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Thesis directed by Prof. Brian Rider

Classical random matrix theory has its roots in Mathematical Physics, where the eigenval-

ues of random matrices with Gaussian entries were used to model the behavior of heavy nuclei.

The behavior of random matrix eigenvalues has been observed in a myriad of subjects including

combinatorics, quantum mechanics, and statistical mechanics.

Placing a measure on the space of n × n random matrices with specific entry conditions

produces what is called a β-ensemble, which can be described by a joint eigenvalue probability

distribution function. Prior to 2002, random matrix models only existed for these ensembles when

β = 1, 2, and 4. In 2002, Dumitriu and Edelman produced tridiagonal matrix models for the β-

Hermite and β-Leguerre ensembles for the general parameter β > 0. This groundbreaking work

opened the door to studying β-ensembles for all β > 0.

Small deviation inequalities describe the rate at which random objects concentrate around a

distribution. Optimally, the distribution of the object in question should begin to take on the shape

of the limiting distribution. Small deviation inequalities for the Hermite, Leguerre, and Jacobi

unitary ensembles (β = 2) were established by Ledoux in [13]. In [16], Ledoux and Rider showed

the Hermite and Leguerre inequalities hold for more general β.

This dissertation establishes various small deviation inequalities for the largest eigenvalue of

the β-Jacobi Ensemble when β ≥ 1. Upper bounds for the right and left tails are found be in line

with the shape of the Tracy-Widom Distribution. From these small deviation bounds, an upper

bound on the variance of the largest eigenvalue is derived. This bound is in accordance with known

limit theorems.
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Chapter 1

Introduction

Although Random Matrix Theory has its roots in mathematical statistics in the 1920’s, the

subject did not evolve significantly until the 1950’s. This change came because Eugene Wigner, a

mathematical physicist, proposed that the eigenvalues of certain random matrices could be used

to model the energy levels of highly excited states of heavy nuclei. Even though Wigner’s work

drew the attention of mathematical physicists, it was not until the 1990’s that Random Matrix

Theory attracted a wider range of mathematician. The major breakthrough that brought about

this change was the discovery of a new class of probability distributions, the Tracy-Widom Laws,

named after Craig Tracy and Harold Widom who made the discovery. These laws, which will be

discussed in more detail shortly, show up when studying the spectrum of random matrices with

specific conditions on the entries. Placing a measure on the space of these matrices makes up what

is called a beta ensemble.

In Random Matrix Theory, the most studied beta ensembles are the three Gaussian ensembles,

known as the Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), and

he Gaussian Symplectic Ensemble (GSE). All three are described by a Gaussian measure on the

space of n× n matrices with real Gaussian entries. The GOE corresponds to the case when β = 1

because the matrices are required to be symmetric with Gaussian entries. The GUE corresponds

to the case when β = 2 due to the fact that the matrices are Hermitian with complex Gaussian

entries. Naturally, the GSE corresponds to the case when β = 4 because of the requirement that

the matrices are self-dual matrices with quaternian Gaussian entries. In all three cases, the entries
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are independent save for the symmetry conditions on the matrices.

The three Gaussian ensembles have well known eigenvalue joint density functions. These are

given by

P (λ1, λ2, . . . , λn) =
1

Zβ,n
e−

β
2

∑n
k=1 λ

2
k

∏
1≤i<k≤n

|λj − λi|β (1.0.1)

where β = 1 for GOE, β = 2 for GUE, and β = 4 for GSE. The normalization constant, Zβ,n can

be explicitly computed.

1.1 The Tracy-Widom Laws

The Tracy-Widom distribution was first defined to be the limiting distribution of the properly

scaled, largest eigenvalue of the GUE. In other words, if we denote the largest eigenvalue of the

GUE as λmax,2, then

n1/6
(
λmax,2 − 2

√
n
)

=⇒ TW2 (1.1.1)

where TW2 is the distribution found by Tracy and Widom in [23]. The idea to center by 2
√
n comes

from the following theorem of Wigner, which gives a global picture of the behavior of the GUE

eigenvalues.

Theorem 1 (Wigner’s Semicircle Law). Let λn1 ≤ λn1 ≤ · · · ≤ λnn denote the ordered eigenvalues of
1√
n
Xn, for Xn a GOE or GUE matrix. Then, for almost every sequence {Xn}∞n=1

1

n

n∑
i=1

δλni =⇒ SC

where SC is the probability distribution on R with density

σ(x) =
1

2π

√
4− x2, x ∈ [−2, 2]

This is called the semicircle distribution.

Shortly after their GUE result, Tracy and Widom were able to establish analogous results in

the GOE and the GSE cases using the same centering and scaling (see [25]). In other words,

n1/6
(
λmax,β − 2

√
n
)

=⇒ TWβ. (1.1.2)
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for β = 1, 2, and 4.

Sticking to the β = 2 case for the moment, the Tracy-Widom distribution can be expressed

in terms of a Fredholm determinant. More specifically,

TW2(s) = det(I −As)

where As operates on L2(s,∞) with kernel

A(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

Here, Ai is the Airy function defined to be

Ai(x) =
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt.

The Tracy-Widom distribution has the integral representation

TW2(s) = exp

{
−
∫ ∞
s

(x− s)q2(x)dx

}
(1.1.3)

where q is a solution to Painlevé II

q′′(x) = q3(x) + xq(x).

Interestingly enough, q is asymptotically similar to the Airy function, or in other words, there are

constants c1, c2 > 0 such that

c1Ai(x) ≤ q(x) ≤ c2Ai(x).

In the β = 1 and β = 4 cases, the results of [25] include integral representations similar to 1.1.3, the

one for β = 2. Solutions to Painlevé II can be numerically approximated, which has allowed TWβ

to be tabulated for β = 1, 2, and 4.

In 1999, the Tracy-Widom distribution appeared in the work of Baik, Deift, and Johansson

while studying the length of the longest increasing subsequence of a random permutation of n

numbers. More specifically, in [3], the authors proved that as n→∞

n−1/6
(
ln − 2

√
n
)

=⇒ TW2, (1.1.4)
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where ln is the length of the longest increasing subsequence of a permutation chosen uniformly from

Sn, the symmetric group over n elements. The scaling of n−1/6 tells us that ln behaves just like

n1/3λmax,2 as n→∞.

Classically, the β ensembles were studied for only β = 1, 2, and 4. The classical results

are commonly due to the fact that the Gaussian ensembles are amenable to direct computation.

The finite dimensional correlation functions can all be expressed explicitly in terms of Hermite

polynomials. In turn, the asymptotics of these polynomials can be studied with combinatorics,

complex analysis, integrable systems and probability theory. Still, 1.0.1 has physical applications

for all β > 0. This ensemble can be used to model a one-dimensional Coulomb gas with inverse

temperature β, and it is tied to Calogero-Sutherland quantum systems.

A major breakthrough in the study of these β ensembles was provided by Dumitriu and

Edelman in [5]. They discovered the existence of a fairly simple tridiagonal matrix model for all β,

the eigenvalues of which have 1.0.1 as their joint probability distribution. This matrix, called the

Hermite tridiagonal matrix, is given by

Hβ,n =



g1 χβ(n−1)

χβ(n−1) g2 χβ(n−2)

χβ(n−2) g3 χβ(n−3)

. . . . . . . . .

χβ2 gn−1 χβ

χβ gn


,

where g1, g2, . . . , gn are independent with gi ∼ N(0, 2), and χβ, χβ2, . . . , χβ(n−2) are independent χ

random variables.

This matrix model has already had major implications in the study of the distributional limits

of the eigenvalues in the β-Hermite ensemble. Heuristically, Sutton [22] and Edelman and Sutton [7]

argued that the rescaled tridiagonal matrix model could be associated with a continuum operator.

More specifically, they provided hope that limiting distributions for general β could be found by
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associating the rescaled Hermite tridiagonal matrix

n1/6
(
Hβ,n − 2

√
nIn
)

with the stochastic Airy operator

Hβ = − d2

dx2
+ x+

2√
β
b′x.

Here b′ is the formal derivative of a standard Brownian motion, white noise. In 2006, Ramírez,

Rider, and Virág rigorously proved this conjecture, and in the process, extended the definition to

the Tracy-Widom Laws to β > 0. The following definition is consistent with all prior definitions of

TWβ .

Definition 2 (Tracy-Widom Distribution). Let x → b(x) be a standard Brownian motion. For

β > 0 define the general Tracy-Widom law to be

TWβ = sup
f∈L

{
2√
β

∫ ∞
0

f2(x)db(x)−
∫ ∞
0

[
(f ′(x))2 + xf2(x)

]
dx

}
, (1.1.5)

where L is the space of functions which vanish at the origin and satisfy

(1)
∫∞
0 f2(x)dx = 1,

(2)
∫∞
0

[
(f ′(x))2 + xf2(x)

]
dx <∞.

Much of the work surrounding the Tracy Widom distributions takes place in the continuum,

but it is natural to ask questions regarding the eigenvalues before the limit is taken. Understanding

the rate of convergence of the largest eigenvalue to TWβ is important when considering the use

of TWβ to make approximations in finite dimensional models. This rate of convergence is often

referred to as "Small Deviations", and it is the focus of this thesis.

1.2 Organization

This dissertation establishes small deviation inequalities for the largest eigenvalue of the β-

Jacobi ensemble 4.0.1. The main results are Theorem 13 and Theorem 14, and Corollary 15 follows
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immediately. Chapter 2 discusses some of the major results that aided in connecting finite random

matrix theory to infinite random matrix theory . These include the tridiagonal matrix models of

Dimitriu and Edelman and the work of Ramírez, Rider, and Virág to extend the Tracy Widom Laws

to β > 0. Chapter 3 gives a more detailed description of the topic of small deviations including a

brief overview of previous work.

