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Abstract 

The degree of behavioral control that an organism has over a stressor potently modulates 

the neurochemical and behavioral consequences of that stressor. Many of the stress-induced 

outcomes that occur following uncontrollable stress (e.g., exaggerated fear, reduced social 

exploration, shuttlebox escape deficit) do not occur if the identical stressor is controllable. 

Furthermore, having an experience with behavioral control (time A) alters how an organism 

responds to future adverse events (time B), even those that are uncontrollable and occur in very 

different contexts (termed “behavioral immunization”). Pharmacological studies suggest that the 

prelimbic region (PL) of the ventral medial prefrontal cortex (vmPFC) is critical for the short- 

and long-term protective effects of behavioral control. The concept of behavioral control is 

similar to action-outcome contingency learning, which involves a circuit containing the PL and 

the dorsomedial striatum (DMS). Here we determine if the corticostriatal system (PL neurons 

that project to the DMS) is selectively activated by the presence of control (time A; Experiment 

1), and whether or not prior experience with control activates this pathway during a subsequent 

challenge (time B; Experiment 2). Combining retrograde tract tracing with immediate-early gene 

immunostaining, we found that DMS-projecting PL neurons are selectively activated by 

behavioral control. However, this same population was not activated during exposure to a later 

uncontrollable stressor. Additionally, using dual fluorescent retrograde tracing, we determined 

that the DMS-projecting PL neurons constitute a separate population from PL neurons that exert 

top-down inhibitory control over limbic structures activated by adverse events (i.e., PL neurons 

that project to the dorsal raphe nucleus; DRN). These studies provide initial evidence that the 

corticostriatal circuit is recruited during the initial experience of behavioral control, but do not 

participate in the later resistance to challenge.   
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Introduction 
 

Traumatic events have long been known to play an important role in the development and 

perpetuation of psychiatric disorders such as substance use disorders, depression, and anxiety 

disorders such as posttraumatic stress disorder (PTSD). Yet not all individuals who are subjected 

to traumatic events develop such disorders, and certainly not to the same extent. Although 

genetic factors are doubtlessly important, coping factors appear to provide resilience to such 

events. Behavioral control is a central aspect of coping in humans and is associated with 

resilience1. In fact, behavioral control can be modeled in rats so that the underlying neurobiology 

of coping can be investigated. In this paradigm, subjects (rat) are placed into Plexiglas boxes 

with a wheel mounted in the front. The subject’s tail is secured to a Plexiglas rod extending from 

the back of the box, and receives a series of tailshocks. One rat can terminate the tailshock by 

turning the wheel (escapable shock, ES), while a second rat is yoked to the first and receives the 

identical tailshock but has no control over its termination (inescapable shock, IS). Thus, the 

shock received by each rat is equivalent in both duration and intensity; the only difference 

between the two subjects is that one is able to terminate the tail shock of its own accord while the 

other cannot.  

 Shock is chosen as the medium for stress induction because it can be temporally 

controlled and can be delivered at an equivalent intensity to both subjects. It can be rapidly 

initiated and terminated to ensure that subjects with and without control receive an identical 

physical experience. In addition, the use of shock allows for the subject to readily learn an 

operant escape response (wheel-turn). These criteria simply cannot be met with commonly used 

stress paradigms such as restraint, or social isolation.  
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 Research has shown that the degree of behavioral control an animal has over a stressful 

event potently modulates the behavioral and neurochemical outcomes that are induced by that 

event. Specifically, controllable stress (ES) drastically blunts, and even prevents, a portion2 of 

the effects typically associated with uncontrollable stress (IS; see Table 1). Not only does 

behavioral control negate some of the effects of an initial stressor, it can also provide a protective 

effect against subsequent stressors, even when those stressors vary from the context of the first 

exposure3; this process is referred to as behavioral immunization. To model behavioral 

immunization, the above treatment is used in conjunction with a secondary stressor that is 

applied a week later. During this secondary stressor treatment, subjects are placed in Plexiglas 

tubes and are administered a series of inescapable tail shocks. Subjects that were able to exercise 

behavioral control during the initial stressor show reduced IS behavioral outcomes compared to 

subjects that were not able to exert behavioral control despite the fact that both groups were 

exposed to an uncontrollable stressor during the secondary treatment.   

