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Due to recent advances in Artificial Intelligence (AI), AI models are able to surpass human

performance in various tasks unprecedentedly and are rapidly integrated into systems that assist

humans in making decisions. However, deploying such systems into the real world requires an

understanding of the potential risks and challenges we might face. How do we interpret and

explain AI models’ predictions while being aware of their biases and weaknesses? In this thesis, I

discuss my work that empowers humans to make better decisions with AI models through AI-backed

interactive systems. I describe (1) how humans make decisions with models (Chapter 2), (2) how

explanations differ across models and methods (Chapter 3), (3) how humans learn counterintuitive

patterns from models (Chapter 4), and (4) how humans and imperfect models could collaborate

effectively (Chapter 5). I conclude by discussing future research perspectives on making human-AI

collaborations better and more accessible.
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Chapter 1

Introduction

1.1 Understanding the use of AI

Since the development of algorithms, they have been frequently used by researchers in both

academia and industry to solve ongoing problems. As technology advances, complex algorithms no

longer exist just on papers and in theories but could be built to realize and solve more complicated

problems. The boom of deep learning has led to the birth of frameworks capable of impressive

predictive performance in both simple and challenging tasks. However, we do not fully understand

the consequences of using AI integrated into our society. There are numerous open questions on

the unintended harm and consequences of using AI systems built to help humans.

To understand the complexity of this problem, let us consider the following scenario. A

model is trained with given data to help humans with a challenging task, predicting if a particular

person’s profile would recidivate. Does the human, in this case, a judge, rely on the system’s

decision entirely? How much trust should the judge place in the system? How can the judge

understand why the system is making a particular prediction?

Researchers have explored and developed various frameworks for generating explanations of

AI predictions in the field of interpretable machine learning [Kim et al., 2016, Ribeiro et al., 2016,

Lundberg and Lee, 2017, Ribeiro et al., 2018a, Lei et al., 2016, Kim et al., 2014]. However, instead

of using explanations to debug machine learning models, we use explanations as AI assistance

to empower humans in making decisions in the decision making process [Feng and Boyd-Graber,

2018, Green and Chen, 2019b, Cheng et al., 2019]. While there are two extreme options in making
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a decision, relying on a human’s decision or the AI’s decision, what are some best practices for

integrating AI into the human decision making process? In Chapter 2, we propose a spectrum

between full human agency and full automation and investigate how various degrees of AI assistance

affect human performance.

While both explanations and AI predictions are used as AI assistance to help humans make

decisions, explanations are shown as assistance more often than predicted labels as the latter has

stronger priming and tends to sway humans’ decisions. Additionally, due to the complex nature of

deep learning models, explanations have quickly become the vehicle for explaining AI predictions.

Explanations, which are also commonly feature importance, could be derived from the model’s

built-in mechanism (i.e., coefficients, attention scores) or post-hoc methods that serve as an option

to allow AI’s predictions to be more predictable. In this thesis, we will also explore how similar

feature importance are across different models and methods (Chapter 3).

1.2 Empowering humans with AI

The first step of empowering humans with AI in the decision making process is to understand

the best practices of using AI and the differences using explanations retrieved from different models

and methods. The second step is the actual task of empowering humans with AI in the decision

making process. With AI in the equation, it is difficult to use a single metric to measure and

determine the effectiveness of AI. However, one of the more common metrics is complementary

performance [Bansal et al., 2019a]. Intuitively, when we include AI as assistance, the ideal situation

is that human-AI performance exceeds human alone and AI alone performance.

However, prior work has shown that complementary performance is not within an arm’s reach.

There are many questions and factors leading to the undesired situation. The second part of this

thesis proposes different ways to bridge the gap between expectations and reality. To understand

how this could be done, let us consider another hypothetical scenario. To predict if a hotel review

is deceptive or genuine, the human is shown “explanations” to help them understand the AI’s

predictions. Despite being shown “explanations”, the human fails to understand why certain words
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are more deceptive or genuine. In Chapter 4, we will explore how model-driven tutorials are used

to help humans understand the explanations and thereby improving human-AI team performance.

Due to changes in data distribution between the training and test set, models could never

be perfect or achieve 100 percent accuracy. As a result, it is pertinent for humans to learn to

collaborate with imperfect models. Prior work has also focused on human-AI collaboration in

high-stakes scenarios such as the medical and justice domains. In Chapter 5, we will explore how

conditional delegation, a new paradigm of human-AI collaboration, is potentially helpful for humans

and imperfect AI models to collaborate effectively in low-stakes decisions.

1.3 Organization and Contributions

In order to empower humans with AI in the decision making process, we have conducted a

series of studies and they are organized into four chapters. Each chapter is summarized by a short

phrase that is representative of it.

• Chapter 2: A Spectrum Between Human Agency & Human Performance. Due

to recent advance in technology, AI has shown impressive predictive capability and is rapidly

integrated in our society, especially in societal critical tasks. To better understand how we

can capitalize the potential of AI through harnessing explanations and its predictions, we

propose a spectrum between full human agency and full automation. Given the rampant

fake news spread throughout the internet, it is generally useful for humans to learn and

discern between genuineness and deceptiveness. Using deception detection as a testbed, we

show that explanations alone slightly improve human performance but showing predicted

labels can improve human performance drastically. The results demonstrate a tradeoff

between human agency and human performance.

• Chapter 3: Many Faces of Feature Importance. While deep learning models’ pre-

dictive ability are becoming more impressive and powerful, at the same time their inherent

complexity has caused humans difficulty and sometimes confusion in understanding their
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predictions. In an attempt to understand models’ predictions better, feature importance is

commonly used as “explanations” to explain the respective model’s prediction. However,

as feature importance could be derived from different models and methods (i.e., built-in

and post-hoc), how similar or consistent are they when compared across? Using text clas-

sification as a testbed, traditional models are more similar to each other than with deep

learning models. When in a debate or discussion, humans often agree on perspectives with

similar reasons. However, unlike in models, we find that important features do not always

resemble each other better when two models agree on the predicted label than when they

disagree.

• Chapter 4: Model-driven Tutorials and Simple Explanations. Although expla-

nations and AI predictions can help improve human performance, elusive complementary

performance is not achieved in challenging tasks. Complementary performance Bansal et al.

[2019a] is commonly used as a measure in literature to determine if human-AI collaboration

is performing up to expectations. It is achieved when human and AI performance exceeds

both human alone and AI alone performance. To understand how complementary perfor-

mance could be achieved, we explore model-driven tutorials to help humans understand

counterintuitive patterns hidden in training data. We find that tutorials help to improve

human performance and while deep learning models have shown impressive performance

on tasks, explanations from simple models are preferred by and more useful to humans.

• Chapter 5: Conditional Delegation as an Alternative Paradigm. Prior work has

explored how humans can make decisions with explanations and AI predictions [Zhang

et al., 2020, Green and Chen, 2019b, Lai and Tan, 2019b]. While explanations and AI

predictions are helpful for domains where decisions have dire consequences, they are not

helpful to other domains where the large number of decisions is the key challenge. Using

content moderation as a testbed, we investigate how humans can work effectively with im-

perfect models. We propose conditional delegation as an alternative paradigm for humans
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and imperfect AI where they work together to find trustworthy regions of the model. Our

results demonstrate that conditional delegation is promising as it is able to achieve comple-

mentary performance. Humans working on conditional delegation are also more engaged

and explanations improve task efficiency.

• Chapter 6. I conclude my thesis with thoughts on future work.



Chapter 2

A Spectrum Between Human Agency & Human Performance

2.1 Overview

In this chapter, we investigate how we can harness explanations and predictions of machine

learning models to improve human performance while retaining human agency. We propose a spec-

trum between full human agency and full automation, and develop varying levels of AI assistance

along the spectrum that gradually increase the influence of machine predictions. Without show-

ing predicted labels, explanations alone slightly improve human performance in the end task. In

comparison, human performance is greatly improved by showing predicted labels (>20% relative

improvement) and can be further improved by explicitly suggesting strong machine performance.

Interestingly, when predicted labels are shown, explanations of machine predictions induce a similar

level of accuracy as an explicit statement of strong machine performance. The results demonstrate

a tradeoff between human performance and human agency and show that explanations of machine

predictions can moderate this tradeoff.

Most of the contents in this chapter are published in Lai and Tan [2019a]. This is joint work

with Chenhao Tan.

2.2 Introduction

Machine learning has achieved impressive success in a wide variety of tasks. For instance,

neural networks have surpassed human-level performance in ImageNet classification (95.06%

vs. 94.9%) [He et al., 2015]; Kleinberg et al. [2017a] demonstrate that in bail decisions, machine
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Figure 2.1: A spectrum between full human agency and full automation illustrating how machine
learning can be integrated in human decision making. The detailed explanation of each method is
in §2.4.

predictions of recidivism can reduce jail rates by 41.9% with no increase in crime rates, compared to

human judges; Ott et al. [2011] show that linear classifiers can achieve ∼90% accuracy in detecting

deceptive reviews while humans perform no better than chance. As a result of these achievements,

machine learning holds promise for addressing important societal challenges. However, it is impor-

tant to recognize different roles that machine learning can play in different tasks in the context of

human decision making. In tasks such as object recognition, human performance can be consid-

ered as the upper bound, and machine learning models are designed to emulate the human ability

to recognize objects in an image. A high accuracy in such tasks presents great opportunities for

large-scale automation and consequently improving our society’s efficiency. In contrast, efficiency

is a lesser concern in tasks such as bail decisions. In fact, full automation is often not desired in

these tasks due to ethical and legal concerns. These tasks are challenging for humans and for

machines, but with vast amounts of data, machines can sometimes identify patterns that are not

salient, unknown, or counterintuitive to humans. If the patterns embedded in the machine

learning models can be elucidated for humans, they can provide valuable support when humans

make decisions.

This chapter investigates the best practices for integrating machine learning into human de-

cision making. We propose a spectrum between full human agency, where humans make decisions

entirely on their own, and full automation, where machines make decisions without human inter-

vention (see Figure 2.1 for an illustration). We then develop varying levels of machine assistance

along the spectrum using explanations and predictions of machine learning models. We build on
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recent developments in interpretable machine learning that provide useful frameworks for generat-

ing explanations of machine predictions [Kim et al., 2016, Ribeiro et al., 2016, Lundberg and Lee,

2017, Ribeiro et al., 2018a, Lei et al., 2016, Kim et al., 2014]. Instead of using these explanations

to help users debug machine learning models, we incorporate the explanations as assistance for

humans to improve human performance while retaining human agency in the decision making pro-

cess. Accordingly, we directly evaluate human performance in the end task through user studies.

In this work, we focus on a constrained form of decision making where humans make individual

predictions. Specifically, we ask humans to decide whether a hotel review is genuine or decep-

tive based on the text. This prediction problem allows us to focus on the integration of machine

learning into human predictions. In comparison, prior work in decision theory and decision support

systems focuses on modeling preferences and utilities as well as building knowledge databases and

representations to reason about complex decisions [Keen, 1978, Berger, 2013, Newell and Simon,

1972, Horvitz, 1999, Shim et al., 2002]. Moreover, since many policy decisions can be formulated as

prediction problems [Kleinberg et al., 2015], understanding human predictions with assistance from

machine learning models constitutes an important step towards empowering humans with machine

learning in critical challenging tasks.

Deception detection as a testbed. In this work, we use deception detection as our testbed

for three reasons. First, deceptive information is prevalent on the Internet. For instance, Ott

et al. [2012] find that deceptive reviews are a growing problem on multiple platforms such as

TripAdvisor and Yelp. Fake news has also received significant attention recently [Lazer et al., 2018,

Vosoughi et al., 2018] and might have influenced the outcome of the U.S. presidential election in

2016 Allcott and Gentzkow [2017]. Enhancing humans’ ability in detecting deception can potentially

alleviate these issues. Second, deception detection is a challenging task for humans and has been

extensively studied [Feng et al., 2012, Feng and Hirst, 2013, Ott et al., 2011, Abouelenien et al.,

2014, Akoglu et al., 2013]. It is promising that machines show preliminary success in prior work.

For example, machines are able to achieve an accuracy of ∼90% in distinguishing genuine reviews

from deceptive ones, while human performance is no better than chance [Ott et al., 2011]. Machines
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can identify not salient and counterintuitive signals, e.g., deceptive reviews are less specific about

spatial configurations and tend to include less sensorial and concrete language. It is worth noting

that we should take the high machine accuracy with a grain of salt in the general domain because

deception detection is a complex problem.1 The task introduced by Ott et al. [2011] nevertheless

provides an ideal sandbox to understand human predictions with assistance from machine learning

models. Third, full automation is not desired in critical tasks such as deception detection because of

ethical and legal concerns. The government should not have the authority to automatically block

information from individuals, e.g., in the context of “fake news”. Furthermore, full automation

may not comply with legal requirements. For instance, in the case of recidivism prediction, the

Wisconsin Supreme Court ruled that “judges be made aware of the limitations of risk assessment

tools” and “a COMPAS risk assessment should not be used to determine the severity of a sentence or

whether an offender is incarcerated” [Liptak, 2017, Supreme Court of Wisconsin, 2016]. Similarly,

the trial judge is required to act as a gatekeeper regarding the evidence from a polygraph (lie

detector) [Supreme Court of the United States, 1993]. Therefore, it is crucial to retain human

agency and understand human predictions with assistance from machine learning models.

2.3 Related work

We summarize related work in two areas to put our work in context: interpretable machine

learning and deception and misinformation.

Interpretable machine learning. Machine learning models remain as black boxes despite wide

adoption. Blindly following machine predictions may lead to dire repercussions, especially in sce-

narios such as medical diagnosis and justice systems [Caruana et al., 2015, Kleinberg et al., 2017a,

Varshney, 2016]. Therefore, improving their transparency and interpretability has attracted broad

interest [Kim et al., 2016, Ribeiro et al., 2016, Lundberg and Lee, 2017, Ribeiro et al., 2018a, Lei

et al., 2016, Kim et al., 2014], dating back to early work on recommendation systems Herlocker

1 For instance, one can argue that it is impossible to fully address the issue of deception in online reviews only
based on textual information as an adversarial user can copy another user’s review, which becomes a deceptive review
but with exactly the same text as a genuine one.
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et al. [2000], Cosley et al. [2003]. In the case of general automation, researchers have also studied

issues of appropriate reliance and trust [Lee and See, 2004, Wickens et al., 2015, Parasuraman and

Riley, 1997, Bussone et al., 2015, Dzindolet et al., 2003].

There are two major approaches to providing explanations of machine learning models:

example-based and feature-based. For example, an example-based explanation framework is MMD-

critic proposed by Kim et al. [2016], which selects both prototypes and criticisms. Ribeiro et al.

[2016] propose a feature-based approach, LIME, that fits a sparse linear model to approximate

non-linear models locally. Similarly, Lundberg and Lee [2017] present a unified framework that

assigns each feature an importance value for a particular prediction.

We would like to emphasize two unique aspects of our work: task difficulty and interpretabil-

ity evaluation. First, compared to categorizing text into topics and object recognition, deception

detection is a challenging task for humans and it remains an open question whether humans can

leverage help from machine learning models in such settings. Second, we directly measure human

performance in the end task. In comparison, prior work in interpretable machine learning aims to

help humans understand how machine learning models work and/or debug them, the evaluation is

thus mostly based on either the understanding of the models or the improvement in machine perfor-

mance. Concurrently, several recent studies have also examined how explanations relate to human

performance [Chandrasekaran et al., 2018, Feng and Boyd-Graber, 2018]. Our work also resonates

with the seminal work on mixed-initiative user interfaces [Horvitz, 1999] and intelligence augmen-

tation [Ashby, 1957]. In addition, our work is connected to cognitive studies on understanding

effective explanations beyond the context of machine learning [Lombrozo, 2007, 2006].

Deception and misinformation. Deception is a widely studied phenomenon in many disci-

plines [Vrij, 2000]. In psychology, deception is defined as an act that is intended to foster in

another person a belief or understanding which the deceiver considers false [Krauss et al., 1976].

To detect deception, researchers have examined the role of behavioral, emotional, and linguistic cues

[Ekman et al., 1980, Dulaney, 1982, Knapp et al., 1974, Mehrabian, 1971, L Knapp and Comaden,

1979, Vrij, 2000].
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Since people are increasingly relying on online reviews to make purchase decisions [Ye et al.,

2011, Zhang et al., 2010, Chevalier and Mayzlin, 2006, Trusov et al., 2009], machine learning

methods have been used to detect deception in online reviews [Jindal and Liu, 2008, Wu et al.,

2010, Yoo and Gretzel, 2009, Ott et al., 2011, Feng et al., 2012, Feng and Hirst, 2013]. An important

challenge in detecting deception in online reviews is to obtain the groundtruth labels of reviews.

Ott et al. [2011] create the first sizable dataset in deception detection by asking Amazon Mechanical

Turkers to write deceptive reviews. Deceptive reviews can also be seen as an instance of spamming

and online fraud [Drucker et al., 1999, Gyöngyi et al., 2004, Ntoulas et al., 2006, Akoglu et al.,

2013].

More recently, the issue of misinformation and fake news has drawn much attention from both

the public and the research community Farsetta and Price [2006], Lazer et al. [2018]. Most relevant

to our work is Zhang et al. [2018], which explores varying types of credibility annotations specifically

designed for news articles. In addition, Nyhan and Reifler [2010] demonstrate the “backfire” effect,

which suggests that corrections of misperceptions may enhance people’s false beliefs, and Vosoughi

et al. [2018] show that fake news is more innovative and spreads faster than real news.

It is worth noting that deception detection is a broad and complex issue. For instance, fake

news can be hard to define and may not be easily separated into two classes. Moreover, detecting

fake news is different from detecting deceptive reviews as the former task requires other skills such

as fact checking. It is important to note that our focus in this work is on investigating how

humans interact with assistance from machine learning algorithms in decision making.

We thus adopt the task of distinguishing genuine reviews from deceptive ones based on textual

information in Ott et al. [2011] as a sandbox. Our results on this constrained deception detection

task can potentially contribute valuable insights to future solutions of the broader issue of deception

detection.
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2.4 Experiment Setup and Hypotheses

Our goal is to understand whether machine predictions and their explanations can improve

human performance in challenging tasks, such as deception detection, and how humans interpret

assistance from machine learning models. In this section, we first present our task setup and then

develop varying levels of machine assistance along the spectrum introduced in Figure 2.1. We finally

formulate our hypotheses and define our evaluation metrics.

Experimental setup. We employ the deception detection task developed by Ott et al. [2011] and

evaluate human performance in this task with varying levels of machine assistance. The dataset in

Ott et al. [2011] includes 800 genuine and 800 deceptive hotel reviews for 20 hotels in Chicago. The

genuine reviews were extracted from TripAdvisor and the deceptive ones were written by turkers.

We use 80% of the reviews as training data and the remaining 20% as the heldout test set. Since

the machine performance with linear SVM in Ott et al. [2011] already surpasses humans (∼50%)

by a wide margin and linear classifiers are generally considered more interpretable, we follow Ott

et al. [2013] and use linear SVM with bag-of-words features as our machine learning model. The

linear SVM classifier achieves an accuracy of 87% on the heldout test set.

Our main task in this paper is to evaluate human performance with assistance from machine

learning models. To do that, we conduct a user study on Amazon Mechanical Turk. Turkers are

recruited to determine whether a review in the heldout test set is genuine or deceptive. In other

words, humans are asked to perform the same task as the machine on the test set. We follow a

between-subject design: each turker is assigned a level of machine assistance along the spectrum

(Figure 2.1) and labels 20 reviews after going through three training examples and correctly answer-

ing an attention-check question. To incentivize turkers to perform at their best, we provide 40%

bonus for each correct prediction in addition to the 5 cent base rate for a review. We also solicit

our participants’ estimation of their own performance and basic demographic information such as

gender and education background through an exit survey. We only allow a turker to participate

in the study once to guarantee sample independence across experimental setups. Given that there
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(a) Heatmap (without showing predicted labels), an instance of feature-based explanations.

(b) Predicted label with accuracy.

(c) Predicted label + heatmap (without accuracy).

Figure 2.2: Example interfaces with varying levels of machine assistance. Figure 2.2a only presents
feature-based explanations of machine predictions in the form of heatmap. Figure 2.2b shows both
the predicted label and an explicit statement about machine accuracy (87%). Figure 2.2c shows
the predicted label with heatmap, but does not present machine accuracy. We crop the “Genuine”
and “Deceptive” buttons in Figure 2.2b and 2.2c to save space.

are 320 test reviews and that we collect five turker predictions for each review, each experimental

setup has a total of 80 turkers.

Varying levels of machine assistance. Humans are the main agents in our experiments and

make final decisions; machines only provide assistance, which can be ignored if humans deem it

useless. An ideal outcome is that human performance can be improved with minimal information
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(a) Human accuracy with varying levels of machine
assistance.

0 25 50 75 100
Accuracy (%)

Machine
performance

Predicted label
w/ accuracy

Predicted label
+ heatmap

Predicted label
+ examples

Predicted label
+ random heatmap

Predicted label
w/o accuracy

p<0.001

p<0.001

p<0.001

p<0.001

87.0

74.6

72.5

69.7

69.3

61.9

(b) Human accuracy with predicted labels (and other
information).

Figure 2.3: Human accuracy with varying levels of assistance. In Figure 2.3a, control provides
no assistance; examples, highlight, and heatmap present explanations of machine predictions
alone; predicted label w/o accuracy shows predicted labels; predicted label w/ accuracy
shows predicted labels and reports machine accuracy that suggests strong machine performance. It
is clear that showing predicted labels is crucial for improving human accuracy. Adding an explicit
statement of machine accuracy further improves human accuracy. Figure 2.3b further investigates
the combinations of predicted labels and their explanations, and presents machine performance
as a benchmark. Intriguingly, we find that adding explanations achieves a similar effect as adding
an explicit statement of machine accuracy. All p-values are computed by conducting t-test between
the corresponding setup and the first experimental setup in the figure (“control” in Figure 2.3a and
“predicted label w/o accuracy” in Figure 2.3b).

from machine learning models so that humans retain their agency in the decision making process.

To examine how humans perform under different levels of influence from machine learning models,

we consider the following presentations along the spectrum in Figure 2.1 (we only show three

interfaces in Figure 2.2 for space reasons; see §2.8 for more).

• Control. Humans are only presented a review. This setup contains no information from

machine learning models and humans have full agency.

• Feature-based explanations. Since our machine learning model is linear, we present

two versions of feature-based explanations by highlighting words based on absolute values

of weight coefficients. First, we highlight the top 10 words in each review with the same

color (highlight). Second, we use heatmap to show gradual changes in weight coefficients

among the top 10 words. The most heavily-weighted words are highlighted in the darkest



15

shade of blue. Soft-highlighting (heatmap) has been shown to improve visual search on

targeted areas for humans [Kneusel and Mozer, 2017]. Note that we do not indicate the

sign of features to avoid revealing predicted labels. Humans may pay extra attention to

the highlighted words and accordingly make decisions on their own. Figure 2.2a shows an

example interface for heatmap.

• Example-based explanations. This method (examples) is inspired by example-based

interpretable machine learning [Kim et al., 2016]. Humans are presented two additional

reviews from the training data, one deceptive and one genuine that are most similar to

the review under consideration. This setup resonates with nearest neighbor classifiers.

Humans can potentially make better decisions in this setup than in control by comparing

the similarity between reviews.

• Predicted label without accuracy. The above two approaches only show explanations

of machine predictions, but do not reveal any information about predicted labels. The next

level of priming presents the predicted label. If humans fully follow machine predictions,

they will perform much better than chance and likely lead to an upper bound in this

deception detection task for humans. However, humans may not trust the machine due to

algorithm aversion [Dietvorst et al., 2015].

• Predicted label with accuracy. We may further influence human decisions by explicitly

suggesting that machines perform well in this task with 87% accuracy. Figure 2.2b shows

an example for predicted label with accuracy. Note that such strong recommendations

may not be desired due to ethical and legal concerns (see our discussion in the introduction).

• Combinations. Finally, we combine feature (example)-based explanations and predicted

labels. Note that we do not show machine performance to avoid strong priming. Figure 2.2c

shows an example of predicted label + heatmap without information about machine

performance.
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Hypotheses. We formulate the following hypotheses regarding how well humans can per-

form with machine assistance and how often humans trust machine predictions when

predicted labels are available.

• Hypothesis 1a. Feature-based explanations and example-based explanations improve hu-

man performance over control.

• Hypothesis 1b. Heatmap is more effective than highlight as gradual changes in weight

coefficients can be useful, as shown in Kneusel and Mozer [2017] for visual search. Feature-

based explanations are more effective than example-based explanations since the latter

requires a greater cognitive load, i.e., reading two more reviews.

• Hypothesis 2. Showing predicted labels significantly improves human performance com-

pared to feature (example)-based explanations alone. Assuming that humans trust the

machine and follow its prediction, showing predicted labels can likely improve human per-

formance because the machine accuracy is 87%. However, showing predicted labels reduces

human agency, so it is important to understand the size of the performance gap and make

informed design choices.

• Hypothesis 3. By combining predicted labels and feature (example)-based explanations,

the trust that humans place on machine predictions increases, as it has been shown that

concrete details can influence the level of trust in general automation [Lee and See, 2004].

We evaluate the above hypotheses using two metrics, accuracy and trust. Accuracy is

defined as the percentage of correctly predicted instances by humans; trust is defined as the

percentage of instances for which humans follow the machine prediction. Note that we can only

compute trust when predicted labels are available.
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(a) Trust in machine predictions.
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(b) Trust in correct and incorrect machine predictions.

Figure 2.4: The trust that humans place on machine predictions. Figure 2.4a shows that adding
feature-based explanations (heatmap) can effectively increase the trust level compared to pre-
dicted label w/o accuracy. p-value in Figure 2.4a is computed by conducting t-test between
the corresponding setup and predicted label w/o accuracy. Figure 2.4b breaks down the trust
based on whether machine predictions are correct or incorrect and shows that humans trust correct
machine predictions more than the incorrect ones in all the five experimental setups, although the
differences are only statistically significant in two setups.

