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Index divisibility in dynamical sequences
and cyclic orbits modulo p

Annie S. Chen, T. Alden Gassert
and Katherine E. Stange

Abstract. Let φ(x) = xd + c be an integral polynomial of degree at
least 2, and consider the sequence (φn(0))∞n=0, which is the orbit of 0
under iteration by φ. Let Dd,c denote the set of positive integers n for
which n | φn(0). We give a characterization of Dd,c in terms of a directed
graph and describe a number of its properties, including its cardinality
and the primes contained therein. In particular, we study the question
of which primes p have the property that the orbit of 0 is a single p-cycle
modulo p. We show that the set of such primes is finite when d is even,
and conjecture that it is infinite when d is odd.
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1. Introduction

A dynamical sequence is the orbit α, φ(α), φ2(α), . . . of some α in a ring
R under iteration of a map φ : R → R. In arithmetic dynamics, one often
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takes φ to be a rational map defined over a number field and α to be an alge-
braic number. Such dynamical sequences have many properties in common
with their more well-known cousins: recurrence sequences and algebraic di-
visibility sequences arising from algebraic groups, such as Lucas sequences
and elliptic divisibility sequences. In particular, all such sequences an are
divisibility sequences, i.e., whenever n | m, then an | am.

The study of the primes appearing in such sequences has a centuries-long
history dating back at least to Fermat’s study of primes of the form 22

n
+ 1,

which is a dynamical sequence with α = 3 and φ(x) = (x − 1)2 + 1. The
primes appearing in a dynamical sequence encode information about the
dynamical system in residue fields. For example, taking R = Z, if p | φn(0),
then 0 has period dividing n in the dynamical system φ : Z/pZ → Z/pZ.
(The period of 0 is the smallest positive integer k for which φk(0) = 0.) In
particular, p | φp(0) if and only if the dynamical system given by φ on Z/pZ
consists of a single orbit of size 1 or p. Silverman studied the statistics of
orbit sizes for rational maps modulo a varying prime p [27] (see also [8]).

In this paper, we restrict ourselves to the study of the maps

φ(x) = xd + c ∈ Z[x],

where d ≥ 2. The orbit structure for x2 + c is of particular interest for
primality testing, integer factorization and pseudo-random number genera-
tion [6, 20, 22]. Silverman collected some numerical data on quadratic maps
x2 + c [27], while Peinado, Montoya, Muñoz and Yuste give explicit upper
bounds for the cycle sizes of x2 + c in a finite field [21]; more explicit struc-
ture is known for the exceptional maps x2 and x2 − 2 [33]. Jones [18] found
that the natural density of primes dividing at least one nonzero term of a
dynamical sequence is zero for four infinite families of quadratic functions,
including φ(x) = x2 + c, where c ∈ Z and c 6= 1. Hamblen, Jones, and
Madhu [13] later generalized the results to φ(x) = xd + c (see also [5]). In
other words, the primes p for which 0 is periodic (instead of pre-periodic)
are of density zero. These results imply that the primes p for which the
dynamical system consists of a single p-cycle modulo p are of density zero.

Let Sd,c be the set of primes p such that the dynamical system

φ : Z/pZ→ Z/pZ

consists of a single p-cycle. We show the following.

Theorem 1.1. Let φ(x) = xd+c, where c, d ∈ Z and d ≥ 2. Then whenever
d is even and c is odd, Sd,c = {2}; while if d is even and c is even, then
Sd,c = ∅.

Based on numerical data and heuristics, we conjecture that there are
infinitely many such primes otherwise.

Conjecture 1.2. Sd,c is infinite whenever d is odd.
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Using an analysis of the cycle structure of the permutation x 7→ xd on
Z/pZ, we are able to somewhat restrict the set Sd,c as follows.

Theorem 1.3. If d ≡ 3 (mod 4), and p ≡ 1 (mod 4) is prime, then p /∈
Sd,c.

For example, when d is an odd power of 3, we conclude that Sd,c contains
only primes congruent to 11 (mod 12) (Corollary 4.4).

A related question arises naturally by reversing the roles of p and c: fix p
and ask which maps φc in some varying family such as φc = xd + c have a
single p-cycle modulo p. Hutz and Towsley consider a generalization of this
question for the families xd + c [15]; see [25, Section 6.1] for an overview of
the setting. We touch on this problem in Sections 5 and 6.

Theorem 1.1 is a consequence of our study of index divisibility in dynami-
cal sequences. The question of index divisibility for a sequence (an)∞n=0 seeks
to characterize those integers n ≥ 1 such that n | an. It has a substantial
history for Fibonacci and Lucas sequences [3, 14, 17, 24, 30, 31, 32, 34], and
has also been studied for elliptic divisibility sequences [12, 29] and general
linear recurrences [2]. As another example, composite integers n for which
n | an − a are called pseudoprimes to the base a.

Throughout, let φ(x) = xd + c ∈ Z[x] where d ≥ 2, let (Wn) denote the
orbit of 0 under φ, i.e., Wn = φn(0), and define

Dd,c := {n ∈ Z : n ≥ 1, n |Wn}, and Pd,c := {p ∈ Dd,c : p is prime}.

We show that except in a few restricted cases, Dd,c is infinite.

Theorem 1.4. The set Dd,c is finite if and only if either

(1) d is even and c = 1, or
(2) d = 2 and c = −2.

Moreover, if Dd,c is finite, then Dd,c = {1, 2}.

In the spirit of Smyth and of Silverman and Stange [29, 30], we represent
Dd,c by a directed graph that connects each element to its minimal multiples.
To construct this index divisibility graph G, initially let 1 be in the vertex set
GV , then add vertices and edges to G iteratively according to the following
rules.

