ALGORITHMS FOR GRAPHIC
POLYMATROIDS AND PARAMETRIC S-SETS

Harold N. Gabow

CU-CS-736-94

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Algorithms for Graphic
Polymatroids and Parametric s-Sets

Harold N. Gabow

CU-CS-736-94 1994

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Algorithms for Graphic Polymatroids and Parametric s-Sets

Harold N. Gabow™
Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309

hal@cs.colorado.edu

August 10, 1994

Abstract. We present efficient algorithms for covering, finding a base and packing in graphic
polymatroids. The integral covering number is the arboricity of an undirected graph; computing
it is suggested as an open problem by Gallo et. al. [GGT]. We compute the arboricity in time
O(nmlog(n?/m)), the same bound as the other parametric flow algorithms of [GGT] (n and m de-
note the number of vertices and edges of the given graph respectively). Finding a minimum-cost base
solves problems like optimal reinforcement of a network. We find a base in time O(n?mlog (n?/m)),
improving the previous bound of m maximum flow computations. The fractional packing number
is known as the strength of a network. We compute it in time O(n?mlog(n%/m)) and space O(m),
improving the best previous result by a factor n in space. Our algorithms are based on a new
characterization of the vectors in a graphic polymatroid, and also an extension of parametric flow

techniques to a problem concerning global minimum cuts, parametric augmentation for s-sets.

* Research supported in part by NSF Grant No. CCR-9215199.

1. Introduction

Graph problems such as packing spanning trees, computing the strength, and covering by forests
are most fruitfully studied using graphic matroids and polymatroids. Previous approaches to such
problems are based on characterizations of the graphic polymatroid using network flow, equivalently,
s,t-cuts. Recent algorithms for parametric network flow have proved useful for this approach. We
give a new characterization of graphic polymatroids in terms of s-cuts (synonymously, s-sets) rather
than s,t-cuts. We propose a new parametric framework, called parametric augmentation for s-sets,
to handle the problems arising from our characterization. As a result we obtain more efficient
algorithms for problems about graphic polymatroids, specifically, covering, finding a base and
packing.

We now state our results precisely and compare them to previous work. In the time and space
bounds throughout this paper, n and m denote the number of vertices and edges of the given graph,
respectively. In this section Ty r denotes the time to find a maximum flow on a network of n vertices,
m edges and arbitrary capacities. Phillips and Westbrook extend a long chain of network flow
algorithms and show that for any fixed € > 0, Ty = O(min{nmlog /.7 + n? log *+¢n, nmlogn})
[PhW].

Our covering result is to compute the arboricity of an undirected graph with integral edge
capacities. The arboricity is the smallest number of forests that contain all the edges (the ca-
pacity of an edge is the number of times it must be covered). Computing the arboricity for a
graph with arbitrary edge capacities is suggested as an open problem by Gallo et. al. [GGT]. We
compute the arboricity in time O(nmlog(n®/m)), the same time as the other parametric flow
algorithms of [GGT]. For graphs with integral capacities that are O(1) our algorithm uses time
O(m3/?1og (n?/m)). This improves the bound of [GW], which is O(min{m?/31log?/3n,nmlogn})
for m = Q(nlogn) and slightly more otherwise. The algorithm of [GW] computes the correspond-
ing forests that cover the graph, in the case of O(1) capacities. Our algorithm for O(1) capacities
does this also. Earlier algorithms for arboricity include [PQ82a] for O(1) capacities and [PaW84]
for general capacities.

Our second result is to find a minimum-cost base of a graphic polymatroid in time
O(n*mlog(n?/m)). Thisimproves the algorithm of [C85a] which uses time O(mTyF). A minimum-
cost base algorithm solves other problems in the same time, specifically the problem of optimal
reinforcement of a network [C85a] and optimal augmentation for covering (defined in Section 6).

Another application of this algorithm is our packing result, which is to compute the packing

number of an undirected graph with edge capacities. The integral packing number is the greatest

1

number of spanning trees in the graph (an edge can occur in as many trees as its capacity). The
fractional packing number is called the strength of a graph, a measure of its vulnerability [C85a,
Gu83]. We compute these packing numbers in O(n?mlog(n?/m)) time and O(m) space. This is
the same time bound as the recent algorithm of Cheng and Cunningham and it improves their
space bound of O(nm). Previous algorithms for strength include Cunningham’s original algorithm
[C85a] using O(nmTnF) time and O(m) space, and Gusfield’s algorithm using O(nm? log (n?/m))
time and O(m?) space [Gu91].

Note that for large capacities our algorithms do not find the trees for covering or packing. Our
approach indicates a way to find these trees as a set of arborescencés. This is investigated further
in [GM]. However the algorithms are slower than those of this paper (e.g., the strong polynomial
time bound is a factor n more than our packing bound). The algorithms of this paper do find the
set of edges composing the trees.

We turn to the methodology used for these results. At the highest level our algorithms are
implementations of Newton’s method for fractional optimization. This method is used for graphic
matroids and polymatroids in [C85a, PQ82a, PaW84]. We show that for arbitrary polymatroids the
packing and covering problems can be solved efficiently by Newton’s method, assuming an oracle
to find a base. We also propose the prefix algorithm, an algorithm for finding a polymatroid base
which is well-suited for implementing Newton’s method for packing.

We propose a new characterization of vectors in graphic polymatroids. Previous work [C85b,
PQ82b, PaW83] tests a vector for membership in a graphic polymatroid (equivalently, the forest
polytope) by solving n network flow problems. The algorithm of [CC] is based on a characterization
of Barahona [B] that tests a vector for membership in the dominant of the spanning tree polytope,
also in n network flow computations. Our characterization tests a vector for membership in a
graphic polymatroid by solving one network flow problem (i.e., a minimum s,t-cut problem) and
one minimum t-cut problem.

This characterization leads to different parametric problems in analyzing graphic polymatroids.
We formulate a parametric problem concerning the global minimum cut, which we call parametric
augmentation for s-sets. We extend the global minimum cut algorithms of Hao and Orlin [HO] and
Gabow [Ga9la] to solve this problem efficiently on graphs with both large and small capacities.
We believe parametric augmentation will find other applications in future work.

The paper is organized as follows. Section 2 discusses Newton’s method for covering and pack-
ing, and formulates the prefix algorithm. Section 3 shows how to transform membership questions

for graphic polymatroids into s,t-cut and s-cut problems. Section 4 discusses the parametric aug-

2

mentation problem for s-sets. Section 5 gives our algorithms for arboricity. Section 6 implements
the prefix algorithm on graphic polymatroids. Section 7 applies the prefix algorithm for packing
graphic polymatroids. The rest of this section gives notation, definitions and some background on
polymatroids.

R denotes the set of real numbers, R4 the set of nonnegative real numbers. For integers i, j,
[¢..7] denotes the set of integers k, i < k < j.

