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ABSTRACT
A generation-to-load simulation estimated the impact, in terms of production costs and CO2 emis-
sions, attributable to the joint optimization of electric power generation and flexible end uses to
support increasingpenetrationsof renewable energy.Newly conceived, evaluated, and foundational
in developing a U.S. National Standard was a transaction-less yet continuous demand response sys-
tem based on a day-ahead optimum load shape (OLS) designed to encourage Internet-connected
devices to autonomously and voluntarily explore options to favour lowest cost generators – with-
out requiring two-way communications, personally identifiable information, or customer opt-in.
Boundary conditions used for model calibration included historical weather, residential building
stock construction attributes, home appliance and device empirical operating schedules, prototypi-
cal power distribution feedermodels, thermal generator heat rates, startup and ramping constraints,
and fuel costs. Results of an hourly-based annual case study of Texas indicate a 1/3 reduction in
production costs and a 1/5 reduction in CO2 emissions are possible.
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1. Introduction

Geopolitical initiatives to reduce carbon emissions seek
to encourage research and development of clean and
inexpensive renewable energy sources (RES) (Kaufman
and Gordon 2018; Bessa et al. 2019). Likewise, policies,
mandates, and renewable portfolio standards attempt
to drive socio-economic trends to increase the penetra-
tion of RES and raise the efficiency of existing generation
(Anisie 2019). Nevertheless, nearly 3/4 of theworld’s elec-
tricity is still produced using steam-based thermoelectric
processes that burn approximately 1/2 trillion dollars of
fossil fuel per year and on average are only 1/3 efficient
in converting fuel to electric power (International Energy
Agency 2019; General Electric 2019).

Due to the inefficiencies of burning fuel to supply
electricity, thermoelectric power plants are the largest
consumers of fresh water and, along with transportation,
are the largest producers of heat and greenhouse gases
that trap heat (Peer and Sanders 2018; Lee et al. 2018).
Thermoelectric power plants have grown in size and
number over time, so much that they are among the
largest contributors to anthropogenic climate change
(EPA 2020). In 1882, the first coal-fired steam-powered
dynamos installed in New York and London were rated

CONTACT Robert Cruickshank rfciii@cruickshank.org Consultant, 132 Cruickshank Rd #269, Big Indian, NY 12410, USA

to produce 100 kilowatts [kW] of power; today, more
than 62,500 power plants around the world rated at 30
megawatts [MW] or greater collectively produce over 5
terawatts [TW] (Evans and Annunziata 2012).

Minimizing fossil-fuelled thermoelectric generation is
not straightforward and challenges exist in maintaining
the security of the electric power supply-side as providers
seek themost effectivemix of generators that include the
highest penetration of variable-output RES (Ren21 2019;
Deetjen, Rhodes, andWebber 2017). On the demand side
of the electric power system, consumer privacy issues
and complexities in tariff designs and regulatory struc-
tures have thwarted widespread adoption of transactive
energy control and have not resulted in the load flexi-
bility needed to support high penetrations of RES (Pratt
et al. 2016).

Since its inception, electric supply has been built to
anticipate and follow inflexible demand. To reverse the
supply-follows-demand relationship, accelerate the pen-
etration of RES and the beneficial electrification of trans-
portation, buildings, industry, and agriculture – flexi-
ble demand must be encouraged to follow the clean-
est and lowest cost sources of supply. Flexible demand
acts as distributed storage and is fundamental and
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increasingly important in accommodating variability in
RES supplywhile transitioning to lowor zero-carbon elec-
tric power. Fortunately, the roles of flexible commercial
and industrial processes in modulating demand on the
grid are expanding (Eissa, Wasfy, and Sallam 2012; Ma
et al. 2017). Unfortunately, though forecast with increas-
ing accuracy (Zhang et al. 2015; Shaker, Manfre, and
Zareipour 2020), residential electric loads are inflexible,
operated autonomously as requestedwith neither regard
for geographic transmission and distribution constraints
nor the time-varying costs and CO2 emissions of generat-
ing electricity.

Thermodynamics-based quantitative assessments of
the generation-to-load impact of simultaneously modu-
lating all types of flexible loads have not been widely
reported. This prompted the research question: What is
the overall impact of load flexibility, and inparticular, how
much of the overall impact can be attributed to just resi-
dential load flexibility? As such, the aim of this work was
to gain an understanding of the interplay between differ-
ent flexible loads and the potential size of their respec-
tive contributions in supporting society’s transition to
100% RES. Perhaps flexibility having a large impact might
encourage designers and regulators to further efforts in
developing and legislating demand side load manage-
ment. To that end, objectives included developing both
a supply side model and a demand side model and then
coupling and jointly optimizing them toassess the impact
and value of flexibility.

This study focussed on the building-level, feeder-level,
and ISO-level impact of electric loads that could be made
flexible due to their inherent ability to store thermal
or electrochemical energy. The analysis started at the
appliance level, then aggregated load at the building,
feeder, city, region, and ISO levels, while assuming contin-
uous modulation of air conditioning, domestic hot water
(DHW), and battery charging – subject to meeting occu-
pant constraints for comfort and hot water.

To assess the maximum possible benefits of proac-
tively shaping flexible load, the daily forecast output of all
required thermal generators was flattened over time, i.e.
held constant, to raise generator efficiency to minimize
variable production costs. Next, the forecast time-varying
generation from RES was added atop the flattened ther-
mal generation to create an hourly day-ahead optimum
load shape (OLS).

Ubiquitous internet connectivity was assumed that
enabled energy retailers to broadcast the forecast OLS
to automaticallymodulate the demand from home appli-
ances and distributed storage to orchestrate load to flat-
ten the output of thermal generation resources, a pro-
cess that was named automatic residential load shaping
(ARLS). To explore the value of ARLS end-to-end, i.e. from

Figure 1. Variable production costs, emissions, and electricity
flows.

generation to load, simulationmodels accounted for vari-
able electricity production costs, CO2emissions, flow of
electricity, and load as shown in Figure 1.

Production costs of electricity varied not only with the
mix of generator types and fuels, but also spatiotem-
porally based on local weather, which simultaneously
influenced loads and, to a more significant extent, cer-
tain forms of RES generation. For example, during sum-
mer, high wind speeds from a cold front simultaneously
increased the output of wind power generation and
decreased the air conditioning cooling load in buildings.
At times, electricity production costs were relatively low,
such as when solar andwind powermetmost of the load.
At other times, production costs were relatively high,
such aswhenmarginal powerwas provided by expensive
peaking generators that operated for only a few hours
a year, or when thermal generators operated at a par-
tial load with relatively low heat rate energy conversion
efficiencies (Mikkola and Lund 2016).

In ARLS-based joint optimization of electricity sup-
ply and demand, a benefit of flattening the load met
by thermal generators was reduced startup, ramping,
and shutdown of generators, which raised the overall
heat rate efficiency across the entire generation fleet,
thus minimizing variable production costs, particularly
those related to fuel burn. Another benefit of ARLS was
reducing the curtailment of RES by modulating loads to
match in-time the forecast availability of wind and solar
power.

The scope of this work was to quantitatively assess the
overall value of completely flexible load and then esti-
mating the subset of value attributable to just flexible
residential loads. The overarching goal of this work was
introducing ARLS to advance current trends to modern-
ize generation of electricity by creating load flexibility to
allow for higher RES penetration and utilization, more
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efficient operation of all thermal generation, and effec-
tive transaction-lessmanagement of storage-capable dis-
tributed energy resources (DERs). The scientific contribu-
tion of this work was the creation of a method for creat-
ing, transmitting, and acting upon an OLS: (a) to evaluate
the maximum value of load flexibility, and (b) to use the
OLS as a control signal tomanage voluntary-participating
residential loads. The novelty of this work was the abil-
ity to provide novel encouraging thermodynamics-based
quantitative estimates of the impact of ARLS on variable
production costs and CO2 emissions using a relatively
small set of input variables.

The simulation was designed based on the follow-
ing inputs: construction attributes of building stock,
empirical operating schedules of all in-home end uses
of electricity, prototypical electric power distribution
feeder models, individual generator constraints, fuel
costs, and time-synchronous historical weather, load, and
RES generation data. Once calibrated using historical
time-synchronous load and RES generation data, RES
penetration was increased to support a sensitivity anal-
ysis of the effectiveness of ARLS in reducing both variable
production costs and curtailment of RES. While required
for optimizing the transmission and distribution portions
of the electric grid, spatiotemporal variations in electric-
ity cost due togrid congestionwere not considered in this
study. Aswell, control of voltage and reactive powerwere
not considered.

The simulation environment integrated the work
of Corbin and Henze (2017a, 2017b), Chassin, Fuller,
and Djilali (2014), Schneider (2008), and Cruickshank
et al. (2017, 2018), by taking a system-of-systems appro
ach to solving the problem of jointly optimizing electric-
ity supply and demand. Section 2 is a literature review of
the value of residential electric load flexibility and mod-
els for residential electric DHW heaters and battery stor-
age. Section 3 describes the simulation methodology.
Section 4 discusses the results that motivated the devel-
opment of the a U.S. National Standard for load shaping
(American National Standards Institute/Society of Cable
Telecommunications Engineers 2021). Section 5 presents
conclusions and outlook for future work.

2. Domain-specific literature review

While reviewing the literature and available datasets for
modelling grid and building interactions, several com-
mon key performance indicators (KPIs) and simulation
timescales were reviewed and considered. For evaluating
the potential impact of flexibility, the following KPIs were
commonly used: variable electricity production costs and
carbon dioxide emissions, amount of load shaped, and

amount of RES curtailed. Timescales from minutes to
hours were reviewed.

The simultaneous optimization of thousands of grid-
interactive buildings necessitated use of a distributed
optimization approach. While various modelling appro
aches were considered, non-thermodynamic models
such as those used in Lovins’ Reinventing Fire book
(Lovins 2013) were unable to perform bottom-up cal-
culations of load and the generation required to meet
load. Conversely, the thermodynamics-based HVAC com-
ponent models used in many tools were suitable for per-
forming bottom-up calculations of load, were described
in detail in the EnergyPlus Engineering Reference (Ener-
gyplus 2018), andwere largely derived from theAmerican
Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) HVAC 2 Toolkit (Brandemuehl 1993).

OpenDSS, the Open Source Distribution System Sim-
ulator provided by the Electric Power Research Institute,
has been widely used to perform grid planning stud-
ies and research (Montenegro and Dugan 2017). Since
its release in 2008 as an open source platform it has
become widely used. One of the features that makes
OpenDSS popular is that the package offers interfaces for
co-simulation, most recently with LabVIEW. Lacking was
the ability to use prototypical homes to populate and
model the behaviour of prototypical feeders.

