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Abstract 

Bartel, Christopher Joseph (Ph.D., Chemical Engineering) 

Data-driven descriptors for the thermochemistry of inorganic crystalline solids 

Thesis directed by Professors Charles Musgrave and Alan Weimer 

 

The advancement of society has been historically predicated on the discovery or invention 

of new materials and in particular, inorganic solid-state materials have had transcendent influence 

on society – stone for tools, steel for structures, silicon circuits and solar cells, and so forth. 

Synthesizing a new material is time-consuming, costly, and frustrating for those tasked with the 

job. The success of solid-state synthesis can be greatly improved if one knows the thermodynamic 

stability of the material they are trying to make and those they are trying to avoid. This dissertation 

addresses the prediction of thermodynamic stability for solid-state materials primarily using a 

branch of quantum chemistry called density functional theory (DFT) and statistical approaches 

that fall under the umbrella of data analytics and machine learning.  

We partitioned the pathways of solid-state decomposition into three types to quantify the 

success of DFT-based approaches for predicting thermodynamic stability in a high-throughput 

manner. By comparing with experiment, we find that in general, DFT performs quite well. 

Importantly, when the decomposition pathway type is elucidated for all known inorganic crystals, 

we find that the type that DFT performs the best on is the most prevalent, supporting the efficacy 

of DFT-based stability predictions. 

Still, DFT is computationally expensive and not always practical for a given problem. This 

motivates the use of data analytics to accelerate the prediction of thermodynamic stability using 

so-called “descriptors”. We applied the SISSO (sure independence screening and sparsifying 
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operator) algorithm to identify a new tolerance factor (descriptor) for predicting the experimentally 

realized stability of perovskites, which are a class of inorganic solids having significant utility as 

solar absorbers, catalysts, and capacitors. 

This new tolerance factor was applied to identify new double perovskite solar absorbers in 

the cesium-chloride chemical space. In doing so, we gain insights into the stability of these 

materials, point out some pitfalls of common high-throughput approaches, and reveal a number of 

potential all-inorganic solar absorbers which may become active components in high-efficiency 

solar cells. 

Much of the computational materials field is resigned to studying temperature-independent 

thermodynamics because of the expense of including the effects of vibrational entropy in the solid-

state. To address this problem, we again used SISSO, this time to identify a simple descriptor for 

the Gibbs energy of an arbitrary inorganic crystalline solid. We show how this descriptor can be 

used for rapid predictions of temperature-dependent stability and thermochemical equilibrium.  

As a demonstration of the utility of the Gibbs energy descriptor, we used it to screen for 

active materials that might be able to mediate the conversion of air, water, and sunlight into 

ammonia using chemical looping. These results provide a detailed thermodynamic analysis of the 

involved reactions for this process, highlighting the challenging tradeoff between metal oxide and 

metal nitride stability that must be met for the process to succeed. 

This work helps reveal the lack of exploration of metal nitride compounds relative to their 

oxide counterparts. We show that the space of ternary metal nitrides that have been synthesized 

has the potential to double based on DFT-based stability predictions. We also developed 

quantitative descriptors for the bonding in metal nitrides to help rationalize their stability and 

highlight opportunities for synthesizing new nitrides with interesting technological properties. 
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1 Introduction 

1.1 Materials by design and density functional theory 

Throughout history, emergent technologies have been enabled by the discovery and 

application of new or improved materials. Materials-driven societal advancement dates back at 

least to the Stone Age, when early hominins made use of naturally occurring rock in the form of 

tools to obtain food and build shelter. A transformational change occurred with the dawn of 

metallurgy and the observation that naturally occurring elements, copper and tin, could be mixed 

(alloyed) at high temperature, to form bronze, which could be much harder than pure copper. This 

may be considered the first chemical design of materials. Many thousands of years later, 

computing was enabled by the invention of the integrated circuit based on the semiconductor, 

silicon.1 

 Today, these same silicon chips have enabled a new paradigm for materials design using 

high-performance computing and quantum chemistry. Supercomputers hosted by governments and 

companies around the world can collectively perform 1018 floating-point operations per second, a 

million-fold increase in the last ~20 years.2 A significant fraction of this supercomputing power 

has been made available to academic research groups, many of which are focused on the design of 

improved materials for a variety of applications. In particular, there are thousands of researchers 

relying on density functional theory (DFT) to calculate the electronic, chemical, and physical 

properties of materials at the atomistic scale.3, 4 

The density functional approximation is that a many-body system of interacting entities 

can be approximated as a non-interacting system. In the case of quantum chemistry as it’s applied 
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within this work (DFT), the entities are electrons and the many-body problem that is being 

approximated is the time-independent Schrodinger’s equation5: 

 ĤΨ = 𝐸Ψ ( 1.1 ) 

 

where the energy, E, of a quantum system is the expectation value of the Hamiltonian, Ĥ, of the 

wave function, Ψ. All properties manifested by a system of nuclei and electrons (i.e., materials) – 

stability, physical structure, electronic structure, reactivity, etc. – are determined by Ψ. Of 

particular relevance is Ψ such that E is minimized, which provides the ground-state distribution of 

electron density.  

In the commonly imposed Born-Oppenheimer approximation,6 the primary challenge in 

solving Schrodinger’s equation is the computation of electron-electron interactions. For a simple 

example with two protons and two electrons (e.g., H2), Schrodinger’s equation in the Born-

Oppenheimer approximation becomes: 

 
[−

1

2
∑ ∇𝑖

2

𝑖=1,2

+
1

|𝒓1 − 𝒓2|
+ ∑ 𝑣𝑒𝑥𝑡(𝒓)]

𝑖=1,2

Ψ(𝒓1, 𝒓2) = 𝐸Ψ(𝒓1, 𝒓2) 
( 1.2 ) 

 

where r is a position vector, ri is the position of electron, i, and vext is an external potential imposed 

by the nuclei. Equation 1.2 is complicated by the second term of the Hamiltonian – the 

electrostatic repulsion – which couples the two electrons and requires the solution of a partial 

differential equation in six coordinates.7 In contrast, The non-interacting Schrodinger’s equation 

has only three coordinates and reduces to the following: 

 
[−

1

2
∇2 + 𝑣𝑠(𝒓)]φi(𝒓) = 𝜖𝑖φi(𝒓) 

( 1.3 ) 
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where φ is a one-electron wavefunction or orbital and ϵi the eigenstate of that orbital. Critical to 

the degree to which Equation 1.3 approximates Equation 1.2 is the choice of vs which is vext 

corrected by some function that helps mimic the electron-electron interactions. In DFT, vs is a 

functional of the electron density, n(r), and is designed to approximate the exchange and 

correlation energies of the electrons in the system. A number of these density functionals have 

been developed in the ~50 years since the original DFT ansatz was proposed, each of which have 

certain constraints and associated success and failure cases (e.g., materials or properties), have an 

inherent tradeoff of computational expense and accuracy, and frequently appear among the most 

cited papers in the history of science.8-11 Owing to the availability of high-performance computing 

resources and the development of DFT codes designed to operate on them,12-14 DFT has become a 

principal tool for scientists of a range of disciplines to understand and design new materials. 

1.2 Predicting thermodynamic stability 

An essential criterion for the success of a proposed material is that there are some 

reasonable conditions where the proposed material exists – i.e., it is stable. DFT allows for the 

optimization of electronic and geometric structure for an initial configuration of ions and electrons. 

The resulting total energy, E, which has been variationally minimized with respect to the 

configuration of ions and electrons is a key result of the calculation.15 With recent advances in 

supercomputing power, it has become somewhat commonplace for a single research group to 

calculate E for 102-104 structures using typically the generalized gradient approximation (GGA)8 

for the density functional. This capability has fortunately been commensurate with the advent of 

materials databases which openly provide these DFT-calculated structures and E (typically along 

with other readily obtainable properties).16-18 Many of these databases support the NOMAD 
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repository19 which accepts input and output files for any of these calculations and currently makes 

publicly available more than 50,000,000 DFT calculations of molecules and crystals. 

Public access to this magnitude of DFT calculations has several advantages for the 

materials community, chief among them the ability to calculate E for a new structure and compare 

to E for all other structures that are known and could potentially be created from the structure of 

interest. A convenient and often necessary way to make this comparison is by the convex hull 

construction, where, the Gibbs free energy, G, (or some approximation, e.g., E) is generated with 

respect to some handle on which G depends. In practice, this is almost exclusively composition, 

but in principle, can be any parameter that influences the energy.20 Considering a material with N 

unique elements, G(x1, x2, … xN) is plotted and the N-dimensional convex polyhedra of maximal 

size that connects some of these points dictates the materials that are stable (vertices) or unstable 

(non-vertices) with respect to property, x.21 For the synthesis of materials, the most convenient 

property of interest is composition – e.g., a furnace is loaded with a fixed amount of elements A 

and B (in the binary N = 2 example) and allowed to reach equilibrium at fixed temperature, T, and 

pressure, P. The convex hull in the G(xA, xB) space then determines stability. In practice, G is rarely 

computed due to the expense of doing so from a first-principles approach,22 and G is approximated 

only by comparing the formation enthalpies that are readily available in the materials databases.  

1.3 Descriptor-based property prediction 

In addition to enabling large-scale stability analyses, open databases of high-throughput 

DFT calculations also provide the opportunity to apply statistical approaches to learn from this 

vast data space.23 Historically, empirical parameters have been developed in attempts to generalize 

the observation of some property based on simple fundamental relationships, e.g., predicting 

crystal structure from the radii of the involved elements.24 These approaches are extremely useful 



5 

 

for directing theorists and experimentalists towards which materials require more investigation, 

without significant computational expense. These descriptors typically involve the computation of 

a simple analytical expression, in contrast to DFT calculations that require a complex numerical 

integration of many differential equations. With the availability of so-called “big-data”, materials 

scientists are now afforded the opportunity to apply sophisticated statistical algorithms to learn 

these relationships, whereas historically these descriptors were developed with only intuition and 

limited empirical observation.  

Within supervised learning algorithms, a compound or structure is represented by a matrix 

of features or properties, X. The design of X is to best represent the material(s) of interest as it 

pertains to predicting some property, y. Learning algorithms then identify an optimal relationship 

between X and y such that given new materials, they too can be represented by the same features 

and used to predict the target property with significant accuracy. The most effective form of 

representation, X, is an ongoing problem in materials science,25-28 and there are countless 

developments on the side of algorithms to map X to y, mostly outside the scope of materials 

scientists. This thesis will not devote too much time to either of these problems, instead 

demonstrating how existing approaches to representing materials and algorithms to predict both 

discrete and continuous properties can yield effective tools for predicting the thermochemistry of 

inorganic crystalline solids. 

1.4 Thesis scope 

This thesis leverages high-throughput DFT and data analytics to predict, understand, and 

quantify the stability and chemistry of inorganic crystalline solids. The first study (Chapter 2) 

focuses on stability predictions within existing DFT approaches. This acts as a tutorial for how 

stability is determined using the convex hull approach and also benchmarks various 
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approximations that are made by the high-throughput DFT community, revealing the 

consequences of these approximation for predicting stability. In Chapter 3, we demonstrate the 

application of compressed sensing to predicting the experimentally observed stability of the 

perovskite structure using only the chemical composition as input. This work was inspired by an 

empirical tolerance factor introduced by Viktor Goldschmidt in 1921 and we show how state-of-

the-art statistical learning algorithms can improve quantitatively on the intuition of great solid-

state chemists while still providing important chemical insights. We applied our statistically 

learned tolerance factor to assist in the rapid screening of candidate double perovskite solar 

absorbers, revealing a number of interesting candidates that are predicted to be stable and have 

attractive electronic properties for photovoltaic applications (Chapter 4). A persistent 

approximation in the computational materials community is that the formation enthalpy of solid 

compounds is a suitable proxy for the Gibbs energy, which actually dictates stability at a given 

temperature and pressure. In Chapter 5, we again used compressed sensing to learn a simple 

correction for the formation enthalpy, that reproduces experimental and first-principles Gibbs 

energies with high accuracy. We demonstrated the ultra-high-throughput application of this 

descriptor to explore the temperature- and composition-dependence of (meta)stability for all 

known inorganic solids. This Gibbs energy descriptor provides the unique capability of accurately 

predicting the thermochemical reaction equilibrium. Leveraging this, we applied the descriptor to 

pursue redox-active materials to mediate the conversion of air and water into ammonia by way of 

solar thermochemical ammonia synthesis (Chapter 6). Finally, a combined data-driven and 

“conventional” solid-state chemistry approach is used to understand bonding and stability in metal 

nitrides (Chapter 7). In this work, we reveal the driving forces behind the thermodynamic and 

chemical stability of the ternary nitrides space and identify hundreds of new, stable materials, 
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seven of which have since been synthesized. In Chapter 8, the key findings of this thesis are 

summarized and a few notes on future directions are provided. 
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2 The role of decomposition reactions in assessing first-

principles predictions of solid stability 

Much of the content in this chapter appears verbatim in the following manuscript: 

C.J. Bartel, A.W. Weimer, S. Lany, C.B. Musgrave, A.M. Holder (2018) [Under review] 

{arXiv:1810.08248} 

 

2.1 Abstract 

The performance of density functional theory (DFT) approximations for predicting 

materials thermodynamics is typically assessed by comparing calculated and experimentally 

determined enthalpies of formation from elemental phases, ΔHf. However, a compound competes 

thermodynamically with both other compounds and their constituent elemental forms, and thus, 

the enthalpies of the decomposition reactions to these competing phases, ΔHd, determines 

thermodynamic stability. We evaluated the phase diagrams for 56,791 compounds to classify 

decomposition reactions into three types: 1. those that produce elemental phases, 2. those that 

produce compounds, and 3. those that produce both. This analysis shows that the decomposition 

into elemental forms is rarely the competing reaction that determines compound stability and that 

approximately two-thirds of decomposition reactions involve no elemental phases. Using 

experimentally reported formation enthalpies for 1,012 solid compounds, we assess the accuracy 

of the generalized gradient approximation (GGA) (PBE) and meta-GGA (SCAN) density 

functionals for predicting compound stability. For 646 decomposition reactions that are not 

trivially the formation reaction, PBE (MAD = 70 meV/atom) and SCAN (MAD = 59 meV/atom) 

perform similarly, and commonly employed correction schemes using fitted elemental reference 

energies make only a negligible improvement (~2 meV/atom). Furthermore, for 231 reactions 
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involving only compounds (Type 2), the agreement between SCAN, PBE, and experiment is 

within ~35 meV/atom and is thus comparable to the magnitude of experimental uncertainty.  

2.2 Introduction 

 The design and discovery of new materials are being rapidly accelerated by the growing 

availability of density functional theory (DFT) calculated property data in open materials databases 

which allow users to systematically retrieve computed results for experimentally known and yet-

to-be-realized solid compounds.16, 17, 29-32 The primary properties of interest are the optimized 

structure and corresponding total energy, E, with, for example, ~50,000,000 compiled structures 

and energies available via the NOMAD repository.19 Given E for a set of structures, one can 

routinely obtain the reaction energy, Erxn, to convert between structures. E for a compound is 

typically compared with E for its constituent elements to obtain the formation enthalpy, ΔHf, which 

provides the thermodynamic driving force at zero temperature and pressure for stability of a given 

structure with respect to its constituent elements:  

 ∆𝐻𝑓(𝐴𝛼1
𝐵𝛼2

… ) = 𝐸(𝐴𝛼1
𝐵𝛼2

… ) − ∑ 𝛼𝑖𝐸𝑖
𝑖

 
( 2.1 ) 

 

where E is the calculated total energy of the compound (Aα1Bα2…), αi the stoichiometric coefficient 

of element i in the compound, and Ei the total energy (chemical potential) of element i. ΔHf 

computed by Equation 2.1 is typically compared to ΔHf obtained experimentally at 298 K with 

varying degrees of agreement depending on the density functional and compounds (chemistries) 

under investigation.29, 30, 33-38  

However, ΔHf is rarely the useful quantity for evaluating the stability of a compound. More 

relevant are the reaction energies for a given compound relative to all other compounds within the 
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same composition space, where the reaction with the most positive Erxn is the decomposition 

reaction.21, 36, 39 For example, for a given ternary compound, ABC, the relevant space of competing 

materials includes the elements (A, B, and C), all binary compounds in the A-B, A-C, and B-C 

spaces, and all ternary compounds in the A-B-C space. The stability of ABC is obtained by 

comparing the energy of ABC with that of the linear combination of competing compounds with 

the same average composition – ABC – that minimizes the combined energy of the competing 

compounds, EA-B-C. The decomposition enthalpy, ΔHd, is then obtained by: 

 ∆𝐻𝑑 = 𝐸𝑟𝑥𝑛 = 𝐸𝐴𝐵𝐶 − 𝐸𝐴−𝐵−𝐶 . ( 2.2 ) 

 

ΔHd > 0 indicates an endothermic reaction for a given ABC forming from A-B-C; the sign notation 

that ΔHd > 0 indicates instability is chosen to be commensurate with the commonly reported 

quantity, “energy above the hull”, where ΔHd also provides the energy with respect to the convex 

hull but can be positive (for unstable compounds) or negative (for stable compounds). A ternary 

example was shown for simplicity, but the decomposition reaction and ΔHd can be obtained for 

any arbitrary compound comprised of N elements by solving the N-dimensional convex hull 

problem. 

For the high-throughput screening of new materials for a target application, stability against 

all competing compounds is an essential requirement for determining the viability of a candidate 

material.39 In this approach, compounds are typically retained for further evaluation (more rigorous 

calculations or experiments) if ΔHd < γ, where the threshold γ commonly ranges from ~20 to ~200 

meV/atom depending on the priorities of the screening approach and the breadth of materials under 

evaluation.40-45 The success of high-throughput screening approaches thus depends directly on the 

accuracy of ΔHd, which is typically obtained using DFT with routinely employed approximations 
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to the exchange-correlation energy. Nevertheless, despite the intimate link between stability 

predictions and ΔHd, new approaches (e.g., the development of improved density functionals 

and/or statistical correction schemes) are primarily benchmarked against experimentally obtained 

ΔHf. Here, we show that the decomposition reactions that are relevant to stability can be classified 

into three types, and that the ability of DFT-based approaches to predict ΔHd for each type relative 

to experiment is the applicable determinant of the viability of that method for high-throughput 

predictions of compound stability. 

2.3 Results 

2.3.1 Relevant reactions for determining the stability of compounds 

 The decomposition reactions that determine ΔHd fall into one of three types: Type 1 – a 

given compound is the only known compound in that composition space, the decomposition 

products are the elements, and ΔHd = ΔHf (Figure 2.1, left); Type 2 – a given compound is 

bracketed (on the phase diagram) by compounds and the decomposition products are exclusively 

these compounds (Figure 2.1, center); and Type 3 – a given compound is not the only known 

compound in the composition space, is not bracketed by compounds and the decomposition 

products are a combination of compounds and elements (Figure 2.1, right). For a given compound, 

one of these three types of decomposition reactions will be the relevant reaction for evaluating that 

material’s stability. Notably, these decomposition reactions apply to compounds that are stable 

(vertices on the convex hull, ΔHd ≤ 0, Figure 2.1, top) and unstable (above the convex hull, ΔHd 

> 0, Figure 2.1, bottom).  

As it pertains to thermodynamic control of synthesis, Type 2 reactions are insensitive to 

adjustments in elemental chemical potentials that are sometimes modulated by sputtering, partial 
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pressure adjustments, or plasma cracking. Any changes to the elemental energies will affect the 

decomposition products and the compound of interest proportionally, and therefore, while ΔHf  for 

all compounds will change, ΔHd will be fixed. This is in contrast to Type 1 reactions which will 

become more favorable with increases in the chemical potential of either element. The 

thermodynamics of Type 3 reactions can be modulated by these synthesis approaches if the 

elemental form of the species whose chemical potential is being adjusted participates in the 

decomposition reaction, i.e. the compound must be the nearest (within the convex hull 

construction) stable, or lowest energy metastable, compound to the elemental chemical potential 

being adjusted.46.  

 

Figure 2.1 Three unique decomposition reactions 

A stable (top) and metastable (bottom) example of each reaction type. Left: reaction Type 1 – 

the decomposition products are the elements; Center: reaction Type 2 – the decomposition 

products contain no elements; Right: reaction Type 3 – the decomposition products contain 

elements and compounds. Solid blue circles are breaks in the hull (stable) and open red triangles 

are above the hull (metastable). In all examples, A and B are arbitrary elements. 
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The relative prevalence of each decomposition pathway is not yet known, although the 

phase diagrams of most inorganic crystals can be resolved using open materials databases. At 

present, the Materials Project16 provides 56,791 unique inorganic crystalline solid compounds with 

computed ΔHf. Using the N-dimensional convex hull construction, we determined ΔHd and the 

stability-relevant decomposition reaction for each compound and report the prevalence of each 

reaction type in Figure 2.2. For these 56,791 compounds, Type 2 decompositions are found to be 

most prevalent (63% of compounds) followed by Type 3 (34%) and Type 1 (3%). Notably, 81% 

of Type 1 reactions (for which ΔHd = ΔHf) are for binary compounds, which comprise only 13% 

of the Materials Project, and < 1% of the non-binary compounds compete for stability exclusively 

with elements (Figure 2.2, right). As the number of unique elements in the compound, N, increases 

it becomes increasingly probable that other compounds will be present on the phase diagram and 

the decomposition will therefore be dictated by these compounds. 

 

Figure 2.2 Prevalence of reactions among known materials 

Partitioning Materials Project data into each of the three decomposition reaction types (outer 

circle). Then, for each type, partitioning compounds as stable (on the convex hull) and unstable 

(above the convex hull). Left – the entire database of 56,791 compounds; Center – only binary 

compounds; Right – only non-binary compounds. The fraction of the Materials Project 

comprising each circle is shown in the interior of each diagram. 
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2.3.2 Benchmarking performance on formation enthalpy 

 The decomposition reactions determining compound stability that are Type 1 are the least 

prevalent among Materials Project compounds (~3%) suggesting that ΔHd rarely equals ΔHf, 

especially for N > 2. Despite this, the primary approach used to benchmark first-principles 

thermodynamics methods is to compare experimental and computed ΔHf. We compared 

experimentally obtained ΔHf from FactSage47 to computed ΔHf using the generalized gradient 

approximation (GGA) as formulated by Perdew, Burke, and Ernzerhof (PBE)8 and using the 

strongly constrained and appropriately normed (SCAN)9 meta-GGA density functionals for 1,012 

compounds spanning 63 elements. Importantly, this reduced space of compounds with 

experimental thermodynamic data decompose into the full range of Type 1 (37%), 2 (22%), and 3 

(41%) reactions, but first we analyze only ΔHf for all compounds to establish a baseline for 

subsequent comparison to ΔHd. On this set of 1,012 compounds, the mean absolute difference 

(MAD) between experimentally determined ΔHf (at 298 K)47 and calculated ΔHf, nominally at 0 

K and without zero-point energy (ZPE), was found to be 196 meV/atom for PBE and 88 meV/atom 

for SCAN (Figure 2.3a). In addition to a reduction in the magnitude of residuals by ~55%, the 

distribution of residuals is nearly centered about 0 for SCAN in contrast to PBE which consistently 

understabilizes compounds relative to their constituent elements (particularly diatomic gases), 

leading to predictions of ΔHf that are too positive by ~200 meV/atom. Unlike PBE, SCAN has 

been shown to perform well for a range of diversely bonded systems9, 48, 49 and does not suffer 

from this same systematic error.  

The near zero-centered residuals produced by SCAN suggest that no global systematic 

difference likely exists between the energies predicted by this density functional and those 

obtained experimentally, and thus, some of the lingering disagreement may arise from deficiencies 
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in the functional for describing certain types of compounds, e.g. those with transition metals,49-52 

and/or be related to correlated noise in experimental measurement. For 228 binary and ternary 

compounds reported in Ref. 30 (compiled from Ref. 53), the MAD between experimental sources 

(i.e., Refs. 47 and 53) for ΔHf is 30 meV/atom. This difference agrees well with the scale of chemical 

accuracy expected for the experimental determination of ΔHf  of ~1 kcal/mol49 and suggests that 

the disagreement between experiment and theory should not be lower than ~30 meV/atom on 

average. A potential source of disagreement between experimental and DFT-calculated ΔHf is the 

incongruence in temperature, where experimental measurements are performed at 298 K and DFT 

calculations of ΔHf are computed at 0 K, and thus neglect heat capacity, as well as usually 

neglecting ZPE. These contributions are typically assumed to be small based on the results 

obtained for a limited set of compounds.54 This assumption is robustly confirmed here for 647 

structures where the vibrational and heat capacity effects on ΔHf are found to be ~7 meV/atom on 

average at 298 K. 

2.3.3 Optimizing elemental reference energies 

Various approaches have been developed to improve the PBE prediction of ΔHf by 

systematically adjusting the elemental energies, Ei, of some or all elemental phases.29, 30, 33-35 In 

the fitted elemental reference energy scheme, the difference between experimentally measured 

and calculated ΔHf is minimized by optimally adjusting Ei by a correction term, δμi: 

 ∆𝐻𝑓, 𝐴𝛼1𝐵𝛼2… = 𝐸 𝐴𝛼1𝐵𝛼2… − ∑ 𝛼𝑖(𝐸𝑖 + 𝛿𝜇𝑖)𝑖 .  (2.3) 

 

To quantify the magnitude of errors that can be resolved by adjustments to the elemental 

reference energies, we applied Equation 2.3 to ΔHf computed with PBE and SCAN (Figure 

2.3b) with all elements considered in this optimization (these approaches are denoted in this 
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work as PBE+ and SCAN+, respectively). Fitting reference energies for PBE approximately 

halves the difference between experiment and calculation and centers the residuals (MAD = 100 

meV/atom). Because the difference between experiment and SCAN is less systematic, fitting 

reference energies improves SCAN errors less than it improves PBE, and only reduces the MAD 

by ~20% (MAD = 68 meV/atom).  

While adjusting elemental reference energies is simple and effective in reducing the 

difference between experimentally determined and calculated ΔHf, there are a number of 

limitations to this approach. Because it is a fitting scheme, the optimized δμi are sensitive to the 

set of experimental and calculated data used for fitting and do not necessarily have physical 

meaning – i.e., δμi accounts for the systematic disagreement between a density functional and 

experimental measurement across different types of materials, yet this can be difficult to 

interpret. The fitted reference energy scheme, as implemented here, produces a single δμi for 

each element whether a given element appears in the compounds as a cation or anion (e.g., Sb3+ 

or Sb3−). For the majority of the compounds considered in this work, the use a single fitted value 

is appropriate because elements only appear in the data as either anions or cations. However, if 

one was interested in studying compounds containing elements that appear as cationic or 

anionic, statistically resolving a separate δμi for cation- and anion-specific use would be more 

appropriate, as the fitted correction can differ in both magnitude and sign for cations and anions. 

Additionally, fitted reference energies have only been available for PBE (and SCAN reported 

in this work), so the calculation of ΔHf using alternative functionals, which may be better suited 

for a given problem, would require a re-fitting of reference energies within that functional. These 

limitations make it advantageous to avoid fitted reference energies for the high-throughput 
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prediction of stability, particularly if they have negligible effects on the validity of first-

principles predictions. 

 

Figure 2.3 Experimental vs. theoretical formation enthalpies (Type 1) 

a) A comparison of experimentally measured and DFT-calculated ΔHf for all 1,012 compounds 

analyzed (PBE above; SCAN below) showing that SCAN significantly improves the prediction 

of ΔHf over PBE. MAD is the mean absolute difference; RMSD is the root-mean-square 

difference; R2 is the correlation coefficient; N is the number of compounds shown; μ is the mean 

difference; σ is the standard deviation. A normal distribution constructed from μ and σ is shown 

as a solid curve. b) For the same compounds, a comparison of PBE and SCAN with experiment 

using fitted elemental reference energies for the calculation of ΔHf (PBE+ above; SCAN+ 

below) showed that for Type 1 reactions fitted elemental reference energies significantly 

improve the prediction of ΔHf, especially predictions by PBE. 

 

2.3.4 Decomposition reaction analysis 

 While the improved construction of the meta-GGA  density functional (i.e., SCAN) and 

the use of fitted reference energies ameliorates errors associated with the insufficient description 

of the elements and thus improves the prediction of ΔHf considerably relative to PBE, the effects 

these approaches have on the prediction of thermodynamic stability – i.e., ΔHd – have not yet been 

quantified. We used ΔHf obtained from experiment, PBE, and SCAN for the 1,012 compounds 

analyzed in Figure 2.3 to perform the N-dimensional convex hull analysis to determine the 
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decomposition reaction and quantify ΔHd. For 646 compounds which decompose by Type 2 or 3 

reactions, the MAD between experimentally measured and DFT-computed ΔHd is substantially 

lower than for ΔHf  – ~60% lower for PBE and ~30% lower for SCAN (Fig. 4). Notably, the 

decomposition reaction that results from using experiment, PBE, or SCAN is identical in terms of 

the competing compounds and their amounts for 89% of the 1,012 compounds evaluated. 

