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Abstract1. Typically, the prices of financial assets are studied over fixed-time intervals such as
the case with monthly or daily returns. Modern technology now allows us to consider each transac-
tion that occurred throughout a trading period and the particular instance in time at which it was
placed. Statistical analysis of financial assets conducted at this level is referred to as high frequency
econometrics. This microscopic view of the market allows us to observe an asset’s price formation
process in continuous time. High frequency data is marked by a number of peculiarities that do
not persist in discrete-time financial data, thus requiring a different econometric approach in order
to preserve the vast amount of microstructure information embedded in the transaction data. In
this paper, we construct and specify the joint probability distribution of price movements and trade
arrivals as a compound Poisson process to build a theoretical framework to study the interplay of
volatility and the timing of trades. We extend the price decomposition model proposed by Rydberg
and Shephard (2003) by defining the magnitude of price change process to follow an adaptation of
the autoregressive conditional multinomial–a finite state, VARMA model originally developed by
Engle and Russell (2005). Furthermore, we define the trade arrival process to be a doubly-stochastic
Poisson process (or Cox process) and propose estimating its random intensity through kernel density
estimation.

Keywords: high frequency econometrics, transaction prices, trade arrivals, market microstructure

1This paper was written as an Undergraduate Honors Thesis in Economics at the University of Colorado - Boulder.
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1 Introduction

Historically, financial markets have been a felicitous area for econometric research due to the abun-

dance of directly observable data that is readily available in relation to other economic systems of

interest. A popular approach in analyzing financial assets has been to consider a sequence of prices,

or returns, recorded at fixed time intervals; for example, S&P 500 yearly, monthly, and daily returns.

These returns are calculated as the change in the last settled price of the asset over the particular

time interval. Fixed interval approaches for modeling asset returns are advantageous in that model-

ing the time series in discrete time gives us access to a rich, existing econometric toolbox. However,

this discretization ignores a plurality of the trading mechanisms and market dynamics which deter-

mine how an asset achieves its price. Consequently, an approach of this kind is insufficient to supply

a complete, accurate description of the equity’s price formation process. Modern technology and

improved data management now allows us to observe every transaction recorded and the particular

instance in time at which it was placed throughout the trading day. Datasets of this nature provide

us with an unprecedented view of trading at an infinitesimal level. Accordingly, we are no longer

considering closing prices consolidated across all exchanges over an aggregated interval, but rather

the particular price agreed upon between matched market participants at an individual exchange.

Literature has referred to the financial time series observed at this granularity as high frequency

data.

High frequency data possesses many unique characteristics that are not found in other financial

time series due to the asset price’s sensitivity to the particular set of rules governing the mechanics

of trading. In a market such as the New York Stock Exchange (NYSE) or NASDAQ, orders can

arrive at any instance causing the trades to be irregularly spaced throughout time. Furthermore,

institutional rules require exchanges to maintain a minimum unit of price increments known as

ticks forcing transaction prices to live on a discrete grid. Consequently, in order to preserve the

vast microstructure information embedded in high frequency data we must adapt an econometric
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approach different from those typically employed to analyze financial assets. This paper is concerned

with developing statistical models that can capture the behavior of equities at the trade-by-trade

level in continuous time. Motivated by questions regarding how prices evolve over the trading day and

their interaction with other microstructure variables, we construct models for trading price, volatility,

and transaction arrival rate. The methodological framework we provide can be implemented to affirm

prevailing market microstructure theory. Easley and O’Hara (1992) contend that a high trading

intensity is likely a strong indication of the presence of informed traders. In such a situation, the

market specialist commonly will increase the price’s sensitivity to the order flow which induces higher

volatility. Additionally, Diamond and Verrecchia (1987) suggest that negative information cannot

be incorporated as quickly into a stock’s price due to specific constraints on short selling. If this is

indeed the case then slow trading rates should be closely associated with bad news and falling stock

prices, while high trading rates should indicate good news and rising stock prices.

We begin by defining the economic variables of interest and representing the problem probabilis-

tically. Let Zi denote the price change of an asset resulting from the ith trade. Each trade occurs at

a random point in time generated by a stochastic point process. The primary objectives of this work

are to construct and estimate the joint distribution of price movements and the stochastic point

process describing the arrival of trades. In a seminal paper by Rydberg and Shephard (2003), to

reveal additional trade information not previously apparent, the researchers propose decomposing

Zi into a product of three component variables: activity, direction, size. They chose to estimate

probability distribution of price movement activity and direction through auto-logistic regression

and size by a negative binomial generalized linear model, which was chosen for its simplicity and

familiarity. In this paper, we extend the price decomposition model by estimating the size process

with an autoregressive conditional multinomial (ACM) model–a continuous-time, discrete-state pro-

cess originally developed by Engle and Russell (2005). Although alluding to potential approaches,

Rydberg et al. are unspecific about the structure of the trade arrival process which excites the Zi.

Furthermore, we define the trade arrival process to be a doubly-stochastic Poisson process (or Cox
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process) and propose determining the trade arrival intensity process via kernel density estimation

due to the estimator’s ability to continually learn from the data and to provide insight toward the

specification of a more descriptive model in the future.

This paper proceeds as follows. Section 2 details the dataset used in this research and the unique

characteristics of the trade data. Section 3 supplies an overview of the high frequency literature.