GridLAB-D has also been widely used to perform grid
planning studies and research, supported the ability to
use prototypical homes to populate prototypical feed-
ers, and contained a low order, four parameter ther-
mal building model (Chassin, Fuller, and Djilali 2014;
U. DOE 2017a, 2017b; Battelle Memorial Institute 2017).
However, the implementation of the thermal model in
GridLAB-D was not readily adaptable for distributed MPC
without significantmodifications to theGridLAB-D source
code. Furthermore, a higher order model would likely
provide greater fidelity in predicting thermal dynamics.
Lacking was a tool to simulate building dynamics using
a higher order model outside of GridLAB-D that was rela-
tively simple, fast, and realistic in its predictions.

The work of Corbin and Henze (2017a, 2017b) resulted
in the creation of the GridMPC (Corbin 2014) simula-
tion environment, which was found to be suitable for
building thermodynamic simulations and was shown
to be successfully integrated with GridLAB-D. (Chassin,
Fuller, and Djilali 2014). GridMPC struck the right bal-
ance between model complexity, accuracy, and runtime.
GridMPC shaped loads based a (target) feeder refer-
ence demand signal, however, an OLS signal to drive
GridMPC to minimize costs or carbon did not yet exist.
GridMPC included a photovoltaic solar generationmodel,
a physics-based building model, and the model predic-
tive control (MPC) of residential air conditioning. Lacking
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in GridMPCweremodels to simultaneously simulate con-
trol of air conditioning, residential electric DHW heaters
and battery storage; as such, research in the below areas
was reviewed to inform adding these new capabilities
and degrees of control.

2.1. Value of building energy flexibility and demand
response

Hungerford, Bruce, and MacGill (2019) found that de
mand side management, particularly load shifting, had
considerable potential to facilitate the integration of
renewables. While dispatchable loads were often man-
aged to operate off-peak late at night, they could also be
managed to facilitate increasing levels of variable renew-
able generation. Their paper addressed the lack of data
showing how dispatchable hot water systems behaved
at an aggregated level in large systems using a case
study of the Australian National Electricity Market (NEM).
Optimized dispatch of generation within the PLEXOS R©

for Power Systems software environment demonstrated
the potential to decrease production costs as well as
reduce conventional generator cycling requirements,
reduce peak demand and improve RES utilization in high
renewables scenarios.Missing from the researchwere the
impacts of simultaneously controlling water heating, air
conditioning, and battery charging.

In addition to the PLEXOS production cost mod-
elling platform, Soroudi’s textbook included nearly a
dozen examples for power system optimization mod-
elling using the General Algebraic Modelling System
(GAMS) (Soroudi 2017). Tips for how to start coding in
GAMS were included for beginners, simple but practi-
cal examples were presented and solved, economic dis-
patch and several advanced topics were covered and
solved. The intended audience included power system
engineers, educators, system operators, and researchers,
and helped users to perform modelling in GAMS as an
alternative to PLEXOS or MATLAB R©.

Li et al. (2016a, 2016b) focussed on the coordina-
tion of a population of thermostatically controlled loads
(TCLs) with unknown parameters to achieve group objec-
tives. The problem involved designing the device bid-
ding and market clearing strategies to motivate self-
interested users to realize efficient energy allocation sub-
ject to a peak energy constraint. The model did not
include a numerical solution, renewable energy sources,
distributed generation or storage, and did not specify a
timescale.

Liu et al. (2014a) focussed on pricing data center
demand response. The model included many system-
level characteristics including collocated and offsite dis-
tributed PV generation and storage along with a numeric

solution, 46, 47 and 56-bus networks, and a 5-minute
timescale. Results highlighted the flexibility provided by
data centers is as valuable as, and often more valuable
than, the flexibility provided by large-scale storage when
it comes to ensuring that a distribution networkmeets its
voltage constraints in the presence of a large-scale solar
(PV) installation. The model did not include residential
buildings or loads.

Kessels et al. (2016) presented key lessons on how
to encourage households to adjust energy end use
by means of dynamic tariffs. The paper identified four
key hypotheses related to fostering demand response
through dynamic tariff schemes and examined whether
these hypotheses could be accepted or rejected based
on a review of published findings from a range of Euro-
pean pilot projects. The authors qualitatively concluded
that dynamic pricing schemes have the power to adjust
energy consumption behaviour within households (this
is not a surprise), but did not go so far as to offer quanti-
tative estimates.

2.2. Electric domestic hot water heaters

B. Hendron, Burch, and Journal (2010) and R. Hendron
and Engebrecht (2010) provided benchmarks and illus-
trative methods for analyzing the energy use of modern
appliances and houses. According to their research, the
energy savingspossible forDHWsystemsdepends signifi-
cantly on detailed occupantwater use patterns. Quantify-
ing these patterns, as surrogate measures for occupancy
andenergyusage,was essential formodellingwater heat-
ing loads. In their work, a spreadsheet tool generated a
series of year-long hot water draw schedules consistent
with realistic probability distributions of start time, dura-
tion, variable flow rates, fixture types, vacation periods,
and seasonality.

Burch (2012) simulated annual performance ratings for
solar water heaters using weather for a typical meteo-
rological year and then proposed a revised water draw
criteria andmodel. Bias stemming from the lack of realism
in the then-existing draw profiles included: (1) low flow
rates incorrectly boosted system performance with load-
side heat exchangers; (2) low mains temperature incor-
rectly boosted performance for all solar water heaters,
and (3) an invariant draw profile could not appropriately
credit larger storage volumes vs. smaller, and did not
portray realistic variations in the south to north geogra-
phies. A more-realistic ratings draw was proposed that
eliminated most bias by improving mains inlet tempera-
ture and by specifying more realistic hot water use. Their
paper outlined the current and proposed draws and then
estimated changes from draw specification changes for
typical systems in four cities. The average change in the
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ratings from the proposed drawwas approximately eight
percent.

Two-node electric resistance water heater models are
often used to strike a balance between prediction accu-
racy and computation speed. Compared to a one-node
model, the two-node model of Kondoh, Lu, and Ham-
merstrom (2011) captured the stratificationphenomenon
in the tank, thus representing the outlet temperature
more accurately. Similarly, the following two-node elec-
tric domestic hot water heater model was provided in Jin
et al. (2017):

Tlowwh (t + 1) = 1

Clowwh

[UAlowwh (Tinair(t) − Tlowwh (t))

+ �m(t)Cp(Tinlet(t) − Tlowwh (t))

+ ηlowwh P
nom,low
wh Ulow

wh (t)] (1)

Tupwh(t + 1) = 1

Cupwh
[UAupwh(T

in
air(t) − Tupwh(t))

+ �m(t)Cp(T
1
wh(t) − Tupwh(t))

+ η
up
whP

nom,up
wh Uup

wh(t)] (2)

Twh(t + 1) = Tupwh(t + 1) (3)

where superscripts low and up represented the lower
node and upper node of the tank.

Equations (1) and (2) produced the water temperature
as a function of the input variables. Tiwh was the water
temperature and Ui

wh was the control signal of tank node
i in terms of duty cycle. Tinair was the indoor air tempera-
ture, and Tinlet was the inlet water temperature. UAi was
theproduct of the heat loss coefficient and surface area of
node i, �m was the flow rate of hot water draws, Cp was
the heat capacity of water, Ciwh was the thermal capaci-

tance of tank node i, and Pnom,i
wh and ηiwh were the rated

power and efficiency of the resistive element in node i,
respectively. Equation (3) indicated the temperature at
which the hot water is delivered by the top node of the
water heater. Their water heatermodel was subject to the
following constraints:

Tmin
wh ≤ Tupwh ≤ Tmax

wh (4)

Tlowwh ≤ Tupwh (5)

Ulow
wh ≤ Uup

wh ≤ 1 (6)

0 ≤ Ulow
wh , Uup

wh ≤ 1 (7)

where Equation (4) dictated the temperature constraints
as the hot water exits the tank from the upper node.
Equation (5) enforced the thermal stability in the tank
such that the lower node should not be hotter than the
upper node because of buoyancy. Equations (6) and (7)
were the constraints of control signalsUlow

wh andUup
whwhich

were continuous variables between 0 and 1 that could be
interpreted as duty cycles.

Though heat pump water heaters provide savings in
heating hot water and are increasing in popularity, they
were not included in the literature review or analysis.
That said, heat pump water heaters would likely have (a)
less instantaneous load shed capability due to reduced
load from a compressor being used most often for heat-
ing versus a heating element, and (b) similar load add
capabilities when energizing a heating element.

The literature reflects a general agreement on (a) the
importance of DHWdraw schedules as a proxy for energy
use, and (b) the use of two-node models to capture the
operating characteristics of DHW heaters.

2.3. Distributed battery storage of electrical energy

Barley et al. (1995) and Barley and Winn (1996) defined
energy storage cost and explored dispatch optimization
strategies to minimize costs associated with generator
starts, generator fuel consumption, and battery erosion,
based on an economic analysis of presentworth life-cycle
cost. They documented the case when the load is large
enough – and thus the generator fuel efficiency is high
enough – that the cost of diesel generation per unit of
energyproduced is less than the cost of batterywear; they
defined a critical load, Ld , above which this applies and
developed a ‘frugal discharge strategy’.

More recently, Kaabeche and Ibtiouen (2014) devel-
oped metrics for comparing and sizing hybrid photo-
voltaic, wind, diesel, and battery generation in a stand-
alone power system. A techno-economic approach com-
bined two models: A reliability model developed based
on the total energy deficit concept and an economic
model based on the calculation of total net present cost.
The combination determined the optimumconfiguration
in the most cost-effective manner. Optimization results
showed that a combined photovoltaic, wind, diesel, and
battery system was more economically viable compared
to either (a) a photovoltaic, wind, and battery system, or
(b) a diesel generator only.

In a grid-tied battery system with dynamic pricing
(Newsham and Bowker 2010), Newsham et al. found the
added dimensions of buying and selling electricity at dif-
ferent prices at different times of the day helped make a
case for local micro-controllers and new battery storage
operating paradigms as implemented by Sklar (1990).

Liu et al. (2014b) studied pricing-based demand
response and concluded that large loads could provide
nearly the same degree of flexibility for load-serving enti-
ties as does large-scale storage – if adequately incen-
tivized. However, and this was a significant caveat, there
was more planning of lead-time required (i.e. it was more
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compute intensive) to extract flexibility from loads than
from (battery) storage.