Chapter 4 is intended to provide the reader with preliminary information regarding the β-

Jacobi ensemble, and it is also where the results of this dissertation are stated. In Chapter 5, the

connection between the variational picture with the finite dimensional Jacobi matrix model is made

clear by proving Lemma 16, which plays a major role in the proof of Theorems 13 and 14. Chapter

6 is devoted to the proof of Theorem 13, and Chapter 7 focuses on the proof of Theorem 14. An

immediate consequence of these theorems is Corollary 15, which is proved in Chapter 8.



Chapter 2

Background

2.1 The Laguerre Ensemble

The so called beta ensembles are point processes on R that are defined, for β > 0, by n-level

joint density functions. The three most common are the Hermite, Laguerre, and Jacobi ensembles.

The Hermite ensemble, defined by 1.0.1, was discussed in the introduction, and the Jacobi ensemble

will be discussed in Chapter 4. The Laguerre ensemble is defined by

P (λ1, λ2, . . . , λn) =
1

Zβ,n
e−

β
2

∑n
k=1 λk

n∏
k=1

λ
β
2
(a+1)−1

k

∏
1≤j<k≤n

|λj − λk|β. (2.1.1)

This joint density is the joint eigenvalue density of the collection of n× n Wishart matrices. These

are matrices of the form Wn = AnA
T
n , where An is an n×M(n) matrix (often M(n) = n+ a) with

i.i.d. entries of mean zero, variance 1/n satisfying certain moment conditions.

In the Laguerre ensemble, the result analogous to Wigner’s Semicircle Law is the Marchenko-

Pastur Distribution.

Theorem 3 (Marchenko-Pastur Distribution). Let 0 < λn1 < λn2 < · · · < λnn denote the ordered

eigenvalues of a Wishart matrix, Wn. Then, with the convergence being weakly, in probability

lim
n→∞

1

n

N∑
i=1

δλni = Fa,

where Fa is a distribution function with density

fa(x) =

√
(x− b−)(b+ − x)

2πx
1[b−,b+](x)

with b− = (1−
√
a)2 and b+ = (1 +

√
a)2.
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2.2 Tridiagonal Matrix Models

In 2002, Ioana Dumitriu and Alan Edelman introduced two fairly simple matrix models whose

joint eigenvalue densities corresponded to the Hermite and Laguerre ensembles for general β. These

matrix models opened the door to new approaches to studying the spectrum of random matrices.

In 2005, Brian Sutton produce an analagous matrix model for the Jacobi ensemble. These matrix

models will be discussed here, but first it may be useful to recall the definitions of normal, chi, and

beta random variables.

Definition 4. A random variable is said to be normally distributed with mean µ and variance σ2

if it has the probability density function

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 .

A random variable is said to be χ distributed with k degrees of freedom if it has the probability

density function

f(x) =
21−

k
2 xk−1e

x2

2

Γ(−k
2 )

, x ∈ [0,∞)

where Γ(z) is the gamma function. A random variable is said to be beta distributed with parameters

s and t if it has the probability density function

Γ(s+ t)

Γ(s)Γ(t)
xs−1(1− x)t−1, x ∈ [0, 1].

Let g1, g2, . . . , gn be N(0, 2) random variables, and let χβ, χβ2, . . . , χβ(n−1) be χ random vari-

ables with the given degrees of freedom. For β > 0, define the n × n Hermite tridiagonal matrix

as

Hn,β =
1√
β



g1 χβ(n−1)

χβ(n−1) g2 χβ(n−2)

χβ(n−2) g3 χβ(n−3)

. . . . . . . . .

χβ2 gn−1 χβ

χβ gn


. (2.2.1)
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The matrix Hn,β is symmetric and all random variables are independent except for the depen-

dence imposed by the symmetry condition. In [5], Dimitriu and Edelman established the following

theorem.

Theorem 5 (Edelman-Dimitriu). For any β > 0, the Hermite tridiagonal matrix has joint eigen-

value density given by 1.0.1.

Also in [5], Dimitriu and Edelman establish a similar result for the Laguerre ensemble. Let

χβ(a+1), χβ(a+2), . . . , χβ(a+n) and χ̃β, χ̃β2, . . . , χ̃β(n−1) be χ random variables with the given degrees

of freedom. For any β > 0 and a > −1, define the n × n Laguerre tridiagonal matrix as Ln,a,β =

An,a,β ·ATn,a,β where

An,a,β ∼



χβ(a+n)

χ̃β(n−1) χβ(a+n−1)

χ̃β(n−1) χβ(a+n−2)

. . . . . .

χ̃β χβ(a+1)


.

The matrix Ln,a,β is symmetric and all χ random variables are independent. Unlike in the Hermite

case, the entries of Ln,a,β are not independent.

Theorem 6 (Edelman-Dimitriu). For any β > 0 and a > −1, the Laguerre tridiagonal matrix has

joint eigenvalue density given by 2.1.1.

2.3 Tracy-Widom for general β

Classical results regarding the limiting eigenvalue distributions relied heavily on the fact that

β = 1, 2, 4 produces integrable systems. The tridiagonal matrix models provided by Edelman and

Dimitriu were a major breakthrough in the effort to generalize the Tracy-Widom laws to all β > 0.

In [7], Edelman and Sutton used these matrix models to make the following two conjectures.
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Conjecture 1 (Edelman-Sutton). As n→∞, the centered and scaled Hermite tridiagonal matrix

Hn = n1/6(Hn,β − 2
√
n)

converges to the Stochastic Airy Operator

Hβ = − d2

dx2
+ x+

2√
β
b′x.

Here b′x is "white noise", the formal derivative of Brownian motion.

Conjecture 2 (Edelman-Sutton). Let σk denote the k-th smallest singular value of the bidiagonal

matrix Bβ,a. As n → ∞, the family of rescaled singular values {
√
nσk} converges in law to the

singular values of the following random differential operator

Lβ,a = −
√
x
d

dx
+

a

2
√
x

+
1√
β
b′(x). (2.3.1)

These conjectures are based on two similar heuristic arguments that rely heavily on the

tridiagonal matrix models provided in [5]. Due to the similarity of the arguments, only Conjecture

1 will be discussed. The basic idea behind Conjecture 1 was to center by 2
√
n because of Theorem

1, and then look for an appropriate scaling factor. In other words, one hopes that there is some γ

such that the quantity

Ĥn := nγ
(
Hn,β − 2

√
nIn
)

(2.3.2)

converges to the stochastic Airy operator Hβ . By the Central Limit Theorem, a χ random variable

with t degrees of freedom is asymptotically like
√
t+G/

√
2 where G ∼ N(0, 1). Using the Hermite

tridiagonal and the asymptotics just mentioned, 2.3.2 looks like the discrete analog of the Stochastic

Airy Operator. Since Hβ operates on suitably nice functions φ, so it makes sense to think of Ĥn as

operating on a discretized version of φ. Towards this end, write k = bxnαc for some α, and denote

φk = φ(x). Taylor expanding of φ leads to the appropriate choices for α and γ. For more details,

see Chapter 2 of [18].

Considering the fact that Brownian motion is nowhere differentiable, proving these conjectures

is not straightforward. Nonetheless, both conjectures were proved in 2006 by Ramírez, Rider, and

Virág. The statement of their result is the following.
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Theorem 7 (Ramírez, Rider, and Virág). With probability one, for each k ≥ 0 the set of eigenvalues

of Hβ has a well defined (k + 1)st lowest element Λk. Moreover, let λβ,1 ≥ λβ,2 ≥ · · · denote the

eigenvalues of the Hermite β-ensemble Hβ
n . Then the vector

(
n1/6

(
2
√
n− λβ,l

))
l=1,...,k

converges to (Λ0,Λ1, . . . ,Λk−1) in distribution, as n→∞.



Chapter 3

Small Deviations

Recall that the Tracy-Widom Theorem for the largest eigenvalue of the GUE reads

n1/6(λmax(H2,n)− 2
√
n) =⇒ TW2.

To motivate the topic of small deviations, it is more useful to rewrite the limit theorem as

lim
n→∞

P

(
λmax(H2,n) ≤ 2

√
n(1 + sn−2/3)

)
= FTWβ

(s). (3.0.1)

Given that the known shape of the TWβ is

P (TWβ ≤ t) ∼ eβt
3/24 as t→ −∞, and P (TWβ ≥ t) ∼ e−2βt

3/2/3 as t→∞,

one would hope that, for small ε, there exits a constant C > 0 such that

P
(
λmax ≤ 2

√
n(1− ε)

)
≤ Ce−βε

3n2/C , (3.0.2)

P
(
λmax ≥ 2

√
n(1 + ε)

)
≤ Ce−βε

3/2n/C , (3.0.3)

for all n ≥ 1. The need for ε to be small is to encompass the sn−2/3 → 0 regime, and it is precisely

why this topic is called "small deviations".

The small deviation upper bounds 3.0.2 and 3.0.3 are not the only small deviation inequalities.

One would hope that the upper bounds are tight, or in other words, that there is a different constant

C > 0 such that

P
(
λmax ≤ 2

√
n(1− ε)

)
≥ Ce−βε

3n2/C ,

P
(
λmax ≥ 2

√
n(1 + ε)

)
≥ Ceβε

3/2n/C ,
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for all n ≥ 1 and ε > 0.

In contrast, the topic of large deviations concerns itself with ε larger than O(1). Consider the

right-tail limit from [2]

lim
n→∞

n−1 logP
(
λmax(H2,n) ≥ 2

√
n(1 + ε)

)
= −JGUE(ε) (3.0.4)

where, for every ε > 0,

JGUE(ε) = 4

∫ ε

0

√
x(x+ 2)dx.

When ε is small, JGUE(ε) is of order ε3/2, whereas, for larger ε, JGUE(ε) is of order ε2. Hence, one

would expect a large deviation right-tail inequality of the form

P
(
λmax ≥ 2

√
n(1 + ε)

)
≤ Ce−βε2n/C .

for all n ≥ 1. This inequality follows from standard net arguments on the corresponding Gaussian

matrices (see e.g. [14])

3.1 Classical small deviation results

Classical results (β = 1, 2, 4) in the area of small deviations was rather fragmentary until

Ledoux and Rider establish small deviation results for general β in [16]. Perhaps the most extensive

work for classical ensembles was done by Michel Ledoux in [13], where a right tail upper bound was

established for the GUE, LUE, and JUE cases. In [15], Ledoux also proves a recurrence relation for

the GOE leading to a right tail small deviation inequality. The following theorem is the statement

for the GUE.