Sections 4 and 5 will cover the methodological framework for modeling high frequency asset returns

and transaction arrival rates. In Section 6 we conclude and offer possible directions for subsequent

research.

2 Data

One of the most predominant dissimilarities between high frequency financial econometrics and low

frequency (e.g., monthly or daily time intervals) financial econometrics is the nature in which the

data studied is formed and accumulated. At low frequencies, typically one is concerned with the

changes in price of an asset calculated over a particular holding period. For example, the analysis of

IBM daily returns involves a series of prices calculated on a continuous scale indexed by a specific

fixed time interval. Here, the prices used are the last settled price at the end of that trading day.

However in high frequency financial data, these characteristics do not persist. Rather they are

marked by a number of fundamental peculiarities. Since we are considering asset prices at the

transaction level, returns can no longer be considered at fixed time periods as trades arrive at

random points in time. Furthermore, the prices themselves that we are observing are inherently

different from those observed at lower frequencies. The price recorded is the price that a particular

pair of market participants agreed upon to trade a specific amount of the asset. In modern practice,

many buyers and sellers are connected by matching algorithms which prioritize order selection by

finding the National Best Bid-Offer1 (NBBO) price which is defined to be the lowest ask/offer

(what a dealer is willing to sell at) and the highest bid (what an investor is willing to pay) quotes

1This price is established and enforced by the SEC’s Regulation NMS, which was enacted in 2005.
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available on all exchanges. This price is shown to the public through the Securities Information

Processor (SIP), which links all U.S. exchanges and consolidates protected quote information and

disseminates it to display regulatory information, like the NBBO. Consequently, through this data

we observe the price innovation process as arriving trades impute market information and investor

sentiment helping the asset achieve an equilibrium-trading price in continuous time. An additional

microstructure feature of this price data not found in low frequency data is that prices are restricted

to take on discrete integer amounts, known as ticks, while over longer periods of time security prices

appear to be continuously valued random variables. This perception exists since the asset’s price

volatility exceeds the effects of the restricted discrete price changes as time goes on, diminishing the

bias associated with treating price as continuous. Presently, the value of a tick on U.S. exchanges

as designated by the Securities Exchange Commission (SEC) is equal to $0.012

In developing our high frequency models, we referenced 12 months of NYSE Euronext trade

and quote data (TAQ) spanning from April 2010 to March 2011 for Bank of America (BAC) and

Abbott Laboratories3 (ABT) on the New York Stock Exchange (NYSE). Our dataset contains trade

information for every transaction that occurred during this time period for these equities and the

instance in time that it was recorded down to the second. Each data point displays the date of

the trade, the transaction price, the timestamp, and the number of shares exchanged (volume).

In practice, traders have the ability to place orders at the millisecond level via low latency data

connections meaning the accuracy of our measurements do not perfectly define the trade arrival

times. As a result there are some instances where multiple trades occurred with identical timestamps.

Any further assumptions about the ordering of these trades would be a priori , inducing unnecessary

bias, restricting our ability to analyze the price innovation process. To handle this problem, we

maintain a one-to-one relationship between transaction prices and trade times. Empirically, we

accomplish this by following the suggestion of Jasiak and Gourieroux (2001), computing a weighted

2The tick size was stipulated in Reg. NMS, ”to limit the ability of a market participant to gain execution priority
over a competing limit order by stepping ahead by an economically insignificant amount”.

3The trade data for ABT predates the company’s October 2011 separation into two publicly traded entities: Abbott
Labs, specializing in medical products; AbbVie, specializing in pharmaceutical research.
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average of the trade price and volume at each instance where more than one trade was recorded at

a specific second. While preserving information about the arrival times, this transformation causes

the price increments to no longer take on integer tick values, but rather continuous values. Modeling

security prices in tick time continuously is unfavorable since many of the prices we observe in this

new series are unobtainable in practice. Moreover, the price movements relative to the trading price

of the security at the high frequency level are generally quite small. This means that a realistic high

frequency model must be able to highlight the asset price’s sensitivity to the order flow, which is

best accomplished by means of a discrete-state model. To retain the discreteness of our price series,

we implement a rounding procedure discussed by Engle and Russell in Ait-Sahalia’s Handbook of

Financial Econometrics (2010).

Another trading phenomenon that induces additional microstructure noise in the dataset arises

from the natural discontinuity between consecutive trading days. Simply concatenating each daily

series is insufficient as it neglects important trading mechanics that are specific to the particular

time and day of the week. Orders, which are placed outside of trading hours, are filled through a

call auction at the beginning of the next trading day. Moreover, a significant amount of trading

occurs during the market’s closing hour as traders close their daily positions and prepare for the

subsequent trading day. The price formation processes at these times are distinct from other hours of

the day and are a fundamental features of the trading dynamic at the NYSE. Rydberg et al. propose

truncating the first and last 30 minutes of trading in order to eliminate the residual effects of the

call auction and unusual high volatility near closing before amalgamating the time series (2003).

Although a viable approach, this method causes us to ignore the two most active and potentially

informative4 periods of the trading day. As a result, we propose grouping the trade information by

day to observe the entirety of the market’s operation hours and to allow for heterogeneity among

model parameters. This approach is preferable as it would be reasonable to expect that the trading

process may not only be dependent on the time of day, but on the specific day of the week, week of

4This assumption follows from the work of Easley and O’Hara (1982), who contend that high trading intensity is
an indication of the presence of informed traders.
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the month, and month of the year as well.