Per Jin et al. (2017), battery state of charge (SOC),
charging power, Pchbat , and discharging power, Pdisbat , were
related as follows:

SOC(t + 1) = SOC(t) + ηchbat�t

Qbat
Pchbat(t) + �t

ηdisbatQbat
Pdisbat(t)

(8)

where Pchbat ≥ 0, Pdisbat ≤ 0, and ηchabat were the discharg-
ing and charging efficiency of the battery system, �(t)
was the length of the prediction step, and Qbat was
the capacity of the battery. The battery control vari-
ables were Uch

bat = Pchbat/P
ch,max
batt and Udis

bat = Pdisbat/P
dis,max
batt

which represented the percentage ofmaximum charging
power,Pch,max

bat , andmaximumdischargingpower,Pdis,max
bat ,

respectively.
The battery system model in Equation (8) was subject

to the following constraints:

SOCmin ≤ SOC(t + 1) ≤ SOCmax (9)

0 ≤ Uch
bat(t), Udis

bat(t) ≤ 1 (10)

where Equation (9) defined the operable SOC range
for reducing battery degradation and Equation (10)
indicated the range of the normalized battery control
variables.

In addition to thermal energy storage in buildings
and appliances, electrical energy storage in distributed
fixed and mobile batteries has proliferated and intro-
duced additional degrees of freedom for control for home
energy management systems (Jin et al. 2017). Batteries
are unique in their ability to provide a near-instantaneous
response in load add and shed – and can be very flexi-
ble over short time frames (I. Tesla 2019). In conjunction
with one-time optimum sizing of a battery system and
related charging and discharging components, several
factors that govern efficient charging and discharging of
batteries must be continuously considered in order to
provide optimum supervisory control.

The literature suggests that there are likely signifi-
cant economic opportunities enabled by battery storage.
This is especially true given recent trends away from net-
metering (where buying and selling costs are equal per
unit of electricity e.g. per kWh) toward feed-in tariffs,
where selling cost is a fraction of buying cost. Lower feed-
in tariffs give rise to the need for optimum control that
canmanage the ‘buying lowand sellinghigh’ of electricity
and promote self-consumption on-site.

3. Simulationmethodology

In order to leverage available data sources (Craig et al.
2019; National Oceanic and Atmospheric Administra-
tion 2019) and appropriately answer research questions,
a 1-hour simulation time step for generation and a 5-
minute time step for building thermodynamic response
and load were chosen for simulating the impact of ARLS.
The simulation incorporated functionality for the model
predictive control of buildings developed by Corbin and
Henze (2017a, 2017b), the modelling of electrical dis-
tribution feeders developed by Chassin, Fuller, and Dji-
lali (2014), Schneider (2008), and an electricity produc-
tion cost model (PCM) developed within the General
Algebraic Modelling System (GAMS) using GAMS Studio
version 0.14.3 and solved using IBM C-PLEX version 12
(Soroudi 2017). In the spirit of transaction-less yet con-
tinuous distributed control, the simulation intentionally
spanned across markets and assumed the remuneration
for consumers would be accomplished using existing
interval metering and billing infrastructures along with
electricity pricing based on time-of-use or dynamic tariffs.

For load modelling, GridMPC was chosen for its abil-
ity to include device-level and building-level responses
in distribution grid simulations, utilities for parsing simu-
lation input files and weather files, writing files required
by the power flow simulation software, and its build-
ing model that improved fidelity, e.g. beyond GridLAB-D
(Chassin, Fuller, and Djilali 2014) with reasonable simu-
lation run times. The building thermal model in Corbin
and Henze (2017a, 2017b) and Cruickshank et al. (2018),
as incorporated into GridMPC (Corbin 2014), was suit-
able for usewithoutmodification. However, extensions to
GridMPC were required to provide for additional degrees
of control in order to simultaneously optimize electri-
cal energy use by DHW heaters and battery systems.
The GridMPC DHW heater model was replaced to allow
for simulating: (a) dynamic thermal behaviour, (b) MPC-
enabled setpoint changes, and (c) usage schedules that
reflected empirical behaviour (Cruickshank et al. 2017),
e.g. as observed in the Northwest Energy Efficiency
Alliance, Residential Building Stock Analysis: Metering
Study (Larson et al. 2014). The solar penetration assump-
tions from GridMPC were adjusted to reflect 50% and
100% of homes having annual net-zero solar genera-
tion. A new model was developed for the MPC of bat-
tery charging and discharging. For modelling production
cost, GAMS was chosen as it has been shown to pro-
duce results comparable to a commercial tool such as
PLEXOS R© (Helistö et al. 2019), iswidely available, provides
for the use of many different solvers including the IBM C-
PLEX solver used in many operations research practices,
and is highly configurable in the creation and solution of
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energy systems models. A random generator uncertainty
model was developed to evaluate the impact of planned
and unplanned generator outages on production costs
and CO2 emissions.

To set up a simulation, (1) Buildings were chosen from
the Energy Information Agency, Residential Energy Con-
sumption Survey (RECS) database (U.S. Energy Informa-
tion Administration 2009), and (2) local weather was used
by GridMPC to auto-size the annual required air con-
ditioning capacity and the required area for a net-zero
solar array. To run a simulation, the following steps were
followed:

(1) For each of 365 days, use hourly weather to calcu-
late load and distributed solar generation for each
building.

(2) Sum building loads across feeders.
(3) Scale feeders to regional loads and then sum across

regions.
(4) Remove utility-scale wind and solar generation.
(5) RunGAMSproduction costmodel to calculate lowest

ops cost and resulting CO2 emissions for unshaped
thermal generation.

(6) Calculate daily forecast Optimum Load Shape.
(7) Re-run production cost model to calculate lowest

operating cost for optimally shaped (flattened) ther-
mal generation.

(8) Compare costs and CO2 emissions for unshaped ver-
sus optimally shaped load.

3.1. Mathematical formulation and simulation
model

The mathematical formulation of the Unit Commit-
ment model constructed in GAMS consisted of a cost-
optimization objective function based on production
costs:

min

{
n∑

t=1

{
N∑
i=1

vici(pi)

}}
, vi ∈ {0, 1} (11)

which was constrained by the need to match supply and
demand in each time period:

N∑
i=1

pi = d (12)

where:

n was the number of time intervals in each optimization
step

Nwas the total number of generators
vi was the binary variable indicating whether a generator

is committed (1) or not (0)

ci was the operating cost of generator i ($US/MW)
pi was the power generation of generator i (MW)
d was the system demand (MW)

Simulations were performed three times to estimate
the impacts in costs and CO2 emissions attributable to
jointly optimizing electric power generation and use via
ARLS. In each simulation, a primary GAMS-based PCM
simulated the costs and emissions of the thermal gen-
erators that met the net load (i.e. the total load less RES
generation), and a secondary GAMS model determined
the daily optimum ‘flat’ net generation shape. Then, RES
was added to the daily optimum net generation shape to
produce the daily OLS. Considered case studies included
the model predictive control (MPC) of various storage-
capable end uses and scenarios included increasing pen-
etration of RES.

First, actual production costs, emissions, andOLSwere
estimated based on actual historical load. Second, sim-
ulated production costs, emissions and OLS were esti-
mated based on a simulated historical load obtained by
coupling local historical weather and residential building
stock data with the calibrated residential building model
(Corbin and Henze 2017a, 2017b). Third, costs and CO2

emissions were estimated based on the simulatedMPC of
the on/off setpoints of end-use loads in various RES sce-
narios. A high-level representation of the ARLS simulation
is shown in Figure 2.

Starting at the left of Figure 2, regional parame-
ters were selected for building stock. Next, auto-sizing
of system nominal capacities based on annual local
weather was performed for air conditioning, DHW, and
solar PV systems. Load simulation was performed per
feeder, aggregated to cities, and scaled toweather zones.
Daily variable production costs and OLS were calcu-
lated and broadcast to MPC-enabled controllers in each
home, which, with knowledge of forecast weather, occu-
pant comfort constraints, and home/away schedules,
autonomously explored ways to shape loads to minimize
deviations from the OLS.

In each simulation, a PCM-based economic unit com-
mitment of all required generators minimized the vari-
able production cost per day by choosing the lowest cost
mix of generators for every hour, subject to operating
characteristics and constraints including: Base heat rate
[MMBTU]: the fuel burned to keep a generator at oper-
ating temperature; marginal heat rate [MMBTU/MWh]:
the fuel burned by a generator to produce electrical
output; maximum generator capacity [MW]: the maxi-
mum output of a generator; minimum generator capac-
ity [MW]: the minimum output of a generator; maxi-
mum upward and downward ramping [MW/hour]: the
maximum increase and decrease in the output of a
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Figure 2. Automatic Residential Load Shaping simulation. Loadi(t) denotes initial load. Loadf (t) denotes optimized load.Weather param-
eters include global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), direct normal irradiance (DNI). Generator types include
steam turbines (ST), combustion turbines (CT), combined cycle (CC), internal combustion (IC) and landfill gas (LFG). The OLS is denoted
by Shape(t). Variable production costs and CO2 emissions as a function of time are also shown.

generator in a single hour (note that thermal generators
ramp slowly in comparison togas turbines); variable oper-
ation and maintenance cost, VO&M [$/MWh] per gener-
ator, which increased with output power; startup cost
[$/start]: related to the type of fuel and time required to
start a generator, typically fromacold-start condition; fuel
price [$/MMBTU] for different fuel types; minimum down
time constraint (hours), the amount of time required to
take a generator offline and then bring it back online
again; and CO2 emission rate [lb/MMBTU]: the emissions
per unit of fuel consumed by a generator.

3.2. Electric domestic hot water heater loads

An evaluation was performed on the electric hot water
heater physical model in GridLAB-D (Battelle Memorial
Institute 2017) and found it lacking in realism. As a result,
an ‘instantaneous’ two-node physical model was created.
The model ran on a one-second timescale and was orig-
inally written in Python. The model was ported from
Python to Java so that it could be incorporated into
GridMPC. The Java version was verified against the orig-
inal Python version by setting the same initial conditions
(tank geometry, volume, and insulation characteristics)
and runtimeconditions (inletwater temperature, thermo-
stat setpoint and dead band, and water draws) and then
verifying the energy consumption and water outlet tem-
perature over time. The ported instantaneous Javamodel
was then extended for simulation timescales of several

minutes. After satisfactory testing, the model was incor-
porated into GridMPC. In attempting to follow the daily
OLS,MPC adjusted thewater temperature setpoints caus-
ing an electric water heater to store and release thermal
energy over time.

3.3. Distributed battery storage of electrical energy

The battery model was designed from first principals, fol-
lowing themethod (Jin et al. 2017), and could be thought
of as a hydraulic reservoir where water height repre-
sented the state-of-charge (SOC). In general, house loads
discharged the battery and charging offset loads; this is
where the height of reservoir analogy applied, e.g. if the
load (out) was greater than charge (in), then the battery
discharged (i.e. the water level dropped).

At each timestep, the GridMPC particle swarm opti-
mizer (PSO) adjusted the power supply control vector,
which contained setpoints for the upper value of SOC and
a global lower bound. Battery discharge was equal to the
sum of all house loads, including air conditioning, DHW
heating, and appliances. Multiple runs were completed
with various PSO simulation settings to verify the desired
operation in finding a global rather than local minimum.