For 231 Type 2 decomposition reactions where compounds compete only with compounds 

and fitted reference energies thus have no influence on ΔHd, SCAN and PBE are found to perform 

comparably with MADs of ~35 meV/atom compared with experiment on ΔHd. This difference 

approaches the “chemical accuracy” of experimental measurements (~1 kcal/mol), the difference 

in ΔHf between experimental sources (30 meV/atom), and the difference found previously for the 

formation of 135 ternary metal oxides from their constituent binary oxides using an approach based 

on PBE with a Hubbard U correction fit specifically for transition metal oxides (24 meV/atom).36 

Because Type 2 decomposition reactions only involve compounds, computing the decomposition 

reaction energy using total energies or formation enthalpies is equivalent – therefore the results 

with (Fig. 4a) and without (Fig. 4b) fitted reference energies are identical.   

Elemental energies are included in the calculation of ΔHd for compounds that compete 

thermodynamically with both compounds and elements (Type 3 decomposition reactions). 

However, for 415 reactions of this type and using either SCAN or PBE we found that the use of 

fitted reference energies does not significantly affect the agreement with experiment for ΔHd with 

improvements of only ~2 meV/atom (Fig. 4c, d). For these compounds, SCAN improves upon 

PBE by ~20% and the MAD between SCAN and experiment (73 meV/atom) falls between those 

for Type 1 (88 meV/atom) and Type 2 (34 meV/atom) reactions.  
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The prevalence of each reaction type was quantified for the Materials Project database, 

with Type 2 reactions accounting for 63% of all decompositions evaluated and this fraction 

increasing from 29% to 67% to 75% for binary, ternary, and quaternary compounds, respectively. 

For these cases, our results show that both SCAN and PBE can be expected to yield chemically 

accurate predictions of ΔHd, which quantifies the driving force for thermodynamic stability. While 

on average, SCAN and PBE perform similarly for ΔHd, this analysis is performed only on ground-

state structures within each functional. It was recently shown that SCAN performs significantly 

better than PBE for structure selection – i.e., identifying the correct polymorph ordering of which 

crystal structure is the lowest energy at fixed composition.49 Here, ~10% of the 2,238 structures 

optimized were found to have different space groups using PBE and SCAN. Considering only 

ground-states, the lowest energy PBE and SCAN structures differ for ~11% of the 1,012 unique 

compositions assessed in this work. While the MAD from experiment for ΔHd differs by only 

~20% between SCAN and PBE, additional advantages when considering structure and properties 

are likely associated with the use of SCAN for the accurate description of compounds.9, 48, 49, 52, 55 

 

 



20 

 

 

 

Figure 2.4 Experimental vs. theoretical decomposition enthalpies 

a) A comparison of experimentally measured and DFT-calculated ΔHd (PBE above; SCAN 

below) for 231 compounds that undergo Type 2 decomposition reactions showing similar 

performance between PBE and SCAN in predicting ΔHd. b) For the same compounds, a 

comparison of PBE and SCAN with experiment using fitted elemental reference energies for the 

calculation of ΔHd (PBE+ above; SCAN+ below) showing identical results as (a) due to a 

cancellation of elemental energies for these Type 2 decomposition reactions. c) A comparison 

of experimentally measured and DFT-calculated ΔHd (PBE above; SCAN below) for 415 

compounds that undergo Type 3 decomposition showing similar performance between PBE and 

SCAN in predicting ΔHd. d) For the same compounds, a comparison of PBE and SCAN with 

experiment using fitted elemental reference energies for the calculation of ΔHd (PBE+ above; 

SCAN+ below) showing that adding fitted elemental reference energies does not significantly 
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improve the prediction of ΔHd for Type 3 decomposition reactions. Annotations are as described 

in the Figure 2.3 caption. 

 

2.4 Discussion 

 For 1,012 compounds, we show the improvement in computed formation enthalpies, ΔHf, 

afforded by fitting elemental reference energies for both GGA (PBE) and meta-GGA (SCAN) 

density functionals (Figure 2.3). However, to accurately predict the stability of materials it is 

essential to accurately compute the decomposition enthalpy, ΔHd, which dictates stability with 

respect to all compounds and elements in a given chemical space. ΔHd is computed by determining 

the stoichiometric decomposition reaction with the most positive reaction energy. ΔHf is only 

relevant for the stability of compounds that undergo Type 1 decompositions, where the compound 

only competes with elemental phases and consequently, ΔHd = ΔHf. (Figure 2.1). Furthermore, 

Type 1 decompositions occur for only 17% of binaries and almost never (< 1%) for non-binaries, 

as shown for the ~60,000 N-component compounds evaluated (Figure 2.2). For this reason, ΔHf 

and the agreement between experiment and theory for ΔHf are rarely relevant to the stability of 

materials. However, for other applications such as the calculation of defect formation energies, 

ΔHf is the relevant materials property and the adjustment of calculated chemical potentials using 

the fitted elemental reference energy scheme may still have significant utility, especially when 

using PBE.  

The stability of a substantial fraction of compounds, those that undergo Type 2 

decompositions, can be determined without any consideration of elemental energies. For these 

compounds, PBE and SCAN perform similarly and approach the resolution of experimental 

approaches to determining ΔHf (~30 meV/atom) (Figure 2.4a). Importantly, the performance 

metrics we provide are evaluated over a wide range of compounds and chemistries. For chemical 
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spaces that are known to be problematic for a given approach (e.g., 3d transition metals for PBE), 

the error can significantly exceed the average difference reported here.49, 52  

While the majority of compounds in the Materials Project compete with Type 2 

decomposition reactions, this is not generally known when first evaluating a compound and so 

high-throughput screening approaches that typically survey a wide range of compounds will likely 

include analysis of Type 1 and Type 3 decomposition reactions that do require the calculation of 

elemental energies. Type 1 decompositions, which occur for binary compounds in sparsely 

explored chemical spaces, will be highly sensitive to the functional and elemental energies and 

SCAN improves significantly upon PBE for these compounds. Notably, fitting elemental reference 

energies for PBE still results in larger errors than SCAN and fitting reference energies for SCAN 

leads to only modest additional improvements. For Type 3 decompositions, which are ~10 more 

prevalent than Type 1 reactions in Materials Project, SCAN improves upon PBE by ~20% and the 

use of fitted elemental reference energies has almost no effect (~2 meV/atom on average) on either 

approach (Figure 2.4c, d). Interestingly, considering the ~60,000 compounds in Materials Project 

(Figure 2.2, left), a roughly equal fraction of Type 2 compounds are stable (48%) and unstable, 

yet only 37% of Type 3 compounds are stable. However, Type 3 compounds are more amenable 

to non-equilibrium synthesis approaches that allow for increased chemical potentials of the 

elements and potential access of metastable compounds.46 

In summary, we’ve shown that the decomposition reactions that dictate the stability of solid 

compounds can be divided into three types that depend on the presence of elemental phases in the 

decomposition reaction. Through a global evaluation of phase diagrams for ~60,000 compounds 

in the Materials Project, we quantify the prevalence of these reaction types and show that the 

formation enthalpy is rarely the quantity of interest for stability predictions (~3% of Materials 
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Project compounds). Instead, the decomposition enthalpy, which may or may not include the 

calculation of elemental phases is the most relevant quantity. Benchmarking the PBE and SCAN 

density functionals against decomposition enthalpies obtained from experimental data reveals 

quantitatively and qualitatively different results than benchmarking only against formation 

enthalpies and in most cases mitigates the need to systematically correct DFT-calculated elemental 

energies for the assessment of stability. We showed that for 231 reaction energies between 

compounds, the agreement between SCAN, PBE, and experiment (~35 meV/atom) is comparable 

to the expected noise in experimental measurements. Therefore, because this type of 

decomposition reaction is predominant in determining solid stability, we show that high-

throughput DFT approaches to stability predictions are generally in excellent agreement with 

experiment. For alternative decomposition reactions that include both compounds and elements or 

problems that require higher energy resolution such as polymorph energy ordering,50, 56 the choice 

of functional (e.g., SCAN instead of PBE) can have non-negligible effects on stability predictions. 

2.5 Methods 

 Experimental values for ΔHf were obtained from the FactSage database47 for 1,012 

compounds as reported at 298 K and 1 atm. For each compound, the NREL Materials Database 

(NRELMatDB)57 was queried for structures matching the composition within 50 meV/atom of the 

ground-state structure as reported in the database. If a given compound had no calculated structures 

tabulated in NRELMatDB, the procedure was repeated with the Materials Project database16. 

Structures containing potentially magnetic elements were sampled in non-magnetic, two 

ferromagnetic (high- and low-spin), and up to 16 antiferromagnetic configurations (depending on 

cell configuration) where the ground-state magnetic configuration was retained for each structure. 

Sampling was performed using the approach described by NRELMatDB. This process was also 
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repeated for all 63 elements represented in the dataset with the exception of H2, N2, O2, F2, and Cl2 

which were calculated as diatomic molecules in a 151515 Å box. After magnetic sampling, 

2,238 unique structures were found for the 1,012 compounds and 63 elements. All structures were 

optimized with PBE and SCAN using the Vienna Ab Initio Simulation Package (VASP)12, 58 using 

the projector augmented wave (PAW) method59, 60, a plane wave energy cutoff of 520 eV, and a 

Γ-centered Monkhorst-Pack k-point grid with N = 20|bi| discretizations along each reciprocal 

lattice vector, bi. The energy cutoff, k-point density, and related convergence settings were 

sufficient to achieve total energy convergence of < 5 meV/atom for all calculations. For the 

calculation of phonons to compute thermal effects, the finite displacement method with 222 

supercells as implemented in PHONOPY22 was used with SCAN and an increased plane wave 

cutoff of 600 eV and further tightened convergence criteria for total energy convergence of < 1 

meV/atom.  
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3 New tolerance factor to predict the stability of perovskite 

oxides and halides 

Much of the content in this chapter appears verbatim in the following manuscript: 

C.J. Bartel, C. Sutton, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, L. Ghiringhelli, M. Scheffler 

(2018) [Under review] {arXiv:1801.07700} 

 

3.1 Abstract 

Predicting the stability of the perovskite structure remains a longstanding challenge for the 

discovery of new functional materials for many applications including photovoltaics and 

electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional 

tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for 

an experimental dataset of 576 ABX3 materials (X = O2-, F-, Cl-, Br-, I-) using a novel data analytics 

approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to 

generalize outside the training set for 1,034 experimentally realized single and double perovskites 

(91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB’X6) ranked by 

their probability of being stable as perovskite. This work guides experimentalists and theorists 

towards which perovskites are most likely to be successfully synthesized and demonstrates an 

approach to descriptor identification that can be extended to arbitrary applications beyond 

perovskite stability predictions. 

3.2 Introduction 

Crystal structure prediction from chemical composition continues as a persistent challenge 

to accelerated materials discovery.24, 61 Most approaches capable of addressing this challenge 

require several computationally demanding electronic-structure calculations for each material 
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composition, limiting their use to a small set of materials.62-65 Alternatively, descriptor-based 

approaches enable high-throughput screening applications because they provide rapid estimates of 

material properties.66, 67 Notably, the Goldschmidt tolerance factor,68 t, has been used extensively 

to predict the stability of the perovskite structure based only on the chemical formula, ABX3, and 

the ionic radii, ri, of each ion (A, B, X): 

 
𝑡 =

𝑟𝐴 + 𝑟𝑋

√2(𝑟𝐵 + 𝑟𝑋)
 

( 3.1 ) 

 

The perovskite crystal structure, as shown in Figure 3.1a, is defined as any ABX3 

compound with a network of corner-sharing BX6 octahedra surrounding a larger A-site cation (rA 

> rB), where the cations, A and B, can span the periodic table and the anion, X, is typically a 

chalcogen or halogen. Distortions from the cubic structure can arise from size-mismatch of the 

cations and anion, which results in additional perovskite structures and nonperovskite structures. 

The B cation can also be replaced by two different ions, resulting in the double perovskite formula, 

A2BB’X6 (Figure 3.1b). Single and double perovskite materials possess exceptional properties for 

a variety of applications such as electrocatalysis,69 proton conduction,70 ferroelectrics71 (using 

oxides, X = O2-), battery materials72 (using fluorides, X = F-), as well as photovoltaics73 and 

optoelectronics74 (using the heavier halides, X = Cl-, Br-, I-). 
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Figure 3.1 Perovskite structure and composition 

a) ABX3, in the cubic single perovskite structure (𝑃𝑚3̅𝑚), where the A cation is surrounded by 

a network of corner-sharing BX6 octahedra. b) A2BB’X6, in the rock salt double perovskite 

structure (𝐹𝑚3̅𝑚), where the A cations are surrounded by an alternating network of BX6 and 

B’X6 octahedra. In this structure, B and B’ are indistinguishable. c) A map of the elements that 

occupy the A, B, and/or X sites within the 576 compounds experimentally characterized as 

perovskite or nonperovskite at ambient conditions and reported in 75-77.  

 

The first step in designing new perovskites for these applications is typically the assessment 

of stability using t, which has informed the design of perovskites for over 90 years. However, as 

reported in recent studies, its accuracy is often insufficient.78 Considering 576 ABX3 solids 

experimentally characterized at ambient conditions and reported in 75-77 (see Figure 3.1c for the 

A, B, and X elements in this set), t correctly distinguishes between perovskite and nonperovskite 

for only 74% of materials and performs considerably worse for compounds containing heavier 

halides (chlorides – 51% accuracy, bromides – 56%, and iodides – 33%) than for oxides (83%) 

and fluorides (83%) (Figure 3.1a). This deficiency in generalization to halide perovskites severely 

limits the applicability of t for materials discovery.  

In this work, we present a new tolerance factor, τ, which has the form: 

 
𝜏 =

𝑟𝑋

𝑟𝐵
− 𝑛𝐴 (𝑛𝐴 −

𝑟𝐴/𝑟𝐵

ln(𝑟𝐴/𝑟𝐵)
) 

( 3.2 ) 

 



28 

 

where nA is the oxidation state of A, ri is the ionic radius of ion i, and rA > rB by definition. A high 

overall accuracy of 92% for the experimental set (94% for a randomly chosen test set of 116 

compounds) and nearly uniform performance across the five anions evaluated (oxides – 92% 

accuracy, fluorides – 92%, chlorides – 90%, bromides – 93%, iodides – 91%) is achieved with τ 

(Figure 3.2b). Like t, the prediction of perovskite stability using τ requires only the chemical 

composition, allowing the tolerance factor to be agnostic to the many structures that are considered 

perovskite. In addition to predicting if a material is stable as perovskite, τ also provides a 

monotonic estimate of the probability that a material is stable in the perovskite structure. The 

accurate and probabilistic nature of τ as well as its generalizability over a broad range of single 

and double perovskites allows for new physical insights into the stability of the perovskite structure 

and the prediction of thousands of new double perovskite oxides and halides, 23,314 of which are 

provided here and ranked by their probability of being stable in the perovskite structure. 

3.3 Results 

3.3.1 Finding an improved tolerance factor 

One key aspect of the performance of t is how well the sum of ionic radii estimates the 

interatomic bond distances for a given structure. Shannon’s revised effective ionic radii,79 based 

on a systematic empirical assessment of interatomic distances in nearly 1,000 compounds, are the 

typical choice for radii because they provide ionic radius as a function of ion, oxidation state, and 

coordination number for the majority of elements. Most efforts to improve t have focused on 

refining the input radii75, 77, 80, 81 or increasing the dimensionality of the descriptor through two-

dimensional structure maps76, 82, 83 or high-dimensional machine learned models.84-86 However, all 

hitherto applied approaches for improving the Goldschmidt tolerance factor are only effective over 
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a limited range of ABX3 compositions. Despite its modest classification accuracy, t remains the 

primary descriptor used by experimentalists and theorists to predict the stability of perovskites. 



30 

 

 
Figure 3.2 Assessing the performance of the improved tolerance factor, τ 

a) A decision tree classifier determines that the optimal bounds for perovskite formability using 

the Goldschmidt tolerance factor, t, are 0.825 < t < 1.059, which yields a classification accuracy 

of 74% for 576 experimentally characterized ABX3 solids. b) τ achieves 92% classification 

accuracy on the set of 576 ABX3 solids based on perovskite classification for τ < 4.18. The largest 

value of τ in the experimental set of 576 compounds is 181.5, however, all points with τ > 13 

are correctly labeled as nonperovskite and not shown to highlight the decision boundary. The 

outlying compounds at τ > 10 that are labeled perovskite yet have large τ are PuVO3, AmVO3, 

and PuCrO3, which may indicate poorly defined radii or incorrect experimental characterization. 

c) A comparison of Platt-scaled classification probabilities, (τ), versus t. LaAlO3 and NaBeCl3
 

are labeled to highlight the variation in  at nearly constant t. d) A comparison between  and 

the decomposition enthalpy (ΔHd) for 36 double perovskite halides calculated using density 

functional theory (DFT) in the 𝐹𝑚3̅𝑚 structure in 87, and 37 single and double perovskite 

chalcogenides and halides in the 𝑃𝑚3̅𝑚 structure in 87. The legend corresponds with the anion, 

X. Positive decomposition enthalpy (ΔHd > 0) indicates the structure is stable with respect to 

decomposition into competing compounds. The green and white shaded regions correspond with 

agreement and disagreement between the calculated ΔHd and the classification by τ. Points of 

disagreement are outlined in red. CaZrO3 and CaHfO3 are labeled because they are known to be 

stable in the perovskite structure, although they are unstable in the cubic structure.88, 89 For this 

reason, the best fit line for the chalcogenides (X = O2-, S2-, Se2-) excludes these two points. 
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The SISSO (sure independence screening and sparsifying operator) approach90 was used 

to identify an improved tolerance factor for predicting whether a given compound will be stable 

as perovskite (determined by experimental realization of any structure with corner-sharing BX6 

octahedra at ambient conditions). Of the 576 experimentally characterized ABX3 solids, 80% were 

used to train and 20% to test the SISSO-learned descriptor. Several alternative atomic properties 

were considered as candidate features and, among them, SISSO determined that the best 

performing descriptor, τ (Equation 3.2, Figure 3.2b), depends only on oxidation states and 

Shannon ionic radii. For the set of 576 ABX3 compositions, τ correctly labels 94% of the 

perovskites and 89% of the nonperovskites compared with 94% and 49%, respectively, using t. 

The primary advantage of τ over t is the remarkable reduction in false positives – compounds 

predicted to be perovskite but are not experimentally identified as stable perovskites – with false 

positive rates for τ and t of 11% and 51%, respectively. The large decrease in false positive rate 

(from 51% to 11%) while substantially increasing the overall classification accuracy (from 74% 

to 92%) demonstrates that τ improves significantly upon t as a reliable tool to guide 

experimentalists towards which compounds can be synthesized in perovskite structures.  

Beyond the improved accuracy, a significant advantage of τ is the monotonic (continuous) 

dependence of perovskite stability on τ. As τ decreases, the τ-based probability of being perovskite 

() increases, where perovskites are expected for an empirically determined range of τ < 4.18 

(Figure 3.2b). Probabilities are obtained using Platt’s scaling,91 where the binary classification of 

perovskite/nonperovskite is transformed into a continuous probability estimate of perovskite 

stability, (τ), by training a logistic regression model on the τ-derived binary classification. 

Probabilities cannot similarly be obtained with t because the stability of the perovskite structure 

does not increase or decrease monotonically with t, where 0.825 < t < 1.059 results in a 
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classification as perovskite (this range maximizes the classification accuracy of t on the set of 576 

compounds). While  is sigmoidal with respect to τ because of the logistic fit, a bell-shaped 

behavior of  with respect to t is observed because of the multiple decision boundaries required 

for t (Figure 3.2c). This relationship leads to an increase in  (i.e., probability of perovskite 

stability using τ) with an increase in t until a value of t ~ 0.9. Beyond this range, the probabilities 

level out or decrease as t increases further.  

The disparity between  and the assignment by t can be significant, especially in the range 

where t predicts a stable perovskite (0.825 < t < 1.059). A comparison of the perovskite, LaAlO3, 

and the nonperovskite, NaBeCl3, illustrates the discrepancy between these two approaches. t 

incorrectly predicts both compounds to be perovskite (t =1.0) whereas  varies from < 10% for 

NaBeCl3 to > 97% for LaAlO3, in agreement with experiment. For NaBeCl3, instability in the 

perovskite structure arises from an insufficiently large Be2+ cation on the B-site, which leads to 

unstable BeCl6 octahedra. This contribution to perovskite stability is accounted for in the first term 

of τ (Equation 3.2, rX/rB = μ-1, where μ is the octahedral factor). Note that μ is the typical choice 

for a second feature used in combination with t,76, 77, 82 and was recently used to assess the 

predictive accuracy of Goldschmidt’s “no-rattling” principle. In this analysis, six inequalities 

dependent upon t and μ were derived and used to predict the formability of single and double 

perovskites with a reported accuracy of ~80%.57 Notably, training a decision tree algorithm on the 

bounds of t and μ that optimally separate perovskite from nonperovskite leads to an 85% 

classification accuracy for this dataset. In contrast to these two-dimensional descriptors based on 

(t, μ), τ incorporates μ as a one-dimensional descriptor yet still achieves a higher accuracy of 92%, 

demonstrating the capability of the SISSO algorithm to identify a highly accurate tolerance factor 

comprised of intuitively meaningful parameters.  
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The nature of geometrical descriptors, such as t or μ, is fundamentally different than data-

driven descriptors, such as τ. t and μ are derived from geometric constraints that indicate when the 

perovskite structure is a possible structure that can form. However, these constraints do not 

necessarily indicate when the perovskite structure is the ground-state structure and does, in fact, 

form. For instance, if t = 1 and the ionic limit on which t was derived is applicable (the interatomic 

distances are sums of the ionic radii), these criteria do not suggest perovskite is the ground-state 

structure, only that the interatomic distances are such that the lattice constants in the A-X and B-X 

directions can be commensurate with the perovskite structure. The fact that t does not guarantee 

the formation of the perovskite structure is evident by the high false positive rate (51%) in the 

region of t where perovskite is expected (0.825 < t < 1.059). Similarly, although μ may fall within 

the range where BX6 octahedra are expected based on geometric considerations (0.414 < μ < 

0.732), the octahedra that form may be edge- or face-sharing and therefore the observed structure 

is nonperovskite. In this work, SISSO searches a massive space of potential descriptors to identify 

the one that most successfully detects when a given chemical formula will or will not crystallize 

in the perovskite structure and because this is the target property, τ emerges as a much more 

predictive descriptor than t or μ. 

Although the classification by τ disagrees with the experimental label for 8% of the 576 

compounds, the agreement increases to 99% outside the range 3.31 < τ < 5.92 (200 compounds) 

and 100% outside the range 3.31 < τ < 12.08 (152 compounds). The experimental dataset may also 

be imperfect as compounds can manifest different crystal structures as a function of the synthesis 

conditions due to, for example, defects in the experimental samples (impurities, vacancies, etc.). 

These considerations emphasize the usefulness of τ-derived probabilities, in addition to the binary 
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classification of perovskite/nonperovskite, which address these uncertainties in the experimental 

data and corresponding classification by τ. 

3.3.2 Comparing to calculated perovskite stabilities 

The precise and probabilistic nature of τ, as well as its simple functional form – depending 

only on widely available Shannon radii (and the oxidation states required to determine the radii) – 

enables the rapid search across composition space for stable perovskite materials. Prior to 

attempting synthesis, it is common for new materials to be examined using computational 

approaches, therefore it is useful to compare the predictions from τ with those obtained using 

density functional theory. The stabilities (decomposition enthalpies, ΔHd) of 73 single and double 

perovskite chalcogenides and halides were recently examined with density functional theory 

utilizing the Perdew-Burke-Ernzerhof8 exchange-correlation functional (DFT).87, 92 τ is found to 

agree with the calculated stability for 64 of 73 calculated materials. Significantly, the probabilities 

that result from classification with τ linearly correlate with ΔHd, demonstrating the value of the 

monotonic behavior of τ and  (Figure 3.2d).  

Although τ appears to disagree with these DFT calculations for nine compounds, six 

disagreements lie near the decision boundaries ( = 0.5, ΔHd = 0 meV/atom), suggesting that they 

cannot be confidently classified as stable or unstable perovskites using τ or DFT calculations of 

the cubic structure. Of the remaining disagreements, CaZrO3 and CaHfO3 reveal the power of τ 

compared with DFT calculations of the cubic structure as these two oxides are known to be 

isostructural with the orthorhombic perovskite CaTiO3, from which the name perovskite 

originates.88, 89 ΔHd < −90 meV/atom for these two compounds in the cubic structure, indicating 

they are nonperovskites. In contrast, τ predicts both compounds to be stable perovskites with ~65% 

probability, which agrees with experiment. These results show that a key challenge in the 
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prediction of perovskite stability from quantum chemical calculations is the requirement of a 

specific structure as an input as there are more than a dozen unique structures classified as 

perovskite (i.e., those having corner-sharing BX6 octahedra) and many more which are 

nonperovskite.  

Several recent machine-learned descriptors for perovskite stability have been trained or 

tested on DFT-calculated stabilities of only the cubic perovskite structure.28, 92-94 However, less 

than 10% of perovskites are observed experimentally in this structure,80 leading to an inherent 

disagreement between the descriptor predictions and experimental observations. Recently, it was 

shown that of 254 synthesized perovskite oxides (ABO3), DFT calculations in the Open Quantum 

Materials Database (OQMD) 29 predict only 186 (70%) to be stable or even moderately unstable 

(within 100 meV/atom of the convex hull).86 The discrepancy is likely associated with the 

difference in energy between the true perovskite ground state and the calculated high-symmetry 

structure(s). Because τ was trained exclusively on the experimental characterization of ABX3 

compounds, τ is informed by the true ground state (or metastable but observed) structure of each 

ABX3 and the potential for these compounds to decompose into any compound(s) in the A-B-X 

composition space. A principal advantage of τ over many existing descriptors is that its 

identification and validation were based on experimentally observed stability or instability of a 

structurally diverse dataset. 

3.3.3 Extension to double perovskite oxides and halides 

Double perovskites are particularly intriguing as an emerging class of semiconductors that 

offer a lead-free alternative to traditional perovskite photoabsorbers and increased compositional 

tunability for enhancing desired properties such as catalytic activity.69, 78, 95 Still, the 

experimentally realized composition space of double perovskites is relatively unexplored 
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compared with the number of possible A, B, B’, and X combinations that can form A2BB’X6 

compounds. The set of 576 compounds used for training and testing τ are comprised of 49 A 

cations, 67 B cations, and 5 X anions, from which > 500,000 double perovskite formulas, A2BB’X6, 

can be constructed. Comparing with the Inorganic Crystal Structure Database (ICSD)57, 96 reveals 

only 918 compounds (< 0.2%) with known crystal structures, 868 of which are perovskite.  

Although τ was only trained on ABX3 compounds, it is readily adaptable to double 

perovskites because it depends only on composition and not structure. To extend τ to A2BB’X6 

formulas, rB is approximated as the arithmetic mean of the two B-site radii (rB, rB’). τ correctly 

classifies 91% of these 918 A2BB’X6 compounds in the ICSD (compared with 92% on 576 ABX3 

compounds), recovering 806 of 868 known double perovskites. The geometric mean has also been 

used to approximate the radius of a site with two ions.97 We find this has little effect on 

classification with τ as 91% of the 918 A2BB’X6 compounds are also correctly classified using the 

geometric mean for rB, and the classification label differs for only 14 of 918 compounds using the 

arithmetic or geometric mean. Although τ was identified using 460 ABX3 compounds, the 

agreement with experiment on these compounds (92%) is comparable to that on 1,034 compounds 

(91%) that span ABX3 (116 compounds) and A2BB’X6 (918 compounds) formulas and were 

completely excluded from the development of τ (i.e., test set compounds). This result indicates 

significant generalizability to predicting experimental realization for single and double perovskites 

that are yet to be discovered. With τ thoroughly validated as being predictive of experimental 

stability, the space of yet-undiscovered double perovskites was explored to identify 23,314 charge-

balanced double perovskites that τ predicts to be stable at ambient conditions (of > 500,000 

candidates). Importantly, there are many thousands of additional compounds with substitutions on 
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the A and/or X sites – AA’BB’(XX’)6 – that are expected to be similarly rich in yet-undiscovered 

perovskite compounds. 

Two particularly attractive classes of materials within this set of A2BB’X6 compounds are 

double perovskites with A = Cs+, X = Cl− and A = La3+, X = O2− which have garnered significant 

interest in a number of applications including photovoltaics, electrocatalysis, and ferroelectricity. 

The ICSD contains 45 compounds (42 perovskites) with the formula CsBB’Cl6, 43 of which are 

correctly classified as perovskite or nonperovskite by τ. From the high-throughput analysis using 

τ, we predict an additional 420 perovskites to be stable with 164 having at least the probability of 

perovskite formation as the recently synthesized perovskite, Cs2AgBiCl6 ( = 69.6%).98 A map 

of perovskite probabilities for charge-balanced Cs2BB’Cl6 compounds is shown in Figure 3.3 

(lower triangle). Within this set of 164 probable perovskites, there is significant opportunity to 

synthesize double perovskite chlorides that contain 3d transition metals substituted on one or both 

B-sites as 83 new compounds of this type are predicted to be stable as perovskite with high 

probability.  