2.5 Results

In this section, we investigate how varying levels of assistance from machine learning mod-

els along the spectrum in Figure 2.1 affect human predictions. We first discuss aggregate human

performance using human accuracy and trust. Our results show that in this challenging task, expla-

nations alone slightly improve human performance, while showing predicted labels can significantly

improve human performance. When predicted labels are shown, we examine the level of trust that

humans place on machine predictions. Our results suggest that humans can somewhat differentiate

correct machine predictions from incorrect ones. Finally, we present individual differences among

our participants based on information collected in the exit survey. Our dataset and demonstration

are available at https://machineintheloop.com/deception.

2.5.1 Human Accuracy

We first present human accuracy measured by the percentage of correctly predicted instances

by humans. Our results suggest that showing predicted labels is crucial for improving human

performance. Featured-based explanations coupled with predicted labels are able to induce sim-

https://machineintheloop.com/deception
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ilar human performance as an explicit statement of strong machine accuracy. As such, adding

feature-based explanations to predicted labels may be more ideal than suggesting strong machine

performance as the priming is weaker and may facilitate a higher level of human agency in decision

making.

Explanations alone slightly improve human performance (Figure 2.3a). As Figure 2.3a

shows, human performance in control is no better than chance (51.1%). This finding is consistent

with Ott et al. [2011] and decades of research on deception detection [Bond Jr and DePaulo,

2006]. Explanations alone slightly improve human performance over control, and the differences

are statistically significant for highlight and heatmap, not for examples. However, the best

explanations, heatmap, is not statistically significantly different from highlight (p = 0.335) or

examples (p = 0.069). As a result, our findings partially supports Hypothesis 1a and rejects

Hypothesis 1b. These findings suggest that it is difficult for humans to understand explanations on

their own. This is plausible for example-based explanations since it requires extra cognitive burden

and estimating text similarity is a nontrivial task for humans.

For feature-based explanations, it seems that the improvement is driven by the small number

of training reviews that we provide to explain the task. First-person singular pronouns provide

a good example: one of the training reviews is deceptive and highlight many occurrences of the

word, “my”. A participant said, “I tried to match the pattern from the example. In the

example. the review with the most ”My’s” and ”I’s” were deceptive”. In other words,

the improvement in heatmap and highlight may not happen at all without the training reviews,

which indicates the difficulty of interpreting these feature-based explanations and the importance

of explaining the explanations. One possible direction is to develop automatic tutorials to teach the

intuitions behind important features, which is related to machine teaching [Zhu, 2015, Mac Aodha

et al., 2018, Singla et al., 2014].

Showing predicted labels significantly improves human performance (Figure 2.3a and

2.3b). As Figure 2.3a shows, showing predicted labels drastically improves human performance

(61.9% for predicted label w/o accuracy, a 21% relative improvement over control; the dif-
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ference with heatmap is statistically significant (p <0.001)). By presenting machine accuracy

as shown in Figure 2.2b, the performance is further improved to 74.6% (predicted label w/

accuracy in Figure 2.3a, a 46% relative improvement over control).

These results are consistent with Hypothesis 2. The big performance gap between showing

predicted labels and showing feature (example)-based explanations alone suggests that when hu-

mans interact with machine learning models, it makes a significant difference whether predicted

labels are shown. However, this observation also echoes with concerns about humans overly relying

on machines [Lee and See, 2004].

To further understand human performance with predicted labels, we examine all experimen-

tal setups with predicted labels in Figure 2.3b. Although showing predicted labels seems necessary

for achieving sizable human performance improvement, the effect of presenting machine accuracy

can be moderated by showing feature (example)-based explanations. We find that predicted la-

bel + examples and predicted label + heatmap outperform predicted label w/o accuracy

(69.7% and 72.5% vs. 61.9%), without presenting the machine accuracy. In this case, we observe

that heatmap is more effective than examples, and leads to comparable human performance with

predicted label w/ accuracy. There is still a gap between the best human performance (pre-

dicted label w/ accuracy) and machine performance (74.6% vs. 87.0%). These observations

suggest that humans do not necessarily trust machine predictions.

2.5.2 Trust

We further examine the levels of trust that humans place on machine predictions when

predicted labels are available. Since machine performance surpasses human performance in control

by a wide margin in this task, higher levels of trust are correlated with higher levels of accuracy

in our experiments. However, these two metrics capture different dimensions of human predictions

because trust is tied to machine predictions. This becomes clear when we break down human

trust by whether machine predictions are correct or not. We find that humans tend to trust

correct machine predictions more than incorrect ones, which suggests that humans can somewhat
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(a) Human estimation of their own performance.
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(b) Gender and hint usefulness in predicted la-
bel + heatmap.

Figure 2.5: Heterogeneity findings among participants in our study. Figure 2.5a shows performance
estimation by participants in three different experimental setups. Figure 2.5b presents the perfor-
mance of participants in predicted label + heatmap group by two variables, hint usefulness and
gender.

effectively identify cases where machines are wrong. It is important to emphasize that our focus is

on understanding how human trust varies along the spectrum rather than manipulating the trust

of humans in machines.

Feature (example)-based explanations increase the trust that humans place on machine

predictions (Figure 2.4a). We further introduce random heatmap by randomly highlighting

an equal number of words as in heatmap to examine whether humans are influenced by any

explanations including random ones.

Our results are consistent with Hypothesis 3: both feature-based and example-based expla-

nations increase the trust of humans in machine predictions. In fact, predicted label + heatmap

leads to a similar level of trust as predicted label w/ accuracy, although the latter explicitly

tells humans that the machine learning model “has an accuracy of approximately 87%”. In other

words, when predicted labels are shown, heatmap can nudge humans in decision making without

making strong statements of machine accuracy. Interestingly, random heatmap also increases the

trust level significantly, suggesting that even irrelevant details can increase the trust of humans in

machine predictions. The fact that heatmap is significantly more effective than random heatmap

(78.7% vs. 73.4%, p < 0.001) indicates that humans can interpret valuable information in weight
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(b) Trust.

Figure 2.6: Human accuracy and trust given varying statements of machine accuracy. Figure
2.6a and Figure 2.6b show that human accuracy and trust generally decline with statements of
decreasing machine accuracy despite the fact that machine predictions remain unchanged. Note
that the decline of human trust with statements of decreasing accuracy is small. Only by adding
frequency explanations, human accuracy and trust become closer to not showing any indication of
machine accuracy, i.e., predicted label w/o accuracy.

coefficients beyond “the placebo effect”.

Humans tend to trust machine predictions more when machine predictions are cor-

rect. (Figure 2.4b). We next examine whether humans trust machine predictions more when

machine predictions are correct than when they are incorrect. Figure 2.4b shows that in all the five

experimental setups with predicted labels, our participants trust correct machine predictions more

than incorrect ones. However, the difference is statistically significant only in predicted label

w/ accuracy (p < 0.001) and predicted label w/ heatmap (random) (p = 0.015). These

results suggest that humans can somewhat differentiate correct machine predictions from incorrect

ones. Further evidence is required to fully understanding the reasons why humans (don’t) trust

(in)correct machine predictions. Such understandings can improve both machine learning models

and their presentations to support human decision making.

2.5.3 Heterogeneity in Human Perception and Performance

We finally discuss the heterogeneity between participants in our study. Here we focus on the

participants’ estimation of their own performance and gender differences.

Human estimation of their own performance (Figure 2.5a). We ask participants to estimate
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their own performance in our exit survey. Our results are not exactly aligned with the previous

finding that humans tend to overestimate their capacity of detecting lying Elaad [2003]. In fact,

∼42% of the participants correctly predicted their performance. Among the remaining, ∼18%

overestimated their performance, while ∼40% underestimated their performance. Figure 2.5a shows

the breakdown for three experimental setups. In general, it seems difficult for humans to estimate

their performance. One participant who overestimated his performance (estimated 11-15 but got

10 correct) said, “I enjoyed this hit. When I was a young man, I was a manager in the

hotel business and got to read a lot of comment cards from guests. I hope that I was

pretty accurate in my answers”. Another participant who underestimated his performance

(estimated 6-10 but got 15 correct) said, “It was difficult to determine if they were genuine

or deceptive. I don’t feel certain on any of my choices”.

Heterogeneity in performance across individuals (Figure 2.5b). We have so far focused

on average human performance comparisons between different experimental setups. It is important

to recognize that the performance of individuals can vary. Exit survey responses allow us to study

such heterogeneity. We focus on two properties in the interest of space. Refer to the appendix for

a complete discussion of heterogeneity between individuals.

First, individuals who find the hints useful outperform those who find the hints not useful.

The difference between these two groups in Figure 2.5b (predicted label + heatmap) is statis-

tically significant. This observation resonates with our analysis regarding the trust of humans in

machine predictions and holds in 5 out of 8 experimental setups (this question was not asked in

control), although the differences are only statistically significant in three setups.2 Second, we

find that females generally outperform males. This observation holds in 8 out of 9 experimental

setups, but none of the differences is statistically significant. Our results contribute to mixed ob-

servations regarding gender differences in deception detection [Mann et al., 2004, DePaulo et al.,

1993, McCornack and Parks, 1990, Li, 2011].

2 The low number of statistically significant differences is expected, because human performance is low unless we
show predicted labels.
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2.6 Varying Statements of Machine Accuracy

Given the strong influence of predicted labels and machine accuracy, a natural question to

ask is how human judgment changes if we vary the statement of machine accuracy. For example,

instead of the true accuracy of 87%, we could claim that the machine has an accuracy of 60%. It is

important to emphasize that since these statements of accuracy are not true, we do not recommend

this approach as part of our spectrum in Figure 2.1 and thus put these results in a separate section.

However, we think that it is valuable to understand how varying statements of accuracy might

influence human predictions.

Although human accuracy and trust generally decline with statements that suggest

lower accuracy, statements of machine accuracy improve human trust in machine pre-

dictions even when the claimed accuracy is only 50%. To understand human accuracy with

varying statements of machine accuracy, we use predicted label w/o accuracy and predicted

label w/ accuracy (87%) as benchmarks. In Figure 2.6a and Figure 2.6b, human accuracy

and trust with varying statements of machine accuracy all fall between these two benchmarks as

expected. Here we focus on the blue bars filled with forward slashes that correspond to simple

statements of machine accuracy, “The machine predicts that the below review is deceptive. It has

an accuracy of approximately x%” (x = 70, 60, 50). As the claimed accuracy declines from 87% to

50%, human accuracy and trust decrease, with the exception of human accuracy from 70% to 60%.

However, the decline in human trust and accuracy is fairly small. For instance, predicted label

w/ accuracy (50%) still outperforms predicted label w/o accuracy significantly. The results

are surprising and counterintuitive since one should put less trust in a machine that has only an

accuracy of 50% as compared to a machine that boasts 87%. Our findings suggest that any indica-

tion of machine accuracy, be it high or low, improves human trust in the machine. This observation

echoes prior work on numeracy that suggests that average humans and even doctors struggle with

interpreting and acting on numbers [Reyna and Brainerd, 2008, Berwick et al., 1981, Slovic and

Peters, 2006, Peters et al., 2006]. Therefore, it is crucial that we develop a better empirical under-
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standing of how humans interact with explanations and predictions of machine learning models in

decision making before using these machine learning models in the loop of human decision making.

Frequency explanations can help humans interpret and act on statements of machine

accuracy. To further investigate human interaction with varying statements of machine accuracy,

we add frequency explanations to the statement with accuracy 50% and 60%. Specifically, we show

participants “The machine predicts that the below review is deceptive. It has an accuracy of

approximately 50%, which means that it is correct 5 out of 10 times.” instead of “The machine

predicts that the below review is deceptive. It has an accuracy of approximately 50%.” The

results are shown with the red bars filled with stars in Figure 2.6a and Figure 2.6b. We find that

frequency explanations reduce the trust that humans place on machine predictions. For instance,

human accuracy in predicted label w/ accuracy (50%) + frequency explanation is ∼7%

lower (p=0.003) than in predicted label w/ accuracy (50%). Similarly, human trust in

predicted label w/ accuracy (50%) + frequency explanation is ∼10% lower (p¡0.001) than

in predicted label w/ accuracy (50%). Furthermore, the differences in human accuracy and

trust are not statistically significant between predicted label w/ accuracy (50%) + frequency

explanation and predicted label w/o accuracy. These observations suggest that frequency

explanations can help humans interpret statements of machine accuracy, in which case a statement

of 50% accuracy with frequency explanation is almost the same as not showing machine accuracy.

Our frequency explanations are also known as frequent format and have been shown to be more

effective for conveying uncertainty than stating the probability [Sedlmeier and Gigerenzer, 2001,

Gigerenzer, 1996, Gigerenzer and Hoffrage, 1995].

2.7 Conclusion

In this paper, we conduct the first empirical study to investigate whether machine predictions

and their explanations can improve human performance in challenging tasks such as deception

detection. We propose a spectrum between full human agency and full automation, and design

machine assistance with varying levels of priming along the spectrum. We find that explanations
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alone slightly improve human performance, while showing predicted labels significantly improves

human performance. Adding an explicit statement of strong machine performance can further

improve human performance. Our results demonstrate a tradeoff between human performance and

human agency, and explaining machine predictions may moderate this tradeoff.

We find interesting results regarding the trust that humans place on machine predictions. On

the one hand, humans tend to trust correct machine predictions more than incorrect ones, which

indicates that it is possible to improve human decision making while retaining human agency. On

the other hand, we show that human trust can be easily enhanced by adding random heatmap as

explanations or statements of low accuracies that do not justify trusting machine predictions. In

other words, additional details including irrelevant ones can improve the trust that humans place

on machine predictions. These findings highlight the importance of taking caution in using machine

learning for supporting decision making and developing methods to improve the transparency of

machine learning models and its associated human interpretation.

As machine learning gets employed to support decision making in our society, it is crucial

that the machine learning community not only advances machine learning models, but also develops

a better understanding of how these machine learning models are used and how humans interact

with these models in the process of decision making. Our study takes an initial step towards

understanding human predictions with assistance from machine learning models in challenging

tasks.

Implications and future directions. Our results show that explanations alone slightly improve

human performance. One reason for the limited improvement with explanations alone is that al-

though we provide explanations during the decision making process, we provide limited resources to

“teach” these explanations. A possible future direction is to develop tutorials for machine learning

models and their explanations to relieve some cognitive burden from humans, e.g., summarizing

the model as a list of rules, adding heatmap in examples or providing a sequence of training exam-

ples with explanations and sufficient coverage. This direction also connects to the area of machine

teaching [Zhu, 2015, Mac Aodha et al., 2018, Singla et al., 2014].
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Another possible direction to improve the effectiveness of explanations is to provide narra-

tives. Our results suggest that feature-based and example-based explanations provide useful details

for machine predictions to improve the trust of humans in machine predictions. It can be useful if we

can similarly provide rationales behind feature-based and example-based explanations in the form

of narratives. A qualitative understanding of how turkers interpret hints from machine learning

models may shed light on the requirements of effective narratives.

Last but not least, it is important to study the ethical concerns of providing assistance from

machine learning models in human decision making. Our results demonstrate a clear tradeoff in

this space: it is difficult to improve human performance without showing predicted labels, but

showing predicted labels, especially alongside machine performance, runs the risk of removing

human agency. Human decision makers with assistance from machines further complicate the

current discussions on the issue of fairness in algorithmic decision making [Kleinberg et al., 2017b,

Hardt et al., 2016, Corbett-Davies et al., 2017]. As the adoption of machine learning approaches can

have broad impacts on our society, such questions require inputs from machine learning researchers,

legal scholars, and the entire society.

Limitations. We use Amazon Mechanical Turk to recruit participants, but this may not be a

representative sample of the population. However, we would like to emphasize that turkers are

likely to provide a better proxy than machine learning experts for understanding how humans

interact with assistance from machine learning models in critical challenging tasks. Also, our

explanations are derived from a linear SVM classifier and nearest neighbors. It may be even more

challenging for humans to interpret explanations of non-linear classifiers.

Another important challenge in understanding how humans interact with machine learning

models lies in the difficulty to assess the generalizability of our results. Our formulation of deception

detection represents a scenario where machines outperform humans by a wide margin and humans

may have developed false beliefs about this task, as most humans have read reviews online. In order

to consider a wide range of tasks, e.g., bail decisions and medical diagnosis, we need a framework to

compare different tasks. Machine performance and humans’ prior intuition are probably important
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factors that can influence human interpretation of the explanations. However, it remains an open

question whether there exists a principled framework to reason about these tasks. At the very

least, it is important for our community to go beyond simple visual tasks such as OCR and object

recognition, especially for the purpose of improving human performance in decision making.

2.8 Appendix

2.8.1 Amazon Mechanical Turk Setup

To ensure quality results, we include several criteria for turkers: 1) the turker is based in

the United States so that we assume English fluency; 2) the turker has completed at least 50 HITs

(human intelligence tasks); 3) the turker has an approval rate of at least 99%.

Before working on the main task, turkers need to go through a short training session, in which

we show three reviews from the training data. We present the correct answer after turkers make

their prediction. The interface during training is exactly the same as in the actual experiment. After

making predictions for 20 reviews, turkers are required to fill out an exit survey that solicits their

estimation of their own performance in this task and basic demographic information including age,

gender, education background, and experience with online reviews (screenshots in Figure 2.15 and

Figure 2.16). If the HIT is approved, the turker is compensated a dollar and bonuses depending on

the number of reviews he correctly predicted. For example, if a turker makes 11 correct predictions,

he is compensated $0.22 in addition to a dollar. The average duration for finishing our HIT is about

11 minutes (Figure 2.7 shows the CDF of the duration). Turkers spend the shortest amount of

time on average (8.3 minutes) in predicted labels w/ accuracy and the longest amount of time

on average (14.4 minutes) in examples, which is consistent with our expectation about extra

cognitive burden from reading two more reviews. To sanity check that participants pay similar

attention throughout the study, Figure 2.8 shows the average accuracy with respect to the order

in which reviews show up3 : there does not exist a downward trend. All results are based on the 9

experimental setups in Section 4 of the main paper and results with varying statements of accuracy

3 Thanks to suggestions from anonymous reviewers.
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Figure 2.7: Cumulative distribution of study duration in 9 experimental setups.
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Figure 2.8: Average accuracy with respect to review ordering in 9 experimental setups.

are not included.

2.8.2 Experiment Interfaces

This section shows example interfaces for the other five experimental setups that are not

shown in the main paper (predicted label + heatmap (random) has the same interface as

predicted label + heatmap except that words are highlighted randomly).

• Control (Figure 2.17a).

• Highlight (Figure 2.17b).
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Figure 2.9: Human accuracy vs. usefulness of hints.

• Examples (Figure 2.18a).

• Predicted label w/o accuracy (Figure 2.18b).

• Predicted label + examples (Figure 2.19).

2.8.3 Individual Differences

Here we present further results on heterogeneous performance among individuals. We present

figures for four experimental setups that are representative of different levels of priming: heatmap,

examples, predicted label w/o accuracy, and predicted label + heatmap.

Hint usefulness (Figure 2.9). As discussed in the main paper, human performance is better for

participants who find hints useful than those who do not find hints useful in 5 out of 8 experimental

setups. Highlight, heatmap and predicted label w/o accuracy are the exceptions. The dif-

ference in three setups (predicted label + heatmap, predicted label + heatmap (random),

predicted label w/ accuracy) is statistically significant.

Gender differences (Figure 2.10). Females generally outperform males, in 8 out of 9 experi-

mental setups. None of the differences is statistically significant.

Review sentiments (Figure 2.11). One possible hypothesis is that humans perform differently

depending on the sentiment of reviews. Indeed, we observe that humans consistently perform better

for positive reviews (8 out 9 experimental setups). However, the difference is only statistically
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Figure 2.10: Human accuracy vs. gender.
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Figure 2.11: Human accuracy vs. review sentiment.

significant for predicted label w/o accuracy.

Education background (Figure 2.12). There is no clear trend regarding education background,

which suggests that education levels do not correlate with the ability to detect deception. For

instance, high school graduates perform the best in predicted label w/o accurcay, but the

worst in examples. Since there are five groups, each group is relatively sparse. We thus did not

conduct statistical testing for these observations.

Age group (Figure 2.13). There is no clear trend regarding age groups either. For instance,

participants that are 61 & above perform the best in predicted label w/o accuracy, but worst

in predicted label + heatmap. Similarly, since there are five groups and that each group is also

relatively sparse, we did not conduct statistical testing for these observations.

Review experience (Figure 2.14). There is no clear trend regarding experience of writing
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Figure 2.12: Human accuracy vs. education background.
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Figure 2.13: Human accuracy vs. age groups.

reviews. With the exception of control and predicted label + heatmap (random), the group

that reports the best performance is either users who write reviews weekly or users who write

reviews frequently. Again, we did not conduct statistical testing for review experience.
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Figure 2.15: Survey questions for control group.
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Figure 2.16: Survey questions for all the other groups.
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(a) Example interface for control.

(b) Example interface for highlight.
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(a) Example interface for examples.

(b) Example interface for predicted label w/o accuracy.
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Figure 2.19: Example interface for predicted label + examples.



Chapter 3

Many Faces of Feature Importance

3.1 Overview

Feature importance is commonly used to explain machine predictions. While feature impor-

tance can be derived from a machine learning model with a variety of methods, the consistency of

feature importance via different methods remains understudied. In this work, we systematically

compare feature importance from built-in mechanisms in a model such as attention values and

post-hoc methods that approximate model behavior such as LIME. Using text classification as a

testbed, we find that 1) no matter which method we use, important features from traditional mod-

els such as SVM and XGBoost are more similar with each other, than with deep learning models;

2) post-hoc methods tend to generate more similar important features for two models than built-in

methods. We further demonstrate how such similarity varies across instances. Notably, important

features do not always resemble each other better when two models agree on the predicted label

than when they disagree.

3.2 Introduction

As machine learning models are adopted in societally important tasks such as recidivism

prediction and loan approval, explaining machine predictions has become increasingly important

[Doshi-Velez and Kim, 2017, Lipton, 2016]. Explanations can potentially improve the trustwor-

thiness of algorithmic decisions for decision makers, facilitate model developers in debugging, and

even allow regulators to identify biased algorithms.



39
One of favorite places to eat on the King W side, simple and relatively quick. I typically always
get the chicken burrito and the small is enough for me for dinner. Ingredients are always fresh and
watch out for the hot sauce cause it’s skull scratching hot. Seating is limited so be prepared to
take your burrito outside or you can even eat at Metro Hall Park.

methodsmodels SVM (ℓ2) XGBoost LSTM with atten-
tion

BERT

built-in sauce, seating,
park, prepared,
even, always, can,
fresh, quick, fa-
vorite

is, can, quick,
fresh, at, to,
always, even,
favorite, and

me, be, relatively,
enough, always,
fresh, ingredients,
prepared, quick,
favorite

., ingredients,
relatively, quick,
places, enough,
dinner, typically,
me, i

LIME the, dinner, be,
quick, and, even,
you, always, fresh,
favorite

you, to, fresh,
quick, at, can,
even, always, and,
favorite

dinner, ingredi-
ents, typically,
fresh, places, cause,
quick, and, fa-
vorite, always

one, watch, to,
enough, limited,
cause, and, fresh,
hot, favorite

Table 3.1: 10 most important features (separated by comma) identified by different methods for
different models for the given review. In the interest of space, we only show built-in and LIME
here.

A popular approach to explaining machine predictions is to identify important features for

a particular prediction [Luong et al., 2015b, Ribeiro et al., 2016, Lundberg and Lee, 2017]. Typi-

cally, these explanations assign a value to each feature (usually a word in NLP), and thus enable

visualizations such as highlighting top k features.

In general, there are two classes of methods: 1) built-in feature importance that is embedded

in the machine learning model such as coefficients in linear models and attention values in attention

mechanisms; 2) post-hoc feature importance through credit assignment based on the model such

as LIME. It is well recognized that robust evaluation of feature importance is challenging [Jain and

Wallace, 2019a, Nguyen, 2018], which is further complicated by different use cases of explanations

(e.g., for decision makers vs. for developers). Throughout this work, we refer to machine learning

models that learn from data as models and methods to obtain local explanations (i.e., feature

importance in this work) for a prediction by a model as methods.

While prior research tends to focus on the internals of models in designing and evaluating

methods of explanations, e.g., how well explanations reflect the original model [Ribeiro et al.,

2016], we view feature importance itself as a subject of study, and aim to provide a systematic
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characterization of important features obtained via different methods for different models. This

view is particularly important when explanations are used to support decision making because they

are the only exposure to the model for decision makers. It would be desirable that explanations are

consistent across different instances. In comparison, debugging represents a distinct use case where

developers often know the mechanism of the model beyond explanations. Our view also connects

to studying explanation as a product in cognitive studies of explanations [Lombrozo, 2012], and

is complementary to the model-centric perspective.

Given a wide variety of models and methods to generate feature importance, there are basic

open questions such as how similar important features are between models and methods, how

important features distribute across instances, and what linguistic properties important features

tend to have. We use text classification as a testbed to answer these questions. We consider built-

in importance from both traditional models such as linear SVM and neural models with attention

mechanisms, as well as post-hoc importance based on LIME and SHAP. Table 3.1 shows important

features for a Yelp review in sentiment classification. Although most approaches consider “fresh”

and “favorite” important, there exists significant variation.

We use three text classification tasks to characterize the overall similarity between important

features. Our analysis reveals the following insights:

• (Comparison between approaches) Deep learning models generate more different important

features from traditional models such as SVM and XGBoost. Post-hoc methods tend to

reduce the dissimilarity between models by making important features more similar than

the built-in method. Finally, different approaches do not generate more similar important

features even if we focus on the most important features (e.g., top one feature).

• (Heterogeneity between instances) Similarity between important features is not always

greater when two models agree on the predicted label, and longer instances are less likely

to share important features.