Let vp(x) denote the p-adic valuation of an integer x. For each n ∈ GV ,
adjoin the vertex np and the directed edge (n, np) if

(1) p is a prime satisfying vp(φ
n(0)) > vp(n) (edge of type 1), or

(2) p ∈ Pd,c satisfies vp(n) = 0 (edge of type 2).

We prove Theorem 1.4 via a characterization of Dd,c and Pd,c in terms of
this graph.

Theorem 1.5. Let φ(x) = xd + c, where c, d ∈ Z and d ≥ 2. Let G be the
index divisibility graph corresponding to φ, and let GV be the vertex set of
G. Then GV = Dd,c.
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As for Pd,c, we obtain a partial characterization.

Theorem 1.6. Let φ(x) = xd + c, where c, d ∈ Z and d ≥ 2. Then Pd,c
satisfies the following.

(1) 2 ∈ Pd,c.
(2) Every divisor of c is an element of Dd,c. In particular, if p is prime

and p | c, then p ∈ Pd,c.
(3) If p is prime and d ≡ 1 (mod p− 1), then p ∈ Pd,c.

If d is even, then we are able to fully characterize Pd,c.

Theorem 1.7. If d is even, then

Pd,c = {2} ∪ {p prime : p | c}.

Theorem 1.1 is an immediate consequence.
Two main tools we use in our investigation are the notions of a rigid

divisibility sequence and of a primitive prime divisor.
An integer sequence (an) is a rigid divisibility sequence if for every prime

p the following two properties hold:

(1) if vp(an) > 0, then vp(ank) = vp(an) for all k ≥ 1, and
(2) if vp(an) > 0 and vp(am) > 0, then vp(an) = vp(am) = vp(agcd(m,n)).

In particular, rigid divisibility sequences are divisibility sequences.
Rice [23] showed that for any polynomial φ ∈ Z[x] of degree d ≥ 2 where 0

is a wandering point (i.e., of infinite orbit), the integer sequence (φn(0)) is a
rigid divisibility sequence if and only if the coefficient of the linear term of φ
is zero. In particular, this means that the orbit of zero under φ(x) = xd + c,
where c, d ∈ Z and d ≥ 2, is a rigid divisibility sequence.

Given a sequence (an) of integers, the term an contains a primitive prime
divisor if there exists a prime p such that p | an, but p - ai for all 0 < i < n.
The study of primitive prime divisors dates back to Bang and Zsigmondy,
who showed that every term of the sequence (an − bn), where a, b ∈ Z and
gcd(a, b) = 1, has a primitive prime divisor [4, 35]. Carmichael’s Theorem
asserts that the same is true for the Fibonacci numbers beyond the 12th
term [7]. The Zsigmondy set is the set of terms not having a primitive prime
divisor; for the Fibonacci numbers, it is {1, 2, 6, 12}. Similarly, Silverman
has shown that elliptic divisibility sequences have finite Zsigmondy sets [28].

Turning to dynamical sequences, Rice [23] showed that if φ(x) ∈ Z[x] is
a monic polynomial of degree d ≥ 2, and (φn(0)) is an unbounded rigid
divisibility sequence, then all but finitely many terms contain a primitive
prime divisor. Ingram and Silverman [16] generalized the results to rational
functions over number fields (see also [10, 11]). Doerksen and Haensch [9]
extended upon this by finding explicit upper bounds on the Zsigmondy set
for certain polynomial maps.

The following examples illustrate our results.
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Figure 1. A portion of the index divisibility graph for
φ(x) = x2 + 3. The circled vertices are elements of P2,3,
and edges are labeled by their type.

Example 1.8. Suppose φ(x) = x2 + 3. Then the orbit of 0 is

0, 3, 12, 147, 21612, 467078547, . . . .

Here,

D2,3 = {1, 2, 3, 4, 6, 12, 21, 42, . . .} and P2,3 = {2, 3}
by Theorems 1.6 and 1.7. The index divisibility graph is shown in Figure 1.

Notice in Figure 1 that all type 2 edges are also type 1 edges. However,
this is not always the case, as shown in Figure 2.

Example 1.9. Suppose φ(x) = x3 + 4. Then the orbit of 0 is:

0, 4, 68, 314436, . . . .

The index divisibility graph is illustrated in Figures 2 and 3.

In Section 2, we study index divisibility and prove Theorems 1.1, 1.5, 1.6,
and 1.7.

In Section 3, we prove Theorem 1.4.
In Section 4, we study Pd,c and its subset Sd,c in the case where d is odd,

and prove Theorem 1.3.
In Section 5, we ask the question, for a fixed n, of which pairs (d, c) satisfy

n ∈ Dd,c.
Finally, in Section 6, as a computational experiment, we find all pairs

(p, c), where 0 < c < p/2 and p ≤ 37619, for which p is in S3,c (see Figure 4).
We combine this data with heuristics to support Conjecture 1.2.
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Figure 2. A portion of the index divisibility graph for
φ(x) = x3 + 4. The circled vertices are elements of P3,4,
and edges are labeled by their type.
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Figure 3. A graphical representation of a portion of D3,4.
Here p1 = 17, p2 = 5, and p3 = 26203. To avoid clutter, not
every edge between the vertices shown here is depicted.
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2. Index divisibility

For the remainder of the paper, we maintain the notation presented in
the introduction, namely φ(x) = xd + c is an integral polynomial of degree
at least 2, Wn = φn(0), Dd,c = {n ∈ Z : n ≥ 1, n | Wn}, and Pd,c is the set
of primes in Dd,c.

Before proceeding to the proofs, we identify two significant properties of
Dd,c.

Lemma 2.1. Suppose n ∈ Dd,c and let p be the smallest prime divisor of n.
Then p ∈ Dd,c.

