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Abstract

High-rate core-to-core communication is critical for ef-
ficient pipeline-parallel software architectures. This pa-
per presents the FastForward system, a software-only low-
overhead high-rate queue implementation for pipeline par-
allelism on multicore architectures. FastForward uses an
architecturally-tuned domain-specific adaptation of con-
current lock-free queues to provide low-latency and low-
overhead core-to-core communication. Enqueue and de-
queue times on a 2 GHz Opteron 270 based system are
as low as 36 ns, up to 4x faster than the next best solu-
tion. FastForward’s effectiveness is demonstrated for real
applications by applying it to network processing, result-
ing in record-breaking throughput for commodity hardware.
A proof of correctness shows that FastForward works on
strong to very weakly ordered consistency models.

1 Introduction

Traditionally, increases in transistor count and fabrica-
tion technology have led to increased performance. How-
ever, this trend has slowed due to limitations arising from
power consumption, design complexity, and wire delays.
In response, designers have turned to chip multiprocessors
(CMPs) that have multiple cores on a single die. While
CMPs are a boon to throughput driven applications such
as web servers, single-threaded applications’ performance
is stagnant. Furthermore, the typical approach to paralleliz-
ing software is difficult for general purpose applications [2]
as the strategy has been to find, extract, and run nearly in-
dependent code regions on separate processors [14].

Recent work shows that many applications can be paral-
lelized by using pipeline parallelism [11, 12, 14, 16]. In this
paradigm, computation is divided into stages where each
stage is a thread and is isolated from interference by being
bound to separate cores. For example, the Decoupled Soft-
ware Pipelining (DSWP) approach extracts pipelines from
loops in sequential programs [14] with an automatic com-
piler [11]. However, these techniques rely on special lan-
guages or hardware to achieve their performance gains.

In this work, we present FastForward, a software only
buffering communication mechanism for multi-threaded
pipeline-parallel applications running on commodity mul-
ticore hardware with general purpose languages. With Fast-
Forward it is possible to construct pipeline-parallel appli-
cations with minimal communication overhead, delivering
performance improvement proportional to pipeline depth
for applications well suited to pipeline parallelism (e.g., net-
work frame processing, multimedia decoding, and certain
pointer chasing loops [11]).

FastForward provides fast queue/dequeue operations by
using shared-memory regions to construct concurrent lock-
free (CLF) [10] queues that eliminate all synchronization
operations and enable decoupled operation. Unlike most
CLF queues, FastForward guarantees correct operation un-
der strong to very weakly ordered consistency models. For
performance, FastForward uses a careful organization and a
cache-aware timing strategy allowing the prefetcher to elim-
inate most compulsory cache misses. Furthermore, since all
FastForward state is thread local, both OS process migration
and cross-domain (e.g., between kernel and user-processes)
operation is handled seamlessly. Experiments on a 2.0 GHz
dual-processor dual-core AMD Opteron 270 show that Fast-
Forward operations have an overhead of only 36-40 ns, up
to 4x times faster than the next best solution allowing for
very fine grain (≤200 ns) stages.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background and a motivating example. Sec-
tion 3 describes the implementation and tuning of FastFor-
ward. Section 4 presents a proof of correctness. Section 5
presents a detailed evaluation an AMD Opteron system.
Section 6 concludes.

2 Background

This section reviews the three basic parallel struc-
tures (i.e., task, data, and pipeline) and motivates FastFor-
ward with a network frame processing example.

2.1 Parallel Structures

Recent interest in multi-threaded pipeline parallel appli-
cations is driven by the realization that many applications
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of interest have strict ordering requirements in their com-
putation, making them poor matches for existing task- and
data-parallel techniques.

Task Parallelism is the most basic form of parallelism and
consists of running multiple independent tasks in par-
allel. This form of parallelism is limited by the avail-
ability of independent tasks at any given moment.

Data Parallelism is a method for parallelizing a single task
by processing independent data elements in parallel.
Bracketing routines fan out data elements and then
collect processed results. This technique scales well
from a few processing cores to an entire cluster [4].
The flexibility of the technique relies upon stateless
processing routines (filters) implying that the data ele-
ments must be fully independent.

Pipeline Parallelism is a method for parallelizing a single
task by segmenting the task into a series of sequential
stages. This method applies when there exists a partial
or total order in a computation preventing the use of
data or task parallelism. By processing data elements
in order, local state may be maintained in each stage.
Parallelism is achieved by running each stage simul-
taneously on subsequent data elements. This form of
parallelism is limited only by inter-stage dependences
and the duration of the longest stage.