Consider a universe V containing elements s,¢ and subsets §,7. S denotes the complement
V — 5. We use both set containment S C T and proper set containment § C T. We often denote
singleton sets by omitting set braces, so {s} becomes s. An st-set contains s but not t; a t-set is a
nonempty set not containing ¢. If f is a function f: § — R or a vector f € RS then for any set
T CS, f(T) denotes >_{f(t)|t € T}.

In a graph with vertices v and w, the notation vw denotes an undirected edge joining v and w
or a directed edge from v to w; it will be clear from context which is meant. For a digraph G, G®
denotes the reverse digraph, i.e., all edges of G are reversed.

Let W be a set of vertices in graph G. If G is undirected then (W) denotes the set of all
edges with both ends in W. If G is directed then 8§(W) and p(W) denote the set of edges uv with
W a uv-set and a vu-set respectively. If the graph G is not clear we write it as a subscript, e.g.,
6g(W). If G has a capacity function ¢ : E — Ry then the out-degree (in-degree) of W is c¢(§(W))
(e(p(W))-

Consider the set of vectors RE. For vectors b and ¢, b < ¢ means b; < ¢; for each i € E. A
polymatroid function is a function f : 2% — Ry such that f(§) = 0, and f is nondecreasing and
submodular, i.e., for any subsets A, B of E, A C B implies f(A) < f(B),and f(A)+ f(B) > f(AU
B)+ f(ANB). Such an f determines the polymatroid P(f) = {b € RE|b(F) < f(F) for all F C E}.
The graphic polymatroid function r has r(F') equal to the number of edges in any maximal forest
of F', for any F C E. For any k € Ry, P(kr) = kP(r) is a graphic polymatroid.

Fix a polymatroid P = P(f). A set F C E is closedin P if F C F' implies f(F) < f(F"). For
any b € P,aset F'C E is tight if b(F) = f(F). For any such b the union of tight sets is tight (by
submodularity). Thus any b € P has a unique maximal tight set T'. Clearly T is closed.

For any vector ¢ € Rf, a base (or P-base) of ¢ is any maximal vector b € P with b < c. Any
such b has

b(E) = min{c(F) + f(F)| F C E}. (1)
The minimizing set F* in (1) can be taken as the maximal tight set of b. In fact (1) implies that

F* is uniquely determined by ec.

The polymatroid greedy algorithm finds a minimum-cost P-base b of a given vector c, as follows.
It initializes b to the zero vector. Then it examines each component ¢ (1 < ¢ < |E|) in order of
nondecreasing cost. For each 7 it increases b; as much as possible keeping b € P and b < c.

The polymatroid covering and packing problems are defined in Section 2. For more background

on polymatroids see [C85a, W].

2. Newton’s method for covering and packing in polymatroids

This section discusses the application of Newton’s method to covering and packing problems in
polymatroids. It proposes the prefix algorithm as an efficient way to find a base in Newton’s
method.

Consider a polymatroid P = P(f) and an arbitrary vector ¢ € RE. The (fractional) P-packing
number of c is the largest k € Ry such that a P(kf)-base b of ¢ has b(E) = kf(E). The integral
P-packing number is the floor of this value. Next suppose that ¢(e) = 0 whenever f(e) = 0. The
(fractional) P-covering number of c¢ is the smallest k € Ry such that ¢ € P(kf). The integral
P-covering number is the ceiling of this value.

Let f be integer-valued. Baum and Trotter [BT] (and independently Giles [Gi]) show that for
any integer k, any integral vector in P(kf) is the sum of k integral vectors in P(f). This implies
the following characterizations of the packing and covering numbers for integral f, P = P(f) and
an integral vector ¢. The integral P-packing number of ¢ is the greatest number of integral P-
bases summing to at most ¢. (Note that an integral vector has an integral P(g)-base for an integral
function g.) The fractional P-packing number of ¢ is the greatest weight k such that some collection
of P-bases, each with a positive rational weight, has total weight & and weighted sum at most c.
The integral P-covering number of ¢ is the smallest number of integral vectors in P with sum e.
The fractional P-covering number of ¢ is the smallest weight k such that some collection of integral
vectors in P, each with a positive rational weight, has total weight k£ and weighted sum c.

A number of previous algorithms for covering and packing in graphic polymatroids [C85a,
PQ82a, PaW84] have been based on Newton’s method. We now summarize this approach, at the
same time generalizing it to arbitrary polymatroids.

We first describe Newton’s method for fractional optimization, also known as Dinkelbach’s
method [D]. It computes min{a(z)/8(z) |z € X'}. Here X is a set equipped with functions a, :
X — R with 8(z) > 0 for all ¢ € X. Equivalently we wish to find the largest value k making
a(z) > kB(z) for all z € X. In this version it makes sense to relax the assumptions and allow

B(z) = 0 if it implies a(z) > 0.

The algorithm maintains a value k that is an upper bound on the desired value. k is initialized

to any upper bound. Then the following loop is executed.

while min{a(z) — k3(z)|z € X} < 0 do begin
let 2* be a minimizer of {a(z) — kB(z)|z € X'};
k — a(z*)/B(z*); end;

We always have §(2*) # 0, so the assignment to k is well-defined and maintains k as an upper
bound on the desired value. Thus if the algorithm halts, k£ equals the desired minimum value (and
x* is a minimizer). Note that each assignment to k reduces its value. Each iteration of the loop is
called a Newton iteration.

We now show that for our polymatroid problems Newton’s method does a small number of

iterations and each iteration amounts to a simple polymatroid problem.

Theorem 2.1. Let f be an integral polymatroid function. Newton’s method computes the (integral
or fractional) P(f)-covering or packing number of a vector ¢ in at most f(E)+ 1 iterations. Each

iteration finds a base of ¢ and its maximal tight set in a polymatroid P(kf).

Proof. First consider the problem of finding the packing number of a vector ¢ for an arbitrary
polymatroid P. Formula (1) of Section 1 implies the packing number is the largest k such that any
set X C F has k(f(E)— f(X)) < ¢(X). Finding k is the second optimization problem for Newton’s
method. Since ¢(X) > 0 Newton’s method is applicable.

Each Newton iteration computes min{c(X)+kf(X)|X C E}—kf(E) and a minimizer. By (1)
the minimizer X is the maximal tight set of a P(kf)-base of ¢, as claimed. Note that initialization
is simple, e.g., choosing X = () gives ¢(E)/f(E) as a valid upper bound.

If f is integer-valued then there are at most f(E)+ 1 iterations. This follows since each iteration
before the last increases f(X), a fact which is well-known (even for totally arbitrary functions f;
see [e.g., S]). For completeness we prove the following slightly stronger fact: The minimizers T for
each Newton iteration before the last form a nested family, with f(T) strictly increasing.