 Previous research suggests that the behavioral effects of uncontrollable stress stem from 

the stress-induced activation and sensitization of the serotonergic (5-HT) dorsal raphe nucleus 

(DRN)4. The DRN innervates many brain regions, such as the amygdala and periaqueductal gray, 

that are the proximal mediators of behaviors that follow uncontrollable stress, and therefore was 

viewed as a likely candidate for mediating the behavioral outcomes associated with IS5,6,7,8,9,10,11. 

It is currently understood that when an uncontrollable stressor is administered, a subpopulation 

of DRN 5-HT neurons become intensely activated and release 5-HT onto target structures, which 

subsequently leads to many of the behavioral responses seen following stress. For example, 

release of 5-HT onto the basolateral amygdala during IS produces an exaggerated fear response 

during fear conditioning12. Similarly, release of 5-HT onto the periaqueductal gray during IS 
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produces reduced escape responding during shuttlebox testing. Following this intense activation, 

5-HT1A autoreceptors become desensitized13,14. 5-HT1A autoreceptors are inhibitory receptors 

located on the presynaptic terminals of 5-HT neurons. These autoreceptors bind excess 5-HT and 

inhibit further 5-HT release in order to prevent overstimulation of the postsynaptic terminal. 

Desensitization of these inhibitory receptors causes 5-HT neurons to become sensitized in such a 

manner that noxious stimuli now produce an exaggerated response compared to pre-stress 

conditions. The IS-induced sensitization can persist for 2-4 days if no exposure to the original 

stimuli occurs15; sensitization can persist for much longer periods of time if re-exposure does 

occur16. This mechanism has been validated by pharmacological studies that have been able to 

replicate, as well as eliminate, the effects of uncontrollable stress by respectively activating and 

deactivating17,18,19 5-HT neurons within the DRN.  

 The effects discussed above do not occur if the stressor is controllable. How does the 

DRN respond differently to the stressor depending on its controllability? For a brain structure to 

perceive control in the tail shock and wheel-turn model, it must be able to compute that the 

conditional probability of shock termination given that the unfixed wheel has been turned is 

greater than the conditional probability of shock termination given that the unfixed wheel has not 

been turned. Thus, somatosensory input is required in order to sense whether the shock has 

terminated and whether motor functions coincided with that termination. The ventral medial 

prefrontal cortex (vmPFC) likely serves as a detector of behavioral control for two reasons. 

Firstly, the vmPFC is a cortical structure that receives somatosensory input20. Secondly, the DRN 

receives almost all of its cortical inputs from the prelimbic region (PL) region of the vmPFC21. 

Other studies have shown that the vmPFC provides glutamatergic input to GABAergic 

interneurons within the DRN22. The above suggests that when a subject has a controlling 
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response over a stressful event, the vmPFC projections to GABAergic interneurons within the 

DRN become activated and subsequently inhibit 5-HT release, thereby preventing the effects of 

tailshock (see Figure 1). By using muscimol to inactivate the vmPFC during ES treatment, Amat 

et al.23 confirmed that the vmPFC is necessary for the protective effects of ES to manifest. 

Animals injected with muscimol prior to ES presented 5-HT levels and behavioral outcomes that 

were essentially equivalent to animals that had undergone IS treatment. Other studies have also 

shown that vmPFC activation is necessary during subsequent stressor exposure in order to 

provide the protective effects seen in ES subjects23,24,25. The later adverse event does not have to 

incorporate shock as the stressor. For example, it has been shown that a prior experience with 

control blunts the neurochemical and behavioral outcome of social defeat.  

 Recent research has implicated the role of the dorsomedial striatum (DMS) in stressor 

controllability. The reason for this interest in the DMS stems from the similarities between 

behavioral control and the act-outcome learning system. The DMS is known to be a critical 

component in action-outcome based learning26,27. Action-outcome based learning is arguably the 

motivating factor for the detection of a controllable stressor. Subjects used in the behavioral 

control paradigm effectively learn an association between turning a wheel and shock termination, 

which could be interpreted as an act-outcome system.  Terminating the tail shock (outcome) 

represents a goal that can be accomplished by turning the wheel (action). A study conducted by 

Amat et al.28 showed that DMS Fos levels were elevated following ES treatment, whereas IS 

treatment did not show a significant increase in Fos. Fos refers to the protein synthesized from 

the c-Fos immediate early gene (IEG) and is an indicator of cellular activity due to the fact that it 

is reliably and rapidly transcribed following neuronal activation29. The study by Amat et al. also 

provided evidence that pharmacological inactivation of the DMS during an acute controllable 
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stressor produced behavioral effects similar to that of an animal that had undergone IS 

treatment28. This suggests that the DMS is involved in the detection of behavioral control. 