Theorem 8 (Proposition 5.2 from [13]). For every 0 < ε ≤ 1 and n ≥ 1

P
(
λmax(H2,n) ≥ 2

√
n(1 + ε)

)
≤ Ce−nε3/2/C

where C > 0 is a numerical constant.

The proof of this result (as well as in the LUE and JUE cases) requires a recurrence formula,

also established in [13], for the moments of the mean spectral measures (E
(
1
n

∑n
i=1 δλni

)
). In the
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GUE case, these moments are given by

bp = bnp =

∫
(σx)2p

1

n

n−1∑
l=0

P 2
l dµ, p ∈ n,

where b0 = 1, b1 = σ2n2, and the Pl are the Hermite orthogonal polynomials. The recursion formula

then reads

bp = 4nσ2
2p− 1

2p+ 2
bp−1 + 4σ4p(p− 1)

2p− 1

2p+ 2
· 2p− 3

2p
bp−2 (3.1.1)

for every p ≥ 1. A simple induction argument on 3.1.1 gives an upper bound for bp involving the

moments of Wigner’s semicircle law. The asymptotics of these moments yields Theorem 8.

It should also noted that in [13, 14], Ledoux discusses the fact that Theorem 8 can be shown to

follow from the results of Johannson [11] for a more general model. For a more complete discussion

on classical small deviation inequalities see [14].

3.2 Small deviation results for general β

In [16], Brian Rider and Michel Ledoux made considerable strides in the effort to prove small

deviation inequalities for general β-ensembles. In the β-Hermite case, they established tight bounds

for both the left and right tails. The left tail and right tail upper bounds are as follows.

Theorem 9 (Theorem 1 from [16]). For all n ≥ 1, 0 < ε ≤ 1 and β ≥ 1:

P
(
λmax(Hβ,n ≥ 2

√
n(1 + ε))

)
≤ Ce−βnε3/2/C ,

and

P
(
λmax(Hβ,n ≥ 2

√
n(1− ε))

)
≤ Cβe−βn2ε3/C ,

where C is a numerical constant.

The following theorem established tightness by stating the optimal lower bounds for both tails.

Theorem 10 (Theorem 4 from [16]). There is a numerical constant C so that

P
(
λmax(Hβ,n) ≥ 2

√
n(1 + ε)

)
≥ C−βe−Cβnε3/2 ,
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and

P
(
λmax(Hβ,n) ≥ 2

√
n(1− ε)

)
≥ C−βe−Cβn2ε3 .

The first inequality holds for all n > 1, 0 < ε ≤ 1 and β ≥ 1. For the second inequality, the range

must be kept sufficiently small, 0 < ε ≤ 1/C.

Also in [16], Ledoux and Rider established small deviation upper bounds for the Laguerre

ensemble as well as a lower bound for the right-tail. In the Hermite case, the left-tail lower bound

required a Gaussian argument, which was not available in the Laguerre case.

3.3 Motivation from the continuum

The Tracy-Widom law, established in [20], is identified via a random variation principle. In

particular, it holds that

TWβ = sup
f∈L∗

{
2√
β

∫ ∞
0

f2(x)db(x)−
∫ ∞
0

[
(f ′(x))2 + xf2(x)

]
dx

}
, (3.3.1)

where x 7→ b(x) is a standard Brownian motion, and L∗ is defined below. The small deviation

results of Ledoux and Rider in [16] are achieved by retooling (for finite n) the techniques used to

prove the general β Tracy-Widom theorem. For that reason, we will discuss some of the details

from their proof in this section and how they shed light on the topic of small deviations.

As mentioned in the previous chapter (see 1), the Edelman-Sutton Conjecture suggested that

the appropriately scaled Hermite tridiagonal matrix can be viewed as the finite dimensional analog

of the stochastic Airy operator

Hβ = − d2

dx2
+ x+

2√
β
b′x.

One would then hope that limiting eigenvalue distributions can be obtained by studying the stochas-

tic Airy operator.

At first glance, this operator immediately poses a problem. Since Brownian motion is nowhere

differentiable, white noise is only defined formally. Towards establishing a proper framework for

studying Hβ let us view b′x as a generalized function. Let φ be a smooth function of compact support
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on (0,∞). Integrating by parts yields∫ y

0
b′xφ(x)dx = byφ(y)−

∫ y

0
bxφ
′(x)dx,

for which the right hand side is a continuous function in y having b′yφ(y) as its derivative.

We now turn to the eigenvalue problem, starting first with the eigenvalues of Hβ . An eigen-

value and eigenfunction pair of Hβ is an ordered pair, (λ, f) ∈ R × L∗, that satisfies Hβf = λf in

the sense of distributions. This can be rewritten as

f ′′(x) = (x− λ+
2√
β
b′x)f.

After integrating by parts, the above equality reads∫ ∞
0

φ′′(x)f(x)dx =

∫ ∞
0

(x− λ)φ(x)f(x)dx+

∫ ∞
0

2√
β

[∫ x

0
byf
′(y)dy − bxf(x)

]
φ′(x)dx

when viewed in the distributional sense. This weak notion of an eigenvalue starts to bring the

variational characterization of the eigenvalue problem into view.

If φ is smooth in the sense of Schwarz distributions, then −Hβφ can be applied to φ as a

linear functional to get the following quadratic form

≺ φ,Hβφ �:=

∫ ∞
0

(φ′(x))2dx+

∫ ∞
0

xφ2(x)− 2√
β

∫ ∞
0

b′xφ
2(x)dx (3.3.2)

on C∞0 . This quadratic form can be extended to operate on the Hilbert space

L∗ :=

{
f : f(0) = 0, and

∫ ∞
0

(f ′)2 + (1 + x)2f2dx

}
equipped with the norm ‖f‖2∗ =

∫∞
0 (f ′)2 + (1 + x)2f2dx. This extension helps to avoid technical

difficulties, and L∗ can even be weakened slightly.

The smallest eigenvalue of Hβ can then be characterized by the variational principle

Λ̃0 := inf
f∈L∗

{≺ f,Hβf �: f(0) = 0 and ‖f‖2 = 1} .

Notice that this is the same as 3.3.1. As one might expect, Λ0 = Λ̃0 where Λ0 is the smallest

eigenvalue of Hβ .
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The next step is to connect the eigenvalues ofHn to the eigenvalues ofHβ . A natural approach

is to see if the eigenvalues of Hn could be characterized by a "discrete" variational principle. For

v = (v1, . . . , vn) ∈ Rn, define the quadratic form

n−1/6〈v, v〉Hn := vTHnv.

Recalling the definition of the Hermite tridiagonal 2.2.1, we get

〈v, v〉Hn = −n1/3
n∑
i=1

(vk − vk+1)
2 − 2

n1/6

n∑
i=1

(
√
n− 1√

β
Eχβ(n−k))vkvk+1

+
1

n1/6
√
β

n∑
i=1

gkv
2
k +

2

n1/6

n∑
i=1

(
1√
β
χβ(n−k) − Eχβ(n−k))vkvk+1.

The idea here is to that these sums look like discretized version of the integrals in 3.3.2. To make this

connection formal, Hn needs to operator on L∗. This can be done by identifying v = (v1, . . . , vn) ∈

R
n with a function in L2(R+) by defining the step function v(x) = vk for x ∈ [(k − 1)n1/3, kn1/3)

and v(x) = 0 for x > n2/3.

From here, the idea is to use the discrete quadratic form to show that the largest eigenvalue

of Hn converges to the Λ0. Because of this, the quadratic form can be used to find sharp, shape

estimates on the largest eigenvalue for finite n, which is the goal when trying to find small deviation

inequalities.



Chapter 4

The Jacobi Ensemble

The Jacobi beta ensemble is the point process on R defined by the n-level joint density: for

β > 0

P (λ1, λ2, . . . , λn) =
1

Zβ,n

n∏
k=1

λ
β
2
(a+1)−1

k (1− λk)
β
2
(b+1)−1

∏
1≤j<k≤n

|λj − λk|β. (4.0.1)

As in the Hermite and Laguerre cases, a tridiagonal matrix model exists and is an invaluable tool

in studying the Jacobi ensemble for general β.

4.1 The Jacobi Tridiagonal Matrix

The Jacobi tridiagonal matrix is given by Jβ,n,a,b = Bβ,n,a,b ·BT
β,n,a,b, where

Bβ,n,a,b =



cn −snc′n−1

cn−1s
′
n−1 −sn−1c′n−2

cn−2s
′
n−2

. . .

. . . −s2c′1

c1s
′
1


. (4.1.1)

where the ci’s and c′i’s are independent random variables defined by

ci ∼
√

Beta
(
β
2 (an+ i), β2 (bn+ i)

)
, c′i ∼

√
Beta

(
β
2 i,

β
2 (an+ bn+ 1 + i)

)
and the si’s and s′i’s are defined by

si =
√

1− c2i , s′i =
√

1− c′2i .
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The following theorem, established in [22], encompasses the importance of the Jacobi tridiagonal

matrix

Theorem 11 (Sutton). For any β > 0 and a, b > −1, the Jacobi tridiagonal matrix has joint

eigenvalue density given by 4.0.1.

The limiting distribution of the largest eigenvalue of the JUE was first discovered by Collins

in [4], where the largest eigenvalue was shown to converge in distribution to

γ =
(a+ 1)(a+ b+ 1)

(a+ b+ 2)2
+

(b+ 1)

(a+ b+ 2)2
+

2
√

(a+ 1)(a+ b+ 1)(b+ 1)

(a+ b+ 2)2

=

(√
(a+ 1)(a+ b+ 1)

a+ b+ 2
+

√
b+ 1

a+ b+ 2

)2

(4.1.2)

Remark 12. In [4], the work is actually conducted for the Jacobi Ensemble with support on [−1, 1].