First we show a general fact about polymatroids. Consider a polymatroid function f and a
vector ¢ € R¥. For positive real values k < k' let T' be the maximal tight set of a P(kf)-base of c,
and similarly for T'. Then T C T. In proof let y' be a P(k'f)-base of ¢. Let z = (k/k’)y’. Then
z € P(kf) with T’ tight, and 2z < ¢. Thus z can be enlarged to a P(kf)-base of ¢ with tight set
including T'. Hence T' C T.

This fact implies that the minimizers T for each Newton iteration before the last form a
nested family. Furthermore f(T) is strictly increasing. This follows since each T is closed, and two
consecutive iterations with minimizers T',T' have T # T if neither iteration is the last. Thus if f
is integer-valued, Newton’s method does at most f(E) + 1 iterations, as desired.

Now consider the problem of finding the covering number of a vector ¢ for an arbitrary poly-
matroid P. The definition implies the covering number is the smallest k¥ where ¢ is a base of ¢ in
P(kf). By formula (1) this means that any set X C E has kf(X) > ¢(X). Thus we seek the largest
value —k such that (—k)f(X) < —¢(X) for all X C E. This is the second optimization problem
for Newton’s method. By assumption for covering f(X) = 0 implies ¢(X) = 0 so Newton’s method
is applicable.

Each Newton iteration computes min{—¢(X) — kf(X)|X C E} and a minimizer. This is the
same as computing min{c(X)—kf(X)| X C E}—¢(E) and a minimizer. If k is negative the desired
minimizer X is the maximal tight set of a P((—k)f)-base of c. We initialize k to a convenient upper
bound such as —c(E)/f(E). Since the initial k is negative all values k are negative. Thus each
Newton iteration finds a polymatroid base as claimed.

The efficiency analysis is essentially the same as for packing. There are at most f(E) + 1

iterations, and the minimizers form a nested family with f decreasing. u

We now give a refined version of Newton’s method for packing in polymatroids. Section 7
implements this method for graphic polymatroids. (Our algorithm for covering in graphic polyma-
troids uses ideas in Theorem 2.1 but goes beyond it.)

Each Newton iteration can be implemented by using the greedy algorithm for finding a polyma-
troid base. The greedy algorithm finds a base in |E| iterations, so Theorem 2.1 implies O(| E|f(E))
greedy-algorithm iterations. We improve this bound by using a variant of the greedy algorithm
called the prefix algorithm. We first describe the prefix algorithm and then show how it is used in
Newton’s method for packing.

Fix a polymatroid P with a cost vector a € RE. We seek a minimum-cost base b of a given
vector ¢ € Rf ,i.e., b is a P-base of ¢ having the smallest possible inner product ab.

Consider a vector b € R¥. For a subset F C E, br denotes the restriction of b to F,i.e.,
components not in F’ are set to 0. Suppose E is indexed from 1 to m. For i,j € E, b;_; abbreviates
b{i“ﬂ. A prefiz of b is b itself or a vector d where for some index i, 1 < ¢ < m, by_;—1 < d < by_;.
In the latter case d is an i-prefiz (for the former case, b is an m-prefix of b). A longest prefix

of b satisfying some condition is a lexically maximum prefix d of b that satisfies the condition

6

(equivalently d(E) is maximum).

The prefiz algorithm works as follows. Index the elements of E from 1 to m so cost is non-
decreasing. The algorithm maintains an index ¢ < m, a vector b € Rf and a set T C E. Each
iteration increases ¢ and makes b the vector found by the first ¢ iterations of the greedy algorithm.

T is a tight set for b in P.

i—0;b—0;T « 0
while ¢ < m do begin
b « (the longest prefix of b + ¢[iy1..m)-7 that is in P);
let b be an i-prefix;
T « (the maximal subset of E that is tight for b in P); end;

Correctness follows from the easily-checked invariant for ¢ and b given above.

The preﬁ)i algorithm does at most as many iterations as the greedy algorithm, but for graphic
polymatroids and certain others it does fewer. Specifically we show that if P = P(kf) for an
integer-valued function f and positive real value k then there are at most 1+ f(E) iterations. This
follows since each iteration except the last enlarges 7. (An iteration not the last ends with b; < ¢;,
i ¢ T before the iteration and ¢ € T after the iteration.) Since each T is maximal tight kf(T) is
strictly increasing, which is equivalent to f(T') strictly increasing.

The crucial part of implementing the prefix algorithm efficiently is the first line of the loop,
finding the longest prefix b. For graphic polymatroids we use the steppingstone approach, proposed
in [GW] for matroids: We use a polymatroid SP that contains P and is computationally simpler.

We find b as follows:

d — (the longest prefix of b + ¢[it1..mj-7 that is in SP);
b — (the longest prefix of d that is in P);

This modification finds the same vector, say b*, as found by the original algorithm: P C SP implies
b* is a prefix of d.
Now we give the packing algorithm based on the prefix algorithm. The idea is to carry over
the base b and tight set 7' from one Newton iteration to the next. The details are as follows.
Make b and T global variables, so they retain their values from the previous iteration. The
first Newton iteration chooses an arbitrary cost function for the edges and runs the prefix algorithm
unchanged. For an iteration after the first, let k_ and k be the previous and current values of k,

respectively. Let ¢t = |T|. Revise the cost function so any element of T is cheaper than any element

7

of E —T. Reindex E according to this cost function, so the elements of T' are indexed from 1 to t.

Change the initialization of the prefix algorithm to the following:

Pt b £ by

These statements make T tight for b, i.e., b € P(kf) and b(T) = kf(T). The rest of the algorithm

is unchanged.

Corollary 2.1. Let f be an integral polymatroid function. Newton’s method for P(f)-packing
using the prefix algorithm finds a total of at most 2f(E) + 1 prefixes.

Proof. Theorem 2.1 shows Newton’s method for packing has at most 1 4+ f(F) iterations. Each
iteration of the prefix algorithm except the last in its Newton iteration enlarges T. Since T is
closed in P(f) this occurs at most f(E) times. This gives at most 1+ 2f(E) iterations of the prefix
algorithm. .

A potential drawback of this packing algorithm compared to using the straightforward greedy
algorithm is numerical accuracy: Repeated execution of the assignment b «— fj bi.: can create
rational numbers with large numerators and denominators. These large numbers can be avoided by
doing a polymatroid contraction operation for the set 7', assuming there is a good implementation
of contraction. Such is the case for graphic polymatroids. We give the details of the graphic case

in Section 7.

3. A characterization for graphic polymatroids
This section shows how to transform problems about graphic polymatroids to s,t-cut and #-cut
problems. Qur approach combines two known constructions. We begin by reviewing the construc-
tions.

We start with an undirected graph G = (V, E) having functions ¢cg : E — Ry and ¢y : V —
R . We shall introduce several graphs, most notably E* and EG. All these graphs have a capacity
function on the edges. In this section ¢ is used to denote all these capacity functions. The meaning
of ¢ will always be clear, e.g., ¢(6gc(5)) denotes the capacity of all edges of EG that leave S.
Throughout this paper v always denotes v5.