 

Methods. 

Subjects 

In all experiments, rats were male Sprague-Dawley rats (Harlan Labs) weighing  

254–336 g (Avg. 298 ± 20.7 g), housed two per cage on a 12-h light/12-h dark cycle (on at 0700 

and off at 1900h). Rats were allowed one week, prior to surgery, to adjust to the new colony after 

arriving at the University of Colorado Boulder campus. Experiments were conducted between 

0800 and 1900h. All procedures were approved by the Institutional Animal Care and Use 

Committee of the University of Colorado at Boulder.  

RetroBeads 

 RetroBeads are produced by Lumafluor. They are described as fluorescent latex 

microspheres that are retrogradely transported to cell bodies within a minimum of 24 hours after 

injection. RetroBead fluorescence can present as either green or red depending on which version 

of the product is used. Red RetroBeads excite at 530 nm and fluoresce at 590 nm, whereas green 

RetroBeads excite at 460 nm and fluoresce at 505 nm. RetroBeads were chosen in lieu of other 

retrograde tracers because they tend to remain concentrated at the injection site prior to 

retrograde transport. Other retrograde tracers typically spread out from the injection site prior to 

retrograde transport, which can lead to nonspecific pathway labeling. It is important to note that 

only red RetroBeads were used in conjunction with Alexa Fluor 488 in order to avoid spectral 

overlap.  
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RetroBead Injections and Stereotaxic Surgery 

Stereotaxic surgery was carried out on a stereotaxic alignment system (Kopf) in the 

surgical room of the Maier/Watkins laboratory (MUEN D107) located on the University of 

Colorado Boulder campus. Rats were placed under anesthesia via gaseous administration of a 5%  

isoflurane:oxygen mixture (reagents provided by Piramal Enterprises and Airgas respectively). 

The dorsal portion of the cephalic region was shaved. The surgical site was then swabbed with 

povidone-iodine (Vedadine, Vedco). Prior to incision, adequate anesthetization was confirmed 

by pinching the pedal digits. If no response occurred after digital stimulation, isoflurane 

administration was reduced from 5% to 3%. An incision was made just posterior to the orbital 

region, ending just posterior to the otic region. Bregma was subsequently located; anterior / 

posterior (A/P) and medial / lateral (M/L) coordinates from Table 2 were used to locate the 

injection site. A drill (1100 7.2 V Stylus, Dremel) was used in order to gain access to the 

injection site. Isoflurane administration was then reduced from 3%-1.5%. A microliter syringe 

(Hamilton) was used in combination with a digital stereotaxic injector and controller (UMP3 and 

Micro 4 respectively, World Precision Instruments) in order to deliver the RetroBead solution. 

300 nL (400 nL for DRN) of a 1:4 RetroBead:saline solution (reagents provided by Lumafluor 

and Hospira respectively) was injected into the DMS or DRN over the course of 4 min. (see 

Table 2 for dorsal/ventral (D/V) coordinates); an additional 10 min. was allotted for diffusion to 

take place. After the injection, Vetbond (3M) was used to close the surgical site. Rats were given 

a 10-12 day recovery period prior to testing. 

Wheel-Turn Escape/Yoked Inescapable Shock Procedure 

Rats received shocks in yoked pairs (ES and IS).The treatment consisted of 100 trials 

with an average intertrial interval of 60 s. Shock intensity was set at 1 mA for the first 33 trials, 



 
 

10 

1.3 mA for trials 34-66, and 1.6 mA for the trials 67-100. Shock intensity was increased 

throughout the experiment in order to elicit a reliable response from the ES subject. Shocks 

began simultaneously for both rats in a pair and terminated for both whenever the ES rat met a 

response criterion. Initially, the shock was terminated by a quarter turn of the wheel. The 

response requirement was increased by one quarter turn when each of three consecutive trials 

was completed in less than 5 s. Subsequent latencies under 5 s increased the requirement by 50% 

up to a maximum of four full turns (see Figure 5A). If the requirement was not reached in less 

than 30 s, the shock was terminated and the requirement was reduced to a single quarter turn (see 

Figure 5B). During the second round of treatment, rats were placed in Plexiglas tubes and 

stressed using the same methodology as described above. However, no avenue for shock 

termination was available to the rats during this second round of stress treatment. 