In this paper, the transformation x 7→ x+ 1

2
has been used for convenience.

4.2 Properties of the Beta Random Variable

A random variable X is said to be beta distributed with shape parameters s, t > 0, written

X ∼ Beta(s, t), if it has the probability density function

f(x) =
xs−1(1− x)t−1∫ 1

0 xs−1(1− x)t−1dx

=
Γ(s+ t)

Γ(s)Γ(t)
xs−1(1− x)t−1

where x ∈ (0, 1) and Γ(z) is the well known gamma function defined by

Γ(z) =

∫ ∞
0

e−xxz−1dx.

The mean of X is then given by

EX =
s

s+ t
, (4.2.1)

and due to the symmetry 1−X ∼ Beta(t, s).
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To see why the gamma function shows up write

Γ(s)Γ(t) =

∫ ∞
0

e−xxs−1dx

∫ ∞
0

e−yyt−1dy

=

∫ ∞
0

∫ ∞
0

e−x−yxs−1yt−1dxdy.

Changing variables to x = zr, y = z(1− r) yields

Γ(s)Γ(t) =

∫ ∞
0

∫ 1

0
e−zzs+t−2rs−1(1− r)t−1z drdz

=

∫ ∞
0

e−zzs+t−1dz

∫ 1

0
rs−1(1− r)t−1dr

= Γ(s+ t) ·
∫ 1

0
rs−1(1− r)t−1dr

as desired.

Due to the nature of the random variables in 4.1.1, it will be important to have bounds on

E
√
X and E

√
X(1− x). Towards this end we have

E

√
X =

Γ(s+ t)

Γ(s)Γ(t)

∫ 1

0

√
xxs−1(1− x)t−1dx

=
Γ(s+ t)

Γ(s+ t− 1/2)
· Γ(s− 1/2)

Γ(s)
· EY

where Y ∼ Beta(s− 1/2, t). Now, recall that a χk random variable has mean

Eχk =
√

2 ·
Γ(k+1

2 )

Γ(k2 )
,

and thus

E

√
X =

Eχ2(s+t)−1

Eχ2s−1
· 2s− 1

2(s+ t)− 1
. (4.2.2)

A similar calculation yields

E

√
X(1−X) =

Eχ2t

Eχ2s−1
· 2s− 1

2(s+ t)
. (4.2.3)

We can get upper and lower bounds by using the following bounds:

Eχr ≤
√
r, r > 0

Eχr ≥
√
r − 1

2 , r > 1

Eχr ≥ r√
r+1

, r > 0.
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The first two follow applying Jensen’s inequality to Eχr =
√

2
Γ( r+1

2 )

Γ( r2)
, and the second follows from

x1−s ≤ Γ(x+ 1)

Γ(x+ s)
≤ (x+ s)1−s

which was established in [19]. Using these bounds for positive s and t, one has
√

2s− 1√
2(s+ t)

≤ E
√
X ≤

√
2s√

2(s+ t)− 1
, (4.2.4)

√
2s− 1

2(s+ t)
·
√

2t− 1

2
≤ E

√
X(1−X) ≤

√
2t
√

2s√
2(s+ t)− 1

, t >
1

2
(4.2.5)

and
√

2s− 1

2(s+ t)
· 2t√

2t+ 1
≤ E

√
X(1−X) ≤

√
2t
√

2s√
2(s+ t)− 1

. (4.2.6)

4.3 Results

The original contributions of this thesis are the following two theorems and corollary. The

first theorem is the right-tail upper bound for the β-Jacobi ensemble, and the second theorem is

the left-tail upper bound.

Theorem 13. Let a ∈ [0,∞) and b ∈ (0,∞). Then for all n ≥ 1 and 0 < ε ≤ 1:

P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
≤ Cβe−β(a+b)nε

3/2/Cβ , (4.3.1)

where Cβ is a numerical constant.

Chapter 6 contains the proof for the right-tail upper bound.

Theorem 14. Let a ∈ [0,∞) and b ∈ (0,∞). Then for all n ≥ 1 and 0 < ε ≤ 1:

P
(
λmax (Jβ) ≤ γ

√
n(1− ε)

)
≤ Cβe−β(a+b)ε

3n2/Cβ (4.3.2)

where Cβ is a numerical constant.

The proof of the left-tail upper bound is contained in Chapter 7. In the β-Hermite case, as

proved in [16], the Gaussian random variables in the Hermite tridiagonal matrix play an important

role in the left-tail upper bound. This argument is unavailable in the β-Jacobi case.
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The upper bounds from Theorems 13 and Theorem 14 are enough to produce the following

corollary regarding the variance, for finite n, of the largest eigenvalue. This bound is of the expected

order, and a short proof is contained in Chapter 8.

Corollary 15. For β ≥ 1 and n ∈ N

Var [λmax(Jβ,n)] ≤ Cβn−1/3,

where the constant Cβ depends on β.



Chapter 5

Operator Bound

This chapter begins the proof of Theorems 13 and 14. With the framework from the previous

chapter in mind, define
1√
n
Jn(v) = vT [Jβ,n,a,b − γIn] v.

where γ is the appropriate centering from 4.1.2. Dividing by
√
n makes for better comparison with

[16]. From this point forward, the dependence of Jn(v) on n will be suppressed by simply writing

J(v). Then

J(v) =
√
n

n∑
k=1

c2n−k+1s
′2
n−k+1 v

2
k +
√
n

n∑
k=1

c′2n−ks
2
n−k+1 v

2
k

+2
√
n
n−1∑
k=1

cn−ksn−k+1c
′
n−ks

′
n−k vkvk+1 − γ

√
n

n∑
k=1

v2k. (5.0.1)

Proving Theorems 13 and 14 now becomes a task of estimating

P

(
sup‖v‖2=1 J(v) ≥ εγ

√
n
)

and P

(
sup‖v‖2=1 J(v) ≤ −εγ

√
n
)
.

The following lemma will play a fundamental role in the rest of the proof, and it will be carried out

in the next two subsections.

Lemma 16. For β ≥ 1, c > 0 set

Jc(v) =

n∑
k=1

Zkv
2
k +

n∑
k=1

Z̃kv
2
k + 2

n−1∑
k=1

Ykvkvk+1 (5.0.2)

−c
√
n

n∑
k=1

(vk+1 + vk)
2 − c√

n

n∑
k=1

kv2k, (5.0.3)



24

where

Zk =
√
n
(
c2n−k+1s

′2
n−k+1 − E[c2n−k+1]E[s′2n−k+1]

)
, Z̃k =

√
n
(
s2n−k+1c

′2
n−k − E[s2n−k+1]E[c′2n−k]

)
,

and Yk =
√
n
(
cn−ksn−k+1c

′
n−ks

′
n−k − E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k]

)
. (5.0.4)

Then, there are constants α1 > α2 > 0 such that Jα1(v) ≤ J(v) ≤ Jα2(v) for all v ∈ Rn.

5.1 Lower Bound

The lower bound is much easier to obtain than the upper bound. After adding and subtracting

the expectations of the random variables in 5.0.1, it suffices to show that for some α > 0

− E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](vk+1 + vk)

2 +
(
E[c2n−k+1]E[s′2n−k+1] + E[c′2n−k]E[s2n−k+1]

)
v2k

+ E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] (v2k+1 + v2k)− γv2k

is bounded below by

−α(vk+1 + vk)
2 − αk

n
v2k (5.1.1)

for 1 ≤ k ≤ n. By adding to the denominators and subtracting from the numerators, one easily

gets the lower bound

E[c2n−k+1]E[s′2n−k+1] =
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
· (a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 3

≥ (a+ 1)n− k
(a+ b+ 2)n

· (a+ b+ 1)n− k
(a+ b+ 2)n

=
(a+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
1− k

(a+ 1)n

)(
1− k

(a+ b+ 1)n

)
.

Because a and b are nonnegative one easily has

E[c2n−k+1]E[s′2n−k+1] ≥
(a+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
1− k

n

)2

=
(a+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
1− 2k

n
+

(
k

n

)2
)

≥ (a+ 1)(a+ b+ 1)

(a+ b+ 2)2
− 2(a+ 1)(a+ b+ 1)

(a+ b+ 2)2
k

n
, (5.1.2)
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where the positivity of (k/n)2 allows it to be thrown away. A nearly identical argument can be used

to produce the lower bound

E[c2n−k+1]E[s′2n−k+1] ≥
(b+ 1)

(a+ b+ 2)2
− 2(b+ 1)

(a+ b+ 2)2
k

n
. (5.1.3)

Arguing in the same fashion will also produce a lower bound for E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k], but

before this is done the Chapter 4 bounds need to be used. By 4.2.4 and then using the fact that

β ≥ 1, one has

E[cn−k] ≥

√
β[(a+ 1)n− k]− 1

β[(a+ b+ 2)n− 2k]
≥

√
(a+ 1)n− k − 1

(a+ b+ 2)n− 2k
,

E[sn−k+1] ≥

√
β[(b+ 1)n− k + 1]− 1

β[(a+ b+ 2)n− 2k + 2]
≥

√
(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
,

and by 4.2.5, one also has

E[c′n−ks
′
n−k] ≥

√
β[n− k]− 1

√
β[(a+ b+ 1)n− k + 1]− 1

2

β[(a+ b+ 2)n− 2k + 1]

≥

√
n− k − 1

(a+ b+ 2)n− 2k + 1
· (a+ b+ 1)n− k

(a+ b+ 2)n− 2k + 1
.

Combining these three bounds yields

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k]

≥

√
(a+ 1)n− k − 1

(a+ b+ 2)n− 2k
· (b+ 1)n− k

(a+ b+ 2)n− 2k + 2
· n− k − 1

(a+ b+ 2)n− 2k + 1
· (a+ b+ 1)n− k

(a+ b+ 2)n− 2k + 1
.