The first construction is a well-known bipartite version of an undirected graph (see [PQ82a]
and its references). We define a digraph G*(cg, cy); we abbreviate this to G* when possible. G*

has vertex set {s,1} UV U E. The fact that v € V and e € E occur in G* as well as in G will not

8

cause confusion. The edge set of G* is {se|e € E}U{ev,ew|e=vw € E}U{vt|v € V}. A capacity
function ¢ on G* is defined by the identities ¢(se) = cg(e), c(ev) = c(ew) = oo, ¢(vt) = cy(v).

The second construction is the “equivalent graph” of [Ga94]. It eliminates the source vertex
of a flow network. This paper only constructs equivalent graphs for graphs G*. We give a two step
construction of the equivalent graph for G*, where the first step is from [Ga94] and the second step
reduces the size.

For the first step let f be a maximum flow from s to t on G*. Assume that f saturates all
edges of 6(s). Let EQ be the residual graph of f with vertex s deleted. So in EQ the capacity
function c(e) gives the residual capacity of e with respect to flow f. Any t-set X in EQ has
c(6pqQ(X)) = c(bg=(s + X)) — ce(E). This can be easily verified or see [Ga94].

The second step starts with £Q. For each e = zy € E delete e and replace it by edges
zy and yz of capacities f(ex) and f(ey) respectively. Then delete all edges of §(t). The result
is the equivalent graph EG. EG has vertex set t UV and O(m) edges. For any set W C V,
(6p(W Uy(W))) = c(8pc(W)).

Let us summarize the relationship between G, G* and EG. Let W be a (possibly empty) set
of vertices in G. It gives an st-set in G*, sU W U (W), having out-degree equal to

ca(E) + ev(W) — ca(v(W)).
Assume that a maximum flow in G* has value eg(F), i.e., it saturates all edges of §(s). Then the
set W has out-degree in EG equal to
ey (W) = ce(v(W)).
We extend this relationship to the following.

Lemma 3.1. Let G' = (V, E) be an undirected graph, cg : E — Ry and ¢y : V — Ry. Let G*
denote G*(cg, cv), with EG its equivalent graph. Then

min{cy (W) — cg(v(W))|0 # W C V} = min{c(6g-(5)) — ce(E) | S # {s} an st-set of G*}.
If this common minimum is nonnegative then it equals

min{c(6gc(9))| S a t-set of EG}.

Proof. Consider the first part. The relationship stated above implies that any quantity in the
left-hand set is in the right-hand set. (A nonempty set W C V gives a set s UW U y(W) that is
distinct from {s}.) Furthermore these terms achieve the minimum of the right-hand set, since any
st-set S has out-degree at least the out-degree of sUy(SNV)U(SNV). We can assume SNV # §

(otherwise S equals {s} or has infinite out-degree).

9

For the second part of the lemma, its hypothesis implies that a maximum flow in G* has value

ce(FE). So the second part follows from the properties noted for EQ and EG. 1

We use this result to characterize the graphic polymatroid P = P(kr). We also characterize
the related polymatroid SP = P(kf) where for any set F C E, f(F) is the number of distinct
vertices on edges F. Note that P C SP (since r < f). The following result uses the easily-verified
fact that b € P iff every nonempty set of vertices W C V has b(y(W)) < k(|]W| - 1).

Theorem 3.1. Let b be a vector in RE and let G* denote G*(b,k). b € SP iff a maximum flow
on G* has value b(E). b € P iff b € SP and in the equivalent graph EG for G*, any i-set has
out-degree at least k. i

The equivalent graph provides other information about graphic polymatroids as well. First we
characterize the maximal tight set of a vector bin P. A tight set of b has the form [J{y(U)|U € U},
where I is a family of disjoint sets of vertices U having b(y(U)) = k(|U| — 1) and |U| > 1. For
the maximal tight set, i is the family of maximal nonsingleton ¢-sets of out-degree k in EG. (This
follows from the relationship preceding Lemma 3.1.)

Next we show that the representation of b as a collection of forests can be found in EG. We
begin by reviewing a theorem of Edmonds (also used in Section 4). ’

Fix a digraph G and a vertex s. For a nonnegative integer k, a complete k-intersection consists
of k (undirected) spanning trees collectively containing k edges directed to each vertex # s. (Unlike
[Ga91a] in this paper we assume that a complete k-intersection is always given with its partition
into k spanning trees.) Edmonds showed that G has a complete k-intersection iff any 3-set U has
lp(U)| 2 k [E69].

Take G, b, G* and EG as in Theorem 3.1 with b € P. Suppose first that k£ and b are integral.
Theorem 3.1 implies that EG® has a complete k-intersection T'. Ignoring the directions of edges
in T', we claim that every edge e of G occurs in precisely b(e) trees of T. This claim implies that
T —t gives the desired partition of b into k forests.

We prove the claim in two steps. First observe that for each edge e = zy of GG, the total
capacity of zy and yz in EG is b(e). This follows since using notation introduced above, in EG zy
and yz have capacity f(ez) and f(ey) respectively and b(e) = f(ez) + f(ey).

To prove the claim it suffices to show that T consists of all the edges of EG' (by the observation
just made). T contains k|V| edges, since EGF has |V| + 1 vertices. So it suffices to show the edges
of EG have total capacity k|V|. The total capacity of EG equals the total out-degree of all vertices

10

of V in EG. Each of these vertices has out-degree k in G*, and this out-degree is preserved when
we pass to thé equivalent graph.

Now consider the case where k and b take on arbitrary rational values. Reduction to the integral
case shows the following. EGF has a collection of spanning trees T}, each with a nonnegative rational
weight w;, such that) w; = k and ignoring edge directions the total weight of all trees containing
a given edge e of G is precisely b(e). Thus T — ¢ gives a partition of b into forests of total weight k.

We remark that the algorithm of [Ga91a] finds a complete k-intersection efficiently for small &
(see Section 4). This allows our algorithm for covering graphic polymatroids with small capacities
to find a tree decomposition (Section 5). The other algorithms of this paper do not produce a
tree decomposition because they involve large k. [GM] presents algorithms for finding a complete
k-intersection for large k but these algorithms are slower than the other algorithms of this paper.

We close this section with some motivation. Our graphic packing algorithm amounts to im-
plementing the prefix algorithm. Recall the main task is given a vector d, find the longest prefix
of d that is in P. The prefixes of d will give a parameterized family of equivalent graphs EG . As
Theorem 3.1 suggests, our task will be to find the smallest A where each 7-set has out-degree at least
k. The next section defines a parameterized problem that generalizes this task. The generalization

is also the key to our covering algorithm.

4. Parametric augmentation
This section defines our parametric problem on digraphs. It presents two efficient solutions, one
oriented toward large capacities and the other small.

