

relaxation time.

2.2.1 Resolution

To explore solar supergranulation in our simulations and address how deep flows play a role

in supergranular scale motions of at the surface we want to compute simulations with domain size

197 × 197 × 49 Mm3 and at least three supergranular lifetimes (i.e. 3 × 1.8 days=5.4 days). To

relax the simulations (both relaxing the flows and reaching the saturated phase of a small-scale

dynamo) requires additional time, approximately 5 days of computational time (i.e. physical time

of the solution). For the simulations presented in this work, we needed to determine how to best

use the 18 million cpu hours that we had been awarded to compute simulations with this increase

domain size.

Our early simulations use a grid spacing of 128 km in the horizontal direction and 32 km in

the vertical direction. This resolution already under-resolves the narrowest photospheric downflows

at ∼ 200 km and marginally resolves the solar photosphere which has a pressure scale height of

approximately 100 km in the vertical direction. Given that the current version of the MURaM code
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runs at 200,000 grid cell updates per cpu second on Sandy Bridge processors, these new wider and

deeper simulations would use more than 8 million cpu hours to compute a single hydrodynamic

case at this resolution. We thus tested several coarser resolutions to determine how much we

could lower the resolution with acceptable changes to the simulation properties. We tested the

resolution in a series of 49.152 × 49.152 × 4.096 Mm3 hydrodynamic simulations. We compare

horizontal resolutions of 128 km, 192 km, and 256 km. While each decrease in resolution changes

the amplitude of the high wavenumber power (and removes some high wavenumber modes) in the

photospheric velocity spectrum, the 192 km (unlike 256 km) resolution only changes the very high

wavenumber modes whose amplitude in the highest resolution simulation is at least one order of

magnitude below the peak (granulation) power. Thus, we consider the changes due to the 192 km

resolution as acceptable in the photospheric velocity spectrum.

We also compare the vertical resolution of 32 km and 64 km. Due to the small-scale

height of the photosphere, this primarily affects the radiation in the simulation. We found that

reducing the resolution decreases the radiative luminosity of the simulation for the same en-

tropy at the bottom boundary. Comparing the resolutions from 128 km × 128 km × 32 km to

192 km× 192 km× 64 km we find that the decreased resolution changes the radiative energy flux

from 6.3 to 6.1× 1010 erg cm−2 s−1. This decreased radiative energy flux induces flows with simi-

larly weaker convective energy flux. Since typical variations of the convective energy flux are ∼ 10%

below a few Mm depth (the energy flux has much smaller fluctuations near the photosphere), we

consider this to also be an acceptable change to the energy flux of the simulation.

By decreasing the resolution from 128 km×128 km×32 km to 192 km×192 km×64 km we

decrease the number of grid cells that we compute by a factor of 4.5. Furthermore, by decreasing the

vertical resolution we also increase the timestep by a factor of two since ∆tmax = fCFL
∆z

csound
where

csound is the speed of sound at the bottom boundary. This change decreased the computational

time of each simulation from 8 million cpu hours to approximately 1 million cpu hours.
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Figure 2.2 Snapshot of the vertical velocity from the reference simulation at the photosphere. The
color table is saturated at ±5 km s−1 with blue representing upflows (towards the surface) and red
representing downflows (away from the surface).
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Figure 2.3 Snapshots of the vertical velocity from the reference simulation at 20Mm depth, a
vertical slice and only the near surface layers of the vertical slice. All figures use the same color table
(saturated at ±1 km s−1) with blue representing upflows (towards the surface) and red representing
downflows (away from the surface).
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2.2.2 Mean Properties of Simulations

To familiarize the reader with these simulations we show some snapshots (of velocity and

entropy) and mean profiles of the hydrodynamic reference simulation (197 × 197 × 49 Mm3 with

192 km × 192 km × 64 km resolution). The snapshots of vertical velocity (Figure 2.3) show the

granulation in the photosphere where the local scale height and thermal boundary layer determine

the dominant length scale of convection. While supergranular scale motions are present (as we

show in §4), they are not evident due to the dominance of the much stronger granular flows. The

flows at 20 Mm depth have increased length scale due to the increased scale height at this depth.

These flows have length scales consistent with supergranulation, but we do not have an a priori

expectation for how these flows relate to surface supergranular flows. The vertical slice of the

vertical velocity also shows the transition from smaller scale convection at the surface (z = 0 Mm)

to increasingly large-scale flows (due to increasing scale height) below the photosphere.

We also show the entropy perturbation (Spert = S−〈S〉
〈S〉 in Figure 2.4) for the same heights

and at the same simulation time as above. We see the same convective pattern at each depth as

in the vertical velocity. Upflows throughout the simulation have the same entropy since we set the

entropy in inflows at the bottom boundary and there is very little recirculation of cooler fluid into

the upflows. At the photosphere the plasma cools (via the radiative transfer) to become downflows

with an entropy deficit. This entropy contrast between upflows and downflows drives the convective

energy transport. At 20 Mm depth the downflows maintain an entropy deficit but it is significantly

smaller than in the photosphere. This is because the overturning mass from the upflows entrains

into the downflows and heats the plasma which increases the entropy. While the maximum entropy

perturbation in the photosphere is ∼ 10%, at 20 Mm depth this is reduced to 0.01%. We also

show the vertical slice of the entropy perturbation with the photospheric saturation of 10% and the

0.01% saturation of the color table to show the entropy perturbations in the deeper layers.

Finally, we show the mean profiles of density, temperature, pressure and entropy in Figure 2.5.

These thermodynamic quantities follow a nearly adiabatic stratification since the superadiabaticity
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Figure 2.4 Snapshots of the normalized entropy perturbation from the reference simulation at the
photosphere, 20 Mm depth, and a vertical slice. We show the normalized perturbation of the entropy
(Spert) at each height, where Spert = S−〈S〉

σ(S) and 〈S〉 is the mean and σ(S) at each height. The blue

is positive entropy perturbation and red is negative (with white being zero entropy perturbation).
The color table at each height saturates at one standard deviation.
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Figure 2.5 The mean stratification of the thermodynamic variables in the 197 × 197 × 49 Mm3

hydrodynamic reference simulation. The nearly five orders of magnitude change in density from
the photosphere to the bottom of the simulation makes this the most stratified solar-like simulation
to date.
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of the convection zone is very small. Our deepest simulation (49 Mm domain depth) has a density

contrast of nearly five orders of magnitude, which makes it the most stratified solar-like simulation

that we know of. The change in the entropy between photosphere (which is determined by the

radiative cooling) and the bottom (which we set in the inflows) of the domain determines the

total convective driving in the simulation. We normalize the entropy profile so that it is zero in

the photosphere (which is the entropy minimum). As stated above, the mean entropy (especially

in upflows) is nearly uniform in the bottom part of the simulation because there is very little

recirculation of plasma into the upflows.

2.2.3 List of Simulations

Finally, we list here all of the simulations presented in this work in Table 2.1. The shallow

simulations are only described by the depth while the deeper simulations have specific names used in

the captions of figures in later chapters. We also differentiate the simulations with no magnetic field

as “hydrodynamic” from the simulations with a small-scale dynamo generated field but 〈Bz〉 = 0

as “zero net flux”.
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Table 2.1. List of Simulations

Name Nx and Ny Nz ∆x and ∆y ∆y B

2Mm 768 64 128km 32km hydrodynamic
4Mm 768 128 128km 32km hydrodynamic
8Mm 768 256 128km 32km hydrodynamic
12Mm 768 384 128km 32km hydrodynamic
16Mm 768 512 128km 32km hydrodynamic
20Mm 768 640 128km 32km hydrodynamic

20Mm, reduced viscosity 768 640 128km 32km hydrodynamic
20Mm 1024 320 192km 64km hydrodynamic

Reference 1024 768 192km 64km hydrodynamic
80Mm 1024 1280 192km 64km hydrodynamic

H, He I, He II 1024 768 192km 64km hydrodynamic
H, He I 1024 768 192km 64km hydrodynamic

H 1024 768 192km 64km hydrodynamic
Art. Flux 10Mm 1024 768 192km 64km hydrodynamic

Art. Flux 2.56Mm 1024 768 192km 64km hydrodynamic
Art. Flux 10Mm, 15G 1024 768 192km 64km 〈Bz〉 = 15G

Art. Flux 2.56Mm, 15G 1024 768 192km 64km 〈Bz〉 = 15G
Art. Flux 10Mm, Enh. Rad. 1024 768 192km 64km 〈Bz〉 = 15G

Art. Flux 2.56Mm, Enh. Rad. 1024 768 192km 64km 〈Bz〉 = 15G
Zero Net Flux 1024 768 192km 64km 〈Bz〉 = 0G

10G Mean Field 1024 768 192km 64km 〈Bz〉 = 10G
Enhanced Radiative Cooling 1024 768 192km 64km 〈Bz〉 = 0G

Note. — The list of simulations presented in this work. While there are two shallow simulations
labeled as 20Mm (since they have the same depth) it is clear from the text and figure captions
when we introduce the wider simulation. The three simulations labeled with H and He use a
Saha equilibrium equation of state with hydrogen and helium (different from the OPAL equation
of state of all other simulations, see §4). The artificial flux simulations are labeled based on the
depth of the center of the hyperbolic tangent artificial flux profile. The enhanced radiative cooling
simulations (also labeled “Enh. Rad.”) increase the rate of cooling in regions of strong magnetic
field (see §5.1.1.



Chapter 3

The Role of the Deep Convection in Surface Flows

While there are consistent observational constraints on the length scale and lifetime of super-

granulation, the depth dependence is a matter of continuing debate. Recent observations (Hathaway

et al., 2010; Hathaway, 2012a) link the size of the supergranules at the surface to the mean flows

below the surface (i.e. the differential rotation and meridional circulation). This work assumes

that supergranules are anchored at a depth that is equal to their horizontal width at the surface,

ranging from 10 Mm to 100 Mm deep. While there is no a priori physical expectation that the

width should directly correspond to the depth of the supergranule, we know that the increasing

scale height with depth increases the length scale of the convective cells. Thus we would expect the

width of supergranules to depend on the local scale height which may appear to be a direct width

to depth relationship.

Using ray theory techniques and large-separation rays (i.e. pressure waves which travel

10-24 heliospheric degrees horizontally before returning to the photosphere) with time-distance

helioseismology, Duvall & Hanasoge (2013); Duvall et al. (2014) found that the maximum subsurface

solar supergranular horizontal and vertical flow speeds occur within 3 Mm of the photosphere. While

there are questions about the effectiveness of time-distance helioseismology at measuring these large-

scale flows (DeGrave et al., 2014), these observations support a surface model of supergranulation

and suggest that the surface flows may organize into large-scale motions (Rast, 2003; Crouch et al.,

2007). The depth of supergranulation is a fundamental unanswered question that we address in

this chapter: do supergranular flows originate in or near the photosphere (top-down) or do they
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imprint from below (bottom-up)?

To investigate the dependence of supergranular scale motions on simulation depth we compare

the photospheric velocity power spectrum for simulations with domain depths between 2 Mm and

49 Mm in §3.1. We find that shallower simulations have weaker horizontal flows for modes larger

than granulation while granular scale flows remain unchanged. This suggests that granulation is

driven locally and depends only on the physics of the photosphere, and that supergranular scale

flows are primarily driven at depth and imprint from below. Increasing the depth of the simulations

yields increased power in lower wavenumber modes but leaves high wavenumber modes unchanged

which suggests that each depth contributes power to a specific mode (or range of modes) in the

photosphere.

While the photospheric horizontal velocities show significant dependence on depth, there

is no dependence of low wavenumber vertical velocity power in the photosphere on simulation

depth (§3.1.3). This is true even after removing the influence of the p-modes. The vertical power

spectrum 1.3 Mm below the photosphere, however, shows increased low wavenumber power for

increasing simulation depth. The dominant continuity balance changes between 1.3 Mm depth and

the photosphere. In the photosphere the horizontal density gradient becomes important and the

low wavenumber vertical flows are much stronger which dominates any imprinted velocity there.

Based on the relationship between large-scale deep flows and the low wavenumber power

in the photosphere, this suggests that the supergranular motions are bottom-up. Computing the

correlations of the supergranular scale horizontal divergence in §3.2, however, finds that the flow

pattern originates in the photosphere and propagates down on the timescale of the downflows. This

result is confirmed by correlating the fluctuations of the low wavenumber horizontal velocity power

which also propagates down on an advective timescale. This suggests that the downflows generated

in the photosphere dominate the pattern of the large-scale convection at all depths. Thus, if the

supergranulation imprints from below, then these flows must adjust to fit between the faster, denser

downflows.
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3.1 Domain Depth

To determine how deep solar convection affects the low wavenumber photospheric flows we

compute a series of hydrodynamic simulations with constant domain width of 98× 98 Mm2 (with

96 × 96 km2 resolution) and domain depths ranging from 20 Mm to 2 Mm (with 32 km resolu-

tion). Shallow simulations of 2 Mm depth still have realistic granular dynamics (as has been found

previously (Stein & Nordlund, 1998; Vögler et al., 2005)) but there is significant influence on the

subsurface flows from the bottom boundary. Comparing simulations of different domain depths

helps examine the effect of the bottom boundary on the simulation. We revisit the bottom bound-

ary effect on the convection in §4 by using an artificial energy flux to transport the solar luminosity

which creates a stably stratified layer and limits the effect of the boundary condition.

Our primary tool for comparing the supergranular scale convection is the horizontal velocity

spectrum. As described in §1, the horizontal velocity spectrum is one of the main methods used to

identify solar supergranulation (other identification techniques are discussed in Appendix A) and,

consequently, a tool that we consistently apply to our simulations.

3.1.1 Power Spectrum

We compute the power spectrum by taking the two-dimensional fast Fourier transform (FFT)

of horizontal slices on the MURaM Cartesian grid (where x and y are the horizontal axis) of a vari-

able, typically the velocity, which we denote FFT(u) = ũ. Applying the horizontal FFT is simplified

since the FFT assumes periodic boundaries and the simulations are horizontally periodic. The FFT

can be applied in the vertical direction but, since the stratification dominates all quantities, the

FFT only measures the periodic features on the scale of the domain depth and the sharp contrast

between the bottom and top of the domain will cause ringing in Fourier space.

After taking the FFT we multiply the Fourier transformed velocity by its complex conjugate

to get the velocity power (denoted ũ2). Since all of our simulations are equal size in x and y

with equal grid spacing, we have Nx = Ny (i.e. the number of grid cells) and ∆x = ∆y = l/Nx
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where ∆x is the grid spacing and l is the horizontal domain size. We then shift the data so

that the zero-frequency mode (DC) is in the center of the horizontal slice and define the spatial

frequency of the modes (the wavenumber divided by 2π) by distance from the DC: fx,y(jx, jy) =√
(jx − jx,DC)2 + (jy − jy,DC)2/(Nx∆x) where jx is the x-index from 0 to Nx− 1, jy is the y-index

from 0 to Ny − 1, jx,DC and jy,DC are the x and y index of the DC mode. We define the one-

dimensional frequency of the modes as f(j) = j × δf where δf = 1
Nx∆x

which extends from the

DC (j = 0) to the Nyquist (j = Nx/2). Finally, to get the power spectrum we compute the mean

of all modes in an annulus from f(j) − δf/2 to f(j) + δf/2 multiplied by a geometric factor j
δf .

Thus the power spectrum is P (j) = j
δf 〈ũ

2〉f(j)+δf/2
f(j)−δf/2. We plot the power spectrum as a function of

frequency but we label it, as is the convention, as a function of wavenumber: kh/2π = fh = 1/λh.

The horizontal velocity spectrum is the sum of the power spectra from the two horizontal

components of the velocity: Ph = Px + Py. We can compute this spectrum at any height at the

vertical resolution of the simulation. The power spectrum from the photosphere (unless otherwise

stated) is taken to be the geometric slice with the minimum mean optical depth that is still greater

than one.

When we require separation of the spectrum into two components (i.e. different horizontal

scales of motion) we use a general division of scales into granulation and supergranulation. The

observed size scale of granules is ∼ 1 Mm with supergranules typically observed as ∼ 30 Mm

(Rieutord & Rincon, 2010). We do not explicitly examine mesogranular scales (with length scale

∼ 10 Mm) in our simulations and include these modes in our definition of granular scale motions.

Observations find that 20 Mm is the minimum length scale associated with the supergranular peak

in the solar photospheric power spectrum (Roudier et al., 2012). Thus, we use this scale to separate

granular scale flows for wavelengths λh < 20 Mm and kh/2π > 0.05 Mm−1 from supergranular scale

flows for λh ≥ 20 Mm and kh/2π ≤ 0.05 Mm−1.
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3.1.2 The Horizontal Surface Motions Dependence on Domain Depth

We show the horizontal velocity spectrum at the photosphere for six simulations with varying

domain depths in Figure 3.1. The horizontal velocity spectrum from the 20 Mm deep simulation

was computed from 3 days of solar time (that we consider to be relaxed) and this simulation was

used as the basis for the other simulations in Figure 3.1. Each shallow simulation was started from

the same snapshot of the 20 Mm deep simulation with some portion of the lower domain removed.

These shallower simulations were all run for 24 hours of time (in the simulations physical units)

with the power spectrum computed from the last 12 hours of the simulation.

The most prominent feature in Figure 3.1 is that increasing the simulation depth increases

the low wavenumber power. There is an order of magnitude decrease in the power of the largest

scale mode (λh = 98 Mm) when comparing the 20 Mm simulation (black curve) and 2 Mm deep

simulation (red curve). While all of these simulations match at high wavenumbers, decreasing the

depth of the simulation decreases the largest scale at which one of the shallower simulations match

the 20 Mm deep simulation. Thus the low wavenumber power in the photosphere depends on the

existence of deeper convection, with increasing domain depth increasing power in the large-scale

photospheric flows.

3.1.2.1 Scales with Equal Power

By showing these power spectra as a fractional difference with the deepest simulation (Ph /

Ph,20Mm deep−1 in Figure 3.2) we can more easily visualize the scale where the shallower simulations

have power equal to the 20 Mm deep simulation. The negative values are the wavenumbers for which

the shallow simulations have less power than the 20 Mm deep simulation (with the positive portion

representing the reverse). Though there are some differences in power at smaller scales, we take the

division between the weaker scales due to domain depth and scales with sufficient power (compared

to the deeper simulations) as the largest mode where the power in the shallower simulation is equal

to the power in the 20 Mm deep simulation (where curves cross zero in Figure 3.2). The largest
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Figure 3.1 The photospheric horizontal velocity spectrum for hydrodynamic MURaM simulations of
different depths. The domain of these simulations is 98×98 Mm2 and the domain depth ranges from
20 Mm to 2 Mm for the six simulations corresponding to the different line colors (see figure legend).
The change to dashed linestyles shows the range of Fourier wavenumbers that have driving depth
outside the simulation domain (see §4). Shallower simulations have statistically significantly less
low wavenumber power. The increased power in shallower simulations compared to the 20 Mm deep
simulation (e.g. the 2 Mm simulation at granular scales) is due to a box mode artificial enhancement
(see §3.1.2.2). Since the simulation timestep is based on the speed of sound at the bottom boundary,
we have different timesteps in each of these simulations. This changes the effective viscosity which
is why there is slight differences between the power at very high wavenumbers.
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horizontal scale with equal power ranges from the depth of the simulation up to 1.85 times the depth

of the simulation (see Table 3.1). The horizontal scales larger than the depth of the simulation (or

somewhat larger than the depth depending on the simulation) do not match the power in a deeper

simulation at those scales. This suggests that we require a domain depth of ∼ 50 Mm to run a

simulation with sufficient depth to have full power in the largest scale mode (56 Mm) in the peak

of the solar photospheric velocity spectrum (Roudier et al., 2012).

We expect deeper flows to have larger scale motions based on the increasing scale height with

depth. We do not, however, have an a priori expectation that the low wavenumber power in the

photosphere depends on these deeper flows. The evidence from Figures 3.1 and 3.2 suggest that

only granular scale motions are driven in the photosphere and that the presence (or absence) of

the subsurface convection determines the large-scale flows at the surface. Furthermore, the flows in

deeper simulation domains, which have increased horizontal length scale due to the increasing scale

height, contribute power to larger scale modes in the photosphere but do not add power at smaller

scales. This suggests that each depth contributes a specific scale (or range of scales) of motion to

the photospheric spectrum.

The change in linestyle in both Figures 3.1 and 3.2 identifies the separation between modes

that we expect to be fully driven inside the domain (solid) and modes that are only partially driven

inside the domain (dashed). This separation is based on a driving (integral) scale for the convection

(4Hρ) at each depth which is derived from the model that we present in §4. Since no modes with

solid linestyle have an amplitude that is influenced by the domain depth while the dashed modes

increase with increasing domain depth, this validates λh = 4Hρ as the driving (integral) scale of

the convection at each depth.

3.1.2.2 Box Mode in Shallow Simulations

There are, however, issues with comparing simulations with smaller domain depth. We begin

examining these problems by investigating the box mode of the simulation. The box mode is a

feature of the horizontal velocity spectrum that shows excess power compared to deeper simulations.
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Table 3.1. Photospheric Horizontal Velocity Spectrum

Depth Largest Equal Power Ratio of Equal Power Peak of Box Ratio of Box
[Mm] Scale [Mm] Scale and Depth Mode [Mm] Mode and Depth

16.384 16.384 1.0 32.678 2.0
12.288 16.384 1.33 32.678 2.66
8.192 14.043 1.70 12.288 1.50
4.096 7.562 1.85 6.144 1.50
2.048 3.781 1.85 2.891 1.41

Note. — The largest scale of the photospheric horizontal velocity spectrum with equal
power is determined by finding the lowest wavenumber mode in Figure 3.1 that has greater
power in the shallower simulation than the 20.48 Mm deep simulation. The peak box mode
is determined by identifying the lowest wavenumber local minimum in the fraction difference
in power between the shallow simulation and the 20.48 Mm deep simulation (Figure 3.2). In
both measurements the deeper simulations (16 Mm and 12 Mm) are less reliable since they
are closer in depth to the reference simulation and the spectral resolution limits the number of
modes that can discern between the largest scales.

Figure 3.2 The ratio of the horizontal velocity spectrum of the 20 Mm deep simulation with the
shallower simulations. This illustrates the wavenumber where the shallower simulation first has the
same power as the 20 Mm deep simulation (where the lines crosses from negative to positive values)
and the box mode enhancement (the local maximum at wavenumbers just above the previously
mentioned crossover). The differences at high wavenumber are due to the different diffusivity
based on the change in timestep (which is set by the sound speed at the bottom boundary). These
differences are not statistically significant and have very low amplitude in all simulations (see
Figure 3.1).
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Precisely, we measure this as the local maximum in Figure 3.2 near the largest scale with power

equal to the 20 Mm deep simulation. This box mode is evident in each of the shallower simulations

when compared to the deepest simulation. The excess power in these modes is an artifact of the

MURaM computation (and other types of simulations) that we call the box mode and is related to

the bottom boundary condition and the domain size. The approximate range of scales for the box

mode is 1.5 times simulation depth to 2.5 times simulation depth (See Table 3.1).

We measure the maximum increase in power due to the box mode to be between 10% and

20% in the 8 Mm, 4 Mm, and 2 Mm deep simulations compared to the power spectrum from the

20 Mm deep simulation. The width of the peak around the box mode is ±30% of the central

wavenumber of the box mode itself, which suggests that while we are identifying this as a single

mode the elevated power affects a range of scales of motion.

While the box mode influences our identification of the mode with equal power to the 20 Mm

deep simulation, since we consistently see statistically significantly weaker low wavenumer power

with shallower simulations, the box mode does not invalidate the decreased low wavenumber power

that we observe in the photosphere of these simualtions. The primary concern with the box mode

is for analysis of the power spectrum from the deepest simulation available (see §3.1.6 for more

analysis of this mode).

3.1.2.3 The Effect of the Bottom Boundary

The other primary concern with comparing simulations with different domain depth is the

influence of the bottom boundary condition, which is moved closer to the photosphere as the

domains become shallower. Our standard boundary condition uses enhanced viscosity in the bottom

eight grid cells that results in broader, slower inflows than outflows. Thus, the bottom boundary

smooths inflowing plasma.

To test the effect of this boundary we compare a 20 Mm deep simulation with reduced

viscosity (the same viscosity that is used in the rest of the domain) that results in narrow, fast

inflows which are qualitatively similar to the outflows. These fast and narrow inflows create small
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Figure 3.3 Comparison of the reduced viscosity boundary condition to the standard (enhanced)
viscosity boundary. We show the vertical velocity spectrum at 640 km above the bottom boundary
(a, which is outside of the depths with enhanced viscosity) and in the middle of the 20 Mm
deep domain (b). Overplotted are two vertical lines at k/2π = 0.03 Mm−1, λh = 33 Mm and
k/2π = 1.0 Mm−1, λh = 1 Mm for modes that we examine in more detail. We show the ratio
of the power (reduced viscosity boundary simulation divided by standard boundary simulation)
for the λh = 33 Mm (c) and λh = 1 Mm (d) modes. The low wavenumber modes have reduced
power at the boundary and throughout the simulation domain whereas the high wavenumber modes
have increased power in the reduced viscosity boundary simulation but this power is equal in both
simulations within a few Mm of the boundary (with the fiducial horizontal line in d showing where
these simulations are equal).
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scale turbulence at the bottom of the domain that disrupts the large-scale convective pattern which

reforms in the middle of the domain (which we show in §2.1.4 and Figure 2.1 for details).

To determine the effect of the boundary on the deep flows we show the velocity spectrum at

640 km above the bottom boundary (a) and in the middle of the 20 Mm deep domain (b) from both

the reduced viscosity boundary and standard boundary simulations in Figure 3.3 (note that 640 km

above the bottom boundary is outside the depths with enhanced viscosity in the standard boundary

simulation). The flows in the simulation with the reduced viscosity boundary have reduced low

wavenumber power and increased high wavenumber power near the boundary which persists in flows

well above the boundary (albeit with smaller amplitude difference in high wavenumber modes).