Then, just as above, one has

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] ≥

√
(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
1− 2(k + 1)

n

)2

≥
√

(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
1− 4k

n

)2

≥
√

(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
−

2
√

2(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
k

n
,
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and so

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](v

2
k+1 + v2k) (5.1.4)

≥

[√
(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
−

2
√

2(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
k

n

]
(v2k+1 + v2k)

≥
2
√

(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
v2k −

2
√

2(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2

(
k

n
+
k − 1

n

)
v2k

≥
2
√

(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
v2k −

4
√

2(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
k

n
v2k. (5.1.5)

Combining 5.1.2, 5.1.3, and 5.1.4 shows that

E[c2n−k+1]E[s′2n−k+1] v
2
k + E[c′2n−k]E[s2n−k+1] v

2
k + E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k] (v2k+1 + v2k)

is bounded below by

γ2v2k −
αk

n
v2k, (5.1.6)

where γ is defined in 4.1.2 and

α =
2(a+ 1)(a+ b+ 1)

(a+ b+ 2)2
+

2(b+ 1)

(a+ b+ 2)2
+

4
√

2(a+ 1)(b+ 1)(a+ b+ 1)

(a+ b+ 2)2
. (5.1.7)

To finish the proof of the lower bound simply notice that because Beta(s, t) random variables are

bounded above by 1, one has the trivial bound

−E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](vk+1 + vk)

2 ≥ −(vk+1 + vk)
2,

so redefining alpha to be the maximum of 1 and the constant in 5.1.7 completes the proof of the

lower bound.

5.2 Upper Bound

The upper bound is the more difficult of the two. As in the previous subsection, it is enough

to show to find some α > 0 such that

− E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](vk+1 + vk)

2 +
(
E[c2n−k+1]E[s′2n−k+1] + E[c′2n−k]E[s2n−k+1]

)
v2k

+
(
E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k]

)
(v2k+1 + v2k)− γv2k (5.2.1)
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is bounded above by

−α(vk+1 + vk)
2 − αk

n
v2k (5.2.2)

for 1 ≤ k ≤ n.

Claim 17. For a ≥ 0, b > 0, and 1 ≤ k ≤ n

E[c2n−k+1]E[s′2n−k+1] v
2
k + E[c′2n−k]E[s2n−k+1] v

2
k + E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k] (v2k+1 + v2k)

is bounded above by (√
xy +

√
(1− x)(1− y)

)2
v2k,

where

x =
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
and y =

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
.

Remark 18. The proof of this claim is fairly elementary, but it is also quite tedious. For that reason,

it will be done at the end of the section.

One also needs the following lemma, which will also be proved at the end of the section.

Lemma 19. Let x, y ∈ (0, 1) with y = x(k) + δ(k), and δ(k) > 0. If δ is increasing in k and

|x′(k)| < δ′(k), then the function

f(x, k) =
√
xy +

√
(1− x)(1− y)

is decreasing as k increases.

Essentially, Lemma 19 says that f is increasing as the distance between x and y is decreases.

Notice, that

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 3
≥ (a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
≥ (a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
,

and so by Lemma 19, f(x, y) increases by letting

y =
(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
.
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It is not hard to show that y is increasing and concave when 1 ≤ k ≤ n− 1, so by Lemma 19, y can

be replaced with its tangent line

y =
a+ b+ 1

a+ b+ 2
+

a+ b

(a+ b+ 2)2
· k − 1

n

to bound f(x, y) above by(√
a+ 1

a+ b+ 2

√
a+ b+ 1

a+ b+ 2
+

a+ b

(a+ b+ 2)2
· k − 1

n
+

√
b+ 1

a+ b+ 2

√
1

a+ b+ 2
− a+ b

(a+ b+ 2)2
· k − 1

n

)2

.

Using the fact that
√

1 + x ≤ 1 +
x

2
, f(x, y) is in turn bounded by(

γ − Ck − 1

n

)2

where

C = −1

2

a+ b

(a+ b+ 2)2

(√
a+ 1

a+ b+ 2
−
√
b+ 1

)
.

Notice that √
a+ 1

a+ b+ 2
−
√
b+ 1 ≤ 1−

√
b+ 1,

and thus c > 0. Then

f(x, y) ≤
(
γ − Ck − 1

n

)2

= γ2 − 2γC
k − 1

n
+ C2

(
k − 1

n

)2

,

and is not hard to show that 2γ > C. Therefore,

E[c2n−k+1]E[s′2n−k+1] v
2
k + E[c′2n−k]E[s2n−k+1] v

2
k +

(
E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k]

)
(v2k+1 + v2k)

is bounded by

f(x, y) ≤ γ2 − 2α
k − 1

n
≤ γ2 − αk

n

for some α > 0.

Case 1 (1 ≤ k ≤ n

2
− 1): Assume that 1 ≤ k ≤ n/2− 1. From the previous section,

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k]

≥

√
(a+ 1)n− k − 1

(a+ b+ 2)n− 2k
· (b+ 1)n− k

(a+ b+ 2)n− 2k + 2
· n− k − 1

(a+ b+ 2)n− 2k + 1
· (a+ b+ 1)n− k

(a+ b+ 2)n− 2k + 1
,



29

and because 1 ≤ k ≤ n

2
− 1 <

n

2
, one easily has

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] ≥

√
(a+ 1

2)n

(a+ b+ 2)n
·

(b+ 1
2)n

(a+ b+ 2)n
·

n
2

(a+ b+ 2)n
·

(a+ b+ 1
2)n

(a+ b+ 2)n

≥
√

(2a+ 1)(2b+ 1)(2a+ 2b+ 1)

4(a+ b+ 2)2

≥
√

(a+ 1)(b+ 1)(a+ b+ 1)

4(a+ b+ 2)2

With α =
1

4(a+ b+ 2)2
, this shows that

−
bn
2
c−1∑

k=1

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](vk+1 + vk)

2 ≤ −α
bn
2
c−1∑

k=1

(vk+1 + vk)
2

for some α > 0.

Case 2: Assume that
n

2
≤ k ≤ n. This is the easier of the two cases because

−
n∑

k=bn
2
c+1

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](vk+1 + vk)

2

is negative, and so it can be completely thrown away. By Lemma 19, letting k take its smallest

value, k = bn
2
c produces

(√
xy +

√
(1− x)(1− y)

)2
≤

(√
(a+ 1/2)(a+ b+ 1/2)

a+ b+ 1
+

(b+ 1/2)(1/2)

a+ b+ 1

)2

<

(√
(a+ 1)(a+ b+ 1)

a+ b+ 2
+

√
b+ 1

a+ b+ 2

)2

.

Thus, the kth term of 5.2.1 is bounded above by −αv2k where

−α =

(√
(a+ 1/2)(a+ b+ 1/2)

a+ b+ 1
+

(b+ 1/2)(1/2)

a+ b+ 1

)2

−

(√
(a+ 1)(a+ b+ 1)

a+ b+ 2
+

√
b+ 1

a+ b+ 2

)2

.
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Notice that

−α
n∑

k=bn
2
c+1

v2k = −α
4

n∑
k=bn

2
c+1

(
v2k + v2k

)
− α

2

n∑
k=bn

2
c+1

v2k

≤ −α
4

n∑
k=bn

2
c

(
v2k+1 + v2k

)
− α

2n

n∑
k=bn

2
c+1

kv2k

≤ −α
8

n∑
k=bn

2
c

(vk+1 + vk)
2 − α

8n

n∑
k=bn

2
c+1

kv2k

where the last inequality came from the fact that

(s+ t)2 ≤ 2
(
s2 + t2

)
.

Theorefore, there is some constant α > 0 such that the desired bound holds on the range
n

2
≤ k ≤ n.

At this point, all that remains is to establish Claim 17 and Lemma 19.

Proof of Claim 17. The first step is to rewrite the given terms E[c2n−k+1]E[s′2n−k+1] and E[c′2n−k]E[s2n−k+1]

as

xy + error and (1− x)(1− y) + error,

where

x =
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
and y =

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
.

The total error will then be negative, and hence

E[c2n−k+1]E[s′2n−k+1] + E[c′2n−k]E[s2n−k+1] ≤ xy + (1− x)(1− y). (5.2.3)
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Towards this end, write

E[c2n−k+1]E[s′2n−k+1] =
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 3

=
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

·
(

1− 1

(a+ b+ 2)n− 2k + 3

)(
1 +

1

(a+ b+ 1)n− k + 1

)
=

(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

·
(

1 +
n− k + 1

[(a+ b+ 2)n− 2k + 3][(a+ b+ 1)n− k + 1]

)
=

(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

+
[(a+ 1)n− k + 1][n− k + 1]

[(a+ b+ 2)n− 2k + 2]2[(a+ b+ 2)n− 2k + 3]
. (5.2.4)

Similarly,

E[c′2n−k]E[s2n−k+1] =
(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k + 1

=
(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k + 1

(a+ b+ 2)n− 2k + 2

− [(b+ 1)n− k + 1][(a+ b+ 1)n− k + 1]

[(a+ b+ 2)n− 2k + 2]2[(a+ b+ 2)n− 2k + 1]
. (5.2.5)

Adding the error terms from 5.2.4 and 5.2.5 is bounded above by zero because

(a+ 1)n− k + 1 ≤ (a+ b+ 1)n− k + 1,

n− k + 1 ≤ (b+ 1)n− k + 1, and

1

(a+ b+ 2)n− 2k + 3
≤ 1

(a+ b+ 2)n− 2k + 1
,

and so 5.2.3 holds true.

The next step is to show that, for the same values of x and y,

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] (v2k+1 + v2k) ≤

√
x(1− x)y(1− y) v2k. (5.2.6)

By Jensen’s inequality, the square root can be taken outside the expectation to get

E

√
X ≤

√
EX,
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and so

E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] ≤

√
E[c2n−k]E[s2n−k+1]E[c′2n−ks

′2
n−k],

which is in turn equal to√√√√ (a+ 1)n− k
(a+ b+ 2)n− 2k

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k + 1

β
2 [(a+ b+ 1)n− k + 1]

β
2 [(a+ b+ 2)n− 2k + 1] + 1

.