The parametric augmentation problem (for s-sets) is defined by a digraph G with distinguished
vertex s and parameterized capacity function ¢y : E — R, where A is a parameter in Ry.
Also given is a target function 7 : Ry — Ry. The problem is to find X = min{\|cA(p(U)) >
7(X) for any 3-set U}. X is infinite if the set is empty.

We need some additional assumptions to make the problem well-defined and tractable. To
make the problem well-defined we assume that any 3-set U has a value Ay (possibly infinite) such
that ex(p(U)) > 7(X) iff A > Ay. To make the problem tractable we assume that given U we
can compute Ay in time O(m). Also given A and an edge e we can compute cy(e) in O(1) time.
Finally and most importantly we assume monotonicity properties for the capacities: Assume cy(e)
is nondecreasing for each e € §(s) and nonincreasing for all other e; furthermore for each vertex v,
cx(p(v)) is nondecreasing.

We adapt the Hao-Orlin mincut algorithm to solve the parametric augmentation problem. We

11

first review the Hao-Orlin algorithm. Its input is a digraph with capacity function ¢ : E — Ry
and a vertex s. It returns a value M equal to the smallest in-degree ¢(p(W)) of an 3-set W. The
algorithm works by repeatedly finding the smallest value of an 9,t-cut. Here § is a set of vertices,
that is initially {s}; ¢ is a vertex not in S; over the course of the algorithm ¢ takes on the value of
every vertex # s; after the smallest S,¢-cut is found ¢ gets added to S and the next value of t is

chosen. The algorithm at a high level is as follows:

HO_initialize; /* sets S = {s} and chooses a sink ¢ */

while § # V do begin
HO_preflow_push; /* makes (D, W) a minimum §,¢ cut */
M — min{M, c(p(W))};

HO_select_new_sink; /* adds t to S and chooses a new t */ end;

The routines HO.nitialize, HO_preflow_push, HO_select new_sink are described in detail
in [HO]. HO_preflow_push is a modification of the Goldberg-Tarjan maxflow algorithm [GT];
HO _select_new_sink adds the old sink ¢ to § and chooses a new one.

The idea of our parametric augmentation algorithm is to execute the Hao-Orlin algorithm,
increasing the parameter A\ whenever a mincut smaller than the current target 7(\) is discovered.
The algorithm is as follows. Assume that whenever the algorithm changes the value of A that

automatically changes each edge capacity function to c). The function f: E — Ry is the current

flow function for the HO algorithm (f is actually a preflow).

A « 0; HOinitialize;
while § # V do begin
HO _preflow_push;
while c)\(p(W)) < 7()) /* (D,W) is a minimum S,¢ cut */ do begin
A Aw; [*increase A */
for each edge e € 6(s) do f(e) — ex(e); /* increase flow */
for each edge e ¢ é(s) do f(e) «— min{f(e),cr(e)}; /* decrease flow */
HO_preflow_push; end;

HO _select_new_sink; end;

We make two observations to show this algorithm is correct. First we must show that the
invariants maintained by the HO routines continue to hold. The HO routines maintain f as a

preflow with “W-valid” distance labels, and a “dormancy property.” It is easy to see that these

12

invariants are maintained in the “increase flow” line, because it is similar to pushes from s done
by the HO routines. We need only check the invariants in the “decrease flow” line. The decrease
in flow does not create a new residual edge. So we need only check that f is maintained f as a
preflow, i.e., each vertex has nonnegative flow excess. It suffices to show that when A changes from
A to a larger value X', the change in the excess at v is nonnegative. For each edge e ¢ §(s) let
A(e) be the amount that our algorithm decreases the flow f(e). Then the excess at v increases by
(ex —ex)(sv) = A(p(v) — {s0})+ A(B(0)) 2 (ex —ex)(sv) — (e —ex)(p(v) — {5u}) = (ex —ex)(p(v)).
The last quantity is nonnegative by assumption for the augmentation problem.

The second observation is that the algorithm halts with the desired value A. The final X is
either 0 or A for some set W, so it is < X. Furthermore the algorithm has verified that any
3-set U has cx(p(U)) > 7(X), i.e., A\y < A. To see this let ¢’ be the first vertex of U chosen as a
sink. Suppose the last iteration with sink ¢’ ends with set W' and parameter value A’ satisfying
ex(p(W')) > 7(X'). The definition of W' shows exi(p(U)) > cxr(p(W)). This implies Ay < X < A

as desired.

Theorem 4.1. The parametric augmentation problem for s-sets can be solved in time

O(nmlog(n?/m)) and space O(m).

Proof. We need only analyze the efficiency of the algorithm. The main observation is that the
parameter X is increased at most 2n times. In proof consider a fixed sink ¢. Each increase in A
after the first for sink ¢ is caused by a new cut (D, W). Examination of the HO algorithm shows
this means the dormant node set D is enlarged. [HO] proves that D is enlarged, without changing
the sink, at most n times in the entire algorithm. The proof also holds for our modified algorithm.
This gives the desired bound of 2n iterations. |

To compute the time for the algorithm note that computing new A values uses O(nm) time
total, extra pushes use time O(n?) and flow decreases use time O(nm). We implement the HO
algorithm using dynamic trees, exactly as in [HO]. We conclude that our modified algorithm does

not change the time bound. i

Our second augmentation algorithm is oriented towards digraphs where the target 7()) is
small. We strengthen two assumptions of the problem. Assume that for a family I of disjoint
sets of vertices U, we can compute all of the values Ay, U € U in total time O(m) (actually time

O(mlog(n®/m)) is sufficient). Also assume that edges not in &(s) have constant capacity, but as

13

before cy(e) is nondecreasing for each e € é(s). (This is the case of augmentation that is needed in
Section 5.) We call this version of the problem as the augmentation problem with parametric §(s).

Since we are concerned with small connectivities we assume that A and all functions ¢y are
integral-valued. Thus each ¢, specifies a multigraph. In resource estimates we assume the parameter
m counts the edges of a graph, with each edge counted according to its capacity.

We first briefly review the round robin algorithm of [Ga91a] that finds an 3-set of minimum
in-degree. Fix a digraph G and a vertex s. Recall the notion of complete k-intersection from
Section 3. The round robin algorithm takes as its input a complete (k — 1)-intersection; its output
is a complete k-intersection, if such exists. In this discussion we assume that when a complete
k-intersection exists, round robin outputs such an intersection and the value k; when a complete
k-intersection does not exist, round robin outputs the given (k — 1)-intersection and the value k — 1.
Thus to find the smallest in-degree of an 3-set we repeatedly run round robin until T is a complete
k-intersection for £ maximal. The final & is the desired smallest in-degree.

We state the augmentation algorithm using the following convention for edge capacities: The
algorithm maintains a variable ¢(e) for the capacity of an edge e. When the algorithm changes the
parameter A, it also changes each c(e) by the appropriate amount (we do not explicitly mention

changes to c(e)).