Without enhancing the viscosity, the flows also have increased rms velocity (which determines the

total integrated power in the spectrum) within ∼ 2 Mm of the bottom boundary but this rms

velocity is equal to the standard boundary simulation in the rest of the domain. Thus, the velocity

spectrum of the simulation with reduced viscosity have increased integrated power near the bottom

of the domain (a). On the other hand, the spectrum from both simulations in the middle of the

domain (b) have equal integrated power where the decreased low wavnenumber flows are balanced by

a slight increase in higher wavenumber power (in the wavenumber range 0.06 < k/2π < 0.5Mm−1).

To investigate how the low and high wavenumber modes behave in these two simulations we

compute the ratio of power (i.e. power in the reduced viscosity simulation divided by the standard

boundary simulation) as a function of depth for the modes shown by the fiducial vertical lines

from the spectra plotted in Figure 3.3 a and b. The low wavenumber mode (k/2π = 0.03 Mm−1,

λh = 33 Mm) has decreased power at the bottom of the domain of the reduced viscosity simulation

which persists throughout the simulation domain. This suggests that the boundary condition

can influence the amplitude of the low wavenumber flows throughout the simulation. The high

wavenumber mode (k/2π = 1.0 Mm−1, λh = 1 Mm), however, has much larger amplitude without

enhancing the viscosity near the boundary, but this amplitude drops until the ratio is equal for all

depths greater than ∼ 1 Mm above the bottom boundary. This suggests that the reduced viscosity

boundary creates high wavenumber flows with excess amplitude that is self-corrected inside the
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simulation domain.

The best way to determine which boundary condition is more physically realistic is to compare

to simulations with varying domain depth. We find that the convection in the middle of a simulation

with a deeper domain is consistent with the broad, slow inflows of the enhanced viscosity boundary.

The enhanced high wavenumber flows of the reduced viscosity boundary that corrects itself within

∼ 1 Mm of the boundary also suggests that the reduced viscosity boundary is not consistent with the

flows in the rest of the simulation domain. Attempting to compare with observations of subsurface

solar convection to determine if vertical flows at this depth in the Sun are broad and slow or narrow

and fast is not possible with current techniques. While time-distance helioseismology is commonly

used to measure subsurface convection, recent attempts to measure the subsurface vertical flow

patterns in MURaM have raised serious concerns about applying these methods to measure solar

flows (DeGrave et al., 2014). Thus, based on the evidence from these simulations without any

assistance from solar observations, we use the enhanced viscosity boundary because the flows are

more consistent with the flows in the middle of a deeper domain.

Finally, we compare the photospheric horizontal velocity spectrum of these two simulations in

Figure 3.4 (we also show the spectrum for horizontal velocities averaged over 30 minutes to remove p-

modes, see §3.1.4). The solid (black) curve, from the simulation with normal boundary simulation, is

the same spectrum used to compare against shallower simulations above (see Figure 3.1). The dotted

(blue) curve, from the simulation with reduced boundary viscosity, has decreased low wavenumber

power in the photosphere. Thus the decreased power of the low wavenumber flows deep in the

domain decreases the imprinted horizontal velocity power in the photosphere. This suggests that

the amplitude of the deeper, large-scale flows (and not just the presence of deeper flows) determine

the low wavenumber power in the photosphere.

3.1.3 Surface Vertical Velocity

Solar supergranules are dominated by horizontal flows (400 m s−1) in the photosphere with

vertical flows approximately one order of magnitude weaker (∼ 30 m s−1, Rieutord & Rincon, 2010).
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Figure 3.4 The photospheric horizontal velocity spectrum of the 20 Mm deep simulation (solid black
curve, the same as in Figure 3.1), this same simulation with photospheric velocities averaged over
30 minutes (dashed red curve) and another 20 Mm deep simulation with reduced viscosity on the
bottom boundary (dotted blue curve). Reducing the viscosity on the bottom boundary decreases
the power of low wavenumber flows near the bottom of the simulation which results in decreased
low wavenumber power in the photosphere. Time averaging removes p-modes (see §3.1.4) but also
significantly reduces the power in high wavenumber flows.
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While we expect the supergranular scale vertical flows to be weaker in our simulations than the

horizontal flows, we also examine the vertical velocity spectrum to determine if there is a similar

trend of decreasing supergranular scale vertical velocity with decreasing simulation domain depth

as we saw with the horizontal flows.

The vertical velocity spectrum (Figure 3.5) at the photosphere is dominated by granulation.

The drop in vertical velocity power from the granulation peak (k/2π = 0.8 Mm−1) to the smallest

supergranular scale (k/2π = 0.05 Mm−1) is a decrease of more than one order of magnitude. The

drop in horizontal velocity power from the granular peak to supergranular scales, on the other

hand, is only ∼ 20% for the 20 Mm deep simulation. Just as in the observations, the vertical

velocity power in the supergranular modes (λh > 20 Mm) in our simulations is much weaker than

the horizontal power in the photosphere.

Furthermore, we do not see the same dependence of low wavenumber vertical velocity power

on the simulation domain depth as we saw in the horizontal flows. None of the differences in the

vertical velocity power of these simulations are statistically significant (see one standard deviation

error bars in Figure 3.5 measured from the time series of the power in this mode in the 20 Mm deep

simualtion) and there is no qualitative order to the low wavenumber power based on simulation

depth. We explore potential problems with this measure in §3.1.4 and revisit this issue in §3.1.4.2.

3.1.4 P-modes in the Simulations

While the low wavenumber vertical velocity power does not have any dependence on simula-

tion depth, these modes have significant contamination from power in the acoustic waves (p-modes).

We know that p-modes are a significant source of low wavenumber power in the solar photosphere,

but we do not know how significant these p-modes are in the simulations.

We plot the k − ω diagram for the 20 Mm deep simulation (Figure 3.6) which shows the

contours of the vertical velocity power (with darker colors representing increasing power) as a func-

tion of wavenumber (kh/2π [Mm−1]) and timescale (ω [s−1]). The convective power (concentrated

in the bottom right of the figure) is separated from the p-mode power (upper left) by the theo-
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Figure 3.5 The photospheric vertical velocity spectrum for hydrodynamic MURaM simulations of
different depths. These are the same simulations as in Figure 3.1 with domain depths ranging from
20 Mm to 2 Mm for the six simulations corresponding to the different line colors (see figure legend).
We plot the one standard deviation error bars for the 20 Mm deep simulation which shows that
none of the differences in power are statistically significant.
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Figure 3.6 The photospheric k-ω diagram for the 20 Mm deep simulation vertical velocity where
darker colors correspond to increased velocity power. This diagram shows the timescale (ω = 2π/t
where t is the time in seconds) and length scales of the vertical velocity power. The convective
power is concentrated at the bottom-right portion of the plot, while the p-mode power is the ridges
in the upper left portion of the plot. We plot the logarithm of kh to compare to the other velocity
power spectrum while most plots of the observed solar k-ω diagram plot the linear k. We show the
theoretical f-mode khg = ω2 where g is the gravitational acceleration (2.74 × 104 cm s−1) as the
solid red curve. We also show the fiducial horizontal lines that correspond to the time scale of 10
minutes (ω = 0.0105 s−1) which shows that the p-mode power is concetrated on shorter timescales
and the 30 minutes (ω = 0.0035 s−1) that corresponds to our time averaging of the velocity to
remove p-modes.
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retical f-mode that follows the curve khg = ω2 where g is the gravitational acceleration equal to

2.74× 104 cm s−1 (solid red curve).

3.1.4.1 Time Averaging to Remove P-modes

Most of the p-mode power is on a timescale shorter than 10 minutes (ω > 0.0105 s−1, upper

fiducial horizontal line in Figure 3.6), while most of the convective power is on a timescale longer

than 10 minutes. Thus we can remove the p-mode power by time averaging the velocities. We

choose to average the photospheric velocities for 30 minutes before computing the power spectra

to remove more than 99% of the p-mode power. This averaging also reduces the power in the

convective motions for ω < 0.0035 s−1 (lower fiducial horizontal line in Figure 3.6), primarily at

granular scales (kh/2π > 0.1 Mm−1, λh > 10 Mm). While we could use a k-ω filter to remove

these p-modes, this time averaging is sufficient to remove the p-mode power and only influences

convective power of vertical motions at the scales of granulation.

The power in the p-modes is similar in both the horizontal and vertical velocity power,

approximately 1.0 × 1018 cm3 s−2 total p-mode power, i.e. power above the f-mode, in the x, y,

and z components of the velocity. The horizontal convective power, however, is much greater than

the vertical convective power at supergranular scales (λh > 20 Mm). Specifically, at supergranular

scales there is ∼ 10 times more p-mode power than convective power in the photospheric vertical

velocity and ∼ 5 times less p-mode power than convective power in both the x or y components of

the velocity.

We find that using the 30 minute time averaging on the horizontal velocity spectrum (Fig-

ure 3.4 dashed, red curve) reduces the power across all modes at supergranular scales (k/2π <

0.05 Mm−1) but maintains the same spectral shape, albeit with a smaller reduction at the lowest

wavenumbers. This averaging also reduces the power in the granular scale motions significantly.

Since the p-mode power is a weak influence on low wavenumber horizontal convection and does not

change the shape of the spectrum at supergranulation scales, we plot the un-averaged horizontal

velocity spectrum unless explicitly stated otherwise.
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Figure 3.7 The photospheric vertical velocity spectrum that have been averaged over 30 minutes
from simulations with varying depths. We show the one standard deviation error bars for the 20
Mm deep simulation which shows that none of the differences in power are statistically significant.
Unlike the horizontal velocity spectrum (Figure 3.1) there is also no clear order to the photospheric
power based on the depth of the simulation. Note that we do not have the data to compute the
time-averaged velocity for the 12 Mm deep simulation.



65

As shown in Figure 3.5, there is no statistically significant differences when comparing the

photospheric vertical velocity power at supergranular scales from simulations with different domain

depths. Since the power in these modes is dominated by the p-modes (with ∼ 10 times more

p-mode power than convective power), we compare the time averaged vertical velocity power in

Figure 3.7 to determine if the convective power depends on simulation domain depth. This time

averaging requires careful consideration since the timestep of each simulation is different (which is

based on the speed of sound at the bottom boundary and the sound speed is slower closer to the

photosphere). The time averaging decreases the velocity power but the decrease in power primarily

depends on how many snapshots are averaged. Thus, we use the same number of snapshots (that

span 30 minutes) for the averaging of each simulation.

Despite removing the p-mode power, there is still no consistent order of the photospheric

vertical velocity power. There is no a priori expectation that the observed low wavenumber flows

in the solar photosphere are generated at the surface or imprint from below. While the surface is

dominated by convection at the scales of granulation and supergranular scale convection occurs in

deeper layers with increased scale height, it has been suggested that supergranulation could result

purely from self-organization of motions in the photosphere (Rast, 2003; Crouch et al., 2007). Since

low wavenumber power in the horizontal velocity spectrum increases with increasing domain depth

(Figure 3.1) this suggests that the low wavenumber horizontal flows imprint from below. The low

wavenumber vertical velocity spectrum (Figure 3.7), however, has no dependence on the domain

depth of the simulation which suggests that the low wavenumber vertical flows are generated in

the surface. This leaves us with the following question: how do the large-scale motions below the

surface imprint on the surface horizontal flows (and not the vertical flows)?

3.1.4.2 Deeper Horizontal and Vertical Spectrum

To address this question we show the horizontal and vertical power spectrum at a depth of

1.3 Mm below the photosphere (Figure 3.8). Both the vertical and horizontal velocity spectra at

this depth shows the same trend that we see in the horizontal velocity spectrum at the photosphere:
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low wavenumber modes have less power in shallower simulations. Furthermore, these results are

statistically significant as shown by the one standard deviation error bars for the deepest and

shallowest simulations. While the vertical velocity spectrum in the photosphere is not influenced

by simulation domain depth, the low wavenumber vertical power at 1.3 Mm depth increases with

increasing domain depth. This suggests that the large-scale subsurface motions do imprint on the

vertical velocity, but we can only measure this imprinting power below the photosphere.

Figure 3.8 The horizontal (a) and vertical (b) velocity spectrum at 1.3 Mm below the photosphere
from simulations of varying depth. This shows that both the vertical and horizontal power at this
depth depends on the depth of the simulation. Thus, while the vertical power in the photosphere
does not increase with increasing simulation depth, the vertical flows below the surface follow this
trend. We change the linestyle (from solid to dashed) for modes with wavelengths greater than four
times the maximum density scale height in the simulation domain (4 max(Hρ)). We show the one
standard deviation error bars for the deepest (20 Mm) and shallowest (8 Mm) simulations. We
do not include the 4 Mm and 2 Mm deep simulation since this depth is too close to the bottom
boundary of both simulations and they are qualitatively different at every scale.

By examining four of the low wavenumber modes of the vertical velocity power spectrum

(normalized by the maximum power of each mode) as a function of depth (Figure 3.9) we find that

these modes decay with height until approximately 200 km below the photosphere. This suggests

that while the large-scale convection imprints on the upper layers, the power decays to very small

values at the surface and the low wavenumber vertical velocity power observed in the photosphere

is generated locally.
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Figure 3.9 Four of the low wavenumber modes of the vertical velocity spectrum from the hydro-
dynamic reference simulation (see §3.1.5) as a function of depth. These modes decay with height
until right below the photosphere where they begin to increase again. The modes are indicated by
the color (see legend).
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3.1.4.3 Continuity Equation in the Photosphere

We introduce a model derived from a simplified continuity equation (using an anelastic ap-

proximation) in §4. This model provides a relationship between the low wavenumber power in the

horizontal and vertical velocity using the approximation ∇h · uh ≈ uz
Hρ

(i.e. we ignore horizontal

derivatives of density and ∂uz
∂z ). We use this equation to compute the inferred vertical velocity

based on the horizontal velocity (dashed red curve) and compare to the actual vertical velocity

power (solid blue curve) in the photosphere (Figure 3.10). This shows that the amplitude of the

low wavenumber vertical power required to drive horizontal modes is much weaker than the ampli-

tude of vertical motions there. This is because the density scale height is so small in the photosphere

that even small vertical velocities are amplified in the uz
Hρ

term that relate to horizontal flows. This

suggests something is driving low wavenumber vertical flows at the surface.

Figure 3.10 The vertical velocity spectrum and inferred vertical velocity spectrum using the two
component model in the photosphere of the reference simulation. The amplitude of the vertical
velocities is much stronger than required to match horizontal flows.

In Figure 3.11 we compare the spectrum of terms from the continuity equation (∂ρ∂t = ∇·(ρu))

in the photosphere (a) and 1.3 Mm below the surface (b). We examine balances in a statistically
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steady state which ignores the term ∂ρ
∂t . At 1.3 Mm depth ρ(∂ux∂x +

∂uy
∂y ) (dashed red curve) is

balanced by u · ∇ρ (dot-dash green curve) at low wavenumbers and by ρ∂uz∂z (solid blue curve)

at high wavenumbers. Note that the horizontal derivatives of density are negligible at this depth

which means that u ·∇ρ ≈ uz ∂ρ∂z (this is one of the assumptions inherent to the model). At 1.3 Mm

depth our model assumptions are valid and at low wavenumber we can use ∇h · uh ≈ uz
Hρ

to derive

the horizontal velocity spectrum from the vertical velocity spectrum (or the opposite).

Figure 3.11 The power spectrum of the terms in the continuity equation from the reference simula-
tion (see §3.1.5) at the photosphere (a) and 1.3 Mm below the surface (b). The dominant balance
for low wavenumber modes in the photosphere is u ·∇ρ (dot-dash green curve) and ρ∂uz∂z (solid blue

curve) while ρ(∂ux∂x +
∂uy
∂y ) (dashed red curve) is much weaker. At 1.3 Mm depth the low wavenumber

balance is between ρ(∂ux∂x +
∂uy
∂y ) and u ·∇ρ. The wavelength that marks the crossing between u ·∇ρ

and ρ∂uz∂z at 1.3 Mm depth is λh = 4Hρ at this depth which is consistent with the model in §4.

In the photosphere (a) the continuity equation spectrum shows a balance at low wavenumbers

between u · ∇ρ (dot-dash green curve) and ρ∂uz∂z (solid blue curve) while ρ(∂ux∂x +
∂uy
∂y ) (dashed red

curve) is much weaker. At high wavenumbers these terms balance such that u · ∇ρ + ρ∂uz∂z ≈

ρ(∂ux∂x +
∂uy
∂y ). In addition, the horizontal derivatives of the density have significant power (i.e. the

flows are highly compressible) which violates the assumptions of the model. Thus, the continuity

balance in the photosphere is different from deeper layers with significant contribution from the

horizontal derivatives to the density gradient (u · ∇ρ) which balances the increased large-scale

vertical motions in the photosphere.

All of this evidence suggests a complicated picture of the low wavenumber vertical velocity
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power in the photosphere. For depths greater than 1.3 Mm (as we show in §4) the amplitude of the

large-scale flows (both vertical and horizontal) is determined by the imprinting of deep convection

(Figure 3.8).

As the scale height decreases towards the photosphere, the large-scale modes of the vertical

velocity spectrum decay with height (Figure 3.9). Since the scale height is so small at the surface,

these vertical motions are sufficient to match the higher amplitude horizontal flows at the surface

(Figure 3.10). In the photosphere, the imprinted power on the vertical flows is much weaker than

the power in low wavenumbers of the vertical velocity spectrum. Near the surface, the balance in

the continuity equation changes with the increased vertical velocity power approximately equal to

the density gradient in the continuity equation (which has significant contributions of the horizontal

derivatives of the density, unlike the continuity balance below the photosphere, Figure 3.11).

While the large-scale vertical flows near the surface are balanced by the density gradient, the

continuity equation by itself does not determine the flows. The rapid radiative cooling at the surface

drives vigorous downflow plumes. The granular upflows do not depend on the deeper convection

(which is evident from the independence of the granular flows to the depth of the simulation) and

only respond to the pressure gradient and buoyancy forces induced by the downflows (Rast, 1995).

Thus, the vertical motions in the photosphere are dominated by the processes in the radiative

boundary layer. These processes drive vertical velocities on the scales of supergranulation in the

photosphere with much larger amplitude than any imprinted power there.

3.1.5 Wider and Deeper Simulations

While the set of simulations described above provide a valuable examination of supergranular

scale convection in the uppermost 20 Mm, the photospheric horizontal velocity spectrum of these

simulations (Figure 3.1) suggests that deeper simulations should imprint larger scale motions on

the surface. Since the modes of the horizontal velocity spectrum with wavelengths smaller than

∼ 1.5 times the depth of the simulation have equal power when comparing shallower simulations to

deeper simulations (Table 3.1) and observations of the solar photosphere show that the maximum
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wavelength in the supergranular peak is approximately 56 − 75 Mm (Roudier et al., 2012), we

compute a simulation with domain depth increased to 49 Mm to capture these horizontal scales

of motion. Based on the length scale (32 Mm) and lifetime (1.8 days, Rieutord & Rincon (2010))

of supergranulation we increase the domain width (197 × 197 Mm2) and the amount of relaxed

data (5.5 solar days, three times the lifetime of supergranulation) to increase the number of po-

tential supergranules and reduce the noise in our investigations. Assuming that supergranules are

approximately 50 Mm in diameter (the maximum of the peak in observations of the photospheric

horizontal velocity spectrum Roudier et al., 2012), the width of these simulation domains could

include up to ∼ 20 supergranules in any snapshot. Assuming a typical supergranular lifetime of

1.8 days (Rieutord & Rincon, 2010), these simulations are approximately 3 times this lifetime,

giving a total of ∼ 60 potential supergranules. The increased width is especially important when

increasing the depth since the scale height of the simulation increases down to 49 Mm depth which

increases the diameter of convection and the narrower simulations could have only one downflow at

the bottom boundary of such a simulation (see Figure 2.3). These wider simulations also include a

larger number of Fourier modes to discriminate between the large-scale motions.

We use the 197 × 197 × 49 Mm3 hydrodynamic simulation with the resolution reduced to

192×192×64 km3 (see §2.2.1 for discussion of the resolution) as the base case or reference simulation

for the rest of this thesis. We have done the most extensive testing and comparison with this

simulation and it is the widest and deepest simulation that we consider well relaxed (we discuss a 80

Mm deep simulation in §3.1.6.2). We compare the horizontal velocity spectrum from this simulation

to the previously presented, narrower 20 Mm deep simulation and a 20 Mm deep simulation with

the new reduced resolution and wider domain size. In Figure 3.12 we see that the two 20 Mm

deep simulations (blue curve for wider simulation and green dotted curve for narrower simulation)

have significantly less low wavenumber power than the 49 Mm deep simulation (black curve) but

nearly identical high wavenumber power. This adds to the evidence that each depth imprints a

specific scale (or range of scales) of motion to the photospheric spectrum, with the convective flows

in deeper simulation domains contributing power only to larger scale modes at the surface.
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The decreased power in the narrower 20 Mm deep simulation compared to the wider simual-

tions is due the fact that the geometric depth that we select as the photosphere (the height with the

minimum mean optical depth greater than one) is not the depth with the maximum rms velocity

(whereas the photosphere in the 197 × 197 Mm2 simulations is also the depth with the maximum

rms velocity). This is caused by the change in resolution between the two simulations but does not

affect the shape of the spectrum.

3.1.6 The Box Mode in the Reference Simulation

While the shallower simulations have enhanced photospheric power that we call a box mode at

scales between 1.5 and 2.5 times the domain depth (see §3.1.2), the enhanced power is particularly

strong in the 197 × 197 × 49 Mm3 simulation. The k/2π = 0.01 Mm−1 (λh = 98 Mm, twice the

depth of the simulation) mode is consistently the strongest large-scale mode and there is a significant

amount of time during the simulation that this mode exceeds the granular peak (see Figure 3.13

compared to typical granulation peak at ∼ 2 × 1018). Note that the total power (integrated over

all wavenumbers) is dominated by the granulation at all times. The power in the box mode (which

may include multiple scales in the Fourier spectrum) is in disagreement with observations of the

supergranulation spectrum showing a decline in power for scales larger than 75 Mm (Roudier et al.,

2012).

This mode requires careful consideration before including in our analysis and may contribute

significant power to neighboring modes which makes them unreliable as well. Thus we examine

this mode in detail to determine whether it is different in character from the other modes of the

power spectrum, what causes the excess power in box mode and identify which low wavenumber

modes are contaminated by this excess power.

3.1.6.1 Time Scale of Box Mode

The box mode in the reference simulation varies over a time scale of several days (Figure 3.13)

unlike the smaller scale modes. We use the full width at half maximum (FWHM) of the tempo-
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Figure 3.12 The photospheric horizontal velocity spectrum of simulations of different depths. We
introduce the reference simulation (solid black curve, domain width of 197× 197 Mm2 and 49 Mm
depth) and compare it to the previous 20 Mm deep simulation, a new wider 20 Mm deep simulation
and an 80 Mm deep simulation that uses an artificial energy flux in the bottom 30 Mm to mimic the
radiative energy flux in the bottom of the convection zone. This deeper simulation is effectively a 50
Mm deep convection simulation with 30 Mm devoted to the bottom boundary condition. We find
that the shallow simulation has significantly less power in the photosphere and using the artificial
flux to improve the boundary reduces the influence of the box mode when compared to the reference
simulation. The difference between the narrower and wider 20 Mm deep simulations is due the fact
that the geometric depth that we select as the photosphere (the height with the minimum mean
optical depth greater than one) is not the depth with the maximum rms velocity (whereas the
photosphere in the 197× 197 Mm2 simulations is the depth with maximum rms velocity). This is
caused by the change in resolution between the two simulations but does not affect the shape of
the spectrum.
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Figure 3.13 The photospheric horizontal velocity power of the λh = 98 Mm box mode of the
reference simulation over the 6 days of relaxed time during the simulation. The box mode has
very long timescales variations. While we have very limited data, this time series appears to be
undergoing the first period of a periodic variation (∼ 6 days). It is unclear, however, if continuing
this computation would yield different results.
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Table 3.2. The full-width at half max of the temporal autocorrelation of the seven largest modes
in the photospheric horizontal velocity power spectrum from the reference simulation.

λh [ Mm] FWHM [hrs]

197 22
98 34
66 9.1
49 18
39 19
33 13
28 2.9

Note. — All modes with
scales smaller than 30 Mm
have a FWHM less than 4
hours.

ral autocorrelation of the large scale modes from the photospheric horizontal velocity spectrum to

compare the time scales of different supergranular scale modes in Table 3.2. The temporal auto-

correlation of the horizontal velocity power (Ph) correlates a shifted and unshifted time series of Ph

(see Figure 3.13 for the time series of the box mode, λh = 98 Mm). The autocorrelation is equal to

one with no shift and drops with increasing (positive and negative) time shifts (see Figure 3.15 for

an illustration of temporal correlation). For increasing time shifts we remove the edges of the time

series from the correlation measurement since the data set is not periodic. The FWHM is defined

as the time between negative and positive shifts where the correlation coefficient drops to one half.

This is a method that measures the time it takes for the power to become de-correlated.

The FWHM of the box mode (34 hours) is significantly longer than any other supergranular

scale mode. Since the time series (Figure 3.13) shows a significant peak at the beginning and

end of the available data, this suggests that there may be a periodic signal that has a period

of ∼ 6 days (though our limited data only observes one period and cannot predict if this would

continue). This potential periodic behavior would not be included in the measurement of the

de-correlation time since we cut off the edges of the data for increasing time shifts. The largest

wavelength λh = 197 Mm mode has longer FWHM correlation time, similar to the λh = 98 Mm

mode (especially considering the decreased power in this mode and, as we will discuss in §4, the fact
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that the driving scale 4Hρ = 197 Mm is outside the simulation domain). The decreased FWHM

for modes with wavelength λh ≤ 66 Mm, however, suggests that the contamination from the box

mode to these smaller modes is minimal.

3.1.6.2 80 Mm Deep Simulation

Finally, we compute an 80 Mm deep simulation using artificial energy flux (see §2.1.6) in

the bottom 30 Mm to try to reduce the influence of the bottom boundary condition, which may

be directly responsible for the enhanced power in the box mode in these simulations. We use this

artificial energy flux to reduce the convective energy flux in this region which reduces the flow

amplitudes there. This is similar to the bottom of the convection zone where the divergence of

the radiative energy flux heats the flows and reduces the convective energy flux. In the bottom

3 Mm the artificial energy flux is equal to the solar energy flux. Thus we would expect this

region to transport zero energy flux via convection (we see this in other simulations in §4.2.3).