While double perovskite oxides have been explored extensively for a number of 

applications, the small radius and favorable charge of O2− yields a massive design space for the 

discovery of new compounds. For La2BB’O6, ~63% of candidate compositions are found to be 

charge-balanced compared with only ~24% of candidate Cs2BB’Cl6 compounds. The ICSD 

contains 85 La2BB’O6 compounds, all of which are predicted to be perovskite by τ in agreement 

with experiment. We predict an additional 1,128 perovskites to be discoverable in this space, with 

a remarkable 990 having  ≥ 85% (Figure 3.3, upper triangle). All 128 ABX3 compounds in the 

experimental set that meet this threshold are experimentally realized as perovskite, suggesting 

there is ample opportunity for perovskite discovery in lanthanum oxides.  



38 

 

 

Figure 3.3 Map of predicted double perovskite oxides and halides 

Lower triangle: the probability of forming a stable perovskite with the formula Cs2BB’Cl6 as 

predicted by τ. Upper triangle: the probability of forming a stable perovskite with the formula 

La2BB’O6 as predicted by τ. White spaces indicate B/B’ combinations that do not result in 

charge-balanced compounds with rA > rB. The colors indicate the Platt-scaled classification 

probabilities of (τ), with higher  indicating a higher probability of forming a stable 

perovskite. B/B’ sites are restricted to ions that are labeled as B sites in the experimental set of 

576 ABX3 compounds. 

3.3.4 Compositional mapping of perovskite stability 

In addition to enabling the rapid exploration of stoichiometric perovskite compositions, τ 

provides the probability of perovskite stability for an arbitrary combination of nA, rA, rB, and rX, 

which is shown in Figure 3.4. For each grouping shown in Figure 3.4, experimentally realized 
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perovskites and nonperovskites are shown as single points to compare with the range of values in 

the predictions made from τ. Doping at various concentrations presents a nearly infinite number of 

A1-xA’xB1-yB’y(X1-zX’z)3 compositions that allows for the tuning of technologically useful properties. 

τ suggests the size and concentration of dopants on the A, B, or X sites that likely lead to improved 

stability in the perovskite structure. Conversely, compounds that lie in the high-probability region 

are likely amenable to ionic substitutions that decrease the probability of forming a perovskite, but 

may improve a desired property for another application. For example, LaCoO3, with  = 98.9%, 

should accommodate reasonable ionic substitutions (i.e., A-sites of comparable size to La or B-

sites of comparable size to Co), and was recently shown to have enhanced oxygen exchange 

capacity and nitric oxide oxidation kinetics with stable substitutions of Sr on the A-site.99 

The probability maps in Figure 3.4 arise from the functional form of τ (Equation 3.2) and 

provide insights into the stability of the perovskite structure as the size of each ion is varied. The 

perovskite structure requires that the A and B cations occupy distinct sites in the ABX3 lattice, with 

A 12-fold and B 6-fold coordinated by X. When rA and rB are too similar, nonperovskite lattices 

that have similarly coordinated A and B sites, such as cubic bixbyite, become preferred over the 

perovskite structure. Based on the construct of τ, as rA/rB → 1,  → 0, which arises from the 

+x/ln(x) (x = rA/rB) term, where lim
𝑥→1

𝑥

ln(𝑥)
= +∞ and larger values of τ lead to lower probabilities 

of forming perovskites. When rA = rB, τ is undefined, yet compounds where A and B have identical 

radii are rare and not expected to adopt perovskite structures (t = 0.71).  

The octahedral term in τ (rX/rB) also manifests itself in the probability maps, particularly in 

the lower bound on rB where perovskites are expected as rX is varied. As rX increases, rB must 

similarly increase to enable the formation of stable BX6 octahedra. This effect is noticeable when 

separately comparing compounds containing Cl (left), Br (center), and I (right) (bottom row of 
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Figure 3.4), where the range of allowed cation radii decreases as the anion radius increases. For 

rB << rX, rX/rB becomes large, which increases τ and therefore decreases the probability of stability 

in the perovskite structure. This accounts for the inability of small B-site ions to sufficiently 

separate X anions in BX6 octahedra, where geometric arguments suggest that B is sufficiently large 

to form BX6 octahedra only for rB/rX > 0.414. Because the cation radii ratios significantly affect 

the probability of perovskite, as discussed in the context of x/ln(x), rX also has a significant indirect 

effect on the lower bound of rA, which increases as rX increases.  

The role of nA in τ is more difficult to parse, but its placement dictates two effects on 

stability – as A is more oxidized (increasing nA), −nA
2 increases the probability of forming the 

perovskite structure, but nA also magnifies the effect of the x/ln(x) term, increasing the importance 

of the cation radii ratio. Notably, nA = 1 for most halides and some oxides (245 of the 576 

compounds in our set) and in these cases, 𝜏 =
𝑟𝑋

𝑟𝐵
+

𝑟𝐴 𝑟𝐵⁄

𝑙𝑛 (𝑟𝐴 𝑟𝐵⁄ )
− 1 for all combinations of A, B, and 

X and nA plays no role as the composition is varied.  

This analysis illustrates how data-driven approaches can be used to not only maximize the 

predictive accuracy of new descriptors, but can also be leveraged to understand the actuating 

mechanisms of a target property – in this case, perovskite stability. This attribute distinguishes τ 

from other descriptors for perovskite stability that have emerged in recent years. For instance, three 

recent works have shown that the experimental formability of perovskite oxides and halides can 

be separately predicted with high accuracy using kernel support vector machines,85 gradient 

boosted decision trees,84 or a random forest of decision trees.86 While these approaches can yield 

highly accurate models, the resulting descriptors are not documented analytically, and therefore, 

the mechanism by which they make the perovskite/nonperovskite classification is opaque. 
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Figure 3.4 The effects of ionic radii and oxidation states on the stability of single and double 

perovskite oxides and halides 

Top row: X = O2- (left to right - nA = 3+, 2+, 1+). Bottom row: nA = 1+ (left to right -X = Cl-, Br-, I-

). The experimentally realized perovskites LaGaO3, Sr2FeMoO6, AgNbO3, Cs2AgInCl6, 

(MA)2AgBiBr6, and MAPbI3 are shown as open circles in the corresponding plot, which are all 

predicted to be stable by τ. The experimentally realized nonperovskites InGaO3, CoMnO3, 

LiBiO3, LiMgCl3, CsNiBr3, and RbPbI3 are shown as open triangles and predicted to be unstable 

in the perovskite structure by τ. The organic molecule, methylammonium (MA), is shown in the 

last two panels. While (MA)2AgBiBr6 and MAPbI3 are correctly classified with τ, only inorganic 

cations were used for descriptor identification; therefore, rA = 1.88 Å (Cs+) is the largest cation 

considered. The gray region where rB > rA is not classified because when this occurs, A becomes 

B and vice versa based on our selection rule rA > rB. 

 

3.4 Discussion 

We report a new tolerance factor, τ, that enables the prediction of experimentally observed 

perovskite stability significantly better than the widely used Goldschmidt tolerance factor, t, and 

the two-dimensional structure map using t and the octahedral factor, μ. For 576 ABX3 and 918 

A2BB’X6 compounds, the prediction by τ agrees with the experimentally observed stability for > 

90% of compounds, with > 1,000 of these compounds reserved for testing generalizability 

(prediction accuracy). The deficiency of t arises from its functional form and not the input features 
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as the calculation of τ requires the same inputs as t (composition, oxidation states, and Shannon 

ionic radii). Thus, τ enables a superior prediction of perovskite stability with negligible 

computational cost. The monotonic and one-dimensional nature of τ allows for the determination 

of perovskite probability as a continuous function of the radii and oxidation states of A, B, and X. 

These probabilities are shown to linearly correlate with DFT-computed decomposition enthalpies 

and help clarify how chemical substitutions at each of the sites modulate the tendency for 

perovskite formation. Using τ, we predict the probability of double perovskite formation for 

thousands of unexplored compounds, resulting in a library of stable perovskites ordered by their 

likelihood of forming perovskites. Due to the simplicity and accuracy of τ, we expect its use to 

accelerate the discovery and design of state-of-the-art perovskite materials for applications ranging 

from photovoltaics to electrocatalysis. 

3.5 Methods 

3.5.1 Radii assignment 

To develop a descriptor that takes as input the chemical composition and outputs a 

prediction of perovskite stability, the features that comprise the descriptor must also be based only 

on composition. Yet it is not known a priori which cation will occupy the A-site or B-site given 

only a chemical composition, CC’X3 (C and C’ being cations). To determine which cation is A or 

B, a list of allowed oxidation states (based on Shannon’s radii79) is defined for each cation. All 

pairs of oxidation states for C and C’ that charge-balance X3 are considered. If more than one 

charge-balanced pair exists, a single pair is chosen based on the electronegativity ratio of the two 

cations (χC/χC’). If 0.9 < χC/χC’ < 1.1, the pair that minimizes |nC – nC’| is chosen, where nC is the 

oxidation state for C. Otherwise, the pair that maximizes |nC – nC’| is chosen. With the oxidation 
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states of C and C’ assigned, the values of the Shannon radii for the cations occupying the A and B 

sites are chosen to be closest to the coordination number of twelve and six, which are consistent 

with the coordination environments of the A and B cations in the perovskite structure. Finally, the 

radii of the C and C’ cations are compared and the larger cation is assigned as the A–site cation. 

This strategy reproduces the assignment of the A and B cations for 100% of 313 experimentally 

labeled perovskites.  

3.5.2 Descriptor selection 

For the selection of τ, the oxidation states (nA, nB, nX), ionic radii (rA, rB, rX ), and radii ratios 

(rA/rB, rA/rX, rB/rX) comprise the primary features, Φ0, where Φn refers to the descriptor-space with 

n iterations of complexity as defined in 90. For example, Φ1 refers to the primary features (Φ0) 

together with one iteration of algebraic/functional operations applied to each feature in Φ0. Φ2 then 

refers to the application of algebraic/functional operations to all potential descriptors in Φ1, and so 

forth. Note that Φm contains all potential descriptors within Φn<m with a filter to remove redundant 

potential descriptors. For the discovery of τ, complexity up to Φ3 is considered, yielding ~3109 

potential descriptors. An alternative would be to exclude the radii ratios from Φ0 and construct 

potential descriptors with complexity up to Φ4. However, given the minimal Φ0 = [nA, nB, nX, rA, 

rB, rX], there are ~1108 potential descriptors in Φ3, so ~11016 potential descriptors would be 

expected in Φ4 (based on ~1102 being present in Φ1 and ~1104 in Φ2), and this number is 

impractical to screen using available computing resources.  

The dataset of 576 ABX3 compositions was partitioned randomly into an 80% training set 

for identifying candidate descriptors and a 20% test set for analyzing the predictive ability of each 

descriptor. The top 100,000 potential descriptors most applicable to the perovskite classification 

problem were identified using one iteration of SISSO with a subspace size of 100,000. Each 
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descriptor in the set of ~3109 was ranked according to domain overlap, as described in Ouyang 

et al.90 To identify a decision boundary for classification, a decision tree classifier with a max 

depth of two was fit to the top 100,000 candidate descriptors ranked based on domain overlap. 

Domain overlap (and not decision tree performance) is used as the SISSO ranking metric because 

of the significantly lower computational expense associated with applying this metric. Notably, τ 

was the 14,467th highest ranked descriptor by SISSO using the domain overlap metric and, as such, 

this defines the minimum subspace required to identify τ using this approach. Without evaluating 

a decision tree model for each descriptor in the set of ~3109 potential descriptors, we cannot be 

certain that a subspace size of 100,000 is sufficient to find the best descriptor. However, the 

identification of τ within a subspace as small as 15,000 suggests that a subspace size of 100,000 is 

sufficiently large to efficiently screen the much larger descriptor space. We have also conducted a 

test on this primary feature space (Φ0 = [nA, nB, nX, rA, rB, rX, rA/rB, rA/rX, rB/rX]) with a subspace 

size of 500,000. Even after increasing the subspace size by 5, τ remains the highest performing 

descriptor (classification accuracy of 92% on the 576 compound set). An important distinction 

between the SISSO approach described here and by Ouyang et al. in 90 is the choice of sparsifying 

operator (SO). In this work, domain overlap is used to rank the features in SISSO, but a decision 

tree with max depth of two is used as the SO (instead of domain overlap) to identify the best 

descriptor of those selected by SISSO. This alternative SO is used to decrease the leverage of 

individual data points as the experimental labeling of perovskite/nonperovskite is prone to some 

ambiguity based on synthesis conditions, defects, and other experimental considerations.  

The benefit of including the radii ratios in Φ0 is made clear by comparing the performance 

of τ to the best descriptor obtained using the minimal primary feature space with Φ0 = [nA, nB, nX, 
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rA, rB, rX]. Repeating the procedure used to identify τ yields a Φ3 with ~1108
 potential descriptors. 

The best 1D descriptor was found to be 
𝑟𝐵

𝑛𝑋(𝑟𝐴−𝑟𝐵)
+

𝑟𝐵

𝑟𝐴
−

𝑟𝑋

𝑟𝐵
 with classification accuracy of 89%. 

3.5.3 Alternative features 

We also consider the effects of including properties outside of those required to compute t 

or τ. Beginning with Φ0 = [nA, nB, nX, rA, rB, rX, rcov,A, rcov,B, rcov,X, IEA, IEB, IEX, χA, χB, χX], where 

rcov,i is the empirical covalent radius of neutral element i, IEi is the empirical first ionization energy 

of neutral element i, and χi is the Pauling electronegativity of element i, all taken from 

WebElements (webelements.com), an aggregation of a number of references which are available 

within. Repeating the procedure used to identify τ results in ~61010
 potential descriptors in Φ3. 

The best performing 1D descriptor was found to be 
𝑟𝐴/𝑟𝐵− √𝜒𝑋

 𝑟𝑐𝑜𝑣,𝑋/𝑟𝐵 − 𝑟𝑐𝑜𝑣,𝐴/𝑟𝑐𝑜𝑣,𝑋
 with classification 

accuracy of 90%, lower than τ which makes use of only the oxidation states and ionic radii, and 

only slightly higher than the accuracy of the descriptor obtained using the minimal feature set. 

3.5.4 Increasing dimensionality 

To assess the performance of descriptors with increased dimensionality, following the 

approach to higher dimensional descriptor identification using SISSO described in 90, the residuals 

from classification by τ (those misclassified by the decision tree, Figure 3.2b) are used as the target 

property in the search for a second dimension to include with τ. From the same set of ~3109 

potential descriptors constructed to identify τ, the 100,000 1D descriptors that best classify the 41 

training set compounds misclassified by τ are identified based on domain overlap. Each of these 

100,000 descriptors are paired with τ and the performance of each 2D descriptor was assessed 

using a decision tree with max depth of two. The best performing 2D descriptor was found to be 
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(𝜏 ,
|𝑟𝐴𝑟𝑋 𝑟𝐵

2⁄  − 𝑛𝐵𝑟𝐴 𝑟𝐵⁄ |

|𝑟𝐴𝑟𝐵 𝑟𝑋
2⁄  − 𝑟𝐴 𝑟𝐵⁄  + 𝑛𝐵|

) with a classification accuracy of 95% on the 576 compound set. 

Improvements are expected to diminish as the dimensionality increases further due to the iterative 

nature of SISSO and the higher order residuals used for subspace selection. Although the second 

dimension leads to slightly improved classification performance on the experimental set compared 

with τ, the simplicity and monotonicity of τ, which enables physical interpretation and the 

extraction of meaningful probabilities, support its selection instead of the more complex 2D 

descriptor. The benefits and capabilities of having a meaningfully probabilistic one-dimensional 

tolerance factor, such as τ, are described in detail within the main text. 

3.5.5 Potential for overfitting 

The SISSO algorithm as implemented here selects τ from a space of ~3109
 candidate 

descriptors and the only parameter that is fit is the value of τ that defines the decision boundary for 

classification as perovskite or nonperovskite, τ = 4.18. This decision boundary is optimized to 

maximize the classification accuracy on the training set of 460 compounds. The SISSO selection 

is done out of billions of candidates, but these functions are a discrete set, i.e., a basis in a large 

dimensional space (the number of training points is the dimension of the space), which is not 

densely covered by the basis functions. Therefore, the selection of only one function, τ, cannot 

overfit the data. However, if some physical mechanism determining the stability of perovskites is 

not represented in the training set, it might be missed by the learned formula (here, τ) and therefore 

the generalizability of the model would be hampered. However, the 94% accuracy achieved by τ 

on the excluded set of 116 compounds shows that τ can generalize outside of the training data. 
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3.5.6 Alternative radii for more covalent compounds 

Ionic radii are required inputs for τ (and t) and although the Shannon effective ionic radii 

are ubiquitous in solid state materials research, a new set of B2+ radii were recently proposed for 

18 cations to account for how their effective cationic radii vary as a function of increased covalency 

with the heavier halides.77 These revised radii apply to 129 of the 576 experimentally characterized 

compounds compiled in this dataset (62% of halides). Employing these revised radii results in a 

5% decrease in the accuracy of τ to 86% for these 129 compounds compared to a classification 

accuracy of 91% using the Shannon radii for these same compounds. The application of τ using 

Shannon radii for presumably covalent compounds is further validated by noting that τ correctly 

classifies 37/40 compounds which contain Sn or Pb and achieves an accuracy of 91% for 141 

compounds with X = Cl−, Br−, or I−. In addition to the higher accuracy achieved by τ when using 

Shannon radii, we note that the Shannon radii are more comprehensive than these revised radii in 

77, applying to more ions, oxidation states, and coordination environments and are thus 

recommended for the calculation of τ.  

3.5.7 Computer packages used  

SISSO was performed using Fortran 90. Platt’s scaling91 was used to extract classification 

probabilities for τ by fitting a logistic regression model on the decision tree classifications using 

3-fold cross-validation. Decision tree fitting and Platt scaling were performed within the Python 

package, scikit-learn. Data visualizations were generated within the Python packages matplotlib 

and seaborn. An implementation of τ is available at github.com/CJBartel/perovskite-stability. 
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4 Computational screening for double perovskite solar 

absorbers: a case-study of cesium chlorides 

Much of the content in this chapter appears verbatim in the following manuscript: 

C.J. Bartel, C. Sutton, B.R. Goldsmith, A.W. Weimer, A.M. Holder, C.B. Musgrave (2018) [In 

Preparation] 

 

4.1 Abstract 

Double perovskite halides, A2BB’X6, composed of cations A, B and B’ and halide X have 

emerged as lead-free candidates for hybrid perovskite solar absorbers, benefiting from their ability 

to mimic the effects of lead in lead-containing perovskites through cationic substitutions on the 

octahedrally coordinated B-site. In this work, we explore the stability and optical properties of 352 

potential cesium chloride double perovskites (Cs2BB’Cl6) using density functional theory. From 

the results of this analysis, we identify 22 new cesium chloride perovskites that our calculations 

predict to be stable and have electronic properties suitable for solar absorption. We also emphasize 

that consideration of decomposition into likely precursors and distortions from the commonly 

assumed rock salt structure are critical to correctly predicting double perovskite stability and 

electronic properties. 

4.2 Introduction 

Double perovskites (A2BB’X6,) have emerged as high-performance materials for a number 

of applications including electrocatalysts,70 ferroelectrics100 and as lead-free and all-inorganic 

alternatives to hybrid organic-inorganic lead-halide based solar absorbers.87, 98, 101-103 The design 

and discovery of functional materials is being rapidly accelerated by high-throughput screening 

approaches based on density functional theory (DFT).104, 105 The number of potential compositions 
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that could crystallize into the double perovskite structure, however, is immense – considering 50 

realistic elements that could occupy the A- or B-site combined with only the four halogens on the 

X-site results in 78,400 A2BB’X6 formulas. Furthermore, it is not known a priori which of these 

materials will be stable and if so, what crystal structures they will adopt. The large space of 

possible formulas and structures precludes the use of high-throughput DFT to screen double 

perovskites for stability and consequently for their suitability for a specific application based on 

their properties in their stable form. This dilemma encouraged us to explore the use of a descriptor-

based approach to predict stability and to thus considerably reduce the space of viable candidate 

materials to be analyzed using DFT to a more manageable size. Recently, we applied the 

compressed sensing-based algorithm, SISSO (sure independence screening and sparsifying 

operator),90 to identify a simple descriptor, τ, that requires only the chemical formula as input and 

correctly classifies over 90% of known single and double perovskite oxides and halides as 

perovskite or nonperovskite when compared with experiment.106 

 
𝜏 =

𝑟𝑋

𝑟𝐵
− 𝑛𝐴 (𝑛𝐴 −

𝑟𝐴/𝑟𝐵

ln(𝑟𝐴/𝑟𝐵)
) 

( 4.1 ) 

 

In this work, we computationally prototyped 352 A2BB’X6 materials with Cs on the A-site 

and Cl on the X-site (Cs2BB’Cl6). Recent synthesis and characterization of several interesting 

double perovskites in this chemical space, e.g., Cs2AgInCl6,
101 Cs2AgBiCl6,

98 Cs2AgTlCl6,
103 and 

Cs2AgSbCl6
107 allows us to analyze our results in the context of experimental observations. 

Notably, all of these synthesized cesium chloride double perovskites contain Ag, yet τ indicates 

that 321 B/B’ combinations not involving Ag have a probability of forming a stable perovskite > 

0.5, in addition to 31 more with Ag (Figure 4.1). To assess the viability of these 352 τ-stable 

materials to absorb light, we determined the stability of each compound with respect to structural 
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distortions and decomposition into likely precursor phases using the recently developed meta-

GGA exchange-correlation functional SCAN9 and the electronic structure of each using the hybrid 

HSE exchange-correlation functional with 25% exact exchange (HSE06).108 Our results reveal the 

necessity of considering structural distortions away from the ideal cubic perovskite structure in 

order to accurately predict stability and optical properties. Screening based on these additional 

considerations predicts that significant opportunities exist for experimentalists to synthesize not 

yet realized all-inorganic cesium chloride double perovskite solar absorbers with promising 

properties. 

 

Figure 4.1 Cesium chloride double perovskite space 

Left – Rock salt double perovskite crystal structure along with the elements that occupy the A-, 

B-, and X-sites of double perovskites in this study. The intensity of the blue shading that 

highlights the considered B/B’ sites indicates their prevalence within the dataset (e.g., Hg 

appears most often – 36 times). Note: B/B’ sites are equivalent in the rock salt arrangement. 

Right – Mapping the space of compounds explored in this work in terms of the B-site radii, r, 

the tau-derived probability,, and the B-site cation radii mismatch. Points indicate 

compositions studied within this work. 
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4.3 Results 

4.3.1 Stability analysis 

Prior computational efforts to identify double perovskite solar absorbers have either 

neglected the calculation of stability with respect to decomposition into competing phases109-111 or 

only focused on a small (~10-100) set of materials.87, 112-114 As a first approximation for stability 

prediction, it is essential to perform a convex hull analysis with respect to all possible (or at least, 

likely) competing compounds.39 A calculation of the band gap energy using higher levels of theory 

could then be performed for only the identified (meta)stable compounds, greatly reducing the 

computational cost of this analysis. In this work, we calculated the decomposition enthalpy, ΔHd, 

of 352 Cs2BB’Cl6 compounds with respect to all competing Cl-containing compounds in the 

Materials Project database.16 That is, we compared the calculated formation enthalpy, ΔHf, of each 

Cs2BB’Cl6 structure to the linear combination of calculated ΔHf’s for all available structures in the 

Cs, B, B’, Cl, Cs-Cl, B-Cl, B’-Cl, Cs-B-Cl, Cs-B’-Cl, and Cs-B-B’-Cl competing chemical spaces 

that have the same average formula – Cs2BB’Cl6 – and the most negative combined enthalpy, 

ΔHf,competing. ΔHd was then obtained from: 

 Δ𝐻d =  Δ𝐻f,Cs2𝐵𝐵′𝐶𝑙6
− Δ𝐻f,competing ( 4.2 ) 

 

A comparison of ΔHd to ΔHf is shown in Figure 4.2. Out of the 352 Cs2BB’Cl6 compounds 

analyzed, 115 are calculated to be stable with respect to competing compounds (ΔHd < 0, blue), 

and 152 are calculated to lie within 0.05 eV/atom above the convex hull (ΔHd < +0.05 eV/atom, 

purple), which are defined here as potentially metastable37 or stable within the typical errors 

associated with the SCAN functional.
52

 This analysis predicts that the 13 known Cs2BB’Cl6 
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compounds in our dataset that are also reported in the ICSD to have ΔHd < 0, thus correctly 

predicting that they should exist as stable perovskites. Furthermore, our analysis also predicts the 

four recently synthesized Ag-containing double perovskites – Cs2AgInCl6, Cs2AgBiCl6, 

Cs2AgSbCl6, and Cs2AgTlCl6 – to be stable (ΔHd < 0). 

Each of the compounds shown in Figure 4.2 was predicted to be perovskite by τ yet 23% 

of the compounds considered are calculated to be unstable using SCAN (ΔHd > +0.05 eV/atom). 

Extending the tolerance from 0.05 eV/atom to 0.1 eV/atom reduces the discrepancy to only 7%. 

The disagreement between the two approaches is likely due in part to the dependence of τ on only 

three radii terms – rA, rB,eff, and rX – but there being four relevant radii in double perovskites. 

Applying τ for a stability analysis of double perovskites requires the averaging of rB and rB’ into 

an effective cationic radius (rB,eff), which becomes a significant approximation as these two B-site 

radii differ considerably from one another (Figure 4.1). It should also be noted that τ is 

probabilistic and indicates that ~65% of the 352 materials analyzed should be experimentally 

realizable as perovskite. This prediction generally agrees with the calculations based on ΔHd, while 

we note that there is also some inherent disagreement between DFT-calculated stabilities and 

experimentally realized synthesis. 

Comparing ΔHd to ΔHf (Figure 4.2) reveals the critical effect of not only optimizing the 

perovskite structure within DFT but also computing the phase diagram with respect to competing 

compounds (e.g., precursor phases). This comparison demonstrates that ΔHd has effectively no 

correlation with ΔHf and that both strongly and weakly negative ΔHf compounds span the range 

of stable, metastable, to unstable when compared with competing compounds using ΔHd. 

Therefore, the comparison of a given material’s enthalpy only to the enthalpy of its constituent 
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elements (ΔHf) and not to all competing materials (ΔHd) drastically overestimates the stability of 

that material.  

 

Figure 4.2 Stability analysis conducted with the SCAN DFT functional 

Comparing decomposition enthalpy with formation enthalpy for 352 Cs2BB’Cl6 compounds. 

Stability is computed with respect to Cl-containing compounds. Blue indicates stable (ΔHd < 0), 

purple indicates metastable (0 ≤ ΔHd < 0.05) and red indicates unstable (ΔHd ≥ 0.05 eV/atom). 

 

4.3.2 Structural distortions 

In addition to inadvisably using ΔHf rather than ΔHd as the metric for materials stability, 

another approximation that is often used for high-throughput screening is the presumption of 

crystal symmetry of a preassigned spacegroup.87 For instance, the high-symmetry rock salt double 

perovskite structure might be optimized in a symmetric way to accelerate the DFT determination 

of structure. This symmetry-constrained optimization precludes the ability of the ions to relax out 

of their preassigned Wyckoff positions, thus constraining the geometry to the ideal cubic double 

perovskite symmetry. Although this strategy may seem suitable for searching for double perovskite 

solar absorbers, it has not been thoroughly benchmarked. Here, we compare the symmetry-

constrained structures (rs) to those obtained by subjecting the initially symmetric structure to 
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random atomic displacements of 0.1 Å (opt). This symmetry-breaking operation to yield more 

stable structures has considerable influence not only on the calculated stability, but also on the 

band gap (Figure 4.3). 

The stability analyses based on energies calculated for either rs or opt structures results in 

a consistent determination for the majority of materials as being stable, metastable, and unstable 

(Figure 4.3a, on or near the diagonal line). This suggests that most structures do not distort 

significantly when their symmetry is allowed to break or if their structures do distort, the associated 

energy changes are small (Figure 4.3a). We do find, however, that 32 symmetry-constrained 

structures that fell outside our allowed tolerance for metastability (ΔHd,rs > 0.05) move into this 

range (ΔHd,opt < 0.05) upon distortion to the fully optimized structure and that in fact 7 of these 

structures become thermodynamically stable (ΔHd,opt < 0) upon distortion. Therefore, the common 

stability analysis based on symmetry constrained structures rs incorrectly reduces the space of 

potentially synthesizable Cs2BB’Cl6 by ~15%.  