T «—0; A —0; /*set capacities c(e) appropriately */

run round robin to make T a complete k-intersection, for maximal k& < 7());

while £ < 7(A) do begin
A« max{Ay | U an 3-set and ¢(p(U)) = k}; /* increase A, and capacities c(e) */
run round robin to enlarge T to a complete k-intersection, for maximal k < 7());

end;

Correctness of this algorithm follows from the fact that k is guaranteed to increase every
iteration.

To estimate efficiency we must elaborate on two issues. The first is how the “increase \”
line calculates the new value of A. First note that this is trivial for the special case of parametric
augmentation used in Section 5: In this case changing A to A + 1 increases the capacity of sv for
every v # 8. Thus the smallest in-degree of an 3-set increases. This allows us to use A « XA + 1 for
the “increase A\” line.

The general case is treated as follows. [Ga91b] presents an algorithm that given T, finds the

family ¢ of all minimal 3-sets of in-degree k in time O(m). It is easy to see that in the “increase

14

A” line the sets U can be restricted to the family &/. The sets of U are disjoint, so by assumption
each value Ay, U € U can be computed in time O(m).

The second issue is to ensure the efficiency of round robin. Let m denote the number of edges
in the graph excluding é(s). Round robin enlarges a complete (k — 1)-intersection to a complete
k-intersection in time O((m + kn)logn); if any edge not in 6(s) has capacity O(1) the time bound
decreases to O(mlog(n?/m)+ kn). The space is O(m + kn). In the augmentation algorithm the
term kn can dominate these estimates. We now modify the augmentation algorithm, reducing n to
a value n' so that kn’ = O(m) always holds.

We make two changes. First we modify the initialization of A to A — max{\,|v € V — s}.

Second whenever round robin increases k to a power of two we execute the following clean-up step:

for each vertex v # s with ¢(sv) > ¢(8(v)) do begin
for each edge vw € §(v) do increase c(sw) by ¢(vw);
delete v from the graph; end;

T « (; run round robin to make T a complete k-intersection;

These modifications do not change the desired value A. In proof let v be a vertex that gets
deleted. Any v3-set U has larger in-degree than U — v, both for the current A and any larger value.
For U = {v} the initialization of A ensures A > A\yy. Hence deleting v and adjusting capacities ¢(sw)
as in the clean-up step does not change .

Now we show that for n' the number of vertices still in the graph, kn’ = O(m) as claimed. It
suffices to show that at any time any vertex v remaining in the graph is on at least k/4 edges of the
original graph G (counting each edge according to its initial capacity). In proof consider a vertex
v that is not deleted in a clean-up step. At the time of this step ¢(sv) < ¢(6(v)). Also ¢(p(v)) > k
since there is a complete k-intersection. Thus ¢(6(v)) or ¢(p(v) — sv) is at least k/2, and until the
next clean-up step it is at least k/4.

In the following theorem recall that m counts each edge of the graph according to its initial

capacity.

Theorem 4.2. The augmentation problem with parametric §(s) can be solved in time
O(r(A)mlogn) and space O(m). The time is O(r(X)mlog(n?/m)) if any edge not in 6(s) has
capacity O(1).

Proof. Since kn’ = O(m) each execution of round robin uses time O(mlogn). The total time for

round robin excluding clean-up steps is O(r(A)mlogn). The time for a clean-up step at the value

15

k is O(kmlogn). Summing over all powers of two k < 7()) gives total time O(7(X)mlogn). The

logarithmic term in these estimates decreases to log(n?/m) if any edge not in §(s) has capacity

o(1). '

We can construct a complete 7(X)-intersection T for the original graph G with capacity function
cx in time proportional to the size of T', O(7(X)n). To do this start with the final intersection T
of the algorithm, and add the vertices v that were deleted in clean-up steps in reverse order of
their deletion. To add v first do the following for each tree T; of T' that contains an edge sw where
vw € é§(v) and c¢(vw) > 0: For all such w in T}, replace sw by vw in T; and decrease c(vw) by 1;
‘then add sv to T; and decrease ¢(sv) by 1. Second for every other tree T; in T, add v to T; by
adding an edge from a vertex of T; to v and decreasing its capacity.

To show this construction is correct observe that in the first step edge sv starts out with
positive capacity. This follows from the deletion criterion of the clean-up step. In the second step
the edge to T exists, by the clean-up step that deleted v.

The covering algorithm of Section 5 requires only a subset of the above intersection T, specif-
ically T — é(s). This (partitioned) subset consists of 7()) forests of edges in the original graph. It

can be constructed in time O(m) using the same algorithm.

5. Covering graphic polymatroids
This section presents algorithms to compute the arboricity efficiently, for both large-capacity and
small-capacity graphs.

Fix an undirected graph G and a vector ¢ € Rf. G determines the graphic polymatroid P =
P(r). The P-covering number is called the arboricity, denoted I'. More precisely integral (fractional)
arboricity refers to the integral (fractional) P-covering number. I' denotes integral or fractional
arboricity, as determined by context. If ¢ is integral, a collection of forests of G covers the edges
of G if it contains each edge e precisely c(e) times. The integral arboricity is the smallest number
of forests that covers the edges of G. The fractional arboricity has a similar interpretation. Nash-
Williams gave the formula for integral arboricity, I' = max{[c¢(yv(W)/(]W| - D)]|W C V, |W| > 1}
[NW]. (This formula is implicit in Section 3.)

Graph G also determines the polymatroid SP = P(f) defined in Section 3. The density d of
c is the S P-covering number of ¢. Integral and fractional density have the obvious meaning, and d
denotes the variant determined by context. We use the density as a steppingstone to the arboricity.

Clearly ' > d, for integral and fractional variants.

16

Theorem 3.1 shows that d is the smallest k¥ where a maximum flow on G*(¢,k) has value ¢(E).
For any k let EG, denote the equivalent graph of G*(¢, k). Theorem 3.1 shows that I' is the smallest
k > d where in EGy, any t-set has out-degree at least k. Note that for any k > d, EG} is the same
as £G4 except that the capacity of each edge zt increases by k — d (the maximum flow on G*(e, k)
equals ¢(E) for any k > d).

Our algorithm to compute the arboricity of a graph G with capacity function ¢ € Rf works

in two steps. The first step computes the density d.

The second step finds I'. T is the smallest k > d such that in the reverse digraph EGE, any
t-set has in-degree at least k. We find k by solving the parametric augmentation problem for t-sets
specified as follows. The parameter A equals k — d. For e € §(t), ca(e) = cq(€e) + A. The target
function is 7(A) = d + A. A t-set T has Ar equal to d if cg(p(T)) > d and u%%lll otherwise.
(Note that if |T| = 1 then ¢q(p(T)) = d from the definition of equivalent graph.)

Theorem 5.1. The integral and fractional arboricity for a graph with capacity function can be

found in time O(nmlog(n?/m)) and space O(m).