Because β > 0, E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k] is bounded above by√

(a+ 1)n− k
(a+ b+ 2)n− 2k

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k + 1

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 1
,

and hence E[cn−k]E[sn−k+1]E[c′n−ks
′
n−k](v

2
k+1 + v2k) is bounded above by√

(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

n− k + 1

(a+ b+ 2)n− 2k + 3

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 3
v2k

+

√
(a+ 1)n− k

(a+ b+ 2)n− 2k

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k + 1

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 1
v2k.

Continuing will require two trivial facts. These are, for 1 < u ≤ v <∞,

1

u2
≤ 1

(u− 1)(u+ 1)
, (5.2.7)

and

u(v + 1) ≤ (u+ 1)v. (5.2.8)

By 5.2.7

n− k
(a+ b+ 2)n− 2k + 1

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 1
≤ n− k

(a+ b+ 2)n− 2k

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
,

and by 5.2.8

[(a+ 1)n− k][(a+ b+ 1)n− k + 1] ≤ [(a+ 1)n− k + 1][(a+ b+ 1)n− k].

Together this means that√
(a+ 1)n− k

(a+ b+ 2)n− 2k

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k + 1

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 1

≤

√
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k
(a+ b+ 2)n− 2k

(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

.
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Similar reasoning produces√
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

n− k + 1

(a+ b+ 2)n− 2k + 3

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 3

≤

√
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

(b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2

n− k + 2

(a+ b+ 2)n− 2k + 4

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4
,

and so one needs to show that√
n− k

(a+ b+ 2)n− 2k

(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+

√
n− k + 2

(a+ b+ 2)n− 2k + 4

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

≤ 2 ·

√
n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
.

Recall that, if f is concave, then for t ∈ [0, 1]

(1− t)f(x) + tf(y) ≤ f((1− t)x+ ty).

With f(x) =
√
x and t = 1/2, one has√

n− k
(a+ b+ 2)n− 2k

(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+

√
n− k + 2

(a+ b+ 2)n− 2k + 4

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

≤ 2 ·

√
1

2

n− k
(a+ b+ 2)n− 2k

(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+
1

2

n− k + 2

(a+ b+ 2)n− 2k + 4

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4
.

Apply the same logic with f(x) = x(1− x) and t = 1/2 to get

2 ·

√
1

2

n− k
(a+ b+ 2)n− 2k

(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+
1

2

n− k + 2

(a+ b+ 2)n− 2k + 4

(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4√(
n− k

(a+ b+ 2)n− 2k
+

n− k + 2

(a+ b+ 2)n− 2k + 4

)(
(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+
(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

)
.

Fact 20. Let x(k) ∈ [0, 1]. Then x(k)(1−x(k)) increases as the distance between x(k) and 1−x(k)

decreases.

Apply Fact 20 to see that

1

2

(
n− k

(a+ b+ 2)n− 2k
+

n− k + 2

(a+ b+ 2)n− 2k + 4

)
· 1

2

(
(a+ b+ 1)n− k
(a+ b+ 2)n− 2k

+
(a+ b+ 1)n− k + 2

(a+ b+ 2)n− 2k + 4

)
≤ n− k + 1

(a+ b+ 2)n− 2k + 2

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
,

and hence 5.2.6 holds. Combining 5.2.3 and 5.2.6 gives the upper bound

E[c2n−k+1]E[s′2n−k+1] v
2
k + E[c′2n−k]E[s2n−k+1] v

2
k + E[cn−k]E[sn−k+1]E[c′n−ks

′
n−k] (v2k+1 + v2k)
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is bounded above by (√
xy +

√
(1− x)(1− y)

)2
v2k,

where

x =
(a+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
and y =

(a+ b+ 1)n− k + 1

(a+ b+ 2)n− 2k + 2
.

Proof of Lemma 19. Again, differentiation in k yields

df

dk
=

d

dk

[√
x(k)(x(k) + δ(k)) +

√
(1− x(k))(1− x(k)− δ(k))

]
=

1

2

[√
1− δ(k)

x(k) + δ(k)
−

√
1 +

δ(k)

1− (x(k) + δ(k))

]
· (x′(k) + δ′(k))

+
1

2

[√
1 +

δ(k)

x(k)
−

√
1− δ(k)

1− x(k)

]
· x′(k) (5.2.9)

Because 0 < x, y < 1, one easily has√
1− δ(k)

x(k) + δ(k)
−

√
1 +

δ(k)

1− (x(k) + δ(k))
< 0

and √
1 +

δ(k)

x(k)
−

√
1− δ(k)

1− x(k)
> 0.

If x′(k) < 0, then the proof is completed by noticing that x′(k) + δ′(k) > 0. If x′(k) ≥ 0, then

rewrite 5.2.9 as

1

2

[√
1 +

δ(k)

x(k)
−

√
1− δ(k)

1− x(k)
+

√
1− δ(k)

x(k) + δ(k)
−

√
1 +

δ(k)

1− (x(k) + δ(k))

]
· x′(k)

+
1

2

[√
1− δ(k)

x(k) + δ(k)
−

√
1 +

δ(k)

1− (x(k) + δ(k))

]
· δ′(k).

Because x(k) ≤ x(k) + δ(k)√
1 +

δ(k)

x(k)
−

√
1− δ(k)

1− x(k)
< −

√
1− δ(k)

x(k) + δ(k)
+

√
1 +

δ(k)

1− (x(k) + δ(k))
,

and so the first term is negative. The second term is clearly negative as well, so the proof is

complete.



Chapter 6

Right-Tail Upper Bound

This chapter contains the proof of Theorem 13, the right-tail upper bound. The most impor-

tant modification to the proof of the β-Hermite case, found in [16], is Lemma 24. The need for this

modification is closely tied to the term containing c′n−ks
′
n−k. More specifically, the fact that the

function
√
X(1−X) is not 1−Lipshitz.

Proposition 21. Consider the model quadratic form,

Jα(v, z) =
n∑
k=1

zkv
2
k − α

√
n

n∑
k=1

(vk+1 + vk)
2 − α√

n

n∑
k=1

kv2k, (6.0.1)

for fixed α > 0 and independent mean-zero random variables {zk}k=1,...,n satisfying E[eλzk ] ≤ 2 ·

ecλ
2/β(a+b) for some c > 0 and all λ ∈ R. There is a C = C(α, c) so that

P

(
sup
||v||2=1

Jα(v, z) ≥ εγ
√
n

)
≤
(

1− eβ(a+b)/C
)−1

e−β(a+b)ε
3/2n/C

for all ε ∈ (0, 1] and n ≥ 1.

The proof of this proposition will require the use of the following Lemma. Refer to [16] for a

proof.

Lemma 22. Let s1, s2, . . . , sk, . . . be real numbers, and let Sk =

k∑
l=1

sl, S0 = 0. Let further t1, . . . , tn

be real numbers, t0 = tn+1 = 0. Then, for every integer m ≥ 1,

n∑
k=1

sktk =
1

n

n∑
k=1

[sk+m−1 − Sk−1]tk +

n∑
k=0

(
1

m

k+m−1∑
l=k

[sl − sk]

)
(tk+1 − tk).
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Proof of Proposition 21. Apply Lemma 22 with sk = zk and tk = v2k to get

n∑
k=1

zkv
2
k ≤ 1

m

n∑
k=1

|Sk+m−1 − Sk−1|v2k +

n∑
k=0

(
1

m

k+m−1∑
`=k

|S` − Sk|

)
|v2k+1 − v2k|

≤ 1

m

n∑
k=1

∆m(k − 1)v2k +
n∑
k=0

∆m(k)|vk+1 + vk||vk+1 − vk|

where

∆m(k) = max
k+1≤`≤k+m

|S` − Sk|, for k = 0, . . . , n. (6.0.2)

By applying the Cauchy-Schwarz inequality

n∑
k=1

zkv
2
k ≤

1

m

n∑
k=1

∆m(k − 1)v2k + λ

n∑
k=0

(vk+1 + vk)
2 +

1

4λ

n∑
k=0

∆m(k)2(vk+1 − vk)2

for every λ > 0. With λ = α
√
n, one has

sup
||v||2=1

Jα(z, v) ≤ max
1≤k≤n

(
1

m
∆m(k − 1) +

1

2α
√
n

[
∆m(k − 1)2 + ∆m(k)2

]
− α k√

n

)
. (6.0.3)

Now, if (j − 1)m+ 1 ≤ k ≤ jm, 1 ≤ j ≤ [n/m] + 1, then the following inequality holds

∆m(k) ∨∆m(k − 1) ≤ 2∆2m

(
(j − 1)m

)
.

This implies that

sup
||v||2=1

Jα(z, v) (6.0.4)

≤ max
1≤j≤[ n

m
]+1

(
2

m
∆2m

(
(j − 1)m

)
+

4

α
√
n

∆2m

(
(j − 1)m

)2 − α (j − 1)m+ 1√
n

)
.

In order to continue, one must have a tail bound on ∆2m(J) for any integer J ≥ 0. Using Doob’s

maximal inequality and the assumptions on zk, for every λ > 0 and t > 0, one has

P

(
max

1≤`≤2m
S` ≥ t

)
≤ e−λt E

[
eλS2m

]
≤ e

−λt+ 2cmλ2

β(a+b) .