The critical property of interest for identifying potential solar absorber materials is the band 

gap, Eg. In Figure 4.3b we show a comparison of Eg resulting from the rs and opt approaches, 

where 50 structures that are metallic (Eg = 0) in their high-symmetry cubic form (rs) become 

semiconducting or insulating (Eg > 0) when fully optimized, with Eg becoming as large as 3.4 eV 

for the optimized structure. For screening purposes, we might consider materials that are stable or 

metastable and have 0.2 < Eg < 2 eV in SCAN. This criteria yields 127 structures using the more 

rigorous opt approach, while only 91 of these would have been discovered using the less expensive 

rs approach. These results highlight the necessity of breaking symmetry and performing a full 

structural and electronic optimization when screening materials for various applications where the 

critical property of interest is sensitive to the crystal structure. 
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a)                                        b) 

 

Figure 4.3 Structural distortion effects on stability and band gap 

a) a) Comparison of the SCAN-computed decomposition enthalpy of the fully optimized 

structure, opt, to that of the preassigned rock salt structure, rs, and b) the band gaps of the opt 

and rs structures. The coloring scheme is the same as in Figure 4.2. 

 

Lattice distortions away from the ideal rs structure have significant effects on stability 

predictions and fundamentally change the nature of the electronic band structure, yet little is known 

about the detailed effects of these distortions. To delve further into these effects we explored the 

tetragonality of the lower symmetry opt structures. In perovskites, elongation of the BX6 octahedra 

in one direction (c) relative to another (a) is termed a tetragonal distortion from the ideal ratio of 

c/a = 1 (Figure 4.4a). Comparing the difference in calculated Eg between opt and rs (ΔEg,opt), 

shows that tetragonality does play some role in controlling the electronic structure (Figure 4.4b). 

As one example, this analysis highlights the distortion of Cs2CuInCl6, which maintains only 

slightly elongated CuCl6 and InCl6 octahedra in the rs structure (Figure 4.4c) but adopts a 

nonperovskite structure in which Cu is no longer octahedrally coordinated, but instead adopts 

CuCl3 tetrahedral coordination when perturbations are applied to obtain the opt structure (Figure 
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4.4d). The tetragonality ratio, c/a, for CuCl6 changes from 1.07 to 1.56 upon relaxation to the fully 

optimized structure, indicating the extreme elongation of the Cu-Cl bonds in the c direction. 

Although this distortion results in only a 0.007 eV/atom lowering of the energy, it changes the 

nature of the material from metallic in rs to semiconducting in opt with a gap of Eg = 1 eV (using 

SCAN; in HSE, Eg increases from 1 eV to 2.2 eV). Notably, a large number of structures exist with 

nearly the ideal ratio for tetragonality but which exhibit a wide variation in Eg between opt and rs, 

further indicating the important role structure plays in dictating a perovskites electronic properties 

that should be addressed by more rigorous structural and electronic characterization studies.  
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          a)                     b) 

 

         c)                                                      d) 

 

Figure 4.4 Octahedral distortions of optimized structures 

a) BX6
 octahedral unit where the blue B-site is 6-fold coordinated by X. In the undistorted case 

rs, the four B-X bonds are in-plane in the a direction and have the same length while the two B-

X bonds are out of this plane (c). If the in-plane and out-of-plane bonds are all the same length, 

the tetragonality (c/a) is 1. b) A comparison of the difference in band gap between opt and rs 

structures to the tetragonality in the opt structure. c) The rs geometry and d) the opt geometry 

of Cs2CuInCl6. In, Cu, Cs and Cl are shown as pink, blue, teal, and green spheres, respectively. 
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4.3.3 Candidate solar absorbers 

The focus of this effort was to identify potential solar absorbers, making accurate 

calculation of the magnitude and nature of Eg paramount – only structures that absorb light in the 

visible spectrum and which have direct or nearly direct gaps are suitable for efficient solar 

absorption. Our overall goal is to rapidly identify promising solar absorbers using computation to 

recommend materials for experimental synthesis and characterization while recommending a 

minimum number of false positives as practically possible. Consequently, because SCAN 

underestimates Eg, we used HSE06 to calculate band gaps because it predicts gaps that agree well 

with experiment.115 Because DFT calculations using the HSE06 hybrid functional are 

computationally demanding, we restricted our analysis to a subset of materials that satisfy the 

following criteria: 1) ΔHd,SCAN < 0.05 eV/atom, 2) Eg,SCAN < 2 eV, and 3) direct gap within 0.5 eV 

of the indirect gap (with SCAN). This screening strategy reduces the set of 352 materials to only 

viable 99 candidates, 22 of which are identified to have 0.5 < Eg < 2 eV using HSE – AgAu, AgBr, 

AgCu, AuCu, AuHg, AuMn, CeHg, CrPb, CuNa, CuRb, HgMn, HgPt, HgTl, KMn, KNi, KPd, 

MnNa, MnRb, NaNb, NaNi, NaPd, and NiRb (BB’ pairs) (Figure 4.5). These materials have a 

high probability of being synthesized and of efficiently absorbing light in the visible spectrum. 

Furthermore, several are also comprised of only non-toxic earth-abundant elements, and none have 

thus far been reported in the literature. All-inorganic double perovskite halides are attractive 

compared to their hybrid counterparts due to improved stability of the inorganic cations. However, 

the inorganic materials typically have wider band gaps than are preferred for solar absorption.101 

Here, we show a number of low-bandgap (< 2 eV) all-inorganic double perovskites that are 

expected to be stable. These materials span the range of band gaps that are suitable for top- (~1.8 

eV) or bottom-cells (~1.2 eV) in tandem solar cell architectures.116 
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Figure 4.5 Refined band gap and stability of top candidates 

Comparing the HSE band gap to the SCAN-computed stability with respect to the Schockely-

Queisser limit for power conversion efficiency (SQ PCE)117. 

 

4.4 Conclusions 

In this work, we computed the stability of 352 cesium chloride double perovskites with 

respect to decomposition into potential decomposition products using the SCAN functional. This 

set was selected rationally using the recently introduced tolerance factor for perovskite stability, 

. We generally found good agreement between the SCAN-computed stability and  corraborating 

the ability of this descriptorto correctly analyze stability at a minimal computational cost while 

also providing some confidence that SCAN predicts experimental stabilty well, given that was 

trained on experimentally observed structures. We also tested the commonly used approximation 

of pre-assigning the perovskite (double pervoskite in this case) structure to be rock salt and found 

that this assumption led to inaccurate predictions of the stability and band gaps of the less 

symmetric but more stable structures. By randomly perturbing the rock salt structure, we showed 
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that substantial quantitative differences in stability and optical properties arose between the cubic 

and less symmetric structures, some of which are attributable to an increased distortion of the 

octahedral units of the perovskite structure. Finally, we computed the band gaps of 99 potentially 

viable candidate solar absorbers using the more accurate HSE06 hybrid functional and report 22 

new double perovskite chlorides with band gaps between 0.5 and 2 eV and SCAN-calculated 

decomposition enthalpies < 0.05 eV/atom. 

4.5 Methods 

Considering 1,228 Cs2BB’Cl6 formulas resulting from 48 B-site cations, τ indicates that 

352 have a high probability (> 0.5) of forming stable perovskites. Each of these 352 structures 

were first optimized within the preassigned rock salt symmetry using the SCAN DFT functional 

and the projector-augmented wave method, as implemented in VASP.12, 58, 59 The resulting 

geometry was then expanded into a 112 supercell and subjected to random atomic displacements 

of 0.1 Å using pymatgen.118 This structure was then re-optimized using SCAN and the stability 

was computed with respect to all relevant decomposition products in the Materials Project 

database,16 each of which was also reoptimized with SCAN. 99 materials with ΔHd < 0.05 

eV/atom, Eg,SCAN < 2 eV, and having a direct gap within 0.5 eV of the indirect gap were also 

computed using the HSE06 functional at the fixed SCAN geometry. All structures were optimized 

with a plane wave energy cutoff of 520 eV and a Γ-centered Monkhorst-Pack k-point grid with N 

= 20|bi| discretizations along each reciprocal lattice vector, bi. The energy cutoff, k-point density, 

and related convergence settings were sufficient to achieve total energy convergence of < 5 

meV/atom for all calculations. 
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5 Physical descriptor for the Gibbs energy of inorganic 

crystalline solids and temperature-dependent materials 

chemistry 

Much of the content in this chapter appears verbatim in the following manuscript: 

C.J. Bartel, S.L. Millican, A.M. Deml, J.R. Rumptz, W. Tumas, A.W. Weimer, S. Lany, V. 

Stevanović, C.B. Musgrave, A.M. Holder, Nature Communications, 9, 4168 (2018) 

 

5.1 Abstract 

The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and 

materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a 

small fraction of known inorganic compounds, impeding a comprehensive perspective on the 

effects of temperature and composition on materials stability and synthesizability. Here, we use 

the SISSO (sure independence screening and sparsifying operator) approach to identify a simple 

and accurate descriptor to predict G for stoichiometric inorganic compounds with ~50 meV atom-

1 (~1 kcal mol-1) resolution, and with minimal computational cost, for temperatures ranging from 

300-1800 K. We then apply this descriptor to ~30,000 known materials curated from the Inorganic 

Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we 

generate thousands of temperature-dependent phase diagrams to provide insights into the effects 

of temperature and composition on materials synthesizability and stability and to establish the 

temperature-dependent scale of metastability for inorganic compounds.   

5.2 Introduction 

The progression of technology throughout history has been preceded by the discovery and 

development of new materials.119 While the number of possible materials and the variety of their 
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properties is virtually limitless, discovery of new compounds with superior properties that are also 

stable (or persistently metastable) and synthesizable is a tremendous undertaking that remains as 

an ongoing challenge to the materials science community.120-123 The leading paradigm in this effort 

is the use of first-principles computational methods, such as density functional theory (DFT), and 

materials informatics to rapidly populate, augment and analyze computational materials databases 

and screen candidate materials for target properties.104, 105 However, despite the exploding growth 

of these databases with the number of compiled entries currently exceeding 50 million,19 only a 

small fraction of realized or potential materials have known Gibbs energies of formation, ΔGf(T), 

which is critical for predicting the synthesizability and stability of materials at conditions of 

interest for numerous applications which operate at elevated temperature including 

thermoelectrics,124 ceramic fuel cells,125 solar thermochemical redox processes,126 and CO2 

capture.127  

Experimental approaches for obtaining ΔGf(T) are demanding, and the number of 

researchers using calorimetry to determine ΔGf(T) is significantly smaller than those focused on 

the discovery and synthesis of new materials. Ab initio computational approaches for determining 

ΔGf(T), which involve calculating the vibrational contribution to G(T) as a function of volume,128 

have benefited from recent advances that reduce their computational cost.129, 130 However, despite 

these advances, calculating the vibrational entropy of phonons quantum mechanically is still 

computationally demanding, with computed G(T) available for fewer than 200 compounds in the 

Phonon database at Kyoto University (PhononDB).131 Highly populated and widely used materials 

databases currently tabulate 0 or 298 K enthalpies of formation, ΔHf, which neglect the effects of 

temperature and entropy on stability. As a result, the growth of computational materials databases 

has far outpaced the tabulation of measured or computed ΔGf(T) of materials, precluding 
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researchers from obtaining a comprehensive understanding of the stability of inorganic 

compounds. 

The use of machine learning and data analytics to accelerate materials design and discovery 

through descriptor-based property prediction is becoming a standard approach in materials 

science,27, 106, 132-137 however, these techniques have not previously been used to predict the Gibbs 

energies of inorganic crystalline solids. Techniques based on symbolic regression have also shown 

that fundamental physics can be algorithmically obtained from experimental and computed data 

in the form of optimized analytical expressions of intrinsic properties (features).138-140 In this work, 

we apply a recently developed statistical learning approach, SISSO (sure independence screening 

and sparsifying operator)141, to search a massive (~1010) space of mathematical expressions and 

identify a  descriptor for experimentally obtained G(T) that for the first time enables ΔGf(T) to be 

readily obtained from high-throughput DFT calculations of a single structure (i.e., a single unit 

cell volume). The descriptor is identified using experimental data47 for 262 solid compounds and 

tested on a randomly chosen excluded set of 47 compounds with measured G(T) and 131 

compounds with first-principles computed131 G(T). We then apply this descriptor to ~30,000 

unique crystalline solids tabulated in the Inorganic Crystal Structure Database (ICSD) to generate 

the most comprehensive thermochemical data of inorganic materials to date.  

5.3 Results 

5.3.1 Trends in the Gibbs energies of compounds and elements 

Despite the variations of composition and structure exhibited by different inorganic 

crystalline compounds, G(T) behaves remarkably similarly over a wide range of materials (Figure 

5.1a). This similarity prompts the hypothesis that although the underlying physical phenomena 
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that give rise to G(T) are complex to describe individually, a physically motivated descriptor could 

be predictive. The origin of the similar behavior of G(T) can be understood from well-known 

thermodynamic relations, specifically that (
𝜕𝐺

𝜕𝑇
)

𝑃
= −𝑆 ≤ 0 for mechanically stable compounds 

and that G(T) must have negative concavity: (
𝜕2𝐺

𝜕𝑇2)
𝑃

= − (
𝜕𝑆

𝜕𝑇
)

𝑃
= −

𝐶𝑃

𝑇
≤ 0. Indeed, the negative 

first and second derivatives of experimental Gibbs energies as a function of temperature persist 

across the composition space of a diverse set of mechanically stable stoichiometric solid 

compounds (Figure 5.1a). We reference the Gibbs energy, G, with respect to the formation 

enthalpy at 298 K, ΔHf, because ΔHf is readily obtained using existing high throughput 

computational methods – DFT total energy calculations and a suitable correction for the elemental 

phases:29, 30, 33, 35 

 𝐺δ(𝑇) = 𝐺(𝑇) −  Δ𝐻f(298 K) ( 5.1 ) 

 

As expected, the temperature- and material-dependence of the enthalpic contribution to the 

Gibbs energy, Gδ, is small relative to the entropic contribution (TS). If the standard state formation 

enthalpy, ΔHf, is known, the temperature-dependence of the enthalpy is reliably predicted with a 

simple linear fit for the 309 solid compounds considered in this work. This is assumed implicitly 

when the quasiharmonic approximation22 of the phonon free energy is used to obtain G(T), but is 

quantified here across a broad composition and temperature space.  
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Figure 5.1 Contributions to the Gibbs energies of compounds 

a) Experimentally obtained thermodynamic functions of 309 inorganic crystalline solid 

compounds obtained from FactSage. Gδ is defined in Equation 5.1. Hδ is the temperature-

dependence of the enthalpy normalized to be zero at 298 K, S is the absolute entropy, and T is 

temperature. The subscript, exp, indicates the quantity is obtained from experimental data. b) 

Experimentally determined absolute Gibbs energies of 83 elements obtained from FactSage. GC 

(“C”) and GN (“N”) are dashed and labeled as they are mentioned in the text. The subscript, exp, 

indicates the quantity is obtained from experimental data. c) Mean absolute error in assuming a 

cancellation of solid vibrational entropy between the compound and the elements comprising it. 

ΔGf(T) is defined in Equation 5.3. The subscript, app, stands for approximation and ΔGf,app(T) 

is defined in Equation 5.4. 

 

In addition to the thermodynamic quantities ΔHf and Gδ(T), the chemical potentials of the 

elements Gi(T) also play a critical role in the Gibbs formation energy, ΔGf(T), and thus the 

temperature-dependent stability of a given compound: 

 
∆𝐺f(𝑇) = ∆𝐻f(298 𝐾) + 𝐺δ(𝑇) − ∑ 𝛼𝑖𝐺𝑖(𝑇)

𝑁

𝑖=1
 

( 5.2 ) 

 

where N is the number of elements in the compound, αi is the stoichiometric weight of element i 

and Gi is the absolute Gibbs energy of element i. While even at low temperatures the differences 

in Gi between elements can be substantial (e.g., GC – GN = 0.28 eV atom-1 at 300 K), at higher 

temperatures, differences in Gi of > 1 eV atom-1 can result between solid and gaseous elements 

(e.g., GC – GN = 1.12 eV atom-1 at 1200 K, Figure 5.1b). In contrast to the elemental Gibbs 

energies, Gi, which are tabulated and thus require no computation or experiment to obtain, the 
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Gibbs energies of solid compounds, Gδ, are rarely tabulated and computationally demanding to 

calculate. Furthermore, assuming that all temperature-dependent effects can be captured by only 

including the elemental Gibbs energies and neglecting those of the solid compound results in an 

incomplete cancellation of errors and consequently inaccurate ΔGf(T).  

The temperature-dependence of the thermodynamic properties of solids have often been 

assumed to be negligible relative to that of gaseous species.142 That is, the Gibbs energy is 

generally assumed to be primarily entropic and principally due to vibrations such that the 

temperature-dependence of the formation energies of solids is negligible. We examined this 

assumption for hundreds of solid compounds by comparing the difference between the 

experimental ΔGf(T) and the approximate ΔGf(T) that results from assuming negligible 

temperature dependence of the solid phase: 

 
∆𝐺f,app(𝑇) = ∆𝐻f(298 K) − ∑ 𝛼𝑖𝐺𝑖,gas(𝑇)

𝑁

𝑖=1
 

( 5.3 ) 

 

Given a binary solid AB, if A and B are both solid at a given temperature, this assumption 

holds reasonably well and ΔHf predicts ΔGf(T) relatively accurately, e.g. with mean absolute errors 

of ~50 meV atom-1 at 900 K (Figure 5.1c). However, if either A or B are liquid at a given 

temperature, this error grows to ~100 meV atom-1 at 900 K. Even more alarming is the error 

produced by this approximation if either A or B are gaseous at T, as is the case for oxides, nitrides, 

halides, etc. with mean absolute errors for ΔGf(T) of ~200 meV atom-1 at 900 K. In this 

approximation, the chemical potential, Gi(T), of the gaseous element and the formation enthalpy, 

ΔHf, of the solid compound are taken from experiment and thus the larger error arises entirely 

from the missing quantity Gδ(T). The larger error that arises when an element is a gas or liquid, 
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but not a solid, is due to the incomplete cancellation of the solid vibrational entropy of the 

elemental forms and the solid compound. That is, the distribution of phonon frequencies in the 

crystalline compound of A and B produce vibrational entropy SAB and if A and B are elemental 

solids, they too have solid vibrational entropies SA and SB where from Figure 5.1c, we can presume 

in general: SAB ≈ SA + SB. However, when, for example, A is a diatomic gas, the magnitude of the 

frequencies of the molecular vibrations of A are significantly larger and the incomplete 

cancellation of the vibrational entropy of AB and B leads to significant error as temperature 

increases. 

5.3.2 Descriptor identification and performance 

Because ΔHf and Gi(T) are readily obtained from tabulated calculated or experimental 

results, it is the lack of tabulated Gδ(T) which prevents the tabulation of ΔGf(T) in computational 

materials databases (Equation 5.2). The SISSO (sure independence screening and sparsifying 

operator) approach141 was used to identify the following descriptor for Gδ(T): 

 
𝐺SISSO

δ (𝑇) [
eV

atom
]

= (−2.48 ∗ 10−4 ∗ ln (𝑉) − 8.94 ∗ 10−5𝑚𝑉−1)𝑇 + 0.181

∗ ln(𝑇) − 0.882 

( 5.4 ) 

 

where V is the calculated atomic volume (Å3
 atom-1), m is the reduced atomic mass (amu), and T 

is the temperature (K). SISSO efficiently selects this descriptor from a space of ~31010 candidate 

three-dimensional descriptors, where the dimensionality is defined as the number of fit coefficients 

(excluding the intercept). A training set of 262 compounds with 2,991 (T, Gδ) points was randomly 

selected from 309 inorganic crystalline solid compounds with experimentally measured Gδ(T) 
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(Figure 5.1a) and was used for descriptor identification. The remaining 47 compounds with 558 

(T, Gδ) points were reserved for testing. The descriptor performs comparably on the training and 

test sets with mean absolute deviations between the descriptor and experiment of < 50 meV atom-

1 on both sets (Figure 5.2). Notably, there is some T-dependence on the magnitude of residuals, 

with larger deviations as T (and therefore the magnitude of Gδ) increases. There are three plausible 

reasons for this: 1) the magnitude of Gδ being predicted increases so at fixed relative error, the 

magnitude of the residuals is larger, 2) the number of compounds with measured Gδ(T) decreases 

as T increases, and 3) the physics dictating Gδ at high T are more complex due to e.g., significant 

anharmonic vibrational effects that are less accurately captured by the simple model of Equation 

5.4. Approximately 1/3 of the compounds considered have measured Gδ(1800 K) and the mean 

absolute deviation (MAD) between Gδ
SISSO and Gδ

exp is found to increase from 53 meV atom-1 to 

92 meV atom-1 from 1000 to 1800 K on the 47 compound test set. However, the relative MAD 

actually decreases from 14% to 11% over this same range on the test set, supporting reason (1) as 

a primary driver for the increasing residuals at elevated temperature. 
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Figure 5.2 Descriptor performance 

Performance of the SISSO-learned descriptor (Equation 5.4) on the training (top) and test sets 

(bottom). MAD is the mean absolute deviation, RMSD the root mean square deviation, N the 

number of points shown, μ the mean deviation and σ the standard deviation. The curved lines 

are normal distributions constructed from μ and σ. 

While a number of elemental and calculated properties were considered as inputs, it is 

notable that SISSO selects a descriptor dependent on only three quantities – temperature, atomic 

mass, and (calculated) atomic volume. The identification of these properties agrees well with 

intuition regarding the properties that most significantly affect the magnitude of vibrational 

entropy and free energy.143, 144 The phonon frequencies in a solid compound, ω, are proportional 

to the force constant of the vibrational mode, k, and the reduced mass, m, of the vibrating atoms 

of the mode, with ω ~ √𝑘/𝑚 in the harmonic oscillator approximation. As a mode’s stiffness 

increases or its reduced mass decreases, its vibrational frequency increases, leading to a decrease 

in vibrational entropy and more positive Gibbs energies. This relationship is also apparent in the 

descriptor for Gδ(T), where m is included directly and V appears as a surrogate for k (larger atomic 

volumes being associated with less stiff bonds or lower k). At constant m and V, increasing 
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temperature decreases Gδ when −2.48 ∗ 10−4 ∗ ln (𝑉) − 8.94 ∗ 10−5𝑚𝑉−1 ≤ 0.181ln (𝑇)/𝑇. 

This condition is uniformly satisfied for all 309 compounds in the training and test sets from 300 

to 1800 K, reflecting the expectation of the negative temperature-dependence of the Gibbs energy 

from fundamental thermodynamic expressions – e.g., G = H – TS. With V and T fixed, increases 

in m result in more negative Gibbs energies, agreeing with the behavior of a harmonic oscillator 

for which ω depends inversely on mass and Gδ depends inversely on ω. Finally, with m and T 

fixed, the descriptor (Equation 5.4) indicates that Gδ becomes more negative for larger V (for V > 

1 Å3 atom-1, i.e. all solid systems), in agreement with V acting as a surrogate for the bond stiffness 

in the expression for the frequencies of a harmonic oscillator. Importantly, V is the only structural 

parameter in Equation 5.4 and therefore, at fixed composition (chemical formula), Gδ varies 

between structures (i.e., polymorphs) only as V varies and Gδ(V) dictates that less dense structures 

of the same composition will have more negative Gδ. Therefore, the prediction of polymorphic 

phase transitions is beyond the scope of this descriptor.  

The quasiharmonic approximation (QHA) is commonly applied as an ab initio method for 

approximating G (in practice, Gδ).128 This approach typically requires a number of DFT 

calculations because the Helmholtz energy, including the electronic ground state energy and the 

free harmonic vibrational energy, must be calculated as a function of volume (typically over a 

range of 10 or more volumes). Because of the high computational cost associated with QHA 

calculations, the number of structures with calculated G is about 4 orders of magnitude less than 

the number of structures with calculated formation enthalpies, ΔHf. As an additional test set for 

the SISSO-learned descriptor for Gδ, we compare our predictions to 131 compounds with tabulated 

Gδ
 in the PhononDB set which are not also in the experimental set compiled from FactSage used 

for training and testing the descriptor (Figure 5.3, top). For these compounds, the descriptor agrees 
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well with the ab initio values calculated using QHA, with a mean absolute deviation of 60 meV 

atom-1. Notably, there is a nearly systematic underestimation of QHA-calculated Gδ by the 

descriptor with Gδ
QHA > Gδ

SISSO for 98% of (T, Gδ) points in this set. Comparing QHA to 

experiment for an additional 37 compounds with experimentally measured Gδ available in 

FactSage reveals a similar systematic deviation with Gδ
QHA > Gδ

exp for 94% of points (Figure 5.3, 

middle). A number of factors likely contribute to the systematic offset between QHA and 

experiment including the approximations associated with the calculation (e.g., DFT functional and 

approximation to anharmonic vibrations), the neglect of additional contributions to the Gibbs 

energy including configurational and electronic entropy, and potential impurities or defects in the 

experimentally measured samples. It is notable that the deviation between Gδ
QHA and Gδ

exp is 

mostly systematic (R2 ~ 0.97), so stability predictions based on convex hull phase diagrams 

constructed using ab initio Gδ
QHA should benefit from a fortuitous cancellation of errors, leading 

to even lower errors in practice than the already small deviation of 41 meV atom-1 on average. 

Remarkably, for the same set of 37 compounds, our descriptor has lower mean absolute deviation 

from experiment than QHA (Figure 5.3, bottom) but does not exhibit this systematic 

underestimation of the magnitude of Gδ owing to its exclusive use of experimentally measured 

data for descriptor selection. While this magnitude of deviation for Gδ between experiment and 

prediction (using either QHA or the SISSO-learned descriptor) has been quoted as chemical 

accuracy (~1 kcal mol-1) in the context of ΔHf,
49 it is important to note that temperature-dependent 

predictions of stability using Gibbs formation energies, ΔGf(T), will be affected by errors in both 

Gδ(T) and the temperature-independent ΔHf. 
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Figure 5.3 Benchmarking descriptor against ab initio methods 

Comparing the SISSO-learned descriptor to QHA for 131 compounds not in the experimental 

dataset used to train or test the descriptor (top), comparing QHA to experiment for 37 

compounds which appear in both FactSage and PhononDB (middle), comparing the SISSO-

learned descriptor to experiment of these same 37 compounds (bottom). The annotation within 

each figure is provided in the Figure 5.2 caption. 

5.3.3 Thermochemical reaction equilibria 

We combine our high-throughput model for the prediction of Gδ(T) with tabulated and 

readily-available DFT calculated ΔHf and experimental Gibbs energies for the elements, Gi(T) into 

Equation 5.2 to enable the rapid prediction of ΔGf(T) from a single DFT total energy calculation. 

Thus, reaction energetics, thermochemical equilibrium product distributions, and temperature-

dependent compound stability can be assessed for the millions of structures currently compiled in 
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materials databases. This unprecedented ability to rapidly predict reaction equilibria for reactions 

involving solid compounds is illustrated in Figure 5.4 for a small set of example reactions. In 

Figure 5.4a, the Gibbs energy of reaction, ΔGrxn(T), which dictates the equilibrium spontaneity of 

any reaction event, is demonstrated for: the decomposition of SnSe,145 solar thermochemical 

hydrogen generation by the Zn/ZnO redox cycle,146 the carbothermal reduction of NiO to Ni,147 

the oxidation of MoS2,
148 and the corrosion of CrN by water.149 In each case, ΔGrxn computed from 

the SISSO-learned descriptor for Gδ(T)  agrees both qualitatively and quantitatively with ΔGrxn 

resulting from the experimental values for Gδ(T).  

As a more sophisticated demonstration, Figure 5.4b shows the equilibrium product 

distribution based on Gibbs energy minimization for the hydrolysis of Mo2N to MoO2 in the 

context of solar thermochemical ammonia synthesis.150 In this analysis, Mo2N and H2O are placed 

in a theoretical chamber at 1 atm fixed pressure and allowed to reach thermodynamic equilibrium 

with a set of allowed products – MoO2, Mo, NH3, H2, and N2 – where the equilibrium product 

distribution at each temperature is that which minimizes the combined Gibbs formation energy of 

all species in the chamber. Even for this relatively complex system, the predicted product 

distribution based on the descriptor for Gδ(T) agrees both qualitatively and quantitatively with the 

product distribution calculated from the experimental Gδ(T). While this capability is demonstrated 

here to illustrate the utility of the identified descriptor for a few example reactive systems, this 

procedure is readily amenable for predicting reaction equilibria and product distributions in a high-

throughput manner with numerous reacting species for a wide range of solid-state reactions. The 

accuracy of the descriptor-predicted reaction energies for new systems will be dependent not only 

on the effectiveness of Gδ
SISSO(T) to approximate Gδ

exp(T) but also on the extent to which DFT-
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predicted ΔHf agrees with experiment as both parameters are required to obtain ΔGf(T) (Equation 

5.2) and therefore ΔGrxn(T). 

 

Figure 5.4 High-throughput reaction engineering 

a) A comparison of experimental reaction energetics (labels) to those predicted using the 

machine-learned descriptor for Gδ(T) (dashed curves). b) Reaction product distribution between 

MoO2, Mo2N, N2, H2, H2O, and NH3 based on Gibbs energy minimization subject to molar 

conservation and fixed pressure of 1 atm. In both figures, pred applies the SISSO-learned 

descriptor to Gδ(T) of the solid phases and experimental data for all other components. 