Proof. We find the density using the algorithm of [GGT] in time O(nmlog(n?/m)). The assump-
tions of the parametric augmentation algorithm hold, so Theorem 4.1 shows it is solved in the same

time bound. i

The same algorithm runs faster on graphs with small capacities. We concentrate on the case
of integral capacities that are O(1). Note that in this case I' = O(y/m). This is easy to check using

Nash-Williams’ formula.

Theorem 5.2. If all capacities are integreﬂ and O(1) then the integer I', along with T forests that

cover the edges of G, can be found in time O(m3/2 log(n?/m)) and space O(m).

Proof. When all capacities are O(1) the density can be found by binary search in time
O(min{/m,n?/*}mlogn). ((GW] gives slightly better bounds.) The augmentation problem satis-
fies the assumptions for augmentation with parametric 6(s). Hence Theorem 4.2 applies. As noted

after the theorem we can find the I' forests that cover the edges in additional time O(m). ®

17

6. Finding a graphic polymatroid base
This section implements the prefix algorithm given in Section 2 to find a minimum-cost base of a
graphic polymatroid P = P(kr).

Recall that the prefix algorithm begins an iteration with a vector b € P where b; = 0 for j > i.
Let u denote the vector b + ¢[;41..mj—7. The three steps of an iteration are as follows. The first
step sets d to the longest prefix of u that is in SP. We will find d using parametric network flow.
The second step sets b to the longest prefix of d that is in P. We will find b using parametric
augmentation. The third step finds the maximal tight set for b in P. We will find T using the
Hao-Orlin algorithm. Now we describe these steps in detail.

The following notation concerning the graph G* of Section 3 is useful. For any edge
e € E, e* denotes edge se of G*. For any flow f on G*, fg~ denotes the vector of flow values
(f(17),., f(m™)).

The first step finds d using the characterization of SP of Theorem 3.1, as follows. Construct
the parametric network G*(uy..», k). Here A is an integral parameter ranging over [1..m]. Starting
at A = 0, repeatedly increase A by 1 until a maximum flow f in the parametric network does not
saturate edge A*. The desired prefix d is fg», where f is the final flow.

This method can compute up to m maximum flows. We reduce this to O(n) maximum flows
by doing two parametric flow computations: First starting at A = 0, repeatedly increase A by n
to find A = hn, the largest multiple of n where a maximum flow saturates all edges of §(s). Then
starting at A = hn, repeatedly increase A by 1 until as above, a maximum flow does not saturate
edge A*.

The second step finds b using the characterization of P in Theorem 3.1 and parametric aug-
mentation. Let f denote the final maximum flow from the first step. Let a real-valued parameter
A range from 0 to d(E). Each value of A will specify a flow f*, obtained by retracting the “most
recent” flow of f. The equivalent graph of this flow will give a parameterized digraph EG). Now
we give the details, first describing f* and then describing EG.

To construct f*, recall that flow f has value d(E). Flow f* has value d(E) —), and I is
the unique prefix of vector fg« having this value. Now we specify f* on the remaining edges of
G*(d,k) (recall f is a flow on this graph). Consider an edge j*, and suppose that going from f to
f* the flow in j* decreases by A. Let j be edge zy. Reduce the flow in edges jz and zt by A,
and the flow in jy and yt by Ay, where 0 < A, < f(jz), 0 < Ay < f(Jy) and Ay + Ay = A.

EG) is the equivalent graph of flow f* in graph G*(f2.,k). Let X be the smallest parameter

value where each -set of EG has out-degree at least k. The desired prefix b equals f;’}l.

18

It will help to describe EGy by specifying how the equivalent graph changes when, as described
above, the flow in edge j* decreases by A. Use the same notation as above. Then in the equivalent
graph, the capacity of edge zy decreases by A, and the capacity of zt increases by A,. Similar
changes occur for yz.

Now we specify the parametric augmentation problem that finds the desired value X. We
work on the reverse digraph EGE, with 7()\) = k. The above description of EG), implies the
monotonicity properites for parametric augmentation: c)(e) is nondecreasing for each e € §(t),
nonincreasing for e ¢ §(t) and ¢)(p(v)) does not change for any vertex v. A value At is computed
by increasing A and retracting flow until the in-degree of T becomes k. It is easy to check the other
assumptions of the parametric augmentation problem.

The third step of an iteration of the prefix algorithm updates T'. The remark after Theorem 3.1
shows that T corresponds to the family of maximal nonsingleton t-sets of in-degree k in EG}; , for
the value X found in the second step. This family of sets is easily found by executing the Hao-Orlin

algorithm.

Theorem 6.1. A minimum-cost base of a graphic matroid or polymatroid P(kr) can be found in

time O(n*mlog(n?/m)) and space O(m).

Proof. We need only analyze the time. Section 2 shows that the prefix algorithm has < f(E) +
1 = n iterations. Thus it suffices to show that each of the three steps of an iteration uses time
O(nmlog (n?/m)). The first step uses the parametric network flow algorithm of [AOST]. As already
noted O(n) maximum flows are computed. Hence the time is O(nmlog(n?/m)). The second step
solves a parametric augmentation problem, and hence has the same time bound by Theorem 4.1.

The third step uses the Hao-Orlin algorithm, and hence has the same time bound. L]

Cunningham [C85a] proposes the reinforcement problem: Given is a graph with capacity func-
tions ¢, u € Rf and cost function a € RF. The problem is to increase ¢ to ¢ + z, where 0 < z < u,
so the resulting graph has packing number at least k, and the cost az is as small as possible.
Cunningham shows the reinforcement problem reduces to two executions of the greedy algorithm.

We refer to this problem as the optimal augmentation problem for packing. We can also define
a optimal augmentation problem for covering: A graph with the same functions is given. The
problem is to increase ¢ to ¢ + 2z, where 0 < 2 < u, so the resulting graph has covering number at
most k, and az is as large as possible. This problem also reduces to two executions of the greedy

algorithm.

19

Theorem 6.2. The optimal augmentation problems for packing and covering can be solved in time

O(n?mlog(n?/m)) and space O(m). u

7. Packing graphic polymatroids
This section applies the prefix algorithm to get an efficient algorithm for packing graphic polyma-
troids.

| Fix an undirected graph G, a vector ¢ € RE and the graphic polymatroid P = P(r) determined
by G. The integral P-packing number is the greatest number of spanning forests of G' (spanning
trees if G is connected) containing each edge e at most c(e) times. The fractional P-packing
number equals the strength of a connected graph G. To see this recall that strength is defined as
min{c(F)/(r(E) — r(F))| F C E, r(E) > r(F)} [C85a]. (The motivation is that the number of
connected components of graph G — F is 1 + r(E) — r(F), i.e., deleting F creates r(E) — r(F) new
components, so strength is the smallest effort per new component when we destroy a set of edges.)
This expression is Edmonds’ formula for the packing number [E65] (alternatively see the proof of
Theorem 2.1).