Tissue Preparation 

Two hours after the last tail-shock, rats were transcardially perfused with 100 ml of 0.9% 

saline containing 0.1% heparin followed by 250 ml of 4% paraformaldehyde in 0.1 M phosphate 

buffer (pH 7.4). Brains were removed and postfixed in the same fixative overnight. After 

overnight postfixation, brains were transferred to 30% sucrose containing 0.01% sodium azide 

and stored at 4 °C until sectioning. Brains were rapidly frozen in −40 °C isopentane and 35-μm 

sections were obtained in a −22°C cryostat. Free-floating prefrontal cortex sections were stored 

at 4 °C in cryoprotectant until staining. Striatal sections were also taken on gelatin submerged 

slides (Superfrost, Fischer Scientific) in order to verify RetroBead injection placement (see 

Figure 4A). 

Fos Staining 
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Prefrontal cortex tissue was washed in 0.01 M Phosphate buffered saline (PBS) prior to 

being placed in a 25-well basket (3-4 slices per well). Tissue was subsequently washed three 

times, for 10 minutes each time, with 0.5% Triton in 0.01 M PBS (PBS-T), then PBS, and then 

PBS-T again. The tissue was then left overnight in 2.5% bovine albumin serum in PBS-T at 4 

°C. After overnight blocking, the tissue was washed again in PBS-T and PBS as is described 

above. The tissue was then incubated for 24 hrs. at room temperature in a 1:2000 rabbit 

polyclonal c-Fos antibody (sc-52, Santa Cruz Biotechnology) solution containing 2% goat serum 

in PBS-T. After primary antibody incubation, the tissue was washed again in PBS-T and PBS as 

described above. The tissue was then incubated for two hours at room temperature under 

aluminum foil in a 1:250 Alex Fluor 488 goat anti-rabbit solution containing 2% goat serum in 

PBS-T. Following secondary antibody incubation, the tissue was washed three more times for 

five minutes each time in PBS. The tissue was then floated onto gelatin submerged slides 

(Superfrost, Fischer Scientific). Once the slides were dry, they were subjected to 1-2 drops of 

Vectashield hardset and coverslipped. 

Fos Quantification 

Pictures of stained prefrontal cortex tissue were taken on a fluorescent confocal 

microscope. A cell counter addon for the imaging software ImageJ was used in conjunction with 

the image processing package Fiji in order to quantify cells that expressed RetroBeads and/or 

Fos protein. Note that the presence of Fos protein is inferred from the fluorescence of the 

secondary antibody used for Fos staining. Only the prelimbic and infralimbic regions of the 

prefrontal cortex were used for quantification. RetroBead labeled cells presented as red halos. 

Fos labeled cells presented as solid green circles. Elevated Fos levels were differentiated from 

basal Fos levels by reducing the green color balance within ImageJ until only the brightest Fos 
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cells were present. Only cells with elevated Fos expression and proper RetroBead placement 

were used in statistical analysis. 

Statistical Analysis 

The following refers to the analysis of the prelimbic and infralimbic regions of the 

prefrontal cortex from a single slice of brain tissue. Total RetroBead (Rb+) and Fos (Fos+) 

labeled cells were recorded in Microsoft excel. Cell counts were organized by region (i.e., 

prelimbic and infralimbic), and cortical layer (i.e., supragranular and infragranular) Cells that 

expressed both RetroBeads and Fos protein simultaneously, referred to hereafter as “double-

labeled cells”, were divided by the total number of Rb+ cells in order to obtain a percentage of 

stress activated cells that project from the prefrontal cortex to the dorsomedial striatum. A One-

way ANOVA was used to determine statistical significance between all treatment groups while a 

protected Fisher least significant difference post hoc was used to determine statistical 

significance between particular treatment groups. 