3 Literature Review

Methods frequently employed in financial econometrics often rely on the discrete indexing of fixed

time intervals for financial data. This is evident in approaches such as in the ARCH framework

for analyzing daily stock returns and volatility described in Poon and Granger (2003). However,

high-frequency data possesses many unique features and irregularities that do not persist in lower

frequency financial time series. As a result, much of the existing literature on high-frequency econo-

metrics is dedicated toward constructing models that deal directly with these distinct characteristics

such as the random spacing of trades, discrete price movements, and microstructure noise, rather

than modifying the dataset to fit existing models.

Perhaps the most salient characteristic of high-frequency data is the irregular spacing of transac-

tions through time (Engle 2000). Consequently, relying on popular, discrete-time models is insuffi-

cient for properly describing high-frequency time series without masking interesting microstructure

features and inducing unnecessary bias (Engle, Russell 1998). Handling the erratic spacing of trans-

actions requires the utilization of a stochastic point process; where in the application of modeling

trade arrivals, is commonly termed a financial point process. Financial point processes can be con-

structed from two primary viewpoints–duration and intensity. Although similar in approach, the

two can provide a different economic interpretation of the transaction arrival process. Duration

is particularly useful in describing the likelihood of subsequent price changes [13] and the waiting

time for new information. Intensity on the other hand, offers a more natural basis for measuring

instantaneous volatility and is easily extended to the multivariate case, unlike duration [21]. Dura-

tion modeling of financial point processes involve predicting when a trade will occur, given a trade

has not occurred since the last observation. Duration modeling of transaction times is strongly tied

to the subject of survival analysis by considering the transaction duration to be the survival time.

In a seminal paper by Engle and Russell (1998), they apply an autoregressive conditional duration
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model, a variation of a dependent Poisson process, to estimate transaction duration. They formu-

late the duration similar to the proportional hazard model as originally proposed by Cox (1972) by

decomposing the hazard to a product of the arrival density and a function of its covariates. Though

other forms have been created, generally the ACD model is described by τi = ti − ti−1, the time

between trades and its conditional expectation E[τi|Fi−1] = ψi, such that

ψi = ω +

p∑
j=0

αjτi−j +

q∑
j=0

βjψi−j (1)

By specifying the conditional intensity process as the hazard rate, conditional on all past information,

the model provides a powerful framework for assessing the interaction between trade duration and

asset volatility. Engle et al. (1998) find evidence to suggest that transactions are highly clustered

due to the crowding of informed traders when the prevailing bid-ask spread is small.

Trade intensity models, which seek to measure the probability of observing a transaction at any

point in time, follow a similar methodology to duration, but the variables of interest are inverses of

each other. An example of an approach to intensity modeling is the use of Hawkes processes, as in

Bowsher (2006), which specifies the intensity process as a self-exciting process driven by the time

distance to past arrivals in the point process. A useful feature of Hawkes processes is that they can

be fitted to handle clusters of arrivals, a phenomenon one would certainly expect in high-frequency

finance such as when new information becomes available to traders who react nearly simultaneously.

More usual forms of point processes do not have this feature and limited to only allowing one

arrival at an instance in time. Following the work in trade duration modeling by Engle and Russell

(1998), Hamilton and Jorda (2002) develop an intensity analog that corresponds to the inverse of the

conditional duration. By doing so, they extend the ACD model of Engle and Russell to permit time-

varying covariates. Zhang and Kou (2010) provide a strong framework for estimating arrival rates

and autocorrelation functions associated with a Cox process by means of kernel density estimation.

While applied in a biophysical context, the researchers contend that their methods developed can

be applied seamlessly to other Cox processes exhibiting potentially both short-term and long-term
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temporal dependence. We suspect this to be the case with high-frequency financial data given

intuitive assumptions about intraday and seasonal trading patterns in the market. Furthermore, the

non-parametrically derived autocorrelation function may be able to give us insight as to how trade

intensity is distributed, aiding in the testing of future parametric models (Bauwens and Hautsch

2007).

A sometimes overlooked feature of financial high-frequency data is that the price changes are re-

stricted to live on a discrete grid due to restrictions imposed by regulatory agencies. Trade-by-trade

price movements are expressed in terms of an elementary value, dubbed a tick. This is contrary to

low frequency pricing, in which assets appear to take on continuous price values due to smoothing

implemented by market specialists. Thus the discretization of price becomes an important feature of

this data and can be empirically complex to handle. In practice, we only observe a small collection

of different tick-valued price changes. In their 2005 study, Engle and Russell find that 99.3% of

all of their observed trades took on only one of five values, down 2 ticks to up 2 ticks. Engle and

Russell extend their ACD model to jointly model price and duration in a method they call autore-

gressive conditional multinomial autoregressive conditional duration (ACM-ACD). The motivation

for constructing the ACM model to describe high-frequency data is derived from similar models’

success in handling highly temporally dependent data, such as those found in option pricing. A

unique approach to simplify the construction of the joint price movement distribution is proposed

in Rydberg and Shephard (2003) by decomposing the stochastic process into a product of condi-

tional densities describing three fundamental features of the economic process. This decomposition

allows the researchers to test the serial dependence of price movements on past activity, direction of

change, and magnitude of change. Microstructure noise such as bid-ask bounce, which is prevalent

in high-frequency data, can also be tested for under this framework. However, this model has many

areas for which further research can improve upon. Through decomposition, information about stock

dynamics becomes much more apparent, but inference on the model implemented empirically by the

researchers is limited by distributional misspecification.
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4 Price Movements