Proof. Let n ∈ Dd,c, and write n = pm, where p is the smallest prime factor
of n. Then p | Wn as p | n and n | Wn. In particular, 0 is periodic modulo
p, so letting b denote the period of 0, it follows that 0 < b ≤ p, p | Wb, and
b | n. However, since p is the smallest factor of n greater than 1, either b = 1
or b = p. If b = p, then p | Wp as desired. Otherwise, if b = 1, then p | W1,
and hence p |Wp since W1 |Wp. �

Lemma 2.2. If a, b ∈ Dd,c are relatively prime, then ab ∈ Dd,c.

Proof. Let a and b be relatively prime numbers in Dd,c. Since (Wn) is
a rigid divisibility sequence, we have that a | ab implies Wa | Wab, and
b | ab implies Wb | Wab. Then because a | Wa, a | Wab. Similarly, because
b |Wb, we have b |Wab. Since a and b are relatively prime, ab |Wab, and so
ab ∈ Dd,c. �

Proof of Theorem 1.5. First we show GV ⊆ Dd,c. To begin, we have
1 |W1, and so 1 ∈ Dd,c.

Next we show that if n ∈ Dd,c and (n, np) ∈ GE (the edge set of G), then
np ∈ Dd,c. We examine edges of type 1. Suppose there exist n ∈ Dd,c and
a prime p such that vp(Wn) > vp(n). Since n | Wn and vp(Wn) > vp(n), we
see that np | Wn. Then since (Wn) is a rigid divisibility sequence, n | np
implies Wn |Wnp. Thus np |Wnp, and so np ∈ Dd,c.

For edges of type 2, if p ∈ Pd,c and p - n, then np ∈ Dd,c by Lemma 2.2.
Thus we have shown that GV ⊆ Dd,c.

We now proceed to show Dd,c ⊆ GV . Suppose n ∈ Dd,c. To prove that
n ∈ GV , we show that G contains a path from 1 to n. If n = 1, there is
nothing to show, so let n = pα1

1 pα2
2 · · · p

αk
k be the prime factorization of n,

where p1 < p2 < p3 < · · · < pk. From Lemma 2.1, we know that p1 ∈ Dd,c,
hence (1, p1) is an edge of type 2 in G.

Now suppose 1 ≤ i ≤ k and m is the largest divisor of n supported on
primes pj , where j < i. If pi ∈ Pd,c, then (m,mpi) is an edge of type 2. For
the case pi /∈ Pd,c, we note the following.

(1) If 0 is periodic modulo ` for some integer `, and `′ | `, then 0 is
periodic modulo `′. Moreover, the period of 0 modulo `′ divides the
period of 0 modulo `.
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(2) Since n |Wn, we have 0 is periodic modulo n. Moreover, the period
of 0 modulo n is a divisor of n.

From these observations, we see that 0 is periodic modulo pi, and the period
of 0 is a divisor of n. Therefore if pi /∈ Pd,c, then the period of 0 modulo pi
is a divisor of n that is strictly less than pi. In particular, the period of 0
modulo pi divides m, and hence pi | Wm. Thus vpi(Wm) > vpi(m), and so
(m,mpi) is an edge of type 1.

We have now established that mpi ∈ Dd,c, and hence pi | Wmpi | Wmpti
for each 1 ≤ t < αi. By rigid divisibility,

vpi(Wmpti
) = vpi(Wn) ≥ αi > t = vpi(mp

t
i).

Therefore, we also have an edge of type 1: (mpti,mp
t+1
i ). All told, we have

the following path of directed edges in G from 1 to n:

1
2−→ p1

1−→ p21
1−→ · · · 1−→ pα1

1

1or2−−−→ pα1
1 p2

1−→ pα1
1 p22

1−→ · · · 1−→ pα1
1 pα2

2

1or2−−−→ · · ·
1or2−−−→ pα1

1 pα2
2 · · · pk

1−→ pα1
1 pα2

2 · · · p
2
k

1−→ · · · 1−→ pα1
1 pα2

2 · · · p
αk
k = n.

Thus, Dd,c ⊆ GV . �

Proof of Theorem 1.6. First, W2 = cd + c = cd−1(c + 1). It follows that
2 | W2, and thus 2 ∈ Pd,c. Second, W1 = c, and therefore c | Wn for all n
since (Wn) is a divisibility sequence.

For the third property, we show that if p is prime, then p ∈ Pd,c if d ≡ 1
(mod p− 1). Let d = (p− 1)k + 1, where k ∈ Z. We have

φ(x) = xd + c = x(p−1)k+1 + c ≡ x+ c (mod p),

so φp(x) ≡ x+pc ≡ x (mod p). In particular, this means that Wp = φp(0) ≡
0 (mod p), so p ∈ Pd,c. �

Proof of Theorem 1.7. Let d be even. We show that if p is an odd prime,
then p ∈ Pd,c only if p | c.

Suppose that p ∈ Pd,c. Then p | Wp, and the period of 0 modulo p is a
divisor of p. If the period of 0 is 1, then p |W1 = c. Otherwise if the period of
0 is p, then 0 has a unique preimage modulo p. In particular, d

√
−c ≡ − d

√
−c

(mod p). Therefore d
√
−c ≡ 0 (mod p), so c ≡ 0 (mod p). �

In conjunction with Theorem 1.6, Theorem 1.7 provides a full characteri-
zation for Pd,c when d is even. In particular, we can now prove Theorem 1.1.

Proof of Theorem 1.1. For c odd, the orbit of 0 has period 2. For c even,
the orbit of 0 has period 1. When p | c, the orbit of 0 has period 1. �
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3. Cardinality of Dd,c

In this section, we prove Theorem 1.4, which identifies all pairs (d, c) for
which Dd,c is finite. First, we note some simple infinite cases where Dd,c is
explicit.

Lemma 3.1.

(1) For all d, Dd,0 is the set of positive integers.
(2) If d is even, then Dd,−1 is the set of even positive integers.