 

5.3.4 Effects of temperature and composition on material stability 

Beyond the investigation of solid-state reaction equilibria for a few example systems, we 

have also used the descriptor for Gδ(T) to compute phase diagrams to obtain broad insights into 

the temperature-dependent stability and metastability of thousands of known stoichiometric 

compounds. In particular, in the convex hull construction, formation energies, ΔGf, are plotted as 

a function of composition, and joined to produce the convex object of largest area. If ΔGf of a 

composition lies above the convex hull, the composition is thermodynamically metastable and the 

vertical distance from the hull quantifies the magnitude of metastability of the compound, where 

larger distances indicate a greater thermodynamic driving force for decomposition of the 

metastable phase into stable phases. For the first time, temperature can be incorporated as a third 
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axis in a high-throughput manner using Gδ
SISSO to produce ΔGf(T) and assess the stability of 

compounds. 

The Materials Project tabulates calculated structures for 29,525 compositions which also 

have reported ICSD numbers, suggesting that they have been realized experimentally.16 Previous 

efforts to analyze temperature-independent metastability used ΔHf as a surrogate for formation 

energy to predict that ~50% of all ICSD structures are metastable at 0 K.151 We predict that ~34% 

of ICSD compositions are metastable in the absence of temperature effects – i.e., also using ΔHf. 

An important distinction between structures and compositions is that if a given composition has 

more than one known structure, all structures except the ground state at a given set of 

thermodynamic conditions are, by definition, metastable under those conditions. As such, in our 

analysis, we consider all structures of the 29,525 compositions, but only report statistics for the 

ground state structures at each temperature (Figure 5.5, Figure 5.6).  

The fraction of compositions that are thermodynamically metastable remains nearly 

constant up to ~900 K where the competing effects of the elemental phases (Figure 5.1b) lead to 

increasing compound destabilization with temperature (Figure 5.5a). The fraction of compounds 

which move onto and off of the convex hull with temperature are also quantified relative to those 

that are predicted to be metastable and stable at 0 K. If a given composition exhibits no stable 

structures at 0 K (i.e., ~34% of the ICSD), it is unlikely that any of these structures become 

thermodynamic ground states at higher temperatures. In fact, only 1,602 of the 10,001 0 K 

metastable compositions are found to be stabilized when temperature is increased up to 1800 K. 

For the 1,602 compounds which are 0 K metastable but that come onto the hull to become stable 

at elevated temperature, the magnitude of their 0 K metastability is quantified in Figure 5.5b. In 

general, compounds must lie very near to the hull at 0 K to have a chance of thermal stabilization 
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at T > 0 K. Even for compounds which become thermodynamic ground states at 1200 K, we find 

their metastabilities at 0 K to be typically < 15 meV atom-1 and thus thermal stabilization is often 

not the active mechanism in the high temperature synthesis of solid compounds. 

It is well known that metastable structures are often accessed experimentally, as indicated 

by the significant fraction of ICSD structures which are realized, but predicted to be metastable 

across this wide temperature range. A number of routes exist for accessing metastable structures, 

such as non-equilibrium synthesis conditions and alloying. In these cases, the magnitude of the 

metastability of these non-equilibrium structures indicates the driving force to convert to one or 

more stable phases, which is a critical consideration in materials processing and successful 

application of the material at operating conditions. Given the pool of metastable compositions in 

the ICSD, a Gaussian kernel density estimate is constructed based on the magnitude of 

metastability, ΔGd, and evaluated as a function of temperature (Figure 5.5c) and composition 

(Figure 5.6). At 0 K, 54% of metastable (but synthesized) compounds are > 25 meV atom-1 above 

the convex hull, 39% are > 50 meV atom-1, and 26% are > 100 meV atom-1 above the hull. These 

results provide some quantification for the false negative rate that is incurred by the ~25-100 meV 

atom-1 heuristic error bars of materials screening approaches where compounds are typically 

allowed to survive stability screening if they are thermodynamically stable or within ~25-100 meV 

atom-1 of metastability.151-154 This range has been justifiably augmented in some cases, for 

example, in the search for novel 2D materials, which are by definition metastable, where the range 

has been expanded to e.g., 150 meV atom-1.155 Recent work has also shown that the 0 K energy of 

amorphous phases can provide an upper bound on the metastability of compounds that can be 

synthesized.153 At low temperatures, the distribution of metastability is mostly constant with a 

median metastability of 43 meV atom-1 at 900 K, suggesting that increasing the temperature from 
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room temperature to 900 K results in only a small thermodynamic penalty of ~20 meV atom-1. 

Above this temperature, many competing elemental phases undergo phase changes, leading to 

destabilization of compounds and a median metastability of 113 meV atom-1 at 1800 K. This 

provides rationale for the viability of high temperature solid-state synthesis approaches where 

increasing the temperature enables atomic rearrangements to overcome kinetic barriers while 

maintaining the desired structure as a thermodynamically accessible metastable state. 

 

Figure 5.5 Survey of temperature-dependent (meta)stability 

a) Fraction of ICSD compositions which are thermodynamic ground states (black), fraction of 

0 K metastable compositions which are stable at T (blue), fraction of 0 K stable compositions 

which are metastable at T (red), b) Gaussian kernel density estimate of the 0 K decomposition 

enthalpy for ICSD compositions which are thermodynamically metastable at 0 K but stable at 

T, c) Gaussian kernel density estimate of the Gibbs decomposition energy at T for metastable 

compounds at each T. 

 

In addition to the temperature-dependence of metastability, accessible compound 

metastability is also composition-dependent, as shown in Figure 5.6. At 0 K, compounds 

comprised of most elements have a similar distribution of metastabilities to the overall distribution 

shown in Figure 5.5c, with a few notable exceptions, particularly compounds containing carbon 

or nitrogen. For carbides and nitrides, the median metastabilities at 0 K are 144 meV atom-1 and 

109 meV atom-1, more than five times the median metastability of all other compounds in the ICSD 

at 0 K (20 meV atom-1). This prevalence of enhanced accessibility of metastable states was 
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previously recognized for nitrides at 0 K and attributed to high cohesive energy which enables 

metastable configurations to persist.151, 156 The consequences of the high cohesive energies of these 

materials is low self-diffusion coefficients or high barriers to atomic rearrangement resulting from 

the tendency of the not-so-electronegative anions, carbon and nitrogen, to form mixed 

covalent/ionic bonds with electropositive and weakly electronegative elements across the periodic 

table.  

Despite the similar metastability behavior of carbides and nitrides at low temperature, we 

find that temperature has a dramatically different effect on these two classes of compounds, with 

nitrides rapidly destabilizing by moving away from the hull and broadening their metastability 

distribution relative to carbides. The increases in median metastability for carbides and nitrides 

from 0 to 1800 K are 144 meV atom-1 and 231 meV atom-1, respectively. This can be attributed to 

the tendency for entropy to stabilize gaseous elemental nitrogen (i.e., N2) with temperature much 

more rapidly than solid elemental carbon (i.e., graphite). This creates the considerable high 

temperature metastability difference that likely plays a critical role in enabling the synthesis of 

metastable carbides from amorphous precursors, where the lower thermodynamic driving force for 

phase separation of carbides at high temperature enables the persistence of higher energy 

amorphous precursor phases and increased thermal energy required to activate crystallization 

kinetics. The remarkable metastabilities exhibited by carbides and nitrides relative to other classes 

of materials provide chemical design principles for hindering atomic rearrangements and point 

towards these underexplored spaces for the discovery of highly metastable materials which are 

likely synthesizable. 
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Figure 5.6 Composition-dependence of metastability 

Elemental partitioning of the results shown in Figure 5.5c by compounds containing element X. 

Each x-axis spans 0 to 100 meV atom-1 and the colors align with the legend as shown in Figure 

5.5c. 

5.4 Discussion 

Open materials databases are populated with millions of DFT-calculated total energies and 

formation enthalpies which have been used extensively for the design and discovery of new 

materials. However, critically lacking from these databases is the effect of temperature on the 

thermodynamics of these materials. To address this challenge, we have developed a simple and 

accurate descriptor for the Gibbs energy of inorganic crystalline solids, Gδ(T), using the SISSO 

approach. This low dimensional and physically interpretable descriptor reveals the main drivers 

for Gδ(T) to be the mass of the elements which comprise the compound and the volume those 

atoms occupy in the material, agreeing well with the expectation from fundamental physical 

expressions and prior work quantifying the magnitude of vibrational entropy in solids. 

Remarkably, using only these parameters and temperature, the Gibbs energy can be predicted with 

accuracy comparable to the ab initio QHA approach up to at least 1800 K. Our descriptor for Gδ(T) 

can be readily applied to any of the more than one million structures with tabulated DFT total 
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energy, enabling the high-throughput prediction of temperature-dependent thermodynamics across 

a wide range of compositions and temperatures.  

Utilizing this descriptor, we demonstrate the accurate prediction of reaction energetics for 

a number of solid-state reactions, including a reaction network of several competing reactions in 

the context of thermochemical ammonia synthesis. This demonstrates how the descriptor can be 

incorporated with existing materials databases and tabulated thermochemical data for non-solids 

to predict the equilibrium products for an arbitrary reaction as a function of temperature. By 

applying the descriptor to ICSD compounds in the Materials Project database, we obtain the first 

comprehensive look at materials stability, providing a quantitative determination of how narrowly 

nature and inorganic synthesis have explored far-from-equilibrium materials and providing 

guidance for compositional considerations in realizing new metastable materials. While 

thermodynamic stability is the primary criterion used in high-throughput computational screening 

of materials to predict the likelihood of a given material being synthesizable, the interplay of 

thermodynamics with several other criteria, such as kinetics and non-equilibrium process 

conditions or starting precursors, exhibit a stronger influence over the synthesizability of materials, 

and currently, there is not a universal and well-defined metric for synthesizability.37, 121, 153, 157-159 

Importantly, the ~50 meV atom-1 resolution in predicting Gδ(T) achieved by our descriptor exceeds 

the accuracy of the computational methods that currently predict and populate ΔHf in materials 

databases. Therefore, when combining Gδ(T) with ΔHf to determine the Gibbs formation energy, 

ΔGf(T), errors in these approaches will be additive, emphasizing the need for new or beyond-DFT 

methods to calculate ΔHf when extremely high accuracy is required for a given application. 

However, there are many examples where DFT-computed ΔHf was used successfully to realize 
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new materials160-162 and the incorporation of temperature effects using the SISSO-learned 

descriptor for Gδ(T) should only enhance these efforts. 

5.5 Methods 

5.5.1 Data retrieval 

Gibbs energies were extracted from the FactSage47 experimentally determined 

thermochemical database for 309 solid compounds and from the PhononDB131 ab initio calculated 

thermochemical database for 131 additional solid compounds (12 hydrides, 26 carbides, 31 

nitrides, 104 oxides, 43 fluorides, 26 phosphides, 47 sulfides, 36 chlorides, 17 arsenides, 30 

selenides, 40 bromides, 18 antimonides, 26 tellurides, 34 iodides; 313 binary compounds, 126 

ternary compounds, and 1 quaternary compound) and 83 elements. Compound data was extracted 

only at temperatures where the 298 K solid structure persists as reported in FactSage. Elemental 

data was obtained for the phase (solid crystal structure, liquid, or gas) with the minimum Gibbs 

energy at a given temperature. Because the 298 K enthalpy of formation, ΔHf, is well-predicted 

for compounds using high-throughput DFT along with appropriate corrections29, 30, 33, 35 and readily 

available for millions of structures in existing materials databases, the Gibbs energy was 

referenced with respect to ΔHf (Equation 5.1).  

5.5.2 Feature retrieval 

Nine primary features were considered for this work – five tabulated elemental properties 

(electron affinity, first ionization energy, covalent radius, Pauling electronegativity, and atomic 

mass) extracted from pymatgen118 and WebElements82; two calculated properties (atomic volume 

and band gap) extracted from the Materials Project database; one experimental property (ΔHf), and 

temperature. The five tabulated elemental properties were formulated into compound-specific 
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properties using each of three transformations. For elemental feature, x, we define three forms of 

averaging – the stoichiometrically weighted mean (avg), the stoichiometrically weighted harmonic 

mean, akin to the reduced mass (red), and the stoichiometrically weighted mean difference (diff): 

 

𝑥avg =
1

∑ αi
𝑁
i=1

∑ αi𝑥i

𝑁

i

 

( 5.5 ) 

 

𝑥red =
1

(𝑁 − 1) ∑ αi
𝑁
i=1

∑(αi + αj)
𝑥i𝑥j

𝑥i + 𝑥j

𝑁

i≠j

 

( 5.6 ) 

 

𝑥diff =
1

(𝑁 − 1) ∑ αi
𝑁
i=1

∑(αi + αj)|𝑥i − 𝑥j|

𝑁

i≠j

 

( 5.7 ) 

 

where when considering a compound, AaBbCc, we define α as the vector of coefficients [a, b, c] 

and N as the length of α. For example, for CaTiO3, α = [1,1,3] and N = 3. 

5.5.3 Descriptor identification 

The SISSO approach141 was applied to identify the descriptor for Gδ shown in Equation 

5.3 using 262 of the 309 compounds from FactSage with experimentally measured Gδ. To identify 

this descriptor an initial feature-space, Φ0, included 19 features – the five tabulated elemental 

properties mapped onto each of the three functional forms (Equations 5.5 – 5.7), along with the 

linear forms of atomic volume, band gap, formation enthalpy, and temperature. Two iterations of 

descriptor construction were performed using an operator space of [+, −, |−|, *, /, exp, ln, −1, 2, 3, 

0.5]. Candidate descriptors were constructed by iteratively applying these operators to Φ0 while 

conserving the units of constructed features. The first iteration of descriptor construction yielded 

a space, Φ1, with ~600 candidate descriptors and the second iteration a space, Φ2, of ~600,000 

candidate descriptors. SISSO was then performed on Φ2 with a subspace size of 2,000 and three 
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descriptor identification iterations, thereby producing the three-dimensional (3D) descriptor (i.e., 

three fit coefficients not including the intercept) in Equation 5.4. In the first iteration, sure 

independence screening (SIS) was used to select the 2,000 descriptors S1D from Φ2 having the 

highest correlation with Gδ. Within S1D, l0-norm regularized minimization, SO(l0), was used to 

identify the best 1D descriptor. This 1D descriptor is then used to predict the training set and the 

array of residuals, R1, is generated from this prediction. Now with R1 as the target property (instead 

of Gδ), SIS identifies a new subspace S2D of 2,000 additional descriptors. SO(l0) then selects the 

best-performing 2D descriptor from S1D ∪ S2D and R2 is generated as the residuals using this 2D 

descriptor to predict the training set. This procedure is repeated a third time to yield the 3D 

descriptor shown in Equation 5.4. Therefore, this descriptor is selected among a space of (
6000

3
) 

or ~31010 candidate 3D descriptors.  

Importantly, all aspects of the SISSO selection algorithm were performed on the training 

set of 262 compounds with experimentally measured Gibbs energies, leaving an excluded test set 

of 47 compounds with experimentally measured Gibbs energies in reserve to evaluate the 

predictive quality of the selected descriptor (Figure 5.2). An additional 131 compounds with QHA-

calculated Gδ(T) not present in the training or test sets were also compared with the SISSO-learned 

Gδ(T) (Figure 5.3). 

5.5.4 Descriptor sensitivity 

While the random splitting of the experimental set into training and test sets was performed 

only once, comparing the relevant properties for each set reveals that they are statistically similar, 

suggesting the model and SISSO process would yield similar results for an arbitrary random split 

of the experimental set. To assess the robustness of the model on diverse training and test sets, we 
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repeated the random split of the experimental set 1,000 times and evaluate the performance of 

Equation 5.4 on each set. The MAD spans 37-42 meV atom-1 on the 85% training set and 26-54 

meV atom-1 on the 15% test set, demonstrating that the reported 38 meV atom-1 for training and 

46 meV atom-1 for testing (Figure 5.2) are not outliers. As an added demonstration, the random 

split of the experimental set and subsequent SISSO selection process was repeated 12 times. In 

10/12 runs, the descriptor shown in Equation 5.4 appears in the top 3,000 of ~31010 models 

evaluated (top ~0.00001%) in terms of root mean square deviation (RMSD) on the training set. 

Notably, there are many cases where very slight deviations of Equation 5.4 also appear in the top 

models – e.g., replacing ln(T) with T or T0.5. To validate the significance of the three features that 

comprise the descriptor – temperature, reduced mass, and atomic volume – we assess what fraction 

of the top 3,000 models contain these features for each of the 12 random train/test splits. 

Temperature is found to occur in 100% of the top models for each of the 12 random splits. Reduced 

mass and atomic volume each appear in ~86% of the top 3,000 models on average over the 12 

random splits. This analysis was conducted on only the very best models (top ~0.00001%) and 

reveals the significance of these three properties in predicting Gδ
 to be robust to the random split 

of the experimental data used to train and test the descriptor. Notably, the first term in Equation 

5.4, Tln(V), appears as the feature with the highest correlation with Gδ
 in all of the 12 random 

train/test splits. 

5.5.5 Comparing to quasiharmonic approximation 

QHA-calculated G(T) was extracted from the 2015 version of PhononDB131 for all 

compounds with calculated thermal properties. Because a number of approximations are used to 

calculate ΔHf from DFT calculations, to isolate the temperature-dependent Gibbs energy for 

comparison to our descriptor, Gδ
QHA(T) was calculated as Gδ(T) = G(T) – G(0 K). 
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5.5.6 Stability analysis 

For the generation of Figure 5.5 and Figure 5.6, all 34,556 entries (structures) in the 

Materials Project which have reported formation energies and ICSD numbers were retrieved. For 

each entry, the temperature-dependent formation energy was calculated as follows: 

 

∆𝐺f,pred(𝑇) = {

∆𝐻f,MP, 𝑇 = 0 K

∆𝐻f,MP + 𝐺SISSO
δ (𝑇) − ∑ 𝛼𝑖𝐺𝑖,exp(𝑇)

𝑁

𝑖

, 𝑇 ≠ 0 K
} 

( 5.8 ) 

 

FactSage elemental energies were used as Gi,exp. For all entries, ΔGf,pred(T) was evaluated 

at 0, 300, 600, 900, 1200, 1500 and 1800 K. To avoid overweighting the analysis to compounds 

which have many polymorphs, the lowest (most negative) ΔGf,pred(T) was retained for the analysis 

at each temperature and for each unique composition (chemical formula). This resulted in 29,525 

unique compositions from 34,556 structures with ICSD numbers and reported formation energies 

in Materials Project. To avoid potentially spurious entries in the ICSD, only the lowest 90% of 

metastable compositions (with respect to the Gibbs decomposition energy, ΔGd) were considered. 

Python was used to construct all possible convex hull phase diagrams and quantify ΔGd. 

5.5.7 Structure considerations 

For training, we used 0 K ground-state structures (and magnetic configurations) reported 

in Materials Project. From this calculation result, we retrieved the volume (per atom) that is then 

used at all temperatures to generate Gδ(T) as shown in Equation 5.4. For a given composition, one 

could compute Gδ(T) for any number of structural or magnetic configurations and compare the 

G(T) that results. For the purposes of training and testing, we consider only the calculated ground-
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state because this is likely the approach that would be used in practice for the application of the 

model to new materials which have available calculated but not experimental data.  

5.5.8 Application of the descriptor 

To obtain the Gibbs formation energy for a given structure, one must first perform a DFT 

total energy minimization of the structure. From this, the atomic volume is determined as the 

volume of the calculated cell divided by the number of atoms in the calculated cell. Gδ
 can then be 

computed by Equation 5.4. Calculating the Gibbs energy, G(T), using Equation 5.1 requires the 

formation enthalpy, ΔHf, calculated using DFT. If the analysis of interest concerns only one 

composition (chemical formula), then this is the final step and the relative energies of all structures 

with this composition can be compared using G(T). If the analysis of interest considers various 

compositions (e.g., for convex hull stability or thermochemical reaction analysis), the elemental 

energies must be subtracted to obtain the Gibbs formation energy, ΔGf(T) by Equation 5.2. 

Notably, ΔHf and volumes calculated by DFT are tabulated for many thousands of structures and 

the elemental G(T) are also tabulated for at least 83 elements. An important point is that users of 

the descriptor for Gδ(T) are free to generate ΔHf and volumes for any number of structural or 

magnetic configurations for a given composition and compare how G(T) might be sensitive to the 

changes in structure and magnetism.  

5.5.9 Extension to new materials 

On the experimental training set of 262 compounds, the mean absolute deviation between 

experiment and the descriptor is 38 meV atom-1 (Figure 5.2). This increases slightly to 46 meV 

atom-1 (Figure 5.2) on the experimental test set and to 60 meV atom-1 on the computed (QHA) 

test set (Figure 5.3). The residuals with respect to experiment are also mostly normally distributed, 
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suggesting no systematic error in the model. The performance on the test set compounds is a 

demonstration of validated prediction accuracy or uncertainty on new predictions. These 

approximate error bars can be expected on additional new predictions to the extent that the sets 

used for training and testing are comparable to the new materials being predicted. The set we use 

for training and testing is quite diverse – 83 unique elements, binaries and multinaries, magnetic 

and nonmagnetic, metallic and insulating, etc. Additionally, the descriptor is relatively simple, 

having only four fit parameters (including the intercept) and three features (properties) that it 

depends upon. However, it has not been benchmarked for non-stoichiometric compounds or 

compounds with defects. For example, one could not expect to obtain the temperature-dependent 

defect formation energy using our descriptor because this was not benchmarked. Our model is also 

not capable of predicting the melting point of compounds. Gδ(T) is for the solid phase and can be 

obtained even well above a compound’s melting point, where the liquid phase has more negative 

Gibbs energy. As alluded to in the main text, the extension of the descriptor to correctly predict 

polymorphic phase transitions or temperature-driven magnetic transitions is not practical because 

the descriptor depends only on the mass, density, and temperature and the magnitude of the energy 

change for these transitions is typically smaller than the expected error bars of the descriptor. We 

report substantial evidence that the descriptor is predictive for stability of compounds relative to 

one another and for the prediction of thermochemical reaction equilibria over a wide range of 

stoichiometric solid compounds with a diverse set of chemical and physical properties. Data (via 

public repository), code, and associated protocols are available in a github repository 

(github.com/CJBartel/predict-gibbs-energies) corresponding to the implementation and 

application of the model as described within this work. 
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6 High-throughput equilibrium analysis of active materials 

for solar thermochemical ammonia synthesis 

Much of the content in this chapter appears verbatim in the following manuscript: 

C.J. Bartel, J.R. Rumptz, A.M. Holder, A.W. Weimer, C.B. Musgrave (2018) [In Preparation] 

 

6.1 Abstract 

Solar thermochemical ammonia (NH3) synthesis (STAS) is a potential route to produce 

NH3 from air, water, and concentrated sunlight. This process involves the chemical looping of an 

active redox pair that cycles between a metal nitride and its complementary metal oxide to yield 

NH3. To identify promising candidates for the STAS cycle, we performed a high-throughput 

thermodynamic screening of 1,148 metal nitride/metal oxide pairs. This screening was based on 

Gibbs energies of the crystalline metal oxides and nitrides at elevated temperatures, G(T), 

calculated using a recently introduced descriptor and 0 K DFT formation energies tabulated in the 

Materials Project database. Using the predicted G(T), we assessed the viability of each of the STAS 

reactions – hydrolysis of the metal nitride, reduction of the metal oxide, and reformation of the 

metal nitride. From this reaction energy analysis, we identified a volcano-type dependence of the 

limiting reaction energy on the formation energies of the nitride and oxide that no longer occurs 

when considering the direct formation of the nitride from the oxide (i.e., a two- instead of a three-

step cycle). For all 1,148 redox pairs analyzed and each of the STAS-relevant reactions, we 

implemented a Gibbs energy minimization scheme to predict the equilibrium composition and 

yields of the STAS cycle which reveals new active materials based on B, V, Fe, and Ce that warrant 

further investigation for their potential to mediate the STAS cycle. This work details a high-

throughput approach to assessing the temperature-dependent thermodynamics of a 
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thermochemical redox process that utilizes the wealth of publicly available temperature-

independent thermodynamic data calculated using DFT. This approach is readily adaptable to 

identifying optimal materials for arbitrary thermochemical processes and guiding the 

thermochemical synthesis of new compounds. 

6.2 Introduction 

Ammonia (NH3) synthesis without CO2 emissions remains a grand challenge for 

sustainable food, energy, and fuel production.163-165 NH3 is industrially produced by the Haber-

Bosch process which is driven by hydrocarbon reforming into H2 (and CO2) and catalytically 

converting H2 and atmospheric N2 into NH3 at high pressure and moderate temperature. While no 

CO2 is directly emitted during the NH3 synthesis reaction, the large scale of production required 

to make the Haber-Bosch process economically viable requires a tremendous amount of H2 input. 

This scale of H2 production can only currently be obtained from hydrocarbon reforming, which 

results in the Haber-Bosch process accounting for 1-2% of global CO2 emissions.166 This motivates 

the search for an NH3 synthesis process that alleviates the need for H2 or operates on the scale of 

renewable H2 production technologies.167, 168 

Solar thermochemical water splitting (STWS) leverages the high temperature (> 1500 K) 

that can be obtained by concentrating solar radiation to produce H2 from steam at atmospheric 

pressure and without the consumption of any active material.169 This is typically achieved by the 

chemical looping of an active solid, typically a metal oxide (MO) with significant oxygen 

exchange capacity such as ceria,170 perovskite,171 or hercynite172. In the most viable approach to 

STWS, at high temperature and low oxygen partial pressure, the oxide is partially reduced, 

generating oxygen vacancies that can then be filled by steam, yielding H2. In recent years, an 

alternative process termed solar thermochemical ammonia synthesis (STAS) was proposed that 
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cyclically converts the active material between MO and metal nitride (MN), yielding NH3 from 

H2O and N2 (Figure 6.1).173-175 In this process, NH3 is formed by the hydrolysis of the MN by 

steam, which also converts the nitride into oxide. The MO is then reduced at high temperature to 

metal by a (preferably gaseous) reducing agent. The metal is then used to reduce atmospheric N2 

to re-form the metal nitride and restart the STAS cycle, yielding NH3 with the consumption of 

H2O, N2, and reducing agent. It is possible to conceive of a STAS process without phase change 

and mediated by oxygen vacancies, however the ability for an oxygen vacancy to reduce N2 is 

unlikely.  

Unlike current approaches to STWS, which involve the partial reduction of a single active 

material, the STAS process studied in this work requires a phase-change from MO to MN, so the 

active material is this redox pair (MO/MN) and the temperature-dependent thermodynamics of 

these two compounds dictate the viability of a given redox pair for STAS. Prior efforts to identify 

active materials for STAS have evaluated ~35 redox pairs – this number limited by the number of 

MNs with experimentally obtained Gibbs formation energies, ΔGf(T).176 Recently, we developed 

a statistically learned descriptor that enables the prediction of ΔGf(T) with high accuracy (~50 

meV/atom) for inorganic crystalline solids (e.g., MO and MN) when the standard-state formation 

enthalpy, ΔHf, is known.177 While the number of MNs with experimentally obtained ΔHf is 

similarly small, DFT-calculated ΔHf are available for thousands of MNs and MOs in open 

materials databases, such as the Materials Project.16 By integrating the Materials Project data with 

our high-throughput approach to obtain ΔGf(T), we evaluated the thermodynamic viability of 1,148 

redox pairs made from 354 binary (monometallic) oxides and 197 binary nitrides for the STAS 

cycle shown in Figure 6.1. This provides insight into the thermodynamic and materials challenges 

associated with each of the STAS reactions and guidance towards which yet-unexplored materials 
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should be the focus of further computational and experimental efforts. Additionally, we present a 

generic framework for coupling open materials databases of 0 K DFT calculations with our 

descriptor for G(T) to rapidly assess the thermochemistry of solid-state reactions. This approach 

has applications for alternative chemical looping processes and for identifying reaction conditions 

(temperature, precursors, etc.) under which new materials can be synthesized by solid-state 

thermochemical reactions. 

 

Figure 6.1 Solar thermochemical ammonia synthesis (STAS) reaction scheme 

Reactions are shown on a 1 mol NH3 per cycle basis. In (1), a metal nitride (MaNb) is oxidized 

by steam to yield a metal oxide (McOd), NH3, and potentially H2 (hydrolysis). Note that H2 can 

become a necessary reactant for certain MN/MO pairs to achieve the basis of 1 mol NH3 per 

cycle. In (2), the metal oxide is reduced by H2 to yield the metal (M) and steam (reduction). In 

(3), the metal reduces atmospheric N2 to yield the metal nitride and restart the STAS loop. 