A defining feature of high frequency asset behavior is that while prices evolve through continuous

time, the changes in the price or returns associated with each trade are restricted to live on a discrete

grid. This fact arrises due to policies maintained by the exchanges which specify minimum price

increments, known as ticks, that securities can take on. Let us consider a general pricing model

p(t) = p(0) +

N(t)∑
i=0

Zi (2)

where p(t) denotes the price of the asset at time t ∈ R. Here, N(t) denotes the number of trades

realized between time 0 and time t and Zi represents the price movement associated with the ith

trade. N(t) acts as a counter, exciting Zi at the arrival of each trade and is modeled by a family

of stochastic processes referred to as financial point processes in the high frequency literature. This

subject will be discussed in greater detail in Section 5. Because Zi is restricted to exclusively take

on multiples of the smallest price increment specified by the exchange it is being traded on, Zi can

be viewed as an integer process, which in practice takes only a handful of values. In this section, Zi

is modeled as being dependent only on itself, though this stipulation will be relaxed in subsequent

sections to include information about trade arrivals. As a result, we have that Zi ∈ Z and its natural

filtration being Fi = σ(Zj : j ≤ i). Now we can formulate the joint probability distribution of the

price movements as follows

P (Z1, . . . , Zn|F0) =

n∏
i=1

P (Zi|Fi−1), (3)

by decomposing Zi into a product of probabilities conditioned on all prior trade information. The

principal motivation of this section is to construct and estimate this joint distribution. Directly,

this can be an arduous task; however, following the suggestion made by Rydberg and Shephard

(2003), we can simplify the process econometrically be decomposing Zi into a product of three

fundamental components–activity, direction, and size. Doing so allows us to further inspect the
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determining factors and characteristics of price change such as asymmetrical returns and mean-

reverting behavior. Moreover, under this framework we can better locate, and then control for,

instances of microstructure noise such as bid-ask bounce which many models have not taken fully

into account.

4.1 Decomposition

Through the preceding decomposition, we define the price movement corresponding to the ith trade

as

Zi = AiDiSi, (4)

where Ai, Di, Si are defined to be activity, direction, and size, respectively. We define the activity

series as a binary variable such that

Ai =

{
1, if there is a price change from the ith trade

0, if there is no price change from the ith trade,
(5)

the direction series conditioned on the ith trade being active as a binary variable such that

Di|(Ai = 1) =

{
1, if the price change from the ith trade is positive

−1, if the price change from the ith trade is negative,
(6)

and the magnitude series conditioned on the ith trade being active as an integer variable such that

Si|(Di, Ai = 1) = 1, 2, 3, . . . . (7)

Consequently, by Baye’s Rule the distribution of price movements can be formulated as

P (Zi|Fi−1) = P (AiDiSi|Fi−1) = P (Ai|Fi−1)P (Di|Ai,Fi−1)P (Si|Di, Ai,Fi−1) (8)

Note that Ai = 0 implies that Zi = 0. While we could potentially model these series independently,

let us not forget the motivation behind the decomposition, which remains constructing a multivariate

model for the Zi. We contend that imposing this configuration will yield richer, interpretable results

not readily apparent when modeling Zi directly.
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4.2 Preliminary Component Models

Recall the price activity variable, Ai, which we pose as a binary variable indicating whether the ith

trade resulted in a non-zero price change. Since ultimately we are concerned with the role Ai has in

determining Zi, it is suffices to examine the case where Ai = 1; otherwise, considering Di and Mi

is trivial. For this reason, we are interested in the behavior of the probability pi = P (Ai = 1|Fi−1)

over time. Initially, we assume that price activity obeys an auto-logistic structure such that

pi =
eθ

A
i

1 + eθ
A
i

where θAi = ln

(
pi

1− pi

)
= φ0 + φxi +

L∑
l=1

βlAi−l, (9)

where φ0 is a constant, φ is a r-dimensional parameter vector, xi is a r × 1 vector composed of

potential elements of Fi−1, βl are parameters, and Ai−l are l-lag values of Ai. A logistic approach is

appropriate since it allows us to extract the log odds of a trade producing a price change regressed on

prior trade information (Cox, 1958). Additionally, since the direction of price change Di (assuming

Ai = 1) is also a binary variable, it takes on a similar structure where the probability of interest,