The battery was modelled with no standby losses (i.e.
it maintained its charge over time). SOC was constrained
to equal 50% at the beginning and end of every daily
simulation which: (a) ensured that batteries were ready
to charge or discharge at the start of simulation, and
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(b) simplified checksum calculations for the conservation
of energy. The battery model assumed a combined 89%
round trip charge and discharge efficiency (calculated
during charge) (I. Tesla 2019), no standby losses, and a
maximumhourly charging rate of 25%of battery size. The
battery was sized at 13.5 kWh, as commonly found in a
Tesla Powerwall (I. Tesla 2019). In attempting to follow
the daily OLS, MPC adjusted the SOC setpoints causing
batteries to charge and discharge over time.

3.4. Battery key performance indicators

Metrics used to capture battery performance and the cost
of control included: (a) AV, the sum over the simulation of
the absolute value of changes in the state of charge, SOC,
e.g. AV = abs(+5%) + abs(−2%) = 7% over two inter-
vals, and (b) Ls, the percent of load shaped. TheAV battery
metric was designed to measure how ‘hard’ a battery
worked and aggregated the total amount of energy pass-
ing through a battery over time expressed as a percent
of battery capacity. Note that AV could rapidly exceed
100%, which was expected behaviour and was important
in forecasting battery life-cycle cost due to wear and tear
from charging anddischarging. Lswas defined as the sum
over the simulation intervals of the absolute values of the
deltas between the shaped and unshaped load and had
units of energy. As a percentage, Ls became a normalized
valuewhen divided by the sumof energy delivered in the
unshaped case.

3.5. Distributed generation via residential solar
photovoltaic collectors

Solar array sizing for each house was based on net-
zero energy consumption on an annual basis. To create
three scenarios of increasing RES penetration, each of
14 unique feeders with 0% distributed solar photovoltaic
(PV) penetration was replicated once to include 50% of
houses having PV and then again to include 100% of
houses having PV. In the 50% percent penetration case,
every other house on a feederwas chosen to have PV. The
houseswith andwithout PVwere kept as a static setwhen
performing subsequent simulations.

3.6. Summary of simulation andmodel validations

The thermodynamic building model was validated on an
annual basis using BESTEST-EX (Corbin 2014). The testing
procedure included a suite of building physics test cases
used to validate GridMPC’s ability to correctly capture
building cooling load calculations on an annual basis for a

variety of different building configurations in various cli-
mates; a sub-hourly validation was also performed at a 5-
minute time step. Appliance and DHW heater load mod-
els were validated based on observed empirical loads in
the RBSA study (N. RBSA 2017). The generator and pro-
duction cost models were validated based on the NREL
production cost study that used the same generators and
unshaped load (Craig et al. 2019). The battery model was
validated using a first law of thermodynamics checksum
that included charging losses.

3.7. Texas case study

A case study simulated electricity generation and use
across the serving area of the Electric Reliability Council
of Texas (ERCOT). Texas was chosen to study for several
reasons:

(1) It has over 24 million electricity customers across
residential, commercial, and industrial sectors.

(2) It uses approximately 1 TWh of electricity on an aver-
ageday and is responsible for roughly 10%ofU.S. and
2% of world energy use (Electric Reliability Council of
Texas 2019a).

(3) It has distinct climate regions across 200,000 square
miles.

(4) Its historicalweather, time-synchronous load andRES
data are available for different weather load zones.

(5) It can be modelled as an electrical island due to its
limited imports and exports of electricity.

(6) Its generation mix includes many RES and fossil-
based technologies and more than 600 fossil-based
generators of various sizes and constraints (Craig
et al. 2019).

Figure 3 depicts three Texas climate regions (3, 4, and
5) as defined by the Pacific Northwest National Labora-
tory (PNNL) (Schneider 2008) and eight colouredweather
load zones (Electric Reliability Council of Texas 2019b) as
defined by ERCOT.

The case study consisted of (1) unshaped and opti-
mally shaped cases for actual and simulated ERCOT load,
(2) seven combinations of the model predictive con-
trol (MPC) of residential air conditioners, electric DHW
heaters, and battery charging systems, and (3) three sce-
narios of increasing RES penetration. In addition, the case
study included the operating characteristics, constraints,
and fuel costs of 263 utility-scale thermal generators that
closely represent ERCOT generation (Craig et al. 2019). An
excerpt of the ERCOT generation fleet is listed in Table 1.
Note that generators were, for the most part, individual
line items, though in some cases were grouped as a sin-
gle meta generator, e.g. in the last two rows of Table 1,
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Figure 3. ERCOT operating area with three PNNL Grid Tax-
onomy climate regions separated by dashed lines and eight
coloured weather zones (adapted from Electric Reliability Council
of Texas 2019b and Schneider 2008).

utility-scale wind and solar generators were grouped by
technology.

To assess variability in production costs due to sched-
uled and unscheduled maintenance of generators, a sen-
sitivity analysis was used to estimate variable production
costs and emissions based on the random unavailability
of generators (NRDC 2020). For a given daily net load,
the PCM used a random sample of available generators.
A Monte Carlo method repeatedly chose a random set
of available generators to arrive at the expected mean
production cost and a distribution thereof.

3.7.1. Estimated production cost and emissions based
on actual electricity use
For Case 1, Actual Load, production costs and emissions
were estimated for the ERCOT-recorded 2005 hourly load
less the time-synchronous electricity production of all
utility-scale wind and solar generators (Electric Reliabil-
ity Council of Texas 2005). Time-synchronous load and
renewable generation data for more recent years was
unavailable. The hourly GAMS PCM used inputs of net
load, generator characteristics and constraints. The time-
varying blended costs, marginal costs, and CO2 emissions
were simulated based on the constraint of thermal gen-
eration equaling net load for each hour. In keeping with
best practices for PCM validation, the simulated variable
production costs were compared to the actual produc-
tion costs for the same period to check for general agree-
ment (Craig et al. 2019). Representing approximately 1% Ta
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of generation, 745MW of Texas utility-scale hydroelectric
power was excluded to simplify the analysis.

For Case 2, Daily OLS, to support the calculation of the
minimumpossible variable production cost, a simplifying
assumption was made that all load could be shaped with
negligible losses and penalties. While unrealistic due to
the efficiency and standby losses of electrical and ther-
mal storage, the negligible losses assumption enabled
the daily-based GAMS PCM to enforce a constraint of
thermal generation equaling net load for an entire day
as opposed to thermal generation equaling net load for
every single hour of a day. In thedaily-based PCM, the sim-
plifying assumption always resulted in a constant output
thermal generation shapewith no generator starts, stops,
or ramping. The flat thermal generation shape resulted
in the lowest variable production cost and as such was
considered the daily optimum, albeit highly idealized,s
thermal generation shape. As a last step in Case 2, the
hourly-based PCM used a flat daily optimum net gener-
ation shape to calculate the hourly production costs and
emissions.

3.7.2. Estimated production cost and emissions based
on simulated ERCOT electricity use
For Case 3, Simulated Base Case load, the thermo-
dynamic model of residential buildings (Corbin and
Henze 2017a, 2017b), provided a five-minute time-series
estimate for each of the 8 ERCOT weather zones and
for ERCOT in total. Individual cities in each of the eight
ERCOT weather zones referenced the local airport time-
synchronous weather denoted by the short form of the
International Civil Aviation Organization airport identifier
(e.g. Houston denoted by HOU) (International Civil Avia-
tionOrganization 2019). For weather details, see the 2005
annual files of hourly observations across Texas (National
Oceanic and Atmospheric Administration 2019). Per the
PNNL grid taxonomy, between four and eight of the 14
feeders unique to ERCOT appeared in each city resulting
in a total of 48 ‘city’ feeders as shown in Table 2, where
the letter R denotes residential feeders and the letters GC
denote generalized commercial feeders.

GridLAB-D MATLAB scripts provided by PNNL (Pacific
Northwest National Laboratory 2018) populated the sim-
ulation files for each unique feeder by selecting house
attributes from the RECS database (U.S. Energy Infor-
mation Administration 2009). GridMPC then used the
reduced-order thermal building model and historical
weather to simulate hourly thermal and electrical load
in homes; it simplified each home in GridLAB-D into an
equivalent ZIP load model so that the homes within the
feeder could be simulated simply as an electric demand
calculated outside of GridLAB-D. This was accomplished
by first writing the electric demand of each home at each

Table 2. ERCOT PNNL feeders by Weather Zone, city,
and airport.

Weather Zone City Airport Weather Feeders

West Abilene ABI 4
R4-12.47-1/2, R4-25.00-1, GC-12.47-1

N. Central Dallas RBD 4
R4-12.47-1/2, R4-25.00-1, GC-12.47-1

Coast Houston HOU 8
R5-12.47-1/2/3/4/5, R5-25.00-1, R5-35.00-1,GC-12.47-1

Southern Laredo LRD 8
R5-12.47-1/2/3/4/5, R5-25.00-1, R5-35.00-1, GC-12.47-1

North Lubbock LBB 4
R3-12.47-1/2/3, GC-12.47-1

Far West Midland MAF 4
R3-12.47-1/2/3, GC-12.47-1

South San Antonio SAT 8
R5-12.47-1/2/3/4/5, R5-25.00-1, R5-35.00-1, GC-12.47-1

East Tyler TYR 8
R5-12.47-1/2/3/4/5, R5-25.00-1, R5-35.00-1, GC-12.47-1

time step of the simulation into a separate file, then link-
ing these files to the power flow simulation using the
GridLAB-D ZIPload and player objects. The new model
that resulted, which combined the loads calculated by
GridMPC with the GridLAB-D feeder model, was termed
the ‘hybrid model’ and produced GridLAB-D output files
for each feeder (Corbin 2014).

Simulations of each of the feeders, including a com-
plete set of miscellaneous loads and appliances were
performed per house and then summed to produce the
aggregate loads per feederwithoutMPC control. Thiswas
referred to as the Base Case simulation and included all
residential loads from electrically powered devices such
as water heaters, refrigerators, ranges, computers, televi-
sions, cable boxes, and lighting. Referencing the percent
proportion of each feeder type within a region described
by Schneider (2008), the feeder loads were summed pro-
portionally to simulate the per day five-minute city loads.