This simulation is effectively a 50 Mm deep region of solar-like convection with a 30 Mm bottom

boundary condition.

Preliminary results from this deeper simulation show 37% less power in the k/2π = 0.01 Mm−1,

λh = 98 Mm mode (Figure 3.12) than the reference simulation which suggests that the increased

power in the reference simulation is an artifact of the boundary condition or domain depth. The

power in the smaller scale modes, on the other hand, does not show any significant difference from

the reference simulation. This provides additional evidence (along with the de-correlation time

of each mode) that the box mode power is concentrated for modes with k/2π ≤ 0.01 Mm−1 and

does not significantly contaminate the smaller scale motions. We thus remove the two largest scale

modes from any further analysis but continue to include them in all spectra for completeness.

There are significant limitations of the 80 Mm deep simulation that make further examina-

tion unreliable and, consequently, we only use it to test the box mode. The deeper stratification

never reached a balanced energy flux since the timescales are longer and would require significant

additional computational resources to reach a relaxed state.
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3.2 Where do the Supergranular Flows Originate?

We have found that increasing the depth of these simulations increases the low wavenumber

horizontal power in the photosphere. This suggests that the low wavenumber horizontal power

imprints on the photosphere. We also found that increasing the domain depth of the simulation

increases low wavenumber power but does not influence the smaller-scale flows. This suggests that

each depth contributes a specific scale (or range of scales) to the power in the photosphere. We

still do not know, however, precisely where the supergranular scale (∼ 20−50 Mm) flows originate.

We try to answer this question by comparing the time and depth variations in the supergranular

scale flow pattern and the power in the low wavenumber modes.

3.2.1 Correlating the Flow Pattern

To measure the precise depth where the supergranular scale flows originate we correlate the

convective flows at different depths and different times. This can help measure if changes in the

flow pattern travels up or down and if they originate at a particular depth. There is significant

small scale structure in the full resolution images that causes the flows to de-correlate quickly both

in time and with depth so we use a Fourier filter to isolate the supergranular scale flows.

3.2.1.1 The Fourier Filter

To apply the Fourier filter we first compute the two-dimensional FFT of a horizontal slice

of the chosen quantity. Since the simulation is horizontally periodic there are no issues with

the boundaries. We then select the scales that we want to remove. To exclude the influence of

the box mode we remove the two lowest wavenumber modes (see §3.1.6) and then to isolate the

supergranular scale flows we remove all scales with λh < 20 Mm. The rest of the scales remain and

we refer to them as the unfiltered modes.

To determine the scale of the modes we use the two dimensional horizontal wavenumber

kh(kx, ky) =
√
k2
x + k2

y. This is in contrast to the wavenumber we use while plotting the power
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spectrum which is a one-dimensional function described in §3.1.1. To prevent ringing we apply a

cosine to the fourth power at the high and low wavenumber edges of the unfiltered modes. Finally,

the data is inverse Fourier transformed and we take the real part of this new data set as our Fourier

filtered data. This process is very similar to smoothing but isolates particular modes which is

necessary to exclude the two largest scale modes.

Figure 3.14 The photospheric horizontal divergence (a) and Fourier filtered horizontal divergence
(b) to include all modes with length scales between 20 Mm and 50 Mm. These snapshots are from
the reference simulation.

3.2.1.2 The Flow Pattern is Top-Down

Supergranulation is primarily a horizontal feature in the photosphere. To incorporate both

components of the horizontal flow we use the horizontal divergence ∇h · u = ∂ux
∂x +

∂uy
∂y which

is the best measure of the flow that advects the magnetic vertices that help outline and identify

solar supergranules. Near the surface the horizontal divergence is strongly correlated with the

vertical velocity (i.e. horizontal flows converge at downflows and diverge at upflows with correlation

coefficient ∼ 0.9) making it appear to be a similarly suitable variable to represent the supergranular

flows. As we have seen, however, the vertical flows in the photosphere are dominated by granular
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convection and contain very little information about the supergranular scale flows (§3.1.4.2). Thus

the horizontal divergence of the horizontal flows (which, in spectral space, is horizontal velocity

spectrum multiplied by k2
h and, consequently, includes the supergranular scale flows and their depth

dependence as discussed in §3.1.2.1) is the best choice for measuring supergranular scale convection.

To measure the originating depth of the supergranular flow pattern, we correlate a single

shallower slice with slices from deeper flows that span several hours. The minimum time separation

between slices is approximately 130 seconds, so this determines the minimum temporal variations

that we can resolve. Since the deep flows have increased lifetime, we increase the total time spanned

by our shift for increasing depth. For each depth we repeat this process for 25 separate instances

of this correlation measurement across the full 5.5 days of relaxed data. We have made the same

measurement with reversed roles for the two depths, i.e. using a single deeper slice and correlating

with shallower slices at different times, and find that the two methods give the same results.

We show the correlation of the Fourier filtered horizontal divergence as a function of time

between the photosphere and 3.392 Mm depth in Figure 3.15. Since the lower slice is being shifted

the negative time means that it is an earlier time at 3.392 Mm depth compared to the photosphere

and positive means that it is later. The solid (black) curve shows the average of 25 measurements.

The maximum correlation (with a correlation coefficient of approximately 0.87) occurs roughly 40

minutes later than the photosphere. In other words the supergranular scale flows at 3.392 Mm are

most strongly correlated with the photosphere after waiting approximately 40 minutes.

The dot (blue), dash (green), and dot-dash (red) curves show a sample of extreme individual

measurements (including the earliest and latest maximum correlation time) of the correlation be-

tween these two depths. Even for the earliest maximum correlation time (dot-dash (red) curve), it

is clearly at a later time than the photosphere. This pattern is consistent: the maximum correlation

time is always later for deeper flows. This suggests that the horizontal divergence below the surface

is always reacting to changes in the flow pattern up above. This is an apparent contradiction with

the results from §3.1, which we revisit at the end of this section.
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Figure 3.15 The correlation of the Fourier filtered horizontal divergence as a function of time
between the photosphere and 3.392 Mm depth. The Fourier filtering removes all modes smaller
than λh = 20 Mm and the two lowest wavenumber modes (which includes the box mode). This
shows an average maximum correlation time that is at later times below the photosphere which
suggests that the supergranular scale photospheric horizontal divergence pattern travels down and
influences the deeper layers.
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3.2.1.3 Time Scale of Pattern Changes

Beyond using this temporal correlation to measure an originating depth of the supergranu-

lar flow pattern, we can determine the speed at which these changes are occurring by using the

maximum correlation between each depth. Correlating the horizontal divergence from horizontal

slices for all available depths gives us nine measures of this time scale between depths. Since the

local maximum in any correlation is very noisy (see Figure 3.15), we fit a second degree polynomial

to the correlation time series and find the maximum of this polynomial. We use this maximum

correlation across all 25 independent measurements of the maximum correlation time. This means

that the shallower data is well separated in time but the deeper flow time scales are so long that

there is some overlap in the data used for the correlation. We correlate the photospheric flow with

the horizontal slice that is closest to the photosphere and shift in time to determine the maximum

correlation time between these two depths (3.392 Mm, see Figure 3.15). We then repeat this pro-

cess by correlating each new depth with the nearest depth below and continue this process down

to correlating the two lowest depths (where the number of depths is limited by the simulation data

output). This allows us to measure the maximum correlation time between each depth from the

photosphere down to 40 Mm near the bottom boundary (at 49 Mm).

In Figure 3.16 we plot the mean of the measured maximum correlation times from the pho-

tosphere down to each depth (diamonds) with one standard deviation error bars. These error bars

estimate the error between each slice but the successive errors from the photosphere down would

be additive (which we do not show here). We over-plot an advective timescale computed by in-

tegrating the mean and root-mean-square (rms) downflow velocity from the photosphere down to

the bottom, i.e. tz = tz+dz + dtz where dtz = dz/|〈udownflow〉z| for the mean downflow velocity or

dtz = dz/
√
〈u2
downflow〉z for the rms downflow velocity and udownflow includes all uz < 0 at each

height. These two estimates of the advective timescale agree quite well with the correlation time

of the large-scale horizontal divergence. This suggests that the convective pattern is dominated by

the downflows and responds to changes higher in the atmosphere on a timescale that is consistent
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Figure 3.16 The maximum correlation time between select depths (which is limited to the data
output of the reference simulation) of the Fourier filtered horizontal divergence compared to the
photosphere (i.e. the time it takes for the pattern to travel down from the photosphere). Error bars
show one standard deviation from the mean of the maximum correlation time. The dashed and
dotted curve show the mean and rms downflow time (respectively) integrated from the photosphere
down. The travel time of the supergranular scale horizontal divergence pattern is consistent with
the travel time of downflows.
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with the downflows traveling between those depths.

3.2.2 Correlating The Horizontal Velocity Power

Examining the correlations of the horizontal divergence finds a top-down supergranular scale

pattern, but our primary method for identifying supergranulation is the horizontal velocity spec-

trum. By computing similar correlations between depths of the horizontal velocity spectrum we

can determine if temporal variations in the spectrum of supergranulation imprint from below (as

we saw in §3.1) or the travels down as we saw in the correlations of the horizontal divergence. We

show the time series of one of the supergranular scale modes (λh = 33 Mm) at different depths in

Figure 3.17.

Figure 3.17 The time series of the power in the λh = 33 Mm mode at three depths: photosphere
(black), 3.392 Mm (red), and 7.488 Mm (blue). At early times the power grows slowly in the
supergranular scale first in the photosphere and deeper down at later times. The variation of the
power of this mode is also visibly (very slightly) later for the deeper flows.

The simulation begins with zero velocity (see §2.2) which allows us to examine the initial

growth in the power of this mode. The power in the photosphere (black curve) grows more quickly

than the power in the deeper layers. This is consistent for all supergranular scale modes at all
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depths: the initial power grows in upper layers before deeper layers of the atmosphere. This

suggests that the initial increase in power is top-down. This is an apparent contradiction with the

evidence in §3.1 that the presence (and amplitude) of the deep flows determines the power in the

photosphere.

The variations in the power after the simulation has relaxed (the relaxed data is the last

5.5 days of simulation time) are also very similar for each of the depths shown. We examine the

variations in the power in the supergranular modes (20 Mm < λh < 50 Mm, to match the Fourier

filter of the horizontal divergence in §3.2.1) by correlating the power across depths. Similar to the

correlations of the flow pattern, we correlate the power between depths while varying the temporal

shift. These correlations also show that the temporal fluctuations in horizontal power travel down,

with deeper power following variations of the power in upper layers after some period of travel time

(similar to Figure 3.16).

We added a computation of the velocity spectrum within the MURaM code which allows

us to compute and output the power for every other depth with high time cadence. With this

increased data (as compared to the flow pattern correlations above), we determine the most accurate

maximum correlation time between depths by correlating each depth with the 10 depths above and

below and then average those 30 maximum correlation times. This method provides an improved

measure of the maximum correlation time with a standard deviation that is too small to plot

(typically < 0.01 hrs).

We show the maximum correlation time of the fluctuations in supergranular scale power in

the horizontal velocity spectrum from the photosphere to each depth (solid curve) in Figure 3.2.2.

This compares quite well to the rms downflow time (same as in Figure 3.16) until depths greater

than 25 Mm at which point the horizontal power variation travels somewhat faster than the rms

downflow speed (though slower than the fastest downflow velocities). This confirms that both the

flow pattern and the supergranular scale velocity power are determined from the top-down on an

advective timescale.
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Figure 3.18 The maximum correlation time of the power in the supergranular scale modes of the
horizontal velocity spectrum. To compute the maximum correlation time at each depth, we compute
the maximum correlation time between the supergranular scale modes for the nearest 10 spectra
above and below each depth and take the mean correlation time from all these nearest depths.
The standard deviation of this method is too small to show in error bars. The dashed and dotted
curve show the mean and rms downflow time (respectively) integrated from the photosphere down.
The supergranular scale horizontal velocity spectrum power has shorter correlation time and thus
travels slightly faster than either of these measures.
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3.3 Conclusion

In this chapter we have examined the fundamental question: do supergranular flows originate

in or near the photosphere (top-down) or do they imprint from below (bottom-up)?

We know that the length scale of flows increase with depth due to the increasing scale height

and recent observations have linked the length scale of the supergranules to the depth at which

they originate (Hathaway et al., 2010; Hathaway, 2012a). Comparing simulations with domain

depths ranging from 49 Mm to 2 Mm, we find that the low wavenumber horizontal velocity power

in the photosphere depends both on the presence and amplitude of the larger scale flows deep in the

domain. Furthermore, we find that each successively deeper simulation adds photospheric power

on larger scales (and is consistent with the shallower simulations for all smaller scale modes). This

suggests that each depth contributes power to horizontal motions in the photosphere at a specific

length scale (or range of scales) with the contributed scales increasing with depth. This helps

motivate the model that we introduce in §4.

Curiously, while the low wavenumber vertical velocity power below the surface (measured at a

depth of 1.3 Mm) also depend on the simulation domain depth, the low wavenumber vertical power

in the photosphere does not. Based on a relationship taken from our model in §4, the amplitude

of the low wavenumber vertical flows required to drive the horizontal motions in the photosphere

are much weaker than the power in the photospheric vertical velocity spectrum. We also find that

the dominant balances of the continuity equation change between the photosphere and 1.3 Mm

depth with the density gradient (including horizontal derivatives of the density which are weak

below the photosphere) balancing the increased power in the low wavenumber vertical flows in the

photosphere. While the large-scale vertical flows in the photosphere are balanced by the density

gradient, the continuity equation by itself does not determine the flows. The vertical motions in the

photosphere are dominated by the processes in the radiative boundary layer. These processes drive

vertical velocities on the scales of supergranulation in the photosphere with much larger amplitude

than any imprinted power there.
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Table 3.3. Evidence for supergranulation that originates near the surface (Top Down) or at
depth (Bottom Up).

Bottom Up Top Down

Low wavenumber horizontal flow amplitudes in the Convective pattern is dominated
photosphere depend on the simulation domain depth. by photospheric downflows.

Deeper flows increase the power in Fluctuations in the horizontal
larger scale motions in the photosphere. velocity spectrum are dominated

by photospheric downflows.
The balance of the continuity equation
determines the spectrum of flows at each depth.

In order to pinpoint the specific depth at which the supergranular scale in the photosphere

originates we correlate both the horizontal divergence pattern and temporal fluctuations of the

horizontal velocity spectrum between depths. Both of these measures find that any temporal

variations originate in the photosphere and travel down on the time scale of advection via downflows.

This suggests that the downflows (with greater momentum than the upflows) dominate both the

convective pattern and the variations in the low wavenumber horizontal power.

This leaves us with an apparent contradiction. We have evidence that supports a surface

origin for supergranulation (top down) and that the deep flows that imprint on the surface (bottom

up) which we outline in Table 3.3. To reconcile this conflicting evidence, we consider the role of

the continuity equation in generating these flows. The balance of terms in the continuity equation

determines the flow spectrum at depth. Thus, the large-scale flows deep in the convection zone have

non-zero∇·(ρu) which creates pressure perturbations on these scales. These pressure perturbations

travel at the sound speed and reach the photosphere on timescales much shorter than we examine

in our correlations (the mean sound crossing time from the bottom of the 49 Mm deep reference

simulation is ∼ 21 minutes). Thus, the imprinting may be caused by positive pressure perturbations

of the upflows at all depths which drive large-scale divergence in the photosphere. Additional work,

however, must be done to confirm this hypothesis by examining the relationship between deep flows
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and the pressure in the photosphere.



Chapter 4

The Role of Subsurface Convection: Modeling the Spectrum of Supergranular

and Larger Scale Flows

4.1 Lord et al. (2014)

Here we present Lord et al. (2014) in its entirety. This paper introduces a model which

tries to address the question of where the large-scale photospheric flows originate. This model also

identifies which features of the simulation are most important to the spectrum of the surface flows.

The contributions of the different authors are detailed here. I collaborated with Robert

Cameron on creating the initial model, the conversion between horizontal and vertical flows, and

the driving scale which separates flows that are locally driven and flows that are decaying from

below. I then examined the continuity equation in detail to determine the final functional form of

these equations with help from Mark Rast and validated our assumptions in both the stratified and

homogeneous simulations. I conducted the experiments to determine the validity of the spectrum

produced by the two-component model. I computed new equations of state with help from Matthias

Rempel, a mixing length model that was validated by comparing with the model S atmosphere,

and new three dimensional simulations to examine the effect of helium ionization. Finally, I ran

the simulation with the artificial energy flux and, using the coherent structure tracking (CST)

algorithm from Thierry Roudier, I compared the power spectra by applying the CST algorithm to

both HMI observations and the MURaM simulations with help from Robert Cameron. Matthias

Rempel gave advice throughout and helped set up the simulations. Mark Rast also gave advice

throughout, suggesting several tests of the model, helping significantly with the editing, and helping
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to work through the mathematics.

4.1.1 Introduction

Solar supergranulation is observed as horizontal divergent flow within magnetic network

boundaries (Leighton et al., 1962; Simon & Leighton, 1964), either by Doppler imaging away from

disk center (Hathaway et al., 2000) or by correlation (November & Simon, 1988; DeRosa & Toomre,

2004; Meunier et al., 2007) or structure tracking near disk center (Rouder et al., 1999; Roudier et al.,

2012). The power spectrum of the horizontal motions shows a characteristic peak at horizontal

scales ranging from approximately 20 Mm to 50 Mm, and the motions at these scales are identified as

supergranulation. There is a dramatic drop in spectral power for scales larger than supergranulation

with very weak giant cell flows only recently confirmed by observations (Hathaway et al., 2013).

The physical origin of the supergranular length scale remains a mystery. Suggestions range

from possible dynamical effects of the second ionization of Helium (Leighton et al., 1962; Simon

& Leighton, 1964; November et al., 1981) to spatial correlation or self organization of granular

flows (Rieutord et al., 2000; Rast, 2003; Crouch et al., 2007). Radiative hydrodynamic simulations

of solar surface convection fail to yield clear evidence for supergranulation, even in very large

domains spanning up to 96 Mm by 96 Mm in width and 20 Mm in depth (Stein et al., 2009;

Ustyugov, 2010). Recent simulations in even larger domains of up to 196× 196× 49 Mm3 suggest

that the domain depth, and the consequent stratification captured by the simulation, may be as

critical as domain width (Lord, 2014). Based on these broad and deep simulations of solar surface

convection we have developed a model of the convective velocity spectrum which reproduces the

simulation spectrum and provides insight into how the deep convective flows help build the observed

photospheric spectrum.

The model assumes that, at each depth, vertical motions are driven at scales four times

the local density scale height. The amplitudes of smaller scale motions is taken to be consistent

with the spectrum of unstratified and incompressible turbulence. Larger scale vertical motions

imprint from below with reduced amplitude and are observed as primarily horizontal flows at the
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surface (Sprout et al., 1990). In other words, modes with wavelengths smaller than the integral

(driving) scale are assumed to have amplitudes that follow the spectrum of isotropic homogeneous

turbulence given by Kolmogorov (1941), while vertical motions of scales larger than the integral

scale are assumed to decay with height from their driving depth. The integrated power of the

vertical velocity is determined using a mixing length model of energy transport, and the spectrum

of horizontal velocity follows from the vertical velocity spectrum at each depth by mass continuity.

Key scalings in the model are verified using the radiative hydrodynamic simulations of Lord

(2014), and the simplified model spectra agree with those of the simulations over a wide range

of wavenumbers. They also match observations at supergranular scales. However, power at lower

wavenumbers, in both the model and radiative hydrodynamic simulation spectra, significantly

exceeds that observed. This suggests either that large scale flows deep in the solar convection

zone are weaker than predicted by convection simulations or that rotation and the consequent near

surface shear layer, not captured in our studies, plays a decisive role in masking large scale motions.

We note however, that recent helioseismic observations (Hanasoge et al., 2010, 2012) and global

scale numerical simulations, with and without a near surface shear layer (Hotta, 2014a), also suggest

that large scale convection in the Sun is weaker than numerical models predict. It is possible that

magnetic fields play a role, that convection in the Sun is fundamentally magnetized. Preliminary

studies of radiative magnetohydrodynamic simulations (Lord, 2014) in very large domains show

some suppression of low wavenumber power in highly magnetized solutions, though the mechanism

is still under investigation and the effect so far appears insufficient to explain solar observations. In

this paper we focus on strictly hydrodynamic effects to elucidate the important role of stratification

and the secondary influence of ionization in shaping the photospheric horizontal velocity power

spectrum at supergranular and larger scales.

In §4.1.2 we describe the simplified two-component continuity balance on which our model is

based, and transform the balance equations into relationships between the vertical and horizontal

velocity spectra. We use these relationships to identify the driving scale of the modes and demon-

strate that these relationships hold in fully compressible hydrodynamic simulations. In §4.1.3 we
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describe the construction of the mixing length atmosphere which sets the amplitude of the model

spectrum, identify two possible decay rates for the large scale modes, and explicitly outline the

model steps employed in the construction of the surface horizontal velocity spectrum. In §4.1.4 we

test the components of the model spectrum against the full radiative hydrodynamic solutions and

verify that the model can reproduce the shape of the spectrum produced by those simulations. In

§4.1.5 we discuss the results of the model spectrum, focusing on the spectrum at supergranular

scales and larger. We show, using feature tracking, that for scales larger than supergranulation

the radiative hydrodynamic spectra can only match the observations when the convective forcing is

removed entirely below 10 Mm. We conclude, in §4.1.6 with a discussion of the broader implications

of the weak low wavenumber amplitudes to our understanding of deep solar convection.

4.1.2 Mass continuity and the effects of stratification

We use the equation of mass continuity to examine how stratification affects flow velocity.

Explicitly,

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
+ ρ(

∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

) + ux
∂ρ

∂x
+ uy

∂ρ

∂y
+ uz

∂ρ

∂z
= 0 (4.1)

where ρ is the mass density, u is the fluid velocity, and subscripts x and y and z indicate components

in Cartesian coordinates. We ignore curvature, and take gravity, and thus increasing density in the

stratified domain, to be in the positive z direction.

In the solar convection zone we can make a number of further simplifying assumptions. Since

we are looking for the statistically steady velocity amplitudes over time periods much longer than

the convective turnover time, we take ∂ρ
∂t → 0. Moreover, we know from hydrodynamic simulations

that the horizontal gradients of the density are small compared to the vertical stratification below

the first few hundred kilometers beneath the solar photosphere, so ux
∂ρ
∂x and uy

∂ρ
∂y are ignored.

Together these assumptions yield an anelastic-like continuity equation (Gough, 1969) that maintains

the steady state stratification by balancing the vertical advection of mass with the divergence of
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the flow,

∇h · uh = −∂uz
∂z
− uz
Hρ

, (4.2)

where uh = uxî+ uy ĵ, ∇h = î ∂∂x + ĵ ∂∂y , and Hρ =
(

1
ρ
dρ
dz

)−1
is the density scale height.

This form of the continuity equation suggests two possible flow regimes: for ∂uz
∂z �

uz
Hρ

the motions may be considered nearly divergenceless and isotropic whereas for ∂uz
∂z �

uz
Hρ

the

stratification is most important in determining the flow component speeds. Heuristically, small

scale overturning eddies would fall in the first regime, while eddies larger than the local scale

height would fall in the second, with the largest isotropic eddies increasing in size with depth as

the density scale height increases. Thus we expect the dominant balance in Equation 4.2 to depend

on the length scale of the flow and depth within the convection zone.

Maintaining the mean stratification in a statistically-steady stratified convective flow requires

that most of the mass must overturn as the fluid rises through one scale height; over each scale

height the density of rising fluid must decrease by a factor of 1/e, implying that 1−1/e of the mass

must overturn. Similarly, downwelling fluid must entrain mass at this rate. If the flow geometry is

approximated by vertical cylinders of radius r and height Hρ, then for all of the mass to overturn

within one scale height, 2πrHρρuh = πr2ρuz. This yields a characteristic horizontal scale for the

motions (Nordlund et al., 2009)

r = 2αHρ
uh
|uz|

, (4.3)

where α is a factor of order 1 and includes a weak dependence on geometry and the 1/e fraction

of the mass that does not overturn. We take this length scale to be the crossover between those

motions that feel the stratification and those that do not. We demonstrate in the next section

that such a crossover is seen in the spectra of three-dimensional simulations. This length scale is

also the integral scale of the velocity spectrum in solar-like hydrodynamic simulations (Stein et al.,

2009), and henceforth we refer to it as the driving or integral scale of the convection.
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4.1.2.1 The spectra of horizontal and vertical motions

Equation 4.2 can be written as

ikh · ũh = −∂ũz
∂z
− ũz
Hρ

, (4.4)

where the overlying tildes indicate the complex Fourier amplitudes resulting from a two-dimensional

horizontal Fourier transform at each depth z and kh is the horizontal mode wavevector. By squaring

both sides and taking two limits of Equation 4.4 we can define a relationship between the power

in horizontal and vertical motions without directly solving for the phases of the modes. For modes

smaller than the integral scale we take the limit ∂ũz
∂z �

ũz
Hρ

, while for larger scale modes we take

∂ũz
∂z �

ũz
Hρ

. Even in these limits, defining the relationship between vertical and horizontal power

is difficult for two reasons: when squaring Equation 4.4, the cross terms between horizontal modes

ũx and ũy on the left side do not have an a priori known form, and the vertical derivative on the

right hand side cannot be simply related to the wavenumber of the horizontal Fourier modes.

To proceed we make simplifying assumptions which we have empirically verified to hold in

stratified (Lord, 2014) and incompressible turbulence simulations (Mininni et al., 2006) as appro-

priate. At small scales the flow is nearly isotropic and homogeneous, with unstratified homogeneous

and isotropic turbulence simulations showing that k2
xũxũ∗x ≈ k2

yũyũ
∗
y ≈ ∂ũz

∂z
∂ũ∗z
∂z , which together with

incompressibility yields ∂ũz
∂z

∂ũ∗z
∂z ≈

1
4k

2
hũh · ũ

∗
h. The simulations also suggest a relationship between

the vertical and horizontal gradients, ∂ũz
∂z

∂ũ∗z
∂z ≈

1
4k

2
hũzũ

∗
z, and together these yield a relationship

between horizontal and vertical power:

ũh · ũ∗h = ũzũ
∗
z , (4.5)

where ũh · ũ∗h = ũxũ∗x + ũyũ
∗
y. At large scales, the cross terms, which result from squaring the left

hand side of Equation 4.4, are measured in stratified simulations to be small and are set to zero.