Proof. If c = 0, then Wn = 0 for all n. When c = −1, then

Wn =

{
0 if n is even

−1 if n is odd.

In both cases, the result is immediate. �

We now provide a simple yet sufficient condition for Dd,c to be infinite.

Lemma 3.2. If there exists n ∈ Dd,c such that n ≥ 3, then Dd,c is infinite.

Proof. Suppose that n ∈ Dd,c for some n ≥ 3. From [9], Wn contains
a primitive prime divisor p. Therefore, 0 is periodic modulo p, with some
period r ≤ p. Therefore p |Wr, and primitivity then ensures that n ≤ r ≤ p.
Hence either p = n, or p and n are coprime. If the latter holds, then, by
Theorem 1.5, there is an edge of type 2: (n, np). This implies that n is not
the largest element of Dd,c. Therefore it suffices to consider the case p = n.

First, suppose that d is even and p = n. Then, by Theorem 1.7, we have
p | c, so that p | Wn for all n. This contradicts primitivity, so d must be
odd.

Therefore, suppose that d is odd and p = n. In this case, write Wp = pm
for some integer m. If |m| > 1, then for each prime divisor q of m, the
index divisibility graph contains the edge (p, pq), hence p is not the largest
element of Dd,c.

Thus we are left considering the case d is odd, p = n, and Wp ∈ {0,±p}.
However, we claim that this is not possible, by the growth of Wn. For, since
d is odd, the signs of Wn, W d

n , and c are all the same by induction. This
implies that |Wn+1| = |W d

n + c| = |W d
n | + |c| ≥ |Wn|d. In particular, since

|W2| ≥ 2, we have |Wn| > 2d
n−2

. (Here we use that |c| ≥ 1. The case c = 0
is covered by Lemma 3.1.) This rules out |Wp| ≤ p for any p ≥ 3. �

Consequently, Dd,c is infinite in most cases.

Proof of Theorem 1.4. By Theorem 1.6, c ∈ Dd,c, hence it follows from
Lemma 3.2 that Dd,c is infinite whenever |c| ≥ 3. Similarly, if d is odd, then
3 ∈ Pd,c by Theorem 1.6, and again Dd,c is infinite.

For the remainder of the proof, assume that d is even. The cases c = 0
and c = −1 are handled by Lemma 3.1, leaving only the cases c = 1 and
c = −2 to consider.
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Suppose c = 1. In this case W1 = 1 and W2 = 2, and by Theorem 1.7, we
have Pd,1 = {2}. Following the construction of the index divisibility graph,
we have a single edge of type 2 emanating from the vertex 1 (the edge (1, 2)),
and there are no edges emanating from the vertex 2. Thus Dd,1 = {1, 2}.

Suppose c = −2. If d = 2, then W1 = −2 and W2 = 2. Similar to the
previous case, the index divisibility graph only contains a single edge—the
edge (1, 2)—and hence D2,−2 = {1, 2}.

Otherwise suppose d ≥ 4. Then W2 = (−2)d − 2 = −2((−2)d−1 + 1),
where |(−2)d−1 + 1| > 1 and is odd. Hence W2 has an odd prime divisor
p, and therefore (2, 2p) is an edge of type 1 in the index divisibility graph.
Since 2p ∈ Dd,−2, it follows that Dd,−2 is infinite. �

4. Sd,c and p-cycles modulo p

In Theorem 1.6, we give a description of the set Pd,c. In the case that d is
even, Theorem 1.7 concludes that Theorem 1.6 completely determines Pd,c.
However, when d is odd, the conditions in Theorem 1.6 are insufficient to
completely describe the set. This insufficiency is illustrated in Example 1.9
where we see that 11 ∈ P3,4, yet 11 does not satisfy any of the conditions in
Theorem 1.6.

Suppose then that p ∈ Pd,c where both p and d are odd. As we have
previously noted, if p ∈ Pd,c, then the period of 0 in Z/pZ is a divisor of
p. If that period is 1, then p | c, which Theorem 1.6 already accounts for.
Therefore, the primes that are the exceptions are the odd primes for which
0 has period p modulo p. In other words, the primes of interest are the odd
primes p for which xd + c induces a single cycle of size p in Z/pZ.

It is well known that π(x) = xd is a permutation of Z/pZ if and only if
gcd(d, p − 1) = 1. Hence under the same conditions, it follows that xd + c
is a permutation of Z/pZ. In particular, we have φ = τ c ◦ π (over Z/pZ),
where τ(x) = x+ 1. Since every p-cycle is an even permutation, we see that
φ is a p-cycle only if π is an even permutation. Equivalently, if π is an odd
permutation of Z/pZ, then p /∈ Pd,c.

We now use this observation to prove Theorem 1.3. For the remainder of
this section, let ordnm denote the order of m in (Z/nZ)∗.

In order to understand the sign of π as a permutation, we consider its
cycle structure, which is given thusly.

Lemma 4.1. Suppose π(x) = xd is a permutation of Z/pZ. Then π has a
cycle of length m if and only if there exists a divisor k of p − 1 such that
ordk d = m. Moreover, the number of cycles Nm of length m satisfies

mNm =
∑

i|m,i<m

iNi.

Proof. See Lidl and Mullen [19, Theorem 1], as well as Ahmad [1, Theorem
1] for a more general statement. �
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In particular, letting ϕ denote the Euler totient function, the theory of
cyclic groups gives the following cycle structure.

Lemma 4.2. Let p be prime, and suppose gcd(d, p− 1) 6= 1. Then x 7→ xd

is a permutation of Z/pZ with the following cycle structure:

(1) 0 is fixed, and
(2) for each divisor k of p − 1, there are ϕ(k) elements of (Z/pZ)∗ of

order ordk d, i.e., the permutation contains ϕ(k)/(ordk d) cycles of
length ordk d for each divisor k of p− 1.