To scale-up city loads and create aggregate weather
zone loads, the daily sum of the historical actual hourly
weather zone load was divided by the daily sum of sim-
ulated city load in order to arrive at a city-to-zone scal-
ing factor. City-to-zone scaling factors were calculated for
all eight weather zones and used as multipliers of five-
minute city loads inorder to arrive at aggregate calibrated
five-minute weather zone loads. The sum of loads used
in the calibration produced a zero bias (i.e. there was
no residual in the annual energy balance); alternatively,
calibration via nonlinear minimization could be used to
minimize the variance between the actual and simulated
loads using a Newton-type algorithm with a non-zero
bias. Lastly, the aggregate five-minute load per weather
zone was summed across all weather zones to create an
unshaped Base Case (BC) aggregate five-minute ERCOT
load.
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As a final step in Case 3, thehourly-based PCM returned
the variable production costs and emissions for meeting
the aggregated (unshaped) load across ERCOT. Case 4,
Simulated Base Case OLS, followed the same procedure
as Case 2, in this case, applied to the simulated load of
Case 3. Cases 5–8 are the daily excerpts from Cases 1–4,
respectively.

3.7.3. Estimated production cost and emissions based
on simulatedMPC-based load shaping
For Cases 9 through 15 of simulated shaped loads, ARLS
extended theMPC-based load shaping and air condition-
ingmodels of Corbin andHenze to include control of elec-
trical charging of batteries and thermal charging of elec-
tric DHWheaters. Using ARLS, a set of cases and scenarios
assessed the cost and CO2 impact of different combina-
tions of controlled end uses, e.g. air conditioning only, air
conditioning plus battery charging, air conditioning plus
battery charging plus electric water heating.

A set of cases implemented the following steps: (1)
MPC shaped electric load by optimizing the above end-
uses based on forecast weather, predetermined presence
of occupants assumed to be away from home from 8AM
to 6 PM, bounded temperature setpoints, and target load
shape deltas derived from the daily OLS, (2) Loads were
aggregated across Texas using feeder-to-weather zone
scaling, and the residential load was estimated to be 33%
of total load with the remaining load assigned to com-
mercial and industrial loads, (3) For the three scenarios
of RES penetration (A) low, (B) medium, and (C) high, the
variable production costs and CO2 emissions from gen-
erators operating to meet the MPC-managed load were
summarized.

3.7.4. MPC scenarios
TheMPCof air conditioning systems followed themethod
of Corbin and Henze to auto-size the cooling capacity for
each home based on the maximum cooling day for the
year and a ten-minute minimum on-time for single-stage
air conditioning. In attempting to follow the daily OLS,
MPC adjusted the cooling setpoints causing houses to
store and release thermal energy over time.

In Cases 9–15, MPC attempted to meet the daily
OLS, and the resulting shaped load was input to the
hourly PCM, which returned costs and emissions for each
ERCOT simulation scenario. To accommodate the addi-
tional degrees ofMPC control, particle swarmparameters
were adjusted based on results of experiments to deter-
mine the appropriate parameters. The MPC control inter-
vals were increased from 30-minutes to 1-hour to limit
oscillatory behaviour of loads and to reduce computer
processing time.

3.7.5. PSO optimization parameters
The GridMPC air conditioning model used an increment
of 0.25 K and a maximum particle velocity of 0.25 K. To
reflect allowable temperature ranges during home and
away occupant hours, GridMPC was allowed to explore
a range of thermostat settings including 2 K below the
setpoint while the occupants were home, and from 5K
below to 3 K above the setpointwhile the occupantswere
away.

Extending the work of Corbin and Henze (2017a,
2017b), the PSOparameterswere set such that therewere
24 dimensions, 1 per hour, for every controlled device,
resulting in a total of 72 dimensions for the case of air con-
ditioning plus battery plus water heater (AC+BAT+WH).
The control resolution was set to 0.25 K for air condition-
ing and DHW heater models and to 1% of capacity for
the battery model. The maximum particle velocities were
chosen by graphing the swarm behaviour for individual
houses, manually inspecting graphs of multiple runs, and
then choosing velocities which showed asymptotic con-
vergence within 5000 iterations. Themaximum velocities
for the AC, battery, and water heater were 0.25, 2, and 24,
respectively.

The water heater model operated over a temperature
range of −10 to +10 K. Given an increment of 0.25 K, the
max velocity of the particles was four increments, equal
to 4/80 or 5% of the total search space for each dimen-
sion. The battery model had a charge range of −50% to
+50% from an initial 50% SOC, with each value repre-
senting one percentage point of battery capacity. Given
the increment of 1%, themaximumvelocities of the parti-
cleswas 24 increments equal to 24/100 of the total search
space for the first 20 dimensions (i.e. the first 20 hours of
the day). Dimensions 20–24 had their lower and upper
bounds decreased by 12.5% each so that all batteries
would attempt to converge to 50% charge by the end of
the day.

4. Results

In simulations of generation and load across ERCOT, cost
and CO2 emission estimates for actual, simulated, and
MPC-managed loads quantified the impact of optimum
load shaping for various penetrations of utility wind, util-
ity solar and distributed solar photovoltaic generation.
Using inputs of the forecast load, generation from RES,
thermal generator properties, and fuel costs, the hourly
PCM produced a daily unit-commitment of the genera-
tion mix to estimate lowest possible electricity produc-
tion cost. Using the daily OLS as an input control sig-
nal, MPC enabled the optimal supervisory control of the
thermal and electrical energy storage in each house.
Comparing the daily electric power production costs and
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Table 3. Full year 2005 range of variable production costs and CO2 emissions for actual load, simulated load, and scenarios of increasing
RES penetration.

Scenarios −→
A. Low RES penetration

uWind22, uSolar1, dSolar0
B. Medium RES penetration
uWind30, uSolar3, dSolar50

C. High RES penetration
uWind38, uSolar5, dSolar100

↓ Cases Cost Cost CO2 Cost Cost CO2 Cost Cost CO2

Full year 2005 $ [B] $/MWh lb [B] $ [B] $/MWh lb [B] $ [B] $/MWh lb [B]
1 Actual load observed in Texas 5.36 17.96 252 3.75 12.58 146 3.22 10.77 94.7
2 . . .daily optimum shape 5.31 17.80 257 3.23 10.83 148 1.92 6.44 77.9
3 Simulated Base Case load 5.35 17.92 253 3.49 11.70 138 2.92 9.79 84.0
4 . . .daily optimum shape 5.30 17.76 263 3.14 10.53 141 1.70 5.70 65.0

Notes to Table 3: (1) Curtailment of uWind and uSolar was required during some hours in Scenario B and many more hours in Scenario C in order to prevent over
generation.(2) Uncertainty in production cost due to random generator unavailability due to planned and unplanned maintenance was less than x%.Entries for
utility-scale wind and solar denote penetration based on annual production, e.g. uWind22 denotes utility wind providing 22% of the annual energy in 2005.
Entries for distributed solar, e.g. dSolar50, denote the percent of houses with PV.

resulting emissions over a number and typeof distributed
storage degrees of freedom controlled by MPC, resulted
in a range of costs and CO2 emissions.

4.1. Cost and emissions overview

Table 3 is a summary of ERCOT annual production costs
and CO2 emissions. Each row depicts a different case of
actual and simulated load; each columndepicts three sce-
narios of (A) low, (B) medium, and (C) high penetrations
of RES. In each group, the daily optimal load shape was
applied to the actual and simulated load to flatten net
generation and determine the lowest possible produc-
tion cost. The difference in production cost to serve the
loadwith andwithout theoptimal load shapedetermined
the upper bounds of possible reductions in variable costs
and CO2 emissions.

Table 3, Scenario A, Cases 1 and 3 reflect good agree-
ment between the annual cost of providing electric-
ity Texas-wide, which was approximately $5.3B in 2005.
Results from all scenarios indicated a reduction in costs
in Cases 2 and 4 when the OLS was applied. Scenario A
savings were 1%, Scenario B savings were approximately
10%, and Scenario C savings were approximately 40%.
Savings in Scenarios B and C are attributable to ARLS
shaping andmodulating load to better match in time the
available RES, which resulted in decreased curtailment of
RES and lower costs.

With respect to CO2 emissions, Cases 2 and 4 have a
2% to 3% increase from Scenario A to Scenario B; in large
part due to increased use of lower cost but higher CO2-
producing coal steam turbines which displaced the use
of cleaner gas combined cycle generation. Most notably,
Scenario Cprovided an approximate 20%decrease inCO2

attributable to ARLS’ reduced curtailment use of RES.
Table 4 summarizes the 1-day results for Cases 5–15

for 18 May 2005, which is illustrative of Spring and Fall
weather. RES penetration Scenarios A, B and C are the
same is in Table 3. Cases 5, 6, 7, and 8 are 1-day excerpts of

Cases 1, 2, 3, and 4 in Table 3. Cases 9 through 15 quantify
the performance of the MPC of air-conditioning, battery
charging, and electric DHW heating.

In Table 4 Scenario A, Cases 5 and 7 have reasonable
agreement between the daily cost of providing electric-
ity Texas-wide, which was approximately $13M for the
day. The most substantial decreases in production cost
occurred across all scenarios in Cases 6 and 8 when OLS
was applied. As summarized with relative percentages in
Table 5, Case 8, Scenario A had a 5%decrease in cost, Sce-
nario B had a 65% decrease in cost, and Scenario C had
no impact as RES and nuclear generation met the load
for all Cases. Cases 9–15, Scenario A had a range of cost
impacts from −3% to +10%. Cost increases were due to
overall increased energy use in optimization cases due to
standby losses associated with pre-cooling a home and
pre-heating hot water. Cases 9–15, Scenario B had 1% to
19% reductions in cost, with lowest cost in Case 10.

With respect to CO2 emissions, in Table 5, Case 8,
Scenario A had a 22% increase, Scenario B had an 86%
decrease, and Scenario C had no impact as RES and
nuclear generation met the load for all Cases. As will be
shown in Section 4.2, increases in emissions are due to
the decreased use of cleaner but more expensive and
more flexible gas generation, and increased use of dirtier,
but less expensive and less flexible coal generation. Cases
9–15, Scenario A had a 4% to 11% increase in emissions.
Scenario B indicates an 2% to 22% decrease in emissions,
with the lowest emissions in cases 13 and 15.

Table 6 summarizes the single-day results for Cases
5–15 for 23 August 2005, which is illustrative of a Summer
peak demand day. RES penetration Scenarios A, B and C
are the same is in Tables 3 and 4. As in Table 4, Cases 5,
6, 7, and 8 are single-day excerpts of Table 3 and Cases 9
through 15 quantify the performance of MPC.

In Table 6, Case 5, Scenario A, the daily production
cost of $25.4M is significantly less than the Case 7 cost
of $31.5M. For Scenario B, there is better agreement, and
Scenario C has the best agreement. The most significant
reductions in cost occurred across all Scenarios in Cases
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Table 4. 18 May 2005 range of variable production costs and CO2 emissions for actual load, simulated load, and scenarios of increasing
RES penetration.