This implies that k2
xũxũ∗x + k2

yũyũ
∗
y ≈ ũzũ

∗
z/H

2
ρ , and the horizontal and vertical power in the modes

are related as

ũh · ũ∗h =
2

k2
hH

2
ρ

ũzũ
∗
z , (4.6)
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where k2
h = k2

x + k2
y.

Finally, without approximation, the driving scale that separates these two behaviors (Equa-

tion 4.3) can be rewritten as

λh = 4αHρ
uh
|uz|

, (4.7)

where λh = 2π/kh is the wavelength of the Fourier mode corresponding to a convective cell diameter

of d = 2r. By taking α and uh/uz ≈ 1 we approximate the driving scale as λh ≈ 4Hρ. It is on the

basis of these relationships (Equation 4.5 at small scales and Equation 4.6 at large scales with the

crossover between them given by the driving scale λh = 4Hρ at each depth) that we calculate the

horizontal velocity power spectrum from the vertical.

Analysis of large scale radiative hydrodynamic simulations of solar convection (for details,

see §4.1.5.1 and Lord (2014)) helps validate these relationships. Below 1.3 Mm beneath the pho-

tosphere, the mass continuity in the simulations matches the anelastic balance (Equations 4.2 and

4.4) to within a few percent. Near the photosphere this balance breaks down because of fluid

compressibility, particularly at high wavenumber. We thus restrict our model analysis to depths

below 1.3 Mm. At low wavenumbers, p-mode contributions can still be important at the shallowest

depths. We remove these when comparing the numerical simulations to the model by averaging

the simulation velocities over 30 minutes. This averaging also reduces the amplitude of the high

wavenumber convective motions, but preserves the relationships between horizontal and vertical

flows of Equations 4.5 and 4.6. This is illustrated by Figure 4.1, in which the horizontal velocity

spectra measured at several depths in a solar-like radiative hydrodynamic simulation are plotted.

Overplotted are the horizontal velocity spectrum deduced from the vertical velocity spectra of the

simulation at the same depths using Equations 4.5 and 4.6 (dotted and dashed line-styles respec-

tively). The two component reconstruction of the horizontal velocity spectrum from the vertical

reproduces the shape and amplitude of the actual spectrum quite well. Moreover, the driving scale

estimate of 4Hρ is in good agreement with the crossover between the two behaviors. Plotted in

Figure 4.2 is the crossover wavenumber as a function of depth (defined as smallest wavenumber in
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Figure 4.1 The horizontal velocity power spectra (solid curves) from hydrodynamic simulations
using a Saha equation of state (see §4.1.3.1 and §4.1.5.2 for details) at four depths: black 1.3 Mm,
blue 5.4 Mm, green 15.7 Mm, and red 23.9 Mm below the photosphere. The dashed and dotted curves
show the horizontal velocity spectra deduced from the vertical velocity based on Equations 4.5
and 4.6 respectively. The velocity is averaged over 30 minutes before computing these spectra to
remove p-modes. This averaging also reduces power in high wavenumber convective motions.
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the simulations for which the balance in Equation 4.6 begins to fail, meaning that the difference

between the two terms at neighboring larger horizontal wavenumbers is increasingly large). For

comparison, 4Hρ is overplotted in red. They are in good agreement. Note that the discontinuities

in the measured values are due to the finite spectral resolution of the simulation; many depths

in the simulation appear to have the same crossover scale because there are no modes that can

discriminate between them.

4.1.3 Model components

Having verified the two component continuity balance, we construct the horizontal spectrum

of horizontal motions from the horizontal spectrum of the vertical velocity using the relationships

derived. To do this we must model the vertical velocity spectrum at each depth. This depends

on the driving (integral) scale at that depth, the spectrum of the small scale motions, and the

decay rate of the large scale modes that are driven below the height of consideration. We have

already defined the driving scale as 4Hρ, and we choose the spectrum of the higher wavenumber

motions to follow a turbulent cascade with a k−5/3 Kolmogorov slope. The Kolmogorov spectrum

does not match the spectrum of motions in the hydrodynamic simulations exactly, but we use it

in the model for simplicity and in place of an ad hoc fit to the simulations, which themselves may

not match the spectrum of solar motions (see §4.1.4). The integrated spectral power is determined

using the rms velocity of a mixing length model of solar convection (§4.1.3.1). Thus the amplitudes

of modes with scales larger than the driving scale are determined by their decay with height from

the depth at which they were last driven (§4.1.3.2), and the remaining power (the rms velocity

squared minus the power in large scale modes) is distributed among all modes at the driving scale

or smaller according to a Kolmogorov distribution.

4.1.3.1 Mixing length transport by small scale modes

We employ a simplified hydrostatic mixing length atmosphere of pure hydrogen and helium

in Saha equilibrium, integrating the mixing length equations (Prandtl, 1925; Böhm-Vitense, 1958)
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Figure 4.2 The crosses show the driving scale in the hydrodynamic simulation. This scale separates
the small scale divergenceless motions that follow Equation 4.5 and the large scale motions that feel
the stratification and follow Equation 4.6. The driving scale is taken to be the smallest wavenumber
where the horizontal velocity spectrum begins to systematically diverge from Equation 4.6. The
solid (red) curve shows 4Hρ from the hydrodynamic simulation.
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using the observed density and temperature of the solar photosphere as boundary conditions. We

take the convective flux to be equal to the photospheric radiative output (6.3× 1010 erg cm−2 s−1)

as appropriate for efficient convection, and note that this introduces an error in the lower portions

of the model where, in the Sun, radiation transports a significant fraction of the energy flux. This

error makes a small contribution to the excess model power at the largest scales (§4.1.4).

Explicitly, we solve the equation for the convective energy flux Fc = 1
2ρvCpT

l
Hp

(∇−∇′) along

with that of hydrostatic balance dP
dz = −ρg. Here ρ is the fluid density, v is the velocity, Cp is the

specific heat at constant pressure, T is the temperature, ∇ is the mean temperature gradient, ∇′ is

the temperature gradient within the convective cell, P is the pressure, and g = Gm(z)/r(z)2 is the

gravitational acceleration with r(z) the distance from the Sun’s center, m(z) the mass within that

radius and G the gravitational constant. We employ the equation of state P = ρkT/µ, where k is

the Boltzmann constant and µ is the mean molecular weight of the plasma, and assume that the

convective motions are adiabatic, so that ∇′ = ∇ad = ∂lnT
∂lnP

∣∣∣∣
ad

, the adiabatic temperature gradient.

Finally, the rms convective velocity is given by v2 = 1
8gQ

l2

Hp
(∇−∇′), where l is the mixing length

measured in units of the pressure scale height HP . Note that Q = 1 − ∂lnµ
∂lnT

∣∣∣∣
P

, Cp, ∇ad, and µ

account for the non-ideal effects of hydrogen and helium ionization (where the number density of

each ionization state is determined in collisional equilibrium as a Saha balance).

The equations are integrated numerically from the photosphere downward, yielding the con-

vective rms velocity and the local density scale height at each depth.

4.1.3.2 Decay of large scale modes with height

In all simulations of solar convection the amplitude of the vertical velocity at low wavenum-

bers decreases towards the surface where granular scale convection is dominant. The rate of this

decrease for the largest scale convective modes is a fundamental uncertainty in our understanding

of solar convection. While global simulations predict giant cell convection throughout much of the

convection zone (e.g., Miesch et al., 2008), surface observations have only very recently found evi-

dence for weak flows at these scales (Hathaway et al., 2013). Numerical simulations have difficulty
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directly addressing the photospheric amplitude of large scale motions. They are either of limited

extent in depth (Stein et al., 2009; Ustyugov, 2010; Lord, 2014) or do not capture the non-ideal

and highly compressible nature of the uppermost layers (Miesch et al., 2008).

Because of these uncertainties, we examine two possible vertical velocity amplitude decay

profiles. Starting from the depth at which the wavelength of the mode exceeds the integral scale,

we decay the modes either by approximating the flow as potential (van Ballegooijen, 1986) or by

using a cubic polynomial fit to the observed decay of modes with wavelengths between 20 Mm

to 50 Mm in the hydrodynamic simulations (shown as diamonds in Figure 4.3). The potential

flow approximation takes the flow to be irrotational, allowing a direct solution to the large-scale

continuity balance, written as

∂φ̃

∂z
= −khHρφ̃ , (4.8)

where the φ is the velocity potential with ũz = ∂φ̃
∂z . This yields a profile for the velocity amplitude

with height

ũz(z) = ũz(zd)
Hρ(z)

Hρ(zd)
exp

[
k2
h

∫ z

zd

Hρ(z
′)dz′

]
, (4.9)

where zd is the driving depth. This velocity profile can be integrated numerically for any wavenum-

ber kh, the results of which are shown with triangles in Figure 4.3. The polynomial fit, on the

other hand, approximates the decay of the modes by a single function determined from the hydro-

dynamic simulations (solid line in Figure 4.3). The fit groups the behavior of all modes between 20

and 50 Mm together and is thus inadequate to reproduce the hydrodynamic simulation in detail

(see §4.1.4). It is employed in the model because of its simplicity. The two schemes are quite

different in form, and together provide a test of the sensitivity of the model to this key unknown

function.

4.1.3.3 Construction of the model spectrum

In summary, we construct the model surface horizontal velocity spectrum as follows. To

calculate the spectrum of the vertical velocity we:
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Figure 4.3 The diamonds show vertical velocity power from the driving depth, λh = 4Hρ, up to 1.3
Mm below the photosphere in the hydrodynamic simulation. The different colors show different
modes from 20 Mm (red) to 50 Mm (purple). The black curve is the cubic polynomial fit to the
observed decay rate. The triangles show the decay rate for a potential flow (Equation 4.9) for the
same range of modes.
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(1) Construct a mixing length model of the solar convection zone integrating from the photo-

sphere downward to 200 Mm, the approximate depth of the solar convection zone.

(2) Determine the wavelength of the largest scale mode allowed at the bottom of the model

atmosphere, λh = 4Hρ, and use this as the integral (driving) scale (i.e. the lowest wavenum-

ber mode) in a k−5/3 turbulent cascade. The highest wavenumber in the spectrum is taken

to be the Nyquist frequency of the hydrodynamic simulations on which the model is based

(2π/384km, see §4.1.5.1), and the spectrum is normalized so that the integrated power is

equal to the mixing length velocity squared at the bottom of the model atmosphere.

(3) Move one step up in the atmosphere (a grid spacing of 64km is used to again match the

hydrodynamic simulations). Decay modes with wavelengths longer than the local integral

scale (4Hρ) using one of the two decay functions discussed in §4.1.3.2. Compute the inte-

grated power in the decaying modes and normalize the remaining k−5/3 spectrum by the

squared mixing length velocity minus the power in the decaying modes.

(4) Repeat Step 3 until the top of the model atmosphere is reached.

From the vertical velocity spectrum, the horizontal velocity spectrum at any height is computed

using Equations 4.5 and 4.6.

4.1.4 Testing the Model

We used the model outlined above to compute the horizontal velocity spectrum at a depth of

1.3 Mm below the solar photosphere (as previously discussed model assumptions break down above

this height and results from hydrodynamic simulations validate this spectra as a close approximation

to the surface spectrum for supergranular and larger scale motions). The resulting spectrum is

shown as a solid (red) curve in Figure 4.4a. For clarity we show the spectrum obtained when

employing the large scale mode decay rate as measured in the hydrodynamic simulation only

(we discuss the potential decay below). The spectrum has two notable low-wavenumber features:

monotonically increasing power at scales larger than supergranulation and a small plateau of power
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at supergranular scales. The monotonic increase of power to lower wavenumbers is not observed on

the Sun. The horizontal velocity spectrum of solar motions shows decreasing power at scales larger

than supergranulation (see §4.1.5.1). The small supergranular plateau extends from λh ∼ 20 − 30

Mm (corresponding to k/2π ∼ 0.03− 0.05 Mm−1 in Figure 4.4a), matching supergranular scales in

solar observations. The high wavenumber features of the spectrum, in particular the discontinuity

at the 1.3 Mm depth integral scale, occur at scales for which the model is ill suited.

To test the sensitivity of the model to the mixing length atmosphere employed we compared

the spectrum shown in Figure 4.4a to one computed using a more sophisticated non-local mixing

length formulation (Christensen-Dalsgaard et al., 1996). The non-local formulation employs the

OPAL (Rogers & Iglesias, 1992) equation of state and opacities, more carefully accounting for the

chemical composition of the convection zone. Importantly, it also accounts for the transport of

energy by radiation in the lower portion of the convection zone, which reduces the convective flux

and consequent driving amplitudes there. The resulting horizontal velocity spectrum has nearly

identical shape as that computed using our simplified Saha balance. Only the largest scale mode

shows any notable difference, with the amplitude of that mode somewhat reduced as it is the only

mode driven in lower third of the convection zone where the Christensen-Dalsgaard et al. (1996)

convective velocities are weaker as a result of the more careful accounting of the radiative energy

flux.

As there is no a priori expectation for the decay rate of the large scale modes, this aspect

of the model is more difficult to assess. We chose to compare the spectrum shown in Figure 4.4a

(obtained using the large scale mode decay rate measured in the hydrodynamic simulations) to one

employing an analytic potential flow assumption (van Ballegooijen, 1986) because the later yields

an exponential decay of the mode amplitudes (Equation 4.9) and may thus represent a somewhat

limiting case. The surface horizontal velocity spectrum computed with the exponential decay

shows significant reduction in overall power, particularly at small scales, but quite similar shape at

supergranular scales. It exhibits a nearly identical monotonic increase of power at scales larger than

supergranulation to that seen in Figure 4.4a. The relative amplitudes of low wavenumber modes
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Figure 4.4 The spectra computed from the two component model using the decay rate fit to the
hydrodynamic simulations. We show the horizontal velocity spectrum at a depth of 1.3 Mm in part
a and the vertical velocity power at the driving depth in part b. The solid (red) curve in part a
and diamonds in part b (red) shows the spectrum computed from a mixing length atmosphere with
a Saha equation of state that includes H, He I, and He II ionization; the dashed in a and triangles
in b (green) is computed from an atmosphere with no He II ionization; and the dotted in a and
crosses in b (blue) is computed from an atmosphere with no He I or II ionization. The vertical
dotted lines show the depths of 50% He I (6 Mm and k/2π = 0.1 Mm−1) and He II (17.5 Mm and
k/2π = 0.03 Mm−1) ionization in part b and driving scale, where λh = 4Hρ, at those depths in
part a.
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is quite insensitive to the imposed mode decay function. The low wavenumber power distribution

is primarily determined by the mode amplitudes at depth, with those amplitudes constrained by

convective flux requirements of the model atmosphere.

Finally, we looked to validate the model using the three-dimensional hydrodynamic simula-

tions directly. When taking the driving scale (4Hρ) and rms velocity amplitude directly from the

simulation itself, rather than from a mixing length atmosphere, the model matches the horizontal

velocity spectrum of simulation to within 10% over the wavenumber band k/2π = 0.02−0.15 Mm−1

(λh ∼ 7− 50 Mm) at all depths below 1.3 Mm. This is achieved, however, only by fitting the decay

rate of each mode individually and reducing the overall amplitude of the spectrum by a constant

offset factor of two. The increased power in the model spectrum results because the power at the

driving depth in the model is overestimated by the assumed Kolmogorov power distribution of the

isotropic modes. The factor of two can be removed by using a non-Kolmogorov spectrum at depth,

but this introduces additional free parameters that can not be constrained by solar observations.

This highlights an important result: the shape of the horizontal velocity spectrum in the upper

layers of the model is largely determined by the vertical velocity amplitude of the modes at depth.

The relative amplitudes of large scale modes in the solar photosphere depends critically on the

vertical velocities at the depth. This is further supported by the models inability to reproduce the

simulation results for scales λh > 50 Mm (k/2π < 0.02 Mm−1). For these very large scale motions

the driving depth lies near the bottom of the simulation domain and the mode amplitudes, as well

as the measured decay rates, are influenced by the simulation lower boundary condition.

4.1.5 Surface Convection Dependence on Motions at Depth

The model tests discussed above confirm that the monotonically increasing low wavenumber

power and much less prominent supergranular plateau are robust features of the horizontal velocity

spectrum. That the model can reproduce the shape of the hydrodynamic simulation spectrum

validates the underlying assumption that there are two components to the flow separated by the

integral (driving) scale which reflects the local scale height at each depth. Larger scale motions are
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driven deep in the convection zone and decay from below with height. Smaller scale motions behave

as isotropic homogenous turbulence. Mismatches between the model and hydrodynamic simulation

spectra and observations however raise broader questions. What is the spectrum of solar convective

motions at depth and what governs the decay of these motions with height?

4.1.5.1 The Problem of Excess Low Wavenumber Power

Both the simplified model and the full three dimensional radiative hydrodynamic spectra

show more power than the Sun at scales larger than supergranulation, with that power increasing

monotonically toward lower wavenumbers because large scale flows are convectively driven in the

deep layers of the domains. It is worth noting that if the solar spectrum matched either the sim-

plified model or the radiative hydrodynamic simulation spectrum, giant cell convection would be

relatively easy to observe as the power in these large scale modes would exceed that in supergran-

ulation.

To make a more direct comparison between our numerical simulations and observations, we

employed a Coherent Structure Tracking (CST, Roudier et al., 2012) algorithm to infer the hori-

zontal velocities on large scales from measurements of the motions of granules. In Figure 4.5 we

compare the CST horizontal velocity spectra of a large scale radiative hydrodynamic simulation

(solid red curve) using the OPAL equation of state (Rogers & Iglesias, 1992) with that of solar

observations (dash black curve) from the Helioseismic and Magnetic Imager aboard the Solar Dy-

namics Observatory (HMI/SDO). The measurements in both cases employ a 22 hour sequence of

continuum intensity images with each HMI image separated by 45 seconds and each simulation im-

age separated by ∼ 40 seconds. We break this sequence into 11 two-hour subsets and use the CST

method to compute the velocity for each two hour window. The spectrum shown is the average

spectrum of those 11 velocity computations. The HMI observations are of 192x192 Mm2 region at

disk center with a low magnetic activity on 19 June 2010. The simulation solution was computed

using the MURaM code (Vögler et al., 2005) in a 196x196x49 Mm3 domain with 192x192x64km3

grid spacing (Lord, 2014).
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We note that the spectra in Figure 4.5 are truncated at high wavenumber because the CST

method is not reliable for scales smaller than 2.5 Mm. Moreover, low wavenumber modes, those

with wavenumbers below k < 0.013 Mm−1 (indicated by the vertical fiducial line and dot-dash

linestyle in Figure 4.5) have length scales larger than the integral (driving) scale at the bottom

of the simulation domain and consequently have lower photospheric amplitudes than they would

likely have in a deeper simulation. Between these extremes are two notable mismatches between the

simulation and observation spectra: the simulation shows an excess of power at low wavenumbers

and a deficit of power at high wavenumbers when compared to observations. Our very wide and

deep simulations resolve supergranular scale motions well but under-resolve granular motions. This

leads to an inferred CST velocity with reduced power at high k, a result that is inconsistent with

the actual simulation velocities and HMI observations. The excess of low wavenumber power is,

on the other hand, a fundamental difference between the resolved motions in the simulation and

those in observations and is robust, as the CST constrains large scale motions better than small

scale motions (Roudier et al., 2012). Thus understanding the observed solar supergranulation

spectrum requires understanding the origin of this low wavenumber reduction in power along with

any mechanism that may enhancement power at supergranular scales.

Our simplified mixing length model suggests that the low wavenumber vertical motions are

driven deep in the convection zone and decrease in amplitude towards the surface. The radiative

hydrodynamic simulations behave similarly (§4.1.4), and reducing the vertical flow velocities at

depth reduces the low wavenumber horizontal velocity power in the simulated photosphere and

improves the match between simulations and observations. We demonstrate this conclusively via

simulations in which convective velocities in the deep layers are reduced without changing the

mean stratification of the atmosphere (which is also fundamental to the surface spectrum). This

was done using an artificial energy transport term. Specifically, we added an artificial flux function

to the energy equation that depends only on depth. The artificial flux carries the full solar flux

below a specified depth and none of the flux at heights above this. The hyperbolic tangent flux

profile employed is 5.12 Mm wide centered at 10 Mm (where 4Hρ ∼ 20 Mm), effectively supporting
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radiative losses from the photosphere by depositing the heat where the divergence of the function

is nonzero. In Figure 4.5 (dotted blue curve) we plot the resulting photospheric horizontal velocity

spectrum using the same CST method described above. There is substantially reduced power in

the photosphere of the artificial flux simulation in those modes that are driven at depths below

∼ 10 Mm (scales larger than ∼ 20 Mm). This is the region of the domain for which the artificial

energy flux is important and consequently convective (rms) velocities are reduced by a factor of

∼ 2.5.

The artificial energy flux experiment confirms the hypothesis that low wavenumber modes

are driven deep in the simulated convection zone and imprint as horizontal flows in the surface

layers. The photospheric power spectrum reflects a hierarchy of driving scales with depth even

in fully nonlinear radiative hydrodynamic simulations. It also suggests that neither the radiative

hydrodynamic solutions nor the simplified model spectrum capture the true dynamics of the solar

convection below ∼ 10 Mm. In other words, in the Sun, low wavenumber flows carry much less of

the convective energy flux or transport the energy at substantially lower velocities than expected

based on the simulations or the model. Flow/enthalpy correlations, essential to convective trans-

port, may thus not be correctly captured by hydrodynamic simulations. This may be due to their

limited resolution or result from the boundary conditions applied. For example, the open boundary

condition commonly employed in radiative hydrodynamic simulations of photospheric convection

may smooth perturbations in the inflowing plasma. Alternatively, magnetic fields, not included

in the simulations we have discussed in this paper, may maintain flow correlations and allow con-

vective transport on smaller scales or at lower velocities than predicted by purely hydrodynamic

models. Preliminary results from magnetized simulations favor this hypothesis, though the under-

lying mechanisms are still under investigation and the effect so far appears insufficient to explain

solar observations (Lord, 2014).



109

Figure 4.5 The photospheric power computed from the Coherent Structure Tracking (CST) algo-
rithm of Roudier et al. (2012). The dashed curve is the HMI observations, the solid (red) curve
is the spectrum computed from continuum intensity from the radiative hydrodynamic simulation
with domain size 196x196 Mm2 wide and 50 Mm deep using the OPAL equation of state. The
dotted (blue) curve is the spectrum computed in the same way from a simulation with an artifi-
cial energy flux that carries the solar energy flux below 10 Mm. Modes with wavenumbers below
k < 0.013 Mm−1 (indicated by the vertical dotted fiducial line and change to dot-dash linestyle)
have length scales larger than the integral (driving) scale at the bottom of the simulation domain
and consequently have lower photospheric amplitudes than we would expect from a deeper simu-
lation. We use 192x192 Mm2 HMI images to match the simulation domain size and degrade the
resolution of the simulations to match the observations (∼ 370 km). To compute the spectrum of
the CST velocities we cut off the two outermost cells and zero-pad by adding twice the number of
grid cells in each direction (and multiply the amplitudes by a factor of 4 to maintain the integrated
spectral power before zero-padding) to remove the influence of the non-periodic boundary.
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4.1.5.2 Helium Ionization Plays a Minor Role

The small plateau of power at supergranular scales (solid red curve in Figure 4.4a at kh ∼

0.04 Mm−1) reflects the role of helium ionization in determining the convective velocities at depth.

Superimposed on the horizontal velocity spectrum in Figure 4.4a we have plotted fiducial vertical

lines to highlight the integral (driving) scale at the depths of 50% He I (k/2π = 0.1 Mm−1, 6 Mm

depth) and He II (k/2π = 0.03 Mm−1, 17.5 Mm depth) ionization. The plateau of supergranular

power falls between these two fiducial lines. We have also computed the horizontal velocity spectrum

for mixing length background atmospheres with an equation of state which does not allow He II or

both He I and He II ionization (Figure 4.4, dashed (green) and dotted (blue) curves respectively).

These test atmospheres show a continuous power law increase toward low wavenumbers with no

feature at supergranular scales. More precisely these spectra do not show the suppression of power

at scales corresponding to the integral scale at the depths of 50% He I or He II when the ionization

processes are disallowed. The differences between the ionizing and non-ionizing spectra at yet lower

wavenumbers result because the stratification in the deep layers lies along a different adiabat. The

velocity differences at depths below helium ionization, reflected in the low wavenumber horizontal

velocity spectra in the near surface, are due to differences in the mean stratification as the medium

is nearly fully ionized. In the region of partial ionization, convective velocities are also influenced by

the availability of ionization energy in heat transport via perturbations about the mean ionization

state.

Helium ionization is thus responsible for the small supergranular plateau in the model spec-

trum, albeit in a curious fashion. The ionization of helium yields a slight reduction in the driving

scale mode amplitudes in the partially ionized regions (where the driving scale λh ∼ 10 Mm for He

I and λh ∼ 35 Mm for He II), producing a small apparent enhancement of power in the upper layers

at wavenumbers that lie between them (where λh ∼ 20 Mm). The reduction in mode amplitudes

results because ionization energy contributes to the heat transport. In a partially ionized fluid the

heat can be transported by ionization state perturbations as well as thermal perturbations (Rast
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et al., 1993; Rast & Toomre, 1993), and convective velocities in the mixing length model are thus re-

duced in partially ionized regions. We note that the mixing length model is a local transport model

and does not take into account other effects of ionization such as the increased linear (Rast, 1991)

and nonlinear (Rast, 2001) instability of the fluid, though these may play a role in solar convective

flows or in our more complete three dimensional simulations. The vertical velocity amplitudes of

modes that begin their decay at the depths of helium ionization (the integral or driving scale modes

at those depths) are thus suppressed, resulting in a reduction in their horizontal velocity power

near the surface. Since ionization energy transport depends on ionization state perturbations, with

transport in a fully neutral or fully ionized plasma behaving as an ideal gas, modes with peak am-

plitudes (those with integral scales equal to 4Hρ) at depths that lie between the partially ionized

regions (10 Mm for example where λh ∼ 20 Mm and k/2π = 0.04 Mm−1) have more power than

neighboring modes.