• (Distributional properties) Deep models generate more diverse important features with
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higher entropy, which indicates lower consistency across instances. Post-hoc methods bring

the POS distribution closer to background distributions.

In summary, our work systematically compares important features from different methods

for different models, and sheds light on how different models/methods induce important features.

Our work takes the first step to understand important features as a product and helps inform the

adoption of feature importance for different purposes. Our code is available at https://github.

com/BoulderDS/feature-importance.

3.3 Related work

To provide further background for our work, we summarize current popular approaches to

generating and evaluating explanations of machine predictions, with an emphasis on feature im-

portance.

Approaches to generating explanations. A battery of approaches have been recently proposed

to explain machine predictions (see Guidotti et al. [2019] for an overview), including example-based

approaches that identifies “informative” examples in the training data [e.g., Kim et al., 2016] and

rule-based approaches that reduce complex models to simple rules [e.g., Malioutov et al., 2017]. Our

work focuses on characterizing properties of feature-based approaches. Feature-based approaches

tend to identify important features in an instance and enable visualizations with important features

highlighted. We discuss several directly related post-hoc methods here and introduce the built-in

methods in §??. A popular approach, LIME, fits a sparse linear model to approximate model

predictions locally [Ribeiro et al., 2016]; Lundberg and Lee [2017] present a unified framework

based on Shapley values, which can be computed with different approximation methods for different

models. Gradients are popular for identifying important features in deep learning models since

these models are usually differentiable [Shrikumar et al., 2017], for instance, Li et al. [2016] uses

gradient-based saliency to compare LSTMs with simple recurrent networks.

Definition and evaluation of explanations. Despite a myriad of studies on approaches to ex-

https://github.com/BoulderDS/feature-importance
https://github.com/BoulderDS/feature-importance
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plaining machine predictions, explanation is a rather overloaded term and evaluating explanations is

challenging. Doshi-Velez and Kim [2017] lays out three levels of evaluations: functionally-grounded

evaluations based on proxy automatic tasks, human-grounded evaluations with laypersons on proxy

tasks, and application-grounded based on expert performance in the end task. In text classifica-

tion, Nguyen [2018] shows that automatic evaluation based on word deletion moderately correlate

with human-grounded evaluations that ask crowdworkers to infer machine predictions based on

explanations. However, explanations that help humans infer machine predictions may not actually

help humans make better decisions/predictions. In fact, recent studies find that feature-based ex-

planations alone have limited improvement on human performance in detecting deceptive reviews

and media biases [Lai and Tan, 2019a, Horne et al., 2019].

In another recent debate, Jain and Wallace [2019a] examine attention as an explanation

mechanism based on how well attention values correlate with gradient-based feature importance and

whether they exclusively lead to the predicted label, and conclude that attention is not explanation.

Similarly, Serrano and Smith [2019] show that attention is not a fail-safe indicator for explaining

machine predictions based on intermediate representation erasure. However, Wiegreffe and Pinter

[2019a] argue that attention can be explanation depending on the definition of explanations (e.g.,

plausibility and faithfulness).

In comparison, we treat feature importance itself as a subject of study and compare different

approaches to obtaining feature importance from a model. Instead of providing a normative judg-

ment with respect to what makes good explanations, our goal is to allow decision makers or model

developers to make informed decisions based on properties of important features using different

models and methods.

3.4 Approach

In this section, we first formalize the problem of obtaining feature importance and then

introduce the models and methods that we consider in this work. Our main contribution is to com-

pare important features identified for a particular instance through different methods for different
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models.

Feature importance. For any instance t and a machine learning model m : t → y ∈ {0, 1}, we

use method h to obtain feature importance on an interpretable representation of t, Im,h
t ∈ Rd,

where d is the dimension of the interpretable representation. In the context of text classification,

we use unigrams as the interpretable representation. Note that the machine learning model does

not necessarily use the interpretable representation. Next, we introduce the models and methods

in this work.

Models (m). We include both recent deep learning models for NLP and popular machine learning

models that are not based on neural networks. In addition, we make sure that the chosen models

have some built-in mechanism for inducing feature importance and describe the built-in feature

importance as we introduce the model.1

• Linear SVM with ℓ2 (or ℓ1) regularization. Linear SVM has shown strong performance

in text categorization [Joachims, 1998]. The absolute value of coefficients in these models

is typically considered a measure of feature importance [e.g., Ott et al., 2011]. We also

consider ℓ1 regularization because ℓ1 regularization is often used to induce sparsity in the

model.

• Gradient boosting tree (XGBoost). XGBoost represents an ensembled tree algorithm that

shows strong performance in competitions [Chen and Guestrin, 2016]. We use the default

option in XGBoost to measure feature importance with the average training loss gained

when using a feature for splitting.

• LSTM with attention (often shortened as LSTM in this work). Attention is a commonly

used technique in deep learning models for NLP [Bahdanau et al., 2015]. The intuition is

to assign a weight to each token before aggregating into the final prediction (or decoding

in machine translation). We use the dot product formulation in Luong et al. [2015b]. The

1 For instance, we do not consider LSTM as a model here due to the lack of commonly-accepted built-in mecha-
nisms.
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weight on each token has been commonly used to visualize the importance of each token.

To compare with the previous bag-of-words models, we use the average weight of each type

(unique token) in this work to measure feature importance.

• BERT. BERT represents an example architecture based on Transformers, which could show

different behavior from LSTM-style recurrent networks [Devlin et al., 2019, Vaswani et al.,

2017, Wolf, 2019]. It also achieves state-of-the-art performance in many NLP tasks. Similar

to LSTM with attention, we use the average attention values of 12 heads used by the first

token at the final layer (the representation passed to fully connected layers) to measure

feature importance for BERT.2 Since BERT uses a subword tokenizer, for each word, we

aggregate the attention on related subparts. BERT also requires special processing due to

the length constraint; please refer to the supplementary material for details. As a result,

we focus on presenting LSTM with attention in the main paper for ease of understanding.

Methods (h). For each model, in addition to the built-in feature importance that we described

above, we consider the following two popular methods for extracting post-hoc feature importance

(see the supplementary material for details of using the post-hoc methods).

• LIME [Ribeiro et al., 2016]. LIME generates post-hoc explanations by fitting a local sparse linear

model to approximate model predictions. As a result, the explanations are sparse.

• SHAP [Lundberg and Lee, 2017]. SHAP unifies several interpretations of feature importance

through Shapley values. The main intuition is to account the importance of a feature by exam-

ining the change in prediction outcomes for all the combinations of other features. Lundberg

and Lee [2017] propose various approaches to approximate the computation for different classes

of models (including gradient-based methods for deep models).

Note that feature importances obtained via all approaches are all local, because the top

2 We also tried to use the max of 12 heads and previous layers, and the average of the final layer is more similar to
SVM (ℓ2) than the average of first layer. Results are in the supplementary material. Vig [2019] show that attention
in BERT tends to be on first words, neighboring words, and even separators. The complex choices for BERT further
motivate our work to view feature importance as a subject of study.
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features are conditioned on an instance (i.e., words present in an instance) even for the built-in

method for SVM and XGBoost.

Comparing feature importance. Given Im,h
t and Im′,h′

t , we use Jaccard similarity based on

the top k features with the greatest absolute feature importance,
|TopK(Im,h

t )∩TopK(Im′,h′
t )|

|TopK(Im,h
t )∪TopK(Im′,h′

t )|
, as our

main similarity metric for two reasons. First, the most typical way to use feature importance for

interpretation purposes is to show the most important features [Lai and Tan, 2019a, Ribeiro et al.,

2016, Horne et al., 2019]. Second, some models and methods inherently generate sparse feature

importance, so most feature importance values are 0.

It is useful to discuss the implication of similarity before we proceed. On the one hand,

it is possible that different models/methods identify the same set of important features (high

similarity) and the performance difference in prediction is due to how different models weigh these

important features. If this were true, the choice of model/method would have mattered little for

visualizing important features. On the other hand, a low similarity poses challenges for choosing

which model/method to use for displaying important features. In that case, this work aims to

develop an understanding of how the similarity varies depending on models and methods, instances,

and features. We leave it to future work for examining the impact on human interaction with feature

importance. Low similarity may enable model developers to understand the differences between

models, but may lead to challenges for decision makers to get a consistent picture of what the

model relies on.

3.5 Experimental Setup and Hypotheses

Our goal is to characterize the similarities and differences between feature importances ob-

tained with different methods and different models. In this section, we first present our experimental

setup and then formulate our hypotheses.

Experimental setup. We consider the following three text classification tasks in this work.

We choose to focus on classification because classification is the most common scenario used for

examining feature importance and the associated human interpretation [Jain and Wallace, 2019a].
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Model Yelp SST Deception

SVM (ℓ2) 92.3 80.8 86.3
SVM (ℓ1) 91.5 79.2 84.4
XGBoost 88.8 75.9 83.4
LSTM w/ attention 93.9 82.6 88.4
BERT 95.5 92.2 90.9

Table 3.2: Accuracy on the test set.

• Yelp [Yelp, 2019]. We set up a binary classification task to predict whether a review is

positive (rating ≥ 4) or negative (rating ≤ 2). As the original dataset is huge, we subsample

12,000 reviews for this work.

• SST [Socher et al., 2013]. It is a sentence-level sentiment classification task and represents

a common benchmark. We only consider the binary setup here.

• Deception detection [Ott et al., 2013, 2011]. This dataset was created by extracting genuine

reviews from TripAdvisor and collecting deceptive reviews using Turkers. It is relatively

small with 1,200 reviews and represents a distinct task from sentiment classification.

For all the tasks, we use 20% of the dataset as the test set. For SVM and XGBoost, we

use cross validation on the other 80% to tune hyperparameters. For LSTM with attention and

BERT, we use 10% of the dataset as a validation set, and choose the best hyperparameters based

on the validation performance. We use spaCy to tokenize and obtain part-of-speech tags for all

the datasets [Honnibal and Montani, 2017]. Table 4.1 shows the accuracy on the test set and our

results are comparable to prior work. Not surprisingly, BERT achieves the best performance in all

three tasks. For important features, we use k ≤ 10 for Yelp and deception detection, and k ≤ 5

for SST as it is a sentence-level task. See supplementary materials for details of preprocessing,

learning, and dataset statistics.

Hypotheses. We aim to examine the following three research questions in this work: 1) How

similar are important features between models and methods? 2) What factors relate to the hetero-

geneity across instances? 3) What words tend to be chosen as important features?
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Overall similarity. Here we focus on discussing comparative hypotheses, but we would like to

note that it is important to understand to what extent important features are similar across models

(i.e., the value of similarity score). First, as deep learning models and XGBoost are nonlinear, we

hypothesize that built-in feature importance is more similar between SVM (ℓ1) and SVM (ℓ2) than

other model pairs (H1a). Second, LIME generates more similar important features to SHAP than

to built-in feature importance because both LIME and SHAP make additive assumptions, while

built-in feature importance is based on drastically different models (H1b). It also follows that

post-hoc explanations of different models show higher similarity than built-in explanations across

models. Third, the similarity with small k is higher (H1c) because hopefully, all models and

methods agree what the most important features are.

Heterogeneity between instances. Given a pair of (model, method) combinations, our second

question is concerned with how instance-level properties affect the similarity in important features

between different combinations. We hypothesize that 1) when two models agree on the predicted

label, the similarity between important features is greater (H2a); 2) longer instances are less likely

to share similar important features (H2b). 3) instances with higher type-token ratio,3 which might

be more complex, are less likely to share similar important features (H2c).

Distribution of important features. Finally, we examine what words tend to be chosen as

important features. This question certainly depends on the nature of the task, but we would like

to understand how consistent different models and methods are. We hypothesize that 1) deep

learning models generate more diverse important features (H3a); 2) adjectives are more important

in sentiment classification, while pronouns are more important in deception detection as shown in

prior work (H3b).

3.6 Similarity between Instance-level Feature Importance

We start by examining the overall similarity between different models using different methods.

In a nutshell, we compute the average Jaccard similarity of top k features for each pair of (m,h)

3 Type-token ratio is defined as the number of unique tokens divided by the number of tokens.
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Figure 3.1: Jaccard similarity between the top 10 features of different models based on built-in
feature importance on Yelp. The similarity is the greatest between SVM (ℓ2) and SVM (ℓ1), while
LSTM with attention and BERT pay attention to quite different features from other models.

and (m′, h′). To facilitate effective comparisons, we first fix the method and compare the similarity

of different models, and then fix the model and compare the similarity of different methods. Figure

3.1 shows the similarity between different models using the built-in feature importance for the top

10 features in Yelp (k = 10). Consistent with H1a, SVM (ℓ2) and SVM (ℓ1) are very similar to

each other, and LSTM with attention and BERT clearly lead to quite different top 10 features

from the other models. As the number of important features (k) can be useful for evaluating the

overall trend, we thus focus on line plots as in Figure 3.2 in the rest of the paper. This heatmap

visualization represents a snapshot for k = 10 using the built-in method. Also, we only include

SVM (ℓ2) in the main paper for ease of visualization and sometimes refer to it in the rest of the

paper as SVM.

No matter which method we use, important features from SVM and XGBoost are

more similar with each other, than with deep learning models (Figure 3.2). First, we

compare the similarity of feature importance between different models using the same method.

Using the built-in method (first row in Figure 3.2), the solid line (SVM x XGBoost) is always

above the other lines, usually by a significant margin, suggesting that deep learning models such

as LSTM with attention are less similar to traditional models. In fact, the similarity between

XGBoost and LSTM with attention is lower than random samples for k = 1, 2 in SST. Similar

results also hold for BERT (see supplementary materials). Another interesting observation is that
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post-hoc methods tend to generate greater similarity than built-in methods, especially for LIME

(the dashed line (LIME) is always above the solid line (built-in) in the second row of Figure 3.2).

This is likely because LIME only depends on the model behavior (i.e., what the model predicts)

and does not account for how the model works.

The similarity between important features from different methods tends to be lower for

LSTM with attention (Figure 3.3). Second, we compare the similarity of feature importance

derived from the same model with different methods. For deep learning models such as LSTM

with attention, the similarity between feature importance generated by different methods is the

lowest, especially comparing LIME with SHAP. Notably, the results are much more cluttered in

deception detection. Contrary to H1b, we do not observe that LIME is more similar to SHAP

than built-in. The order seems to depend on both the task and the model: even within SST, the

similarity between built-in and LIME can rank as third, second, or first. In other words, post-hoc

methods generate more similar important features when we compare different models, but that is

not the case when we fix the model. It is reassuring that that similarity between any pairs is above

random, with a sizable margin in most cases (BERT on SHAP is an exception; see supplementary

materials).

Relation with k. As the relative order between different approaches can change with k, we have

so far only focused on relatively consistent patterns over k and classification tasks. Contrary to

H1c, the similarity between most approaches is not drastically greater for small k, which suggests

that different approaches may not even agree on the most important features. In fact, there is no

consistent trend as k grows: similarity mostly increases in SST (while our hypothesis is that it

decreases), increases or stays level in Yelp, and shows varying trends in deception detection.

3.7 Heterogeneity between Instances

Given the overall low similarity between different methods/models, we next investigate how

the similarity may vary across instances.

The similarity between models is not always greater when two models agree on the
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predicted label (Figure 3.4). One hypothesis for the overall low similarity between models is

that different models tend to give different predictions therefore they choose different features to

support their decisions. However, we find that the similarity between models is not particularly

high when they agree on the predicted label, and are sometimes even lower than when they disagree.

This is true for LIME in Yelp and for all methods in deception detection. In SST, the similarity

when the models agree on the predicted label is generally greater than when they disagree. We show

the comparison between SVM (ℓ2) and LSTM here, and similar results hold for other combinations

(see supplementary materials). This observation suggests that feature importance may not connect

with the predicted labels: different models agree for different reasons and also disagree for different

reasons.

The similarity between models and methods is generally negatively correlated with

length but positively correlated with type-token ratio (Figure 3.5). Our results support

H2b: Spearman correlation between length and similarity is mostly below 0, which indicates that

the longer an instance is, the less similar the important features are. The negative correlation

becomes stronger as k grows, indicating that length has a stronger effect on similarity when we

consider more top features. However, this is not true in the case of LIME and SHAP where the

correlation between length and similarity are occasionally above 0 and sometimes even the declining

relationship with k does not hold. Our result on type-token ratio is opposite to H2c: the greater

the type-token ratio, the higher the similarity (see supplementary materials). We believe that

the reason is that type-token ratio is strongly negatively correlated with length (the Spearman

correlation for Yelp, SST and deception dataset is -0.92, -0.59 and -0.84 respectively). In other

words, type-to-token ratio becomes redundant to length and fails to capture text complexity beyond

length.

3.8 Distribution of Important Features

Finally, we examine the distribution of important features obtained from different approaches.

These results may partly explain our previously observed low similarity in feature importance.
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Important features show higher entropy using LSTM with attention and lower entropy

with XGBoost (Figure 3.6). As expected from H3a, LSTM with attention (the pink lines) are

usually at the top (similar results for BERT in the supplementary material). Such a high entropy

can contribute to the low similarity between LSTM with attention and other models. However, as

the order in similarity between SVM and XGBoost is less stable, entropy cannot be the sole cause.

Distribution of POS tags (Figure 3.7 and Figure 3.8). We further examine the linguistic

properties of important words. Consistent with H3b, adjectives are more important in senti-

ment classification than in deception detection. On the contrary to our hypothesis, we found that

pronouns do not always play an important role in deception detection. Notably, LSTM with at-

tention puts a strong emphasis on nouns in deception detection. In all cases, determiners are

under-represented among important words. With respect to the distance of part-of-speech tag

distributions between important features and all words (background), post-hoc methods tend to

bring important words closer to the background words, which echoes the previous observation that

post-hoc methods tend to increase the similarity between important words (Figure 3.8).

3.9 Conclusion

In this work, we provide the first systematic characterization of feature importance obtained

from different approaches. Our results show that different approaches can sometimes lead to very

different important features, but there exist some consistent patterns between models and methods.

For instance, deep learning models tend to generate diverse important features that are different

from traditional models; post-hoc methods lead to more similar important features than built-in

methods.

As important features are increasingly adopted for varying use cases (e.g., decision making

vs. model debugging), we hope to encourage more work in understanding the space of important

features, and how they should be used for different purposes. While we focus on consistent pat-

terns across classification tasks, it is certainly interesting to investigate how properties related to

tasks and data affect the findings. Another promising direction is to understand whether more
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concentrated important features (lower entropy) lead to better human performance in supporting

decision making.

3.10 Appendix

3.10.1 Preprocessing and Computational Details

Preprocessing. We used spaCy for tokenization and part-of-speech tagging. All the words are

lowercased. Table 3.3 shows basic data statistics.

dataset average tokens

Yelp 134.6
SST 20.0
Deception 163.7

Table 3.3: Dataset statistics.

Hyperparameter tuning. Hyperparameters for both SVM and XGBoost are tuned using cross

validation. The only hyperparameter tuned for SVM includes C. We try a range of Cs from log

space -5 to 5. The finalized value of C ranges between 1 and 5. Hyperparameters tuned for

XGBoost include learning rate, max depth of tree, gamma, number of estimators and colsample by

tree. We lay out the range of values tried in the process of hyperparameter tuning, learning rate:

0.1 to 0.0001, max depth of tree: 3 to 7, gamma: 1 to 10, number of estimators: 1000 to 10000

and colsample by tree: 0.1 to 1.0. Hyperparameters for LSTM with attention are tuned using the

validation dataset which comprises 10% of the entire dataset. They include embedding dimension,

hidden dimension, learning rate, number of epochs and the type of optimizer. The range of values

tried in the process of hyperparameter tuning, hidden dimension: 256 and 512, learning rate: 0.01

to 0.0001, number of epochs: 3 to 20 and type of optimizer: SGD and adam.

BERT fine-tuning. We fine-tuned BERT from a pre-trained BERT model provided by its orig-

inal release and pytorch implementation Wolf [2019]. We use the same architecture of 12 layers

Transformer with 12 attention heads. The hidden dimension of each layer is 768. The vocabulary
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size is 30522. The initial learning rate we use is 5∗e−5, and we add an extra ℓ2 regularization on the

parameters that are not bias terms or normalization layer with a coefficient of 0.01. We do early

stopping according to the validation set within the first 20 epochs with batch size no larger than

4. The attention weights we consider are the self-attention weights of the first token of each text

instance, namely the attention weights from “[CLS]”, since according to BERT’s design, the first

token will generate the sentence representation fed into the classification layer. For the three target

tasks, we choose different maximum lengths according to their natural length. For the deception

detection task, the maximum sequence length is 300 tokens. For the SST binary classification task,

we choose the default 128 tokens as the maximum length and for the yelp review classification task

we use 512 tokens.

BERT alignment. Given that BERT tokenizes a text instance with its own tokenizer, we map

the important features from BERT tokens to tokenize results from spaCy we used for other models.

To be specific, we generate token start-end information as a tuple and call it token spans. We show

an example for text instance “It’s a good day.”:

tokenization 1: [It’s], [a], [good], [day], [.]

token spans 1: (0,3),(4,4),(5,8),(9,11),(12,12)

tokenization 2: [It], [’s], [a], [go], [od], [day], [.]

token spans 2: (0,1), (2,3), (4,4), (5,6), (7,8), (9,11), (12,12)

With the span information, we can identify how a token in the first tokenization relates to

tokens in the second tokenization and then aggregate all the attention values to the sub-parts.

Formally,

W
(1)
(i,j) =

∑
(s,t) s.t. t≥i,s≤j min(1, t−i+1

t−s+1 ,

j−s+1
t−s+1 )W

(2)
(k,p).

In other words, for partial span overlapping, we allocate the weight according to the span over-

lapping ratio. For example: if span
(1)
i = (2, 5) and span

(2)
k−1 = (2, 3), span

(2)
k = (4, 6), then

W
(1)
(2,5) = W

(2)
(2,3) + 2

3W
(2)
(4,6). Here W (2) represents the importance weight according to the sec-

ond tokenization, W
(1)
(i,j) represents the aligned feature importance for the token that has span (i, j)
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in the first tokenization. By definition,
∑

(i,j)W
(1)
(i,j) =

∑
(i,j)W

(2)
(i,j) = 1 for attention values.

LIME. We use the LimeTextExplainer and write a wrapper function that returns actual proba-

bilities of the respective model. Since the LinearSVM generates only binary predictions, we return

0.999 and 0.001 instead. We use 1,000 samples for fitting the local classifier.

SHAP. We use a LinearExplainer for linear SVM, a TreeExplainer for XGBoost, and adapt the

gradient-based DeepExplainer for our neural models. The main adaptation required for the neural

method is to view the embedding lookup layer as a matrix multiplication layer so that the entire

network is differentiable on the input token ids.

3.11 Additional Figures

Similarity between BERT layers and SVM (ℓ2). Important features using the final layer are

more similar to that from SVM (ℓ2) than using the first layer. See Figure 3.9.

Built-in similarity is much lower with deep learning models, and post-hoc methods

“smooth” the distance. Similar results are observed in SVM (ℓ1) and BERT. See Figure 3.10.

Similarity between methods is lower for deep learning models. Similar results are observed

in SVM (ℓ1), XGBoost and BERT. See Figure 3.11.

Similarity vs. predicted labels. Similarity is not necessarily higher when predictions agree, it

is also not necessarily lower when predictions disagree. See Figure 3.12 and Figure 3.13.

Similarity vs. length. The negative correlation between length and similarity grows stronger as

k grows. See Figure 3.14.

Similarity vs. type-token ratio. The positive correlation between type-token ratio and simi-

larity grows stronger as k grows. See Figure 3.15 and Figure 3.16.

Entropy. Deep learning models generate more diverse important features than traditional models.

See Figure 3.17.

Jensen-shannon distance between POS. Distance of part-of-speech tag distributions between

important features and all words is generally smaller with post-hoc methods for traditional models.