Optimizing in λ, and then applying the same reasoning to the sequence −S` produces

P

(
max

1≤`≤2m
|S`| ≥ t

)
≤ 2 e−β(a+b)t

2/8cm.
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Hence,

P

(
∆2m(J) ≥ t

)
≤ 2 e−β(a+b)t

2/8cm, (6.0.5)

for all integers m ≥ 1 and J ≥ 0, and every t > 0. One now has

P

(
max

1≤j≤[n/m]+1

(
2

m
∆2m ((j − 1)m)− α (j − 1)m+ 1

2
√
n

)
≥ εγ

√
n

2

)

≤
[n/m]+1∑
j=1

P

(
∆2m ((j − 1)m) ≥ m

2

[
α

(j − 1)m+ 1

2
√
n

+
εγ
√
n

2

])

≤
[n/m]+1∑
j=1

2 · exp

{
−β(a+ b)m

32c

[
α

(j − 1)m+ 1

2
√
n

+
εγ
√
n

2

]2}

=

[n/m]+1∑
j=1

2 · exp

{
−β(a+ b)m

32c

[
α2 [(j − 1)m+ 1]2

4n
+
αεγ[(j − 1)m+ 1]

2
+
ε2γ2n

4

]}

≤ e−β(a+b)mε
2γ2n/128c

[n/m]+1∑
j=1

2 · e−β(a+b)mαεγ[(j−1)m+1]/64c

≤ e−β(a+b)mε
2γ2n/128c

∞∑
j=0

2 ·
(
e−β(a+b)m

2αεγ/64c
)j

≤ e−β(a+b)mε
2γ2n/128c

(
2

1− e−β(a+b)m2αεγ/64c

)
.

Similarly,

P

(
max

1≤j≤[n/m]+1

(
4

α
√
n

∆2m

(
(j − 1)m

)2 − α (j − 1)m+ 1

2
√
n

)
≥ εγ

√
n

2

)

≤
[n/m]+1∑
j=1

P

(
∆2m ((j − 1)m)2 ≥ α

√
n

4

[
α

(j − 1)m+ 1

2
√
n

+ εγ
√
n

])

≤
[n/m]+1∑
j=1

P

(
∆2m ((j − 1)m) ≥

(
α
√
n

4

[
α

(j − 1)m+ 1

2
√
n

+ εγ
√
n

])1/2
)

≤
[n/m]+1∑
j=1

2 · exp

{
−β(a+ b)

α
√
n

32cm

[
α

(j − 1)m+ 1

2
√
n

+
εγ
√
n

2

]}

≤ e−β(a+b)αεγn/64cm
∞∑
j=0

2 ·
(
e−β(a+b)α

2/64c
)j

≤ e−β(a+b)αεγn/64cm
(

2

1− e−β(a+b)α2/64c

)
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Therefore,

P

(
sup
||v||2=1

Jα(z, v) ≥ εγ
√
n

)

≤ e−β(a+b)mε
2γ2n/128c

(
2

1− e−β(a+b)m2αεγ/64c

)
+ e−β(a+b)αεγn/64cm

(
2

1− e−β(a+b)α2/64c

)
.

Letting m = [ε−1/2] yields

P

(
sup
||v||2=1

Jα(z, v) ≥ εγ
√
n

)

≤ e−β(a+b)ε
3/2γ2n/128c

(
2

1− e−β(a+b)αγ/64c

)
+ e−β(a+b)αε

3/2γn/64c

(
2

1− e−β(a+b)α2/64c

)
≤ e−β(a+b)ε

3/2n/C

(
1

1− eβ(a+b)/C

)
,

which completes the proof of Proposition 21.

Remark 23. When ε > 1, letting m = 1 means that the second term is larger, and so Theorem 13

becomes

P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
≤ Cβe−β(a+b)nε/Cβ .

This will be used to prove Corollary 15.

Now, with Proposition 21 proved, the proof of Theorem 13 will begin to take shape. Notice

that

P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
≤ P

(
sup
||v||2=1

Jα(v) ≥ γ
√
nε

)
.

Write 5.0.3 as

Jα(v) = Jα/3(Zk, v) + Jα/3(Z̃k, v) + J̃α/3(Yk, v) (6.0.6)

where

J̃α(Yk, v) := 2
n−1∑
k=1

Ykvkvk+1 − α
√
n

n∑
k=1

(vk+1 + vk)
2 − α√

n

n∑
k=1

kv2k. (6.0.7)

The third term on the right is not quite ready for us to apply Proposition 21, but applying Lemma

22 to J̃α/3(Yk, v) with sk = Yk and tk = vkvk+1, changes 6.0.4 to

sup
||v||2=1

Jα(z, v)

≤ max
1≤j≤[ n

m
]+1

(
4

m
∆2m

(
(j − 1)m

)
+

8

α
√
n

∆2m

(
(j − 1)m

)2 − α (j − 1)m+ 1√
n

)
.
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The additional factor of two will be absorbed into the constant at the end.

In order to use Proposition 21 one Jα/3(Zk, v), Jα/3(Z̃k, v), and J̃α/3(Yk, v), all that remains

is to establish the desired moment generating function bounds for Zk, Z̃k, and Yk . The following

lemma produces these bounds.

Lemma 24. Let X be a Beta(s, t) random variable with s, t ≥ 1. Let F (X) be a mean zero function

such that x(1− x)(F ′(x))2 ≤ 1 for x ∈ [0, 1]. Then

E[eλF (X))] ≤ e4λ2/(s+t). (6.0.8)

for every λ ∈ R.

Remark 25. Ultimately, this proof will follow a modified Herbst argument. The Herbst argument

requires a logarithmic-Sobolev inequality for the measure in question. For the Beta distributions in

this problem, this comes from the fact that the Beta density is log-concave. If F (X) is 1-Lipschitz,

then the Herbst argument would complete the proof. However, F (x) =
√
X(1−X) is not 1-

Lipschitz, and so the log-Sobolev must be modified and F must satisfy the hypothesis stated in the

Lemma.

Proof of Lemma 24. For x ∈ [0, 1], consider the Jacobi operator, J , and the measure, µ, defined by

J :=
1

2
x(1− x)

d2

dx2
+

1

2
[s(1− x)− tx]

d

dx
(6.0.9)

µs,t(dx) :=
1

Zs,t
xs−1(1− x)t−1dx. (6.0.10)

The carré du champ, Γ1(f, f) :=
1

2

{
J (f2)− 2fJ (f)

}
, of the Jacobi operator is easily calculated

to be

Γ1(f, f) =
1

2
x(1− x)(f ′(x))2. (6.0.11)

The next step is to use the Bakry-Emery Γ2 criterion. The Bakry-Emery condition is satisfied with

constant c > 0 if

Γ2(f, f) =
1

2
{J Γ1(f, f)− 2 Γ1(f,J f)} ≥ 1

c
Γ1(f, f). (6.0.12)

For more discussion on Logarithmic Sobolev Inequalities and the Bakry-Emery condition see [9].
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The calculation is straightforward, but it is also a bit tedious. One has

J Γ1(f, f) = −1

2
x(1− x)(f ′(x))2 +

1

2
x2(1− x)2(f ′′(x))2

+
1

4
[s(1− x)− tx](1− 2x)(f ′(x))2 + (1− 2x)x(1− x)f ′(x)f ′′(x)

+
1

2
x2(1− x)2f ′(x)f ′′′(x) +

1

2
[s(1− x)− tx]x(1− x)f ′(x)f ′′(x)

and

2 Γ1(f,J f) = −s+ t

2
x(1− x)(f ′(x))2 +

1

2
(1− 2x)x(1− x)f ′(x)f ′′(x)

+
1

2
x2(1− x)2f ′(x)f ′′′(x) +

1

2
[s(1− x)− tx]x(1− x)f ′(x)f ′′(x).

Combining the above two equations produces

Γ2(f, f) =
s+ t

2
x(1− x)(f ′(x))2 +

1

4
x2(1− x)2(f ′′(x))2

+
1

4
[s(1− x)− tx](1− 2x)(f ′(x))2 − 1

2
x(1− x)(f ′(x))2 − 1

4
(1− 2x)2(f ′(x))2

+
1

4
(1− 2x)2(f ′(x))2 +

1

2
(1− 2x)x(1− x)f ′(x)f ′′(x) +

1

4
x2(1− x)2(f ′′(x))2

=
s+ t

2
x(1− x)(f ′(x))2 +

1

4
x2(1− x)2(f ′′(x))2

+

[
1

4
[(s− 1)(1− x)− (t− 1)x](1− 2x)− 1

2
x(1− x)

]
(f ′(x))2

+
1

4

[
(1− 2x)f ′(x) + x(1− x)f ′′(x)

]2
=

s+ t

2
x(1− x)(f ′(x))2 +

1

4
x2(1− x)2(f ′′(x))2

+

[
s− 1

4
(1− x)2 +

t− 1

4
x2 − s+ t

4
x(1− x)

]
(f ′(x))2

+
1

4

[
(1− 2x)f ′(x) + x(1− x)f ′′(x)

]2
≥ s+ t

4
x(1− x)(f ′(x))2.

The very last step used the hypothesis that s, t ≥ 1. Thus, the Bakry-Emery condition is satisfied

with constant c = 4/(s+ t).

Now, in order to use the Bakry-Emery condition one must first check that µ is the invariant

measure of the Jacobi operator, which amounts to showing that
∫
J (f)dµ = 0. This is easily
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shown by integrating the first term in the following term by parts.∫
J (f)dµ =

1

Zs,t

∫ 1

0
xs(1− x)tf ′′(x) + [s(1− x)− tx]xs−1(1− x)t−1f ′(x) dx = 0

and thus, µ is the invariant measure of the Jacobi operator.

Theorem 16 of [9] implies that if f is a positive, bounded, and continuous function with∫
fdµ = 1, then ∫

f log fdµ ≤ 2c

∫
Γ1(f

1/2, f1/2)dµ. (6.0.13)

This means that if f is bounded and continuous, then the inequality above will hold for the function

f2/‖f‖2. Recalling 6.0.11, one has

1

‖f‖2

∫
f2 log

f2

‖f‖2
dµ ≤ 2c

∫
Γ1

(
f

‖f‖2
,
f

‖f‖2

)
dµ

≤ c

‖f‖2

∫
x(1− x)(f ′)2dµ,

and hence µ satisfies the following log-Sobolev inequality

Entµ(f2) :=

∫
f2 log f2dµ−

∫
f2dµ log

∫
f2dµ

=

∫
f2 log

f2

‖f‖2
dµ

≤ c

∫
x(1− x)(f ′)2dµ. (6.0.14)

The following is a modification to the Herbst argument, which is presented in [12]. First,

apply 6.0.14 to the function f2 = eλF−cλ
2/2, and then use the hypothesis on F to get∫

x(1− x)(f ′)2dµ =
λ2

4

∫
x(1− x)(F ′(x))2eλF (x)−cλ2/2dµ

≤ λ2

4

∫
eλF (x)−cλ2/2dµ.