This is illustrated by Figure 4.4b, which shows the vertical velocity power at the driving

depth (i.e. the depth where the wavelength of the mode is equal to the integral (driving) scale) for

mixing length model atmospheres which do or do not allow He I or He II ionization. The driving

scale modes in the regions of partial ionization have lower amplitudes than those outside of it, with

minima in the mode amplitudes occurring at the depths of 50% ionization when it is allowed. The

role of hydrogen ionization is difficult to illustrate as its effect is dominant in the surface layers

where hydrogen recombination supports radiative losses. The region of H partial ionization is broad

in depth and integral to the structure of the radiative boundary layer, and experiments preventing

H ionization dramatically alter the mean state of the atmosphere and result in dramatic changes

in the velocity spectrum across a wide range of wavenumbers. Thus we do not explicitly consider

an atmosphere that disallows hydrogen ionization, but it is clear from Figure 4.4b that the effect of

hydrogen ionization on mode amplitudes overlaps that of He I (compare crosses (blue) and triangles

(green)).

The simple model we have presented thus suggests that there is an apparent enhancement

of photospheric power at ∼ 20 Mm scales that occurs because helium ionization reduces the flow
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speeds in the regions of partial ionization which suppresses power at larger (∼ 35 Mm from He

II) and smaller (∼ 10 Mm from He I) scales, not because He II ionization enhances the driving

of flows at this depth as has been previously suggested. This apparent enhancement, however, is

much smaller than the increased power in observations of solar supergranulation. To investigate the

suppression of photospheric power by helium ionization in the context of solar-like convection we

use the same Saha equations of state described above in three dimensional radiative hydrodynamic

simulations. We use the MURaM (Vögler et al., 2005) code to run simulations that use 192x192km2

horizontal resolution and 64km vertical resolution with 1024x1024x768 grid cells (giving a domain

size of 196x196x49 Mm3). The results presented here are from more than 5 days of solar time after

the simulation has reached a relaxed equilibrium (Lord, 2014).

Figure 4.6a shows a comparison of the photospheric horizontal velocity spectrum from three

such simulations, one which allows H, He I, and He II ionization (solid red curve), one in which

only H and He I ionization are permitted (dashed green curve), and one with only H ionization

(dot blue curve). The resulting horizontal velocity spectra show similar suppression of photospheric

power as that seen the simplified model (Figure 4.4) when ionization is allowed. The two lowest

wavenumber modes (dot-dash linestyle) have driving depths outside of the simulation domain and

are consequently unreliable and weaker that what would be expected in a deeper simulation. The

modes with integral (driving) scales equal to 4Hρ in the regions of partial helium ionization again

have reduced amplitudes. This is particularly apparent at the wavenumbers corresponding to modes

that peak in the He II partial ionization region (k/2π near 0.013 Mm−1 in Figure 4.6a) which is well

separated from the effects of hydrogen ionization. Not allowing He II ionization (dash green and dot

blue curves) causes a small but significant elevation of photospheric power at those wavenumbers.

Disallowing He I ionization (dot blue curve) induces smaller differences due to the dominant role

of hydrogen in the surface layers.

The same reduction in the mode amplitude of the vertical velocity spectrum at the driving

depths corresponding to partial helium ionization seen in the simplified model is apparent in these

hydrodynamic simulations (Figure 4.6b). Modes with scales equal to 4Hρ at the depths of partial
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He I and He II ionization have reduced amplitudes, though this reduction is noisier in the simulation

than in the mixing length atmosphere (we note that the rms velocity amplitudes, not shown here,

also very clearly increase at the nominal ionization depths when ionization is disallowed). This is due

to three primary factors: the spectral resolution of the simulation is limited by the domain width,

the three dimensional simulation is non-local which makes using a single depth a poor representation

of the vertical velocity power that reaches the surface, and the intrinsic temporal variation in the

power of the modes below ∼ 10 Mm is long compared to the 5 days of simulation time. Moreover,

other nonlinear effects of ionization may play some role, as discussed above. These experiments

do however confirm, in the context of fully nonlinear three-dimensional radiative hydrodynamic

simulations, two important results of the simplified model: the horizontal velocity spectrum in

the photosphere reflects the amplitude of the vertical velocity at depth and the reduced amplitude

of vertical velocity in the regions of partial helium ionization plays a minor role in shaping the

spectrum of supergranular flows at the surface.

4.1.6 Conclusion

We have constructed a model that computes the horizontal velocity spectrum near the solar

surface based on the amplitudes of modes deep in the solar convection zone. The model has three

primary features: it is able to match the shape of the photospheric spectrum in three dimensional

radiative hydrodynamic simulations, shows a small supergranular scale enhancement of power at

20-30 Mm, and an excess of power at lower wavenumbers not seen in observations.

We used the model to examine the role that helium ionization plays in shaping the solar

photospheric velocity spectrum. We showed that near the depths of 50% He I and He II ionization

the amplitudes of the vertical motions are reduced because the solar energy flux can be transported

at lower velocities due to contribution of ionization energy. This manifests itself as a suppression

of horizontal velocity power in the surface layers at scales neighboring supergranulation (∼ 35

Mm scales for He II and ∼ 10 Mm scales for He I). We confirmed this effect in three dimensional

radiative hydrodynamic simulations that examined convection with and without helium ionization.
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Figure 4.6 The spectra computed from hydrodynamic simulations with three different equations
of state. We show the horizontal velocity spectrum at the photosphere in part a and the vertical
velocity power at the driving depth in part b. The solid curve in part a and diamonds in part b
(red) show the spectrum computed with a Saha equation of state that includes H, He I, and He II
ionization; the dashed in a and triangles in b (green) is computed with an equation of state with
no He II ionization; and the dotted in a and crosses in b (blue) is computed with an equation of
state with no He I or II ionization. The vertical dotted lines show the depths of 50% He I (7 Mm
and k/2π = 0.1 Mm−1) and He II (20 Mm and k/2π = 0.025 Mm−1) ionization in part b and
driving scale, where λh = 4Hρ, at those depths in part a. Note that the two largest scale modes
are shown in the dot-dash linestyle here because the have length scales larger than the integral
(driving) scale at the bottom of the simulation domain and consequently have lower photospheric
amplitudes would be expected in a deeper simulation.
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We conclude that, instead of enhancing a particular flow scale, He I and He II ionization act to

highlight supergranular scales by reducing the power in the adjacent modes. This enhancement

is, however, smaller in the models than the observed enhancement of solar photospheric power at

supergranular scales.

A robust feature of both the model spectrum and the hydrodynamic simulations is an excess

of power at low wavenumber when compared to solar observations. This highlights two uncertain-

ties that require further study. First, we do not know the convective flux spectrum in the deep

layers of the Sun. While we took the flow spectrum to be Kolmogorov for all scales below the

integral scale, this assumption only approximates the spectrum observed in hydrodynamic simu-

lations, and it may significantly underestimate the role small scale motions play in transporting

heat through the solar convection zone. Moreover, the large scale hydrodynamics simulations also

show excess power at large scales compare to the Sun. Preliminary results from similarly large

scale magnetohydrodynamic simulations suggest that magnetic fields may play a role in reducing

convective flow speeds or maintaining the correlations required for the energy flux to be carried by

smaller scale motions (Lord, 2014), but as yet these effects are too small to explain observations.

Second, we do not know how the amplitude of the vertical motions decreases with height in the

solar convection zone. The decay rates (with height) of low wavenumber modes may be influenced

by solar rotation and the near surface shear layer which are not included in our analysis. It is

likely that the supergranular excess in the solar power spectrum is largely defined by the observed

decrease in power to lower wavenumbers, and has thus been elusive in simulations which show a

monotonic increase in power to lower k.

The excess low wavenumber power we find in both our simplified model and realistic simu-

lations adds to other recent evidence that large scale flows deep in the solar convection zone are

weaker than previously thought. It supports suggestions that numerical simulations more gener-

ally may have difficulty matching solar observations if they are required to carry all of the solar

energy flux in the resolved modes (N. Featherstone 2014, private communication). Helioseismic

observations (Hanasoge et al., 2010, 2012) yield estimates of flow velocities that are an order of
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magnitude or two below those found in either global (e.g. Miesch et al., 2008) or local area (Lord,

2014) simulations. Moreover, as global simulations become more turbulent, with lower diffusivities,

flow speeds increase and differential rotation profiles flip to an anti-solar configuration, with a slow

equator and fast poles, because rotational constraints are too weak. This transition to anti-solar

behavior can be avoided by decreasing the heat flux through the convection zone or increasing

the rotation rate (J. Toomre et al. 2013, private communication; P. Charbonneau 2014, private

communication; Hotta, 2014a). We found that reducing the convective transport role of large scale

modes (by employing an artificial energy flux at all depths below 10 Mm which reduces the deep

rms velocities by a factor of ∼ 2.5) can significantly improved the match between the CST spectra

of the simulations and observations. These separate lines of evidence all suggest that the Sun

transports energy through the convection zone while maintaining very low amplitude large scale

motions. Something is missing from our current theoretical understanding of solar convection below

∼ 10 Mm.
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4.2 Addendum to the Paper

We add to the discussion of Lord et al. (2014) to examine some aspects of the effects of helium

ionization and the artificial energy flux in more depth.

We start by examining the effect of the latent heat flux of helium ionization in §4.2.1. In

particular we compare the change in stratification (which are caused by the differences in particle

number) when preventing He ionization to the change to the latent heat flux. This helps clarify

the how much of the change in the photospheric horizontal velocity spectrum is due to the latent

heat flux.

We then examine the artificial energy flux in more detail. Using the artificial energy flux

helps examine how the deep convection affects the surface flows without the problems of changing

the domain depth of the simulation (§3.1). We compare the reference simulation to the simulation

with the artificial energy flux to explore precisely how this artificial flux changes the flows §4.2.3.

4.2.1 Mixing Length Atmospheres and Helium Ionization

We introduce three mixing length model atmospheres with differing equations of state in

Lord et al. (2014). Two of these equations of state include H I ionization but disallow He I or

II ionization to compare to an equation of state with H I, He I and II ionization and explore the

effects of He ionization. While we discussed the effects of the latent heat flux of helium ionization

and the change in the mean molecular weight of the plasma, we did not show exactly how these

different equations of state change the atmosphere.

4.2.1.1 Helium Ionization

Since the two-component model uses the velocity and density scale height to determine the

amplitude of the spectrum and the driving (integral) scale at each depth, we begin by showing the

velocity perturbation and scale height perturbation in Figure 4.7 (a and b, respectively) comparing

the velocity in the mixing length atmosphere with H, He I, and He II ionization to the velocity
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in an atmosphere with no He II ionization (dotted green curve) and no He I or He II ionization

(dashed blue curve) in the uppermost 50 Mm. Since each of these model atmospheres have the

same properties in the photosphere (matching the observed density and temperature of the Sun),

and helium is fully neutral near the photosphere, each model atmosphere has the same values in

the uppermost few Mm.

Figure 4.7 The perturbation of the mixing length velocity (a) and density scale height (b) between
the three mixing length atmospheres. We use the atmosphere with the Saha equation of state that
includes H, He I, and He II ionization as the reference (labeled with subscript R) and compare
to the atmospheres with no He II ionization (dashed green curve) and no He I or He II ionization
(dotted blue curve). The fiducial vertical dotted lines show the mean 50% ionization depth for He I
(6 Mm) and He II (17.5 Mm).

The differences below the photosphere are caused by the changes in the particle number and

latent heat flux due to helium ionization. We plot fiducial vertical lines to show the mean depth of

50% ionization for He II (17.5 Mm depth) and He I (6 Mm depth) in both. In the atmospheres that

disallow He ionization the mixing length model establishes a stronger superadiabatic gradient to

transport the energy flux. Since the velocity is primarily determined by the mixing length (which

is a function of the pressure scale height which is less sensitive to He ionization) and the difference

between the mean and adiabatic temperature gradients, this new superadiabatic gradient increases

the velocity. The increased velocity compared to the mixing length model atmosphere with full H

and He ionization at the bottom of Figure 4.7a is consistent to the bottom of the convection zone.

Since the velocity determines the integrated power of the velocity spectrum at each depth, this
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explains why we see increased power in the driving scale mode and at the surface in Figure 4.4.

4.2.1.2 What Happens Below The Region of Partial Ionization?

Helium is nearly fully (> 95%) ionized for depths greater than 40 Mm below the photosphere.

Below this depth the flows behave as a (nearly) fully ionized ideal gas in all three atmospheres but

differences persist in the velocity (and driving scale power). As stated above, the ionization of

helium affects both the energy transport and the mean molecular weight of the plasma. Preventing

helium ionization both reduces the non-thermal energy flux and changes the mean stratification of

the atmosphere. By plotting the mixing length velocity as a function of depth (a) and density (b)

in Figure 4.8, we can compare the changes to the velocity from the new stratification to the changes

due to the latent heat flux. We chose the density range in b that correspondes to the depths shown

in a for the model atmosphere that allows H I, He I and II ionization.

Figure 4.8 The rms vertical velocity from the mixing length atmospheres using the three Saha
equations of state as a function of log10 depth (a) and log10 density (b). The solid (red) curve
shows the spectrum computed from a mixing length atmosphere with a Saha equation of state that
includes H I, He I, and He II ionization; the dotted (green) curve is computed from an atmosphere
with no He II ionization; and dashed (blue) curve is computed from an atmosphere with no He I or
II ionization. The vertical dotted lines show the depths of 50% He I (depth= 6 Mm, ρ = 1.19×10−4)
and He II (depth= 17.5 Mm, ρ = 1.19× 10−3) ionization.

Using the constant density surfaces (b) removes the effects of the change in stratification.

Since the majority of the velocity reduction in the region of partial ionization remains if we compare

the plot as a function of depth (a) or density (b), this confirms that the latent heat flux of ionization
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is the dominant effect. In particular, there is a ∼ 10% and ∼ 5% reduction in the velocity amplitude

in the respective regions of He I and II partial ionization due to the energy transport by helium

ionization. Below ∼ 30 Mm, however, the latent heat flux of ionization is very weak and the

difference in velocity is due to the change in stratification (i.e. how ρ(z) differs between each model

atmosphere).

4.2.2 MURaM Simulations and Helium Ionization

We extend the examination of helium ionization from the mixing length model to the MURaM

simulations. These simulations allow us to explore non-local effects of helium ionization in three

dimensions. We start by computing the latent heat flux.

As the ions recombine they release a photon which increases the temperature of the sur-

rounding plasma. The opposite is true for ionizing atoms. While advecting through the stratified

atmosphere this effect increases (decreases) the thermal energy as the ionization fraction is de-

creasing (increasing). By transporting hot, ionized plasma from deep in the convection zone that

recombines as it reaches the cooler upper layers, convective upflows transport this non-thermal

energy source.

From Figure 4.9 we can see the convective energy flux (solid red curve) and latent heat flux of

ionization (dashed blue curve). There are typical variations in the convective energy flux that keep it

within ∼ 10% of the solar energy flux (these variations only occur at depths greater than a few Mm

below the photosphere). The ionization energy flux, however, has significant depth dependence.

Hydrogen ionization and recombination occurs very close to the surface with significant differences

between upflows and downflows. This manifests itself as a peak in the latent heat flux at ∼ 2/3

of the solar energy flux with much of this energy is converted directly to radiation (Rast et al.,

1993). The contribution of He I ionization is not obvious (since it is dominated by H I ionization)

but adds significant ionization energy flux near the 50% He I ionization depth (7 Mm). Since He II

ionization requires significantly more energy than H I or He I ionizatoin, it is well separated from the

other ionization states and produces a peak in the ionization energy flux near 17 Mm depth. The
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Figure 4.9 The convective energy flux (solid red curve) and latent heat flux of ionization (dashed blue
curve) for the MURaM simulation using the Saha equation of state with H I, He I and II ionization.
The convective energy flux is within 10% of the solar energy flux (6.3×1010erg cm−2 s−1) and is not
a flat curve because we have not sampled one full energy flux oscillation period for this figure. The
ionization latent heat flux depends on depth with local maxima in the regions of partial ionization.
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ionization energy flux then significantly decays below the depth of He II ionization since heavier

atoms have very low number density and, consequently, contribute very little ionization energy.

The energy flux is non-zero in deeper layers due to the very slow transition from ∼ 90% to 100%

He II ionization.

4.2.2.1 Comparing Latent Heat Flux to Stratification in MURaM

By examining the vertical rms velocity in the MURaM simulations as a function of depth (a)

and density (b), we can determine whether the latent heat flux or change in stratification dominates

the increased rms velocity, similar to the mixing length model (§4.2.1.2). Each of these simulations

use the same three equations of state as above with H, He I, and He II ionization (solid red curve),

no He II ionization (dotted green curve) and no He I or He II ionization (dashed blue curve). Just as

in the mixing length model atmospheres, we find that the majority of the decreased rms velocity in

the region of partial ionization (fiducial vertical lines) remains after correcting for the stratification

(in part b). Thus the velocity differences in the depths of partial ionzation are caused by the

latent heat flux. The velocity differences below the regions of partial helium ionization (seen in

the deep layers of part a), however, are due to the changes in the stratification (which is caused

by the different particle numbers without He ionization) and disappears after we correct for the

stratification (in part b). We also note that the drop in the rms velocity in the deepest layers (and

the largest values of density) is due to the enhanced viscosity at the bottom boundary.

This confirms, in both the mixing length model and the MURaM simulations, that the

changes in the surface spectrum computed by the two-component model (Figures 4.4 and 4.6) have

two well separated effects. At supergranular scales, near the two fiducial vertical lines, the latent

heat flux is the primary difference between the two simulations, while at lower wavenumbers the

new density stratification causes the changes in the spectrum.
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Figure 4.10 The rms vertical velocity from the MURaM atmospheres using the three Saha equations
of state as a function of log10 depth (a) and log10 density (b). The solid (red) curve shows the
spectrum computed from a mixing length atmosphere with a Saha equation of state that includes
H I, He I, and He II ionization; the dotted (green) curve is computed from an atmosphere with
no He II ionization; and dashed (blue) curve is computed from an atmosphere with no He I or II
ionization. The vertical dotted lines show the depths of 50% He I (depth= 6.5 Mm, ρ = 3.08×10−4)
and He II (depth= 20 Mm, ρ = 3.28× 10−3) ionization.
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4.2.3 Non-thermal Energy Transport

Experiments that change the ionization properties of the equation of state influence several

properties of the plasma. Preventing helium ionization changes the the mean molecular weight, the

latent heat flux, and instabilities of the flows. The first two of these factors affect both of the main

inputs in the two-component model: the flow speed and the mean stratification. To isolate the effect

of the rms velocity on the surface velocity spectrum in three-dimensional radiative hydrodynamic

simulations, we employ an artificial energy flux (see §2.1.6) which mimics the effect of the latent

heat flux without changing the mean stratification.

4.2.3.1 What is the Artificial Flux?

The artificial energy flux is an artificial term in the energy equation that behaves as a volume

heating computed from the divergence of the flux (see §2.1.6 for details). We use a purely vertical

flux with a hyperbolic tangent profile that raises the artificial flux from zero at the surface to

6.3 × 1010 erg cm−2 s−1 (the solar radiative energy flux at the photosphere) throughout the deep

part of the simulation (Figure 4.11). Since our simulations are cartesian this value is the full

energy flux required at depth for the radiative losses at the surface to equal the solar luminosity.

We examine a simulation that has the same dimension and resolution as the reference simulation

(1024 × 1024 × 768 and 192 km × 192 km × 64 km) but uses a hyperbolic tangent artificial flux

that is 5.12 Mm wide centered at a depth of 10 Mm (this simulation is henceforth referred to as

“artificial flux 10 Mm”). Wherever the artificial flux is non-zero it reduces the convective energy

flux proportionally, which we see in Figure 4.11. The non-zero convective energy flux below 15 Mm

is decaying from the initiation of convection at the start of the simulation (see §2.2 for description

of initial condition of these simulations). We do not have sufficient computational resources to

relax this simulation further but the data presented here has been ran for at least 11 days after the

initiation of convection. While it is unclear where the fully relaxed convective flux would settle,

the temporal behavior of the convective energy flux up to this point suggests that it would be
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approximately zero.

It is clear from Figure 4.11 that the convective flux is only affected at the depths where the

artificial flux is non-zero. By comparing the artificial flux 10 Mm and the reference simulation

we find that there is less than 0.1% difference in the mean density and mean density scale height

for all depths. Thus the artificial flux only causes negligible change to the mean stratification of

the simulation, which, along with the rms velocity, is one of the key inputs to the two-component

model. The question remains though: since the convective energy flux is reduced to nearly zero,

what properties of the plasma are different between the artificial flux and reference simulations?

In Figure 4.12 we show the ratio of the entropy (in a), density and temperature (in b) in

upflows and downflows from both the reference and artificial flux 10 Mm simulations. Above the

influence of the artificial energy flux these two simulations exhibit the same convective properties.

Since each simulation has the same radiative energy flux at the surface, they have the same entropy

contrast in upflows and downflows which drives the convective energy flux. In the region where the

artificial energy flux is carrying the full solar energy flux, the entropy is nearly equal in upflows and

downflows which is why these flows do not transport any energy. Thus, this is similar to convective

overshooting into an adiabatic layer.

The artificial flux acts as a volume heating on the flows in regions where the ∇·Fartificial 6= 0.

All of the thermodynamic properties of the upflows and downflows are nearly equal below this

volume heating due to the artificial flux. This heating raises the temperature of both the downflows

and the upflows. Consequently there is no contrast between the thermodynamic properties of the

upflows and downflows in the deep domain while the upflows match the reference simulation above

the heating.

As we move above the region of artificial energy flux the upflows have the same properties

(and contrast with downflows) in both simulations. Since the upflows reach the surface with the

same thermodynamic properties, the downflows, which are created by the radiative cooling in

the photosphere, have the same entropy deficit and same entrainment from the diverging upflows

in both simulations. While the artificial energy flux dramatically reduces the contrast between
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Figure 4.11 The convective flux (solid) and artificial energy flux (dashed) in units of the solar energy
flux (Fsun=6.3 × 1010 erg cm−2 s−1) in the artificial flux 10 Mm simulation. The flux is equal to
the solar energy flux in the deep layers and then a hyperbolic tangent that is 5.12 Mm wide and
centered at a depth of 10 Mm reduces the artificial flux to zero near the surface. The convective
flux is proportionally reduced in regions of non-zero artificial flux.

Figure 4.12 The ratio of the entropy (a), temperature (b, solid curve) and density (b, dashed
curve) in the upflows and downflows comparing the reference simulation (red) and artificial flux
10 Mm (blue). The differences between the thermodynamic quantities in upflows and downflows is
significantly reduced by the artificial energy flux and thus these flows carry nearly zero convective
energy flux. The feature at 8 Mm depth is a problem with the equation of state table that likely
does not have too much influence over the simulations and the jump near 50 Mm is due to the
bottom boundary condition.
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upflows and downflows, it has a minimal effect on the properties of the convection above the region

with non-zero divergence of the artificial flux. Since the stratification remains unchanged, this

helps isolate the convection in the uppermost 10 Mm without introducing any of the problems of

reducing the domain depth (see §3.1).

4.2.3.2 How Does the Artificial Flux Affect the Convection Below This Heating?

By comparing the unsigned vertical mass flux between the artificial flux 10 Mm and reference

simulations in Figure 4.13b, we find that there is decreased mass flux in the part of the domain

where the artificial energy flux transports the energy (i.e. below 10 Mm). The motions in the region

with an artificial energy flux must maintain the mean stratification but these motions transport

very little energy or mass in the vertical direction.

Figure 4.13 The rms vertical velocity as a function of depth (a) and vertical mass flux (b) comparing
the reference (solid black curve) and artificial flux 10 Mm simulation (dotted blue curve). The
vertical velocities below 25 Mm depth are reduced by a factor of 2.5 due to the artificial energy
flux. The vertical mass flux is also significantly reduced by the artificial energy flux which suggests
that there is increased mixing of the plasma below 10 Mm.

Based on the two-component model we expect the vertical rms velocity deep in the domain to

produce the low wavenumber power in the photosphere. The decreased horizontal velocity power in

the photosphere of the artificial flux 10 Mm simulation (Figure 4.5) suggests that the rms velocity

deep in the domain is suppressed. By comparing the velocity in the reference simulation and the

artificial flux 10 Mm simulation (Figure 4.13 a) we find that the artificial energy flux simulation has
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reduced the rms velocity (which is equal to the total integrated power of the spectrum) by a factor

of ∼ 2.5 at depths greater than 25 Mm below the photosphere. Since this simulation matches the

low wavenumber power in the observations, this provides an estimate for the excess velocity in the

deep flows of the reference simulation. In particular, we would expect any simulation that matched

observations to be able to transport the solar energy flux (through physical terms in the energy as

opposed to our artificial energy flux) with rms velocity a factor of ∼ 2.5 slower than our reference

simulation.

We know that the amplitude of the low wavenumber flows (and not just the rms velocity)

determine the imprinting on the photosphere from comparing the reduced viscosity boundary con-

dition to our standard boundary condition (see §3.1.2.3). This is also true for the two-component

model which assumes that modes with scales smaller than the driving (integral) scale follow a Kol-

mogorov spectrum. Any changes to the shape of the spectrum would change the driving (integral)

scale power at depth and, consequently, the imprinted power at the surface. By taking the ratio

of the vertical velocity spectrum from the artificial flux 10 Mm and reference simulation we can

determine if the artificial energy flux primarily reduces the amplitude at the flows at all wavenum-

bers or changes the shape of the spectrum. Starting at the depth 5.44 Mm (above the influence

of the artificial flux) we see from Figure 4.14 that the artificial flux simulation has nearly identical

power for k/2π > 0.06 Mm−1 (i.e. modes with scales smaller than the driving (integral) scale at

10 Mm depth) but significantly reduced power at lower wavenumbers. This is consistent with the

assumptions of the two-component model: the modes with wavelengths smaller than the driving

(integral) scale (4Hρ = 19 Mm at 10 Mm depth) are driven locally while the low wavenumber power

imprints from below.