 

6.3 Results 

6.3.1 Formation energies of redox pairs 

The Gibbs formation energies, ΔGf(T), of the oxide and nitride are shown as a function of 

temperature for all 1,148 pairs considered in this work (Figure 6.2a). An essential requirement for 

viability of a given pair for STAS is that the solid components be formable at the reaction 
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conditions for each reaction in the STAS cycle where they are formed – i.e., the oxide must be 

formable at hydrolysis conditions and the nitride must formable at nitridation conditions. ΔGf(T) 

< 0 is a necessary (but not sufficient) requirement for stability. Stability is ultimately dictated by 

the decomposition energy,39, 178 but in this case, we show only the formation energy, ΔGf(T), as it 

provides unique insights into the correlated stabilities of oxides and nitrides, which significantly 

influences the viability of the STAS process. As seen in Figure 6.2a, ΔGf,MO(T) < ΔGf,MN(T) for 

the vast majority of pairs (points falling below the gray line). Thus, for most pairs, the stability of 

the nitride will dictate the stability of the solid compounds throughout the STAS cycle – i.e., if the 

nitride is stable, then the oxide will likely also be stable. Because cations have similar affinities 

for oxygen and nitrogen, the stabilities of nitrides and oxides are correlated with highly stable 

(unstable) metal oxides typically pairing with highly stable (unstable) metal nitrides. 

Temperature has a critical effect on which cations can form stable nitrides and oxides 

(Figure 6.2b). At 0 K, 831 pairs spanning 51 cations have a nitride and oxide with ΔGf < 0. 

However, this decreases substantially to 566 pairs spanning 41 cations at 900 K and 387 pairs 

spanning 29 cations at 1800 K. The cations that yield ΔGf,MO < 0 (blue) and ΔGf,MN < 0 (green) are 

shown for each temperature in Figure 6.2b. While most of the periodic table appears potentially 

viable based on a 0 K analysis, because ΔGf,MN(0 K) is near zero for most late transition metals, 

nitrides with these cations have positive ΔGf,MN even with modest increases in temperature to those 

more relevant to thermochemical processes (e.g., 900 K). 270 out of 347 oxides (78%) with ΔGf,MO 

< 0 at 0 K also have ΔGf,MO < 0 at 1800 K in contrast to only 59 out of 131 nitrides (45%) that 

meet this criteria. This suggests that temperature-swing or the separation of nitrides and oxides 

during the reaction cycle may be critical to the viability of STAS – i.e., forming the nitride only at 

low temperature and utilizing higher temperature to form the oxide. 
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a) 

 

b) 

 

Figure 6.2 Temperature-dependent Gibbs energies 

a) Comparing the Gibbs formation energies of oxide (MO) and nitride (MN) for each MN/MO 

pair in this analysis with temperature increasing from 0 K (left) to 900 K (center) to 1800 K 

(right). Empty markers correspond with the MO or MN having ΔGf > 0. The legend for markers 

by position in the periodic table is provided in the right-most panel. b) Indicating which cations 

have ΔGf,MO < 0 (top triangle, blue) and ΔGf,MN < 0 (bottom triangle, green) for increasing 

temperature – 0 K (left) to 900 K (center) to 1800 K (right). 

 

6.3.2 Energetics of each reaction 

The STAS cycles requires the cyclic conversion of nitride to oxide (hydrolysis), oxide to 

metal (reduction), and metal to nitride (nitrogen fixation). Each reaction is affected uniquely by 

the formation energies of oxide and nitride and their dependence on temperature. A 

thermodynamic assessment of reaction energies for each reaction helps inform the design 

principles for identifying a viable redox pair for this process (Figure 6.3). 
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The hydrolysis step requires the conversion of water to NH3 by oxidizing the nitride to 

oxide. Because ΔGf,NH3 > ΔGf,H2O at all temperatures, this reaction is only spontaneous (reaction 

energy, ΔGr < 0) when the conversion of nitride to oxide is thermodynamically downhill by enough 

to make up for this difference. Low temperature is also preferred because H2O  NH3 has ΔGr = 

+230 kJ/mol at 600 K, increasing steadily with temperature to 303 kJ/mol at 1800 K. At 600 K, 

628 pairs meet this requirement of the oxide being sufficiently more stable than the nitride such 

that ΔGr,hyd < 0 (Figure 6.3, top). This is predictable from the results shown in Figure 6.2a where 

the oxide typically has more negative ΔGf than the corresponding nitride, facilitating the tendency 

for the nitride to be oxidized by steam and have lattice nitrogen replaced by oxygen. There are two 

additional challenges to this reaction that have inverse dependence upon temperature. The kinetics 

of hydrolysis are known to be slow,179, 180 and this can be alleviated by increases in temperature. 

However, NH3 is thermodynamically favored to decompose into N2 + H2 with decreasing ΔGr 

(increased driving force for decomposition) as temperature increases, requiring the fast capture 

and quenching of the liberated NH3.
181 While the thermodynamic conversion of nitride to oxide 

by steam exposure is thermodynamically favorable for ~600 binary redox pairs, these additional 

challenges will further restrict the number of truly viable pairs for this step. 

Once the oxide is formed, the difficult challenge of converting back to the typically less 

stable nitride must begin. The production of metal (e.g., Mg, Fe, etc.) from oxide ore (e.g., MgO, 

Fe2O3, etc.) is responsible for some of the oldest high-temperature industrial processes.182 

However, many of these reductions utilize a solid reducing agent which complicates cycling for a 

chemical looping process such as STAS.183, 184 The first redox pair proposed for STAS – 

AlN/Al2O3 – requires solid reducing agent (e.g., carbon) to reduce the highly stable Al2O3 to Al 

metal and enable the eventual fixation of atmospheric N2 to form AlN.173 The use of gaseous 
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reducing agents, such as H2, CO, or some combination would be preferred to eliminate the need 

for reincorporation of a sacrificial reducing agent that must be pelletized with the active materials. 

In Figure 6.3 (middle), we show ΔGr for the reduction of each oxide by H2 at 1800 K. While H2, 

CO, and CH4 have comparable reducing power (and therefore similar thermodynamics of 

reduction), the carbonaceous reducing agents will produce CO2 and potentially incorporate carbon 

into the active materials during reduction. Thermodynamically, the use of H2 as reducing agent 

provides −147 kJ/mol of reducing power due to the oxidation of H2 to H2O. Counterintuitive to 

these processes being operated typically at high temperature, this reducing power increases 

(becomes more negative) at lower temperature. However, the increase in ΔGf,MO more than offsets 

this such that the highest allowed temperature for a given reactor system is preferred for the oxide 

reduction step. For the oxide reduction by H2 to be thermodynamically viable, ΔGf,MO must be > 

ΔGf,H2O as reflected in Figure 6.3 with a cutoff of approximately −1.2 eV/atom where oxides with 

ΔGf,MO(1800 K) < −1.2 eV/atom have ΔGr,red(1800 K) > 0. 197 out of 438 oxides (54%) meet this 

condition considering the high temperature of 1800 K. A complication for the requirement that the 

oxide have only moderately negative ΔGf is that the nitride will typically have less negative ΔGf, 

frequently becoming > 0 for these weakly stable oxides. Swinging the temperature from high for 

oxide reduction to low for nitride formation can mitigate this issue because the oxide and nitride 

are separated during these reactions. 

The final reaction in the STAS cycle is the reduction of atmospheric N2 by the metal in the 

formation of the metal nitride (Figure 6.3, bottom). This reaction is the formation reaction for the 

metal nitride and is thermodynamically preferred at low temperature due to the consumption of 

gaseous N2 (Figure 6.2). The 1 mol NH3 basis used to normalize each pair to one another dictates 

a non-unity, but still high, correlation between ΔGr,nit and ΔGf,MN. Because these are nearly the 



96 

 

same property (differing only by the molar coefficients in the reaction), the discussion of ΔGf,MN 

in conjunction with Figure 6.2 also applies to ΔGr,nit – i.e., viable nitride formation reactions 

become more and more sparse as temperature is increased with the number of binary nitrides 

having ΔGf,MN < 0 decreasing from 131 to 59 from 0 K to 1800 K. 

 

Figure 6.3 Reaction energies of the STAS cycle 

Comparing Gibbs reaction energies to Gibbs formation energies for each reaction in the STAS 

cycle – hydrolysis (hyd, top), oxide reduction (red, middle), and nitrogen fixation (nit, bottom) 

– for oxides (left) and nitrides (right). Reaction energies are normalized per mol NH3 per cycle. 

Temperatures are shown in the left panel of each reaction and chosen to maximize the number 

of pairs with ΔGr < 0. The legend is the same as in the right panel of Figure 6.2a. 

 

6.3.3 Limiting reaction analysis 

Separately analyzing each reaction in the STAS cycle reveals a number of pairs that are 

viable for each step. However, for the entire STAS cycle to realize equilibrium yields, all reactions 

must have ΔGr ≤ 0 over some suitable temperature range. This dictates three criteria that must be 
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met by the redox pair: 1) the conversion of nitride to oxide must be thermodynamically downhill 

by more than the conversion of H2O to NH3 is thermodynamically uphill, 2) H2O must be 

thermodynamically downhill relative to the metal oxide (ΔGf,H2O < ΔGf,MO), and 3) the formation 

energy of the nitride must be negative. Because the thermodynamics of oxides and nitrides are 

correlated for a given cation, it is difficult to find a case where all three of these criteria are met, 

and a Sabatier-type phenomena emerges where the interactions of cation and anion must be 

significantly strong to favor nitride formation but not so strong that the oxide cannot be reduced 

by H2. This volcano-type dependence is visualized in Figure 6.4 (top panel) and pairs based on 

Mn, Fe, W, Tc, and Yb are the only ones that lie in the favorable region where ΔGr,lim < 0. Notably, 

Mn oxide and nitride were recently demonstrated as a promising system for STAS.185 The volcano 

plot reveals an apparent optimal formation energy for the oxide and nitride in the redox pair with 

ΔGf,MO(0 K) ~ −2 eV/atom and ΔGf,MN(0 K) ~ −0.5 eV/atom minimizing the limiting ΔGr for the 

cycle. Importantly, a number of pairs have ΔGr,lim only slightly larger than 0 and these can still be 

effective active materials for STAS, but they will just yield < 1 mol NH3 per cycle. For comparison, 

the maximum yield of H2 for one vacancy-mediated STWS cycle is the number of oxygen 

vacancies that can be thermally generated in the oxide, typically much less than 1 mol/mol MO. 

Additionally, this work is focused only on binary (monometallic) redox pairs as an initial 

screening, yet binary compounds account for only ~13% of the compounds in the Materials Project 

database, suggesting that there may be ample opportunity to design redox pairs based on oxides 

and nitrides with multiple cations. 

The volcano-type dependence of the limiting reaction energy on the active material 

formation energies can be averted by considering a two- instead of three-step cycle where the oxide 
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is directly converted to nitride by simultaneous exposure to a reducing agent and N2 (Figure 6.4, 

bottom panel), for example where H2 is used as the reducing agent: 

 𝑎

𝑏𝑐
𝑀𝑐𝑂𝑑 +

𝑎𝑑

𝑏𝑐
𝐻2 +

1

2
𝑁2 →

1

𝑏
𝑀𝑎𝑁𝑏 +

𝑎𝑑

𝑏𝑐
𝐻2𝑂 

( 6.4 ) 

 

This approach was utilized previously in STAS with methane as a reducing agent185 and this 

reaction is analogous to the ammonolysis of metal oxides which has been used extensively for 

nitride synthesis.186 The two-step cycle is the hydrolysis reaction and the reverse of this reaction, 

replacing NH3 with H2 + N2, so that NH3 is still produced in each cycle. In this way, the 

significantly positive ΔGf,NH3 does not facilitate the transformation of oxide to nitride as in 

ammonolysis and appears only as a product during hydrolysis. The hydrolysis reaction is rarely 

thermodynamically challenging because it involves the typically downhill conversion of nitride to 

oxide. However, the direct formation of nitride from the oxide is the thermodynamically 

problematic reaction. Because the oxide and nitride are present during both reactions, there is no 

longer a volcano-type dependence of ΔGr,lim on ΔGf and the relative formation energies of the 

oxide and nitride are more indicative of ΔGr,lim. In addition to altering the thermodynamic 

considerations of the STAS cycle, the two-step cycle minimizes the number of reaction steps and 

eliminates the need to handle a pure metal, which may be prone to sintering, melting, or 

sublimating at elevated temperature. However, only pairs based on Na, Fe, and Tc appear in the 

viable region where ΔGr < 0 for both reactions over the temperature range of 600-1800 K. 
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Figure 6.4 Volcano-dependence of STAS energetics 

Limiting reaction plot in 3- (top) and 2-step (bottom) cycles over a maximum allowed 

temperature swing of 600-1800 K. ΔGf is shown at 0 K to indicate the target formation enthalpies 

for each reactant that dictates the minimum of the volcano. 

 

6.3.4 Equilibrium product distributions 

While instructive, the determination of viable pairs by the limiting reaction energy analysis 

shown in Figure 6.4 is not exhaustive because it takes a pairwise approach to each reaction. That 

is, it considers only each of the reactions as written in Figure 6.1 when, in reality, there are a 

number of chemical transformations that could take place for a given set of reactants and reaction 

conditions. For instance, many of these pairs are complicated by the existence of alternative oxide 

and nitride phases that are thermodynamically more favorable than the solids in the particular pair. 

Ascertaining which of the pairs are truly thermodynamically viable for STAS requires an 

equilibrium analysis by Gibbs energy minimization which determines the molar composition that 

minimizes the combined free energy of an allowed set of species.187 In this approach, an initial 
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feed of reactants is dictated by the stoichiometry of the pair and allowed to reach equilibrium with 

a given set of species at some temperature under the constraint of molar conservation and with the 

target of minimizing the Gibbs energy function. Using this approach, it can be determined which 

oxides and nitrides are favored to form at a given set of reaction conditions. As an example, 

W2N3/W2O5 appears thermodynamically viable from the limiting reaction analysis for the three-

step cycle, but neither the oxide nor the nitride are the thermodynamically favored oxide or nitride 

of tungsten (Figure 6.5). Instead, the hydrolysis of W2N3 yields only WO3 and not W2O5 and the 

nitridation of W forms WN2. This limits the viability of W as a metal reactant because WO3 is not 

as readily reduced to W in the presence of H2.  

 

Figure 6.5 Predicted yields for tungsten nitride hydrolysis 

Equilibrium product distribution predicted by Gibbs energy minimization for the hydrolysis of 

WN2. The feed considered for each reaction is dictated by the equations shown in Figure 6.1. 

This results in feeds of 1/3 mol WN2 + 5/3 mol H2O for hydrolysis. Values less than 0 are a 

result of a spline fit. 

 

Repeating this analysis for all reactions and all pairs produces the yield plots shown in 

Figure 6.6 which emphasizes the difficult trade-off that must be achieved between the oxide and 

nitride in the redox pair. In Figure 6.6 (left), the two reactions which comprise the two-step cycle 

are compared – hydrolysis, hyd, and the combined reduction of the oxide and formation of the 

nitride, redN. The vast majority of points lie along the x- or y-axis, indicating ~0 yield for one of 
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the involved reactions. Only 5 of 1,148 pairs have Yhyd and YredN > 0.01 given a maximum allowed 

temperature swing of 600 K to 1800 K – BN/B2O3, VN/VO2, Tc3N/TcO2, CeN/Ce7O12, 

PuN/Pu2O3. The pairs based on Tc and Pu are not practical due to their scarcity and radioactivity, 

leaving B, V, and Ce as cations with significant promise for the two-step cycle based on this 

thermodynamic analysis.  

The three-step cycle requires the careful balance of hydrolysis, reduction and nitride 

formation, shown in the second through fourth panels of Figure 6.6. While each pair-wise 

combination of reactions show a number of pairs with high yields for both reactions (i.e., points 

away from the axes), there are only 5 of 1,148 pairs that exhibit Yhyd, Yred, and Ynit all > 0.01 over 

the same allowed temperature swing of 600-1800 K – P3N5/P2O5, GaN/Ga2O3, Tc3N/TcO2, 

FeN/FeO, and FeN/Fe3O4. Tc is again not preferred because of scarcity. P and Ga are problematic 

for the three-step cycle due to low melting points of their elemental phases (~300 K), leaving Fe 

as the only metal reactant with significant promise based on this thermodynamic assessment.  

 

Figure 6.6 Reaction-wise equilibrium yields for all pairs 

Yields of each reaction in the two- and three-step cycles. 1st panel – all reactions for the two-

step cycle: hydrolysis, hyd, and nitride formation from the oxide, redN. 2nd panel – hydrolysis 

and oxide reduction by H2, red. 3rd panel – hydrolysis and nitride formation from the metal, nit. 

4th panel – reduction and nitride formation from the metal. 

 

6.3.5 Shifting equilibrium 

In addition to temperature, the partial pressure of reactant and product species is an 

important variable for dictating the thermodynamics of each reaction. For STWS, controlling the 
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partial pressures of H2O during oxidation (by excess steam feed) and O2 during reduction (by inert 

gas sweep) was shown to enable isothermal H2 production using hercynite as an active material.126 

For STAS, the reduction (or simultaneous reduction and nitridation) of the metal oxide is the 

logical step that could benefit from manipulations of partial pressure by considering operation in 

the regime where the partial pressure of H2O is decreased relative to the partial pressure of H2. 

This can be achieved by exposing the metal oxide to greater-than-equilibrium amounts of H2. 

Considering 100 excess of H2 increases the yields of eight pairs to > 0.1 mol NH3/cycle, three 

of which were previously identified as having > 0.01 yield at equilibrium reactant amounts – 

BN/B2O3, VN/VO2, and FeN/Fe3O4 – and five newly viable pairs – CrN/Cr2O3, MoN/MoO2, 

WN2/WO3, MnN/MnO, and Mn2N/MnO. Notably, STAS cycles based upon Cr, Mo, and Mn have 

been previously investigated with varying degrees of success.168, 185, 188, 189 For the reverse reaction 

which occurs during STWS – water splitting over a reduced metal oxide to produce H2 – similar 

ratios (100 the equilibrium amount of H2O) were used to drive equilibrium towards H2 

production, which led to increases in solar-to-hydrogen efficiencies for the overall cycle.190 The 

yet-unexplored pairs based on Fe and V show significant promise as their yields per cycle are 

increased substantially by considering only 10 (instead of 100) the equilibrium amount of H2 

feed. The effects of excess H2 for the reduction of Fe3O4 to Fe and the formation of VN from VO2 

are shown in Figure 6.7. This introduces an additional parameter that can be varied to optimize 

the thermodynamics of these reactions, but does also introduce a processing challenge associated 

with separating and heating the excess gas. 
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Figure 6.7 Increasing yields by shifting equilibrium 

Left – yield of Fe from the reduction of Fe3O4 as a function of the number of moles of H2 feed. 

Right – yield of VN for the reaction of VO2 with H2 and N2 as a function of the number of H2 

moles in the feed. Values > 1 or < 0 are a result of a spline fit. 

 

6.3.6 Non-equilibrium considerations 

Along with thermodynamics, the kinetics of each reaction in STAS are critical to the 

viability of the NH3 synthesis process, especially for reactions involving nitrogen. The corrosion 

of metal nitrides by H2O is a kinetically limited process for many nitrides below 1200 K, primarily 

associated with the need to break metal-nitrogen bonds that can have significant covalent 

character.179, 180 Similarly, the reduction of N2 for metal nitride synthesis requires the activation 

and cleavage of the triple bonded N2 molecule, which also poses a significant kinetic challenge. 

The difficulty in reducing N2 can result in metals becoming only partially nitridated, limiting the 

NH3 yield that can be achieved on a per cycle basis, as this quantity is directly linked with the 

amount N2 that can be fixed to the metal. Conversely, the strongly bound metal nitride species can 

be advantageous compared with what is captured in this equilibrium analysis because of the high 

metastability of metal nitrides compared with other compounds.32, 37, 46, 177 That is, there are likely 

nitrides that will not appear in a Gibbs energy minimization analysis that are still realized 

experimentally because of the prevalence of metastable (non-equilibrium) nitride species. While 
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the presumption of equilibrium is a significant approximation, these results do indicate the 

challenges associated with each reaction and which active materials show promise to be engineered 

into viable materials for this process.  

6.4 Discussion 

Solar thermochemical ammonia synthesis (STAS) is a potential route to producing NH3 

from air, water, and concentrated sunlight. In this work, we utilized the Materials Project database 

of density functional theory calculations and a recently introduced descriptor for the Gibbs energy 

of compounds to screen the thermodynamic viability of 1,148 metal nitride/metal oxide redox pairs 

for this process. Using the resulting thermochemical data, we established thermodynamic rationale 

for the viability of each reaction in the STAS cycle – hydrolysis of the nitride to oxide (NH3 

synthesis), reduction of the oxide by H2, and formation of the metal nitride from atmospheric 

nitrogen. Taking these reactions together, we identified a volcano-type dependence of the limiting 

Gibbs energy of reaction over the cycle with respect to the formation energy of the nitride and 

oxide. By considering an alternative cycle with just two reactions – hydrolysis and the direct 

formation of the nitride from the oxide – this volcano-type dependence can be removed and the 

limiting reaction energy depends instead on the relative stabilities of the oxide and nitride. Going 

beyond reaction energies, we performed a Gibbs energy minimization analysis for all 1,148 pairs 

and each of the four STAS-relevant reactions to generate a predicted reaction equilibrium product 

distribution and quantify the yields of each reaction for each pair. This analysis reveals pairs based 

on B, V, Fe, and Ce as yielding > 0.01 mol NH3 per cycle given equilibrium feeds for each reaction, 

none of which have been previously studied for STAS. The effects of shifting equilibrium by 

feeding excess reactant was also studied. This effect reproduces the viability of previously studied 

pairs based on Cr, Mo, and Mn, indicates the viability of a yet-unexplored pair based on W, and 
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enhances the predicted yields of pairs based on V and Fe. Importantly, this work focused 

exclusively on binary (monometallic) active materials, yet these compounds comprise only ~10% 

of known materials. Therefore, these results indicate cations that should form the basis of more 

complex materials (i.e., ternary and quaternary compounds) and establish key thermodynamic 

considerations for the STAS cycle. The thermodynamic screening approach used here is also 

readily adaptable to arbitrary thermochemical reactions and can be used to guide the synthesis of 

new materials or the identification of active materials for other redox processes. For example, the 

equilibrium yields for an arbitrary solid-state synthesis reaction from solid precursors in a specified 

atmosphere can be readily predicted using the methods described in this work.  

6.5 Methods 

Formation enthalpies and structures were retrieved for all binary nitrides and oxides in the 

Materials Project with < 20 atoms in formula (to avoid including defect structures), excluding 

azides and peroxides (due to their instability) and compounds with H, C, N, O, F, Cl, Br, I as 

cations (because they are unlikely to be solid at relevant temperatures).  

Gibbs formation energies, ΔGf were obtained as described in Ref. 177: 

 ∆𝐺𝑓(0 𝐾) = ∆𝐻𝑓(0 𝐾) ( 6.5 ) 

 

∆𝐺𝑓(𝑇 ≠ 0 𝐾) = ∆𝐻𝑓(0 𝐾) + 𝐺𝛿(𝑇) − ∑ 𝛼𝑖𝐺𝑖(𝑇)

𝑁

𝑖

 
( 6.6 ) 

 

ΔHf is the Materials Project formation enthalpy, Gδ is the descriptor described in Ref. 177, αi is the 

stoichiometric weight of element αi in the compound, and Gi is the Gibbs free energy of element, 

i. 
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Gibbs reaction energies, ΔGr were calculated as the stoichiometrically weighted difference 

between Gibbs formation energies for the products and reactants of each reaction in the STAS 

cycle: 

 

∆𝐺𝑟(𝑇) = ∑ 𝜈𝑖

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑖

∆𝐺𝑓,𝑖(𝑇) − ∑ 𝜈𝑖

𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑖

∆𝐺𝑓,𝑖(𝑇) 

( 6.7 ) 

 

where νi is the coefficient of species i that dictates 1 mol NH3 generated per cycle at equilibrium 

(Equations 6.1-6.4). 

The Gibbs energy minimization approach used to determine equilibrium product 

distributions and yields was adapted from Ref. 187. The Gibbs energy of the system, G, is the sum 

of the product of molar compositions, xi, and molar Gibbs energies, gi over N species in 

equilibrium: 

 

𝑮 = ∑ 𝑥𝑖𝑔𝑖

𝑁

𝑖

 

( 6.8 ) 

 

where the molar Gibbs energies, gi, are taken to be the Gibbs formation energies, ΔGf,i modified 

by the activities, ai. R is the gas constant and T is the temperature: 

 𝑔𝑖 = ∆𝐺𝑓,𝑖(𝑇) + 𝑅𝑇𝑙𝑛𝑎𝑖 ( 6.9 ) 

 

The activity of solid phases is taken to be 1. The activity of gas phases is taken to be the partial 

pressure, pi. 

 
𝑎𝑖 = {

1 𝑖𝑓 𝑠𝑜𝑙𝑖𝑑
𝑝𝑖 𝑖𝑓 𝑔𝑎𝑠

} 
( 6.10) 
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The partial pressure is determined as the product of the number of moles of a certain gaseous 

species, ni, and the total pressure, P, divided by the number of moles of gas in the system, ng. The 

total pressure, P = 1 atm: 

 𝑝𝑖 =
𝑛𝑖

𝑛𝑔
𝑃 ( 6.11 ) 

 
𝑛𝑔 = ∑ 𝑥𝑖

𝑚

𝑖

 𝑓𝑜𝑟 𝑚 𝑔𝑎𝑠𝑒𝑜𝑢𝑠 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 
( 6.12 ) 

 

Using a molar basis, the Gibbs function thus becomes: 

 

𝑮 = ∑ 𝑥𝑖 [∆𝐺𝑓,𝑖(𝑇) + 𝑅𝑇𝑙𝑛 (
𝑥𝑖

∑ 𝑥𝑖
𝑚
𝑖

)] +

𝑚

𝑖

∑ 𝑥𝑖∆𝐺𝑓,𝑖(𝑇)

𝑁−𝑚

𝑖

 

( 6.13) 

 

for m gaseous species and N-m solid species. G is then minimized subject to the constraint of molar 

conservation: 

 

∑ 𝛼𝑖𝑗𝑥𝑖

𝑁

𝑖

= 𝑏𝑗 

( 6.14 ) 

 

where αij is the number of moles of element, j, in species i and bj is the number of moles of element 

j in the feed. bj is dictated for each reaction by Equations 6.1-6.4 which yield 1 mol NH3 per cycle 

if ΔGr for all reactions = 0 (the equilibrium constants are equal to 1). 
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7 Descriptors for bonding in metal nitrides 

Much of the content in this chapter appears verbatim in the following manuscripts: 

C.J. Bartel, C.L. Muhich, A.W. Weimer, C.B. Musgrave, ACS Applied Materials & Interfaces, 8, 

28, 18550-18559 (2016) 

 

E. Arca, S. Lany, J.D. Perkins, C.J. Bartel, J. Mangum, W. Sun, A.M. Holder, G. Ceder, B. 

Gorman, G. Teeter, W. Tumas, A. Zakutayev, Journal of the American Chemical Society, 140, 12, 

4293-4301 (2018) 

 

W. Sun, C.J. Bartel, E. Arca, S. Bauers, B. Matthews, B. Orvañanos, B. Chen, L. Schelhas, M.F. 

Toney, W. Tumas, J. Tate, A. Zakutayev, S. Lany, A.M. Holder, G. Ceder (2018) [Under review] 

{arXiv:1809.09202} 

 

7.1 Abstract 

Exploratory synthesis in novel chemical spaces is the essence of solid-state chemistry. 

However, uncharted chemical spaces can be difficult to navigate, especially when materials 

synthesis is challenging. Nitrides represent one such space—where stringent synthesis constraints 

have limited the exploration of this important class of functional materials. Here, we employ a 

suite of computational materials discovery and informatics tools to construct a large stability map 

of the inorganic ternary metal nitrides. Our map clusters the ternary nitrides into chemical families 

with distinct stability and metastability, and highlights hundreds of promising new ternary nitride 

spaces for experimental investigation—from which we experimentally synthesized 7 novel Zn- 

and Mg-based ternary nitrides. By extracting the mixed metallicity, ionicity, and covalency of 

solid-state bonding from the DFT-computed electron density, we reveal the complex interplay 

between chemistry, composition, and electronic structure in governing large-scale stability trends 

in ternary nitride materials. In particular, the nature of bonding in aluminum nitride and zinc 

molybdenum nitrides are connected with the difficulty to hydrolyze the former and the propensity 

for the latter to undergo redox-mediated control of stability, crystal structure, and optoelectronic 
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properties and the inductive and reductive effects are shown to separate the space of stable ternary 

nitrides. 

7.2 Introduction 

Nitrides are an exciting space for materials design,186, 191, 192 as exemplified by state-of-the-

art nitride materials for solid-state lighting,193, 194 ceramic hard coatings,195 ammonia-synthesis 

catalysts,196, 197 permanent magnets,198 superconductors,199 superinsulators,200 electrides201 and 

more. The nitride (N3-) anion imparts unique electronic and bonding characteristics that are 

difficult to achieve in other chemical spaces, including hybridization of nitrogen 2p states with 

metal d states for useful optoelectronic and defect-tolerance properties,202 as well as the formation 

of strong metal-nitrogen bonds leading to structural stability and mechanical stiffness.203  

Despite much promise in the functionality of nitride materials, the nitrides are relatively 

underexplored, with fewer than 400 unique ternary metal nitrides catalogued in the Inorganic 

Crystal Structure Database (ICSD) in contrast to over 4,000 ternary metal oxides. The paucity of 

known nitrides can largely be attributed to the challenging requirements of nitride synthesis. 