From here on out we may follow [12] exactly to conclude that∫
eλFdµ ≤ ecλ2/2

for all λ ∈ R.
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Lemma 26. Let X1, X2 be independent random variables such that 0 ≤ X1, X2 ≤ 1. Assume that

E

[
eλ(Xi−EXi)

]
≤ eλ2/c (6.0.15)

for some c > 0. Then

E

[
eλ(X1X2−EX1EX2)

]
≤ 2eλ

2/c

for all λ ∈ R.

Proof. By adding and subtracting X1E[X2] one has

E

[
eλ(X1X2−EX1EX2)

]
= E

[
eλX1(X2−E[X2])eλE[X2](X1−E[X1])

]
= E

[
eλX1(X2−E[X2])eλE[X2](X1−E[X1]) · 1{X2−E[X2]≥0}

]
+E

[
eλX1(X2−E[X2])eλE[X2](X1−E[X1]) · 1{X2−E[X2]<0}

]
.

If λ > 0 the fact that 0 ≤ X1 ≤ 1 implies that

eλX1(X2−E[X2]) · 1{X2−E[X2]≥0} ≤ e
λ(X2−E[X2]),

and

eλX1(X2−E[X2]) · 1{X2−E[X2]<0} ≤ 1.

Using the independence of X1 and X2, distribute the expectation to get

E

[
eλ(X1X2−EX1EX2)

]
≤ E

[
eλ(X2−E[X2])eλE[X2](X1−E[X1])

]
+ E

[
eλE[X2](X1−E[X1])

]
= E

[
eλ(X2−E[X2])

]
· E
[
eλE[X2](X1−E[X1])

]
+ E

[
eλE[X2](X1−E[X1])

]
.

By 6.0.15 and the fact that 0 < Xi < 1, one has

E

[
eλ(X1X2−E[X1X2])

]
≤ eλ

2/c · eλ2/c + eλ
2/c

≤ e2λ
2/c + eλ

2/c

≤ 2 · e2λ2/c.

The proof is essentially the same for λ < 0. If λ = 0, the proof is trivial.
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To finish the proof, letX is aBeta(s, t) random variable. Then bothX−EX and
√
X(1−X)−

E

√
X(1−X) satisfy the Lemma 24 hypothesis on F (X). Hence, by Lemma 24 one has

Eeλ(X−EX) ≤ e4λ2/(s+t) and Ee
λ
(√

X(1−X)−E
√
X(1−X)

)
≤ e4λ2/(s+t).

Notice that the Beta(s, t) random variables that make up Zk, Z̃k, and Yk all satisfy

s+ t ≥ β(a+ b)n

2
,

and so Lemma 26 yields

EeλZk ≤ 2e8λ
2/β(a+b)n and EeλZ̃k ≤ 2e8λ

2/β(a+b)n.

Also, Lemma 26 can easily be extended to show that

EeλYk ≤ 3e8λ
2/β(a+b)n, (6.0.16)

which completes the proof of Theorem 13.



Chapter 7

Left-Tail Upper Bound

By Lemma 16 there exists a constant α > 0 such that

P
(
λmax (Jβ) ≤ γ

√
n(1− ε)

)
= P

(
sup
‖v‖2=1

J(v) ≤ −γε
√
n

)

≤ P

(
sup
‖v‖2=1

Jα(v) ≤ −γε
√
n

)
.

One nice thing about the supremum here is that finding an upper bound can be done by choosing

any test vector, v ∈ Rn, such that ‖v‖2 = 1. If one normalizes by ‖v‖22, then the problem amounts

to finding a bound for

P
(
Jα(v) ≤ −Cγε

√
n ‖v‖22

)
where v can be any test vector in Rn.

Fortunately, the choice of v can be the same as the choice for the β-Hermite ensemble in [16].

Namely, for v = (v1, v2, . . . , vn) ∈ Rn set

vk =


k
εn ∧

(
1− k

εn

)
for 1 ≤ k ≤ εn

0 otherwise.
(7.0.1)

Borrowing the notation from [16], set

‖v‖22 =
∑n

k=1 v
2
k, ‖Ov‖22 =

∑n
k=1 (vk+1 + vk)

2, and ‖
√
kv‖22 =

∑n
k=1 kv

2
k.

For this choice of v, one easily has the following bounds

‖v‖22 ∼ ‖v‖44 ∼ εn, ‖Ov‖22 ∼ 1
εn , and ‖

√
kv‖22 ∼ ε2n2, (7.0.2)
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where x ∼ y indicates that there exists constants c2 ≥ c1 > 0 such that c1y ≤ x ≤ c2y.

If ε3/2n ≥ 1, then

P
(
Jα(v, z) ≤ −Cγε

√
n ‖v‖22

)
= P

(
n∑
k=1

(−zk)v2k ≥ Cγε
√
n ‖v‖22 − α

√
n‖Ov‖22 −

α√
n
‖
√
kv‖22

)

≤ P

(
n∑
k=1

(−zk)v2k ≥ Cε2n3/2
)
. (7.0.3)

The requirement on ε3/2n is needed to make sure that the ‖Ov‖22 term does not dominate the right

hand side of this probability. Though it will not matter after the next step, it is possible for C to

be negative at this point.

Now, for zk satisfying the hypotheses in Proposition 21 one has

P

(
n∑
k=1

(−zk)v2k ≥ t

)
≤ e−λt

n∏
k=1

Ee−λv
2
kzk

≤ e−λt
n∏
k=1

ecλ
2v4k/β(a+b)

= e
−λt+ c‖v‖44λ

2

β(a+b)

for all λ ∈ R. As in the proof of Proposition 21, optimize in λ to get

P

(
n∑
k=1

(−zk)v2k ≥ t

)
≤ e−

β(a+b)t2

4cεn

where we used 7.0.2. Thus, for t = Cε2n3/2 there exists a constant C > 0 such that

P

(
n∑
k=1

(−zk)v2k ≥ Cε2n3/2
)
≤ e−Cβ(a+b)ε3n2

. (7.0.4)

Recall the definitions of Zk, Z̃k, and Yk given in 5.0.4. One has

Jα(v) = Jα/3(v, Z) + Jα/3(v, Z̃) + J̃α/3(v, Y ).

Since Zk, Z̃k, and Yk satisfy the hypotheses of Proposition 21, one has

P
(
Jα/3(v, Z) ≤ −Cγε

√
n ‖v‖22/3

)
≤ e−C1β(a+b)ε3n2

,

P

(
Jα/3(v, Z̃) ≤ −Cγε

√
n ‖v‖22/3

)
≤ e−C2β(a+b)ε3n2

.
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The J̃ term requires slightly more work, but the Caucy-Schwarz inequality, when applied to
n−1∑
k=1

Ykvkvk+1,

yields the bound

P

(
J̃α/3(v, Y ) ≤ −Cγε

√
n ‖v‖22/3

)
≤ 2e−C3β(a+b)ε3n2

.

This completes the proof of Theorem 14.



Chapter 8

Variance Bound

Now that Theorems 13 and 14 have been established, a finite n bound on the variance of the

largest eigenvalue follows quickly. Recall that in order to prove Corollary 15, one needs to show

that

Var [λmax(Jβ,n)] ≤ Cβn−1/3

for all n ≥ 1.

The first step is to show that

Var [λmax(Jβ,n)] ≤ E[
(
λmax(Jβ,n)− γ

√
n
)2

]

≤ γ2n

∫ ∞
0

P
(
|λmax(Jβ,n)− γ

√
n| ≥ γ

√
nε
)
dε2

The first inequality is because E[(X−C)2] is minimized when C = EX, and the second follows from

applying Fubini’s Theorem.

On the regime when λmax(Jβ,n) ≤ γ
√
n, use the fact that the Jacobi tridiagonal is a positive

definite matrix (see 4.1.1). This means that all the eigenvalues are positive, and so when ε > 1 one

has

P
(
λmax (Jβ) ≤ γ

√
n(1− ε)

)
= 0. (8.0.1)

If ε ∈ (0, 1], use Theorem 14 to say∫ 1

0
P
(
λmax (Jβ) ≤ γ

√
n(1− ε)

)
dε2 ≤

∫ 1

0
Cβe

−β(a+b)ε3n2/Cβdε2

≤ Cβn
−4/3

∫ ∞
0

u−1/3e−udu

≤ Cβn
−4/3, (8.0.2)
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where Cβ is a numerical constant. Combining 8.0.1 and 8.0.2 yields∫ ∞
0

P
(
λmax(Jβ,n)− γ

√
n ≤ −γ

√
nε
)
dε2 ≤ Cβn−4/3

for some Cβ .

On the other regime, λmax(Jβ,n) ≥ γ
√
n, Theorem 13 can be used for ε ∈ (0, 1] to say∫ 1

0
P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
≤

∫ 1

0
Cβe

−β(a+b)nε3/2/Cβ

≤ Cβn
−4/3

∫ ∞
0

u1/3e−udu

≤ Cβn
−4/3, (8.0.3)

where Cβ is a numerical constant. Now, if ε > 1 the proof of Theorem 13 can be tweaked slightly

(see Remark 23) to produce

P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
≤ Cβe−β(a+b)nε/Cβ .

Thus, ∫ ∞
1

P
(
λmax (Jβ) ≥ γ

√
n(1 + ε)

)
dε2 ≤

∫ ∞
1

Cβe
−β(a+b)nε/Cβdε2

≤ Cβn
−2
∫ ∞
0

ue−udu

≤ Cβn
−4/3. (8.0.4)

Combining 8.0.3 and 8.0.4 produces∫ ∞
0

P
(
|λmax(Jβ,n)− γ

√
n| ≥ γ

√
nε
)
dε2 ≤ Cβn−4/3,

which completes the proof of Corollary 15.
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