By a depth of 11.5 Mm the artificial flux is transporting nearly the full solar energy flux (since

it is a hyperbolic tangent profile with width 5.12 Mm) and both the low and high wavenumber power

is reduced. This trend continues with more high wavenumber power than low wavenumber power

until very deep in the domain. By 32 Mm below the photosphere we have a nearly flat ratio

between the vertical velocity spectrum in the artificial flux simulation and the reference simulation.
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Figure 4.14 The ratio of the vertical velocity spectrum in the reference and artificial flux 10 Mm
simulation at five depths: 5.44 Mm, 11.5 Mm, 15.6 Mm, 23.8 Mm, and 32.0 Mm. Above the
influence of that artificial energy flux (5.44 Mm, solid blue curve) the low wavenumber flows are
reduced due to the influence of the artificial energy flux but both simulations have the same power
in all modes with scales smaller than 4Hρ at 10 Mm depth. The spectra deep in the domain (32.0
Mm dash-dot-dot-dot red curve) has reduced power equally among all modes in the simulation with
the artificial flux. We also note that the ratio of the horizontal velocity spectrum between these
two simulations (not shown here) is nearly identical to the ratio of the vertical velocity spectrum.
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Thus, in the deepest layers of the domain, the reduction in vertical rms velocity (Figure 4.13a)

due to the artificial energy flux can be approximated as a uniform decrease in the vertical velocity

spectrum. Since the shape of the spectra is qualitatively similar between the artificial flux 10

Mm and reference simulations, we see a similar reduction in the rms velocity (Figure 4.13 a) and

the power in the driving (integral) scale mode (Figure 4.14). Thus, the imprinted power on the

photosphere is decreased (as we see in Figure 4.5). We revisit this issue in §5.2.

4.2.3.3 Photospheric Motions

Finally, we compare the photospheric horizontal velocity spectrum between the artificial flux

10 Mm (dotted blue curve) and reference (solid black curve) simulations in Figure 4.15. We also

compare to the spectrum computed from the CST method applied to full-disk HMI observations

(long-dash green curve) (Roudier et al., 2012). While the comparison between the simulations and

observations is not as robust as Figure 4.5 (since it does not use the CST method to compute

the velocities in both cases), both figures are in qualitative agreement except at high wavenumber

where the CST method is less reliable.

In order to compare to the series of shallower simulations in §3.1, we compute an additional

artificial flux simulation (red dash curve) in Figure 4.15 which has an artificial flux with a hyperbolic

tangent profile that is 5.12 Mm wide centered at 2.56 Mm depth with the same domain size and

resolution as the reference simulation and artificial flux 10 Mm simulation. The volume heating due

to the divergence of the artificial flux in this new simulation begins directly below the photosphere.

This simulation helps explore the effects of the near-surface convection without any influence of

deeper convection and provides a spectrum of photospheric motions that are purely driven at the

surface without the influence of the bottom boundary in very shallow domains (see §3.1). For both

artificial energy flux simulations we include the wavenumber corresponding 4Hρ at 10 Mm depth

(k/2π = 0.053 Mm−1, blue circle) and 2.56 Mm depth (k/2π = 0.28 Mm−1, red circle) which

divides the locally driven flows above the region with the artificial flux and the flows that have

driving (integral) scale deeper in the domain. This new simulation (which we denote “artificial
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Figure 4.15 The photospheric horizontal velocity spectrum comparing MURaM and HMI obser-
vations. The spectra compares the reference simulation (solid black curve), artificial flux 10 Mm
(dotted blue curve), artificial flux 2.56 Mm (dashed red curve), and HMI observations computed
using CST velocity from Roudier et al. (2012). The blue and red circles show the wavenumber cor-
responding to 4Hρ at 10 Mm (4Hρ = 19 Mm, k/2π = 0.053 Mm−1) and 2.56 Mm (4Hρ = 3.6 Mm,
k/2π = 0.28 Mm−1) respectively. For all simulations we change the linestyle to dash-dot-dot-dot
for the two largest scale modes which have driving depths that are outside the simulation domain
and have consequently lower power than we would expect from a deeper simulation.
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flux 2.56 Mm”) further confirms that the low wavenumber power in the photosphere imprints from

below the surface.

For all three simulations we change the linestyle to dot-dot-dot-dash for the two lowest

wavenumber modes. These simulations have domain depth of 49 Mm where 4Hρ is less than

the wavelength of these two modes. Thus, based on our two-component model and previous ex-

periments with shallow simulations (see Figure 3.1), we expect these simulations to underestimate

the power that would be present in a deeper simulations. Furthermore, the box mode (see §3.1.6)

strongly influences these modes in the reference simulation making them unreliable.



Chapter 5

The Role of Magnetic Fields

Our work with hydrodynamic simulations in the previous chapters suggests that deeper sim-

ulations have excess power in modes with wavelengths larger than supergranulation. There are two

physical mechanisms in the Sun that we have not examined that may explain our mismatch with

observations: rotation (along with the near surface shear layer) and magnetism. In this chapter we

focus on the effects of quiet Sun magnetic fields on the flows.

The observed quiet Sun magnetic field occurs on many scales but is visually dominated by

the magnetic network which have the strongest field strengths of any quiet Sun magnetic elements.

This network field is primarily found in downflows at the vertices of supergranules and is thought

to be a passive tracer due to the low plasma β and high conductivity in the photosphere. Recent

observations, however, find increased length scale of the supergranules (in quiet Sun regions) at

solar maximum in both the photosphere and chromosphere (McIntosh et al., 2011). This suggests

that magnetic fields may influence the length scale of supergranulation. Previous theoretical work

has suggested that the magnetic field provides a physical mechanism that determines the length

scale of the supergranules (Crouch et al., 2007). Magnetic elements that are advected to downflows

(with lifetime increased by strong magnetic flux elements) may organize convection on larger scales

based on purely photospheric motions (Rast, 2003). This is inconsistent with our previous results

suggesting that low wavenumber power imprints from deeper flows.

While quiet Sun magnetism is associated with weak net magnetic flux at the surface, the

magnetic network in the solar photosphere exhibits net magnetic flux on scales larger than super-
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granulation which suggests that it is field from decaying active regions generated by the global

dynamo (Lamb et al., 2010). Thus, to explore quiet Sun magnetism we compute small-scale dy-

namo simulations with a range of small net magnetic flux (where 0 G ≤ 〈Bz〉 ≤ 15 G does not

change from the initial value in the simulation) that represent a range of influences from the global

dynamo. We use magnetic Prandtl number (i.e. the ratio of viscous to magnetic diffusion) ap-

proximately one (similar to Rempel, 2014). While the magnetic network field visually dominates

quiet Sun magnetism, recent observations have improved our understanding of the internetwork

field. These observations show stronger transverse field than vertical field in the photosphere which

is evidence of a small-scale dynamo active at the solar surface. There is significant debate about

how well small-scale dynamo simulations represent the solar convection zone where the magnetic

Prandtl number is ∼ 10−5 in the solar photosphere (with significant variation in this value near the

surface, Mart́ınez Pillet, 2013). Thus all of these simulations assume that magnetic Prandtl one is

a reasonable approximation to the solar small-scale dynamo (we continue this discussion in §5.3).

The small-scale dynamo magnetic fields in our simulations do not enhance the flow power at

any scale. We also add magnetic fields to the artificial energy flux simulations that we introduced

in §4. This artificial energy flux is a term, Fartificial, in the energy equation (see §2.1.6) that

artificially transports energy at specified depths. Since this could be confused with magnetic flux

(measured in G cm−2) in the following chapter, we call specific attention to the difference here. We

refer to the two artificial energy flux simulations as artificial flux 10 Mm and 2.56 Mm based on the

depth at which the hyperbolic tangent profile of Fartificial is centered. These simulations always

allow the full energy flux at the photosphere and then we increase Fartificial from zero (in the top

of the simulation) to be equal to the solar radiative energy flux (in the bottom of the simulation).

These artificial energy flux simulations allow us to test the suggestion that magnetic fields organize

larger scale flows in simulations where the low wavenumber convection is weak.

Our simulations find that, unlike the suggestions of Crouch et al. (2007), the quiet Sun

magnetic fields qualitatively decrease low wavenumber horizontal velocity power in the photosphere.

Thus magnetic fields may be a mechanism that helps decrease the excess low wavenumber power
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in the hydrodynamic simulations (Figure 4.5). This decreased low wavenumber power, however,

is insufficient to match solar observations. We find that the decreased low wavenumber power at

the surface is due to suppressed rms velocities deep in the domain; the Lorentz force decreases the

kinetic energy carried by downflows which allows the convection to maintain the solar energy flux

with reduced upward enthalpy flux.

5.1 The Effect of Magnetic Fields on Photospheric Motions

While solar active regions have super-equipartition magnetic fields that inhibit flows in the

form of sunspots and pores, the magnetic fields in the quiet Sun are weaker on average than

equipartition and thought to be passive tracers of surface flows. We explore the influence of the

magnetic field by adding either a zero net flux (i.e. 〈Bz〉 = 0 with Brms ≈ 0.5 G) or a 10 G

mean magnetic field to our reference simulation. This field then grows through small-scale dynamo

action (see §1.1.4). All of these these simulations were run for 5.5 days of relaxed time after the

kinematic growth phase of the dynamo. The resulting photospheric field strength for the zero net

flux simulation (unsigned vertical flux of 37G) is weaker than the best estimates of solar magnetic

field from Hinode Zeeman data (unsigned vertical flux of ∼ 60G, Danilovic et al. (2010); Orozco

Suárez & Bellot Rubio (2012)) while the 10 G mean field simulation is similar to quiet Sun field

strength (unsigned vertical flux 68G, see Table 5.1). This is in part because of the relatively

low resolution of these simulations (192 km horizontally) which restricts the twisting of magnetic

fields in the photosphere where flow scales are the smallest. This low resolution also increases the

magnetic diffusivity of the simulation which limits dynamo action.

The resolution of our simulations does not allow magnetic field on scales smaller than 192 km.

This artificially increases the low wavenumber power in the magnetic field spectrum compared to

well resolved small-scale dynamo simulations of the solar photosphere (Rempel, 2014). Simulations

with horizontal resolution ranging from 32 km to 2 km find that half of magnetic energy is on scales

smaller than 100 km (Rempel, 2014). Despite the issues with resolution near the photosphere, these

simulations are well resolved for dynamo action deep in the domain and, as far as we are aware,
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are the most stratified solar-like small-scale dynamo simulations with a realistic photosphere to

date. Thus, these simulations provide insight into the effects of the small-scale dynamo on the deep

convection and how that impacts the imprinting on the surface.

We compare the photospheric horizontal velocity spectrum from these magnetized simulations

and the reference simulations in Figure 5.1. Adding magnetic field to the reference simulation does

not enhance the flows at any scale. There is a qualitative reduction in photospheric power from

both the zero net flux and 10 G mean field, but the wavenumber with largest difference in power

between magnetized and hydrodynamic simulations is not statistically significant (shown using one

standard deviation error bars computed from the time series of power at k/2π = 0.025 Mm−1).

As we know from §4, the reference simulation has excess low wavenumber power compared to

observations. Thus, while these results are not statistically significant, this suggests that magnetic

fields are a possible mechanism to reduce low wavenumber flows in the photosphere. We revisit

this in §5.2.

5.1.1 Enhancing the Radiative Losses

The magnetic field concentrations in the supergranular vertices help sustain increased radia-

tive losses. The magnetic pressure reduces the density, and consequently, the opacity of the plasma

which allows the photons to escape from deeper in the photosphere where the temperature is higher.

Previous work has linked increased downflow lifetime with larger scale flows (Rast, 2003). It has

been suggested that the lifetime of magnetic elements in the photosphere is longer than hydro-

dynamic flow timescales (Crouch et al., 2007). These longer lived network magnetic elements are

collocated with downflows and increase the rate of cooling. Thus magnetized downflows may have

increased lifetime (compared to hydrodynamic downflows) since they are sustained by increased

cooling and stabilized by the longer lived magnetic elements. Increasing the lifetime of downflows

may organize the flows larger scales (Rast, 2003).

We test this hypothesis by taking the zero net flux small-scale dynamo simulation and en-

hancing the radiative cooling term in the energy equation (the divergence of the radiative flux)
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Figure 5.1 The photospheric horizontal velocity spectrum from the reference (solid black curve),
zero net flux (dotted blue curve), and 10 G mean field (dashed red curve) small-scale dynamo
simulations. While the magnetic simulations have qualitatively less power at low wavenumbers, we
show that the one standard deviation error bars overlap for the mode with the biggest different
between the reference and 10 G mean field simulations. We change the linestyle to dash-dot-dot-
dot for the modes that have driving depths outside the simulation domain and consequently lower
power than we would expect from a deeper simulation.
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as a function of vertical magnetic field, specifically (1 + αcooling(
Bz

1000G)2) for |Bz| < 1000G and

(1 +αcooling) for |Bz| ≥ 1000G. By using αcooling = 3, a maximum enhancement of a factor of 4 for

all |Bz| ≥ 1000G (this choice was made to ensure a significant change in the cooling rate), we find

that our simulation has 10% increased radiative cooling for photospheric regions with field strength

|B| > 100G and overall this increases the radiative energy flux by approximately 1.8%. Comparing

the zero net flux simulation to the simulation with enhanced radiative losses (Figure 5.2) we find

that the horizontal velocity spectrum is qualitatively identical with no difference in power at any

scale. This suggests that the enhanced radiative cooling through the magnetic network does not

have a significant effect on the surface flows.

5.1.2 Spectrum of Magnetic Fields

We found that enhancing the radiative energy flux in regions of strong magnetic field does

not enhance the flows but this may still influence the magnetic field distribution. We compare the

magnetic energy spectrum to determine if it induces different scale magnetic fields (Figure 5.3). This

spectrum is computed in the same way as the velocity power spectrum, see §3.1.1, by substituting

the magnitude of the magnetic field for velocity. This spectrum shows that enhancing the radiative

losses through the magnetic network does not influence the distribution of the magnetic field. This

simulation has the same rms field strength (which is proportional to the square root of the integral of

the magnetic field spectrum) and qualitatively identical magnetic field spectrum to the zero net flux

simulation, which suggests that enhancing the cooling has minimal effect on the photospheric flows

and magnetic field distribution. This is evidence that the low wavenumber flows in the photosphere

are primarily determined by the deeper convection and the contribution of the magnetic field to

the properties of photospheric radiation do not influence the flows there.

Adding a 10 G mean field, however, increases the rms field strength in the photosphere by

nearly a factor of two (see Table 5.1) and concentrates the field on larger scales. These larger scale

features are visible as magnetic pores which are concentrations of magnetic fields with |B| > 1000 G

that inhibit convective motions, similar to sunspots (see Figure 5.6). These magnetic pores are only
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Figure 5.2 The photospheric horizontal velocity spectrum from zero net flux small-scale dynamo
(dotted blue curve) and a simulation with same magnetic field strength that enhances the radiative
losses through the magnetic field (long-dash green curve). We change the linestyle to dash-dot-dot-
dot for the modes that have driving depths outside the simulation domain and consequently lower
power than we would expect from a deeper simulation.
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Figure 5.3 The photospheric magnetic field spectrum for the 10 G mean field (dashed red curve), zero
net flux (dotted blue curve), and enhanced radiative cooling (long-dash green curve) simulations.
The 10 G mean field simulation has significantly more rms field strength in the photosphere and,
consequently, increased power in the magnetic spectrum. The enhanced radiative cooling simulation
shows no qualitative differences from the zero net flux simulation.
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Table 5.1. Photospheric Magnetic Field Strength

Zero Net Flux 10 G Mean Field Artificial Flux 10 Mm, 15 G Artificial Flux 2.56 Mm, 15 G

√
< B2 > 140G 269G 202G 159G

< |Bz | > 37.2G 68.5G 53.2G 45.3G

Note. — The rms field strength (first row) and mean unsigned vertical magnetic flux (second row) for the four
primary magnetic field simulations that we analyze in §sec:magsurface. Observations of the quiet Sun measure the
unsigned vertical magnetic flux as ∼ 64G (Orozco Suárez & Bellot Rubio, 2012).

found in the solar photosphere in magnetically active regions with net magnetic flux larger than 10

G that we associate with the global dynamo. Quiet Sun magnetic field is concentrated on smaller

scales than found in the 10 G mean field simulation. Recent small-scale dynamo simulations have

found that more than half of quiet Sun magnetic energy is on scales smaller than 100 km (Rempel,

2014). Furthermore, reducing the simulation resolution artificially enhances the magnetic power

at low wavenumbers because lower resolution restricts the modes in the spectrum (Rempel, 2014).

Thus, the magnetic power on large-scales is artificially enhanced in our simulations since we use

such a low resolution (192 km horizontally).

5.1.3 Magnetic Fields with Artificial Flux

Based on our comparison with observations in §4, we know that the magnetized and hy-

drodynamic reference simulations have excess photospheric power at low wavenumbers. Using an

artificial energy flux that transports the solar energy flux below 10 Mm (see §4.2.3), we reduce

the amplitude of the deep convective flows and match solar observations of the horizontal velocity

spectrum. Since most of the low wavenumber photospheric power originates from deeper flows, any

enhancement of low wavenumber flows by the enhanced radiative cooling may be dominated by the

contribution from the large-scale deep convection. To determine the effect of the magnetic fields to

the photospheric motions without excess low wavenumber power, we add a 15 G mean magnetic

field (which grows due to small-scale dynamo action) to the artificial flux 10 Mm and artificial flux

2.56 Mm simulations. To save computing time we reduce the domain depth of these artificial flux
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with magnetic field simulations such that the bottom 50% of the domain transports the full energy

flux using the artificial energy flux: 24.576 Mm (for the artificial flux 10 Mm simulation) and 10.24

Mm (for the artificial flux 2.56 Mm simulation). The decreased depth of these simulations does not

have any noticeable impact on the photospheric properties.

We also test the influence of the radiative losses through the magnetic network by re-

computing these magnetized artificial energy flux simulations with an artificially enhanced radiative

cooling with αcooling = 1 which doubles the cooling for field strength greater than 1000 G (see §5.1.1

for details on the artificially enhanced radiative cooling).

Figure 5.4 Photospheric horizontal velocity spectrum for three simulations with artificial energy
flux: hydrodynamic (solid blue curve), 15 G mean field (dotted green curve), and enhanced radiative
cooling (dashed red curve). We use artificial flux 10 Mm in part a and artificial flux 2.56 Mm in
part b. Similar to Figure 5.1, the magnetic field qualitatively decreases the power for modes with
scales larger than granulation.

Similar to Figure 5.1, adding magnetic fields to the artificial energy flux simulations qualita-

tively reduces the low wavenumber horizontal velocity power in the photosphere (Figure 5.4a and

b). These results, however, are not statistically significant. This confirms the previous result that

the quiet Sun magnetic fields do not enhance the flows at any scale and instead decreases the power

in the large-scale motions in the photosphere.

Just as in Figure 5.2, artificially enhancing the radiative cooling in strong magnetic field

regions is qualitatively identical to the simulation with normal cooling. This adds more evidence

that the effects of the magnetic fields on the radiative properties of the photosphere does not alter
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the flows.

5.1.3.1 Scales of Surface Magnetic Field with Artificial Energy Flux

Adding magnetic fields to the artificial energy flux simulations verifies that the magnetic

field does not enhance the flows at any scale. These simulations can also help us understand the

relationship between the low wavenumber photospheric flows and the spectrum of photospheric

magnetic fields. In Figure 5.5 we compare the magnetic field spectrum for the 10 G mean field,

zero net flux and the two 15 G mean field simulations with artificial energy flux near the surface (at

10 Mm and 2.56 Mm depth). The artificial energy flux has two effects on the surface magnetic field.

These simulations have reduced rms field strength which we explore in §5.1.3.2. In addition to this

reduced field strength, we find that the increased low wavenumber flows of the simulations without

an artificial energy flux organizes the magnetic field on larger scales. While the artificial energy flux

also reduces the magnetic field strength, we can compare the two weakest field simulations (artificial

flux 2.56 Mm with 15 G mean field as long-dashed yellow curve and zero net magnetic flux dotted

blue curve) and two strongest field simulations (artificial flux 10 Mm with 15 G mean field dashed

green curve and 10 G mean field solid red curve) to help isolate the effects of the low wavenumber

flows. Both comparisons have similar photospheric magnetic field strength (see Table 5.1). This

suggests that the large-scale deep flows have a strong effect on the magnetic energy spectrum; large

amplitude low wavenumber flows organize the magnetic energy on larger scales in the photosphere.

This difference in the separation of the strongest magnetic elements is also visible in the

snapshots of the vertical magnetic field from all four simulations (Figure 5.6). The 10 G mean

field simulation has the strongest magnetic fields concentrations (including magnetic pores) at very

large scales. On the other hand, the artificial energy flux 10 Mm simulation with 15 G mean field,

which has similar photospheric rms field strength, shows a field separation much more similar to

quiet Sun magnetic network with typical separation on the scale of supergranules. Comparing the

zero net flux simulation and the artificial flux 2.56 Mm simulation with 15 G mean field (which also

have similar rms field strength, see Table 5.1), the scales for the artificial energy flux simulation are
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Figure 5.5 The photospheric magnetic field spectrum for the zero net flux (dotted blue curve), 10 G
mean field (solid red curve), artificial flux 10 Mm, 15 G (dashed green curve) and artificial flux 2.56
Mm, 15 G (long-dashed yellow curve) simulations. The 10 G mean field simulation has statistically
significantly increased low wavenumber power. Higher resolution small-scale dynamo simulations
(with zero net flux) find that more than 50% of the magnetic energy is on scales smaller than our
resolution allows (Rempel, 2014).
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Figure 5.6 The photospheric vertical magnetic field for the zero net flux, 10 G mean field, artificial
flux 10 Mm, 15 G and artificial flux 2.56 Mm, 15 G simulations. The color table for all four
magnetograms are normalized so that blue displays magnetic field that is saturated at +500G and
red shows magnetic field that is saturated at -500G (with white being zero magnetic field).
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significantly smaller. This suggests that the magnetic fields in the photosphere are largely passive

tracers as has been previously assumed and that the flows dominate the pattern of the photospheric

magnetic field.

We also note that the zero net flux simulation also has significant magnetic flux imbalances

on scales larger than supergranulation. Magnetic flux imbalances observed in the network field has

been suggested as evidence that the magnetic network are remnants from decaying active regions

generated by the global dynamo (Lamb et al., 2010). Examining the mean vertical magnetic field

in a box that is 49 × 49 Mm2 in size, we find that the zero net flux simulation has a maximum

magnetic flux imbalance of 〈Bz〉box = 13 G in the photospheric magnetic field snapshot shown in

Figure 5.6. This averaging is done by shifting the box (which is one quarter of the horizontal length

of the domain) across the full domain. Since a small-scale dynamo in the solar photosphere must

maintain zero net magnetic flux across the full photosphere (which has an area more than 150 times

larger than our simulation domain width), this suggests that large-scale magnetic flux imbalances

in the solar photosphere can be generated by a local dynamo even if the local dynamo produces

zero net magnetic flux when averaging over the full solar surface.

5.1.3.2 Why is the Photospheric Magnetic Field Weaker with the Artificial Energy

Flux?

Since the bottom boundary condition of our magnetized simulations advects horizontal field

into the domain (see §2.1.4.2), based on previous small-scale dynamo simulations we expect the

strength of the photosphere to primarily depend on the resolution and net flux in the simulation and

not the depth of the simulation (Rempel, 2014). Additionally, since the dynamo efficiency largely

depends on the rate of plasma recirculation and the simulations with artificial energy flux have

increased plasma recirculation, as we found in Figure 4.13b, we might expect the simulations with

the artificial energy flux to have a higher dynamo efficiency. The field strength in the photosphere

of the artificial energy flux simulations, however, is weaker than the standard simulations despite

having stronger net flux.
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Figure 5.7 The rms (blue) and equipartition (red) field strength for the zero net flux (solid curve),
10 G mean field (dashed curve), artificial flux 10 Mm, 15 G (dotted curve) and artificial flux 2.56
Mm, 15 G (long-dashed curve) simulations. The reduction in rms field strength in the artificial flux
simulation is largely due to the decreased equipartition field strength, which may be an upper limit
for the small-scale dynamo field. The 10 G mean field simulation has increased rms field strength
compared to the zero net flux simulation but this reduces the flow speeds which feeds back into the
equipartition field strength. Thus these equipartition field strengths are upper limits estimates.
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Since, as we discussed in §4.2.3, we know that the photospheric dynamics of the artificial

energy flux and standard energy flux simulations is similar, we examine the subsurface magnetic

field to determine why the photospheric field is weaker. In Figure 5.7, we find that the artificial

energy flux simulations have significantly weaker rms field strength (blue curves) at depths where

the artificial energy flux is active (right below the photosphere in the case of the artificial flux 2.56

Mm simulation and below 7.44 Mm in the artificial flux 10 Mm simulation). This occurs because

the artificial energy flux decreases the rms velocity at depth, which reduces the equipartition field

strength defined as Beq =
√

4πρ vrms (red curves in Figure 5.7). We use the ratio of the rms

magnetic field strength, Brms, to the equipartition field strength as a measure of the dynamo

efficiency. While the dynamo is just as efficient in the artificial energy flux simulations (or, at

some depths, more efficient), the reduced subsurface flow speeds also reduces the kinetic energy

available to be converted to magnetic energy. Since the magnetic field is advected to the surface,

the simulations with higher rms field strength at depth have increased photospheric magnetic field.

We also note that the 10 G mean field simulation has increased rms field strength throughout

the domain compared to the zero net flux simulation but this increased field strength reduces the

flow speeds (see Figure 5.10) which feeds back into the equipartition field strength. Thus the

plotted equipartition field strengths are actually upper limits estimates for the equipartition field

strength, since a simulation that reached equipartition between the kinetic energy and magnetic

energy would have reduced kinetic energy compared the simulations presented here. This suggests

that having rms field strength equal to the equipartition field strength would not be sufficient to

reduce the rms velocity of the deep flows (below ∼ 10 Mm) by a factor of 2.5, the estimate for the

velocity reduction required to match the low wavenumber power in observations of the photospheric

horizontal velocity spectrum (§4).