The following Lemma will also prove useful.

Lemma 4.3. Let d be an odd integer, let µ = v2(d − 1), and let ν =
v2(d

2 − 1)− 1 (i.e., ν = max{v2(d− 1), v2(d+ 1)}). Then

ord2k d =


1 0 ≤ k ≤ µ
2 µ < k ≤ ν
2k−ν ν < k.

Proof. If v2(d − 1) ≥ k, then d ≡ 1 (mod 2k), hence ord2k d = 1. If
v2(d + 1) ≥ k > 1, then d ≡ −1 (mod 2k), hence ord2k = 2. Otherwise

v2(d
2j − 1) = ν + j, and it follows that 2k−ν is the order of d. �

Proof of Theorem 1.3. Let p be a prime where p ≡ 1 (mod 4). We will
show that π(x) = xd is an odd permutation of Z/pZ if and only if d ≡ 3
(mod 4), which by the discussion at the start of this section is sufficient to
prove the theorem. Moreover, we assume that gcd(d, p − 1) = 1, as this is
both necessary and sufficient for π to be a permutation.

The cycle type of π is given in Lemma 4.2. Let Nk = ϕ(k)/(ordk d) be
the number of cycles of length ordk d in π. Since a k-cycle is the product
of k − 1 transpositions, we see that π may be written as a product of the
following number of transpositions:∑

k|p−1

Nk((ordk d)− 1) =
∑
k|p−1

ϕ(k)−
∑
k|p−1

Nk

= p− 1−
∑
k|p−1

Nk.

It now suffices to determine when
∑

k|p−1Nk is odd.

To count the cycles, write p− 1 = 2λω, where ω is odd. Then∑
k|p−1

Nk =
∑
δ|ω

∑
0≤i≤λ

N2iδ.

Consider first the sum over δ > 1; we will show that this is even. Using
the same notation as in Lemma 4.3, let µ = v2(d−1) and ν = v2(d

2−1)−1.
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Then for each δ, we have∑
0≤i≤λ

N2iδ = Nδ +N2δ +
∑

2≤i≤µ

ϕ(2iδ)

ord2iδ d
+
∑
µ<i≤ν

ϕ(2iδ)

ord2iδ d
+
∑
ν<i≤λ

ϕ(2iδ)

ord2iδ d
.

Note that Nδ +N2δ = 2Nδ since

N2δ =
ϕ(2δ)

lcm(ord2 d, ordδ d)
=

ϕ(δ)

ordδ d
= Nδ.

Next, ord2iδ d = lcm(ord2i d, ordδ d) by the Chinese remainder theorem.
Moreover, ordδ d | ϕ(δ) because ϕ(δ) = #(Z/δZ)∗, and ordδ d is the order
of d in (Z/δZ)∗. Hence∑

2≤i≤µ

ϕ(2iδ)

ord2iδ d
=
∑

2≤i≤µ

2i−1ϕ(δ)

ordδ d
≡ 0 (mod 2).

Now since i ≥ 2,∑
µ<i≤ν

ϕ(2iδ)

ord2iδ d
=
∑
µ<i≤ν

2i−1ϕ(δ)

lcm(2, ordδ d)
≡ 0 (mod 2),

and similarly,∑
ν<i≤λ

ϕ(2iδ)

ord2iδ d
=
∑
ν<i≤λ

2i−1ϕ(δ)

lcm(2k−ν , ordδ d)
≡ 0 (mod 2).

We conclude that the portion of the sum where δ > 1 is even.
We are left to consider the contribution from δ = 1. Here,∑

0≤i≤λ
N2i =

∑
0≤i≤λ

ϕ(2i)

ord2i d

= 2 +
∑

2≤i≤λ

2i−1

ord2i d

≡

{
1 (mod 2) if v2(d− 1) = 1

0 (mod 2) otherwise.

Therefore, π is odd if and only if d ≡ 3 (mod 4), concluding the proof. �

Corollary 4.4. If p ∈ P3k,c and k is odd, then either p = 2, p | c, or p ≡ 11
(mod 12).

Proof. The cases p = 2 and p | c are due to Theorem 1.6. Otherwise, if

p ∈ P3k,c, k is odd, and p - c, then x3
k

+ c is a cyclic permutation of Z/pZ,
and hence p 6≡ 1 (mod 3). Finally, p 6≡ 5 (mod 12) by Theorem 1.3. �

As evidenced in Example 1.9, primes p ∈ P3k,c with p ≡ 11 (mod 12) do
exist.
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5. Fixed n and variable c, d

In this section, we investigate Dd,c from a different perspective: for a fixed
n ∈ Z, in which Dd,c does n appear? Let Hn = {(d, c) : n ∈ Dd,c}.

Proposition 5.1. For any integers d, c ∈ Z, where d ≥ 2, we have the
following.

(1) If n | c, then (d, c) ∈ Hn.
(2) If d ≡ 1 (mod n− 1) and n is prime, then (d, c) ∈ Hn.
(3) If (d, c0) ∈ Hn, then (d, c) ∈ Hn whenever c ≡ c0 (mod n). Addi-

tionally, if d is odd, then (d,−c) ∈ Hn whenever (d, c) ∈ Hn.

Proof. The first two properties are immediate from Theorem 1.6. For the
third, set φc(x) = xd + c. If c ≡ c0 (mod n), then φc and φc0 are identical
over Z/nZ. Hence (d, c) ∈ Hn if and only if (d, c0) ∈ Hn. Moreover, if d is
odd, then φ−c(x) = −φc(−x). Thus if φnc (0) ≡ 0 (mod n), then φn−c(0) ≡ 0
(mod n). �

Finally, we have a result regarding the powers of d when d is prime.