Scenarios −→
A. Low RES penetration

uWind22, uSolar1, dSolar0
B. Medium RES penetration
uWind30, uSolar3, dSolar50

C. High RES penetration
uWind38, uSolar5, dSolar100

↓ Cases Cost Cost CO2 Cost Cost CO2 Cost Cost CO2

18 May 2005 $ [M] $/MWh lb [M] $ [M] $/MWh lb [M] $ [M] $/MWh lb [M]
5 Actual load observed in Texas 12.96 15.45 486 6.73 8.02 160 3.67 4.37 52.00
6 . . .daily optimum shape 11.25 13.41 523 3.63 4.32 119 1.07 1.28 8.00
7 Simulated Base Case load 12.10 14.43 447 3.07 3.66 59 1.07 1.28 8
8 . . .daily optimum shape 11.44 13.64 547 1.07 1.28 8 1.07 1.28 8
9 Simulated load with MPC A/C 12.39 14.77 484 2.79 3.33 53 1.07 1.28 8
10 . . .with MPC BAT 11.78 14.04 476 2.5 2.98 46 1.07 1.28 8
11 . . .with MPC DHW 12.24 14.59 466 3.03 3.61 53 1.07 1.28 8
12 . . .with MPC A/C+ BAT 13.29 15.84 489 2.56 3.05 48 1.07 1.28 8
13 . . .with MPC A/C+ DHW 12.52 14.92 496 2.85 3.39 58 1.07 1.28 8
14 . . .with MPC BAT+ DHW 11.96 14.25 484 2.56 3.05 53 1.07 1.28 8
15 . . .with MPC A/C+ BAT+ DHW 12.25 14.6 493 2.66 3.17 58 1.07 1.28 8

Notes to Table 4: (1) For cases 5–15, residential PV solar sizing was initially based on net zero whole-house energy usage on an annual basis and then on daily
basis to reduce compute times. (2) Curtailment of uWind and uSolar is required during some hours in Scenario B and many more hours in Scenario C in order to
prevent over generation.

Table 5. 18 May 2005 impact compared to unshaped actual load.

Scenarios→ Cost Impact [%] CO2 Impact [%]

↓ Cases A B C A B C

8 Simulated BC load optimum shape −5% −65% 0% 22% −86% 0%
9 Simulated load with MPC A/C 2% −9% 0% 8% −10% 0%
10 . . .with MPC BAT −3% −19% 0% 6% −22% 0%
11 . . .with MPC DHW 1% −1% 0% 4% −10% 0%
12 . . .with MPC A/C+ BAT 10% −17% 0% 9% −19% 0%
13 . . .with MPC A/C+ DHW 3% −7% 0% 11% −2% 0%
14 . . .with MPC BAT+ DHW −1% −17% 0% 8% −10% 0%
15 . . .with MPC A/C+ BAT+ DHW 1% −13% 0% 10% −2% 0%

6 and 8 when the OLS was applied. As summarized with
relative percentages in Table 7, Case 8, Scenario A had a
3%decrease in cost, Scenario B had a 1%decrease in cost,
and Scenario C had an 11% decrease in cost. Cases 9–15,
Scenario A have minor cost increases, due to the standby
losses related to optimization that allowedmore overall –
yet lower cost – energy to be used, e.g. preheating water

resulted in standby losses as a tank cooled down. Cases
9–15, Scenario B had minor cost differences. Cases 9–15,
Scenario C had between 0% to 9% decrease in cost.

With respect to CO2 emissions, Case 8 had minor cost
differences in ScenariosAandBanda28% increase in Sce-
nario C. Cases 9–15, Scenario A had minor increases from
increased energy use due to the standby losses related

Table 6. 23August 2005 range of variable production costs andCO2 emissions for scenarios of increasing RESpenetration and increasing
MPC of end uses.

Scenarios −→
A. Low RES penetration

uWind22, uSolar1, dSolar0
B. Medium RES penetration
uWind30, uSolar3, dSolar50

C. High RES penetration
uWind38, uSolar5, dSolar100

↓ Cases Cost Cost CO2 Cost Cost CO2 Cost Cost CO2

23 August 2005 $ [M] $/MWh lb [M] $ [M] $/MWh lb [M] $ [M] $/MWh lb [M]
5 Actual load observed in Texas 25.41 22.51 1157 17.91 15.86 838 15.13 13.4 471
6 . . .daily optimum shape 24.31 21.54 1132 17.72 15.7 897 11.35 10.06 531
7 Simulated Base Case load 31.54 27.95 1407 20.83 18.45 948 13.34 11.82 453
8 . . .daily optimum shape 30.61 27.12 1412 20.66 18.31 932 11.83 10.48 579
9 Simulated load with MPC A/C 32.15 28.48 1433 21.08 18.67 959 12.93 11.45 471
10 . . .with MPC BAT 31.52 27.92 1406 20.61 18.26 930 12.12 10.74 474
11 . . .with MPC DHW 31.84 28.21 1420 20.89 18.51 953 13.35 11.83 457
12 . . .with MPC A/C+ BAT 31.85 28.21 1422 20.97 18.58 943 12.23 10.83 483
13 . . .with MPC A/C+ DHW 32.48 28.78 1444 21.18 18.76 947 13.10 11.61 480
14 . . .with MPC BAT+ DHW 31.95 28.3 1408 20.74 18.38 935 12.11 10.73 484
15 . . .with MPC A/C+ BAT+ DHW 32.26 28.58 1438 21.16 18.75 952 12.44 11.02 491

Notes to Table 6: (1) For cases 5–15, residential PV solar sizing was initially based on net zero whole-house energy usage on an annual basis and then on daily
basis to reduce compute times.(2) Curtailment of uWind and uSolar is required during some hours in Scenario B and many more hours in Scenario C in order to
prevent over generation.
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Table 7. 23 August 2005 impact compared to unshaped actual load.

Scenarios→ Cost Impact [%] CO2 Impact [%]

↓ Cases A B C A B C

8 Simulated BC load optimum shape −3% −1% −11% 0% −2% 28%
9 Simulated load with MPC A/C 2% 1% −3% 2% 1% 4%
10 . . .with MPC BAT 0% −1% −9% 0% −2% 5%
11 . . .with MPC DHW 1% 0% 0% 1% 1% 1%
12 . . .with MPC A/C+ BAT 1% 1% −8% 1% −1% 7%
13 . . .with MPC A/C+ DHW 3% 2% −2% 3% 0% 6%
14 . . .with MPC BAT+ DHW 1% 0% −9% 0% −1% 7%
15 . . .with MPC A/C+ BAT+ DHW 2% 2% −7% 2% 0% 8%

to cost optimization. Cases 9–15, Scenario B had minor
decreases. Cases 9–15, Scenario C had increases between
1% to 7% due to increased energy use and increased use
of less expensive coal generation that displaced theuseof
more expensive cleaner gas combined cycle generation,
similar to as shown in Figure 8.

In summary, the benefits in load reduction were not
apparent in Scenarios A and B for at least the following
reasons: (1) There was increased energy use due to the
standby losses associated with shaping load, and (2) The
model underpredicted high load periods, which resulted
in less use of the most expensive marginal generation.

4.2. Variability in production costs due to random
unavailability of generators

The variability in production costs and CO2 emissions due
to scheduled and unscheduled maintenance and out-
ages of individual generators is shown in Figure 4, which
depicts results of a cost-based sensitivity analysis using a
random sample of available generators meeting the load
over 24 hours on 1 January 2005. Results are shown for
100%, 97.5%, 95%, 92.5%, and 90% of the ERCOT of fleet
generators being available. Lower numbers of available
generators results in only slightly higher costs due to rel-
atively small differences in themarginal costs of available
versus unavailable generators. However, lower numbers
of available generators results a greater impact on raising
emissions due to the larger differences in the emissions
of available versus unavailable generators, e.g. the emis-
sions from an available coal generator are greater than
those of an unavailable gas generator.

4.3. Unshaped actual load versus optimum load
shape

ForCases 1&2, ScenarioA, production cost andCO2 emis-
sions were calculated for the unshaped actual historical
hourly load and for the same load had it been optimally
shaped over seven days as shown in Figure 5(a,b), respec-
tively. As expected, the minimum production cost was
achievedwhen the net loadwas constant, depicted as flat

Figure 4. Variability in production costs and CO2 emissions due
to random unavailability of generators on 1 Jan 2005.

Figure 5. ERCOT hourly generation based on actual load at top
(a) and daily optimum load at bottom (b) on 20–26 Aug 2005.

lines for thermal generation, as shown for each hour of
20–26 Aug 2005 in Figure 5(b). Theweek of 20–26 August
is of interest as: (a) it was the hottest week of 2005 with
over a TWh of energy delivered each day, and (b) many of
the 263 thermal generators were active and could benefit
from higher capacity factors.

Figure 5 is known as a generation stack anddepicts the
cumulative contributions of 10 power production gener-
ation technologies that together meet the time-varying
load. In Figure 5(a) there are a peak hours of dark red
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Figure 6. Box plot distributions of daily midnight generation discontinuities for 2005.

(GasCT) in-between the bands of orange (uWind) and
light red (GasCC) on 22, 23, and 26 August, and there are
peak hours of dark green (GasST) above the dark blue
(CoalsST) on 22 and 26 August. Barely visible are small
diurnal midday generation contributions in light purple
(uSolar) at the very top of each graph, and a very thin
continuous thread of light green (LFG) atop the dark blue
(CoalST) generation.

In Figure 5(a), note the net generation ramped up and
down (depicted by seven humps) in shades of blue and
red as the ERCOT generation fleet varied its production
of electricity to meet the net demand. As expected, for
a daily optimum shape, the ramping of thermal genera-
tion in (a) is removed, as shown by flat net generation in
(b) where there is no intra-day ramping in the dark blue
(CoalST) and light red (GasCC) generation. The result is
an impact on variable production cost and CO2 emissions
of individual generators. Summing across all generators
and time, the total energy delivered in (a) and (b) is the
same except for standby losses, i.e. the areas under and
including the topmost curves in (a) and (b) are nearly the
same.

As depicted in Figure 5(b), the daily optimum shape
can result in step change discontinuities on day bound-
aries at midnight, e.g. between midnight on 22 August
and 1 AM on 23 August. Discontinuities were the result of
adjacent days with different aggregate energy use and,
as expected, were minimal between days with similar
energy use and meteorological conditions. Typical dis-
continuities in load, defined as those observed in Case
1 (historical data), were compared to the discontinuities
in Case 2 (OLS). Box plot distributions of discontinuities
in Cases 1 and 2 provide a sense of typical vs. atypical
behaviour, as shown per month in Figure 6.

In Figure 6, the monthly median of midnight discon-
tinuities is less for the optimum versus the actual load
in January, March, May through August, and Novem-
ber. Small midnight discontinuities are advantageous
from the perspective of reduced thermal and pressure
stresses that result from ramping thermal generators
(Miller et al. 2014). Nonetheless, the upper quartiles and
inter-quartile ranges in all months depict many greater
than typical midnight discontinuities. Methods for reduc-
ing midnight discontinuities are likely to include modifi-
cations to the GAMS PCM to manage day-to-day bound-
aries and are beyond the scope of this research.