See Figure 3.18.
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Similarity comparison between models using the built-in method
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Comparison between the built-in method and post-hoc methods
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Figure 3.2: Similarity comparison between models with the same method. x-axis represents the
number of important features that we consider, while y-axis shows the Jaccard similarity. Error
bars represent standard error throughout the paper. The top row compares three pairs
of models using the built-in method, while the second row compares three methods on SVM and
LSTM with attention (LSTM in figure legends always refers to LSTM with attention in this work).
The random line is derived using the average similarity between two random samples of k features
from 100 draws.
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Figure 3.3: Similarity comparison between methods using the same model. The similarity between
different methods based on LSTM with attention is generally lower than other methods. Similar
results hold for BERT (see the supplementary material).
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Figure 3.4: Similarity between SVM (ℓ2) and LSTM with attention with different methods grouped
by whether these two models agree on the predicted label. The similarity is not always greater
when they agree on the predicted labels than when they disagree.
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Figure 3.5: In most cases, the similarity between feature importance is negatively correlated with
length. Here we only show the comparison between different methods based on the same model.
Similar results hold for comparison between different models using the same method. For ease of
comparison, the gray line marks the value 0. Generally as k grows, relationship becomes even more
negatively correlated.
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Figure 3.6: The entropy of important features. LSTM with attention generates more diverse
important features than SVM and XGBoost.
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Figure 3.7: Part-of-speech tag distribution with the built-in method. “Background” shows the
distribution of all words in the test set. LSTM with attention puts a strong emphasis on nouns in
deception detection, but is not necessarily more different from the background than other models.
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Figure 3.8: Distance of the part-of-speech tag distributions between important features and all
words (background). Distance is generally smaller with post-hoc methods for all models, although
some exceptions exist for LSTM with attention and BERT.
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Figure 3.9: Similarity comparison between BERT layers using average or maximum attention
heads score (k = 10). In general, similarity becomes greater as l increases, but the last layer
is not necessarily the greatest. Similarity is slightly higher when average attention heads score is
computed.
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Similarity comparison between models using the built-in method
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Comparison between the built-in method and post-hoc methods

1 2 3 4 5 6 7 8 9 10
Number of important features (k)

0.00

0.05

0.10

0.15

0.20

0.25

Ja
cc

ar
d

S
im

ila
rit

y

Random
SVM (`1) x BERT - built-in
SVM (`1) x BERT - LIME
SVM (`1) x BERT - SHAP

(d) Yelp

1 2 3 4 5
Number of important features (k)

0.10

0.15

0.20

0.25

0.30

0.35

Ja
cc

ar
d

S
im

ila
rit

y

Random
SVM (`1) x BERT - built-in
SVM (`1) x BERT - LIME
SVM (`1) x BERT - SHAP

(e) SST

1 2 3 4 5 6 7 8 9 10
Number of important features (k)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ja
cc

ar
d

S
im

ila
rit

y

Random
SVM (`1) x BERT - built-in
SVM (`1) x BERT - LIME
SVM (`1) x BERT - SHAP

(f) Deception

Figure 3.10: Similarity comparison between models with the same method. x-axis represents the
number of important features that we consider, while y-axis shows the Jaccard similarity. Error
bars represent standard error throughout the paper. The top row compares three pairs of
models using the built-in method, while the second row compares three methods on SVM (ℓ1) and
BERT. The random line is derived using the average similarity between two random samples of k
features from 100 draws.
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Figure 3.11: Similarity comparison between methods using the same model for SVM (ℓ1), XGBoost,
and BERT. BERT is much closer to random in deception.
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SVM (ℓ2) vs. XGBoost
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XGBoost vs. LSTM with attention
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Figure 3.12: Similarity between two models is not necessarily greater when they agree on the
predictions, and sometimes, e.g., SVM (ℓ2) x XGB with LIME method, it is sometimes lower than
when they disagree on the predicted labels.
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XGBoost vs. BERT
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Figure 3.13: Similarity between two models is not necessarily greater when they agree on the
predictions, and in some scenarios, e.g., SVM (ℓ1) x XGB with LIME method, XGB x BERT with
LIME method, and XGB x BERT with built-in method, they are sometimes lower than when they
disagree on the predicted labels.
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Similarity between different models based on the same method
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Similarity between different models based on the same method for BERT
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Similarity between different methods based on the same model for BERT
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Figure 3.14: Similarity comparison vs. length. The longer the length of an instance, the less
similar the important features are. The negative correlation becomes stronger as k grows. In
certain scenarios, e.g., XGB - built-in x LIME and XGB - LIME x SHAP, correlation occasionally
goes above 0.
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Comparison between models using the same method
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Figure 3.15: Similarity comparison vs. type-token ratio. The higher the type-token ratio, the more
similar the important features are. The positive correlation becomes stronger as k grows. In some
cases, e.g., LIME method on deception dataset, correlation becomes weaker as k grows.
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Figure 3.16: Similarity comparison vs. type-token ratio. The higher the type-token ratio, the more
similar the important features are. The positive correlation becomes stronger as k grows. In some
cases, e.g., XGB - built-in and LIME and XGB - LIME and SHAP on Yelp dataset, correlation
becomes weaker as k grows.
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Figure 3.17: The entropy of important features. In general, BERT generates more diverse important
features than SVM (ℓ1) and XGBoost.
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Figure 3.18: Distance of the part-of-speech tag distributions between important features and all
words (background). Distance is generally smaller with post-hoc methods for all models, although
some exceptions exist for LSTM with attention and BERT.



Chapter 4

Model-driven Tutorials and Simple Explanations

4.1 Overview

To support human decision making with machine learning models, we often need to elucidate

patterns embedded in the models that are not salient, unknown, or counterintuitive to humans.

While existing approaches focus on explaining machine predictions with real-time assistance, we

explore model-driven tutorials to help humans understand these patterns in a training phase. We

consider both tutorials with guidelines from scientific papers, analogous to current practices of

science communication, and automatically selected examples from training data with explanations.

We use deceptive review detection as a testbed and conduct large-scale, randomized human-subject

experiments to examine the effectiveness of such tutorials. We find that tutorials indeed improve

human performance, with and without real-time assistance. In particular, although deep learning

provides superior predictive performance than simple models, tutorials and explanations from sim-

ple models are more useful to humans. Our work suggests future directions for human-centered

tutorials and explanations towards a synergy between humans and AI.

4.2 Introduction

Interpretable machine learning (ML) has attracted significant interest as ML models are

used to support human decision making in societally critical domains such as justice systems and

healthcare [Doshi-Velez and Kim, 2017, Guidotti et al., 2019, Lipton, 2016]. In these domains,

full automation is often not desired and humans are the final decision makers for legal and ethical
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reasons. In fact, the Wisconsin Supreme Court ruled that “a COMPAS risk assessment should not

be used to determine the severity of a sentence or whether an offender is incarcerated”, but does

not eliminate the use of ML models if “judges be made aware of the limitations of risk assessment

tools” [Liptak, 2017, Supreme Court of Wisconsin, 2016]. Therefore, it is crucial to enhance human

performance with the assistance of machine learning models, e.g., by explaining the recommended

decisions.

However, recent human-subject studies tend to show limited effectiveness of explanations

in improving human performance [Bussone et al., 2015, Horne et al., 2019, Lai and Tan, 2019a,

Weerts et al., 2019]. For instance, Lai and Tan [2019a] show that explanations alone only slightly

improve human performance in deceptive review detection; Weerts et al. [2019] similarly find that

explanations do not improve human performance in predicting whether one’s income exceeds 50,000

in the Adult dataset. These studies explain a machine prediction by revealing model internals, e.g.,

via attributing importance weights to features and then visualizing feature importance. We refer

to such assistance as real-time assistance because they are provided as humans make individual

decisions. To understand such limited effectiveness, we argue that it is useful to distinguish two

distinct modes in which ML models are being used: emulating and discovering. In tasks such

as object recognition [Deng et al., 2009, He et al., 2015], datasets are crowdsourced because humans

are considered the gold standard, and ML models are designed to emulate human intelligence.1

In contrast, in the discovering mode, datasets are usually collected from observing social processes,

e.g., whether a person commits crime on bail for bail decisions [Kleinberg et al., 2017a] and what

the writer intention is for deceptive review detection [Abouelenien et al., 2014, Ott et al., 2011].

ML models can thus often identify patterns that are unsalient, unknown, and even counterintuitive

to humans, and may even outperform humans in constrained datasets [Kleinberg et al., 2017a,

Ott et al., 2011, Tan et al., 2014]. Notably, many critical policy decisions such as bail decisions

resemble the discovering mode more than the emulating mode because policy decisions are usually

1 As a corollary, it is usually considered overfitting the dataset when machine learning models outperform humans
in these tasks.
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4

a

b

c

Figure 4.1: Illustration of example-driven tutorials and guidelines shown to participants during
the training phase: a) top 10 features of the review text are highlighted in green and red (signed
highlights), where green words are associated with genuine reviews and red words are associated
with deceptive reviews; b) participants are presented the actual label, the predicted label, and
textual explanations for a review after choosing the label of the review in example-driven tutorials;
c) a list of guidelines for identifying deceptive reviews extracted from scientific papers.

challenging (to humans) in nature [Kleinberg et al., 2015].

Studies on how explanations affect human performance tend to employ these challenging

tasks for humans (the discovering mode for ML models) because humans need little assistance to

perform tasks in the emulating mode (except for scalability). This observation highlights different

roles of explanations in these two modes. In the emulating mode, explanations can help debug and

identify biases and robustness issues in the models for future automation. In the discovering mode,

if the patterns embedded in ML models can be elucidated for humans, they may enhance human

knowledge and improve human decision making.2 Moreover, it might help humans identify spurious

patterns in ML models and account for potential mistakes to generalize beyond a constrained

dataset.

To further illustrate the difficulty of interpreting explanations in the discovering mode, Figure

4.1(a) shows an example from a deceptive review detection task, where the goal is to distinguish

deceptive reviews written by people who did not stay at the hotel from genuine ones. “Chicago”

is highly associated with deceptive reviews because people are more likely to mention the city

name instead of specific places when they imagine their experience. Such a pattern can be hard to

2 It is worth noting that these two modes represent two ends of a continuum, e.g., emulating experts lead to
discoveries for novices.
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comprehend for humans, especially when the highlights are shown as real-time assistance without

any other information. Instead of throwing people in at the deep end directly with real-time

assistance, we propose a novel training phase that can help humans understand the nature of a

task and the patterns embedded in a model. This training step is analogous to offline coaching and

can be complementary to real-time assistance in explaining machine predictions. We consider two

types of model-driven tutorials: 1) guidelines extracted from scientific papers [Li et al., 2014, Ott

et al., 2013, 2011] (Figure 4.1(c)), which reflects the current practices of science communication; 2)

example-driven tutorials where we select examples from the training data and present them along

with explanations in the form of highlights (Figure 4.1(a)&(b)). We also develop a novel algorithm

that incorporates spaced repetition to help humans understand the patterns in a machine learning

model, and conduct an in-person user study to refine the design of our tutorials.

Our main contribution in this work is to design large-scale, randomized, pre-registered human-

subject experiments to investigate whether tutorials provide useful training to humans, using the

aforementioned deceptive review detection task as a testbed. We choose this task because 1) de-

ceptive information including fake news is prevalent on the Internet [Allcott and Gentzkow, 2017,

Grinberg et al., 2019, Lazer et al., 2018, Ott et al., 2012] and mechanical turkers can provide a

reasonable proxy for humans facing this challenge compared to other tasks such as bail decisions

and medical diagnosis that require domain expertise; 2) while humans struggle with detecting de-

ception [Bond Jr and DePaulo, 2006], machine learning models are able to learn useful patterns in

constrained settings (in particular, ML models achieve an accuracy of above 85% in our deceptive

review detection task); 3) full automation might not be desired in this case because the govern-

ment should not have the authority to automatically block information from individuals, and it

is important to enhance human ability with a machine in the loop. Specifically, we focus on the

following three research questions:

• RQ1: Do model-driven tutorials improve human performance without any real-time assis-

tance?

• RQ2: How do varying levels of real-time assistance affect human performance after train-
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ing?

• RQ3: How do model complexity and explanation methods affect human performance

with/without training?

In all experiments, if training is provided, human subjects first go through a training phase

with model-driven tutorials, and then enter the prediction phase to determine whether a review is

deceptive or genuine. The prediction phase allows us to evaluate human performance after training.

Our first experiment aims to compare the effectiveness of different model-driven tutorials.

Ideally, we would hope that these tutorials can help humans understand the patterns embedded in

the ML models well enough that they can perform decently in the prediction phase without any

real-time assistance. Our results show that human performance after tutorials are always better

than without training, and the differences are statistically significant for two types of tutorials.

However, the improvement is relatively limited: human performance reaches ∼60%, while the ML

models are above 85%. Meanwhile, there is no statistically significant difference between human

performance after any type of tutorial, which suggests that all model-driven tutorials are similarly

effective.

One possible reason for the limited improvement of human performance in Experiment 1 is

that the patterns might be too complicated for humans to apply in the prediction phase without

any real-time assistance. Therefore, our second experiment is designed to understand the effect of

tutorials with real-time assistance. Inspired by Lai and Tan [2019a], we develop a spectrum with

varying levels of real-time assistance between full human agency and full automation (Figure 4.2).

Our results demonstrate that real-time assistance can indeed significantly improve human perfor-

mance to above 70%. However, compared to Lai and Tan [2019a], the best human performance is

not significantly improved.3 It suggests that given real-time assistance, tutorials are mainly useful

in that humans can perform similarly well in the prediction phase with only signed highlights, thus

retaining a higher level of human agency.

3 We only discuss qualitative differences from Lai and Tan [2019a], as these are separate experiments subject to
different randomization processes.
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Finally, in order to understand how our results generalize to different kinds of models, we

would like to examine the effect of model complexity and methods of deriving explanations. Our

first two experiments use a linear SVM classifier because linear models are typically deemed inter-

pretable, but deep learning models are increasingly prevalent because of their superior predictive

power. While it is well recognized that deep learning models are more complex, it remains an

open question how human performance changes with assistance from deep learning models (e.g.,

BERT) vs. simple models (e.g., linear SVM). Our results show that tutorials and explanations

of simple models lead to better human performance than deep learning models, which highlights

the tradeoff between model complexity and interpretability. We also show that for BERT,

post-hoc signed explanations from LIME are more effective than built-in explanations derived from

attention mechanisms. Moreover, tutorials are effective in improving human performance for both

kinds of models compared to without training.

Overall, our results show that model-driven tutorials can somewhat improve human perfor-

mance with and without real-time assistance, and humans also find these tutorials useful. However,

the limited improvement also points to future directions of human-centered interpretable machine

learning. We highlight two implications here and present further discussions in the Discussion

section. First, it is important to explain beyond the surface patterns and facilitate humans in

reasoning about why a feature is important. A strategy is to develop interactive explanations that

allow humans to explore the patterns in both the training and the prediction phase. Second, it is

useful to bridge the gap between training and generalization in developing tutorials because the

model behavior and performance in training data might differ from that on unseen data. The

ability to understand this difference is crucial for humans to calibrate trust and generalize beyond

the constrained dataset.

4.3 Related work

We start by introducing recent methods for interpretable ML, and then discuss experimental

studies on human interaction with explanations and predictions derived from ML models. We end
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by summarizing related work on deception detection.

4.3.1 Methods for interpretable machine learning

A battery of studies propose various algorithms to explain a machine prediction by uncovering

model internals (also known as local explanations) [Guidotti et al., 2019]. Most relevant to our work

is feature attribution that assigns an importance weight to each feature [Lei et al., 2016, Lundberg

and Lee, 2017, Ribeiro et al., 2016, 2018a]. For instance, Ribeiro et al. [2016] propose LIME that

fits a sparse linear model to approximate local machine predictions, and coefficients in this linear

model are used as explanations. Lai et al. [2019] compare the built-in and post-hoc explanations

methods in text classification and show that different methods lead to very different explanations,

in particular, deep learning models lead to explanations with less consistency than simple models

such as linear SVM. Other popular approaches include 1) example-based [Kim et al., 2016, 2014,

Mothilal et al., 2019, Russell, 2019, Wachter et al., 2017], e.g., counterfactual explanations find

alternative examples that would have obtained a different prediction, and 2) rule-based [Andrews

et al., 1995, Guidotti et al., 2018a] that summarizes local rules (e.g., via decision trees). Notably,

SP-LIME is an algorithm that selects examples to provide a global understanding of the model

[Ribeiro et al., 2016], which aligns with our goal of generating tutorials. However, to the best

of our knowledge, there have not been any human-subject experiments with such example-driven

tutorials.

4.3.2 Human interaction with explanations and models

The importance of human-subject experiments is increasingly recognized in understanding

the effectiveness of explanations because they are ultimately used by humans. In addition to studies

mentioned in the introduction, researchers have investigated other desiderata of explanations [Binns

et al., 2018, Cai et al., 2019b, Green and Chen, 2019a,b, Kunkel et al., 2019, Poursabzi-Sangdeh

et al., 2018, Yin et al., 2019]. For instance, Binns et al. [2018] examine perception of justice given

multiple styles of explanations and conclude that there is no best approach to explaining algorithmic
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decisions. Cai et al. [2019b] show that a user-centered design improves human perception of an

image-search tool’s usefulness, but does not improve human performance. Green and Chen [2019a]

find that humans underperformed a risk assessment tool even when presented with its predictions,

and exhibited behaviors that could exacerbate biases against minority groups. Yin et al. [2019]

examine the effect of stated accuracy and observed accuracy on humans’ trust in models, while

Kunkel et al. [2019] study the effect of explanations on trust in recommender systems. This line

of work on trust also relates to the literature on appropriate reliance with general automation [Lee

and See, 2004, Lewandowsky et al., 2000]. Retaining human agency is particularly important in

societally critical domains where consequences can be dire. Finally, Bansal et al. [2019a] provide

feedback during decision making, which can be seen as a form of continuous learning. Our focus

is to understand the effect of offline tutorials, which can be potentially combined with real-time

assistance/feedback in practice.4

4.3.3 Deception detection

Deception is a ubiquitous phenomenon and has been studied in many disciplines [Vrij, 2000].

In psychology, deception is defined as an act that is intended to foster in another person a belief

or understanding which the deceiver considers false [Krauss et al., 1976]. Computer scientists

have been developing machine learning models to identify deception in texts, images, and videos

[Abouelenien et al., 2014, Feng et al., 2012, Feng and Hirst, 2013, Jindal and Liu, 2008, Ott et al.,

2011, Pérez-Rosas et al., 2015, Wu et al., 2010, Yoo and Gretzel, 2009]. An important challenge

in studying deception is to obtain groundtruth labels because it is well recognized that humans

struggle at detecting deception [Bond Jr and DePaulo, 2006]. Ott et al. [Ott et al., 2011] created

the first sizable dataset in deception detection by employing workers on Amazon Mechanical Turk

to write imagined experiences in hotels.

As people increasingly rely on information on the Internet (e.g., online reviews for making

purchase decisions [Chevalier and Mayzlin, 2006, Trusov et al., 2009, Ye et al., 2011, Zhang et al.,

4 Although feedback (e.g., true labels) on real decisions such as bail decisions can take a long time to observe.
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2010]), deceptive information also becomes prevalent [Caspi and Gorsky, 2006, Ott et al., 2012, Shin

et al., 2011]. The issue of misinformation and fake news has also attracted significant attention

from both the public and the research community [Farsetta and Price, 2006, Grinberg et al., 2019,

Lazer et al., 2018, Vosoughi et al., 2018, Zhang et al., 2018]. Our work employs the deceptive review

detection task in Ott et al. [2013, 2011] to investigate the effectiveness of model-driven tutorials.

While this task is a constrained case of deception and may differ from intentionally malicious

deception, it represents an important issue that people face on a daily basis and can potentially

benefit from assistance from ML models.

4.4 Method

In this section, we introduce the preliminaries for our prediction task, machine learning mod-

els, and explanation methods. We then develop tutorials to help humans understand the embedded

patterns in the models in the training phase. Finally, we present types of real-time assistance in

the prediction phase. A demo is available at https://machineintheloop.com/deception.

4.4.1 Dataset, models, and explanations

Dataset and prediction task. We employ the deceptive review detection task developed by Ott

et al. [Ott et al., 2013, 2011], consisting of 800 genuine and 800 deceptive hotel reviews for 20

hotels in Chicago. The genuine reviews were extracted from TripAdvisor and the deceptive ones

were written by turkers who were asked to imagine their experience. We use 80% of the reviews as

the training set and the remaining 20% as the test set. We evaluate human performance based on

their accuracy on sampled reviews from the test set. The task for both humans and ML models is

to determine whether a review is deceptive or genuine based on the text.

Models. We consider a linear SVM classifier with unigram bag-of-words as features, which repre-

sents a simple model, and BERT [Devlin et al., 2019], which represents a deep learning model with

state-of-the-art performance in many NLP tasks. The hyperparameter for linear SVM was selected

via 5-fold cross validation with the training set; BERT was fine-tuned on 70% of the reviews and

https://machineintheloop.com/deception
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the other 10% of the reviews in the training set were used as the development set for selecting

hyperparameters. Table 4.1 shows their accuracy on the test set.

Model Accuracy (%)

SVM 86.3
BERT 90.9

Table 4.1: Accuracy of machine learning models on the test set.

Methods of deriving explanations. We explain a machine prediction by highlighting the most

important 10 words. For linear SVM, we use the absolute value of coefficients to determine feature

importance, and the highlights are signed because coefficients are either positive or negative. For

BERT, we consider two methods following Lai et al. [Lai et al., 2019]: 1) BERT attention based

on the built-in mechanism of Transformer [Vaswani et al., 2017] (specifically, feature importance is

calculated using the average attention values of 12 heads used by the first token at the final layer;

these highlights are unsigned because attention values range between 0 and 1); 2) BERT LIME,

where feature importance comes from LIME by fitting a sparse linear model to approximate local

model predictions (these highlights are signed as they come from coefficients in a linear model).

4.4.2 Tutorial generation

Our main innovation in this work is to introduce a training phase with model-driven tuto-

rials before humans interact with ML models. We consider the following two types of tutorials.

Guidelines. We follow the current practice of science communication and summarize findings in

scientific papers Ott et al. [2013, 2011], Li et al. [2014] as a list of guidelines. These guidelines are

observations derived from the ML model (see “Figure 4.1(c)”) and paraphrased by us. A “Next”

button is enabled after a 30-second timer.

Example-driven tutorials. Inspired by Ribeiro et al. [Ribeiro et al., 2016], another way to give

humans a global sense of a model is to present a sequence of examples along with predicted labels

and explanations of predictions. For each example in our tutorial, informed by our in-person user

study, we first ask participants to determine the label of the example, and then reveal the actual
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Signed explanations

Signed explanations
+ predicted label

Signed explanations +
predicted label + guidelines

Unsigned explanations

Signed explanations + 
predicted label + guidelines

+ accuracy statement

Full human agency Full automation

Figure 4.2: An adapted spectrum between full human agency and full automation from Lai and
Tan [32]. The order approximates our intuition, but the distance does not reflect linear changes in
machine influence. In particular, guidelines do not necessarily increase the influence of predicted
labels.

label and the predicted label along with explanations in the form of highlights. The algorithm

selects 10 examples that are representative of the patterns that the ML model identifies from the

training set.5 There could be genuine insights as well as spurious patterns. Ideally, these examples

allow participants to understand the problem at hand and then apply the patterns, including

correcting spurious ones, in the prediction phase. Figure 4.1(a)&(b) presents an example review

after the label is chosen and the predicted label and its explanations are shown. A “Continue”

button is enabled after a 10-second timer. See the supplementary material for screenshots.

We consider the following algorithms for example selection:

• Random. 10 random examples are chosen.

• SP-LIME. Ribeiro et al. [Ribeiro et al., 2016] propose SP-LIME to select examples with features

that provide great coverage in the training set. To do that, the global importance of each feature

is defined as Ij =
√∑n

i=1Wij , where Wij is the importance of feature j in the i-th instance. Since

we only highlight the top 10 features, Wij = 0 for any other features. Then, 10 examples are

selected to maximize the following objective function: argmaxS,|S|≤B

∑d
j=1⊮(∃i ∈ S : Wij > 0)Ij ,

where B = 10 and d represents the dimension of features. This objective function presents a

weighted coverage problem over all features, and is thus submodular. A greedy algorithm provides

a solution with a constant-factor approximation guarantee of 1 − 1/e to the optimum [Krause

and Golovin, 2014].

5 We chose 10 so that an experiment session finishes within a reasonable amount of time (30 minutes), and all
examples happened to be classified correctly by the model (since machine performance is even better on the training
set).
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Figure 4.3: Unsigned highlights for the example review in Figure 4.1(a).

• Spaced repetition (SR). We propose this algorithm to leverage insights from the education

literature regarding the effectiveness of spaced repetition (e.g., on long-term retention) [Kang,

2016, Tabibian et al., 2019]. Specifically, we develop the following novel objective function so that

users can be exposed to important features repeatedly: argmaxS,|S|≤B

∑d
j=1 U({Wkj}1≤k≤|S|)Ij ,

where U({wkj}1≤k≤|S|) = ⊮(max({k,Wkj > 0}) − min({k,Wkj > 0}) ≥ 3). The key difference

from SP-LIME is that the weight of a feature is included only if it is repeated in two examples

with a gap of at least three.

Finally, we consider the combination of guidelines and examples selected with spaced repe-

tition by first showing the guidelines for 15 seconds, 10 examples selected with spaced repetition,

and the guidelines again for 15 seconds.

4.4.3 Real-time assistance

In addition to tutorials in the training phase, we introduce varying levels of real-time assis-

tance in the prediction phase. Inspired by Lai and Tan [Lai and Tan, 2019a], we design six levels

of real-time assistance, as illustrated in Figure 4.2.

• No machine assistance. Participants are not exposed to any real-time machine assis-

tance.

• Unsigned highlights. Top 10 features are highlighted in shades of blue. The darker the

color, the more important the feature. See Figure 4.3 for an example.

• Signed highlights. Top 10 features are highlighted in shades of green and red: green

words are associated with genuine reviews, while red words are associated with deceptive

reviews. The darker the color, the more important the feature. See Figure 4.1(a) for an

example.6

6 We use an attention check question to make sure that participants can distinguish red from green.
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• Signed highlights + predicted label. In addition to signed highlights, we display the

predicted label.

• Signed highlights + predicted label + guidelines. We additionally provide the option

of revealing guidelines.

• Signed highlights + predicted label + guidelines + accuracy statement. We

further add an accuracy statement, “It has an accuracy of approximately 86%”, emphasizing

the strong performance of the ML model.

These six levels gradually increase the amount of information and prime users towards ma-

chine predictions. Ideally, we hope to retain human agency as much as possible while achieving

strong human performance.

4.5 In Person User Study

To obtain a qualitative understanding of human interaction with model-driven tutorials, we

conduct an in-person semi-structured user study. This user study allows us to gather in-depth

insights on how humans learn and apply our tutorials through interviews, as well as feedback on

the interface before conducting large-scale, randomized experiments.

4.5.1 Experimental design

We employ a concurrent think-aloud process with participants [Nielsen et al., 2002]. Each

participant went through a tutorial and determined the label of 20 reviews from the test set. They

were told to verbalize the reason before deciding on the label both in the training and the prediction

phase with the following syntax: I think the review is predicted label because reason. After the

prediction phase, we conducted an interview to gather general feedback on tutorials. We manually

transcribed the audio recordings after an initial pass with the Google Cloud API.

A total of 16 participants were recruited from mailing lists in our department: 3 were female

and 13 were male, ranging between age 20 and 35. All participants were engineering graduate

students and most of them studied computer science. Participants were invited to the lab where the
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study occurred. Either a personal or a provided laptop was used. Participants were compensated

between $15 and $20 for $10 every 30 minutes. Four types of tutorials (guidelines, examples

selected with SP-LIME, examples selected with SR, guidelines + examples selected with SR) were

randomly assigned to participants and each tutorial type had a sample size of 4. Thematic analysis

was undertaken to identify common themes in participants’ think-aloud processes. Thematic codes

were collectively coded by the first two authors.