Theorem 5.2. If d is prime, there exist d-adic integers a1, a2, . . . , ad−1,
where a1 ≡ 1 (mod d), a2 ≡ 2 (mod d), . . . , ad−1 ≡ d− 1 (mod d), such
that if c ≡ 0, a1, a2, . . . , ad−1 (mod dn), then (d, c) ∈ Hdn.

Proof. Let d be prime. From Theorem 1.6, we have d ∈ Dd,c for all c ∈ Z.
In particular, Wd ≡ 0 (mod d) for c ≡ 0, 1, . . . , d− 1 (mod d). Considering
Wd as a function in c (e.g. Wd(c) = (φd−1(0))d+c), we see that d

dcWd(c) ≡ 1
(mod d). Thus by Hensel’s Lemma, each value modulo d lifts to a unique d-
adic solution. Namely, if a0, a1, a2, . . . , ad−1 ∈ Zd are these lifts (where ai ≡ i
(mod d)) and c ≡ ai (mod dn) for one of these ai, then Wd(c) ≡ 0 (mod dn).
It now follows from rigid divisibility that if dn | Wd, then dn | Wdn . It is
straightforward to verify that a0 = 0. �

6. Heuristics and Experiment for the infinitude of Sd,c

In this section, we consider some data and heuristics to support Conjec-
ture 1.2, that Sd,c is infinite, particularly in the case that d = 3.

We will find it helpful to generalize the question by allowing both p and
c to vary: we begin by considering the pairs (p, c) such that p ∈ S3,c. In
Figure 4, we plot all pairs (p, c) ∈ [3, 37619] × [1, p/2] for which p ∈ S3,c.
When d is odd, if p ∈ Sd,c, then p ∈ Sd,c′ for any c′ ≡ ±c (mod p) (Propo-
sition 5.1), hence the restriction to the interval [1, p/2]. In Corollary 4.4,
we observed that for k odd, if p ∈ P3k,c, then p = 2, p | c or else p ≡ 11
(mod 12). Therefore only primes p ≡ 11 (mod 12) may appear in this data.

The data indicates that these pairs occur somewhat frequently and that
the pairs (p, c/p) seem to be distributed randomly in the rectangle

[1, 37619]× [0, 0.5].
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Figure 4. The graph on the top shows a scatterplot of pairs
(p, c) such that p ≤ 37619 is prime and p ∈ S3,c. Below, the
same scatterplot is scaled so that the pairs are of the form
(p, c/p). There are a total of 906 data points. There are 3986
primes ≤ 37619, of which 1000 are 11 (mod 12).

Based on this observation, it seems reasonable to hypothesize that, at least
for data in this range (i.e., p ≥ 2|c|), the pair (p, c) is a Bernoulli random
variable that occurs with a probability that is independent of c. Based
on the existence of 906 data points for 1000 potential primes (i.e., those
11 (mod 12) and ≤ 37619), we will also hypothesize the following: that,
for a given prime p ≡ 11 (mod 12), there are on average 0.906 values of
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1 ≤ c ≤ (p − 1)/2 for which p ∈ S3,c. Under these suppositions, we are led
to the following heuristic assumption.

Hypothesis 6.1. For any fixed c the probability that a prime p ≥ 2|c|
satisfies p ∈ S3,c is 0.906 · 2/(p− 1).

For small primes (those with p < 2|c|), we make no assumption on the
behaviour. We remark, for example, that p = 2, 3 and p = c have spe-
cial behaviour, and otherwise the occurrence of (p, c) is determined by the
occurrence of (p,±c mod p) by Proposition 5.1.

Under this hypothesis, we may compute the expected number of pairs
(p, c) in the data set for any given c. Namely, the expectation for the number
of data points for any fixed c is

EX(c) =
∑

p∈[2|c|,X]
p≡11 mod 12

1.812

p− 1
.

In particular, EX(c) → ∞ as X → ∞, which is the statement of Conjec-
ture 1.2.

To test Hypothesis 6.1, the theoretical quantity EX(c) is compared to the
actual count for our data (X = 37619) in Figure 5. The closeness of fit
verifies that Hypothesis 6.1 is at least plausible, and gives some credence to
Conjecture 1.2.

We make one more numerical experiment to verify the validity of Hypoth-
esis 6.1. If it is indeed the case that all 906 pairs (p, c) are uniformly assigned
to primes p ≡ 11 (mod 12), then a standard computation reveals that the
expected number of primes which do not receive a pair is ≈ 403. There-
fore, we should expect approximately 60% of the primes p ≡ 11 (mod 12)
to have a corresponding c such that p ∈ P3,c. In Figure 6, we see that,
indeed, for approximately 60% of 11 (mod 12) primes, there exists a c for
which p ∈ P3,c.

We finish this section with a brief discussion of a relationship to certain
polynomials arising in the study of portraits for post-critically finite polyno-
mials. We will observe that, fixing p, the number of 1 ≤ c ≤ p− 1 for which
p ∈ S3,c is the number of non-zero roots of a certain polynomial, as follows.
Given a family of maps φc (for us, φc(x) = x3 + c), write Ψn,0(c) ∈ Z[c] for
the polynomial whose roots are those c for which 0 has period n, i.e.,

Ψn,0(c) = φnc (0).

(In the case that φc(x) = x2 + c, these are sometimes called Gleason poly-
nomials.) Then define Φn,0(c) so that

Ψn,0 =
∏
d|n

Φd,0.