Because the N2 molecule is so stable, solid-state nitrides generally have small formation energies, 

decompose at high-temperature, and must be synthesized in oxygen- and water-free atmospheres 

to achieve high purity.186, 192, 204, 205 These stringent synthesis constraints, coupled with the poor 

intrinsic stabilities of nitrides, impose significant risk on the exploratory synthesis of novel nitride 

materials.  

In our previous data-mining study of crystalline metastability,37, 177
 we found nitrides to be 

the most metastable class of chemical compounds—having the largest fraction of metastable 

phases, as well as the highest average energies above the ground-state phases. The unusual 

metastability of nitrides can be attributed to the cohesivity afforded by strong metal-nitrogen bonds 
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in the solid-state, which can kinetically ‘lock-in’ metastable nitride structures. This metastability 

and cohesivity of the nitrides has interesting implications for the hydrolysis of aluminum nitride 

for ammonia synthesis, the redox-mediated stabilization of zinc molybdenum nitrides, and the 

discovery and exploration of the ternary nitride space, each of which are discussed within this 

chapter. 

7.3 Results 

7.3.1 Covalent bonding and the kinetics of aluminum nitride hydrolysis 

Aluminum nitride (AlN) is a large, direct-band-gap material with a unique array of 

properties including high thermal conductivity (319 Wm−1K−1, theoretical at room temperature),206 

low electrical conductivity (resistivity >1013 Ω cm), high mechanical strength (>400 MPa), and a 

thermal expansion coefficient (4.3 × 10−6 K−1 at room temperature) near that of silicon.207 This 

remarkable combination of properties makes AlN highly valuable as a packaging material for 

integrated circuits and multichip modules. However, the propensity for AlN to hydrolyze and 

produce ammonia (NH3) precludes the use of water during its processing, mandating the use of 

organic solvents, such as isopropanol, which increases the cost and complexity of manufacturing 

AlN substrates.208 

AlN has also drawn interest as a metal-nitride redox material for NH3 production from 

steam as a renewable alternative to the energy- and fossil-fuel-intensive Haber-Bosch process with 

significantly lower environmental impact. Numerous research efforts have sought an atmospheric 

pressure alternative to the Haber-Bosch process, which operates at extremely high pressure (up to 

30 MPa)209 and consumes approximately 2% of the world’s energy production in the form of fossil 

fuels to both produce the H2 that eventually becomes incorporated into NH3 and drive the 
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technologically challenging conversion of H2 and N2 to NH3. In recent years, a strategy analogous 

to redox cycling for solar thermochemical water splitting169 has emerged for the production of NH3 

using solar energy to drive a thermochemical redox cycle where a metal oxide is reduced with 

hydrogen, carbon monoxide, or solid carbon in the presence of nitrogen to produce a metal nitride 

that is subsequently hydrolyzed by steam to reform the metal oxide and produce NH3.
173  

We have performed ab initio quantum chemical calculations on plausible pathways for the 

hydrolysis of the (11̅00) surface of wurtzite AlN. First, we considered six unique H2O adsorption 

geometries to identify the lowest energy configuration of dissociatively adsorbed H2O. H2O that 

dissociatively adsorbs to the AlN surface to form N−H* + Al−OH* is the most stable of those 

evaluated. Subsequently, reaction paths involving a second adsorbed H2O were considered for the 

formation of the NH2* intermediate. The NH2* intermediate forms via a surface hydroxyl-

mediated proton-relay mechanism, which is a surface Grotthuss-like proton relay210 where 

adsorbed hydroxyls act to mediate the proton relay. The formation of NH2* is accompanied by the 

dissociation of one of the three Al−N bonds at the NH* center. In this analysis, we also identify 

the dissociation of predominantly covalent Al−N bonds as the primary cause of the large barriers 

that results in the kinetic challenge of liberating nitrogen from AlN by hydrolysis in the case of 

thermochemical NH3 generation. From the NH2* intermediate, we find a similar Grotthuss-like 

mechanism for NH3* formation. During the proton migration through the proton relay and the 

Al−N bond dissociation step, we predict that a N vacancy is formed, which is subsequently filled 

by a surface O. In the case of low H2O coverage, this step is partially concerted where the N 

vacancy forms transiently as it is concomitantly filled by an O surface atom and NH3 forms. We 

elucidate a similar mechanism for the case of additional water present on the AlN surface. In the 
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case of higher H2O coverage, the NH3 generation step involves the formation of an intermediate 

N vacancy and NH3*, where the N vacancy is subsequently filled by a surface O atom. 

We calculate activation barriers for the overall hydrolysis reaction to be 330 or 359 kJ/mol 

for minimal water coverage and additional water coverage cases, respectively (Figure 7.1). These 

results are corroborated by previous experimental work that demonstrated that little or no 

conversion of AlN to NH3 occurs below 950 °C.211 In the elucidation of this mechanism and the 

associated energetics, we present an enhanced understanding of the behavior of AlN and, more 

broadly, metal nitrides when exposed to water, thereby oxidizing and liberating nitrogen as NH3. 

These results have important implications for designing processes that either avoid oxidation by 

hydrolysis (for example, in the case of processing AlN powder for thermal-management 

applications) or for designing materials that possess favorable thermodynamics and kinetics for 

solar thermal redox processes using metal nitrides to efficiently generate carbon-free NH3. In the 

search for metal nitrides with fast-oxidation kinetics for carbon-free NH3 synthesis, it is important 

to consider the metal−nitrogen bond strength, which can be correlated to the metal−oxygen bond 

strength of the accompanying oxide. The mechanism we predict for AlN hydrolysis involves 

nitrogen liberation in the form of NH3 and large activation barriers associated with the dissociation 

of mostly covalent Al−N bonds, which explains the slow experimentally observed hydrolysis 

kinetics. However, a metal nitride with metal−nitrogen bonds with less covalent character will 

result in lower activation barriers to NH3 generation and thus improved hydrolysis kinetics. 
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Figure 7.1 Rate-limiting step of AlN hydrolysis 

Calculated schematic potential energy surfaces for NH2* formation from two neighboring NH* 

sites with and without proton-transfer mediation by an OH*; NH2* formation mechanism where 

two sequential proton relay steps, each involving two sequential proton transfers, are mediated 

by the OH* and NH2* formation mechanism in the absence of surface OH*. Proton transfer 

mediated by OH* substantially decreases the activation energy for both the proton “hop” to a 

vacant N site (TS1) and for the proton transfer to NH* to form NH2* (TS2), demonstrating the 

ability of OH* to catalyze proton transfers and, specifically, NH2* formation. Light blue is Al, 

purple is N, red is O, white is H. 

 

7.3.2 Redox-mediated stabilization in zinc molybdenum nitrides 

The success of nitrides semiconductors in light-emitting devices has stimulated interest in 

the design and discovery of novel nitride materials for optoelectronic applications and other 

functionalities. In addition to their potential application, nitrides are also interesting from the 

perspective of fundamental science: they are often metastable materials due to the inherent stability 

of the triple bond in the N2 molecule and to the strength of the metal−nitrogen bonds. 

Of particular interest from both applied and basic perspectives are molybdenum-based 

nitrides. In solid-state chemistry, Mo-based nitrides can form covalent, ionic, or metallic 
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compounds, depending on the Mo oxidation state. In ternary molybdenum nitrides, bonding 

depends on the electronegativity of the second cation, M. Highly electropositive elements 

(electronegativity EN ≤ 1) tend to form ionic nitridomolybdates with Mo formally in a +VI 

oxidation state,212 for example, M3MoN4 with M = Ca, Sr, Ba alkaline-earth metals. The electron 

donation from such electropositive elements stabilizes the [MoN4]
6− units in monomeric, dimeric, 

or oligomeric forms. The less electropositive elements (1.55 ≤ EN ≤ 2.22) tend to form more 

covalent compounds with MMoN2 stoichiometry,213 where M = Fe, Co, or Mn, and Mo is formally 

in a +IV oxidation state. Transition-metal elements (Fe, Co, Ni) and Mo can also form M3Mo3N 

interstitial nitride compounds, which are metallic.214 

In other areas of chemistry, the ability of Mo to switch between different oxidation states 

enables its participation in various catalytic processes, in contrast to other transition-metal 

elements such as Cr or W.215
 For example, several organisms use a Mo-containing enzyme for the 

N2 fixation process.216 Similarly, Mo active sites cycle from +IV to +VI oxidation states in the 

formate dehydrogenase (FDH) enzyme, relevant to the CO2 reduction process.217 Mo-based 

nitrides have also been shown to have superior performance in both oxygen reduction reactions 

(ORRs) and hydrogen evolution reactions (HERs), with the Mo redox flexibility being pivotal for 

these electrocatalytic processes.218, 219 

Here, we report on the discovery of nitrides in the Zn−Mo−N chemical space, whose 

synthesis was facilitated by the ability of Mo to accommodate different oxidation states and switch 

between them. Despite the abundance of the elements, the Zn−Mo−N ternary system has not been 

reported in the literature. Ab initio calculations resulted in the prediction of two new compounds 

with ZnMoN2 and Zn3MoN4 stoichiometries in this chemical space. Experiments show that these 

two compounds and the metastable alloys at intermediate compositions form in the wurtzite-
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derived crystal structure. Retaining the same wurtzite-derived crystal structure across the 

ZnMoN2−Zn3MoN4 alloy composition is possible due to the ability of Mo to switch between +VI 

and +IV oxidation states and the stability of a covalent Zn−N framework. We also show that the 

optoelectronic properties of Zn−Mo−N vary dramatically as a function of composition: the 

Zn3MoN4 is resistive and has a relatively wide bandgap, whereas the ZnMoN2 is a highly optically 

absorbing and electrically conductive material. 

In order to get chemical insight into the bonding character of the calculated Zn3MoN4 

(Pmn21) and ZnMoN2 (P63mc) materials, we performed a Crystal Orbital Hamilton Population 

(COHP)220 and density-derived charge analysis of these compounds221 (Figure 7.2). In addition, 

we compared these COHP analysis results to the chemically related Sr3MoN4 (Pbca) and MnMoN2 

(P63/mmc) materials (Figure 7.3) to understand the role of Zn in the stabilization of these new 

nitridomolybdates. 
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Figure 7.2 Bonding analysis in Zn-Mo-N 

Crystal Orbital Hamilton Population (COHP) analysis partitioned by pairwise interactions 

Zn3MoN4 (Pmn21) and ZnMoN2 (P63mc). In each plot, bonding and antibonding interactions 

appear on the right and left side of the vertical black line, respectively. εb is the center (first 

moment) of the total bonding distribution, and Σ is the net bond energy. 

 

As shown in Figure 7.2, the bonding states are qualitatively similar between the Zn3MoN4 

in Pmn21 structure and ZnMoN2 in P63mc structure, with substantial bonding present for both 

Mo−N and Zn−N at similar energies. While the covalent bonding is deeper for both Zn−N and 

Mo−N in ZnMoN2 compared with Zn3MoN4, the extent of the covalent bonding (net bonding area 

(Σ)) is greater in Zn3MoN4, primarily due to increased covalency of Zn−N interactions. The layered 

tetrahedra [ZnN4]/[MoN4] of Zn3MoN4 thus enable increased overall covalency for Zn−N and 

increased chemical hardness compared with the alternating [ZnN4] tetrahedra and [MoN6] 

octahedra of the ZnMoN2 arrangement. Zn3MoN4 also exhibits increased charge transfer between 

cations and nitrogen anions compared with the metallic ZnMoN2, which we quantify by analyzing 

the ratio of summed bond-orders to density derived electrostatic charges. This is to be expected as 

the density-derived charge increases by ∼1 eV for Mo in Zn3MoN4 compared with ZnMoN2, 

aligning with the increase in oxidation state from +IV to +VI. The favorable mixed covalency 

bonding arrangement of the Zn3MoN4 structure leads to a significant bandgap (compared with the 
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electrically conductive ZnMoN2) and retention of the wurtzite-derived structure even as the cation 

fraction of Zn, fZn, is decreased. The structural transition from Pmn21 to P63mc would require 

significant rearrangement: from [ZnN4] and [MoN4] tetrahedra in Zn3MoN4 (Pmn21), to layered 

[ZnN4] tetrahedra and [MoN6] octahedra in ZnMoN2 (P63mc). Thus, as fZn is decreased from 0.75 

to 0.50 and the thermodynamic driving force for forming Mo octahedra is increasing, the 

metastable wurtzite-derived structure remains favorable for Zn bonding and is kinetically 

preserved due to the reconstructive barrier toward forming the ordered layers of the ZnMoN2 

structure. 

To gain insights into the chemical and structural features of the Zn3MoN4-ZnMoN2 alloys, 

and the role of Zn in stabilizing these materials, we analyzed the computationally predicted 

electronic structure of the end-members and related ternary nitridomolybdates that do not contain 

Zn. Specifically, we analyzed two isoelectronic structures, Sr3MoN4 and Zn3MoN4, for the high 

Mo oxidation state, and two isoelectronic structures, MnMoN2 and ZnMoN2, for the lower 

oxidation state, with electronegativity being 0.95, 1.65, and 1.55 for Sr, Zn, and Mn, respectively. 

The results are shown in Figure 7.3. In contrast with Sr3MoN4, Zn3MoN4 is found to prefer the 

Pmn21 symmetry to the Pbca symmetry. The Pmn21 structure enables Zn3MoN4 to gain an 

additional 7% in net bonding area compared with Pbca, most of which can be attributed to 

increased Zn-N interactions. Sr3MoN4 does not benefit as significantly from added Sr-N 

interactions in the Pmn21 structure and slightly favors the Pbca symmetry within PBE+U. More 

than 99% of the covalent bonding contribution in Sr3MoN4 arises from Mo-N bonding interactions, 

in contrast to Zn3MoN4, where bonding comprises ~25% Zn-N and ~75% Mo-N in the Pmn21 

structure (quantified by bonding area below the Fermi energy). The ability for Zn to adopt a low 

oxidation state (+II) but still participate significantly in M-N bonding alongside a transition metal 
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(in this case Mo) distinguishes it from the highly ionic bonding of the alkali-earth elements (e.g., 

Sr) and makes it possible for this element to stabilize the Mo in the +VI oxidation state—despite 

its electronegativity being substantially higher than that of alkali-earth metals and relatively 

comparable to that of Mo. In contrast with MnMoN2, ZnMoN2 is found to prefer the P63mc 

symmetry to the P63/mmc symmetry. Interestingly, the net covalent bonding area increases 

significantly for MnMoN2 going from P63/mmc to P63mc, yet this is not enough to stabilize the 

P63mc structure. This is likely attributed to increased chemical hardness of the Mo-N bonding 

states for the P63/mmc structure as the Mo-N bonding center shifts down ~1 eV compared with 

the P63mc structure. Similarly to the Zn3MoN4 case, the Zn-N interaction is pivotal in stabilizing 

the P63mc structure, which is not preferred for isoelectronic MnMoN2.  

 

Figure 7.3 Bonding for alternative cations in X-Mo-N 

Crystal Orbital Hamilton Population (COHP) analysis partitioned by pairwise interactions for 

ground-state polymorphs of Zn-based ternary nitridomolybdates introduced in this work 

(Zn3MoN4 – Pmn21; ZnMoN2 – P63mc), compared with the Sr- and Mn-based nitrides of the 

same stoichiometry. In each plot, bonding and antibonding interactions appear on the right and 

left side of the vertical black line, respectively. 

 

7.3.3 New stable ternary nitrides 

High-throughput computational materials science has emerged as a new paradigm for 

materials discovery,104, 222 helping to guide experimental synthesis efforts across broad and 
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uncharted chemical spaces. Here, we employ a suite of computational materials discovery132, 133, 

223, 224 and informatics26, 225 tools to survey, visualize, and most importantly, explain stability 

relationships across the inorganic ternary metal nitrides. Our investigation proceeds in three steps. 

First, we use crystal structure prediction algorithms to probe the energy landscapes of previously 

unexplored ternary nitride spaces, surveying novel nitride compounds over 962 M1-M2-N spaces. 

We predict a large list of new stable and metastable ternary nitrides, significantly extending the 

known thermochemical data in this space. Guided by these predictions, we experimentally 

synthesize 7 new Zn- and Mg-based ternary nitrides, and identify hundreds of promising new 

ternary nitride systems for further exploratory synthesis. 

Much like how Mendeleev’s Periodic Table revealed the underlying structure of the 

elements, an effective visual organization can reveal hidden relationships and chemical families 

within the ternary metal nitrides. Assisted by unsupervised machine learning algorithms, we next 

clustered together metals that have a similar propensity to form stable or metastable ternary 

nitrides. We used these clustered nitride families to construct a large and comprehensive stability 

map of the inorganic ternary metal nitrides. Not only does our map illustrate broad overarching 

relationships between nitride chemistry and thermodynamic stability, it further inspires us to 

rationalize these trends from their underlying chemical origins.226, 227 To do so, we extracted from 

the DFT-computed electron density the mixed metallicity, ionicity, and covalency of solid-state 

bonding—providing new chemical features to interpret the electronic origins of nitride stability. 

We show that the nitrogen anion can be surprisingly amphoteric in the solid-state, usually acting 

as an electron acceptor in nitrogen-rich nitride ceramics, but remarkably, sometimes serving as an 

electron donor (relative to competing binary nitrides) to stabilize nitrogen-poor metallic nitrides. 
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Beyond the nitrides, there remain many other unexplored chemical spaces awaiting 

experimental discovery. Our computational approach here can be further applied to these 

uncharted chemical spaces, not only to predict and synthesize new compounds, but also to 

visualize general trends over broad compositional spaces—providing maps and chemical rules to 

help experimental chemists more rationally navigate exploratory synthesis at the frontier of solid-

state chemistry. 

In this work, we explore ternary nitrides over a 50×50 M1-M2-N composition space, where 

M consists of the 50 most common cations in the known nitrides. These cations broadly sample 

the periodic table; spanning over the alkali, alkaline earth, transition, precious, and post-transition 

metals, as well as the main group elements B, C, Si, S and Se. Within this composition matrix, 

known ternary nitride compounds exist over only 303 M1-M2-N spaces (~25%). To fill in the 

missing spaces, we first conducted a high-throughput computational search for novel ternary 

nitride compounds. Previous computational searches for ternary nitrides have been constrained to 

either limited composition spaces,213, 228, 229 or specific crystal structures.230-232 Here, we broadly 

sample over both composition and crystal structure, using a data-mined structure predictor 

(DMSP)233 to perform rational chemical substitutions on the known ternary nitrides, creating 

unobserved but reasonable novel ternary nitride phases in silico. 

In a previous work, we trained a DMSP specifically for nitrides discovery, by data-mining 

which chemical substitutions in the solid-state pnictides are statistically probable.46 We found a 

substitution matrix trained on a pnictides training set to be more predictive for nitride discovery 

than a substitution matrix trained over all inorganic solids, which otherwise becomes biased 

towards ionic substitutions that are common in the more thoroughly-explored oxides and 

chalcogenides. In general, the substitution relationships in oxides are not applicable to nitrides due 
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to differences in structure-types, elemental coordination, and metal redox chemistry for O2- vs. N3- 

anions. Here with the pnictides-trained DMSP, we extrapolate the 340 known ternary nitrides (213 

stable + 127 metastable) to 6,000 hypothetical ternary nitride structures, sampled over 962 ternary 

M1-M2-N spaces. 

Using density functional theory (DFT), we computed the formation enthalpies of these 

DMSP-generated nitrides, which are then used to probe the stability landscapes of unexplored 

ternary nitride spaces. We evaluate the phase stability of these candidate structures leveraging the 

tools and precomputed data from the Materials Project database.16, 118 Table 7.1 summarizes the 

results from this screening. Notably, we predict 203 new stable ternary nitride compounds, nearly 

doubling the 213 previously-known stable ternary nitrides. These stable ternary nitrides span 277 

ternary M1-M2-N spaces, 92 of which were not previously known to contain any stable ternary 

compounds. We have made the structures and energies of the newly predicted nitrides freely 

available on the Materials Project for readers interested in further investigation. We note that a 

small subset of these stable ternary nitrides have been identified in previous computational 

searches,213, 228-232 which we have reconfirmed here. 

Permuting chemistry and crystal structure on the known ternary nitrides offers a 

computationally efficient probe of formation energies over broad ternary nitride compositions. 

One limitation of the DMSP is that if the structural prototype of a ground-state nitride has never 

been observed before, then the DMSP cannot predict it. Nevertheless, because most ternary nitride 

spaces are unexplored, the prediction of any ternary nitride structure with negative formation 

energy in an otherwise empty chemical space implies that the true ground-state structures and 

compositions must be even lower in energy—therefore highlighting that ternary space as a 

compelling target for further theoretical and experimental investigations. 
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A large list of predicted compounds is difficult to navigate and does not provide an intuitive 

picture of the structural form of a chemical space.234 When Mendeleev constructed the Periodic 

Table, he produced a conceptual framework to orient our understanding of the relationships and 

trends between the chemical elements. In higher-order chemical spaces—binaries, ternaries, etc.—

these trends become increasingly challenging to extract by hand. Here, we elucidated the structural 

form of the ternary nitride space using hierarchical agglomeration235 to cluster together metals with 

a similar propensity to form either stable or metastable ternary nitrides. In order to capture both 

large-scale stability trends, as well as local chemical relationships, we built a multi-feature distance 

metric that considers for each ternary nitride whether it is stable or metastable, its formation 

energy, and which periodic group the metal lies in. These multiple features represent mixed data-

types (nominal, continuous and ordinal, respectively), which we combined into a single distance 

metric using Gower’s method.236 

The agglomeration algorithm clusters elements hierarchically by minimizing this multi-

feature distance matrix. The resulting dendrogram provides a phenotypic representation of the 

nitride chemical families, grouped by their thermochemical stabilities. With this 1D ordering of 

metals, we produced a clustered heat map of the inorganic ternary metal nitrides, shown in Figure 

7.4, colored by the stability of the lowest formation-energy ternary metal nitride in each M1-M2-

N chemical space. Our clustering algorithm parses the ternary nitrides map into distinct regions of 

stability (blue), metastability against binaries (green), and metastability against elements (red)—

highlighting stable ternary nitride spaces that are promising for further exploratory synthesis, and 

metastable spaces where successful synthesis may require non-equilibrium synthesis routes. An 

interactive version of the map, with ternary phase diagrams and compound stability information 

for each M1-M2-N system, is available at https://wenhaosun.github.io/TernaryNitridesMap.html. 
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Table 7.1. Statistics of the known and predicted ternary metal nitrides, categorized by the 

thermodynamic stability of ternary M1-M2-N spaces, and specific ternary AxByNz phases within 

those spaces. All spaces are categorized by the Hf of the lowest formation-energy ternary nitride. 

Metastable phases are categorized by their energy above the convex hull, Ehull. 

 

Ternary M1-M2-N Spaces 

    

 

Previous New Portion 

 

    

 Systems with Stable Ternary Nitrides (Blue) 189 92 281 (29%)  

 - Stable Alkali-Metal-Nitride Systems 124 76 200  

 - Stable Metal-Metal-Nitride Systems 65 16 81  

 Metastable vs. Stable Binaries,   Hf < 0 (Green) 98 322 420 (44%)  

 Metastable vs. Elements,  Hf > 0 (Red) 20 241 261 (27%)  

       

 

Ternary AxByNz Phases 

    

 

Previous New Portion 

 

    

 Stable Ternary Phases 213 203 416  

 Metastable,  EHull < 70 meV/atom 39 36 75  

 Metastable,  EHull < 200 meV/atom 85 175 260  

 Metastable: Stabilizable ΔμN < +1 eV/N 3 92 95  
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Figure 7.4 Stability map of ternary nitrides 

Map of the inorganic ternary metal nitrides, colored by the thermodynamic stability of 

the lowest formation-energy ternary nitride. Blue: stable ternary nitrides on the convex 

hull; Green: ternaries with Hf < 0 but metastable with respect to binaries; Red: 

ternaries metastable with respect to elements, Hf > 0. Triangles represent ternary nitride 

systems with entries in the ICSD. White spaces indicate that the DMSP did not find 

probable chemical substitutions to create a structure in that system. Elements are 

clustered on multiple features to indicate their propensity to form stable or metastable 

ternary nitrides. These clustered elements are represented phenotypically by a 

dendrogram, which parses the ternary nitrides map into regions of distinct stability and 
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metastability. An interactive version of the ternary nitride map, with phase diagrams 

and compound stability information for each ternary system, is available at 

https://wenhaosun.github.io/TernaryNitridesMap.html. 

 

 

Thermodynamically stable ternary nitrides are relatively rare, comprising only a quarter of 

the map, which is likely a confounding factor in the difficulty of ternary nitride discovery. Alkali 

and alkaline earth ternary nitrides (Alk-Me-N) represent a majority of the stable ternary nitride 

spaces (200/281 = 71%), whereas stable non-alkali metal-metal-nitrides (Me-Me-N) are less 

common, with small islands of stability scattered amongst the mixed transition- and precious-metal 

nitrides. 

The clustered dendrogram distinguishes between three major groups of alkali/alkaline earth 

elements in their ability to form ternary nitrides. The first group is composed of Li, Ca, Sr, and Ba, 

which form ternary nitrides with negative Hf with all elements, most of which are 

thermodynamically stable. The alkali ions Na, K, Rb, and Cs also form stable ternaries with early 

and first-row transition metals, although they generally react unfavorably (ΔHf > 0) with precious 

metals and metalloids. The clustering algorithm places Mg and Zn as intermediate between these 

two groups. Although one might anticipate Mg to be chemically similar to Ca, Sr and Ba, Mg is 

less reactive than the other alkaline earth metals—forming ternaries less exothermically and 

forming fewer stable ternary nitrides overall. For a transition metal, Zn is relatively electropositive, 

meaning it can react like an alkali when coupled with early transition metals; but when coupled 

with late- and post-transition metals, Zn-containing ternaries generally have positive formation 

energy. 

Of the 281 spaces with stable ternary nitrides, the 92 indicated on the map by a magenta 

box do not have any ternary nitride entries in the current ICSD, and therefore represent new 

theoretical predictions. While most stable ternary nitrides containing Li, Ca, Ba, and Sr have been 
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synthesized experimentally, ternary nitrides with Na, K, Rb, and Cs have not been as readily 

explored. This may be because Na, K, Rb, and Cs do not form stable binary nitrides, meaning that 

their nitride precursors for solid-state synthesis are less conveniently available. Nevertheless, these 

compositions are promising for further experimental synthesis. Scandium and yttrium form several 

new stable ternaries, with some of the most negative formation energies on the map. However, the 

large exothermic formation energies of binary ScN and YN renders most Sc- and Y-based ternary 

nitrides to be metastable against decomposition, to the extent that the clustering algorithm 

categorizes Sc and Y as independent chemistries from the rest of the transition metals. 

Interestingly, we predict the precious metals Ir, Ru, Re, Os to form stable ternary nitrides when 

synthesized with most alkali and alkaline earth metals, representing new families of stable ternary 

metal nitrides that await experimental discovery. 

7.3.4 Experimental synthesis of predicted ternary nitrides 

From our predictions, we identified Zn- and Mg-based ternary nitrides as compelling 

target spaces for novel materials synthesis. Using magnetron sputtering, we successfully 

synthesized crystalline nitride thin-films in 7 new ternary nitride spaces: Zn-Mo-N, Zn-W-N, Zn-

Sb-N, Mg-Ti-N, Mg-Zr-N, Mg-Hf-N, Mg-Nb-N. Concurrently, we conducted an unconstrained 

DFT search of ground-state structures and compositions using Kinetically Limited 

Minimization,162 with resulting compositions, structures and formation energies tabulated in 

Figure 7.5a. As illustrated in Figure 7.5b, these Zn-based ternaries adopt a wurtzite-derived 

structure, whereas the Mg-based ternaries form in a rock salt-derived structure. Figure 7.5c shows 

experimental synchrotron X-ray diffraction (XRD) patterns of these novel synthesized nitrides 

together with reference patterns for rock salt (NaCl) and wurtzite (ZnS), adjusted to lattice 

parameters of a=4.5 Å and a=3.3 Å/c=5.4 Å to approximate the average peak positions in the 
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experimental patterns. The experimental XRD patterns match the peak positions and intensities 

of these high-symmetry structures well, with differences in relative intensities arising from both 

textured growth of the thin films, as well as different scattering powers within the unit cell. 