δi = P (Di = 1|Ai = 1,Fi−1), is defined to be

δi =
eθ

D
i

1 + eθ
D
i

where θDi = ln

(
δi

1− δi

)
= κ0 + κyi +

L∑
l=1

γlDi−l, (10)

where κ0 is a constant, κ is a r-dimensional parameter vector, yi is a r × 1 vector composed of

potential elements of Fi−1, γl are parameters, and Di−l are l-lag values of Di. Since most traders

are naturally risk-adverse, in practice there tends to exist an asymmetrical response in volatility to

up and downward price movements. To observe this phenomenon, we allow

Si|(Di, Ai = 1) ∼

{
g(λui), if Di = 1, Ai = 1

g(λdi), if Di = −1, Ai = 1,
(11)

where g(λki) = P (Si = si|Di, Ai = 1) = λki(1 − λki)si−1 denotes the geometric probability distri-

bution with parameter λki, as proposed by Tsay (2010) which is a simplified version of the negative

binomial GLARMA model implemented by Rydberg et al. (2003). The geometric parameter values

evolve temporally as

λki =
eθ

S
ki

1 + eθ
S
ki

where θSki = ln

(
λki

1− λki

)
= νk0 + νkwki +

L∑
l=1

ψklSi−l, (12)
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where νk0,νk,wki, ψkl, and Si−l play their logical roles. When considered in aggregate, the above

models suggest that for the ith trade Zi exists in one of three states:

Zi =


0, if Ai = 0, with probability (1− pi)
g(λui), if Ai = 1, Di = 1, with probability piδi

g(λdi), if Ai = 1, Di = −1, with probability pi(1− δi) .

(13)

4.2.1 Estimation

By formulating Equations (2) and (7) in terms of the three states specified by our model, we obtain

P (Zi = zi|Fi−1) = 11i(1− pi) + 12ipiδig(λui) + 13ipi(1− δi)g(λdi)

= 11i(1− pi) + 12ipiδiλui(1− λui)zi−1 + 13ipi(1− δi)λdi(1− λdi)zi−1, (14)

where 1ji = 1 if the jth state occurs, 0 otherwise. We now construct the log-likelihood function

ln[P (Z1 = z1, . . . , Zn = zn|F0)] =

n∑
i=1

ln[P (Zi = zi|Fi−1)], (15)

to permit estimation of the parameters associated with the aggregate model mentioned above via

maximum likelihood estimation.

4.3 Autoregressive Conditional Multinomial

In a similar spirit to Rydberg et al. (2003), Engle and Russell (2005) construct an autoregressive

model for the conditional distribution of discrete price changes which they call the Autoregressive

Conditional Multinomial (ACM) model. They begin by constructing a k× 1 state vector, x̃i, whose

elements indicate a particular integer increment of price change. A disadvantage of this approach

is that number of ticks a stock can move is predetermined to be finite, whereas the Decomposition

model permits a countably infinite number of tick moves. The impact of this tradeoff is diminished

in practice, however, since the trading of most equities produces only a small collection of possible

price changes. Based off of summary statistics of their data and to maintain parsimony, Engle and

Russell choose k = 5 such that x̃i indicates the occurrence of an element from the set of possible

price changes ∆Pi = {−2,−1, 0, 1, 2}. Then the state vector is modeled as a vector autoregressive
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moving-average (VARMA), which can later be extended to include conditional information from

other explanatory variables. Since x̃i is a vector of only ones and zeros, it should also be that

0 ≤ E[x̃i] ≤ 1. To directly impose this condition for any set of covariates, the researchers apply

the logistic link function to express the VARMA model in terms of the log odds of the price change

states with respect to a base state. Given the linear structure of the VARMA model, the base

state can be chosen arbitrarily without a loss of generality. By doing so, they can then construct a

(k− 1)× 1 vector of conditional probabilities, πi, where the conditional probability of the kth state

can be found by setting
∑k
m=1 πim = 1. Defining a vector of the log probability ratios, they let

h(πi) = ln

(
πi

1− ι′πi

)
= Pxi + c, (16)

where ι is a conforming vector of ones, P is an unspecified (k−1)× (k−1) time-invariant transition

matrix, xi is the (k − 1)× 1 state vector, and c is a (k − 1) dimensional vector of constants.

By generalizing Equation (15) to allow P to consist of time-varying transition probabilities and

by expanding the dependent information set, Engle and Russell obtain a model that is much richer

and dynamic in structure. The so-called Autoregressive Conditional Multinomial (ACM) model of

order (p, q, r) is then given by

h(πi) =

p∑
j=1

Aj(xi−j − πi−j) +

q∑
j=1

Bjh(πi−j) + χvi (17)

Where Aj and Bj denote the jth (k − 1) × (k − 1) parameter matrices; vi =
[
1 v1 . . . vr

]′
an (r + 1)-dimensional vector consisting of 1 in the first element to form a constant and the vl for

l = 1, . . . , r are explanatory variables, and χ is a (k − 1) × (r + 1) parameter matrix. In their

paper, Engle and Russell specify the explanatory variables to be r-lags of trade duration, albeit

they mention other possibilities such as trade volume and prevailing bid-ask spread. The terms

{xi − πi} form a martingale difference sequence describing the innovation associated with the ith

trade where Aj determines its impact and Bj can be interpreted as the rate of decay for past trade

information. As we have seen before, the conditional probabilities, πi, can be obtained through

logistic transformation.
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4.4 Decomposition-ACM

Asset prices at the high frequency level live on a discrete grid and tend to exhibit strong temporal

dependencies. As such, a robust model for price changes must be capable of capturing these charac-

teristics and flexible enough to consider a range of explanatory trading variables. Thus far we have

examined two models that are highly capable of describing the tick level price process, the Decom-

position model and the ACM model. The Decomposition model is successful in that by parsing the

price movement process, Zi, specific trading phenomena such as increased price sensitivity to order

flow, bid-ask bounce, and mean-reverting prices can be analyzed that are otherwise not immediately

apparent in directly constructed high frequency price models such as the ACM. However, the model

fails slightly in terms of a distributional misspecification for the size process, Si and it is in this

area that the ACM model of Engle and Russell succeeds. The VARMA structure with time-varying

parameters and martingale difference sequence innovations in the ACM approach provides for a rich,

flexible model that allows the price transition probabilities to be easily interpreted. In this section,

we construct a new model for high-frequency price movements that features the robustness of the

ACM while capturing the additional microstructure information obtained through decomposition by

considering the price activity and direction series. Moreover, in addition to developing the model,

which we term the Decomposition-ACM, some theoretical properties and estimation procedures are

also established.