Hourly outputs fromtheTexas fleet of RESandnon-RES
generators were compared and contrasted for Scenarios
A, B, and C. Sample visualizations of the generation that
met the load for eachhourof 23August 2005are shown in
Figures 7, 8, and 9. In each figure, Cases and Scenarios are
denotedwith an abbreviated notation, e.g. C5SA denotes
Case 5, Scenario A. In Figure 7(a,b), the visualizations are
a single-day zoomed view of the 23 August 2005 weekly
view in Figure 5.

Figure 7(a) depicts the variability in unshaped load and
generation in 24 hourly intervals. The variability in util-
ity wind power (uWind 22) is denoted by the changing
height of the orange bars, with output lowest from sun-
rise through hour 11. To ramp up output and meet the
daily peak load, GasCT generation was required for hours
14, 15, and 16.

The top line in Figure 7(b) provides visual insight to
creating the daily OLS. In the first of two steps, the ther-
mal generation in Figure 7(a) was flattened, i.e. held con-
stant, by equally distributing the sum of daily non-RES
production across all 24 hours, in this example starting
with the light blue (Nuclear) fleet at the bottom up to and
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Figure 7. Cases 5 & 6, Scenario A, ERCOT generation that met the
actual unshaped load at the top (a) and optimal generation at the
bottom (b) for 23 Aug 2005. Between (a) and (b), the percent of
load shaped, Ls, is 21%.

Figure 8. Cases 5 & 6, Scenario B, ERCOT generation that met the
actual unshaped load at the top (a) and optimal generation at the
bottom (b) for 23 Aug 2005. Between (a) and (b), the percent of
load shaped, Ls, is 29%.

Figure 9. Cases 5 & 6, Scenario C, ERCOT generation that met the
actual unshaped load at the top (a) and optimal generation at
the bottom (b) for 23 Aug 2005. Note the black trace at top in (a)
denotes curtailed RES which is zero at bottom in (b). Between (a)
and (b), the percent of load shaped, Ls, is 59%.

including the light red (GasCC) fleet. In the second step,
the hourly variable RES generation was added atop the
flattened thermal generation, in this case resulting in a
somewhat concave optimal load shape.

As shown in the legend of Figure 8, Scenario B intro-
duced: (a) increasedutilitywind (uWind) from22% to30%
of the total annual ERCOT production, (b) increased util-
ity solar (uSolar) from 1% to 3% of the total annual ERCOT
production, and (c) distributed net-zero solar PV on 50%
of homes.

For the Unshaped Load, increasing RES increased the
ramping of thermal generation as can be observed by
comparing Figures 7(a) and 8(a). Figure 8(a) shows more
upanddown rampingof net generation to accommodate
the increase in variable RES. For the Daily Optimum, the
impact on the thermal generation fleet of increasing RES
can be observed by comparing and contrasting Figures
7(b), and 8(b). In addition, the impact of increasing RES on
the peak output of thermal generation can be observed
by comparing Figure 7(b), where the top of the thermal
generation is a flat line at 40GW, and Figure 8(b), where
the top of the thermal generation is reduced to 30GW,
representing a one-quarter reduction between Scenarios
A and B.

As shown in Figure 9, Scenario C further increased: (a)
uWind to 38% of the total annual ERCOT production, (b)
uSolar to 5% of the total annual ERCOT production, (c)
dSolar to 100% of homes.

For the Unshaped Load, further increasing RES had
an additional impact on thermal generation that can be
seen by comparing Figures 7(a), 8(a), and 9(a). Figure
9(a) shows a further increase in the ramping of net
generation to accommodate the increase in RES. Dur-
ing daylight hours, the increased contributions of dis-
tributed solar generation required: (a) downward ramp-
ing through noon to prevent over-generation, and then
(b) upward ramping through hour 19 to ensure sup-
ply would meet demand. Approaching noon, downward
ramping required the GasCC and CoalST fleets to com-
pletely shut down by hour 11. During hours 12 and 13
the top black line depicts renewable energy overgen-
eration that had to be curtailed (i.e. could not be used
and was thrown away). The four nuclear power plants in
light blue remained operational per the constraint that
they could not shut down for short intervals. During the
afternoon, theCoalST andGasCCgeneration fleet ramped
up, and at hour 18 and 19 upward ramping was sup-
plemented by the fast-starting and fast-ramping GasCT
fleet.

For the Daily Optimum, comparing and contrasting
Figures 7(b), 8(b), and 9(b) provides insights to the impact
on the thermal generation fleet of further increasing RES.
In Figure 9(b) the top of the non-RES generation fleet
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Figure 10. ERCOT load per weather zone. Actual at top and sim-
ulated at the bottom on 20–26 August 2005. For reference, Hous-
ton airport temperatures are shown at far right. The two highest
demand weather zones are home to Houston in the Coast region
(in black at the bottom) and Dallas in North Central (in light blue
in the middle).

is a flat line reduced to just over 20GW, representing a
nearly one-half reduction in thermal generation between
Scenarios A and C.

4.4. Simulated load

Historical electricity use was simulated using the building
model with local weather inputs, aggregated by feeder,
scaled from feeder to city, and then city to weather zone.
The actual and simulated load by weather zone is shown
in Figure 10 using a different scheme of eight colours
representing the ERCOT weather zones. The two largest
weather zones are the Coast (in black), in which Houston
is located, and North Central (in light blue), in which Dal-
las is located. Summing the historical observed load per
weather zone provided a total ERCOT load which peaked
near 60GW during the middle of the week.

As expected, the impact of outdoor temperature on
load was found to be significant. For reference, in Figure
10, Houston temperatures are shown as a gold line with
a scale on the right vertical axis. The position of the gold
temperature line is unchanged in (a) and (b). Referencing
the gray topmost load curve against the gold tempera-
ture line provides insight to the magnitude of the errors
between the (a) actual load, and (b) simulated load. The
errors are a result of themodel underpredicting simulated
load.

To investigate model prediction errors, frequency dis-
tributions (histograms) were created to provide insight to
the skill of the model throughout the forecasting regime.
The 2005 actual and simulated total and net loads are
depicted in Figure 11.

In Figure 11(a), note the long tails in the actual load
in the upper row that are missing in the (b) bottom row

Figure 11. Histograms comparing 2005 actual and simulated base case total and net load.
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Figure 12. Hourly residual errors between simulated and actual
ERCOT load by month. Note that the load is overpredicted in the
spring and fall seasons and underpredicted in the summer. The
mean and median of residual errors are least in the winter.

Figure 13. Residual errors between simulated and actual ERCOT
load by the hour of day. Note that the load is overpredicted in the
morning before and after sunrise, underpredicted in themiddle of
the day, and overpredicted in the evening. The mean andmedian
of residual errors are least in hours 2, 3, 10, 19, and 24.

which has a reduced range of loads. The left of Figure 11
depicts the total load and the right shows the simulated
net load after subtracting the actual time-synchronous
RES.

To quantify whether the model was systematically
underpredicting or overpredicting the simulated load,
the mean bias error was calculated for the year by sub-
tracting the hourly actual load from the predicted load,
and was found to be zero. Monthly box plot distribu-
tions were created to compare the hourly errors between
simulated and actual load, as shown in Figure 12.

Figure 12 indicates the best agreement between sim-
ulated and actual load during the winter, over prediction
during the springand fall, andunderpredictionduring the
summer.

To provide additional insight into the distribution of
residual errors, box plot distributions were created to
compare the hourly errors between simulated and actual
load by the hour of day, as shown in Figure 13.

Tovisualize the information in Figures 12and13, aheat
map was used to depict residual errors by hour for each
day over the course of a year, as shown in Figure 14.

Figure 14. Heat map of errors between simulated and actual
ERCOT load. Note the spring and fall versus summer season
behaviour. Weak seasonal stationarity of residuals is apparent
among adjacent days as denoted by similar colour signatures.

Figure 15. Overlaid quantile-quantile plots of simulated versus
actual ERCOT load. The black dots depict actual load, and the red
dots depict simulated load.

Figure 14 depicts (1) the greatest over predictions
occurred in the winter, spring, and fall seasons in the late
afternoon and early evening, and (2) the greatest under-
predictions occurred in the summer in the late evening.
Referencing Figure 10(a,b), the summer evening simu-
lated load decreased faster than actual load starting at
hour 20.

To further investigate the performance of the model,
the quantiles of simulated versus actual values were plot-
ted against each other, as shown in Figure 15.

In Figure 15 the black dots depict actual load. The
red dots depict simulated load, which is overpredicted at
low loads and underpredicted at high loads. Per Figures
11–15, there is evidence to reject the assumption that the
electric load data are normally distributed.

To simplify the interpretation of Figure 15, the quan-
tiles of simulated versus historical values were plotted
against each other, as shown in Figure 16.

Lastly, a two-sample Kolmogorov-Smirnov Test was
used to compare the simulated and actual load for
the year. The test is a nonparametric distribution-
independent evaluation comparing the simulated and
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Figure 16. Quantile-quantile plot of simulated versus actual
ERCOT load. The residual errors of the model are depicted by the
distance from the diagonal. This visualization also indicates that
simulated load is overpredicted at low loads and underpredicted
at high loads.

Figure 17. Histogram of errors between actual and simulated
ERCOT load. An empirical distribution and normal distribution are
overlaid for reference.

Figure 18. Base Case and reference demand for 2146 homes on
Houston Feeder R5-2500-1 on 20 Jul 2005.

actual samples and is sensitive to differences in both loca-
tion and shape of the empirical cumulative distribution
functions of the two samples. Given a significance level of
0.05, the near-zero p-value of 2.2e−16 provides evidence
to reject the null hypothesis that the two samples were
drawn from the same distribution.

A histogram of the residual errors are shown in
Figure 17.

Figure 19. Normalized Base Case, reference demand, and load
shape deltas for Houston Feeder R5-2500-1 on 20 July 2005.

Figure 20. Base Case, reference demand, and MPC optimized air
conditioning demand for Houston Feeder R5-2500-1 on 20 July
2005.

In Figure 17, the residual errors of the simulated less
the actual loads are nearly normally distributed.

Referencing Figures 11 and 14–17, themodel overpre-
dicted low loads less than it underpredicted high loads.
The impact of underpredicting high loads is critically
important as it introduces errors that significantly impact
the power systems planning process. First, it underesti-
mates the amount of required peak generation capac-
ity, which is most often the most expensive capacity per
unit of electricity produced. Second, it underestimates
the marginal cost of generation during high-load and
peak demandperiods. Failing to predict the highest loads
results in failing to simulate the operation of the most
expensive marginal generation, which results in signifi-
cantly underestimating the cost of high-load and peak
demand periods.