5.1.4 Photospheric Time Scales

While the evidence from our small-scale dynamo simulations is that magnetic fields do not

enhance photospheric flows on any scale, the scale enhancement stemmed from the suggestion that
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magnetic fields could increase the timescale of the flows. The original suggestions were that the

downflows associated with network magnetic field may live longer than weak-field downflows either

because the radiative cooling is enhanced by strong magnetic fields or strong magnetic flux elements

require an opposite signed magnetic flux element to cancel the field which is longer than the flow

lifetimes with weak magnetic field (Crouch et al., 2007).

5.1.4.1 Lifetime of Supergranular Scale Horizontal Divergence

To compare the dominant horizontal supergranular motions in the photosphere between sim-

ulations, we compute the temporal autocorrelation of the Fourier filtered horizontal divergence

(similar to the correlations in §3.2). We correlate these horizontal divergence maps across 12 hours

before and after the central snapshot and then recompute these correlations for a total of 25 real-

izations spread across the full 5.5 days of simulated solar time. Since the granular scale motions

dominate the photospheric timescales, we apply a Fourier filter to remove motions on scales smaller

than supergranulation (λh < 20 Mm) and also remove the low wavenumber modes that may be

influenced by box mode (λh ≥ 98 Mm, see §3.1.6). Since our Fourier filter requires a smooth edge

to the filter to avoid ringing, we center this upper limit at λh = 50 Mm to remove all influence of

the box mode.

The resulting correlations show small differences between the simulations that do not use the

artificial energy flux: the reference (solid black curve), zero net (magnetic) flux (dot blue curve),

and 10 G mean field (dash red curve) simulations. The full width at half maximum (FWHM),

which measures the timescale for the flows to become de-correlated, is ∼ 11hrs for each of these

simulations (see Table 5.2). While the zero net flux simulation is qualitatively shorter timescales

than the reference simulations these results are within one standard deviation and, consequently,

are not statistically significant. The the artificial (energy) flux 10 Mm simulation with 15 G mean

field (dot-dash green curve) is qualitatively different for timescales greater than ±6hrs from the

simulations with no artificial energy flux, but the FWHM is not statistically significantly different.

The artificial flux 2.56 Mm simulation with 15 G mean field (long-dash orange curve), however,
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Figure 5.8 The temporal autocorrelation of the photospheric horizontal divergence, Fourier filtered
to only include scales from 20 Mm to 50 Mm, for the reference (solid black curve), zero net flux
(dotted blue curve), 10 G mean field (dashed red curve), artificial flux 10 Mm, 15 G (dash-dot green
curve) and artificial flux 2.56 Mm, 15 G (long-dashed yellow curve) simulations. There are no
statistically significant differences between any simulation except for artificial flux 2.56 Mm, 15 G.
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has much shorter timescales in the photosphere, with a FWHM less than 1 hour. The large-scale

horizontal flows in the photosphere of this simulation are generated only by surface motions (since

the artificial energy flux suppresses subsurface motions) and thus the lifetime of these flows is

reflective of photospheric timescales.

This suggests that, similar to the amplitude of the low wavenumber flows, the lifetime of the

supergranular scale horizontal flows does not increase with magnetic field strength. The timescale of

these low wavenumber flows, however, is sensitive to the deep flows that imprint in the photosphere

since both artificial energy flux simulations show a qualitative (and, in the artificial flux 2.56 Mm

simulation, a dramatic) difference from the simulations with no artificial energy flux.

5.1.4.2 Lifetime of Supergranular Scale Magnetic Fields

While the magnetic fields in our simulations do not increase the lifetime of the supergranular

scale horizontal divergence, it is possible that the lifetime of the large-scale magnetic field differs

from the lifetime of the flows. Since the solar network magnetic field is the dominant length scale

of the quiet Sun magnetic field and this field is organized by the supergranulation, we may expect

to see the supergranular scale magnetic field in our simulations organized on similar timescales

as the supergranular scale motions. Previous work linking photospheric magnetic field to the

supergranular flows, however, suggested that the photospheric magnetic elements have increased

lifetime compared to granulation (Crouch et al., 2007). Thus we compare the timescale of |B| =√
B2
x +B2

y +B2
z in these simulations using the same temporal autocorrelation method as we used

for the horizontal divergence (described above) and Fourier filter to include only supergranular

scales.

The temporal autocorrelations of the magnetic field in each magnetized simulation Figure 5.9

are well separated with apparent differences due to both the mean field in the simulation and am-

plitude of the low wavenumber flows. Each simulation with mean field has a statistically significant

increased lifetime of the supergranular scale magnetic field compared to supergranular scale flow

lifetimes (Table 5.2). The 10 G mean field simulation (dashed red curve) has magnetic field life-
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Figure 5.9 The temporal autocorrelation of the photospheric magnetic field, Fourier filtered to only
include scales from 20 Mm to 50 Mm, for the zero net flux (dotted blue curve), 10 G mean field
(dashed red curve), artificial flux 10 Mm, 15 G (dash-dot green curve) and artificial flux 2.56 Mm,
15 G (long-dashed yellow curve) simulations. The full width at half maximum for these correlations
depends on the photospheric rms field strength and flow timescales (in the case of the artificial flux
2.56 Mm, 15 G simulation).
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Table 5.2. Photospheric Correlation Times

Reference Zero Net Flux 10 G Mean Field Artificial Flux 10 Mm, 15 G Artificial Flux 2.56 Mm, 15 G

µfwhm,∇h
11.5 10.2 11.4 10.0 0.5

σfwhm,∇h
1.1 1.0 1.3 1.0 0.1

µfwhm,B N/A 10.6 26.9 15.0 6.9
σfwhm,B N/A 3.2 4.2 1.3 1.2

Note. — The mean and standard deviation of the full width at half maximum, in hours, for the horizontal divergence (Figure 5.8)
and magnitude of the magnetic field (Figure 5.9).

time that is much larger than any other lifetime measure. This is caused by the pores in the

photosphere (Figure 5.6) which are strong concentrations of magnetic field that suppress motions

(similar to sunspots). The zero net flux simulation (dotted blue curve), on the other hand, is the

only simulation with equal flow and magnetic field lifetime.

The mean field simulations have significant separation between the strongest concentrations

of positive polarity magnetic field and negative polarity magnetic field, whereas the zero net flux

simulation has an even mix of positive (white) and negative (black) polarity field concentrations (see

Figure 5.6). Thus, if cancellation of opposite polarity elements is important to the lifetime of the

magnetic field concentrations, then the mean field in these simulations may allow positive polarity

field concentrations to live longer (since there is less negative polarity field). The low resolution

may also influence the lifetime of these elements since our simulations are below the minimum res-

olution required for dynamo action in the photosphere (Rempel 2014, private communication) and,

consequently, the field in the photosphere is advected from below (where there is dynamo action).

If the dynamo were operating in the photosphere it may generate negative polarity magnetic faster

than in these simulations. This mean field may also connect to deeper flows with longer lifetimes

but preliminary evidence based on correlations between magnetic fields and deeper flows does not

find any difference between the mean field and zero net flux simulations.
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5.1.4.3 Timescales with Enhanced Radiative Cooling

While our initial motivation for enhancing the radiative cooling in regions of strong magnetic

flux was that it may increase the timescale of the photospheric downflows, we find no change in

the timescale of the flows in these simulations. We do not show the correlations of any of the

simulations with the enhanced cooling because they are qualitatively identical to the magnetic

simulations with normal cooling. This is true even when you include an artificial energy flux to

reduce the amplitude of the large-scale photospheric flows. Thus we can conclude that artificially

enhancing the radiative cooling has no noticeable effect on the lifetime or length scale of the flows.

5.1.5 Identifying Supergranules Beyond the Velocity Spectrum

Quiet Sun network magnetic field, observed at the boundaries of supergranular cells, is the

other main method for identifying solar supergranules. While we have focused our comparison

between simulations and observations on the horizontal velocity spectrum, we can also apply ob-

servational techniques to our simulation magnetic field to compare to observations. We make this

comparison in Appendix A, but do not include the results here because we find that these methods

are inconsistent.

5.2 The Role of Magnetic Fields in Subsurface Motions

While the magnetic fields have limited effect on the photospheric length scale or lifetime

of photospheric flows, we know from Figure 5.1 that the small-scale dynamo field qualitatively

suppresses low wavenumber power in the photosphere. Thus the magnetic fields may play a role in

shaping the low wavenumber power at the surface but that the magnetic fields act to suppress this

power as opposed to enhancing the surface flows, as had been previous suggested. Based on the two-

component model introduced in §4, we expect the low wavenumber photospheric horizontal flows to

depend on the rms velocity (which determines the total integrated power at depth) and the density

scale height (which determines the local driving (integral) scale) below the surface which then
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imprints on the surface. We previously showed the decreased equipartition field strength (which

is caused by the decrease rms velocity) in §5.1.3.2 and continue that discussion here. We also

compare the subsurface properties of the magnetic field and hydrodynamic reference simulations

to determine what causes the qualitative decrease in low wavenumber power in the photosphere of

the magnetized simulations.

5.2.1 Deep Flows in Magnetized Solutions

We begin by comparing the rms vertical velocity (which is equal to the total integrated power

of the velocity spectrum) as a function of depth in Figure 5.10. The rms vertical velocities in both

the 10 G mean field and zero net flux simulations are roughly 10% weaker than the reference

(hydrodynamic) simulation. While this is a statically significant change in the rms velocities (since

the standard deviation of the rms velocity is typically ∼ 1%), it is a much smaller reduction than

the factor of 2.5 reduction due to the artificial energy flux that we found was necessary to match

solar observations at the surface.

This suggests that magnetic fields in the solar convection zone, if they are the mechanism

that reduces the rms velocity, must be substantially stronger than the fields that we find in our

simulations (Figure 5.7). If a small-scale dynamo is able to generate much stronger magnetic

fields, one competing effect is the decreasing equipartition field strength as stronger magnetic fields

decrease the rms velocity. We see this in the decreased velocity in the 10 G mean field simulation

compared to the zero net flux simulation, Figure 5.10, which results in reduced equipartition field

strength in Figure 5.7. This suggests that based on our simulations, the magnetic energy would

need to be in super-equipartition with the kinetic energy in the deep domain to reduce the rms

velocity sufficient to match solar observations of the low wavenumber photospheric power.

While the reduction in rms velocity reduces the total integrated power in the spectrum, we

know from §3.1.2.3 that the low wavenumber power in the photosphere depends on the amplitude

of the large-scale flows below the surface. The two-component further suggests that only the power

in the driving (integral) scale mode imprints on the surface. Thus, if magnetic fields preferentially
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Figure 5.10 The rms vertical velocity for the reference (solid black curve), zero net flux (dotted
blue curve) and 10 G mean field (dashed red curve) simulations. The magnetized simulations
have reduced rms velocity below the photosphere. Based on the two-component model we expect
the rms velocity to determine the photospheric horizontal velocity power for scales larger than
granulation. The different velocity in the hydrodynamic simulation at the bottom boundary is
due to the enhanced viscosity in the hydrodynamic bottom boundary which is not used in the
magnetized simulations (see §2.1.4).
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Figure 5.11 The total velocity power spectrum for the reference (solid black curve), zero net flux
(dotted blue curve) and 10 G mean field (dashed red curve) simulations at 20 Mm depth. The low
wavenumber power is qualitatively decreased but most of the reduced rms velocity in the magnetized
simulations decreases the high wavenumber velocity power. Since the magnetic fields change the
shape of the spectrum, this suggests that the reduced rms velocity due to the magnetic fields would
result in higher photospheric velocity power than the two-component model would suggest.
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decrease the amplitude of the large-scale flows, then we would expect additional reduction in

low wavenumber surface flows. Examining the velocity spectrum 20 Mm below the photosphere

(Figure 5.11), however, shows that the small-scale dynamo magnetic fields primarily reduce the

amplitude of high wavenumber modes (with some reduction in low wavenumber modes). Thus, the

∼ 10% reduction in the rms velocity may not reduce the power driving (integral) scale mode by

a similar amount. If the driving (integral) scale mode is not reduced then this would cause the

imprinted low wavenumber power in the photosphere to be less than our ∼ 10% reduction in rms

velocity would suggest. This adds to the evidence that the magnetic field must be substantially

stronger to sufficiently reduce the amplitude of the large-scale flows in order to match the observed

solar horizontal velocity spectrum.

5.2.2 Energy Flux with Magnetic Fields

Since the magnetic field reduces the flow speed, these simulations must maintain the solar

luminosity at reduced speeds. As we can see from Figure 5.12a, the magnetic fields reduce the

kinetic energy (1
2ρv

2) carried by the downflows by a factor of ∼ 1.6, which results in decreased

enthalpy flux (vzρ(ε+P/ρ), Figure 5.12b). Thus the convective energy flux, which results from the

cancellation of ∼ 10, 000 solar luminosities in upflows and ∼ −9, 999 solar luminosities downflows,

can be sustained at lower velocity since the downflows carry less kinetic energy downward.

In Figure 5.13 we compare the unsigned vertical mass flux (a) and the specific enthalpy

(ε + P/ρ) difference between upflows and downflows (b). The decreased unsigned vertical mass

flux, 〈|vzρ|〉, indicates that there is decreased convective overturning in the magnetized simulations

which decreases the enthalpy flux (note that the differences below 45 Mm are due to the enhanced

viscosity in the hydrodynamic bottom boundary). This is offset in the deep domain by increased

difference between the specific enthalpy in upflows and downflows. These terms both decrease

the enthalpy flux near the surface (∼ 15 Mm depth). Thus, the magnetized simulations not only

decrease the rms velocity but also increase the specific enthalpy difference in upflows and downflows

(at some depths) which maintains the convective energy flux at lower speed.
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Figure 5.12 The kinetic energy in downflows (a) and total enthalpy flux (b) for the reference (solid
black curve), zero net flux (dotted blue curve) and 10 G mean field (dashed red curve) simulations.
The magnetic fields reduce the kinetic energy carried deeper into the domain by the downflows
by ∼ 40% which reduces the enthalpy flux that is required to maintain the solar energy flux. The
differences in the hydrodynamic simulation at the bottom boundary is due to the enhanced viscosity
in the hydrodynamic bottom boundary which is not used in the magnetized simulations (see §2.1.4).

Figure 5.13 The unsigned vertical mass flux (a) and enthalpy (b) difference in upflows and downflows
for the reference, zero net flux and 10 G mean field simulations. The decreased enthalpy flux
(vzρ(ε + P/ρ)) in the magnetized simulations is caused by a decrease in the overturning mass
(which is shown by the decreased unsigned vertical mass flux) and offset by an increase in the
specific enthalpy (ε + P/ρ) near the bottom boundary. Near the middle of the domain both of
these terms reduce (∼ 15 Mm) the enthalpy flux. The reduction of mass flux at the bottom of the
hydrodynamic simulation are caused by the increased viscosity at the bottom boundary which is
not used in the magnetized simulations (see §2.1.4).
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In addition to changing the total enthalpy flux at depth, the magnetic field also changes the

scales that transport the convective energy (Figure 5.14). These changes are qualitatively similar

to the changes to the velocity spectrum (Figure 5.11) with reduced convective energy flux at high

wavenumbers in the magnetized atmospheres. For a magnetized atmosphere to transport the energy

flux with significantly reduced large-scale motions we would expect small-scale correlations between

velocity and enthalpy to transport more energy. The magnetized simulation atmospheres, however,

exhibit the opposite trend. This adds to the evidence that if magnetic fields are the missing physical

mechanism that reduces the low wavenumber flows, then magnetic fields in the solar convection

zone must be substantially stronger than in our simulations.

5.3 Conclusion

In this chapter we have examined the relationship of the quiet Sun magnetic field and super-

granular (and larger) scale flows.

While previous work suggested that magnetic fields may enhance the large-scale flows in

the photosphere (Rast, 2003; Crouch et al., 2007), we find that the magnetic field qualitatively

decreases the amplitude of low wavenumber flows in the photosphere. The magnetic field does not

enhance flows at any scale which casts doubt on this as a mechanism that organizes supergranular

flows near the surface. As outlined by Table 5.3, the magnetic fields does not affect the surface

flows and, instead, primarily influences the deep convective motions. In particular, we examine

the enhancement of radiative cooling in strong magnetic elements in the photosphere and find that

this does not significantly influence the length or time scale of the flows. The amplitude of the

low wavenumber flows (controlled by using an artificial energy flux to transport the energy below

the photosphere), on the other hand, plays a significant role in the length and time scale of the

photospheric magnetic field. This suggests that the quiet Sun magnetic field behaves primarily as

a passive tracer that is advected by the flows.

As we showed in §4, the hydrodynamic MURaM simulations (in agreement with our two-

component model applied to a mixing length model atmosphere) have excess low wavenumber
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Figure 5.14 The spectrum of the convective energy flux for the reference (solid black curve), zero
net flux (dotted blue curve) and 10 G mean field (dashed red curve) simulations at 20 Mm depth.
These spectra are normalized by the total integrated power to compare the scales of convective
energy transport. The hydrodynamic reference simulation transports the energy on smaller scales
than the magnetized simulation, and is qualitatively similar to the velocity spectrum in Figure 5.11.
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Table 5.3. Evidence for magnetic effects on the surface flows or deep flows.

Surface Effect Deep Effect

Temporal correlations of photospheric The amplitude of the large-scale
horizontal divergence do not depend flows is reduced at the surface.
on magnetic field strength.

Temporal correlations of photospheric The rms velocity is suppressed
magnetic field primarily depend on the throughout the deep domain.
large-scale flows.

Increasing the radiative cooling in Kinetic energy flux in downflows
strong magnetic field concentrations is reduced with a corresponding
has no effect on the flows. reduction in upward enthalpy flux.

power compared to observations. This power comes from the deep flows which suggests that the

large-scale subsurface flows in the Sun are weaker than previously thought. The magnetic fields

generated by a small-scale dynamo in our simulations suppress the rms velocity (by ∼ 10%) in

the deep domain which qualitatively decreases the low wavenumber power in the photospheric

horizontal velocity spectrum. These magnetized simulations must maintain the solar luminosity

and do so by reducing the kinetic energy carried by the downflows and the upward enthalpy flux.

We also find that these simulations have decreased convective overturning which is compensated

by increased difference between the enthalpy in upflows and downflows. This allows the simulation

to maintain the solar luminosity with lower rms velocity.

The overall convective energy flux in magnetized simulations is transported primarily by

large-scale motions. Furthermore, these simulations reduce the convective energy flux transported

at high wavenumber. While the Lorentz force feedback on the flows also provide some suppression

of low wavenumber motions, the velocity spectrum at depth shows a similar preferential suppression

of high wavenumber power. Since the low wavenumber power in the photosphere is determined by

the amplitude of the large-scale motions at depth, this suggests that the magnetic field may not

reduce low wavenumber power sufficient to match observations without substantially stronger fields.
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Since our simulations have reached ∼ 50% of the equipartition field strength (with a ∼ 10%

reduction in rms velocity), these results suggest that if the rms velocity is reduced by a factor of 2.5

(our estimate from the artificial energy flux simulation which is required to match the observations)

then the equipartition field strength would reduced below our current rms field strength. Since

the amplitude of the equipartition magnetic field depends on the rms velocity, simulations with

increasing field strength will have reduced equipartition field strength, which will further limit the

effectiveness of the suppression of the amplitude of the convective motions.

The problem with estimating the maximum field strength at which the solar dynamo saturates

is that we are in the wrong parameter regime for the solar dynamo. The solar convection zone has a

magnetic Reynolds number (ReM = LV/η where L is a typical convective length scale, V is the rms

velocity and η is the magnetic diffusivity) ∼ 105 to ∼ 109 and magnetic Prandtl number (the ratio

between viscous and magnetic diffusion) between 10−3 and 10−7 (Mart́ınez Pillet, 2013) whereas our

small-scale dynamo simulations are in a magnetic Prandtl number one regime and diffuse magnetic

energy on larger scales than the Sun (we cannot estimate the effective magnetic Reynolds number

in our simulations because our diffusive scheme is highly intermittent, inhomogeneous and depends

on scale).

Simulations of small-scale dynamos have found that the saturated magnetic field depends

primarily on the magnetic Reynolds number and magnetic energy can reach super-equipartition

with the kinetic energy (Brandenburg, 2014). Furthermore, low magnetic Prandtl number dynamos

dissipate most of the energy through ohmic diffusion with less than 10% of the energy dissipated by

the viscosity (Brandenburg, 2014). This leaves very little kinetic energy on scales smaller than the

magnetic dissipation scale (which is larger than the viscous dissipation scale in the low magnetic

Prandtl number regime) (Brandenburg, 2009, 2014). Thus, while a small-scale dynamo closer to

the solar parameter regime may saturate with increased field strength, this occurs primarily on

small scales and does not appear to change the Lorentz force feedback on large-scales (with little

further reduction in the amplitude of low wavenumber flows) (Brandenburg, 2014). This suggests

that magnetic fields generated by a small-scale dynamo in the solar convection zone may not be
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limited to equipartition between magnetic and kinetic energy but this super-equipartition field may

affect primarily small-scale motions.

All of this evidence suggests that magnetic fields are a mechanism that could allow convection

to transport the solar luminosity with weaker flows and reconcile the simulations with observations.

To match observations, however, the magnetic fields must be substantially stronger than in these

simulations.



Chapter 6

Conclusion

Since the early observations of supergranulation it has been suggested that these flows orig-

inate at significant depth below the photosphere (specifically related to the depth of Helium II

ionization) and imprint on the surface (Simon & Leighton, 1964; Simon & Weiss, 1968; Novem-

ber et al., 1981). Recent work, however, has suggested that supergranulation may be generated

near the surface. In particular, theoretical calculations (using the mutual interaction of convective

downflows and magnetic elements) found that large-scale flow patterns could be generated purely

from granular downflows and increased lifetime of magnetic elements (Rast, 2003; Crouch et al.,

2007). Time-distance helioseismic measurements of the supergranular flows also find a peak flow

pattern within 3 Mm of the photosphere (Rast, 2003; Crouch et al., 2007; Duvall & Hanasoge, 2013;

Duvall et al., 2014). Furthermore, the measurements of the diameter of supergranules show that it

changes with the solar cycle which suggests that magnetic fields may not be a passive tracer in the

photosphere and, instead, play some role in determining the supergranular length scale (McIntosh

et al., 2011).

On the other hand, the length scale of convective motions increases with depth in the solar

convection zone because of its increasing scale. This means that supergranular scale convection

occurs at some depth independent of any physical mechanism that organizes granular flows into

larger scale convection in the photosphere. Observations of the motion of supergranules in the

photosphere has linked the wavelength of supergranulation with mean flows (i.e. the differential

rotation and meridional circulation) at depths up to 100 Mm below the photosphere (Hathaway
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et al., 2010; Hathaway, 2012a,b). While it is unclear how these flows may imprint on the photo-

sphere, this suggests that supergranular flows originate below the surface where they are advected

by the mean flows and these deep convective motions are observed as flow patterns at the surface.

This thesis has investigated these effects and this apparent contradiction via large-scale nu-

merical simulations.

6.1 Summary

Comparing solar-like convection simulations using the MURaM code with domain depths

ranging from 49 Mm to 2 Mm (in Chapter 3), we find that the low wavenumber horizontal velocity

power in the photosphere depends both on the presence and amplitude of the larger scale flows deep

in the domain. Furthermore, we find that each successively deeper simulation adds power on larger

scales (and is consistent with the shallower simulations for all smaller scale modes). Each depth

contributes power to horizontal motions in the photosphere at a specific length scale (or range of

scales) with the contributed scales increasing with depth. While the horizontal velocity spectrum

shows a dependence on the deep convection, the vertical motions near the surface are dominated

by the processes in the radiative boundary layer. The low wavenumber vertical power (which is

balanced by the density gradient, unlike the balance in the continuity equation below the surface)

is stronger than any imprinted large-scale vertical motions.

The photospheric horizontal velocity spectrum motivates the two-component model presented

in Chapter 4. In that model the velocity spectrum depends on the local driving (integral) scale

(4Hρ), the local rms velocity and the amplitude of the large-scale convection deep in the domain

which decay with height and imprint on the upper layers. Each depth contributes motions at the

scale of 4Hρ which suggests that the length scale and lifetime of supergranulation is determined

by the properties of the convection in the depths where 20 Mm . 4Hρ(z) . 75 Mm and that

supergranulation is highlighted in the photosphere by lower amplitude motions where 4Hρ(z) .

20 Mm and 4Hρ(z) & 75 Mm.

The surface velocity spectra from the MURaM simulations and from applying our two-
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component model to mixing length atmospheres does not match the observed power spectrum

in the solar photosphere at wavenumbers lower than supergranulation. While the latent heat flux

of helium ionization helps reduce the velocity at depths with driving (integral) scales at mesogran-

ular scales (due to He I ionization) and scales larger than supergranules (due to He II ionization),

this is a small effect that helps shape the spectrum but does not explain the prominence of super-

granulation in the observed velocity spectrum of the solar photosphere. The only way to reconcile

the simulations with observations is to use an artificial energy flux to transport the solar luminosity

below 10 Mm which reduces the rms velocity deep in the simulation domain by a factor of 2.5, thus

defining supergranulation by the drop in power to lower wavenumbers as in the observations.

Examining simulations with small-scale dynamo magnetic fields (in Chapter 5), we find that

the magnetic fields do not enhance the lifetime of the flows or organize the surface convection into

larger scale motions even with enhanced radiative cooling in strong magnetic field concentrations.

The magnetic fields do, however, qualitatively reduce the low wavenumber power in the photo-

sphere by decreasing the kinetic energy carried by downflows and allowing the solar luminosity to

be transported at lower rms velocity. While this lower velocity reduces the low wavenumber power

in the photosphere, the reduction is not sufficient to match the observed photospheric velocity spec-

trum. The small-scale dynamo simulations further suggest that even a dynamo with equipartition

field strength may not reduce the rms velocity by the factor of 2.5 seen in the artificial energy

flux simulation. If a small-scale dynamo were to generate magnetic field in the convection zone

of sufficient strength to cause the observed low wavenumber power reduction, that magnetic field

must be substantially stronger than in our simulations.