4.4.1 Model Specification

Recall from equation (1), we define the high frequency price of a financial asset at a specific instance

in time to be the random sum p(t) = p(0) +
∑N(t)
i=0 Zi, where t is a continuous clock. In this

framework, the price process p ≡ {p(t) : t ≥ 0} can be thought of as a compound Poisson process.

That is, a continuous-time stochastic process with jumps arriving randomly generated by a Poisson

process N ≡ {N(t) : t ≥ 0} with rate parameter λ > 0. The jumps Zi ≡ {zi : zi ∈ Z, i ≥ 1}

correspond to the change in the price of the asset induced by the ith trade and possess their own
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interesting probability distribution. In the literature it has been shown that the price process, p(t),

can be sufficiently characterized by considering the joint distribution of the price movements and

the trade arrivals*. Consequently, our attention is directed toward formulating and estimating the

joint conditional distribution of the Zi given by equation (2) in terms of our Decomposition-ACM

model (we discuss the trade arrival process in greater detail in section 5). Following the original

proposal by Rydberg et al. (2003), we decompose the Zi into a trivariate mixture model with price

change activity, direction, and size (for reference, see section 4.1). Through this transformation we

obtain the probability distribution of Zi conditional on the σ-field Fi−1, given as previously posed in

equation (7), as P (Zi|Fi−1) = P (Ai|Fi−1)P (Di|Ai,Fi−1)P (Si|Di, Ai,Fi−1). Note that in addition

to having access to the information provided in Fi−1, Si is both contemporaneously dependent on the

direction and activity while Di is contemporaneously dependent on activity. We re-emphasize the

intuitive, natural ordering present in the decomposition as it is an essential feature of this approach.

Subsequently, it follows from equations (4), (5), and (7) that the conditional distribution for price

movements,

P (Zi = zi|Fi−1) = 11i(1− pi) + 12ipiδiP (Si = zi|Di = 1, Ai = 1,Fi−1)

+ 13ipi(1− δi)P (Si = −zi|Di = −1, Ai = 1,Fi−1) (18)

Notice that equation (17) is identical to (13) except that we have left the conditional distribution

for the size of the price movements unspecified. As previously mentioned in equation (10), Tsay

(2010) defines the price magnitude process to be geometrically distributed and enforces response

asymmetry by bifurcating the parameters for up and downward price changes. Although not shown,

his stipulation is necessary to preserve the role of the Di in the model as it establishes a fundamental

distinction between the particular direction that the asset’s price moved. Empirically, there is strong

evidence to suggest that prices, do in fact, react asymmetrically in the presence of new information

(see Rydberg et al. (2003), Engle (2000), Bowsher (2006)). Statistically significant direction lags in

our model, in addition to the observed convergence in theory and empirical results, would further
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enhance our argument for decomposing the Zi. Let

P (Si|Di, Ai = 1,Fi−1) = πli =

π
l
1i
...

πlmi

 , where l = u, d (19)

where πlki denotes the conditional probability that the ith trade induces the Si to transition to the kth

state dependent on whether the magnitude of the price change was in the up or downward direction.

Each of the k = 1, . . . ,m corresponds to the particular magnitude of price change measured in

ticks associated with the ith trade. As in equation (15), we propose estimating the conditional

probabilities by means of their log odds, yielding

h(πli) = ln

(
πli

1− ι′πli

)
= Tlsi + cl (20)

where πli is now a (m−1)-dimensional vector since the probability ratios are taken with respect to a

base state and Tl, si, and cl play identical roles to their counterparts in (15). In our variation, we let

the set of the magnitudes of tick changes, M∆pi = {0, 1, 2, 3} → {1, 2, 3}. Note that our state space

is limited to contain only magnitudes and not direction as this variable has already been taken into

account previously in the decomposition. Without a loss of generality, the state indicating a change

of zero is chosen to serve as the base state. We picked this state due to the natural ordering in our

model, which differentiates between zero and non-zero price changes. Since we are constructing a

model to estimate P (Si|Di, Ai = 1,Fi−1), it makes sense to measure the likelihood of a non-zero

change relative to no change considering this probability is only non-trivial when Si 6= 0. Then si

assumes the jth column of the identity matrix, IM , when the jth state of M∆pi occurs so that

si =


[1 0 0]′, if |∆pi| = 1

[0 1 0]′, if |∆pi| = 2

[0 0 1]′, if |∆pi| = 3

Furthermore, since si is distributed multinomially, the form of its conditional covariance matrix is

easily inferred (see MacRae 1977) to be

COVi ≡ Cov(si|Fi−1) = diag{πi} − πiπ
′
i =

π1i(1− π1i) −π1iπ2i −π1iπ3i

−π2iπ1i π2i(1− π2i) −π2iπ3i

−π3iπ1i −π3iπ2i π3i(1− π3i)