4.5. MPC load shaping

For Cases 9–15, MPC-enabled load shaping was simu-
latedon individual devices,with resulting loads, including
generic loads, aggregated at the house level. Depending
on feeder size, between 168 and 2192 homeswere aggre-
gated to reflect the load at the feeder level. Device loads,
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Figure 21. Scenario A load shapes for Houston Feeder R5-2500-1, 18 May 2005. GridMPC attempted to increase the Optimized load
above the Base Case load until hour 9:30, decrease from hours 9:30–19:30, and increase from hours 19:30–24:00. While the response
in each of (a)–(g) is unique, similar load add and shed trends were apparent. (a) Air Conditioning. (b) Battery. (c) Water heater. (d) Air
Conditioning + Battery. (e) Air Conditioning + Water heater. (f ) Battery + Water heater and (g) Air Conditioning + Battery + Water
heater.

generic house loads, and feeder loads were recorded
for verification of intended behaviour and further post-
processing. For example, the Base Case simulated load
and the ReferenceDemand (scaled from the dailyOLS) for
Houston Feeder R5-2500-1 are shown in Figure 18.

In Figure 18, the Reference Demand (in red) informs
GridMPC to add load when above the Base load (in black)
until hour 10, to shed load when below the Base load
between hours 10 and 21, and then to add load again
starting in hour 21 through the end of the day.
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Figure 22. Scenario B load shapes for Houston Feeder R5-2500-1, 18 May 2005. The Feeder Reference Demand was nearly flat. Fifty
percent of homes having net-zero PV resulted inmid-day negative generation denoted by the red dip. As expected, GridMPC added load
to offset PV generation. Differing performance of load shapingwere apparent in (a)–(g). (a) Air Conditioning. (b) Battery. (c) Water heater.
(d) Air Conditioning + Battery. (e) Air Conditioning + Water heater. (f ) Battery + Water heater and (g) Air Conditioning + Battery +
Water heater.

Continuing the example, using the method of Corbin
and Henze, feeder loads and Reference Demand were
normalizedand thendifferenced toproduce thedailyOLS
deltas shown in Figure 19.

In Figure 19, the green line connects the 288, five-
minute load shape deltas, creating a zero-centered
inverse of the normalized load less the reference
demand.
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Figure 23. Scenario C load shapes for Houston Feeder R5-2500-1, 18 May 2005. The Feeder Reference Demand specified shedding
load until hour 6 and adding load thereafter. All homes having net-zero PV resulted in greater mid-day negative generation denoted
in red. GridMPC added load but was unable to completely offset PV generation. (a) Air Conditioning. (b) Battery. (c) Water heater. (d)
Air Conditioning+ Battery. (e) Air Conditioning+Water heater. (f ) Battery+Water heater and (g) Air Conditioning+ Battery+Water
heater.

For Case 9, simulated shaped loadwithMPC of air con-
ditioning (A/C), applying the daily OLS deltas resulted in
the optimized load shown in Figure 20. The calculations
for Cases 10–15 followed the same process.

In Figure 20, the circle at hour 10 denotes MPC tran-
sition from load adding in the morning to load shedding

in the middle of the day. Likewise, the circle at hour 21
denotes MPC transition from load shedding in the mid-
dle of the day to load adding at night. In this example,
there are two transitions denoted by circles, though the
simulation supports up to 288 transitions per day given
5-minute intervals. The specific timing and number of
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Figure 24. Scenario A load shapes for Houston Feeder R5-2500-1, 23 Aug 2005. Load shaping benefits occurred (a) in hours 1–22, and
6, (b) in hours 1–18, and (c) in hours 1–7, 19, and 21. Although not an exact superposition of benefits, complementary load shaping
occurred across managed loads, for example, in hours 1–6 where the benefit in (e) is greater than in (a) and (c). (a) Air Conditioning.
(b) Battery. (c) Water heater. (d) Air Conditioning + Battery. (e) Air Conditioning + Water heater. (f ) Battery + Water heater and (g) Air
Conditioning+ Battery+Water heater.

transitions per day varied depending on the simulated
Base Case load and the OLS. In theory, given sufficient
computational resources, there is no upper limit on the
number of transitions possible. To simplify interpretation,
the load curves in Figures 18–20 were kept as smooth
as possible by simulating the air conditioning portion

of the load (for these figures only) with infinitely vari-
able home air conditioners that had nominimumon-time
requirement.

On some days, the impacts of ARLS were negligible,
slightly positive or negative, such as (1) in Scenario A,
when RES was fully utilized regardless of the application
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Figure 25. Scenario B load shapes for Houston Feeder R5-2500-1, 23 Aug 2005. load shaping benefits occurred (a) in hours 6–22, and
6, (b) in hours 3–22, and (c) in hours 7 and 13. Complementary load shaping occurred across managed loads in (d) in hours 4–22, (e) in
hour 7, (f ) hours 3–8 and 19–21, and (g) which had the smoothest optimized load. (a) Air Conditioning. (b) Battery. (c) Water heater. (d)
Air Conditioning+ Battery. (e) Air Conditioning+Water heater. (f ) Battery+Water heater and (g) Air Conditioning+ Battery+Water
heater.

of the OLS, and (2) in Scenarios B and C, when there
was sufficient hourly RES throughout the day such that
thermal generation was unneeded. On other days, the
impacts of ARLS were considerable and are detailed here.

The 18th of May 2005 and the 23rd of August 2005
were further examined for analysis of MPC-based control

based on ARLS. The performance of ARLS on 18 May
2005 and 23 Aug 2005 is shown for Cases 9–15, Sce-
narios A, B, and C in Figures 21–26. The objective of
GridMPC in all Cases and Scenarios was to shape and
modulate load to match – as closely as possible –
the Feeder Reference Demand. The Feeder Reference
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Figure 26. Scenario C load shapes for Houston Feeder R5-2500-1, 23 Aug 2005. Load shaping benefits occurred (a) in hours 11–13, and
6, (b) in hours 1–22, and (c) in hours 7 and 12. Complementary load shaping occurred across managed loads in (e) hour 7, (f ) hour 8, and
(g) with the smoothest optimized load. Undesired load add occurred in (d), (e), and (g) in hours 1–3. (a) Air Conditioning. (b) Battery. (c)
Water heater. (d) Air Conditioning+ Battery. (e) Air Conditioning+Water heater. (f ) Battery+Water heater and (g) Air Conditioning+
Battery+Water heater.

Demand was the OLS adjusted to account for local
generation on the feeder from residential PV. This was
accomplished by GridMPC minimizing the differences
between the Optimized demand and Feeder Reference
Demand.

In Figures 21–26, the Feeder Reference Demand,
depicted by the gold dot-dash line, was calculated by
scaling down the ERCOT daily optimal load shape such
that daily energy use (i.e. the area under the curve) was
the same as the Base Case energy use depicted in red.
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In every MPC Case and RES penetration scenario, the
Feeder Reference Demandwas the control signal used by
GridMPC to add or shed load throughout the day.

In Figures21–26, largeexcursions in theair-conditioning
optimized loads at the start of each day denote initial
cool down of homes. Large excursions in the battery
optimized load at the start of each day denote a rapid
change from the initial SOC of 50% and highlight the abil-
ity of batteries to immediately and rapidly charge or dis-
charge as directed by GridMPC in response to the Feeder
Reference Demand. In addition, large excursions in the
battery optimized load at the end of each day denote
GridMPCattempting to return thebattery to a final SOCof
50%. These edge effects could be mitigated with a multi-
day model, which would likely predict greater savings
throughmore seamless orchestrationof air-conditioning-
and battery-enabled storage across days.

Figures 21–23provide insight to thebehaviour ofARLS
on a spring day as annotated in the text following each
figure. Figures 24–26 detail the behaviour of ARLS on a
peak load day occurring in summer. Higher loads that are
driven by air-conditioning are apparent. As hypothesized
in Section 3.2.2, the MPC of DERs can be complementary
in supporting the grid at different times of the day, as
explained in the text following Figures 21–26.

An important takeaway from Figures 21–26 is that res-
idential load can be shaped significantly in order to take
advantage of increasing penetrations of RES. Fromaprac-
tical perspective and for the purposes of this study, the
loads that were shaped were those with inherent ther-
mal or electrical storage. Excluded from the analysis were
loads from lighting andmiscellaneous electric loads such
as plug loads.

5. Conclusions

This calibrated simulation study created a broad geo-
graphic assessment of the impact of residential load flex-
ibility on variable production costs and CO2 emissions
that can be useful for decision and policymakers. Unique
to this study was the combination of physical load and
generation models to estimate the impact of residential
load flexibility on the generation of electric power for
the state of Texas. The methodology estimated the mon-
etary savings that electricity producers could realize by
jointly optimizing residential energy use and the mix of
generation under scenarios of increasing penetrations of
renewable energy – with savings as an essential metric
in deciding whether OLS and ARLS are worthy of further
research and implementation (Electric Reliability Coun-
cil of Texas 2019a). The methodology is suitable for use
in small and large grids (i.e. nanogrids, microgrids, and
macrogrids) in other world geographies, requiring only

knowledge of historical load, weather, attributes of the
building stock, operating schedules of electrical devices,
distribution feeder models, generator constraints, and
fuel costs.

Throughout its 139 year history, electric power pro-
duction has typically been optimized only to meet the
anticipated inflexible load and required reserves at the
lowest possible cost (Soroudi 2017). By including flexi-
ble residential load as an additional dimension of opti-
mization, ARLS introduced a new paradigm in the tra-
ditional supply-follows-demand relationship by manag-
ing storage-capable loads to shift forward or backward
in time in order to follow and use the least costly
forms of generation. The effect of time-shifting residen-
tial demand at high penetrations of RES was twofold: (a)
it reduced electric power production costs by shaping
load to increase the efficiency of thermal generation, and
(b) it decreased the curtailment of RES by encouraging
demand to follow the least costly forms of supply – while
providing for user needs and maintaining user comfort.

With the ability of ARLS to move load away frommore
costly generators towards less costly generators, the
opportunity for reduction in production costs increased
as a function of RES penetration. The maximum opportu-
nity for savings at the highest penetrations of RES was a
1/3 reduction in annual production costs, from $3.2B to
$1.9B, and a 1/5 reduction in annual CO2 emissions, from
95B to 78B tons.

Modelling enormous changes in load and RES can
result in a seachange in the operation of thermal genera-
tion – and gross errors in electricity production costs. To
wit, in the presence of highly penetrated RES, as fossil-
fuelled base load, mid-merit, and peaking generators run
less often, their marginal production cost will increase,
likely skewing cost calculations in favour of ARLS as ther-
mal generation becomes less competitive.
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