4.5.2 Results

We summarize the key themes into the following three parts.

Tutorial training and application. 8 out of 8 participants with access to guidelines remembered

a couple of “rules” and applied them in the prediction phase. P13 said (the number is randomly

assigned), “I believe it is deceptive based on rule No. one and No. three, if I remembered them

correctly, it just describes its experience, and does not have a lot of details”. 7 out of 12 participants

exposed to selected examples adopted pure memorization or pattern-matching during the prediction

phase. Participants remembered key deceptive words such as “chicago” to help them decide the

review label: P2 said, “My husband is deceptive, I is deceptive, Chicago is deceptive”. Some

participants were even able to generate similar theories to our guidelines without exposure to

it. P14 commented, “The review didn’t have anything specific to offer” before deciding that the

respective review was deceptive. However, reasoning about the patterns is generally challenging.

Quoting from P2, this is mainly because they “can’t seem to find a rhyme or reason for those words

being genuine or deceptive”.

Participants also created theories such as length of review when predicting. P8 remarked,

“no one would take that much time to write a review so it won’t cross more than 5 lines”.

Improvements on tutorials. Participants thought that the guidelines should be available during

the prediction phase to better assist them. 4 out of 4 participants felt that they were unable to

remember as there were too many guidelines to be memorized. P11 felt that “the tutorial is helpful

but it’s just hard not being able to reference it” and P9 said that he could “keep checking if it is
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on the top right corner”.

12 out of 12 participants exposed to selected examples expressed confusion about why the

features were highlighted as deceptive or genuine but made up their own reasonings for ease of

memory. They felt that they would have learned better if some form of explanations were given to

justify each feature’s indication. P16 remarked that “it would be nice if it can let me know why

exactly it thinks the word is deceptive” and P10 commented that on top of the current explanations

in selected examples, “more detailed explanation would be helpful” to help understand.

Improvements on the interface. We found that some participants thought that deceptive

reviews are written by an AI without reading the instructions, which is false. We thus introduced

three additional questions for our large-scale experiments: 1) how are deceptive reviews defined in

this study?; 2) identify the color that highlights a word; 3) reiterate the training process and ask

user to answer true or false to ensure that the participants know which treatment they are exposed

to. We also changed the flow of showing explanations in the training phase: users need to first

determine the label for a review before the explanations, the actual label, and the predicted label

are shown for at least 10 seconds. Refer to the video and detailed feedback in the supplementary

material.

4.6 Experiment 1: Do Tutorials Improve Human Performance without any

Real-time Assistance?

As introduced in the Methods section, we hope to build tutorials that can help humans

understand the embedded patterns in ML models, which can sometimes be unsalient, unknown, or

even counterintuitive to humans. Ideally, humans reflect on these patterns from our tutorials and

can apply them in their decision making without any further real-time assistance from ML models.

Therefore, we start with RQ1: do tutorials improve human performance without any real-time

assistance?
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4.6.1 Experimental treatments & hypotheses

We consider the following treatments to examine the effectiveness of various tutorials pro-

posed in the Methods section: 1) guidelines; 2) random examples; 3) examples selected with SP-

LIME; 4) examples selected with SR; 5) guidelines + examples selected with SR. All the tutorials

and explanations in the tutorials are based on the linear SVM classifier in the Methods section.

After a training phase, participants will then decide whether a review is deceptive or genuine based

on the text. Note that ML models also rely exclusively on textual information. In addition to these

tutorials, we include a control setup where no training was provided to humans.

We hypothesize that 1) training is important for humans to understand this task, since it

has been shown that humans struggle with deception detection [Bond Jr and DePaulo, 2006]; 2) it

would be easier for participants to understand the patterns embedded in the ML model situated

with examples; 3) carefully chosen examples provide more comprehensive coverage and can better

familiarize participants with the patterns [Kang, 2016, Tabibian et al., 2019]; 4) guidelines and

examples have complementary effects in the training phase. To summarize, our hypotheses in

Experiment 1 are as follows:

• (H1a) Any tutorial treatment leads to better human performance than the control setup.

• (H1b) Examples (including random examples, examples selected with SP-LIME

and SR) lead to better human performance than guidelines.

• (H1c) Selected examples (with SP-LIME or SR) lead to better human performance

than random examples.

• (H1d) Examples selected with spaced repetition lead to better human performance

those selected with SP-LIME.

• (H1e) Guidelines + examples selected with SR lead to the best performance.

These five hypotheses were pre-registered on AsPredicted.7

7 The anonymized pre-registration document is available at https://aspredicted.org/blind.php?x=v8f7zh. A

https://aspredicted.org/blind.php?x=v8f7zh
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4.6.2 Experimental design

To evaluate human performance under different experimental setups, participants were re-

cruited via Amazon Mechanical Turk and filtered to include only individuals residing in the United

States, with at least 50 Human Intelligence Tasks (HITs) completed and 99% of HITs approved.

Each participant is randomly assigned to one of the six conditions (five types of tutorials + con-

trol). We did not allow any repeated participation. We adopted this between-subject design because

exposure to any type of tutorial cannot be undone.

In our experiment, each participant finishes the following steps sequentially: 1) reading an

explanation of the task and a consent form; 2) answering a few attention-check questions depending

on the experimental condition assigned; 3) undergoing a set of tutorials if applicable (training

phase); 4) predicting the labels of 20 randomly selected reviews in the test set (prediction phase); 5)

completing an exit survey. Participants who failed the attention-check questions are automatically

disqualified from the study. Based on feedback from our in-person user study, for each example in

the tutorials, a participant first chooses genuine or deceptive without any assistance, and then the

answer is revealed and the predicted label and explanations are shown (Figure 4.1(a)&(b)). In the

exit survey, participants were asked to report basic demographic information, if the tutorial was

helpful (yes or no), and feedback in free responses.8

Each participant was compensated $2.50 and an additional $0.05 bonus for each correctly

labeled test review. 80 subjects were recruited for each condition so that each review in the test

set was labeled five times. In total 480 subjects completed Experiment 1. They were balanced

on gender (224 females, 251 males, and 5 preferred not to answer). Refer to the supplementary

material for additional information about experiments (e.g., education background, time taken).

To quantify human performance, we measure it by the percentage of correctly labeled in-

stances by humans. In other words, the prediction phase provides an estimate of human accuracy

minor inconsistency is that we did not experiment with “guidelines + examples selected from SP-LIME” as we
hypothesized that SR is better.

8 Feedback from Turkers generally confirmed findings in the in-person user study. See the supplementary material
for an analysis.
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Accuracy (%)

SR+Guidelines

SR

SP-LIME

Random

Guidelines

Control 54.6

60.4

60.9
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57.9

59.2

Figure 4.4: Human accuracy without any real-time assistance after different types of tutorials.
Error bars represent standard errors. Human accuracy after tutorials is always better than that
without any training. Differences are statistically significant between random and control, and
guidelines and control based on post-hoc Tukey’s HSD test.

through 20 samples. In addition to this objective metric, we also report subject perception of

tutorial usefulness reported in the exit surveys.

4.6.3 Results

We first present human accuracy in the prediction phase, an objective measurement of tu-

torial effectiveness. Our results suggest that tutorials are useful to some extent: all tutorials lead

to better human performance (∼60%) than the control setup without any training (Figure 4.4).

To formally compare the treatments, we conduct an one-way ANOVA and find a statistically sig-

nificant effect (η2 = 0.033; p = 7.70e− 3). We further use post-hoc Tukey’s HSD test to identify

pairs of experimental conditions in which human performance exhibits significant differences. The

only statistically significant differences are guidelines vs. control (p = 1.75e− 2) and random

vs. control (p = 7.0e− 3) (the difference between guidelines+SR and control is borderline

significant with p = 0.10).

In other words, our experiment results provide partial support to H1a, and reject all other

hypotheses in Experiment 1. These results suggest that although tutorials provide somewhat useful

training, different tutorials are similarly effective. The limited improvement in human performance

across all tutorials indicates that the utility of tutorials is small. We hypothesized that it is too

challenging for humans to remember all the patterns after a short tutorial (supported by feedback
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Figure 4.5: Subjective perception of tutorial usefulness. Error bars represent standard errors.
Differences are statistically different in the following pairs based on post-hoc Tukey’s HSD test:
guidelines vs. random, random vs. SR+guidelines, and SR vs. SR+guidelines.

from in-person user study), which motivated Experiment 2 to understand the effect of real-time

assistance in conjunction with tutorials. Another contributing factor certainly lies in the design of

tutorials, which we will further discuss in the Discussion section.

As for subjective perception of tutorial usefulness, we find that participants generally find

our tutorials useful: 73.8% of 400 participants reported that the tutorial was useful (excluding

80 participants in the control setup). Figure 4.5 shows the results by types of tutorials. Among

different treatments, participants in guidelines and guidelines + examples selected with

SR find the tutorials most useful, as high as 90% in guidelines + examples selected with

SR. Formally, post-hoc Tukey’s HSD test shows that the differences between the following pairs

are statistically different: guidelines vs. random (p = 0.048), random vs. SR+guidelines

(p < 0.001), and SR vs. SR+guidelines (p = 0.003). The difference between SP-LIME and

SR+guidelines is borderline significant with p = 0.078. These results suggest that tutorials

provide strong positive effects in humans’ subjective perception.

4.7 Experiment 2: Human Performance with Varying Real-time Assistance

after Tutorials

Our second experiment is concerned with human performance with varying levels of real-

time assistance after going through the training phase. While Experiment 1 suggests that tutorials

provide somewhat useful training, the improvement is limited without any real-time assistance. We
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hypothesize that human performance could be further improved by introducing real-time assistance.

We adapt a spectrum with varying levels of real-time assistance from Lai and Tan [Lai and Tan,

2019a] (Figure 4.2). Moving along the spectrum, the influence of the machine generally becomes

greater on the human as more information from the model is presented. For instance, a statement of

strong machine performance is likely to bias humans towards machine predictions. Lai and Tan [Lai

and Tan, 2019a] find that there exists a tradeoff between human performance and human agency,

i.e., as the real-time assistance gives stronger priming along the spectrum, human performance

improves and human agency decreases. Explanations such as highlighting important words can

moderate this tradeoff when predicated labels are given. It remains an open question how this

tradeoff unfolds after training.

4.7.1 Experimental treatments & hypotheses

All conditions in Experiment 2 used the guidelines + selected examples with spaced

repetition tutorial in the training phase because all tutorials are similarly effective and our partic-

ipants find this one most useful in subjective perception. To examine how humans perform under

different levels of real-time assistance from machine learning models, we consider the spectrum in

Figure 4.2, inspired by Lai and Tan [Lai and Tan, 2019a].

We hypothesize that 1) real-time assistance results in improved human performance, since

it has been shown that highlights and predicted labels improve human performance [Lai and Tan,

2019a]; 2) signed highlights result in better human performance compared to unsigned highlights

because signed highlights reveal information about directionality; 3) predicted labels result in bet-

ter human performance compared to highlights alone; 4) guidelines and signed highlights might

moderate the tradeoff between human performance and human agency while achieving the same

effect as when an accuracy statement is shown. To summarize, our hypotheses are as follows:

• (H2a) Real-time assistance leads to better human performance than no assistance.

• (H2b) Signed highlights lead to better human performance than unsigned highlights.

• (H2c) Predicted label leads to better human performance than highlights alone.
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• (H2d) Signed highlights + predicted label + guidelines + accuracy statement

leads to the best performance.

• (H2e) Signed highlights + predicted label + guidelines and Signed highlights +

predicted label perform as well as Signed highlights + predicted label + guidelines

+ accuracy statement.

These five hypotheses were pre-registered on AsPredicted.9

4.7.2 Experimental design

We adopted the same experimental design as stated in Experiment 1 except that real-

assistance is provided in the prediction phase when applicable. In total 480 subjects completed the

experiment (80 participants in each type of real-time assistance). They were balanced on gender

(238 females, 237 males, and 5 preferred not to answer). Refer to the supplementary material for

additional information about experiments (e.g., education background, time taken).

Human performance is measured by the percentage of correctly predicted instances by hu-

mans, which provides an objective measure of human performance with real-time assistance. We

also consider the percentage of humans whose performance exceeds machine performance for the

corresponding 20 reviews in the prediction phase.10

4.7.3 Results

We first present human accuracy in the prediction phase. Our results suggest that real-

time assistance is indeed effective: all the levels of real-time assistance except unsigned highlights

lead to better human performance than the setup without machine assistance in Figure 4.6. To

formally compare the treatments, we conduct an one-way ANOVA and find a statistically significant

effect (η2 = 0.23; p = 5.15e− 25). We further use post-hoc Tukey’s HSD test to identify pairs of

experimental conditions in which human performance exhibits significant differences. With the

exception of no assistance vs. unsigned highlights (p = 0.67), differences in remaining setups

9 The anonymized pre-registration document is available at http://aspredicted.org/blind.php?x=fi8kz8.
10 We also pre-registered trust as a measure and present the results in the supplementary material for space reasons.

http://aspredicted.org/blind.php?x=fi8kz8
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Figure 4.6: Human accuracy with varying levels of real-time assistance after training. Error bars
represent standard errors. With the exception of unsigned highlights, human accuracy with real-
time assistance is better than without real-time assistance. Differences between no assistance and
any assistance with signed highlights are statistically significant based on post-hoc Tukey’s HSD
test.

compared to no assistance are all statistically significant (p < 0.001). Moreover, the difference

between unsigned highlights and signed highlights is significant (p < 0.001), demonstrating

the effectiveness of signed highlights. Finally, the difference between signed highlights and any

other real-time assistance with stronger priming (signed highlights + predicted labels, signed

highlights + predicted labels + guidelines, signed highlights + predicted labels +

guidelines + accuracy statement) is not significant.

In summary, our experimental results support H2a with the exception of unsigned high-

lights, H2b, H2e, and reject H2c and H2d in Experiment 2 (note that signed highlights +

predicted label + guidelines + accuracy statement indeed leads to the best performance

but the difference with other methods is not always statistically significant). These results suggest

that signed highlights provide sufficient information for improving human performance, and we

do not gain much from presenting additional information with stronger priming. While there is

significant improvement in human performance with real-time assistance (from ∼60% to ∼70%),

the improvement is still limited compared to the machine performance, which is above 85%. This

improvement is similar to results reported in Lai and Tan [Lai and Tan, 2019a], which did not

use any tutorials other than minimal examples to introduce the task. These observations taken

together suggest that the utility of our tutorials mainly lies in that humans can perform well with

only signed highlights, a type of real-time assistance with relatively weak priming.
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Another ambitious measurement is how frequent humans outperform the ML model. It was

rare in Experiment 1 (2 of 480, 0.4%). With effective real-time assistance (i.e., signed highlights

included), we find that 26 of 320 (8.1%, 20 times the percentage in Experiment 1) of our participants

are able to outperform the ML model. The difference between 8.1% and 0.4% is statistically

significant using chi-squared tests (p < 0.001). This observation suggests that with the help of

tutorial and real-time assistance, there exists hope for a synergy of humans and AI outperforming

AI alone. We hypothesize that facilitating hypothesis generation is important and present detailed

discussions in the Discussion section.

4.8 Experiment 3: The Effect of Model Complexity and Methods of Deriving

Explanations

Our experiments so far are based on explanations (coefficients) from a linear SVM classifier.

Meanwhile, deep learning models are being widely adopted because of their superior predictive

power. However, it is also increasingly recognized that they might be more complex and harder

to interpret for humans. Our final experiment investigates how model complexity and methods of

deriving explanations relate to human performance and effect of training.

4.8.1 Experimental treatments & hypotheses

Participants are exposed to two different treatments: presence of training and methods of

deriving highlights. Where training is present, we use the selected examples with spaced

repetition tutorial in this experiment. Note that example selection depends on the model and the

explanation method (i.e., which features are considered important). In comparison, guidelines are

static and are extracted from papers based on linear SVM, so they are not appropriate here. Based

on results from Experiment 2, we adopted signed highlights as our real-time assistance in the

prediction phase when applicable.11 To summarize, we consider the following setups to examine

how humans perform when exposed to training and different methods of deriving explanations: 1)

11 Since BERT performs better than linear SVM, only showing signed highlights also avoids the potential effect of
predicted labels.
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no training + SVM coefficients; 2) no training + BERT attention; 3) no training + BERT LIME;

4) training + SVM coefficients; 5) training + BERT attention; 6) training + BERT LIME.

Note that the deep learning model (BERT) leads to both different real-time assistance and

examples selected for tutorials because they consider different words important. We can only use

unsigned highlights for BERT attention because attention values range between 0 and 1. Refer to

the Methods section for details of BERT attention and BERT LIME.

We hypothesize that 1) SVM results in better performance compared to BERT, since it is a

common assumption that linear models are more interpretable and it has been shown that SVM

results in important features with lower entropy [Lai et al., 2019]; 2) BERT LIME results in better

performance compared to BERT attention because signed highlights can reveal more information

about the underlying decision; 3) participants would perform better with training than without

training. To summarize, our hypotheses in Experiment 3 are as follows:

• (H3a) The simple model (SVM) leads to better human performance than the deep learning

model (BERT).

• (H3b) BERT LIME leads to better human performance than BERT attention.

• (H3c) Training leads to better human performance than without training.

These three hypotheses were pre-registered on AsPredicted.12

4.8.2 Experimental design

We adopted the same experimental design as in Experiment 1. In total 480 subjects completed

the experiment (80 participants in each experimental setup). They were balanced on gender (239

females, 240 males, and 1 preferred not to answer). Refer to the supplementary material for

additional information about experiments (e.g., education background, time taken).

To quantify human performance, we measure it by the percentage of correctly predicted

instances by humans. In addition to this objective metric, we also report subject perception of

tutorial usefulness reported in the exit surveys (note that this is only applicable for the experimental

12 The anonymized pre-registration document is available at http://aspredicted.org/blind.php?x=vy794a.

http://aspredicted.org/blind.php?x=vy794a
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Figure 4.7: Human accuracy grouped by methods of deriving explanations. Error bars represent
standard errors. SVM explanations lead to better human performance than explanations based
on BERT. Training (second bar from the top in each method) also consistently improves human
performance for all explanation methods.

setups with training).

4.8.3 Results

We first present human accuracy in the prediction phase. Our results suggest that methods

of deriving explanations make a significant difference (Figure 4.7): 1) human performance is con-

sistently better when important words derived from the linear SVM are highlighted as compared

to deep models; 2) BERT LIME leads to better human performance than BERT attention. It also

reinforces the point that training leads to better human performance as compared to no training:

humans achieve better performance with training with any kind of explanation methods. To for-

mally compare the treatments, we conduct a two-way ANOVA and find a statistically significant

effect of tutorials (η2 = 0.049; p = 1.50e− 7) and methods of deriving explanations (η2 = 0.13;

p = 4.66e− 16). Differences among all pairs of treatments are also statistically significant using

post-hoc Tukey’s HSD test (p < 0.001).13

In other words, our experiment results provide support to all hypotheses in Experiment 3.

These results suggest that tutorials are indeed useful in improving human performance, albeit

improvement is still limited in the sense that human performance is ∼70% after training with real-

time assistance, echoing results in Experiment 2. It also suggests that simple models are preferred

to deep learning models when serving as explanations to support human decision making. Between

13 It is reduced to t-test for the training/no training treatment since the degree of freedom is 1.
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Figure 4.8: Human perception of tutorial usefulness. Error bars represent standard errors. Partic-
ipants are more likely to find SVM tutorials useful (differences between (SVM, BERT attention)
and (SVM, BERT LIME) are statistically significant using post-hoc Tukey’s HSD test).

explanations derived from post-hoc and built-in methods from BERT, attention provides the least

value for humans, again demonstrating the importance of signed highlights.

The effectiveness of training for simple models is further validated by subjective perception

of tutorial usefulness. Figure 4.8 shows that participants are much more likely to find the tutorials

derived from SVM explanations useful: 85% of our participants find it useful. The differences

between the following pairs are statistically different using post-hoc Tukey’s HSD test: SVM vs.

BERT attention (p < 0.001) and SVM vs. BERT LIME (p < 0.001). Interestingly, with

real-time assistance, humans also find the tutorials more useful compared to the same tutorial in

Figure 4.5. These results underscore our findings in Experiment 3 that simple models provide more

interpretable tutorials and explanations than deep models.

4.9 Conclusion

In this paper, we conduct the first large-scale, randomized, pre-registered human-subject

experiments to investigate whether model-driven tutorials can help humans understand the patterns

embedded in ML models and improve human performance. We find that tutorials can indeed

improve human performance to some extent, with and without real-time assistance, and humans also

find them useful. Moreover, real-time assistance is crucial for further improving human performance

in such challenging tasks. Finally, we show that simple models like linear SVM generate more useful

tutorials and explanations for humans than complex deep learning models.

Towards human-centered tutorials. Both quantitative results from our randomized experi-
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ments and qualitative feedback from in-person user study demonstrate that humans can benefit

from model-driven tutorials, which suggests that developing model-driven tutorials is a promising

direction for future work in human-centered interpretable machine learning.

However, the improvement in human performance remains limited compared to machine

performance in the deceptive review detection task. In order to further advance the synergy between

humans and AI, we need to develop human-centered tutorials. Many participants commented that

they could not understand why certain words were deceptive or genuine (an example reason could

be that imaginative writing does not cover specific details). These results highlight the importance

of facilitating hypothesis generation in the tutorials. It is insufficient to highlight important

features via feature attribution methods, and these tutorials need to also explain why some features

are useful. While it is challenging to develop automatic methods that can propose theories about

particular features, we might prompt humans to propose theories and evaluate them through the

ML model.

Another reason that tutorials had limited improvement in human performance is that the

tutorials failed to establish proper trust in machine predictions. It is important to highlight both

strengths and caveats of ML models in the tutorials, echoing recent work on understanding trust

[Kunkel et al., 2019, Yin et al., 2019]. A challenge lies in how to bridge the gap between training

and generalization in tutorials, i.e., model behavior and performance in the tutorials might differ

from that in unseen data.

Beyond static explanations. Another important direction is to design interactive explanations

beyond static explanations such as simply highlighting important words. Interactive explanations

allow humans to experiment with their hypothesis about feature importance. One strategy is to

enable humans to inquire about the importance of any word in a review. An alternative strategy

is to assess model predictions of counterfactual examples. For instance, humans can remove or add

words/sentences in a review, which can help humans understand model behavior in new scenarios.

Choice of tasks. We would like to highlight the importance of task choice in understanding

human-AI interaction. Deception detection might simply be too challenging a task for humans, and
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a short tutorial is insufficient to help humans understand the patterns embedded in ML models.

There may also exist significant variation between understanding text and interpreting images,

because the former depends on culture and life experience, while the latter relies on basic visual

cognition.

We believe that it is important to study human-AI interaction in challenging tasks where

human agency is important because the nature of explanations in decision making is distinct from

that in debugging. While machines excel at identifying patterns from existing datasets, humans

might be able to complement ML models by deriving theories and appropriately correcting ma-

chine predictions in unseen data, e.g., spotting mistakes when machines apply patterns (“chicago”

becomes a specific comparison point for reviews about a hotel in New York City). So there exists

hope for further advancing human performance in these challenging tasks.

Limitation of our samples. Our study is limited by our samples of human subjects. The in-

person user study was conducted with university students who tend to have a computer science

education, and large-scale, randomized, pre-registered experiments were conducted with Mechanical

Turkers from the United States. While our samples are likely to face the challenges of deception on

the Internet and would benefit from enhancements in deception detection, they may not be repre-

sentative of the general population. The effectiveness of model-driven tutorials can also potentially

depend on properties of the sample population. In general, we did not find any consistent differences

between demographic groups based on age, gender, education background, and review experience

(see the supplementary material). It is certainly possible that other demographic information could

affect the effectiveness of tutorials. We leave that for future studies.

It is important to point out that our setup employs a random split to obtain training and

testing data, which is a standard assumption in supervised machine learning. While humans can

ideally improve generalization in this case, humans might be more likely to correct generalization

errors in machine learning models when the testing distribution differs from training. In that

case, understanding the embedded patterns, especially spotting spurious ones, can help humans

generalize these data-driven insights.
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Figure 4.9: Experiment 1 tutorial: guidelines.

In summary, our work highlights the promise of (automatically) building model-driven tuto-

rials to help humans understand the patterns embedded in ML models, especially in challenging

tasks. We hope to encourage future work on human-centered tutorials and explanations beyond

static real-time assistance towards a synergy between humans and AI.

4.10 Appendix

4.10.1 Experiment Interfaces

Figure 4.9 - Figure 4.11 shows tutorial interfaces for Experiment 1.

Figure 4.12 - Figure 4.17 shows the prediction phase interfaces for experiment 2.

Figure 4.18 - Figure 4.20 shows examples in different methods deriving explanations for

experiment 3.

4.10.1.1 Experiment Details

Among our participants in Experiment 1, 69 were between 18 and 25, 265 were between 26

and 40, 121 were between 41 and 60, 22 were 61 and above, and 3 preferred not to answer. They

had a range of education backgrounds, comprising some high school (3), high school graduate (54),

some college credit (124), trade/technical/vocational training (42), Bachelor’s degree and above

(253), and 4 prefered not to answer.
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Figure 4.10: Experiment 1 tutorial: selected examples. Selected examples of random, SP-LIME,
and SR are captured in video submission.

Figure 4.11: Experiment 1 tutorial: selected examples + guidelines. ‘Reveal guidelines’ shows a
list of guidelines as illustrated in Figure 4.9.
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Figure 4.12: Experiment 2 real-time assistance: no assistance.

Figure 4.13: Experiment 2 real-time assistance: unsigned highlights.

Figure 4.14: Experiment 2 real-time assistance: signed highlights.

Figure 4.15: Experiment 2 real-time assistance: signed highlights + predicted label.