 (21)
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Applying the ACM structure of (16) originally developed by Engle et al. (2005), h(πli) takes the

form

h(πli) =

p∑
j=1

Bl
j(si−j − πli−j) +

q∑
j=1

Cl
jh(πli−j) +

r∑
j=1

βjAi−j+1 +

r∑
j=1

γjDi−j+1 + cl (22)

where the Ai and Di represent the contemporaneous and (r− 1)-lag values of activity and direction

that we are familiar with from the Decomposition model of Rydberg et al. (2003) and βj ,γj are

(k−1)×r parameter matrices.This formulation is marked by a number of advantageous in comparison

to the original ACM described in (16). By truncating the si through the decomposition, we reduce

the number of conditional probabilities to estimate at each trade by half, helping the model maintain

parsimony. Furthermore, the inclusion of the activity variable should aid the computational efficiency

of the model since the probability of an inactive trade is now found directly instead of having to

find the residual probability from all the other possible states. Reinforcing the importance of this

stipulation empirically, inactive trades are common, particularly during periods of low volatility.

Now by applying the logistic transformation to (20) we arrive at our desired conditional distribution

for the size of price change induced by the ith trade and have that

P (Si|Di, Ai = 1,Fi−1) = πli =

π
l
1i
...

πlmi

 =
eh

l
i

1 + ι′eh
l
i

(23)

Combining this result with that of equation (17), we obtain the conditional distribution of price

movements,

P (Zi = zi|Fi−1) = 11i(1− pi) + 12ipiδis
′
iπ
u
i + 13ipi(1− δi)s′iπdi (24)

The computational benefits of this model become more apparent in this formulation. It can easily

be seen that our indirect approach allows us to only have to focus on the relevant component of (22)

for each trade, rather than the direct approach, which requires to tackle the whole problem at once.

18



4.4.2 Estimation

Given the assumptions of our model and equation (22), we can construct the log likelihood function

as a product of the conditional densities to be,

L(Θ) =

N∑
i=1

ln[P (Zi = zi|Fi−1)], (25)

where Θ represents the set of parameters to be estimated. For the case that Zi = 0(Ai = 0), the

current model is identical to the one estimated in section 4.2.1, which was conducted via maxi-

mum likelihood as the regularity conditions for the logistic distribution are well understood. The

estimated model only deviates from that in section 4.2.1 when Zi = zi 6= 0 since the conditional

distribution of the size of the price change process is redefined using the Decomposition-ACM. As

noted by Engle et al. (2005), the ACM(p,q) model is analogous in structure to the more familiar

GARCH(p,q) process. Consequently, equation (21) considered independently has a log likelihood

function whose partial derivatives assume the recursive form present in GARCH models originally

demonstrated by Bollerslev (1986), which are shown to produce consistent, efficient, asymptotically

normal maximum likelihood parameter estimates. Therefore, we assume that when the mixture

model is considered in aggregate, the regularity conditions will be preserved and we will obtain

consistent, efficient maximum likelihood estimates for our parameters. To conduct this estimation

procedure, suggest implementing the Berndt, Hall, Hall, and Hausman (BHHH) (1974) numeri-

cal optimization algorithm. Although rather computationally inefficient for optimization on large

datasets, as in this paper, Bollerslev (1986) notes that the recursive structure of the log likelihood

derivatives conveniently fit the BHHH procedure.

5 Trade Arrivals

Among the myriad peculiarities that differentiates the study of high frequency finance from its lower

frequency counterpart, perhaps the most salient is the irregular spacing of data in time. Usually,

sequences of asset prices are considered over aggregated fixed-intervals to facilitate analysis, so the
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issue of handling random transaction data becomes inconsequential. However, this turns out to be a

costly simplification at the trade-by-trade level. It has been well discovered that the timing of trading

events, particularly the arrivals of trades and the frequency in which they occur, possess indispensable

information for market microstructure analysis and intraday volatility forecasting (see Bauwens and

Hautsch (2007), Engle and Russell (1998)). Hence, it is integral that we construct a model that

can accurately depict and preserve the features of these trade arrivals to fully characterize the price

process, p(t). As discussed in the literature review, the typical approach for this task involves the

implementation of a so-called financial point process. Essentially, these are continuous time point

processes with a memory of past trading events. In the literature, models have been considered

from two vantage points of the trading process, duration and intensity. Intensity based models are

attractive in that they naturally suit continuous-time modeling in the univariate and multivariate

framework. A possible extension to this paper could be to construct a high frequency mean-variance

efficient portfolio. If we elected to implement a duration model, we would encounter the well-known

dilemma in finance of matching asynchronous durations, which would vastly inhibit our ability to

consistently estimate the portfolio’s intraday covariance matrix of volatilities and cross-volatilities.In

this paper, we develop the financial point process from the more flexible intensity perspective (Russell

1999) by modeling it as a so-called Cox process.