6.2 Comparing to Global Simulations

Comparing our MURaM reference simulation (solid black curve) to global convection simu-

lations with rotation (dot-dashed orange curve, Miesch et al., 2008) and without rotation (dashed

blue curve, Hotta et al., 2014) at 0.98Rsun (Figure 6.1), we find that the low wavenumber velocity

power increases to larger scales in the all simulations. The MURaM reference simulation is also in
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agreement with a local area stagger simulation (dotted red curve, Stein & Nordlund, 2006) which

is only 20 Mm deep and, consequently, has decreased low wavenumber power compared to what

we would expect from a deeper simulation. Based on our two-component model and the observed

imprinting of deep convection motion on the photosphere in MURaM simulations, we would expect

the motions in these global simulations to imprint on the solar photosphere with significant power

at the scale of giant cells. This suggests that the low wavenumber flows must be weaker in the Sun

or the solar convective motions do not imprint on the photosphere with the same amplitude as in

our simulations.

6.2.1 Observational Constraints

Multiple observational constraints suggest that the large-scale subsurface convection is weaker

than in simulations. Recent time-distance helioseismology observations using SDO/HMI have

placed upper limits on the low wavenumber convection (dotted black curve in Figure 6.1) that

is more than one order of magnitude weaker than in previous global simulations (Hanasoge et al.,

2010, 2012). These measurements have not been reproduced and are below the estimated lower

limit for the Reynolds stress to transport angular momentum to the equator and maintain the solar

differential rotation (Miesch et al., 2012). If confirmed, these results suggest that solar convection

transports the energy with dramatically weaker flows on large scales than theory would predict.

The differential rotation profile measured by helioseismology is one of the most consistent

measurements to compare to simulations (Thompson et al., 2003). It is a long standing problem

with global convection simulations that the flows that transport the solar luminosity require a mean

rotation rate that is faster than the solar rotation to maintain the solar-like differential rotation

(i.e. faster rotating equator and slower rotating pole; Brown, Charbonneau, Miesch, Toomre, 2014,

private communication). This issue has been addressed in detail by Hotta (2014a), which examines

new global convection simulations in a spherical geometry with mean solar rotation. These simu-

lations find that the convection transports angular momentum to the poles and result in anti-solar

differential rotation (with faster poles and slower equator, Hotta, 2014a; Gastine et al., 2013). The
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Figure 6.1 The horizontal velocity spectrum at 0.98Rsun in a global simulation without rotation
(dashed blue curve) using the reduced speed of sound technique (RSST Hotta et al., 2014), a global
simulation with rotation (dot-dash orange curve) using the ASH code (Miesch et al., 2008), a local
area simulation using the stagger code (dotted red curve, Gizon & Birch, 2012; Stein & Nordlund,
2006), and the MURaM reference simulation (solid black curve). We also show the upper limit from
time-distance helioseismic measurements of the large-scale flows (Hanasoge et al., 2010, 2012). We
note that the stagger simulation appears to have decreased large-scale power but this simulation
is 20 Mm deep and the power spectrum compares well to 20 Mm deep MURaM simulations. We
would expect a stagger simulation with increased depth to have excess low wavenumber power as
in the 49 Mm deep MURaM reference simualtion.
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simulations only exhibit solar-like differential rotation by reducing the solar energy flux by a factor

of 18 (which significantly reduces the rms velocity and makes the flows rotationally constrained).

Decreasing the artificial diffusivity in the simulation requires a further reduction in energy flux by a

factor of ∼ 70 (compared to the solar luminosity) to transport angular momentum to the equator.

Thus, these simulations are not converged since the Sun diffuses kinetic energy on much smaller

scales than the artificial diffusivity used in these simulations. This adds to the evidence that solar

convective flows are weaker than previously thought or that models can reproduce.

6.3 Influences on Solar Convective Energy Transport

These concerns raise the question of how the deep convection transports the solar luminosity

with such low amplitude large-scale motions at the surface. Based on results from our simulations

and the two-component model there are at least two possible explanations: either these flows do

not imprint on the surface or the energy is transported with weaker subsurface flows on large scales.

These in turn could result from rotation, magnetic fields or different properties of the convection

in the solar parameter regime.

6.3.1 Rotation

None of our simulations included the effects of rotation or the near surface shear layer.

Photospheric observations have found that supergranules are advected by the near surface shear

at a depth equal to their diameter (Hathaway et al., 2010; Hathaway, 2012a,b). Our simulations

suggest that supergranules imprint on the photosphere from the depth where λh ≈ 4Hρ which

is consistent with these observations. Thus, while the supergranules may interact with the near

surface shear layer, we do not know how this shear may influence the convective flows at depth or

the imprinting of these motions.
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6.3.2 Magnetic Fields

The connection between the network magnetic field and solar supergranulation was discovered

during the early observations of supergranulation (Simon & Leighton, 1964). While the network

field is assumed to be a passive tracer, observations of increasing supergranular length scale with

increasing solar magnetic activity suggests that the magnetic field may play an active role (McIntosh

et al., 2011). We investigated the suggestion that magnetic fields may organize photospheric flows

into supergranular scale flows (Rast, 2003; Crouch et al., 2007) by enhancing the radiative cooling

through regions of strong magnetic flux and find no evidence that magnetic fields increases the

low wavenumber velocity power at the surface. By computing self-consistent small-scale dynamo

simulations, however, we find that the Lorentz force feedback from small-scale dynamo fields reduce

the rms velocity of the deep flows which also reduces the low wavenumber power in the photosphere.

The effect found is insufficient to account for the decreased power in the observed horizontal velocity

spectrum at wavenumbers lower than supergranulation.

6.3.2.1 Lorentz Force Feedback from Small-Scale Dynamo Magnetic Field

Recent simulations of the deep convection have computed a small-scale dynamo down to the

bottom of the convection zone (Hotta, 2014b). These simulations do not include any radiative

transfer and instead include a cooling at the top boundary to generate low entropy downflows.

The upper boundary of these simulations is problematic (as are all open boundaries) because the

boundary conditions make unrealistic assumptions about the cooling and near-surface convection.

Comparing our small-scale dynamos to these deep convection simulations (Hotta, 2014b), we

find that both types of simulations match the predicted rms magnetic field strength (Figure 6.2)

and the resulting reduction in rms velocity compared to hydrodynamic simulations (Figure 6.3).

The deep simulations generate 95% of the equipartition field strength near the bottom of the

convection zone and this reduces the rms velocity by a factor of ∼ 1.6 at these depths (Hotta,

2014b). While this is much closer to the factor of 2.5 reduction in rms velocity (compared to
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Figure 6.2 Magnetic field strength (rms and equipartition) from small-scale dynamo simulations
using MURaM and a deep convection simulation (Hotta, 2014b). These are in qualitative agree-
ment (with boundary conditions and differing magnetic diffusivity contributing to mismatched
equipartition field strength where they overlap).
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hydrodynamic simulations) that our artificial energy flux simulations predict is required to match

solar observations, this flow speed reduction must occur in MURaM simulations for all flows below

25 Mm depth. In the Hotta (2014b) results, the most significant reduction in rms velocity only

occurs over a limited range of depths below ∼ 100 Mm.

Figure 6.3 The rms velocity in hydrodynamic and small-scale dynamo simulations using MURaM
and with reduced speed of sound technique to simulate deep convection (Hotta, 2014b).

While the small-scale dynamo magnetic fields in our MURaM simulations (within 50 Mm of

the photosphere) suppress primarily high wavenumber convective flows, the magnetic fields deeper

in the convection zone organize the enthalpy flux on smaller scales (Hotta, 2014b). In addition to

the reduction in rms velocity, increasing the energy flux transported by high wavenumbers may

decrease the amplitude of the driving (integral) scale mode which would reduce the imprinted low

wavenumber photospheric flows. This reorganization of the enthalpy flux on smaller scales, however,

is not matched in the kinetic energy spectrum (Hotta, 2014b). Both the MURaM and Hotta (2014b)

small-scale dynamo simulations show that the magnetic field preferentially reduces the amplitude of

high wavenumber flows with a smaller reduction in amplitude of the driving (integral) scale modes

(that imprint on the photosphere). Thus, while small-scale dynamo magnetic field reduces the
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amplitude of the motions required to carry the solar luminosity, these motions are still dominated

by large-scale convection (just as in the hydrodynamic simulations). This suggests that if we

were able to simulate a small-scale dynamo with the full extent of the solar convection zone and

magnetic energy in equipartition with the kinetic energy, the deep flows would still imprint excess

low wavenumber power compared to the observed photospheric horizontal velocity spectrum.

6.3.2.2 Influence of Large-Scale Dynamo

As we discussed in §6.2.1, the anti-solar differential rotation in global simulations (that trans-

port the full solar luminosity) suggests that the Sun may require weaker flows to transport angular

momentum equator-ward. Large-scale magnetic field generated in recent global dynamo simula-

tions, however, suppresses the low wavenumber motions enough to maintain solar-like differential

rotation (Fan & Fang, 2014). This can also be achieved in hydrodynamic simulations by increasing

the diffusivity which suggests that the magnetic field may increase the effective viscosity in these

simulations (Fan & Fang, 2014). Thus the global dynamo generated magnetic fields may play a

role in maintaining the solar differential rotation by reducing the amplitude of the low wavenumber

flows. This reduction may also suppress the power in the driving (integral) scale modes which

imprint on the photosphere. All of these simulations, however, are far more diffusive than solar

convection with maximum Reynolds number of 130 (Fan & Fang, 2014). In addition, a significant

fraction of the solar luminosity (36% in the middle of the convection zone) is transported via an ad

hoc thermal diffusion (i.e. conduction) term (Fan & Fang, 2014). Thus, while the large-scale dy-

namo magnetic fields may help reduce the photospheric horizontal velocity power for wavenumbers

lower than supergranulation, this artificial conduction adds to the evidence (along with our artificial

energy flux simulations) that solar convection transports energy with different flow amplitudes or

at different scales than in the simulations.
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6.3.3 Solar Parameters

One problem with all of these simulations is that they are not in the same parameter regime as

the solar convection zone. Simulations of highly stratified convection with viscosity and Reynolds

number equal to the estimates for the solar convection zone (ν ∼ 10−3 m2 s−1, Re ∼ 1010 −

1013, Rieutord & Rincon, 2010) will not be available for the foreseeable future. While global

convection simulations (that transport the solar luminosity without artificial conduction) have flows

that exceed the upper limit required to transport angular momentum to the equator, decreasing the

diffusivity in these simulations requires a further reduction in the convective energy flux required

to maintain solar-like differential rotation (Hotta, 2014a). This suggests that there are aspects of

convective energy transport that may behave very differently at the solar viscosity than current

convection simulations (which diffuse kinetic energy on much larger scales than in the Sun).

We have also found a reduction in the rms velocity required to transport the solar luminosity

in small-scale dynamo simulations. This reduction, however, is not sufficient to match the imprinted

low wavenumber power in the photosphere. Results from dynamo simulations suggest that the

saturation and dissipation of energy in a small-scale dynamo is closely related to the magnetic

Reynolds number (ReM = LV/η where L is a typical convective length scale, V is the rms velocity

and η is the magnetic diffusivity) and magnetic Prandtl number (i.e. the ratio of viscous and

magnetic dissipation) (Brandenburg, 2009, 2014).

While it is more difficult to generate magnetic energy in a low magnetic Prandtl number

small-scale dynamo (since the small-scale flows destroy magnetic energy) with magnetic Prandtl

number in the Sun estimated to be between ∼ 10−3 and ∼ 10−7 (Mart́ınez Pillet, 2013), a saturated

small-scale dynamo dissipates most of the kinetic energy at the magnetic dissipation length scale,

with very little energy dissipated by viscosity (Brandenburg, 2014). The saturation of the dynamo

magnetic field depends primarily on the magnetic Reynolds number and dynamo simulations with

large magnetic Reynolds number can reach magnetic energy in super-equipartition with kinetic

energy (Brandenburg, 2014). The largest current generation DNS simulations limited to a fluid
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Reynolds number of 5000 (Lee et al., 2013) which is much smaller than the magnetic Reynolds

number in the solar convection zone which is estimated between ∼ 105 and ∼ 109 (Mart́ınez Pillet,

2013). This suggests that the equipartition field strength in these simulations may not be the

upper limit for magnetic energy in a solar small-scale dynamo and the magnetic dissipation may

increase the length scale of dissipation of the flows. Thus, a saturated small-scale dynamo in the

solar convection zone may cause the convection to behave very differently than in hydrodynamic

simulations with much larger effective viscosity and stronger Lorentz-force feedback on the flows.

6.4 Future Work

The results of our simulations demonstrate that the deep convection imprints on the photo-

sphere and the amplitude of the low wavenumber flows determine the power in large-scale surface

motions. There are several more questions, however, that require further investigation. The most

important of these questions is how the deep low wavenumber flows transport the solar luminosity.

This is fundamental to the dynamics of the convection zone as the amplitude of the velocity affects

the generation of mean flows such as the differential rotation and meridional circulation (Miesch

et al., 2012).

While small-scale dynamo simulations show that magnetic fields reduce the rms velocity

throughout the convection, this is so far insufficient to match observations of low wavenumber

power or solar differential rotation (Hotta, 2014b,a). Further work is necessary to determine field

strength of the saturated small-scale dynamo in the solar convection zone and if it can reach

sufficient field strengths to reduce the amplitude of the flows enough to maintain the solar-like

differential rotation or the observed horizontal velocity power in the photosphere. Since these

small-scale dynamo magnetic fields preferentially reduce the amplitude of the high wavenumber

flows (Hotta, 2014b), it is also important to determine if it is possible for the solar magnetic fields

(with contributions from the small-scale and global dynamo (Fan & Fang, 2014)) to sufficiently

reduce the large-scale convection to match observations.

We have also not investigated the effect of rotation or the near surface shear layer. It is



177

unclear if rotation can help explain how we transport the solar luminosity with low amplitude

flows, but we have evidence that supergranules interact with the near surface shear (Hathaway,

2012a) and the near surface shear may play a role in how deep motions imprint on the photosphere.

While there are unanswered questions that can be addressed by future solar-like simulations,

the larger question of how the solar convection transports the luminosity suggests that the next step

may require a more fundamental re-examination of convective transport. While we have argued

that our enhanced viscosity boundary condition that smooths inflows is more consistent with the

flows in the middle of the simulation domain, the boundary without any smoothing shows that

the boundary condition influences flows throughout the domain (though simulations with different

boundary conditions, including global simulations, also have excess power in the low wavenumber

flows). This suggests that we need to carefully examine the boundary conditions to determine

the effects that they have on the convection. The dependence of the convective energy flux (and

flow amplitudes) that maintain the solar-like differential rotation (Hotta, 2014a) and differences

in small-scale dynamo energy dissipation and saturation field strength on magnetic Prandtl and

Reynolds number (Brandenburg, 2014) suggest that flows in the solar parameter regime may behave

differently than current solar-like simulations. What is the effect of increasing the length scale of

flow dissipation in a low magnetic Prandtl number small-scale dynamo and does this change the

effective thermal Prandtl number of the flows? How do small and large-scale magnetic fields

throughout the convection zone influence the convective energy transport? The main implication

of our comparison between MURaM simulations and observations is that we may not understand

solar convective transport for depths greater than 10 Mm below the photosphere.



Bibliography

Aikio, J., & Mähönen, P. 1998, ApJ, 497, 534

Antia, H. M., & Chitre, S. M. 1993, Sol. Phys., 145, 227

Antia, H. M., Chitre, S. M., & Pandey, S. K. 1981, Sol. Phys., 70, 67

Berrilli, F., del Moro, D., Florio, A., & Santillo, L. 2005, Sol. Phys., 228, 81

Berrilli, F., Florio, A., & Ermolli, I. 1998, Sol. Phys., 180, 29

Berrilli, F., Scardigli, S., & Giordano, S. 2013, Sol. Phys., 282, 379
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Appendix A

Supergranular Cell Identification

Quiet sun network magnetic field, observed at the boundaries of supergranular cells, is one

of the primary methods for identifying solar supergranules (the other being the velocity spectrum).

While we have focused our comparison between simulations and observations on the horizontal

velocity spectrum, we can also apply observational techniques to our simulation magnetic field and

compare the results to Hinode observations. We choose Hinode since the field of view is similar

to our simulation domain width (220 × 120 Mm2 for Hinode compared to 197 × 197 Mm2 in the

simulations) and the resolution is simulation to our simulation resolution (∼ 110 km for Hinode

compared to 192 km in simulations). These techniques identify the network magnetic field and use

it to outline the supergranules. These observations match the power spectrum with photospheric

supergranular diameter of ∼ 30Mm (McIntosh et al., 2011).

A.1 Void Analysis

We apply the void analysis which is named for the “voids” between clusters of galaxies which

this method was originally designed to detect (Aikio & Mähönen, 1998). This method has been

adapted to observe the solar photospheric magnetic field by Berrilli et al. (2013). The method is

described in detail in that work, and we focus on the details of our implementation on the MURaM

simulations here.
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A.1.1 Details of the Void Analysis Method

The void analysis identifies photospheric magnetic field above a certain threshold as “parti-

cles” and all regions below the threshold as voids. We apply a threshold set to 0.5% of the maximum

photospheric field strength in each simulation. This makes it easier to compare with observations

where the values in each pixel are a combination of field strength and filling factor. The threshold

for the four simulations that we show here are: ∼ 800G for the zero net flux simulation, ∼ 2000G

for the 10 G mean field simulation, ∼ 1200G for the artificial flux 10 Mm with 15 G mean field

simulation and ∼ 800G for the artificial flux 2.56 Mm with 15 G mean field simulation. We give

all approximate values because the actual threshold varies slightly as a function of time.

For each void grid cell we compute the minimum distance to the nearest particle, Dmin.

To determine which void a grid cell belongs to we identify all the local maxima of Dmin and

then follow a path from each void grid cell (that is not itself a local maximum) to the nearest

local maximum of the Dmin map. To determine the initial path we compute the fourth order

finite difference x and y derivative of the Dmin map. We normalize the derivatives based on their

magnitude, dmagnitude =
√
d2
x + d2

y, mx = dx/dmagnitude and my = dy/dmagntiude. Finally, we use

this derivative to determine the path to the nearest local maximum in the Dmin map.

Specifically, we find the minimum of
√

(mx + ix)2 + (my + iy)2 for −1 ≤ ix ≤ 1 and −1 ≤

iy ≤ 1 and this minimum determines which adjacent grid cell will lead us towards increasing values

of Dmin. We then repeat this process at the new coordinates for five iterations. After five iterations

(which is sufficient to determine the direction to the correct local maximum) we follow the adjacent

cell with the largest value of Dmin which eventually leads to a local maximum of Dmin.

A.1.2 Periodicity

Since our data is horizontally periodic, we want the cells that are identified to include data

beyond the edge of the domain (which influences the magnetic field concentrations). Thus, to deal

with the periodicity, we tile the original image in a 3 × 3 larger image and apply the method to
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this larger set of tiles. After applying the method and identifying the cells we cut back down to

the original size in the center of the 3 × 3 network of cells. This smaller image now has matching

cells across the periodic boundaries which requires accounting for cells that overlap at the edge of

the periodic boundary.

A.1.3 Void Results

We use the void analysis to identify supergranular scale cells in the photospheric magnetic

field (|B|) for all four primary magnetized simulations: 10 G mean field, zero net flux, artificial

flux 10 Mm (with 15 G mean field), and artificial flux 2.56 Mm (with 15 G mean field). The

magnetic energy spectrum (Figure 5.5) shows statistically significant differences between the low

wavenumber power in these four simulations with the 10 G mean field simulation exhibiting much

larger scale field distribution than any other simulation. Similarly, examinations by eye show

that the magnetograms of these four simulations (Figure 5.6) have significant differences in the

separation between the strongest magnetic flux elements. The 10 G mean field simulation and

artificial flux 2.56 Mm, 15 G simulation exhibiting the largest-scale and smallest-scale magnetic

flux element separations, respectively.

From Figure A.1 we can see that the artificial flux 2.56 Mm, 15 G simulation has the smallest

cell diameters with the zero net flux simulation slightly increased but with smaller cells than the

other simulations. This is consistent with the amplitude of the low wavenumber modes of the

magnetic field spectrum (Figure 5.5). The artificial flux 10 Mm, 15 G simulation, however, has the

largest cell diameters which is inconsistent with the magnetic field spectrum or by eye examination.

Finally, the Hinode magnetic field is most closely fit by the 10 G mean field simulation.

A.2 Medial Axis Transform

The second method we apply is the iterative medial axis transform (Berrilli et al., 1998,

2005). This method is used to identify supergranules using Ca II K contrast images (a proxy for

the photospheric magnetic field) from the Precision Solar Photometric Telescope (PSPT) at Mauna
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Figure A.1 The probability distribution function of cell diameters using the void analysis on the
zero net flux (solid curve), 10 G mean field (dashed curve), artificial flux 10 Mm, 15 G (dotted
curve) and artificial flux 2.56 Mm, 15 G (long-dashed curve) simulations and Hinode observations
of photospheric magnetic fields. The artificial flux 2.56 Mm, 15 G simulation exhibits the smallest
scale cells.
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Loa Solar Observatory (McIntosh et al., 2011; Goldbaum et al., 2009). We give a brief description

of the method and our implementation (which is nearly identical to the method applied to PSPT

observations) before discussing the results.

A.2.1 Details of the Medial Axis Transform Method

The medial axis transform outlines a skeleton of complete cells in smoothed images of mag-

netic field. The method looks for ridges of network magnetic field and connects these ridges if they

are close enough to create a complete outline. If a ridge does not connect to a cell outline then it is

pruned off until only the outlines remain. We then identify the cells within the skeleton outlines.

For all parameter choices we use the same as is used on the PSPT images with good seeing

(Goldbaum et al., 2009). This includes smoothing the images with a Gaussian using full width at

half maximum of 4.78 Mm. We determine a threshold for magnetic flux elements that should be

considered part of the network magnetic field or the background in an L×L moving window with

L = 156 grid cells (≈ 30Mm in physical units). This threshold function is T (x, y) = 〈|B(x, y)|〉L +

ζσ(x, y)L where σ(x, y)L is the standard deviation of the magnetic field strength and 〈|B|〉L is the

average field strength in the L × L window. ζ is a tunable parameter that we set −0.4 to match

the PSPT observations.

A.2.2 Medial Axis Transform Results

We see the resulting pdf of medial axis transform cell diameters in Figure A.2. While the

artificial flux 2.56 Mm, 15 G simulation has the fewest cells with diameter larger than 30Mm, the

other three simulations are qualitatively indistinguishable. Furthermore, the cells from the Hinode

observations are significantly smaller than the simulations. Thus the medial axis transform results

are not consistent with the void analysis.
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Figure A.2 The probability distribution function of cell diameters using the medial axis transform
on the zero net flux (solid curve), 10 G mean field (dashed curve), artificial flux 10 Mm, 15 G (dotted
curve) and artificial flux 2.56 Mm, 15 G (long-dashed curve) simulations and Hinode observations
of photospheric magnetic fields. The simulations are nearly indistinguishable while the Hinode
observations have much smaller cells than any simulation.
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A.3 Watershed

The final detection method for the network magnetic fields is the watershed analysis used by

McIntosh et al. (2011, see references within for details on the method). This method is typically

applied to smoothed chromospheric white light observations and, consequently, there is no analog

to the parameter choices for applying this method to the photospheric magnetic field.

A.3.1 Details of the Watershed Method

The watershed determines cells using a topographic method where the smallest magnetic field

regions are considered basins where water collects. The method then determines where magnetic

field boundaries would allow these basins to join into one pool or separate into different “watersheds”

(a term derived from terrestrial watersheds). Without using any smoothing this method only

identifies magnetic field cells on granular scales since the field is quickly advected to downflows

by granular flows. To identify supergranular cells we thus apply a smoothing by convolving the

magnetic field with a Gaussian. Since there is no smoothing to compare to observations we test

several smoothing widths and choose a Gaussian fwhm of 6.4 Mm which maximizes the 30 Mm

diameter cell sizes (the observed diameter of supergranules) in the 10 G mean field simulation.

A.3.2 Watershed Results

We see in Figure A.3 the pdf of cell diameters identified by the watershed method. Similar

to the void analysis we find a clear separation of the simulations with the 10 G mean field and

artificial flux 2.56 Mm, 15 G runs having the largest and smallest cells, respectively, as we expect

from the magnetic field spectrum. The zero net flux and artificial flux 10 Mm, 15 G simulations

are also well separated but the zero net flux simulation has larger cells even though it has lower

amplitude low wavenumber power in the magnetic field spectrum. Finally, the Hinode observations

have much smaller cells sizes than any simulation.
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Figure A.3 The probability distribution function of cell diameters using the watershed analysis on
the zero net flux (solid curve), 10 G mean field (dashed curve), artificial flux 10 Mm, 15 G (dotted
curve) and artificial flux 2.56 Mm, 15 G (long-dashed curve) simulations and Hinode observations
of photospheric magnetic fields. The artificial flux 2.56 Mm, 15 G and 10 G mean field simulations
exhibit the smallest and largest scale cells, respectively for any simulation. The Hinode observations
have smaller scale cells than any simulation.
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A.4 Problems with These Methods

None of these methods are consistent between simulations or with observations (see Fig-

ure A.4), except for the small cell sizes of the artificial flux 2.56 Mm, 15 G simulation. While

examining the magnetograms by eye shows obvious cell size differences (Figure 5.6) and the mag-

netic field spectrum finds statistically significant differences between the low wavenumber power

(Figure 5.5), these differences are not reflected in any method.

Figure A.4 The probability distribution function of cell diameters using the void, medial axis
transform, and watershed analysis on Hinode observations of photospheric magnetic fields. The
void and medial axis transform are consistent for cell diameters greater than 25 Mm.

Each method is dependent on parameter choices without a priori values. For all choices we

use parameters that are most similar to those used in observations when applicable. We have tested

several parameter choices for each method that have not been presented above, but all these tests

have given similar (i.e. inconsistent) results between methods. This is shown in Figure A.5, where

we compare each of the methods for the same snapshot of the vertical magnetic field of the zero

net flux simulation. Each method gives very different results and it is not clear if any method is

physically significant to the supergranular flows.
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Figure A.5 Snapshot of the three magnetic field cell detection methods used in Appendix A (the
void analysis, the medial axis transform and watershed method). The zero net flux simulation
vertical magnetic field is shown as a comparison.