Among our participants in Experiment 2, 64 were between 18 and 25, 270 were between 26

and 40, 116 were between 41 and 60, 26 were 61 and above, and 4 preferred not to answer. They

had a range of education backgrounds, comprising some high school (3), high school graduate (44),

some college credit (120), trade/technical/vocational training (32), Bachelor’s degree and above
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Figure 4.16: Experiment 2 real-time assistance: signed highlights + predicted label + guidelines.

Figure 4.17: Experiment 2 real-time assistance: signed highlights + predicted label + guidelines +
accuracy statement.

Figure 4.18: Experiment 3: top features from SVM are highlighted.

(278), and 3 prefered not to answer.

Among our participants in Experiment 3, 62 were between 18 and 25, 255 were between 26

and 40, 138 were between 41 and 60, 24 were 61 and above, and 1 preferred not to answer. They

had a range of educational attainment, comprising some high school (1), high school graduate (51),
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Figure 4.19: Experiment 3: top features from BERT attention are highlighted.

Figure 4.20: Experiment 3: top features from BERT LIME are highlighted.

some college credit (111), trade/technical/vocational training (40), Bachelor’s degree and above

(274), and 3 preferred not to answer.

We only kept participants that complete the full task and submit a unique survey code.

Participants that do not comply with the criteria were not included.

Figure 4.21 - Figure 4.23 show the average time taken in each experiment. We calculated and

filtered out outliers from each experiment respectively with an interquartile range. In Figure 4.24 -

Figure 4.26 we show the average time taken during prediction phase in each experiment. Outliers

were discarded after the same procedures.
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Figure 4.21: Average time taken for each experimental setup in experiment 1.
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Figure 4.22: Average time taken for each experimental setup in experiment 2.
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Figure 4.23: Average time taken for each experimental setup in experiment 3.
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Figure 4.24: Average time taken for the prediction phase in each experimental setup in experiment
1.
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Figure 4.25: Average time taken for the prediction phase in each experimental setup in experiment
2.

4.10.2 Trust Analysis

4.10.2.1 Analysis of Free Responses from Turkers

Free responses from turkers confirmed the findings in the qualitative study. Participants felt

that tutorial was useful but could not understand why certain features are deceptive or genuine.

One participant commented, “Although I am an English major, the training really helped me to

think and consider the nuances of language. I enjoy good writing but I often overlook attempts

to manipulate or deceive the reader/audience. I felt this training was very beneficial”. Another
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Figure 4.26: Average time taken for the prediction phase in each experimental setup in experiment
3.
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Figure 4.27: Human trust on machine predictions in experiment 2. Differences between all pairs
are not statistically significant. These results suggest that guidelines and accuracy statement do
not increase human trust in machine learning models significantly.
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Figure 4.28: Human trust on correct / incorrect machine predictions in experiment 2. Differences
between correct predictions and incorrect predictions are statistically significant. These results
suggest that human have more trust in correct predictions than incorrect ones.
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Figure 4.29: Experiment 1: gender. Human accuracy grouped by experimental setups and gender.

participant remarked, “I could not understand why words were chosen for the reason”.

4.10.3 Human Performance Grouped by Demographics

The is no clear trend regarding gender, education background, review writing frequency, and

age among experiments.

4.10.4 Attention-check Design

P11 was half way through the session and commented, “I’m trying to think about this from

a way of, like, are these reviews being generated by a computer, or are they, like, are all of these

reviews from real people, and am I trying to tell if somebody’s, like, lying about the review”. The

interviewer then suggested to the participant to read the instructions in the dialogue boxes. P11



102

0 20 40 60 80 100
Accuracy (%)

SR+Guidelines

SR

SP-LIME

Random

Guidelines

Control

50.8

59.6

64.5

60.0

65.0

60.3

56.3

60.5

59.8

55.9

57.9

58.8

52.5

60.5

63.2

60.8

56.3

58.9

53.3

61.7

51.2

N/A

56.2

61.3

60.0

N/A

70.0

70.0

N/A

N/A

18-25

26-40

41-60

61 & above

No answer

Figure 4.30: Experiment 1: age. Human accuracy grouped by experimental setups and age.

subsequently explained that he “just didn’t notice that because I was just reading the rules and

skipped the box”. Similarly, P9 asked the interviewer, “By deceptive review do you mean users

typing a review for the sake of tarnishing reputation, or uplifting reputation, or are you referring

to computer-generated reviews which are trying to deceive people”. Due to a couple of the above

cases, we added additional attention-check questions to ensure that participants are aware of the

definition of deceptive reviews. Refer to the outdated and updated attention-check design below.

4.10.5 Exit Survey

Figure 4.43 - Figure 4.45 show exit surveys for experimental setups in Experiment 1.

Figure 4.47 and Figure 4.48 show exit surveys for experimental setups in Experiment 3.
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Figure 4.31: Experiment 1: education background. Human accuracy grouped by experimental
setups and education background.
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Figure 4.32: Experiment 1: review writing frequency. Human accuracy grouped by experimental
setups and review writing frequency.
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Figure 4.33: Experiment 2: gender. Human accuracy grouped by experimental setups and gender.
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Figure 4.34: Experiment 2: age. Human accuracy grouped by experimental setups and age.
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Figure 4.35: Experiment 2: education background. Human accuracy grouped by experimental
setups and education background.
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Figure 4.36: Experiment 2: review writing frequency. Human accuracy grouped by experimental
setups and review writing frequency.
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Figure 4.37: Experiment 3: gender. Human accuracy grouped by experimental setups and gender.



109

0 20 40 60 80 100
Accuracy (%)

Tr BERT-LIME

Tr BERT-ATT

Tr SVM

No-Tr BERT-LIME

No-Tr BERT-ATT

No-Tr SVM

65.0

59.1

57.8

72.3

59.0

58.0

62.4

52.0

61.6

74.1

57.9

66.5

67.0

57.0

55.9

71.5

58.7

68.5

65.0

65.0

63.3

72.5

58.3

60.6

N/A

N/A

N/A

75.0

N/A

N/A

18-25

26-40

41-60

61 & above

No answer

Figure 4.38: Experiment 3: age. Human accuracy grouped by experimental setups and age.
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Figure 4.39: Experiment 3: education background. Human accuracy grouped by experimental
setups and education background.
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Figure 4.40: Experiment 3: review writing frequency. Human accuracy grouped by experimental
setups and review writing frequency.

Figure 4.41: Outdated attention-check design. The outdated design does not allow participants to
confirm on their answers. If they selected the wrong answer, they will be disqualified immediately.
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Figure 4.42: Updated attention-check design. The updated design allows participants to confirm
on their answers.
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Figure 4.43: Exit survey for control setup in Experiment 1.
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Figure 4.44: Exit survey for guidelines setup in Experiment 1.
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Figure 4.45: Exit survey for examples i.e., random, SP-LIME, and spaced repetition in exper-
iment 1. Note that question 7a changes to the following: ‘Was training (i.e. training reviews and
list of guidelines) useful?’ for SR+guidelines.



116

Figure 4.46: Exit survey for experimental setup in Experiment 2.
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Figure 4.47: Exit survey for non-training experimental setups in Experiment 3.
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Figure 4.48: Exit survey for training experimental setups in Experiment 3.



Chapter 5

Conditional Delegation

5.1 Overview

Despite impressive performance in many benchmark datasets, AI models can still make mis-

takes, especially among out-of-distribution examples. It remains an open question how such im-

perfect models can be used effectively in collaboration with humans. Prior work has focused on AI

assistance that helps people make individual high-stakes decisions, which is not scalable for a large

amount of relatively low-stakes decisions, e.g., moderating social media comments. Instead, we pro-

pose conditional delegation as an alternative paradigm for human-AI collaboration where humans

create rules to indicate trustworthy regions of a model. Using content moderation as a testbed, we

develop novel interfaces to assist humans in creating conditional delegation rules and conduct a ran-

domized experiment with two datasets to simulate in-distribution and out-of-distribution scenarios.

Our study demonstrates the promise of conditional delegation in improving model performance and

provides insights into design for this novel paradigm, including the effect of AI explanations.

5.2 Introduction

As AI performance grows rapidly and even surpasses humans in benchmark datasets [Klein-

berg et al., 2018, He et al., 2015, McKinney et al., 2020, Silver et al., 2018, Brown and Sandholm,

2019], AI models hold great promise for improving human decision making in a wide variety of

domains. However, full automation may not be desirable for ethical, legal, and safety reasons,

especially in high-stakes domains Cai et al. [2019b], Lubars and Tan [2019], Lai and Tan [2019b],
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Green and Chen [2019b]. In particular, one well-known problem with the current AI models is

distribution shift. Namely, AI performance can significantly drop for out-of-distribution exam-

ples that are different from the training data (in-distribution examples) [McCoy et al., 2019, Clark

et al., 2019, Jia and Liang, 2017, Beede et al., 2020].

Human-AI collaboration is thus critical for effective integration of AI models into human

decision making processes Cai et al. [2019c], Wang et al. [2019a], Arous et al. [2020], Ashktorab

et al. [2020], Nguyen et al. [2018], Bansal et al. [2019a, 2021], O’Neill et al. [2020]. Many studies

have investigated the role of AI in assisting humans in making individual decisions Lai and Tan

[2019b], Lai et al. [2020a], Green and Chen [2019b,a], Zhang et al. [2020], Poursabzi-Sangdeh et al.

[2021], Carton et al. [2020b], Lin et al. [2020], Weerts et al. [2019], Beede et al. [2020], Wang and Yin

[2021], Lundberg et al. [2018b], e.g., predicting whether a person will recidivate in the near future.

Such decisions are non-trivial even for human experts (e.g., judges) and AI models can potentially

offer insights through their predictions and explanations. This approach is well suited for high-

stakes domains, where humans are expected to make the final decision on every case (e.g., judges

in bailing decisions). However, human-AI collaboration on every single decision is not scalable

and is thus less appropriate for tasks involving a large amount of relatively low-stakes decisions.

One such example is content moderation, where moderator decisions on individual comments for

further actions (e.g., hiding the content or prompting further review, depending on the community

policy) are of limited consequence; instead the key challenge lies in dealing with the massive scale

of comments. Such tasks can benefit from a greater level of automation [Gillespie, 2018, Gorwa

et al., 2020, Chandrasekharan et al., 2019].

In this work, we propose an alternative paradigm of human-AI collaboration — conditional

delegation. Figure 5.1(A) illustrates a general form of conditional delegation. Human and AI work

together to identify trustworthy regions of AI before deployment, i.e., model decisions are reliable or

trustworthy for examples within these regions. Once deployed, the AI model only affects decisions

for instances in the trustworthy regions. For the rest, another set of actions can be taken such

as manual review or employing a different model since the given AI’s decisions on them cannot
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be trusted. This approach employs a greater level of automation than human-AI collaboration on

every single decision and provides human with active control on when to use an AI model and in

what ways.

We use content moderation as a testbed. Figure 5.1(B) shows one possible instantiation

in this context. Trustworthy regions can be operationalized with a collection of keyword-based

rules created by human-AI collaboration before deployment. For example, after inspecting AI

predictions on comments with the word “retard”, the human may decide that AI works well on

them and set “retard” as a conditional delegation rule. Once deployed, comments that fall within

these trustworthy regions, i.e., containing any keywords specified by human, if predicted toxic,

can be reliably reported for final actions, such as being hidden or sent for further review, depending

on the community policy.

Notably, the task for humans to create conditional delegation rules share some similarity

with what many social media moderators are already doing by writing manual automation rules to

deal with the massive amount of comments (Figure 5.1(C)). For example, moderators on Reddit

use a tool called AutoModerator, with which they manually customize a rule-based system to

automatically identify comments for deleting or reporting for further review Jhaver et al. [2019a],

Chandrasekharan et al. [2019]. This approach, however, misses out the benefit of AI especially since

rigid rules often do not work on informal languages such as social media posts (e.g., containing

swear words without being toxic). Without significantly altering content moderators’ workflow,

conditional delegation offers a promising approach to utilize AI, even if the model is not optimized

for the community-specific content and should not be blindly trusted to work alone for every

comment (Figure 5.1(D)).

In this instantiation, a key difference from individual human-AI decision making lies in the

success criteria: while the quality of individual decisions (e.g., accuracy) is often the target in

individual decision making, precision and coverage are critical for conditional delegation because

moderation actions will only happen on comments that are predicted toxic.1 Precision ensures

1 Depending on the workflow, avoiding false negatives could be important in other instantiations.
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that AI behavior is indeed trustworthy in the delegation mode and avoids unnecessary actions,

whether it is mistaken deletion or extra work for further review. Coverage warrants that the AI

model can identify as many toxic comments as possible to alleviate the scalability issues. In the

context of content moderation, recall (identifying all toxic comments) is often less of a priority given

the limited time for content moderators, who are often volunteers, to deal with a massive amount of

incoming comments. This is reflected in the current workflow using the manual rule-based approach

(Figure 5.1(C)), where comments falling outside the rules are ignored without taking an action.

We assume the same workflow in our study and only focus on the precision and coverage related

metrics for comments within the scope of keywords rules.

In this study, our primary interest is to investigate whether humans can effectively identify

trustworthy regions for conditional delegation to improve the model precision with a good coverage,

compared to the current manual rule-based approach (Figure 5.1(C)) and the model working alone

(Figure 5.1(D)). Furthermore, we explore the effectiveness in two different AI scenarios: using an

AI trained on the community specific data (in-distribution), and one trained on different data

(out-of-distribution). The out-of-distribution model would perform much worse, but conditional

delegation offers a potential means to improve through human-AI collaboration.

Our second set of contribution is to inform design of interfaces that support people to create

high-quality conditional delegation rules. When given an AI model, content moderators often

do not have labeled comments to quantify model performance. It would be helpful for them

to observe model behaviors on their own data of interest to identify good delegation rules (i.e.,

trustworthy regions). To facilitate the creation of keyword-based rules, we develop an interface

that allows participants who act as moderators to perform keywords search and observe model

behavior on the search results. We provide and study the effects of several delegation support

features, including predicted labels, local explanations that show the rationales behind predictions,

and global explanations that provide an overview of the model.

To summarize, we ask the following research questions:

RQ1. Can users create keyword-based rules for conditional delegation that improves model pre-
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cision, so that these rules correspond to trustworthy regions?

RQ2. How do the performance of conditional delegation and user experiences (such as engagement

and subjective perceptions) vary between in-distribution and out-of-distribution AI?

RQ3. What are the effects of delegation support features on performance and user experiences,

including showing prediction labels, local explanations, and global explanations?

Through a randomized experiment with 240 mechanical turkers, we show that even crowd-

workers are able to create high-quality rules that lead to higher precision with conditional delegation

than the model working alone. Especially when applied to an in-distribution AI, which already

outperforms the manual rule-based approach for content moderation, conditional delegation fur-

ther enhances the performance, leading to “complementary performance” (i.e., human+AI ¿ AI

and human+AI ¿ human) [Bansal et al., 2021]. For out-of-distribution AI used in this study, con-

ditional delegation improves the model performance but does not suffice in compensating for the

performance disadvantage of AI to outperform the manual rule-based approach. We also found

that model explanations can improve efficiency in identifying delegation conditions and, with weak

evidence, improve user experiences.

Overall, our work provides a new perspective to the emerging area of human-AI collabora-

tion. Our core contribution is to demonstrate that conditional delegation is a promising alternative

paradigm that allows users to control when to trust or distrust AI. We also contribute a set of

interface features to assist people in creating conditional delegation rules and an empirical un-

derstanding of their effects. The diverging performance of in-distribution and out-of-distribution

highlights the importance of considering the effect of distribution shift when conducting empirical

studies of human-AI collaboration to inform the generalizablity of results, echoing recent findings

in other studies [Chiang and Yin, 2021, Liu et al., 2021].
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5.3 Related work

5.3.1 Human-AI Collaboration

Terms like “human-AI collaboration” Cai et al. [2019c], Wang et al. [2019a], Arous et al.

[2020], Ashktorab et al. [2020], “human-AI partnership” Nguyen et al. [2018], “human-AI team-

ing” Bansal et al. [2019a, 2021], O’Neill et al. [2020] have emerged in various literature studying

the use of AI systems. They reflect a shift of perspective away from complete automation by

AI. Fostering effective human-AI collaboration is not only critical for safety reasons, especially in

high-stakes domains Cai et al. [2019b], but also necessary to harnessing the complementarity of

human and AI intelligence to achieve optimal outcome Bansal et al. [2019b], Wilder et al. [2020],

reduce computational complexity Holzinger [2016], and enable novel technologies that are beyond

the current capabilities of AI Wang et al. [2019a], Cranshaw et al. [2017].

Many forms of human-AI collaboration have been explored. The term “human-in-the-loop”

is used broadly, but often refers to interactive training paradigm where the AI receives input from

the human to improve its performance. For example, the field of interactive Machine Learning

Holzinger [2016], Fails and Olsen Jr [2003], Amershi et al. [2014], Dudley and Kristensson [2018],

at the intersection of ML and HCI, develops systems that allow end users to guide model behavior.

This kind of paradigm allows humans to directly impact the working of AI, and requires using algo-

rithms that can incorporate human input to update the model, which can be technically challenging

or infeasible in practice.

Another rich area to study human-AI collaboration is AI-assisted Zhang et al. [2020], Wang

and Yin [2021], Buçinca et al. [2021] or “machine/algorithm-in-the-loop” decision-making Green

and Chen [2019b], Lai and Tan [2019b]. In this paradigm, AI performs an assistive role by pro-

viding a prediction or recommendation, while the human decision maker makes the final call and

may choose to accept or reject the AI recommendation. Several studies explored the questions

of whether and how to achieve complementary performance, i.e., the collaborative decision

outcome outperforming human or AI alone Zhang et al. [2020], Bansal et al. [2021], Lai and Tan
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[2019b]. The empirical results, however, are mixed at best, because there was either insufficient

complementarity in human and AI’s domain knowledge or a lack of ability for people to judge the

reliability of AI recommendations. This approach tends to focus on high-stakes decisions and are

not scalable in the number of decisions because humans are required to make each decision.

Another line of work explores intelligent systems and considers different tasks that AI can

perform and the optimal level of automation versus human agency Wang et al. [2021], Mack-

eprang et al. [2019], Lai and Tan [2019b]. For example, building on a classic model of levels of

automation Parasuraman et al. [2000], Mackeprang et al. [2019] proposed a design framework that

decomposes the design space of an intelligent system into sub-tasks then allocates human, AI or

both to perform each sub-task.

The goal of our work is to have AI partially automate a large volume of decisions rather

than assisting individual decisions. Extending existing models of human agency and automa-

tion Parasuraman et al. [2000], Mackeprang et al. [2019], we introduce proactive human agency,

with which human can act and exercise control prior to model deployment, instead of reacting to

model outputs. By conducting a controlled experiment, we explore whether this new human-AI

collaboration paradigm can achieve complementary performance by outperforming AI and manual

approaches. While some prior work also discussed delegation based on predicted outputs (e.g.,

predicted probability) [Keswani et al., 2021, Chandrasekharan et al., 2019], our work focuses on

identifying trustworthy regions in the input space. Furthermore, to the best of our knowledge, our

work is the first study with controlled experiments to examine the effect of conditional delegation.

5.3.2 AI explanations for human-AI interaction

Mental model, defined as an understanding of how a system works, is a key concept in

human-computer interaction Norman [2013]. Having an appropriate mental model allows people

to accurately anticipate a system’s behaviors and interact more effectively. People’s mental model

can be refined by explanations of how the system works. Therefore, explanation and transparency

features have long been an interest of HCI research on various technologies Abdul et al. [2018],
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Herlocker et al. [2000], Lim et al. [2009], Rader et al. [2018].

Recently, AI explanations have gained much attention Lai and Tan [2019b], Liao et al. [2020],

Ghai et al. [2020], Dodge et al. [2019], Buçinca et al. [2021], Bansal et al. [2021], Zhang et al. [2020].

The popularity of complex, inscrutable AI models such as deep neural networks make the difficulty

of understanding a primary challenge for modern AI technologies. This challenge has given rise

to a technical field of explainable AI (XAI), producing an abundance of techniques that aim to

make AI more understandable by people. While the landscape of XAI technique is beyond the

scope of this paper Guidotti et al. [2018b], Adadi and Berrada [2018], Gilpin et al. [2018], an

important distinction relevant to our study is the contrast between local explanations, which focus

on explaining the rationale for a particular prediction, versus global explanations, which aim to give

a high-level understanding of how the AI works. We explore the effect of both types of explanation

in our study and will discuss the details of the XAI techniques used for our toxicity prediction

model in the next section.

HCI studies on XAI have found explanations to improve user understanding of AI sys-

tems Cheng et al. [2019], Ghai et al. [2020], Buçinca et al. [2020], and somewhat mixed results

on enhancing user trust Cheng et al. [2019], satisfaction Ghai et al. [2020] and willingness to adopt

AI systems Tsai et al. [2021]. Moreover, explanations provide additional information that can be

utilized to assist the task that people perform. For example, Lai and Tan proposed a spectrum be-

tween human agency and full automation for machine learning to assist human decision-making Lai

and Tan [2019b], and considered showing explanation as an additional form of machine assistance

beyond solely providing prediction labels, and thus increase the level of automated assistance. In

interactive machine learning, explanation has been studied as a primary means for people to di-

rectly inspect the model limitations, instead of just observing model behaviors, for people to provide

feedback Stumpf et al. [2009], Ghai et al. [2020] to improve the model.

For our conditional delegation task, we hypothesize that explanations of AI model predictions,

i.e., keywords that the model bases its prediction on, can give hints to people about keyword rules

they should consider, and potentially help them judge the effectiveness of a given rule.
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5.3.3 Distribution Shift and Experimental Studies on Out-of-distribution Examples

Current AI models rely on identifying patterns in training datasets. In a real-world scenario,

it is unlikely that models are used to classify data that is exactly the same as the training dataset.

For instance, a moderation team would likely work with a model trained on an existing dataset,

then applied to the data on their platform. The difference between the training dataset and the

deployment data is called distribution shift, which often results in a performance drop [McCoy

et al., 2019, Clark et al., 2019, Jia and Liang, 2017]. For instance, McCoy et al. [2019] find that

state-of-the-art models in natural language inference adopt three fallible syntactic heuristics and

perform around random chance when tested on examples where these heuristics fail.

Despite substantial interest in distribution shift in the AI community, the effect has been

rarely examined in empirical studies of human-AI collaboration, with a few recent exceptions [Liu

et al., 2021, Chiang and Yin, 2021]. Liu et al. [2021] demonstrated that there exists a clear

difference between in-distribution and out-of-distribution examples when human and AI collaborate

to make individual decisions in recidivism prediction and profession prediction. They suggested

that complementary performance is more plausible for out-of-distribution examples because of AI’s

performance drop. Chiang and Yin [2021] examined human reliance on the model in human-AI

decision making and found that surprisingly humans rely on AI more out-of-distribution, where the

AI performance is worse.

The existence of distribution shift is a strong motivation for some form of conditional delega-

tion so that humans can identify the trustworthy regions. In our setup, however, as we condition-

ally delegate decisions to AI, strong AI performance in-distribution is likely more critical for the

human-AI collaborative performance. We thus hypothesize that it is more challenging to identify

the trustworthy regions for out-of-distribution examples because the model behavior is likely more

spurious.
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5.3.4 Content Moderation

Content moderation has attracted substantial interest from the research community due to

its growing importance in online communities [Kiesler et al., 2012]. There is a large body of research

studying the effect of moderation on community behavior, including whether one should regulate

at all [Chancellor et al., 2016, Chandrasekharan et al., 2017, Srinivasan et al., 2019, Jhaver et al.,

2019b, Chang and Danescu-Niculescu-Mizil, 2019, Seering et al., 2017]. In contrast, our work is

concerned with the practice of content moderation, i.e., how moderators can efficiently deal with a

large number of comments. The scale of content is the most important argument for some form of

automation in content moderation [Gillespie, 2018, Gorwa et al., 2020]. Moreover, an active line of

research has investigated the “emotional labor” of moderation work by the volunteer moderators

[Dosono and Semaan, 2019, Matias, 2016, Roberts, 2014], further highlighting the importance of

avoiding burnout for moderators through automation.

One strategy is to use rule-based methods. For instance, Reddit moderators can configure

an AutoModerator bot to set rules for reporting or deleting all comments that contain certain

words.2 The key advantage of this method is that it is entirely under the control of moderators.

Through interviews with 16 moderators, Jhaver et al. [2019a] found that AutoModerator improves

the efficiency of moderation. However, there exists a need for audit tools to monitor the performance

of the keyword rules. They also highlight the fact that AutoModerator fundamentally changes the

work of moderators and may introduce additional unnecessary work. Chandrasekharan et al. [2019]

also found that hard-coded rules are prone to mistakes.

An alternative strategy is to use AI models beyond rule-based approaches. Toxic comment

detection or hatespeech detection has attracted a lot of interest from the AI community [Wulczyn

et al., 2017, Qian et al., 2019, Wiegand et al., 2019, Nobata et al., 2016]. Notably, the Perspective

API is reportedly used by the New York Times, Disqus, and other platforms.3 However, researchers

increasingly recognize the pitfalls of full automation: 1) models are trained with historical data and

2 https://www.reddit.com/wiki/automoderator.
3 https://www.perspectiveapi.com/case-studies/.

https://www.reddit.com/wiki/automoderator
https://www.perspectiveapi.com/case-studies/
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can present issues such as gender bias and racial bias in AI models [Sap et al., 2019, Park et al.,

2018], potentially exacerbating structural inequalities [Blackwell et al., 2017]; 2) there exist diverse

rules and preferences of austerity and value in different communities [Chandrasekharan et al., 2018,

Fiesler et al., 2018, Scheuerman et al., 2021, Smith et al., 2020]. Anecdotally, we deployed a version

of our model on a subreddit to report comments that are predicted as toxic, and the moderators

asked us to shut it down due to high false positive rates (i.e., low precision). Inspired by the

diversity of rules, Chandrasekharan et al. [2019] proposed a new system that combines classifiers

based on different communities and advocated that this tool be configured as part of moderation

workflow.