We use Newton’s method for packing in polymatroids, with the implementation of the prefix
algorithm given in Section 6. (We initialize k to any upper bound on the packing number, e.g.,

(E)/(n—1).)

Theorem 7.1. The integral and fractional packing numbers for a graphic polymatroid can be

found in time O(n?*mlog(n®/m)) and space O(m).

Proof. Corollary 2.1 shows Newton’s method amounts to O(f(E)) = O(n) iterations of the prefix

algorithm. Section 6 shows each iteration uses time O(nmlog(n?/m)). i

As mentioned in Section 2 a potential drawback of this packing algorithm is numerical accuracy:
the values of b get repeatedly multiplied and are used as capacities in flow networks G*. We fix
this as follows. i

Each time the prefix algorithm is executed the initialization makes 7T tight for b in P = P(kr).
The prefix algorithm finds a vector b’ such that for this value of b, b + b’ is a P-base of ¢. Let
T =U{7(U)|U € U}, where U is a family of disjoint sets of vertices U having b(y(U)) = k(|U|-1)
and |U| > 1. Form the graph G’ by starting with G and contracting each set U € . Let P’ be the
graphic polymatroid P(kr') for v’ the graphic polymatroid function of G'. It is an easy exercise to

check that for any nonnegative vector &', b+ b' € P iff ¥’ € P'. Thus we can find the desired b’ by

20

running the prefix algorithm on P’. This algorithm is initialized as in the original prefix algorithm
(e.g., bis 0).

The asymptotic time bound of Theorem 7.1 holds for this modified algorithm. The only
numbers involved in the modified algorithm derive from the current value of k, a quotient of given

numbers. Thus large numbers are avoided.

Acknowledgments
Thanks to Bill Cunningham for his help.

21

References

[AOST]
(B]
[BT]
[C85a]
[C85b]
[CC]

[D]
(E65]

[E69]

[Ga91a]

[Ga91b]

[Gu83]

[Gu91]
[GGT)

[GM]

R.K. Ahuja, J.B. Orlin, C. Stein and R.E. Tarjan, “Improved algorithms for bipartite network
flow,” SIAM J. Comput., to appear.

F. Barahona, “Separating from the dominant of the spanning tree polytope,” Op. Res. Letiers,
12,1992, pp. 201-203.

S. Baum and L.E. Trotter, Jr., “Integer rounding for polymatroid and branching optimization
problems,” SIAM J. Alg. Disc. Meth., 2, 4, 1981, pp. 416-425.

W.H. Cunningham, “Optimal attack and reinforcement of a network,” J. ACM, 32, 3, 1985, pp.
549-561.

W.H. Cunningham, “Minimum cuts, modular functions and matroid polyhedra,” Networks, 15,
1985, pp. 205-215.

E. Cheng and W.H. Cunningham, “A faster algorithm for computing the strength of a network,”
Inf. Proc. Letters, 49, 1994, pp. 209-212.

W. Dinkelbach, “On nonlinear fractional programming,” Management Sei., 13, 1967, pp. 492-498.

J. Edmonds, “Lehman’s switching game and a theorem of Tutte and Nash-Williams,” J. Res.
National Bureau of Standards 69B, 1965, pp. 73-77.

J. Edmonds, “Submodular functions, matroids, and certain polyhedra,” Calgary International
Conf. on Combinatorial Structures and their Applications, Gordon and Breach, New York, 1969,
pp. 69-87.

H.N. Gabow, “A matroid approach to finding edge connectivity and packing arborescences,” Proc.
23rd Annual ACM Symp. on Theory of Comp., 1991, pp. 112-122; J. CSS, to appear.

H.N. Gabow, “Applications of a poset representation to edge connectivity and graph rigidity,”
Proc. 32nd Annual Symp. on Found. of Comp. Sci., 1991, pp. 812-821; also Tech. Rept. CU-CS-
545-91, Dept. of Comp. Sci., Univ. of Col. at Boulder, Boulder, CO, 1991.

H.N. Gabow, “Efficient splitting off algorithms for graphs,” Proc. 26th Annual ACM Symp. on
Theory of Comp., 1994, pp. 696-705.

F.R. Giles, “Submodular functions, graphs and integer polyhedra,” Ph. D. Dissertation, Dept. of
Combinatorics and Optimization, Univ. of Waterloo, Waterloo, Ontario, 1975.

D. Gusfield, “Connectivity and edge-disjoint spanning trees,” Inf. Proc. Letters, 16, 2, 1983, pp.
87-89.

D. Gusfield, “Computing the strength of a graph,” SIAM J. Comput., 20, 4, 1991, pp. 639-654.

G. Gallo, M.D. Grigoriadis and R.E. Tarjan, “A fast parametric maximum flow algorithm and
applications,” SIAM J. Comput., 18, 1, 1989, pp. 30-55.

H.N. Gabow and K.S. Manu, “Algorithms for packing spanning trees and arborescences in multi-
graphs,” in preparation.

A.V. Goldberg and R.E. Tarjan, “A new approach to the maximum flow-problem,” J. ACM, 35,
4, 1988, pp. 921-940.

H.N. Gabow and H.H. Westermann, “Forests, frames and games: Algorithms for matroid sums
and applications,” Algorithmica, 7, 1992, pp. 465-497.

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

22

[HO] J. Hao and J.B. Orlin, “A faster algorithm for finding the minimum cut in a graph,” Proc. 3rd
Annual ACM-SIAM Symp. on Disc. Algorithms, 1992, pp. 165-174.

[NW] C. St. J. A. Nash-Williams, “Decomposition of finite graphs into forests,” J. London Math. Soc.,
39, 1964, p.12.

[PQ82a)] Picard, J.-C. and M. Queyranne, “A network flow solution to some nonlinear 0-1 programming
problems, with applications to graph theory,” Networks, 12, 1982, pp. 141-159.

[PQ82b] Picard, J.-C. and M. Queyranne, “Selected applications of minimum cuts in networks,” INFOR
20, 1982, pp. 394-422.

[PaW83]M.W. Padberg and L.A. Wolsey, “Trees and cuts,” Ann. Discrete Math., 17, 1983, pp. 511-517.

[PaW84]M.W. Padberg and L.A. Wolsey, “Fractional covers for forests and matchings,” Math. Program-
ming, 29, 1984, pp. 1-14.

[PhW] S. Phillips and J. Westbrook, “Online load balancing and network flow,” Proc. 25th Annual ACM
Symp. on Theory of Comp., 1993, pp. 402—411.

[S] S. Schaible, “Fractional programming II. On Dinkelbach’s algorithm,” Management Sci., 22, 1976,
pp- 868-873.

[W] D.J.A. Welsh, Matroid Theory, Academic Press, New York, 1976.

23

ALGORITHMS FOR GRAPHIC
POLYMATROIDS AND PARAMETRIC S-SETS

Harold N. Gabow

CU-CS-736-94

%Univemity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