Experimental Design 

In the current study, we investigate the possibility that DMS-projecting PL neurons are 

differentially activated by ES and IS treatment upon exposure to an acute stressor (Experiment 

1). We also determined if prior behavioral control differentially activates DMS-projecting PL 

neurons during later exposure to an uncontrollable stressor (Experiment 2). Lastly, this 

experiment looks at whether PL-to-DMS neurons are the same neurons that project to the DRN 

(Experiment 3). In this model, 71 rats were unilaterally injected with RetroBead retrograde 

tracers into the DMS prior to testing (see Methods for details). 10-12 days after injection, 58 rats 

were separated into three treatment groups. Rats in each group were subjected to either escapable 

tail shock (ES) treatment, inescapable tail shock (IS) treatment, or home cage (HC) treatment. 
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The difference between ES and IS treatment, as was described above, is that in the former, rats 

are able to turn a freely rotating wheel that will terminate a shock, although not before the shock 

is initiated. It should again be noted that once the shock is terminated for the ES rat, it is 

simultaneously terminated for the IS rat. Home cage rats were left in their cages during the 

duration of the experiment. 30 rats (n[HC] = 12, n[ES] = 7, n[IS] = 11) were sacrificed two hours 

after the initial treatment. The remaining 28 rats were subjected to an additional round of tail-

shock seven days after initial treatment. In this second round of treatment, all groups were 

subjected to IS (n[HC/IS] = 10, n[ES/IS] = 8, n[IS/IS] = 10). A fourth control group (n[HC/HC] 

= 13) was also present that did not participate in anything other than home cage treatment for the 

duration of the study. Two hours following the second round of treatment, rats were sacrificed 

and tissue samples were collected. Previous studies have shown that two hours provides optimal 

Fos expression due to neuronal activation. Tissue samples of the vmPFC were stained for Fos 

protein in order to indicate neuronal activation. The number of cells co-labeled for both Fos and 

RetroBeads were divided by the total number of RetroBead labeled cells in the vmPFC in order 

to obtain a percentage of cells that are activated during tail shock and project to the DMS. For 

Experiment 3, six rats were either unilaterally injected with red RetroBeads into the DMS (n = 3) 

or injected with green RetroBeads into the DRN (n = 3). 10-12 days after injection, rats were 

sacrificed and RetroBead quantification was carried out. 

 

Results. 

Figure 2 shows the time course of experiments 1 and 2. These times were based upon 

previous studies that used the same tail shock and wheel-turn paradigm. Figure 3A shows the 

intended injection site for experiments 1 and 2, while Figure 3B shows the intended injection 
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sites for experiment 3. These sites were chosen based upon previous studies that identified the 

DRN and DMS as structures involved in stressor controllability. Figure 4A shows a picture of 

RetroBeads deposited within the DMS. Images were taken of each subjects’ DMS to ensure that 

RetroBeads had been deposited into the proper location. If a subject showed a RetroBead deposit 

outside of the region depicted in Figure 4A, the subject was not included in the study. Likewise, 

Figure 4B shows RetroBead deposits within cell bodies located in the PL and IL regions; 

subjects that failed to show a significant amount of RetroBead deposits in these regions after 

experimentation were not included in the statistical analysis. Figure 4C depicts Rb+, Fos+ and 

double-labeled cells viewed from a fluorescent confocal microscope during quantification. Note 

that overlap presents as a simple overlay of red and green as opposed to a combination of the two 

colors. This simple overlay of fluorescent markers allowed for fairly straightforward 

quantification of double-labeled cells. Figures 5A and 5B show that the rats used for data 

analysis were able to escape in an increasingly short amount of time and learn the association 

between wheel-turning and tail shock termination. Rats that were unable to learn this association 

or meet reasonable escape latency times were not included in the study. 

 

Experiment 1: Initial Stressor Exposure 

ANOVA analysis showed no significant difference in the total number of Rb+ cell counts in 

either the PL supragranular (F2,27 = 1.62, p = 0.2162) or infragranular (F2,27 = 0.24, p = 0.7891) 

layers (graph omitted). ANOVA analysis of PL supragranular Fos+ cell counts showed no 

significant difference (F2,27  = 3.28, p = 0.0533)(see Table 3 and Figure 6A). ANOVA analysis of 

PL infragranular Fos+ cell counts showed a significant difference (F2,27 = 16.09, p < 0.0001). 