5.1 Trading Intensity

While the definition of trading intensity will become more clear as we develop the mathematics,

initially it can be thought of as the instantaneous probability that an asset is traded (a trade

arrival). Fundamentally, the analysis of trade arrivals is rooted in point process theory and is the

starting point in our development of the model. Let {ti}ni=1 be a monotone increasing random

sequence of event times and let N ≡ {N(t) : t ≥ 0} be a càdlàg counting function. We say that N(t)
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is a non-homogenous Poisson process (NHPP) with respect to the mean measure, Λ(t), iff

(1) P (N(0) = 0|F0) = 1

(2) ∀t, s ≥ 0, 0 ≤ u ≤ t, N(t+ s)−N(t) is independent from N(u)

(3) ∀t, s ≥ 0, P (N(t+ s)−N(t) = 1|Ft) = λ(t)s+ o(s)

(4) E[N(t)|Ft] = Λ(t) =

∫ t

0

λ(s)ds <∞

(5) Increments, τi = ti − ti−1, are independent, but are not stationary

where,

λ(t|Ft) = lim
h→0+

1

h
E[N(t+ h)−N(t)|Ft] (26)

is called the Ft-conditional intensity of N(t). On should also note that the Ft-conditional process

N(t) is a submartingale, that is E[N(t)|Fs] ≥ N(s), s < t, with compensator Λ(t). A Cox process,

or doubly-stochastic Poisson process, is a generalization of the NHPP where the intensity function

λ(t) is defined to be its own random process in such a way that N(t)|λ(t) ∼ NHPP (λ(t)) and

λ(t) becomes an Fs-predictable function. In the literature, the stochastic λ(t) is represented in a

variety of forms such an autoregressive process as in Hamilton, Jordà (2002) or Russell (1999), or

as an Ornstein-Uhlenbeck process in Rydberg, Shephard (1998). Autoregressive intensity models

are successful in that they are able to capture to capture a variety of features in the data such as

transaction clustering (Hamilton et al. 2002). Rather than specifying a parametric intensity model,

we elect to take a nonparametric approach in constructing our estimate for the density of the trading

process. Although we lose the ability to specific dependencies in the underlying process, such as

those inducing trade clustering, are model is less impacted by bias associated with the distributional

and structural assumptions made about λ(t). Trading intensity tends to exhibit both short term

and long term dependencies, making it potentially difficult to construct a parsimonious parametric

model without a comprehensive prior understanding of the process. While in a biophysical setting,

Zhang and Kou (2010) provide a framework for nonparametric estimation and inference of Cox

processes via kernel density estimation that can simply be adapted to fit our context of trade
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arrivals. Furthermore, Zhang et al. (2010) estimate the process’s autocorrelation function (ACF),

which will become instrumental in later specifying a more descriptive parametric model.

5.1.1 Nonparametric Estimation

Let t1 < t2 < · · · < tn, t ∈ [0, T ] denote a random sequence of increasing arrival times from a Cox

process with stochastic intensity λ. Then the Rosenblatt-Parzen estimator for the intensity (density)

λ estimated at s ∈ R is,

λ̂h(s) =
1

nh

n∑
j=1

K

(
s− tj
h

)
(27)

where h > 0 is the smoothing bandwidth and K is a symmetric kernel satisfying

∫
R

K(s)ds = 1

A main factor in determining the performance of this estimator is the choice of bandwidth, h. Zhang

and Kou (2010) propose optimization this selection by minimization of the mean integrated squared

error (MISE) and a relatively simple regression plug-in method. Assuming that the true realization

λ(t) is ergodic, an estimate for the process’s autocorrelation function can be easily constructed once

obtaining λ̂h(t).

6 Conclusion

In this paper, we discuss the characteristics of security prices at the trade-by-trade level and their

dissimilarity to prices observed over longer fixed intervals. Moreover, we describe the frequency in

which transaction data is accumulated throughout a trading day and its implication for asset prices.

The relationship between trading intensity and financial returns is prominent topic among market

microstructure theorists as in the works of Easley et al. (1992) and Diamond et al. (1987), which

serve as a motivation for the analysis of high frequency data. We propose an unique econometric

methodology capable of preserving the irregularity of transaction data by defining the price process

as a compound Poisson process. Following the approach of Rydberg et al. (2003), we decompose

the price movement process into a naturally ordered trivariate mixture model of activity, direction,
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and magnitude. Activity, which indicates a trade induced price change, and direction are modeled

as an autoregressive logistic process. We extend the Rydberg and Shephard model by describing

the magnitude process as a more dynamic finite-state VARMA process. The VARMA approach

was originally proposed by Engle and Russell (2005), terming their specific model the autoregressive

conditional multinomial (ACM). However, they choose to model high frequency price movements

directly as opposed to Rydberg et al. (2003), who do so indirectly. Approaching the problem indi-

rectly through decomposition is a more informative framework as it is able to uncover relationships

which are not apparent in direct modeling. This lead us to develop the so-called decomposition-

ACM model for high frequency price movements. Additionally, we allude to some of its properties

and potential estimation procedures for the model. Furthermore, we describe the trade arrivals as

a Cox process and propose estimating its random intensity through nonparametric kernel methods.

For future research, the asymptotic properties of the decomposition-ACM can be explored and our

methodological framework can be implemented to study the factors contributing to a security’s price

formation process. Interesting extensions could also be generalizing our model to the multivariate

case in order to engineer an efficient high frequency portfolio and to consider other areas of ap-

plication for our model such as in constructing the stock price lattice used in multinomial option

pricing.
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