In particular, Φn,0 has as roots those c such that 0 has formal period n
under the map x3 + c. (Our polynomials Ψn,0(c) are specializations at z = 0
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Figure 5. The data in Figure 4 is collected by c value in
bins of size six. For each k ∈ N, the value of the blue graph
on the interval [6(k − 1), 6k) is the number of pairs (p, c) in
the data for which 6(k − 1) ≤ c < 6k. At each point x, the
green line is the average of the blue function over the interval
(x − 60, x + 60). The red line is the theoretical expectation
under the assumption that the data is random, i.e., it is the
graph of E37619(x).

of the two-variable polynomial Ψn,z(c) ∈ Z[z, c], which is called the n-th
dynatomic polynomial. Dynatomic curves are obtained by considering such
polynomials; here we are taking the slice z = 0, allowing c to vary. For more
on these standard definitions, see [26, Section 4.1–2].)

With this setup, for a fixed p, the number of 1 ≤ c ≤ p − 1 for which
p ∈ S3,c is equal to the number of non-zero roots of Φp,0(c) modulo p. This
raises an interesting general question.

Question 6.2. As the integer n and prime p vary, what is the splitting
behaviour of Φn,0(c) modulo p?

These polynomials fall into a more general family of polynomials whose
roots include the values of c for which 0 has a given finite portrait (i.e.,
a given preperiodic length, following by a given period). As 0 is the only
critical point for xd + c, the study of these polynomials is the study of φc,d
which are post-critically finite; for example, in the case that 0 is strictly
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Figure 6. Let T (X) = {p ≤ X : p prime, p ≡ 11 (mod 12)}
and U(X) = {p ∈ T (X) : p ∈ P3,c for some c}. The plot
shows the ratio #U/#T for X ≤ 37619.

pre-periodic, the value c is called a Misiurewicz point. It is known that for
xd+c, the points c where 0 has a given portrait are the roots of a polynomial
in Z[c], all of whose roots are simple [15, Theorem 1.1]. It is unknown if
these polynomials are irreducible, or what their Galois groups are.
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[20] Lucas, Edouard. Théorie des fonctions numériques simplement périodiques.
Amer. J. Math. 1 (1878), no. 4, 289–321. MR1505176, JFM 10.0134.05,
doi: 10.2307/2369308.

[21] Peinado, A.; Montoya, Fernando; Muñoz, Juan-Guillermo; Yuste, Antonio
J. Maximal periods of x2 + c in Fq. Applied algebra, algebraic algorithms and error-
correcting codes (Melbourne, 2001), 2227. Lecture Notes in Comput. Sci., 219–228.
Springer-Verlag, Berlin, 2001. MR2640521, Zbl 1053.11091.

[22] Pollard, John M. A Monte Carlo method for factorization. Nordisk Tidskr. In-
formationsbehandling (BIT) 15 (1975), no. 3, 331–334. MR0392798, Zbl 0312.10006,
doi: 10.1007/BF01933667.

[23] Rice, Brian. Primitive prime divisors in polynomial arithmetic dynamics. Integers
7 (2007), A26, 16 pp. MR2312276 (2008e:11030), Zbl 1165.11028.

[24] Sanna, Carlo. On numbers n dividing the nth term of a Lucas sequence.
Int. J. Number Theory 13 (2017), no. 3, 725–734. MR3606950, Zbl 06696676,
doi: 10.1142/S1793042117500373.

http://www.ams.org/mathscinet-getitem?mr=1502458
http://www.emis.de/cgi-bin/MATH-item?44.0216.01
http://dx.doi.org/10.2307/1967797
http://www.ams.org/mathscinet-getitem?mr=3319121
http://zbmath.org/?q=an:1323.37055
http://dx.doi.org/10.1016/j.crma.2015.01.007
http://www.ams.org/mathscinet-getitem?mr=2955527
http://zbmath.org/?q=an:1273.37045
http://arXiv.org/abs/1009.3971
http://dx.doi.org/10.1515/integers-2011-0117
http://www.ams.org/mathscinet-getitem?mr=2863906
http://zbmath.org/?q=an:1290.11019
http://arXiv.org/abs/0903.1344
http://dx.doi.org/10.1515/CRELLE.2011.081
http://arXiv.org/abs/1608.01361
http://nyjm.albany.edu/j/2012/18-23v.pdf
http://nyjm.albany.edu/j/2012/18-23v.pdf
http://www.ams.org/mathscinet-getitem?mr=2928585
http://zbmath.org/?q=an:1300.11059
http://zbmath.org/?q=an:1300.11059
http://www.ams.org/mathscinet-getitem?mr=3335237
http://zbmath.org/?q=an:06435176
http://arXiv.org/abs/1303.6513
http://dx.doi.org/10.1093/imrn/rnt349
http://www.ams.org/mathscinet-getitem?mr=0349567
http://zbmath.org/?q=an:0277.10012
http://nyjm.albany.edu/j/2015/21-13v.pdf
http://nyjm.albany.edu/j/2015/21-13v.pdf
http://www.ams.org/mathscinet-getitem?mr=3358544
http://zbmath.org/?q=an:06456673
http://arXiv.org/abs/1309.4048
http://www.ams.org/mathscinet-getitem?mr=2475968
http://zbmath.org/?q=an:1242.11012
http://arXiv.org/abs/0707.2505
http://dx.doi.org/10.1017/S0305004108001795
http://www.ams.org/mathscinet-getitem?mr=0130205
http://www.ams.org/mathscinet-getitem?mr=2439638
http://zbmath.org/?q=an:1193.37144
http://arXiv.org/abs/math/0612415
http://dx.doi.org/10.1112/jlms/jdn034
http://www.ams.org/mathscinet-getitem?mr=1159877
http://zbmath.org/?q=an:0759.11044
http://www.ams.org/mathscinet-getitem?mr=1505176
http://www.emis.de/cgi-bin/MATH-item?10.0134.05
http://dx.doi.org/10.2307/2369308
http://www.ams.org/mathscinet-getitem?mr=2640521
http://zbmath.org/?q=an:1053.11091
http://www.ams.org/mathscinet-getitem?mr=0392798
http://zbmath.org/?q=an:0312.10006
http://dx.doi.org/10.1007/BF01933667
http://www.ams.org/mathscinet-getitem?mr=2312276
http://zbmath.org/?q=an:1165.11028
http://www.ams.org/mathscinet-getitem?mr=3606950
http://zbmath.org/?q=an:06696676
http://dx.doi.org/10.1142/S1793042117500373


INDEX DIVISIBILITY IN DYNAMICAL SEQUENCES AND ORBITS MOD p 1063

[25] Silverman, Joseph H. Moduli spaces and arithmetic dynamics. CRM Monograph
Series, 30. Amer. Math. Soc., Providence, RI, 2012. viii+140 pp. ISBN: 978-0-8218-
7582-7. MR2884382, Zbl 1247.37004.