Post hoc analysis of PL infragranular Fos+ cell counts showed that ES and IS groups had 
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enhanced levels of Fos compared to the HC group (p < 0.0001, p = 0.0014 respectively). Post 

hoc analysis also showed increased Fos in the ES group compared to the IS group (p = 

0.0275)(see Table 3 and Figure 6B). ANOVA analysis showed no significant difference in the 

percentage of double-labeled cells within supragranular layers of the PL (F2,27 = 1.20, p = 

0.7891)(see Figure 7A). ANOVA analysis did show a significant difference in the percentage of 

double-labeled cells within the infragranular layers of the PL (F2,27 = 10.49, p = 0.0004). Post hoc 

analysis revealed a decrease in the percentage of double-labeled cells in HC and IS groups 

compared to the ES group (p = 0.0001, p = 0.0031 respectively)(see Figure 7B). 

 

Experiment 2: Inescapable Shock Exposure 1 Week After Initial Exposure 

ANOVA analysis showed no significant difference in the total number of Rb+ cell counts in 

either the PL supragranular (F2,27 = 1.57, p = 0.214) or infragranular (F2,27 = 2.23, p = 0.103) 

layers (graph omitted). ANOVA analysis of PL supragranular Fos+ cell counts showed no 

significant difference (F2,27  = 0.73, p = 0.5390)(see Table 4 and Figure 8A). ANOVA analysis of 

PL infragranular Fos+ cell counts showed a significant difference (F2,27 = 6.07, p = 0.002). Post 

hoc analysis of PL infragranular Fos+ cell counts showed a significant increase in ES/IS, IS/IS, 

and HC/IS groups compared to the HC/HC group (p = 0.025, p = 0.0004, p = 0.002 

respectively)(see Table 4 and Figure 8B). ANOVA analysis showed no significant difference in 

the percentage of double-labeled cells within the supragranular layers of the PL (F2,27 = 1.40, p = 

0.259)(see Figure 9A). ANOVA analysis did show a significant difference in the percentage of 

double-labeled cells within the infragranular layers of the PL (F2,27 = 3.30, p = 0.032). Post hoc 

analysis revealed a significant increase in IS/IS and HC/IS groups compared to the HC/HC group 

(p = 0.0043, p =0.0486 respectively)(see Figure 9B). 
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Experiment 3: DMS and DRN Double RetroBead Labeling 

Figure 10A depicts cells labeled with red or green RetroBeads. Cells presenting red RetroBeads 

project to the DMS, while green cells project to the DRN. Cells that present both red and green 

RetroBeads would project to both the DMS and DRN. Figure 10B suggests that PL cells project 

to either the DMS or DRN exclusively. Very few cells were seen that presented both RetroBead 

colors. 

 

Discussion. 

 The aim of this study was to examine whether stressor controllability differentially 

activated cells within the PL at an initial time point (acute) and/or at a later time point 

(immunization) where controllability was not available. We also investigated whether cell 

populations that projected from the PL to the DMS and populations that projected from the PL to 

the DRN were one in the same. To accomplish these goals, Rb+, Fos+, and percentage of 

double-labeled cells were tallied and analyzed. 

  The consistency of Rb+ counts between treatment groups suggests that RetroBead uptake 

and transport are not significantly affected by stress or stressor controllability. This serves to 

further validate the calculation used to determine the percentage of double-labeled cells. 

 Fos expression within the PL supragranular layers did not appear to be affected by stress 

or controllability. Interestingly, the PL infragranular layers did appear to be affected by both 

stress and controllability. A previous study by Baratta et al.,30 HC animals expressed very little 

Fos compared to ES and IS animals. Furthermore, the authors found no significant difference 

between Fos expression in ES and IS animals. One explanation for this discrepancy could be the 
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fact that in the current study, quantification was split between supragranular and infragranular 

layers as opposed to quantifying the PL as a whole. Perhaps the infragranular layers of the PL are 

differentially activated by control while the supragranular layers are stimulated by non-stress 

related activities. Fos+ cell counts in the infragranular layers at the immunization time point 

seemed to be significantly affected by stress, but not by control. The difference between Fos+ 

cell counts at the acute time point and the second time point may be due to the habituation of Fos 

expression over time31. Regardless of the above, the number of Fos expressing cells does not 

provide an accurate picture regarding the activation of the PL-to-DMS pathway. It is already 

well established that the PL innervates other structures involved in stress response and therefore 

many of the Fos expressing cells may simply not be involved in the PL-to-DMS pathway. Hence, 

double-labeled cells were used to verify that activation was taking place in PL cells that project 

to the DMS and not elsewhere. 