Our effort represents a new direction in exploring the mixed initiative in content moderation.

Conditional delegation combines traditional rule-based approaches and AI models by providing

moderators with the ability to decide when to trust or distrust the AI model. Such rules can be

created for any model of choice, so it is orthogonal to the research on improving the capability of

AI. It can also be used to tailor different requirements of precision and tune the tradeoffs between

false positives and false negatives.

5.4 AI Model

A critical component of our study is the model used to assist people in content moderation.

In this section, we present details of how we obtain the model used in our study and provide an

overview of its properties.

5.4.1 Model Development

Current AI models are driven by the data used to train the model. We choose two datasets

to simulate the in-distribution and out-of-distribution scenarios. We then develop an interpretable

model that is trained on the in-distribution data and achieves reasonable performance on the out-

of-distribution data.

Data. In this work, we use a dataset of Wikipedia comments Wulczyn et al. [2017] (henceforth
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WikiAttack), made public by Wikipedia and Google Jigsaw. Notably, Jigsaw powers the Perspec-

tive API4 , a popular free service for toxic comment detection. Therefore, using a model derived

from this dataset allows ecological validity to our study as the dataset is used by real-world social

media platform and community moderators. We use the original train/test split of Wulczyn et al.

[2017], resulting in 70k comments in the training set and 23K comments in the test set. We use

the test set to evaluate the ability of participants to create keyword-based rules for conditional

delegation for WikiAttack.

To simulate the out-of-distribution scenario, we use another dataset of hate speech on Reddit

Qian et al. [2019], consisting of 22K comments, on which we apply the same model mentioned above.

As a result, the datasets that participants explore to create rules are of comparable size between

Wikipedia (in-distribution) and Reddit (out-of-distribution). Throughout the rest of the paper, we

will use in-distribution and WikiAttack, out-of-distribution and Reddit interchangeably.

Model. We use a rationale-style neural architecture [Lei et al., 2016] as the classifier underpinning

our tool, producing both explanations and predictions. Figure 5.2 illustrates our model architecture.

It uses one text encoder to identify rationales (i.e., a subset of tokens) from the input, and another

text encoder to make predictions based on the rationales.5 Trained in tandem with a sparsity

objective on the rationales, this model attempts to obscure as much of the input as possible while

still leaving enough to make an accurate classification. In short, this model achieves competitive

accuracy while having the ability to provide explanations directly by showing the rationales on

which the prediction is based on.

For the generator and predictor, we use independent, pretrained BERT [Devlin et al., 2019]

instances distributed by HuggingFace [Wolf et al., 2019]. We use Pytorch Lightning6 for fine-tuning.

We use Gumbel Softmax Jang et al. [2016] to enforce a binary constraint on the predicted rationale,

such that a token is either fully included or fully excluded from the input. As an implementation

detail, we find it highly useful to pre-fine-tune the predictor layer on the full (un-masked) input

4 https://www.perspectiveapi.com/
5 Technically, the predictor uses the masked input.
6 https://www.pytorchlightning.ai/.

https://www.pytorchlightning.ai/
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before further training it in tandem with the generator.

Because our task emphasizes precision over accuracy, we experiment with different parameters

to trade-off precision and recall. Figure 5.3 shows model performance both in-distribution and out-

of-distribution with different parameters. We observe a clear performance drop out-of-distribution

(e.g., F1 drops from about ∼0.8 to ∼0.6), which validated our choice of Reddit as an out-of-

distribution scenario. In our experiments, we choose the model with recall weight 0.5 (the second

bar). Note that participants did not have access to this performance data because our goal is to

simulate the scenario where moderators work with a model developed on an existing dataset. It is

up to the moderators to figure out how well the model performs and when to trust or distrust the

model.

This model can achieve BERT-like accuracy while being able to precisely and parsimoniously

identify the rationale responsible for its prediction. Table 5.1 presents example rationales for

comments that are predicted toxic, both correctly and incorrectly. We find qualitatively that the

model produces sensible rationales in this application. While it identifies some surprising tokens

as toxic such as “you”, it does succeed in learning that the primary evidence of non-toxicity is

a lack of toxic tokens: it retains only 2% of tokens on average for predicted-nontoxic comments,

versus 15% for predicted-toxic comments. Note that this explanation method has attracted some

criticism for producing rationales that don’t necessarily align with human reasoning [Zheng et al.,

2021], but it has the advantage of producing rationales that are, by construction, sufficient (in the

logical sense) for the model’s prediction. Generating high-quality explanations is an active area of

research, and our paradigm of conditional delegation can be used for any model of choice.

The rationale produced by this model is a form of local explanations, identifying important

words in each prediction. Our experiment also includes global explanations, which convey an

overview of the model behavior across all inputs. We generate these global explanations by iden-

tifying the tokens that occur most frequently in the rationales of the model on the in-distribution

and out-of-distribution data respectively. We display these top-15 most frequent rationale tokens

(Table 5.2) as the “global explanations”. We can immediately observe differences between Reddit
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and WikiAttack: “cunt” and “retard” are not common in rationales in WikiAttack but are among

the top five on Reddit.

To provide context for our later findings, it is difficult to produce precise classification out-

of-distribution. Figure 5.4 shows that even with a high positive class probability threshold (0.93),

the model only climbs to 0.58 precision. Thus, even a very conservative application of this model

is still producing 2 false positives for every 3 true positives–impractical for use by real moderators,

and something we would like to be able to improve on via conditional delegation.

5.4.2 Performance of Individual Words

The goal of this work is to explore human-created keywords rule for conditional delegation

to AI, such as “if a comment contains word X and is predicted toxic, the model will be trusted to

report the comment for moderation action”. In comparison, with a manual rule-based approach

(e.g., the current AutoModerator system used by content moderators of Reddit), such a rule takes

a form like “if a comment contains word X, that comment will be reported”. Our hypothesis is that

with the proper choice of rules, humans can produce a system which is more precise than either

the manual rule-based approach or the model working alone.

We perform preliminary analysis to characterize the scope of the potential improvement and

to contextualize our experimental results. A crucial question in motivating our approach is whether

there exist trustworthy regions of the model, i.e., are there certain words that occur systematically

in comments where the model achieves high precision.

First, we compute the precision of conditional delegation for all words that show up in at

least 100 comments. Figure 5.5 shows the 10 words with the highest precision as conditional

delegation rules (i.e., based on model predictions for all comments containing them) on WikiAttack

and Reddit respectively. Conditional delegation based on these words leads to greater precision

than the model working alone (dashed lines), suggesting that users can improve the precision of

the model by identifying these words for conditional delegation. In addition, we compare that

with the precision of using the word as a “report all” rule as with manual rule-based approach, by
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considering all comments containing the word as toxic. We can see generally, for these words with

top precision, trusting the model leads to higher precision than “report all”, both in-distribution

and out-of-distribution. However, the difference is much smaller for Reddit (out-of-distribution).

In particular, “faggot”, “cunt”, “retard”, and “nigger” achieve very high precision on this dataset

even if one simply reports all comments that contain any of those words. These results indicate

that conditional delegation can outperform both the manual rule-based approach and the model

working alone if users are able to make good choices of keywords rules.

Next, we examine the precision of the words that are most frequent in rationales (Table 5.2,

to be shown as global explanations). Figure 5.6 shows that on WikiAttack, the majority of global

explanations achieve greater precision than the model working alone. However, on Reddit, this is

true only for six words (“cunt”, “retard”, “faggot”, “bitch”, “she”, “her”), indicating the challenge

of creating good rules for out-of-distribution data.

Figure 5.7 further shows (the number of reported toxic comments - the number of reported

non-toxic comments) if that word is chosen as a rule. This measure reflects both the coverage and

precision of a keyword rule. We refer to this measure as reward because it is used as an incentive in

our human subject experiments, to be introduced later. On WikiAttack, most global explanations

lead to positive rewards. We also observe the clear advantage of using conditional delegation over

“report all”. This advantage becomes smaller on Reddit and disappears for “retard” and “cunt”

because these two words have great precision and coverage by simply reporting all comments with

them. In fact, rewards on Reddit are dominated by “retard” and “cunt” due to their high coverage.

A user could achieve a quite high reward (and outperform the model) simply by reporting all

comments with either of these two words.

In summary, there are specific words that delineate trustworthy regions of the AI model,

and even certain words (“retard”, “cunt”) where simply reporting all comments containing these

words would be more effective in terms of reward than delegating such comments to the model,

particularly in the out-of-distribution setting. However, we are able to recognize such words with

the benefit of a fully-labeled dataset (i.e., oracle access) — discovering them in a real-world setting
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could be very challenging. We explore this challenge in a rigorous human subject experiment in

the next section.

5.5 Experimental Design

Equipped with the model, one goal of this study is to design interfaces with different support

features to enable people to come up with effective keyword-based rules for conditional delegation.

We then examine the effect of these support features through a human-subject experiment. In

this section, we start by introducing different types of support features that we consider and then

explain the study procedure.

5.5.1 Experimental Conditions and Interface Design

In order to enable people to create keyword-based rules for conditional delegation and observe

model behaviors with them, the basic function of our tool is to search for a keyword and browse

comments that contain it. This allows users to determine whether a keyword would serve as a good

rule. For different experimental conditions, our design space mainly involves what information we

provide when returning the search results.

Experimental conditions. As discussed in §5.4, in addition to predicting whether a comment

is toxic or not, our model can provide local explanations (i.e., which words are used as rationales

for the prediction) as well as global explanations (i.e., most frequent words that show up in the

rationales). Therefore, we consider the following four conditions:

• Predicted labels. Predicted labels are shown along with the searched comments.

• Predicted labels + local explanations. In addition to predicted label for each comment,

we highlight rationales, i.e., words in the comment the model uses to determine toxicity for

comments that are predicted toxic. We refer to this condition as “local explanations”.

• Predicted labels + local explanations + global explanations. Participants have access

to all of the features in the previous condition and are also provided a list of words that the
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model typically uses in determining comment toxicity (Table 5.2). We refer to this condition as

“global explanations”.

• Manual condition. The final condition is designed to simulate the current state of AutoMod-

erator, where moderators come up with “report all” rules. We create a consistent interface where

participants have the ability to search comments and browse returned results to assess whether

they are indeed toxic, instead of whether the model prediction is precise. Participants do not

have access to any model-related information.

In the rest of this paper, we refer to these conditions as experimental conditions and

WikiAttack vs. Reddit as distribution types.

Interface design. We start by introducing the interface for “Predicted label + local explanations

+ global explanations”, which includes all possible components of the other conditions (see Figure

5.8). The widgets in the interface are arranged in two columns, where instructions and comments

are displayed on the left, while the search bar and the current set of rules are on the right. The

instructions box (Figure 5.8(1)) reminds participants of the task and provides more information

about the interface to ensure that they can fully leverage the tool’s features. Global explanations

are shown below the instructions box (Figure 5.8(3)). When the participant clicks on a rule that

is represented by a button, it automatically searches comments with the respective keyword-based

rule. In addition to searching particular words, we also allow users to load random comments,

which can be used to explore the data (Figure 5.8(4)). Upon a query or loading random comments,

the comments are displayed as cards below the load random comments button. Depending on

the condition, a comment could have a predicted label (Figure 5.8(5)) and rationales could be

highlighted (Figure 5.8(6)).

On the right side, the first two widgets are the search bar (Figure 5.8(7)) and clear button

(Figure 5.8(8)). The participant enters keyword-based rules and then comments with the respective

rule are shown on the left, as described in the previous paragraph. Participants can filter comments

by their predicted label (Figure 5.8(9)). By default, both predicted toxic and nontoxic comments
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are shown. When the participant is satisfied with the rule, they may click on the add rule button

(Figure 5.8(10)) to add the rule to their list. All of the participant’s rules are displayed in the

component below the add rule button. We also display their total matched comments and predicted

toxic matched comments (Figure 5.8(11)). Finally, participants may click on the finish making rules

and go to survey button to submit their rules and proceed to the exit survey (Figure 5.8(12)).

Figure 5.8 shows interfaces for the other three conditions. “Predicted labels + local expla-

nations” condition (Figure 5.9b) removes the global explanations (Figure 5.8(3)) and is otherwise

the same as “Predicted labels + local explanations + global explanations”. “Predicted labels”

condition (Figure 5.9a) further removes the highlights of rationales when returning search results.

“Manual” condition (Figure 5.9c) only has “search” and “load random comments”.

We conducted pilot studies with lab mates at the same university and mechanical turkers

to gather feedback and ensured that interactions were intuitive and the interface was easy to use.

With many widgets in the interface, it could potentially become overwhelming for the user. To

overcome that problem, we included a short tutorial walk-through (Figure 5.8(2)) that explains

each widget in sufficient details. To minimize confusion, we also included a separate link in the

instructions box (Figure 5.8(1)) that enumerates how each widget should be used.

5.5.2 Study Design and Procedure

We employ a between-subject design with the four conditions described above. We aimed

to obtain 0.95 power to detect an effect size of 0.1 in precision at the standard 0.01 alpha error

probability using F-tests. As such, we recruited 30 participants for each condition, summing up to

120 participants each for in-distribution and out-of-distribution and 240 participants in total. The

study is approved by the University IRB.

Task flow. Participants went through four phases during the study: (1) consent and introduction;

(2) interface tutorial; 3) the actual task; (3) exit survey. During the introduction phase, participants

were shown an accordion of instructions. Due to the nature of toxic comments, they are warned

that the task will contain profanity and hate speech and are cautioned to only proceed if they are
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okay with reading toxic comments.

After the instruction, participants are asked three attention-check questions to allow us to

filter out participants who did not pay attention to the instructions. They are given toxicity trial

questions with four simple comments to label if they are toxic or nontoxic: (1) I had a really bad

day today. (2) I just made a fucking great steak! (3) Go fuck yourself. (4) I hope you die painfully

tomorrow. These questions allow us to filter participants who finish this task hastily without paying

effort and prepare them for toxicity judgment. We remove participants whose accuracy is less than

or equal to 50% on these questions. As a result, we filter 6 out of 240 in our analysis.

To familiarize participants with the interface, we include a tutorial walk-through when they

first land on the page to instruct them on how to use each feature. We also include a link that

featured more detailed instructions and a short demonstration video. Participants are required to

submit at least ten rules, and can then exit the task whenever they are satisfied with the set of

rules created.

In the exit survey, we collected basic demographic information, their knowledge and familiar-

ity of AI and content moderation, and subjective measures, to be introduced in the later section.

Reward. To motivate quality work, in addition to a base payment, we design a bonus incentive

as follows: participants will be awarded $0.10 for every 100 toxic comment their rules correctly

reported, and penalize them $0.10 for every 100 nontoxic comment their rules mistakenly reported

(lower bounded by $0 and upper bounded by $2). This bonus thus rewards both precision–how

likely comments under the rule (for the manual condition) or conditional delegation with the rule

are correctly classified as toxic, and coverage–the quantity of comments covered by the rule. To

make the calculation easy to understand for participants, this reward makes a simplified assumption

that the cost of wrongly reported non-toxic comments (false positive) equals the benefit of correctly

reported toxic comments (true positive).

This reward mechanism is explained to participants, and we include one question in attention

check to ensure they understood it. We also explicitly suggest that, to optimize for the reward,

their goal should be to come up with keywords that meet the following criteria: (1) that occur in a
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lot of comments; (2) with which the model makes accurate predictions on the comments, and (3)

that are a diverse set so they may cover different kinds of toxic comments.

Participant information. We recruited participants from Amazon Mechanical Turk. We note

that while this recruiting choice may limit the generalizability of our results, social media content

moderation is often performed by part-time volunteers whose expertise varies. Furthermore, we

believe turkers are a sufficiently good sample for us to compare whether conditional delegation

improves the content moderation outcomes over the baseline condition, and expert users are likely

to further enhance the improvement pattern, if any. We encourage future work to further test the

paradigm in realistic social media contexts.

To ensure high quality responses, all participants satisfy the following criteria: (1) performed

at least 1000 HITs; (2) approval of 99% performed HITs in previous requesters; (3) reside in the

United States; 4) has the adult content qualification since our task shows toxic comments. The

experiment follows a between-subject design therefore we do not allow any repeated participants.

There were 115 male, 116 female, 2 non binary, and 1 preferred not to answer. 52 participants

are aged 18-29, 114 aged 30-39, 34 aged 40-49, 26 50-59, 7 aged over 59, and 1 I prefer not to answer.

Participants rated their knowledge on artificial intelligence (25 had no knowledge, 156 had little

knowledge, 49 had some knowledge, 4 had a lot of knowledge), and social media content moderation

(36 had no knowledge, 113 had little knowledge, 66 had some knowledge, 19 had a lot of knowledge)

on five-point Likert scales. Participants were paid an average wage of $11.80 per hour.

Overall, most turkers are satisfied with our task design and interface. Here are two quotes

from their feedback: “This was super intriguing. I had never participated in an activity like this

before. It was hard coming up with bad words since they are not part of my vocabulary. It was in-

teresting to see which words usually coincided with toxic subjects. Overall, very interesting project.”

and “It was interesting. I see now how difficult moderation can be for some sites.”



139

5.5.3 Evaluation Measures

We consider three types of evaluation measures to cover efficacy, efficiency, and subjective

perception.

Efficacy. As discussed in §5.2, our main goal is to examine whether humans can improve the

precision of the model with a good coverage via conditional delegation. We consider two precision-

based measures: average precision and union precision. For the first three experimental conditions

with delegation support features, average precision is formally defined as

1

|R|
∑
r∈R

|{x is toxic & x contains r & x is predicted toxic}|
|{x contains r & x is predicted toxic}| ,

where R is the set of rules that participants choose and x refers to a comment, whereas union

precision is formally defined as

|{x is toxic & x contains any r ∈ R & x is predicted toxic}|
|{x contains any r ∈ R & x is predicted toxic}| .

As the manual condition does not have a model, these two definitions become 1
|R|

∑
r∈R

|{x is toxic & x contains r}|
|{x contains r}|

and |{x is toxic & x contains any r∈R}|
|{x contains any r∈R}| .

The difference in the denominators highlights the role of conditional delegation, which only

affect the comments that the model predicts as toxic. It follows that the performance with condi-

tional delegation is also determined by the model’s base performance, i.e., how well the model can

identify toxic comments. Intuitively, average precision reflects the average quality of every single

rule a person provides, while union precision measures the performance when using all rules from

the person as a set, and can be skewed by the performance of higher-coverage rule in the set. Thus,

one’s ability to come up with both high-precision and high-coverage rules can lead to better union

precision.

Finally, we consider the reward participants received, as introduced in §5.5.2, which measures

the quantity difference between reported toxic comments (true positive) and reported non-toxic

comments (false positive). This measure reflects both precision and coverage. This metric is

highly volatile because a small number of keywords can achieve much higher rewards than others,
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especially out-of-distribution (e.g., “retard” and “cunt” on Reddit as shown in §5.4). We believe

that precision is the more reliable measure of efficacy given that our participants tended to only

choose about 10 rules.

Engagement and efficiency. We consider number of logged actions a participant took during

the experiment task and number of rules they added as measurements for engagement. 13 types

of unique actions were logged, including searching a rule, filtering comments by predicted labels

(toxic and nontoxic), load random comments, get page comments, etc. We consider the number of

actions more indicative of engagement, since participants can search for a rule without adding it.

For efficiency, we consider total elapsed time and rules per minute. Elapsed time starts from the

moment participants enter the interactive interface until they click on “finish making rules and go

to survey”, in minutes. Rules per minute is the number of rules added divided by elapsed time.

Since rules are the final product of the task, rules per minute is more indicative of efficiency.

Subjective measures. Finally, we consider the following three categories of subjective perception,

all gathered by the exit survey, using a five-point Likert scale (Strongly Disagree to Strongly Agree)

for all scale items.

• Subjective workload. We adopt three applicable items from NASA-TLX [Hart, 2006]:

∗ Mental demand. I felt that the task was mentally demanding.

∗ Feelings of success. I felt successful accomplishing what I was asked to do.

∗ Negative emotions. I was stressed, insecure, discouraged, irritated, and annoyed

during the task.

• Confidence. There are multiple loci of confidence in this task: in the model, in one’s own

ability to create conditional delegation rules, and in the human-AI collaborative outcome.

So we consider the following three measure (they were not asked in the manual condition

since they do not apply):

∗ Confidence in model. I trust the model to be able to correctly identify most toxic
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comments.

∗ Confidence in created rules I am confident that my rules significantly improve the

model’s accuracy in detecting toxic comments.

∗ Confidence in deployment. I am confident that my moderator team would feel

comfortable relying on the AI model combined with the rules I provided.

• Understanding. We are interested in whether global and local explanations could improve

people’s perceived understanding of the model. We consider both the global understanding

of the AI model as a whole and the local understanding on the rationales behind predictions.

These questions were skipped in the manual condition.

∗ Understanding of model. I felt that I had a good understanding of how the AI

works.

∗ Understanding of prediction. I felt that I had a good understanding of why the

AI identifies a comment to be toxic.

5.6 Experiment

We report results based on the three sets of evaluation measured described above: efficacy, ef-

ficiency and engagment, and subjective measures. We refer to the WikiAttack task as in-distribution

and Reddit task as out-of-distribution and the terms will be used interchangeably.

5.6.1 Efficacy

Even lay people are able to create rules with higher precision than the model working

alone, both in-distribution and out-of-distribution (see Figure 5.10 and Figure 5.11).

To determine whether participants are able to create rules that improve model precision, we conduct

t-test on the precision of conditional delegation with human-created rules vs. the model working

alone. We find that differences are all statistically significant (p <0.001), both on WikiAttack

(in-distribution) and Reddit (out-of-distribution), based on average precision and union precision.
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In particular, on WikiAttack, the model working alone already outperforms the manual condition,

and conditional delegation further improves the precision. These observations demonstrate that

humans, in our case turkers who are not experts in content moderation, are able to create rules

that improve model precision, suggesting that conditional delegation can be a promising direction

to pursue.

Next, we examine the effect of distribution types and experimental conditions on precision.

We conduct two-way ANOVA of distribution types and experimental condition in average precision

and union precision. We find significant effects in distribution type, experimental condition, and

their interaction (p <0.001). The effect of distribution type is the most salient, suggesting a clear

difference between in-distribution and out-of-distribution.

Given the significant interaction, we further conduct one-way ANOVA to understand the

effect of experimental condition on performance separately for WikiAttack and Reddit, and if sig-

nificant, conduct post-hoc analysis using Tukey’s HSD. For average precision (Figure 5.10), exper-

imental condition has a significant effect in WikiAttack (p <0.001), but not in Reddit (p =0.864).

Post-hoc Tukey’s HSD shows that the manual condition is significantly worse than all other experi-

mental conditions with delegation support features (p <0.001) on WikiAttack. For union precision

(Figure 5.11a and 5.11b) (using rules created by a participant as a set), experimental condition

significantly affects performance in both WikiAttack and Reddit (p <0.001). Post-hoc Tukey’s

HSD shows on WikiAttack, the manual condition is significantly worse than other experimental

conditions with delegation support features (p ¡ 0.001). On Reddit, we found the global explana-

tion condition is worse than the manual condition (p =0.004), and only showing prediction labels

(p =0.028).

Finally, we examine the effect of distribution types and experimental conditions on reward.

Two-way ANOVA finds a statistically significant effect of distribution type and interaction between

distribution type and experimental condition (p <0.001). Therefore, we conduct one-way ANOVA

to understand the effect of experimental condition on reward separately for WikiAttack and Reddit.

On WikiAttack (Figure 5.11c), we find a statistically significant effect of experimental condition
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(p =0.01), and post-hoc Tukey’s HSD shows that the manual condition is significantly worse than

other experimental conditions with delegation support features (p <0.001 for global explanations,

p =0.007 for local explanations, and p =0.004 for predicted labels). On Reddit, the experimental

condition also has a statistically significant effect (p =0.018). Post-hoc Tukey’s HSD shows that

only the difference between the manual condition and global explanations is significant (p =0.018).

These results show that, on WikiAttack, where the model performs well, people can easily

identify rules with both high precision (average precision) and with high coverage (reflected by

union precision and reward), as long as predicted labels are provided, achieving complementary

performance. But on Reddit, where the model’s base performance is significantly worse, it is more

challenging to achieve better human-AI performance over the manual rule-based approach. It fol-

lows that in both situations, we do not observe that explanations, either local or global, significantly

improve the performance of conditional delegation. However, adding the global explanation feature

seems to unexpectedly hurt people’s ability in choosing rules with both high coverage and high

precision, and lead to slightly lower human-AI performance in union precision and reward.

What rules do people make? To further make sense of their performance, we dive into the

content of the rules provided by participants. Table 5.3 lists the top rules in each condition along

with the percentage of people who chose that rule. On WikiAttack, participants with delegation

support features are more likely to choose “fuck” (above 60%), a high-precision rule to identify

toxic content in Wikipedia comments as shown in §5.4, than the manual condition (only 36.7%).

In comparison, for Reddit, “fuck” is a less precise rule (i.e., people also use the word in non-toxic

comments). The word does not show up in top 10 for the manual condition, but shows up in the

other conditions.

This observation suggests that the delegation support features can help users identify good

rules when the model performs well, but may mislead people when the model performs poorly. The

reason that global explanations slightly hurt the performance in union precision and reward could

be that participants were led to choose some high-coverage rules with relatively low precision such

as “fuck”, which was listed in the global keywords (Figure 5.8).
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Figure 5.12 further shows the top words in reward among the rules created by participants.

In addition to “fuck” on WikiAttack and “cunt”/“retard” on Reddit, the result highlights the

advantage of conditional delegation. Users can achieve high reward by trusting the model beyond

swearing words, for instance, “you” on WikiAttack and “her” on Reddit. The reason is that the AI

model excels at deciding whether “you” is used for personal attack or simply for referring purposes.