Notably, we do not observe peak-splitting relative to the ideal wurtzite or rocksalt structures, 

suggesting disorder on the cation sites, which is not uncommon for nitrides deposited at low and 

moderate temperatures.237 Historically, the rate of discovering new ternary nitride M1-M2-N 

spaces has averaged ~3.3 per year, as illustrated in Figure 7.5d. Our rapid experimental realization 

of novel nitrides in 7 previously unexplored M1-M2-N spaces validates the predictions from the 

map, bolsters confidence in the 85 other predicted spaces with stable nitrides, and highlights the 

valuable role of computational materials discovery in accelerating exploratory synthesis in novel 

chemical spaces. 
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Figure 7.5 Experimental confirmation of predicted nitrides 

a.) Seven new Zn- and Mg- based ternary nitrides, with structures predicted by unconstrained 

structure search, and their corresponding formation energies. b.) Mg-based ternary nitrides are 

deposited in rocksalt-derived structure (left), and Zn-based ternaries in a wurtzite-derived 

structure (right). c.) Synchrotron measured XRD patterns of new Zn- and Mg-based ternary 

nitrides, shown with reference diffraction patterns for lattice parameter-adjusted wurtzite and 

rocksalt. Q relates to diffraction angle (θ) and incident wavelength (λ) by Q = (4π/λ)sin(θ) and 

λ = 0.9744 Å d.) Discovery histogram for new ternary nitride spaces, based on entries as 

catalogued in the ICSD. 

 

7.3.5 Metastable ternary nitrides 

Ternary nitrides that are metastable against decomposition into binary or elemental phases 

comprise the majority (71%) of the surveyed spaces. Most of the metastable nitrides with Hf < 0 

(green) are mixed-transition metal nitrides, whereas mixed precious/post-transition metal nitrides 

typically have Hf > 0 (red). Although metastable nitrides should, in principle, be difficult to 

synthesize, ternary nitrides have been experimentally realized in 118 of the computed metastable 
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spaces, shown in Figure 7.4 by the inverted triangles. In our previous data-mining study of 

crystalline metastability,37, 238 we found nitrides to be the most metastable class of chemical 

compounds—having the largest fraction of metastable phases, as well as the highest average 

energies above the ground-state phases. The unusual metastability of nitrides can be attributed to 

the cohesivity afforded by strong metal-nitrogen bonds in the solid-state, which can kinetically 

‘lock-in’ metastable nitride structures. 

By formulating rational synthesis strategies to these metastable nitrides, we can expand the 

design space of functional nitride materials beyond equilibrium phases and compositions. One 

thermodynamic route to metastable nitrides is via nitrogen precursors that are less strongly bound 

than triple-bonded N2
46

 such as ammonia,186 azides,239 or high-pressure supercritical N2.
240 As an 

extreme example, plasma-cracked N2 can yield atomic N precursors with nitrogen chemical 

potentials up to ΔμN ≈ +1 eV/N.241, 242 Thin-film synthesis from these precursors can form 

remarkably metastable nitrides, such as SnTi2N4 (metastable by 200 meV/atom),243 or ZnMoN2 in 

a wurtzite-derived structure (metastable by 160 meV/atom).162 In Figure 7.4, we use orange boxes 

to highlight 95 spaces with metastable ternary nitrides predicted to be stabilizable under elevated 

nitrogen chemical potentials of ΔμN < +1 eV/N. 

Metastable ternary nitrides can also be obtained via soft solid-state synthesis routes; for 

example, delafossite CuTaN2 is metastable by 127 meV/atom, but can be synthesized by ion-

exchange metathesis of Cu+ for Na+ from the stable NaTaN2 phase.244 Amorphous precursors can 

also be a route to ternary nitrides that are metastable with respect to phase separation, whereby an 

atomically homogeneous amorphous precursor with the target ternary nitride composition is gently 

annealed to a lower energy, but still metastable, target crystalline phase.153, 245, 246 On a separate 

note, decomposition of metastable ternary nitrides can also result in interesting functionality; for 
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example, the segregation of metastable Si-Ti-N alloys at high temperature results in complex 

TiN/Si3N4 layered heterostructures with superior mechanical properties for tribological 

applications.247 

7.3.6 Thermochemical decomposition into competing binaries 

By clustering the ternary nitrides space, we constructed a map that reveals broad 

overarching relationships between nitride chemistry and thermodynamic stability. We found alkali 

and alkaline earth ternary nitrides (Alk-Me-N) to comprise the majority of the stable ternary 

nitrides; whereas non-alkali metal-metal-nitrides (Me-Me-N) were generally found to be 

metastable with respect to phase separation — albeit with some curious exceptions. 

We can achieve some insights towards this by considering the geometric requirements of 

thermodynamic stability. A ternary nitride is stable if it is lower in free-energy than any 

stoichiometric combination of its competing ternaries, binaries, or elemental constituents. In 

formation energy versus composition space, this stability requirement manifests geometrically as 

a convex hull, illustrated for a ternary A-B-N space in Figure 7.6a. We can therefore rationalize 

the stability of a ternary nitride from 1) a thermochemical perspective—if a ternary nitride is lower 

in energy than its competing binary nitride(s), and 2) from a solid-state bonding perspective—how 

two metals interact electronically within a ternary nitride to raise or lower the bulk lattice energy 

of the ternary compound. 

To quantify the thermochemical propensity of a ternary nitride to decompose into its 

competing binaries, we first define a feature named the ‘depth of the binary hull’, referring to the 

lowest energy binary nitride in a binary Me-N space. This binary hull depth, illustrated in Figure 

7.6a by a black dashed line, serves as a proxy for the strength of the pairwise metal-nitrogen bond 

in the solid-state. We note that in some binary nitride spaces, the lowest formation-energy binary 
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nitride has positive formation energy—for example, Cu3N in the Cu-N hull, indicating that Cu3N 

decomposes to Cu + N2 under ambient conditions. 

Figure 7.6b shows for each element how many stable ternary spaces it forms in, versus the 

‘depth’ of the binary hull. A volcano plot emerges, where elements that have either shallow or 

deep binary nitride hulls tend not to form many stable ternary nitrides, whereas elements that have 

intermediate binary nitride hull depths (around −0.8 eV/atom) form stable ternary nitrides most 

readily. From a thermochemical perspective, when the binary hull is deep, there is a greater 

propensity for a ternary metal nitride to phase-separate into its competing low-energy binary 

nitrides. On the other hand, a shallow (or positive) binary hull depth indicates intrinsically weak 

metal-nitrogen bonding; meaning ternary nitride formation is probably unfavorable in the first 

place. Intermediate binary hull depths indicate favorable metal-nitrogen bonding, but not enough 

for decomposition of a ternary nitride into its binary constituents, offering a compromise between 

these two competing effects. 
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Figure 7.6 Thermodynamic perspective of ternary nitride stability 

a.) 3-D projection of a convex hull in a ternary A-B-N space, where the vertical axis is formation 

energy and the horizontal triangular plane is composition. The stability or metastability of a 

ternary nitride compound (blue circle) is governed by its propensity to decompose into 

competing binaries (red lines), as well as by its lattice energy arising from the electronic 

interaction of two metals in the ternary nitride (blue arrows). b.) Scatterplot showing the number 

of stable ternary systems each metal appears in, plotted against the depth of the binary hull, 

which corresponds to the formation energy of the lowest-energy binary nitride in the M-N binary 

space. Eye-guides for the volcano trend provided by dashed lines c.) Chord diagram showing 

the frequency of inter-group and intra-group bonding relationships of stable ternary nitrides. 

 

In Figure 7.6b, the alkali and alkaline earth metals stand out on the volcano – forming 

stable ternaries more readily than other elements with similar binary hull depth. While the volcano 

plot captures the propensity of individual metals to decompose from a ternary nitride into their 

corresponding binaries, it does not capture how two metals influence each other electronically 

within the ternary nitride, which governs the bulk lattice energy of the ternary compound. Figure 

7.6c displays in a chord diagram which periodic groups the two metals A and B in a stable ternary 
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come from, where the width of each chord indicates the frequency of stable ternary spaces with 

that combination. Our chord diagram shows that the two metals in a ternary compound tend to 

originate from different groups across the periodic table, where one of the elements is often an 

alkali or alkaline earth metal. This observation is consistent with heuristics arising from Hard-

Soft/Acid-Base (HSAB) theory,248 which suggests that ternary nitrides form most readily when 

the two acids (cations in ternary nitrides) have different HSAB character.205  

7.3.7 Electronic origin of ternary nitride stability 

Qualitatively, we expect differences in electronegativity between A, B and N to redistribute 

the electron density into different bonds, which in the solid-state, may have mixed metallic, ionic 

and covalent character. Inspired by the role of ‘conceptual DFT’ in rationalizing the reactivity of 

atoms and molecules,226, 227 we constructed new semi-quantitative schemes to extract the nature of 

solid-state bonding from the DFT-computed electron density. We computed ionic character of 

each ion from the ratio of the stoichiometrically-normalized Net Atomic Charges (NAC) to the 

Summed Bond Order (SBO) obtained from the Density Derived Electrostatic and Chemical 

(DDEC) approach.221 We use Crystal Orbital Hamiltonian Population calculations220 to decompose 

the integrated bonding energies of metal-metal interactions (A-A, A-B, B-B) as metallicity,249 and 

non-metal interactions (A-N, B-N, N-N) as covalency. Using these features, we obtained data-

driven insights into how this mixed solid-state bonding character influences ternary nitride 

stability. 

We visualize our results on the classic metallic-ionic-covalent axes of van Arkel 

triangles250 shown in Figure 7.7a, using hexagonal-binned histograms to represent the scatter 

distribution on these triangles. From Figure 7.7a, we see that stable Alk-Me-N ternaries tend to 

exhibit greater ionicity and metal-nitrogen covalency, whereas stable Me-Me-N ternaries generally 
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have higher metallicity. This distinction becomes even more apparent when the triangles are 

further separated by nitrogen-rich and nitrogen-poor nitrides, where this nitrogen excess or 

deficiency is compositionally referenced against the deepest-hull binary nitrides. For example, the 

formation of ‘nitrogen-rich’ Ca2VN3 from Ca3N2 and VN requires excess nitrogen, which is 

accompanied by the formal oxidation of vanadium from the binary nitride V3+N to the ternary 

Ca2V
5+N3. On the other hand, formation of ‘nitrogen-poor’ compositions occur by nitrogen release, 

such as the formation of Co2Mo3N from CoN and MoN. 

Stable Alk-Me-N are mostly nitrogen rich, whereas most stable Me-Me-N are nitrogen 

poor. This dichotomy between nitrogen-rich and nitrogen-poor ternary nitrides can largely be 

rationalized by how electron density redistributes between the nitrogen anion and the more 

electronegative metal during a reaction from the deepest-hull binaries to a stable ternary nitride. 

Figure 7.7b shows the changes in ionicity of the nitrogen anion, ΔδN, and the more electronegative 

metal cation, ΔδB, during such a reaction. The formation of nitrogen-rich nitrides typically involves 

B-metal oxidation and nitrogen reduction, whereas the formation of nitrogen-poor nitrides shows 

the opposite, exhibiting metal reduction and nitrogen oxidation. We emphasize that this nitrogen 

oxidation and reduction is measured relative to the nitrogen anion from the corresponding binary 

nitrides, not to the N2 molecule. 
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Figure 7.7 Rationalizing nitride stability through bonding analysis 

a.) Metallicity, ionicity, and covalency of the stable ternary nitrides; hexagonally binned on van 

Arkel triangles by the nitrogen-excess or nitrogen-deficiency of the ternary, compositionally-

referenced against the deepest-hull binary nitrides. Hexagons plotted for regions with >2 data 

points only. Color intensity corresponds to number density in each hexagon. Outliers in the Alk-

Me-N triangle are shown with small crosses. b.) Kernel density distributions of ion oxidation 



136 

 

and reduction between a deepest-hull binary and the stable ternary nitride, for nitrogen (vertical 

axis) and the more electronegative metal, B (horizontal axis). c.) Inductive effect, electropositive 

metal A donates electron density to B-N covalent bond, oxidizing the more electronegative 

metal, which can lead to nitrogen-rich nitrides. Reductive effect, nitrogen oxidation or nitrogen 

release provides electrons to Me-Me bonds, reducing the metals and increasing metallicity. 

 

The formation of nitrogen-rich nitrides can be rationalized primarily from the Inductive 

Effect,191, 251 where an electropositive metal, A, donates electron density to its adjacent nitrogen 

anion, driving the formation of strong nitrogen covalent bonds with the more electronegative 

metal, B. As illustrated in Figure 7.7, this electron donation from A generally leads to nitrogen 

reduction, which in turn oxidizes the metal B. Significant oxidation of B can be compensated by 

excess nitrogen— which explains the formation of nitrogen-rich nitrides. An oxidized cation and 

reduced anion increases the overall ionicity of the Aδ+[B-N]δ− framework, resulting in nitride 

ceramics with very negative electrostatic Madelung energies. Because alkali and alkaline metals 

are so electropositive, the inductive effect drives the strong exothermic formation energies of Alk-

Me-N ternaries, rationalizing their predominance within the ternary nitrides map. The inductive 

effect can also be operative in nitrogen-rich Me-Me-N; most frequently with Zn, which is a 

relatively electropositive transition metal and can also serve as an electron donor. This fact was 

previously captured by the hierarchical agglomeration algorithm, which clustered Zn with the other 

alkali and alkaline earth metals. 

For stable nitrogen-poor nitrides, we propose a novel Reductive Effect, where remarkably, 

nitrogen can serve as an electron donor for metal reduction. For some ternary Me-Me-N 

compositions, Me-Me bonds may be stronger than Me-N bonds. As shown in Figure 7.7c, the 

oxidation or release of electrophilic nitrogen atoms can redistribute electron density back to these 

strong Me-Me bonds, leading to the reduction of the corresponding metals. The reductive effect 

can stabilize unusual structures in the nitride chemistry;252 for example, Co2Mo3N, which exhibits 
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infinite 1-D chains of covalently-bonded [Co − Co]∞ intertwined within an extended Mo-N 

covalent network. The reductive effect can also be operative in stable nitrogen-poor 

stoichiometries of Alk-Me-N compounds; for example, in Sr3Ge2N2, which features infinite 1-D 

[Ge − Ge]2-∞ chains throughout the otherwise ionic (Sr2+)2[GeN2]
4- lattice. The data-mining 

structure prediction algorithm used in this work operates on ionic substitution, which may not be 

ideally poised to predict novel nitrogen-poor nitrides due to their ambiguous valence states, 

suggesting there may still be many reductive effect-stabilized Me-Me-N ternary nitrides awaiting 

prediction. 

Our analysis shows that the nitrogen anion can be fairly amphoteric in the solid-state—

usually acting as an electron acceptor under the inductive effect to form ionic/covalent nitrogen-

rich nitrides, but sometimes serving as an electron donor in the reductive effect, driving the 

formation of metallic nitrogen-poor sub-nitrides. The span of electronic structures available to the 

ternary nitrides offers a rich design space for materials functionality. Incorporating an alkali metal 

into an otherwise metallic binary nitride can increase charge localization driven by the inductive 

effect, opening a band gap and thus creating functional semiconducting nitrides suitable for solid-

state lighting, photovoltaic energy conversion, piezoelectrics, and more. On the other hand, 

nitrogen-poor nitrides possess metallic bonding punctuated by charge-localization on nitrogen 

atoms, which can lead to complex electronic and magnetic structures253 and may serve as the basis 

for novel superconductors and topologically-protected quantum materials.254, 255 Modifying the 

nitrogen stoichiometry within a chemical space can be an effective strategy to compositionally 

tune the electronic structure between the reductive and inductive effect. For example, varying the 

Zn/Mo ratio in a wurtzite-based Zn-Mo-N compound can modulate the molybdenum oxidation 
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state from Mo4+ to Mo6+, turning conductive ZnMoN2 into insulating Zn3MoN4, a wide-bandgap 

semiconductor.162 

7.4 Discussion 

The library of inorganic solids has been dominated by oxides, whose structures and 

chemistries are often known from mineralogy. Compounds that do not form readily under ambient 

conditions, such as nitrides, offer a new frontier for materials discovery and design—so long as 

we have a rational understanding of the factors that drive stability in these relatively unexplored 

spaces. In this work, we used computational materials discovery and informatics tools to build a 

large stability map of the ternary metal nitride space. Our objective was not only to predict and 

synthesize new ternary metal nitrides, but further, to visualize large-scale relationships between 

nitride chemistry and thermodynamic stability, and to rationalize these trends from their deeper 

chemical origins. Our map as it stands is necessarily incomplete—it represents a current ‘upper-

bound’ on the ternary nitride stability landscape. As new exotic structures and bonding motifs are 

discovered in the ternary metal nitrides, the procedures in this work can be iteratively re-applied 

to update and refine our understanding of this extended compositional space. From a broader 

perspective, our computational approach offers a systematic blueprint for mapping uncharted 

chemical spaces, providing synthetic chemists guidance in their quest to continuously extend the 

frontier of solid-state chemistry. 

7.5 Methods 

7.5.1 First-principles calculations of aluminum nitride hydrolysis kinetics 

Plane wave periodic boundary condition DFT calculations were performed using the 

Vienna Ab-initio Simulation Package.12, 58 All calculations employed the Perdew-Burke-Ernzerhof 
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(PBE) generalized gradient approximation (GGA) exchange and correlation functional8 coupled 

with projector augmented wave (PAW) pseudopotentials.60 For these calculations, PAWs were 

used to explicitly describe the aluminum 3s and 3p; nitrogen 2s and 2p; oxygen 2s and 2p; and 

hydrogen 1s electrons. A 96 atom, 2  2 supercell of the (11̅00) surface of wurtzite AlN was used 

as the model for the reacting surface. This crystal structure was chosen because Schmerler et al. 

showed that the wurtzite phase is the stable structure at the conditions of interest for electrical and 

NH3 generation applications.256 The lattice constants computed in this work match those obtained 

previously by both experiment and calculation to within 1%. Of the low-index facets of wurtzite 

AlN, Holec et al. showed that by far the lowest surface energy facet is the (11̅00) surface.257 The 

96 atom slab consists of six AlN layers and has a thickness of 9.4 Å in a 24.4 Å thick supercell, 

meaning 15 Å of vacuum space separates the reacting surface from the bottom layer of the adjacent 

slab. To obtain the model surface, the bulk AlN wurtzite structure was allowed to fully relax, 

vacuum space was added, and then the top four layers of the slab were allowed to relax while the 

bottom two layers were frozen to mimic the bulk subsurface. All calculations utilized a 450 eV 

cut-off energy based on a cut-off energy convergence study over the range of 250-500 eV where 

a 450 eV cut-off energy was found to produce a total energy within 0.01 eV/supercell of that 

produced with a 500 eV cut-off energy. The slab was relaxed using various Monkhorst-Pack k-

point meshes between 1  1  1 and 6  6  1, where the 3  3  1 k-point grid produced energies 

within 0.01 eV/supercell of those computed using the finer and more computationally demanding 

meshes.  Bader charge analyses were conducted using software from the Henkelman group.258 All 

reaction energy barriers were obtained using the climbing-image nudged elastic band (cNEB) 

method259 or a combination of cNEB and the Dimer method.260 All geometries, including cNEB 
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images, were relaxed until the magnitude of the maximum force on the optimized ions was less 

than 0.03 eV/Å.  

7.5.2 Data-mined structure prediction 

Ternary structures were generated using the Data-Mined Structure-Prediction algorithm 

(DMSP),233 trained specifically for nitride discovery.46 Briefly, the substitution training matrix was 

trained on the Inorganic Crystal Structure Database (ICSD), mapping isostructural compounds and 

identifying which cations are statistically probable to substitute for one another. The training set 

for nitride discovery was performed on the set of all pnictides (N + P + As + Sb), which has 

superior prediction capability to an oxide-containing set. This training set was found via 10-fold 

cross validation to have 80% probability of recovering known nitride structures. Training of the 

DMSP algorithm was performed on the ICSD as extracted in October 2015. 

Total energies of known and DMSP-suggested nitrides were calculated with density 

functional theory using VASP, GGA, and PAWs. Plane-wave basis cut-off energies are set to 520 

eV. The k-point densities were distributed within the Brillouin zone in a Monkhorst-Pack grid, or 

on a Gamma-centered grid for hexagonal cells, and used default k-point densities in compliance 

with Materials Project calculation standards,261 which were calibrated to achieve total energy 

convergence of better than 0.5 meV/atom. Each structure is initiated in nonmagnetic, 

ferromagnetic, and anti-ferromagnetic spin configurations, and the lowest-energy configuration is 

used for phase stability calculations. 

Phase stability calculations are computed from convex hulls, using the phase diagram 

analysis package in Pymatgen,118 calculated with respect to known nitride phases from the 

Materials Project obtained using the Materials Project REST API.262 Azides (e.g. NaN3, WN18) 
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are removed from the phase diagram when computing phase stability, as they do not typically form 

during solid-state synthesis techniques. Materials Project data was retrieved in January, 2018. 

For the Zn-Mo-N, Zn-W-N, Zn-Sb-N, Mg-Ti-N, Mg-Zr-N, Mg-Hf-N, Mg-Nb-N systems, 

an unconstrained ground-state search was performed using the “Kinetically Limited 

Minimization” approach,162 which does not require prototypical structures from databases. Seed 

structures are generated from random lattice vectors and atomic positions, subject to geometric 

constraints to avoid extreme cell shapes, and to observe minimal interatomic distances (2.8 Å for 

cation-cation and anion-anion pairs, 1.9 Å for cation-anion pairs). For each material, we sampled 

at least 100 seeds, over the ternary compositions AiBjNk for ijk = 112, 146, 414, 213, 124, 326, 

338, 313, chosen to accommodate the (Mg/Zn)2+, M4+/5+/6+, and N3− oxidation states. New trial 

structures are generated by the random displacement of one atom between 1.0 and 5.0 Å while 

maintaining the minimal distances. Trial structures are accepted if the total energy is lowered, and 

the number of trials equals the number of atoms in the unit cell. 

7.5.3 Extracting chemical insights from first-principles calculations 

The Density Derived Electrostatic and Chemical (DDEC) approach was used to obtain net 

atomic charges and natural bond orders assigned to each ion in each calculated structure.221 From 

the DDEC analysis we define the average charge for ion i, δi, as the net atomic charge assigned to 

ion, i (number of electrons) averaged over all ions, i, in the structure, AαBβNγ. The summed bond 

order for ion i, si, was obtained similarly by summing the natural bond orders for all interactions 

containing i, averaged over all ions, i, in the structure, AαBβNγ. The Crystal Orbital Hamilton 

Population (COHP) analysis was used to quantify the bonding interactions within each structure 

and partition these interactions by specific ion-ion pairs using the LOBSTER code.220 To 

normalize the comparison of COHPs across a range of structures and compositions, the energy 
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levels from each PBE calculation were aligned to core levels. Doing so allows for a reasonable 

comparison of Fermi energies and thus COHP energy depths across the various systems analyzed. 

To alleviate the effects of varied pseudopotentials across systems, the number of free atom valence 

electrons was determined for each system using the following equation: 

 𝑁𝑣(𝐴𝛼𝐵𝛽𝑁𝛾) = 𝛼𝑁𝑣(𝐴) + 𝛽𝑁𝑣(𝐵) + 𝛾𝑁𝑣(𝑁) ( 7.1) 

 

where Nv is the number of valence (outermost shell) electrons. The minimum energy which 

contains valence electrons, εV was then determined for each structure by incrementally decreasing 

the energy, ε, and integrating the density of states (DOS) from ε to the Fermi energy, εF, such that 

 
εV = εV: ∫ 𝐷𝑂𝑆(𝐸′)

ε𝐹

εV

𝑑𝐸′ = 1 
(7.2) 

 

where DOS is normalized by Nv and E’ is the core-level aligned energy. The magnitude of bonding 

interactions, Σ, in each structure is then defined as 

 
Σ = ∫ −𝐶𝑂𝐻𝑃(𝐸′)𝐸′

ε𝐹

εV

𝑑𝐸′ 
( 7.3) 

 

where the COHP is also normalized by Nv.  

Using these quantities, we produced the triangle plots shown in Figure 7.7a. The ionicity, 

I, was defined as: 

 
𝐼𝐴𝛼𝐵𝛽𝑁𝛾

=
1

𝛼 + 𝛽 + 𝛾
(𝛼

𝛿𝐴

𝑠𝐴
+ 𝛽

𝛿𝐵

𝑠𝐵
+ 𝛾

𝛿𝑁

𝑠𝑁
) 

( 7.4) 

 

and quantifies the extent of electron transfer in the structure. The metallicity was defined as: 
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 𝑀𝐴𝛼𝐵𝛽𝑁𝛾
= |𝛴𝐴−𝐵 + 𝛴𝐴−𝐴 + 𝛴𝐵−𝐵| ( 7.5) 

 

quantifying the net bonding energy of cation-cation interactions. The covalency, C, was defined 

as: 

 𝐶𝐴𝛼𝐵𝛽𝑁𝛾
= |𝛴𝐴−𝑁 + 𝛴𝐵−𝑁 + 𝛴𝑁−𝑁| ( 7.6) 

 

quantifying the net bonding energy for interactions containing nitrogen. To ensure each quantity 

(C, I, M) was of the same magnitude, each quantity was divided by the maximum of that quantity 

within the dataset. In order to plot points on a triangle, the sum of each point, (C, I, M), must equal 

1. Therefore, each quantity within each point was normalized by C+I+M. 

To quantify the extent to which a given ternary was “N-rich” or “N-poor”, we compare the 

cation/anion ratios in the ternary to the ratios in the deep-hull binaries (Aα-N, Bβ-N) using the 

assumed formation reaction: 

 
(

𝛼

𝛼′
) 𝐴𝛼′𝑁 + (

𝛽

𝛽′
) 𝐵𝛽′𝑁 + 0.5 (𝛾 −

𝛼

𝛼′
−

𝛽

𝛽′
) 𝑁2 → 𝐴𝛼𝐵𝛽𝑁𝛾 

( 7.7) 

 

and subsequent condition for being rich or poor in nitrogen: 

 
𝛾 −

𝛼

𝛼′
−

𝛽

𝛽′
≥ 0 → 𝑁𝑟𝑖𝑐ℎ;  𝛾 −

𝛼

𝛼′
−

𝛽

𝛽′
< 0 → 𝑁𝑝𝑜𝑜𝑟 

( 7.8) 

 

This reaction was also used to compute the change in charge, Δδ, across this formation 

reaction, as shown in Figure 7.7b: 
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 Δ𝛿𝑖 = 𝛿𝑖,𝐴𝛼𝐵𝛽𝑁𝛾

−
2

 
𝛼
𝛼′ +

𝛽
𝛽′ + 𝛾

(
𝛼

𝛼′
𝛿𝑖,𝐴

𝛼′𝑁 +
𝛽

𝛽′
𝛿𝑖,𝐵

𝛽′𝑁 + 0.5 (𝛾 −
𝛼

𝛼′
−

𝛽

𝛽′
) 𝛿𝑖,𝑁2

) 

( 7.9) 

 

where 𝛿𝑖,𝑁2
was taken to be 0. A and B are defined as the least and most electronegative cations in 

the ternary. 
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8 Outlook 

This thesis emphasizes the usefulness of both density functional theory (DFT) and data 

analytics to rapidly probe thermodynamic stability of inorganic crystalline solids. Our key findings 

are: 

1. High-throughput DFT approaches are making suitable predictions of compound 

stability, in general, when compared with experiment and the oft-employed 

correction of fitting elemental reference energies is mostly unnecessary for 

stability predictions. 

2. Statistically motivated algorithms can improve significantly upon empirically 

derived descriptors. In particular, we show that given the same inputs, the learned 

descriptor predicts the stability of perovskites with an accuracy of 92% compared 

with 74% for the empirical standard. 

3. The necessity of computing phase diagrams and perturbing structure for high-

throughput screening applications is emphasized for the identification of double 

perovskite solar absorbers. We also present 22 new cesium chloride double 

perovskites that are stable (or within the error of the methods) with respect to 

decomposition and have suitable band gaps for solar absorption when calculated 

using a hybrid density functional. 

4. For high-temperature processes, solid-state entropy must be considered to 

accurately predict the free energy and we present a statistically learned descriptor 

for this property that compares well with experiment (errors ~1 kcal/mol). 

5. Solar thermochemical ammonia synthesis as studied in this work is constrained 

significantly from a thermodynamic perspective. There are promising binary 
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(monometallic) active materials, but these will likely have to be modified by 

alloying or the process must be creatively reconceived to enable realization of an 

efficient process. 

6. Metal nitrides are extremely unexplored relative to their potential for identifying 

interesting materials. We present > 200 ternary metal nitrides that are predicted to 

be stable with respect to decomposition using DFT. The stability of these materials 

can be explained by two principal effects – the inductive effect where an 

electropositive cation enables rich covalent or ionic bonding between a second 

cation and nitrogen and the reductive effect where nitrogen enables rich metallic 

bonding between two cations. 

While thermodynamic stability is a principal aspect of computationally prototyping a target 

material, it is not the end of the road. Beyond the enthalpy or free energy of formation 

(decomposition), which are a primary focus of this work, a number of other factors dictate the 

successful synthesis of a new material. These other factors include, but are not limited to, kinetics 

of ion transport, interfacial energy, nucleation, and crystallization. Each of these challenges present 

opportunities for computational and statistical approaches to bridge the gap between what is 

predicted on a computer and what is made in the lab, and this should be a chief focus of materials 

scientists going forward. 
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