 The percentage of double-labeled cells within the supragranular layers of the PL appeared 

to differ with the presence of stress, but no statistical significance was found. Analysis of the 

infragranular layers showed statistically significant differential activation of DMS-projecting PL 

cells when the stressor was controllable. This suggests that ES preferentially activates the 

corticostriatal pathway. This finding fits well with previous pharmacological studies by Amat et 

al.28, which showed that the DMS is necessary in mediating the behavioral and neurochemical 

outcomes that precipitate from ES treatment.  

Unlike the results seen at the acute time point, the percentage of double-labeled cells in 

the infragranular layers of the PL did not significantly differ between IS/IS and ES/IS groups 

during the second time point. This seems to indicate that the activation of the corticostriatal 

pathway only occurs when a stressor is immediately controllable. This suggests that the 
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corticostriatal pathway is not directly involved in mediating the protective effects generated by 

ES when an animal is subjected to subsequent uncontrollable stress. Rather, the corticostriatal 

pathway is likely responsible for perceiving control and conveying this information to neurons 

within the PL that project to the DRN. After this information is conveyed, the corticostriatal 

pathway is not needed for the effects of stress-induced immunization to occur. 

Experiment 3 focused on determining whether PL-to-DMS and PL-to-DRN cell 

populations were one in the same. Figure 10B suggests that this is not the case and that the two 

circuits are not continuous, but rather contiguous. This means that detecting control does not 

occur simultaneously with the PL mediated inhibition of the DRN. It is most likely that DMS- 

projecting PL neurons are activated prior to DRN-projecting PL neurons assuming that the 

detection of controllability must happen prior to inhibition of DRN 5-HT release, although this 

has not been directly verified.  

Future studies could utilize direct methods of neuronal activation and inhibition in order 

to provide a more robust link between control and the corticostriatal circuit. Optogenetics would 

be a prime candidate for such manipulation. Optogenetics relies on using particular frequencies 

of light to activate light-sensitive ion channels that have been introduced via viral transfection. 

This technique would be optimal for future studies because it can provide reliable temporal 

silencing or activation of neuronal firing. Optogenetic manipulation could be used to prevent 

DMS-projecting PL cells from firing during ES treatment or activate DMS-projecting PL cells 

during IS treatment. It would be expected that inhibiting DMS-projecting PL cells during ES 

treatment would produce behavioral effects typically associated with IS, while activating the 

same cells during IS treatment would produce effects similar to ES. Manipulation at a second 

time point, in which only IS is administered, should have no effect at all since the corticostriatal 
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circuit appears exhibit elevated activity only after exposure to an acute stressor. Additionally, a 

system using designer receptors activated by designer drugs (DREADDs) could be used to verify 

the findings of an optogenetic study. The DREADD system also makes use of viral-mediated 

gene delivery by transfecting neurons with a particular G-protein receptor that is only activated 

by clozapine N-oxide (CNO) or other synthetic ligands. CNO does not interact with endogenous 

receptors and therefore allows for very precise pharmacological manipulation of targeted cells. 

Unlike optogenetics, the DREADD system is not temporally precise. However, it is very clean 

compared to typical pharmaceutical approaches and has an advantage over optogenetics in that it 

more closely mimics natural neurological interactions. Using these two systems in tandem could 

provide causal evidence that the corticostriatal pathway is both necessary and sufficient for the 

behavioral and neurochemical effects of controllable stress to manifest. 
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Figure/Table Legends 

Table 1. Behavioral changes that follow exposure to uncontrollable, but not equal controllable 

stressor exposure. 

 

Figure 1. Schematic of the circuits engaged by controllable (ES) and uncontrollable (IS) stress.  

Abbreviations: Glu = glutamate, GABA = γ-aminobutyric acid, PAG = periaqueductal gray 

 

Table 2. RetroBead injection coordinates for DMS and DRN. All A/P and M/L coordinates were 

measured from Bregma. D/V coordinates were measured from the dorsal-most portion of the 

brain after adjusting for A/P and M/L coordinates. 

 

Figure 2. Schematic of experiments 1 & 2. 