Summary. In short, our results demonstrate that conditional delegation is more effective than the

model working alone, and that even laypeople are able to create high-quality conditional delegation

rules for content moderation. Compared to the manual rule-based approach currently used for

content moderation, advantage of our human-AI collaborative approach via conditional delegation

may depend on the base performance of the AI, and may not be sufficient if the AI significantly

under-performs, e.g., when used on out-of-distribution comments. Further research is required

to understand the necessary conditions for conditional delegation to outperform the manual rule-

based approach. Our analysis did not find evidence that model explanations could help people

create better rules for conditional delegation. We explore their benefits for other aspects of user

experience later.

5.6.2 Efficiency and Engagement

We conduct two-way ANOVA to determine whether distribution type and experimental condi-

tion have a significant effect on user engagement (number of actions, number of rules) and efficiency

(elapsed time, rules per minute). In all evaluation measures of engagement and efficiency, we only

find statistically significant effects of experiment conditions, suggesting that patterns with two dis-

tribution types are comparable. Therefore, in this section, we merge the data on WikiAttack and

Reddit, and report results from one-way ANOVA on experimental conditions.

Participants working on conditional delegation are more engaged (see Figure 5.13).

Figure 5.13a shows that participants with all delegation support features were much more engaged

than the manual condition. In particular, predicted labels only condition incurred many more

actions than other conditions. One-way ANOVA also finds a statistically significant effect in ex-
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perimental condition (p < 0.001). Post-hoc Tukey’s HSD shows the negative difference between

the manual condition and other experimental conditions are all statistically significant (p <0.001

for predicted labels and global explanations, p =0.009 for local explanations).

When it comes to number of rules, the outcome of task engagement, the difference is not as

salient. Because we require a minimum of 10 rules, every condition leads to a little above 10 rules:

the manual condition is just above 10 at 10.6, while global explanations leads to 12.3 rules. That

said, one-way ANOVA still finds a significant effect in experimental condition (p =0.021). Post-hoc

Tukey’s HSD shows that the difference between global explanations and the manual condition is

statistically significant (p =0.028).

Explanations improve task efficiency (see Figure 5.14a and 5.14b). Figure 5.14a shows

the time spent on the interactive interface in each condition: participants with predicted labels only

spent the most time on this task. This result is consistent with the number of actions because it

likely requires more time to take more actions. However, the difference is relatively weak: one-way

ANOVA shows that the effect of experimental conditions is only borderline significant (p =0.074),

and post-hoc Tukey’s HSD do not find any statistically different pairs.

Rules per minute is a better measure of efficiency since it reflects how long it takes for people

to identify a rule that they are satisfied with. The trend is reversed from the time spent: predicted

labels only lead to the lowest number of rules per condition, however, with the help of explanations,

humans are able to achieve a greater number of rules per minute. One-way ANOVA confirms a

statistically significant effect of experimental condition (p =0.008). Post-hoc Tukey’s HSD suggests

that the only statistically different pair is predicted labels only and global explanations (p =0.031),

suggesting that global explanations helped participants to achieve the highest efficiency to come

up with rules.

Global explanations lead to much higher overlap between most frequent words in

rationales (Figure 5.14c). To understand this improvement in efficiency, we examine the overlap

between human-created rules and the most frequent words in rationales (Table 5.2), which are the

words shown in global explanations and also more likely to have appeared in the highlighted words
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in local explanations. Figure 5.14c shows that global explanations lead to much higher overlap

than the other conditions. This observation confirms that global explanations provide direct hints

for possible rules, thus improved the efficiency to come up with required number of rules.

Summary. Taken together, our results show that people are more engaged when performing con-

ditional delegation than working on creating manual rules, with more actions and a tendency to

spend more time on the task. This tendency comes with a cost of efficiency in creating rules when

only showing predicted labels. Showing model explanations, especially global explanations, can

significantly improve the efficiency, resulting in comparable efficiency between conditional delega-

tion and the manual rule-based approach. The reason can be attributed to participants leveraging

keywords in explanations as hints to create delegation rules. Future research is required to explore

means to encourage people to examine the performance of these hinted rules more carefully, to

improve both efficiency and efficacy.

5.6.3 Subjective Perception

Finally, we report the subjective perception of participants (subjective workload, confidence,

and perceived understanding of AI). All results are based on answers in exit survey, with a five-point

Likert scale.

Subjective workload. Overall, participants were neutral about whether the task was mentally

demanding (M=3.15, SD=1.08), agreed that they felt relatively successful in accomplishing the task

(M=3.95, SD=0.91), and disagreed that they felt negative emotions (M=1.93, SD=1.03). Two-way

ANOVA does not show any statistically significant effects of distribution types and experimental

conditions. For WikiAttack, we observe a weak trend that local explanations lead to less subjective

workload (lower mental demand, more feeling of success, and less negative emotion) while adding

global explanation has the opposite effect. These patterns, however, do not hold for Reddit.

Confidence. Overall, participants reported relatively strong confidence in all of our measures: con-

fidence in the model (M=3.63, SD=1.01), confidence in the rules they created (M=3.73, SD=0.98),

confidence in the deployment of the system from human-AI collaboration (M=3.61, SD=1.0), lean-
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ing towards agreeing with all these statements. We do not find any statistically significant effect

of distribution type and experimental condition with two-way ANOVA. There is a non-significant

trend that conditions with explanation, especially local explanation, result in better confidence for

WikiAttack, but not for Reddit, where the model performs relatively poorly.

Perceived understanding. Overall, participants report a good global understanding of the

model (M=3.37, SD=0.97) and local understanding of individual predictions (M=3.56, SD=1.05)

on WikiAttack than Reddit, possibly related to the difference in model performance between dis-

tribution types. Two-way ANOVA only shows a marginally significant effect of distribution type in

global understanding of the model (p =0.063). It is somewhat surprising that model performance

leads to this difference in perceived understanding. Interestingly, there is a trend that local ex-

planations lead to better perceived local understanding on predictions, but worse perceived global

understanding on the model, but not when global explanations are added.

Summary. Overall, subjective measures show a relatively positive experience across board, but

not strong difference between conditions. There is some evidence that when the model performs well

(WikiAttack), local explanations provide the best experience: strong performance with relatively

high efficiency, less subjective workload and more confidence in the outcomes.

5.7 Conclusion

Through investigating the three research questions introduced in the beginning, our study

shows the promise of conditional delegation as a new paradigm for human-AI collaboration. Even

with crowdworkers who are not experts of the content moderation task, conditional delegation

can achieve better performance than the model working alone. However, whether the human-AI

collaboration can outperform the manual rule-based approach varies for in-distribution and out-

of-distribution AI. Out-of-distribution AI has significant performance disadvantage that cannot

be adequately compensated by conditional delegation. We also found that, in general, providing

predicted labels with our keyword search based interface is sufficiently effective in supporting people

to create delegation rules. Providing explanations can improve efficiency by hinting on rules to
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consider, but can also mislead people to use high-frequency but not necessarily high-precision

rules. We discuss implications of these results below.

The promise of conditional delegation. Our study is a first step towards understanding and

leveraging the promise of conditional delegation. It is an intuitive approach that can be used in

a wide variety of domains so that users can proactively decide when to use an AI model and in

what ways based on the output of the AI. For instance, judges can specify when to show the risk

estimates for recidivism prediction and when to hide the model output. Doctors can identify subsets

of patients for which they rely on AI to send alerts. Our study only explored one type of workflow

and one type of action. Different applications may require a diverse set of workflows and actions,

and have varying tradeoffs between false positives and false negatives.

Moreover, we only begin to define the design space for supporting users in conditional del-

egation. An essential requirement is to help users make sense of model behaviors under different

delegation conditions. Keyword-based rules are a reasonable approach in content moderation given

that rule-based methods are already used in AutoModerator. We used a rationale-style model to

facilitate this kind of interaction, although we expect post-hoc explanation methods to play similar

roles. It is important to empirically validate the effect of the underlying models and explanation

methods. We also focused exclusively on conditional delegation based on trustworthy regions in the

input space. A promising direction is to investigate the joint effect of delegation based on inputs

and outputs [Chandrasekharan et al., 2019, Keswani et al., 2021]. Another limitation of our study

lies in that crowdworkers only came up with about 10 rules because of our minimum requirement.

Although our results are encouraging with non-expert users, additional experiments are required

to validate the potential of conditional delegation with expert users. Notably, future research can

explore means to facilitate people to identify a greater number of rules, examine the combined effect

of rules, and monitor the performance of rules after model deployment. In long-term deployment,

it is especially valuable to investigate how to update the delegation conditions once the model is

updated.

Additionally, conditional delegation can potentially alleviate AI bias as we give users the
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freedom to choose trustworthy regions based on their domain knowledge or notion of fairness.

However, the flip side is that this process could introduce human bias, if for example one’s notion

of fairness is ill conceived. We encourage future work to understand and develop ways to rail-guard

the impact of human biases in conditional delegation.

The effect of distribution shift. Our results highlight the importance of considering the effect

of distribution shift in designing experiments on human-AI collaboration, to better understand the

generalizability of results. We are able to achieve complementary performance in-distribution on

WikiAttack, but not out-of-distribution on Reddit. In practice, it is rarely the case that an AI

model faces exactly the same distribution in deployment. Therefore, it is critical to understand the

outcomes in out-of-distribution contexts to understand the generalizability or applicable scope of

a given form of human-AI collaboration.

It is useful to note that although our results are presented as in-distribution vs out-of-

distribution, the differences are complicated between WikiAttack and Reddit. First, there exists a

clear difference in model performance, so our results can be seen as comparing a high-performance

model with a low-performance model. Second, the nature of comments on Wikipedia and Reddit

differs substantially. It is possible that crowdworkers are more used to comments on Reddit or

that common swearing words such as “retard” and “cunt” happened to work well on the Reddit

dataset that we used. This complexity demonstrates that the contrast of in-distribution versus

out-of-distribution contexts is not a monolithic dimension, which further adds to the challenge of

experimental design to account for the effect of distribution shift.

The priming effect of explanations. While explanations can improve efficiency, global ex-

planations are found to slightly hurt performance when working with out-of-distribution AI, as

participants may have chosen the keywords in explanations without carefully examining the model

behaviors with them. These observations echo concerns of unintended consequences with the use of

explanations in human-AI collaboration [Lai and Tan, 2019b, Bansal et al., 2021, Green and Chen,

2019b].

In other words, for our task of creating keywords rules, keywords-based explanations have
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a priming effect that leads to biased adoption of presented words. Note that priming, if used

appropriately, can shape user behaviors in a positive way. The challenge is that with the technique

we used to generate global explanations (i.e., most frequent tokens in rationale), the top tokens

do not necessarily correlate with high precision (Figure 5.6). Future work can explore techniques

that can exploit some proxy of precision, such as considering the uncertainty or confidence of

predictions. Another direction is to utilize de-biasing technique to mitigate the effect of priming,

such as explicitly reminding people to attend to wrong predictions with the chosen keywords.

It is worth noting that local explanations seem to have less of a priming effect than global

explanations but still improves efficiency. It is possible that the many highlights in search results

are too scattered to have a salient effect. Future work can explore other XAI techniques or provide

additional support, such as to help users have an overview of the rationales in all search results.

Implications on content moderation. It is impressive that crowdworkers can already create

keyword-based rules that achieve greater precision than the model working alone. However, we

recognize that our experiment setup is only a first step towards using conditional delegation in

content moderation. First, crowdworkers are not representative of moderators, who have way more

experience with their platform’s data. As moderators are more familiar with the moderation process

and more knowledgeable about important words, experts might find the interface more useful than

crowdworkers. However, participatory design and future work can develop more serendipitous

features. Second, in practice, moderators usually have historical data on which moderation decisions

were made. This historical data can be used in the process of creating keyword-based rules. Third,

prior work has shown that moderators often update the rules used by AutoModerator [Jhaver et al.,

2019a, Chandrasekharan et al., 2019] and our work does not take into account any future updates.

Neither do we leverage any existing rules that moderators have created. For future work, we hope

to integrate a model that receives feedback from moderators and allow updates to the model to

reflect the feedback. The ideal pipeline would require careful development in the model architecture

and interface to refrain any unnecessary actions from interfering with moderators’ tasks. Last but

not least, content moderation involves a wide range of different rules beyond toxicity, and even the
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policies under the umbrella term of toxicity can vary, so the AI model that we uses represents a

narrow component in content moderation. In short, our work uses content moderation as a testbed

to illustrate the promise of conditional delegation. Much future work is required to realize the

impact of conditional delegation in content moderation.

Limitations. First, our work represents one instantiation of conditional delegation. We emphasize

precision and coverage to increase the ability of moderators to deal with a large amount of comments

(“true positives”) while minimizing unnecessary labor for moderators (“false positives”). This

tradeoff between true positives, true negatives, false positives, and false negatives can vary in

practice depending on the application and the actions taken according to AI predictions. Second,

our participants are not representative of content moderators. It also follows that our evaluations

are limited by the number of rules that participants created in about 10 minutes. Our case study

shows the promise of conditional delegation, but further study is required in each application

domain of interest to develop the best design for human-AI collaboration in identifying delegation

conditions. Third, our choice of model, datasets, and explanations affect the experimental outcome.

It is important to further dissect the relevant dimensions and investigate the effect of alternative

choices.
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Figure 5.1: Illustration of conditional delegation. Part A shows a general form of conditional dele-
gation. Humans and AI work together to identify trustworthy regions of AI. Then once deployed,
the AI model only affects the instances that belong to the trustworthy regions. Part B instantiates
conditional delegation in the context of content moderation for this work. The right columns shows
the contrast of the current manual rule-based approach for content moderation (Part C) and the
model working alone (Part D).

There are four potential approaches for content moderation. They are condition delegation, instan-
tiation in content moderation, manual rule-based approach, and just the model.

Be aware of anyone who capitalizes every word − sure sign of a fucking retard .

Be aware of anyone who capitalizes every word − sure sign of a fucking retard .Original input: 

Rationalized input: 

Predictor

Prediction: toxic

Rationales
Rationale Extractor

Figure 5.2: Illustration of the model with an example. The rationale extractor first identifies
“rationales” in the input, and then the predictor makes the prediction based on the rationales.
This model can achieve competitive accuracy while having built-in interpretability because the
prediction is made exclusively based on rationales.

The model extracts rationales from the input and makes prediction based on the rationales.
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Figure 5.3: An overview of model performance with different hyper-parameters. The hyperparam-
eter shows the relative weight of recall vs. precision. We choose the model with 0.5 because it
achieves competitive performance both in-distribution and out-of-distribution. Throughout this
paper, we use solid bars for WikiAttack (in-distribution) and bars with white slashes for Reddit
(out-of-distribution).

We experiment with different parameters to trade-off precision and recall. We chose the model
with 0.5 as the hyperparameter value as it achieves competive performance in both datasets.
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WikiAttack
True positive highlightRGB152,193,217highlight== Hello == Your such a fucking freak mate.

Get a life. And get a facelift you ugly cunt.
True positive highlightRGB152,193,217highlight== FUCKYOU == wow,just wow james de-

lenoy. u are a class A faggot. i could pwn u in a coma. i dont give a fuck if u
block this account cuz we are a freight train from hell and we will make more
and come at u with the ferocity of a mama bear. SUCK OUR GRUNDLES, the
entire waltmanist community

False positive highlightRGB152,193,217highlight::Haha, I fucking pissed myself reading this ’)
Thanks, i needed that after 3 hours trecking around in warrington with the worst
cold ever. I mean it, thanks ))

Reddit
True positive highlightRGB152,193,217highlightCrawl back to you r/politics safe space. I’m

sick of fucking faggot liberals coming into communities where they aren’t welcome
and trying to ruin them from the inside out. You’re on KiA, so you already know
how that works. Fuck you

True positive highlightRGB152,193,217highlightAh yes, coming from the idiot that calls people
a retard when he disagrees. Get the fuck out of your internet bubble and look
around you irl for a moment.

False positive highlightRGB152,193,217highlightSomeone in chat baited me into saying ”paki”.
I got banned. I’m fucking Pakistani and that word has never been ”offensive” to
anyone. I’ve used it for 14 years myself. I had 1k hours in that game but it’s
staying uninstalled

Table 5.1: Comments that are predicted toxic from WikiAttack and Reddit with their identified
rationales by our model.

WikiAttack you, fuck, your, suck, die, shit, nigger, faggot, cock, my, bitch, stupid, go, ass, i
Reddit you, fuck, cunt, retard, shit, your, stupid, faggot, bitch, hate, she, i, guy, her, idiot

Table 5.2: Words that are most frequently used in rationales.

Figure 5.4: Precision-recall plot of model on Reddit dataset (out-of-distribution). Even at high
positive class probability thresholds, precision remains low.

The precision-recall plot of model on Reddit dataset shows that even with high positive class
probability threshold of 0.93, the model only reaches 0.58 precision.
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Figure 5.5: Words with top precision on WikiAttack (in-distribution) and Reddit (out-of-
distribution). “Conditional delegation” shows precision among comments with the word based
on model predictions, while “Report all” shows this measure if we consider a comment toxic as
long as it contains the word (manual rule-based approach). Dashed lines show model precision on
all comments (i.e., the precision of the model working alone). In both cases, all the top 10 words
lead to greater precision than the model working alone.

This figure shows the top 10 words with highest precision as conditional delegation rules.
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Figure 5.6: Precision for words that show up most frequently in rationales on WikiAttack (in-
distribution) and Reddit (out-of-distribution) (ordered by frequency). “Conditional delegation”
shows precision among comments with the word based on model predictions, while “Report all”
shows this measure if we consider a comment toxic as long as it contains the word (the manual
rule-based approach). Dashed lines show model precision on all comments (i.e., the precision of the
model working alone).

This figure shows that the majority of global explanations on WikiAttack achieve greater
precision than the model working alone.
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Figure 5.7: Reward (number of reported toxic comments - number of reported non-toxic comments),
a measure combining precision and coverage, for words that show up most frequently in rationales on
WikiAttack (in-distribution) and Reddit (out-of-distribution) (ordered by frequency). “Conditional
delegation” shows reward for comments with the word based on model predictions, while “Report
all” shows this measure if we consider a comment toxic as long as it contains a word (the manual
rule-based approach).

This figure shows the reward on both datasets. On WikiAttack, most global explanations lead to
positive rewards while on Reddit, rewards are dominated by “retard” and “cunt” due to high

coverage.
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Figure 5.8: Interface for “Predicted label + local explanations + global explanations”. We use this
interface to go through the design of all delegation support features.

This interface includes all delegation support features.
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(a) Predicted labels condition (b) Predicted labels + local explana-
tions condition

(c) Manual condition

Figure 5.9: Interfaces for the other three experimental conditions.

These interfaces include some of the delegation support features.
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Figure 5.10: Average precision for WikiAttack (in-distribution) and Reddit (out-of-distribution).
Error bar shows 95% confidence interval throughout the paper, and the dashed lines show the
precision with the model working alone. The first three conditions represent the precision with
conditional delegation, while the manual condition reports precision via the manual rule-based
approach by reporting all comments that contain any keyword.

This figure shows the average precision for WikiAttack and Reddit. There are four bars in each
plot and the first three bars represent conditional delegation conditions while the last bar

represents manual condition.
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Figure 5.11: Union precision and reward for WikiAttack (in-distribution) and Reddit (out-of-
distribution). The dashed lines in Figure 5.11a and 5.11b show the precision with the model
working alone. Reward is defined as (number of reported toxic comments - number of reported
non-toxic comments).

These figure shows the union precision and reward for WikiAttack and Reddit.
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WikiAttack
Predicted labels bitch (69.0%), asshole (62.1%), fuck (62.1%), cunt (62.1%), nigger (51.7%), dick

(48.3%), faggot (44.8%), shit (44.8%), fag (37.9%), motherfucker (31.0%)
+ Local explanations bitch (71.4%), cunt (71.4%), asshole (67.9%), fuck (60.7%), faggot (53.6%), pussy

(42.9%), dick (39.3%), fag (35.7%), cock (35.7%), retard (35.7%)
+ Global explana-
tions

faggot (86.7%), nigger (73.3%), fuck (70.0%), bitch (66.7%), cunt (56.7%), cock
(56.7%), ass (50.0%), asshole (46.7%), shit (46.7%), pussy (36.7%)

Manual cunt (70.0%), nigger (63.3%), faggot (60.0%), fag (56.7%), bitch (53.3%), asshole
(46.7%), retard (43.3%), whore (43.3%), fuck (36.7%), pussy (26.7%)

Reddit
Predicted labels cunt (86.2%), bitch (72.4%), faggot (62.1%), fuck (58.6%), retard (44.8%), asshole

(41.4%), nigger (41.4%), pussy (34.5%), fag (31.0%), whore (31.0%)
+ Local explanations cunt (72.4%), bitch (65.5%), fuck (55.2%), pussy (55.2%), nigger (48.3%), asshole

(41.4%), faggot (41.4%), retard (37.9%), shit (37.9%), dumbass (34.5%)
+ Global explana-
tions

bitch (69.0%), cunt (65.5%), faggot (62.1%), fuck (58.6%), retard (58.6%), nigger
(41.4%), pussy (41.4%), shit (37.9%), dick (37.9%), idiot (34.5%)

Manual nigger (76.7%), cunt (73.3%), faggot (60.0%), bitch (56.7%), retard (43.3%),
whore (43.3%), asshole (36.7%), fag (30.0%), spic (30.0%), chink (30.0%)

Table 5.3: Most frequent rules chosen by participants.
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Figure 5.12: Top 10 human-created rules in reward when used for conditional delegation.

This plot shows the top 10 human-created rules in reward.
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Figure 5.13: Engagement. Conditional delegation with all delegation support features leads to
much better engagement and more submitted rules than the manual condition.

The plots show the number of actions taken and number of rules created by different experiment
conditions.
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tions.

Figure 5.14: Efficiency. Participants spent more time working on conditional delegation than the
manual condition, but the efficiency is improved with explanations, especially global explanations.

The plots show time taken, rules per minute, and overlap with global explanations by different
experiment conditions.
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Figure 5.15: Subjective workload. Overall, participants were neutral about whether the task was
mentally demanding (M=3.15, SD=1.08), agreed that they felt successful in accomplishing the task
(M=3.95, SD=0.91), and disagreed that they felt negative emotions (M=1.93, SD=1.03).

The plots show the different subjective measures’ ratings adopted from NASA-TLX by different
experiment conditions.
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rules (Wiki)
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Figure 5.16: Confidence. Overall, participants show strong confidence in the model, their perfor-
mance, and moderators’ potential adoption.

The plots show confidence in model, confidence in created rules, and confidence in deployment
ratings by different experiment conditions.
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Figure 5.17: Understanding. Overall, participants report a better understanding of the model as
a whole and individual predictions on WikiAttack than Reddit, although the differences are not
statistically significant.

The plots show understanding of model and predictions ratings by different experiment
conditions.



Chapter 6

Future work

This thesis demonstrates the potential of how human-AI collaborations can take place in

a safe environment without having to worry about losing human agency in the decision making

process. However, there are many future directions in improving this process.

The goal of my research is to understand the effects of different aspects affecting human-AI

collaborations to create AI-backed interactive systems that assist humans in making better decisions

in a wide variety of tasks. Current AI systems consider a one-sided aspect of explanations and fail to

understand other elements hindering the process of improving complementary performance. There

is room for improvement in creating AI-assisting systems that elucidate weaknesses and biases of

AI, allowing humans to make decisions that are not under the influence of AI. This is especially

crucial when the systems are deployed in high-stakes domain such as medical and justice.

As mentioned in previous chapters, achieving complementary performance is one of the met-

rics used to determine smooth human-AI collaborations. One of my future research directions is

exploring different factors affecting complementary performance. The current AI setup assumes the

most optimistic AI performance. However, in reality, data distribution in the training set and test

set differ, resulting in a drop in AI performance. I explored how the difference in data distribution

could directly affect complementary performance [Liu et al., 2021]. Besides the widely debated

topic of how explanations should be generated and displayed, other factors are under studied, po-

tentially impeding complementary performance in different tasks. It remains an open question

on how the research community should set up experiments to emulate real-life scenarios and how



161

systems should be designed to create and bolster meaningful human-AI interactions.

My current work focuses on empowering human decision making on a wide range of tasks

spanning from simple to challenging. However, human-AI interactions should also be enhanced

in downstream natural language processing tasks, which could potentially help provide meaningful

insights and improve current processes. I explored how human-AI collaborations could be helpful in

text summarization and found that human-AI collaboration in formal and informal text summariza-

tion is helpful and valuable to a certain degree [Lai et al., 2022]. Exploring human-AI interaction

in other tasks is one of the first steps in realizing the goal of empowering human decisions and

tasks by exploring various tasks and building systems that are made more accessible to experts and

non-experts.

Another line of my future work is to make technology more accessible to both AI experts and

non-experts. Large language models (LLM) are gaining popularity recently due to their potential

and impressive performance on simple tasks. While many companies are making LLMs more

accessible to the public, how these models can be fully maximized by both AI experts and non-

experts and avoid unintended consequences remain under studied. Wu et al. [2022] took the first

step in making LLMs more accessible by proposing the concept of “Chaining” LLM steps. In the

grand scheme of building systems that are more accessible, developing reliable systems require

extensive testing. How could we extensively test the systems before production deployment? I

plan to investigate the concept of a sandbox that allows extensive testing and evaluation of the

systems. Sandbox allows a safe environment that could prevent any potential unintended harm or

inappropriate responses before deploying into the wild. More importantly, it provides an interactive

interface for humans, experts, and non-experts, to examine the effectiveness of the systems.

While technology has been advancing rapidly, there exists a gap between how we can build

systems that fully utilize the potential of both technology and humans. We live in interesting times,

and it is an exciting time to build systems for people and study humans’ usage of these systems.

This thesis contributes to a new paradigm of understanding human-AI interactions and building

systems that empower the human decision making process.
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