[26] Silverman, Joseph H. The arithmetic of dynamical systems. Graduate Texts in
Mathematics, 241. Springer, New York, 2007. x+511 pp. ISBN: 978-0-387-69903-5.
MR2316407, Zbl 1130.37001, doi: 10.1007/978-0-387-69904-2.

[27] Silverman, Joseph H. Variation of periods modulo p in arithmetic dynamics. New
York J. Math. 14 (2008), 601–616. MR2448661, Zbl 1153.11028, arXiv:0707.1505.

[28] Silverman, Joseph H. Primitive divisors, dynamical Zsigmondy sets, and Vo-
jta’s conjecture. J. Number Theory 133 (2013), no. 9, 2948–2963. MR3057058, Zbl
1297.37046, arXiv:1209.3491, doi: 10.1016/j.jnt.2013.03.005.

[29] Silverman, Joseph H.; Stange, Katherine E. Terms in elliptic divisibility se-
quences divisible by their indices. Acta Arith. 146 (2011), no. 4, 355–378. MR2747036,
Zbl 1225.11079, arXiv:1001.5303, doi: 10.4064/aa146-4-4.

[30] Smyth, Chris. The terms in Lucas sequences divisible by their indices. J. Integer Seq.
13 (2010), no. 2, Article 10.2.4, 18 pp. MR2592551, Zbl 1210.11025, arXiv:0908.3832.

[31] Somer, Lawrence. Divisibility of terms in Lucas sequences by their subscripts.
Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 515–525. Kluwer
Acad. Publ., Dordrecht, 1993. MR1271392, Zbl 0806.11013.

[32] Somer, Lawrence. Divisibility of terms in Lucas sequences of the second kind
by their subscripts. Applications of Fibonacci numbers, Vol. 6 (Pullman, WA,
1994), 473–486. Kluwer Acad. Publ., Dordrecht, 1996. MR1393479, Zbl 0861.11010,
doi: 10.1007/978-94-009-0223-7 39.

[33] Vasiga, Troy; Shallit, Jeffrey. On the iteration of certain quadratic maps over
GF(p). Discrete Math. 277 (2004), no. 1–3, 219–240. MR2033734, Zbl 1045.11086,
doi: 10.1016/S0012-365X(03)00158-4.

[34] Walsh, Gary. On integers n with the property n | fn (1986), 5 pp. Unpublished,
1986.

[35] Zsigmondy, Karl. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3 (1892),
no. 1, 265–284. MR1546236, JFM 24.0176.02, doi: 10.1007/BF01692444.

(Annie S. Chen) Stanford University, 450 Serra Mall, Stanford, CA 94305
asc8@stanford.edu

(T. Alden Gassert) Hobart and William Smith Colleges, 300 Pulteney Drive,
Geneva, NY 14456
gassert@hws.edu

(Katherine E. Stange) Department of Mathematics, University of Colorado,
Campus Box 395, Boulder, Colorado 80309-0395
kstange@math.colorado.edu

This paper is available via http://nyjm.albany.edu/j/2017/23-45.html.

http://www.ams.org/mathscinet-getitem?mr=2884382
http://zbmath.org/?q=an:1247.37004
http://www.ams.org/mathscinet-getitem?mr=2316407
http://zbmath.org/?q=an:1130.37001
http://dx.doi.org/10.1007/978-0-387-69904-2
http://nyjm.albany.edu/j/2008/14-27.pdf
http://www.ams.org/mathscinet-getitem?mr=2448661
http://zbmath.org/?q=an:1153.11028
http://arXiv.org/abs/0707.1505
http://www.ams.org/mathscinet-getitem?mr=3057058
http://zbmath.org/?q=an:1297.37046
http://zbmath.org/?q=an:1297.37046
http://arXiv.org/abs/1209.3491
http://dx.doi.org/10.1016/j.jnt.2013.03.005
http://www.ams.org/mathscinet-getitem?mr=2747036
http://zbmath.org/?q=an:1225.11079
http://arXiv.org/abs/1001.5303
http://dx.doi.org/10.4064/aa146-4-4
http://www.ams.org/mathscinet-getitem?mr=2592551
http://zbmath.org/?q=an:1210.11025
http://arXiv.org/abs/0908.3832
http://www.ams.org/mathscinet-getitem?mr=1271392
http://zbmath.org/?q=an:0806.11013
http://www.ams.org/mathscinet-getitem?mr=1393479
http://zbmath.org/?q=an:0861.11010
http://dx.doi.org/10.1007/978-94-009-0223-7_39
http://www.ams.org/mathscinet-getitem?mr=2033734
http://zbmath.org/?q=an:1045.11086
http://dx.doi.org/10.1016/S0012-365X(03)00158-4
http://www.ams.org/mathscinet-getitem?mr=1546236
http://www.emis.de/cgi-bin/MATH-item?24.0176.02
http://dx.doi.org/10.1007/BF01692444
mailto:asc8@stanford.edu
mailto:gassert@hws.edu
mailto:kstange@math.colorado.edu
http://nyjm.albany.edu/j/2017/23-45.html