 

Figure 3. Schematic of injection sites for experiments 1-3 (A) Targeted RetroBead  

injection site for Experiments 1 & 2. Red RetroBeads were injected into the DMS of all subjects  

one week prior to testing. During the week preceding testing, RetroBeads were retrogradely  

transported to neuronal cell bodies within the vmPFC. (B) Targeted RetroBead injection sites for  

Experiments 3. Red RetroBeads were injected into the DMS of all subjects one week prior to  

testing. Green RetroBeads were injected into the DRN of Experiment 3 subjects one week prior  

to testing. During the week preceding testing, RetroBeads were retrogradely transported to  

neuronal cell bodies within the vmPFC. 
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Figure 4. Fluorescent images of RetroBead deposits as well as Rb+, Fos+, and double-labeled 

cells. (A) Post mortem fluorescent photograph of RetroBeads deposited within the DMS. Only 

tissue that presented similar deposits were used for cell quantification. Scale bar at bottom right 

represents 500 μm. (B) Post mortem fluorescent photograph of RetroBeads deposited within the 

PL and IL of the vmPFC. (C) Fluorescent labeling with Fos and red RetroBeads. Fos expression 

is represented in green while RetroBeads are shown in red. Double-labeled cells (yellow arrow) 

present both RetroBeads and Fos. 

 

Figure 5. Graphs showing wheel-turn and escape latency data. (A) Rats given control over stress 

rapidly learn to turn a wheel in order to terminate a tail shock. Initially, a quarter turn is required 

for the shock to be terminated. The wheel-turn requirement increased by a quarter turn upon 

terminating a shock in under five seconds and increased by 50% for each subsequent escape 

under five seconds. The wheel-turn requirement was capped at four complete rotations (16 

quarter turns). (B) Subjects with control gradually improve their response times to terminate tail 

shock. 

 

Table 3. Number of cells within the vmPFC expressing either Fos (Fos+) or RetroBead (Rb+). 

Data are reported as: average(SEM), # of subjects 

 

Figure 6. Graphs of Fos+ cell counts within the vmPFC. (A) Number of Fos+ cells within the 

supragranular (I-III) layers of the PL. (B) Number of Fos+ cells within the infragranular (V, VI) 

layers of the PL. ****P < 0.0001 compared to HC, **P < 0.01 compared to HC, # P < 0.05 

compared to IS. 
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Figure 7. Graphs of double-labeled cell percentages within the vmPFC. (A) % of RetroBead-

labeled cells expressing Fos within the supragranular (I-III) layers of the PL. (B) % of 

RetroBead-labeled cells expressing Fos within the infragranular (V,VI) layers of the PL. ***P < 

0.001 compared to HC, ##P < 0.01 compared to IS. 

 

Table 4. Number of cells within the vmPFC expressing either Fos or RetroBead. Data are 

reported as: average(SEM), # of subjects 

 

Figure 8. Graphs of Fos+ cell counts within the vmPFC. (A) Number of Fos+ cells within the 

supragranular (I-III) layers of the PL. (B) Number of Fos+ cells within the infragranular (V, VI) 

layers of the PL. ***P < 0.001 compared to HC/HC, **P < 0.01 compared to HC/HC, *P < 0.05 

compared to HC/HC. 

 

Figure 9. Graphs of double-labeled cell percentages within the vmPFC. (A) % of RetroBead-

labeled cells expressing Fos within the supragranular (I-III) layers of the PL. (B) % of 

RetroBead-labeled cells expressing Fos within the infragranular (V,VI) layers of the PL. **P < 

0.01 compared to HC/HC, *P < 0.05 compared to HC/HC) 

 

Figure 10. Graph of Rb+ cell counts within the vmPFC (A) Fluorescent labeling of the PL with 

red and green RetroBeads. DMS-projecting cells are represented in red while DRN-projecting 

cells are represented in green. (B) Mean number of RetroBead positive cells within the PL. 
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TABLE 1. 
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FIGURE 1. 
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TABLE 2. 

 

 DMS Coordinates (mm) DRN Coordinates (mm) 

Anterior / Posterior + 0.1 - 8.1 

Medial / Lateral ± 2.0 ± 0 

Dorsal / Ventral - 3.5 - 6.7 
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FIGURE 2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

32 

FIGURE 3. 
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FIGURE 4. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

34 

FIGURE 5. 
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TABLE 3.  
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FIGURE 6.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

37 

FIGURE 7 
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TABLE 4. 
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FIGURE 8. 
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FIGURE 9. 
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FIGURE 10. 

 