2.2 Example: Network Frame Processing

Network frame processing provides an interesting case
study for pipeline parallelism as such systems are both use-
ful (e.g., intrusion detection, firewalls, and routers) and may
exhibit high data rates that stresses both the hardware (e.g,
bus arbitration) and software (e.g., locking methods). Con-
sider gigabit Ethernet, at the maximum frame rate case there
are 1,488,095 frames per second. This means that a new
frame can arrive every 672 ns, requiring the software to
remove the frame from the data structures shared with the
network card, process the frame, and if the frame is being
forwarded insert it into the output network interface’s data
structures within 672 ns (approximately 1500 instructions
on a 2.0 GHz machine).

Using FastForward, we have built applications capable
of capturing and forwarding at a record breaking, for com-
modity hardware, rate of 1.428 million frames per sec-
ond, the limit of the evaluation network hardware (see Sec-
tion 5.6). To achieve this result on general purpose com-
modity hardware a 3-stage pipeline was used to increase
available per frame processing time approximately 3x. Be-
low, we see that this increase requires the very low over-
head stage-to-stage communication provided only by Fast-
Forward on general purpose machines. Data parallelism is
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Figure 1. Frame Shared Memory Pipeline

impractical for such applications (e.g., firewalls) as there
may be many inter-frame data dependencies. Performance
results measured on real hardware are presented in Sec-
tion 5.6. The lessons learned from this example may be
generalized to any domain with ordered data.

A basic forwarding application may be decomposed into
three stages (Figure 1), with each being alloted the full
frame computation time period and therefore tripling the
available frame manipulation time. The output (OP) and
input (IP) stages handle transferring each frame to and from
the network interfaces. The application (APP) stage per-
forms the actual application related frame processing. By
executing the three stages concurrently it is possible to fully
overlap every stage in every time step. The frame process-
ing time can be extended to 4x and beyond if the application
stage can be further decomposed.

Communication overhead is the limiting factor for such
fine grain stages. We found that lock based queues cost at
least 200 ns per operation (get or put), or≈60% (2x30%) of
the available frame processing time. To address this, we de-
veloped FastForward to provide a communication primitive
costing only 36-40ns per operation while providing cross-
domain communication so the application stages may be in
user-space with the I/O stages in the kernel.

3 FastForward

This section presents FastForward, a software-only high-
performance communication primitive that is 2.5x-5x faster
than the next best solutions: traditional lock-based queues
(Section 3.1) and Lamport’s concurrent lock-free (CLF)
queue (Section 3.2). Fastforward uses a new optimized
single-producer/single-consumer CLF queue. Section 3.3
describes this queue and how it overcomes the bottlenecks
in traditional lock-based queues and Lamport’s CLF queue.
Sections 3.4 and 3.5 describe how to maximize the perfor-
mance of FastForward on modern memory subsystems with
temporal slipping and prefetching. Finally, large payload
support is discussed in Section 3.6.
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1 enqueue_nonblock(data) {
2 lock(queue);
3 if (NEXT(head) == tail) {
4 unlock(queue);
5 return EWOULDBLOCK;
6 }
7 buffer[head] = data;
8 head = NEXT(head);
9 unlock(queue);

10 return 0;
11 }

1 dequeue_nonblock(data) {
2 lock(queue);
3 if (head == tail) {
4 unlock(queue);
5 return EWOULDBLOCK;
6 }
7 data = buffer[tail];
8 tail = NEXT(tail);
9 unlock(queue);

10 return 0;
11 }

Figure 2. Locking queue implementation
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Figure 3. Performance of in-kernel locking
queues on an AMD system for spinning ver-
sus blocking queues.

3.1 Lock Based Queues

Efficient pipeline parallelism requires that the buffering
communication mechanism used to provide core-to-core
communication provide the smallest overhead possible. In
the network frame processing example (Section 2.2), the
communication overhead for two operations must be sig-
nificantly less than 672 ns. Traditional locking queues are
inappropriate for such fine grain stages as the overhead is
proportionately substantial (≥ 60%).

Locking queues (Figure 2) are inappropriate due to two
basic limitations. First, the cost of manipulating a locking
queue in a non-preemptive environment, such as inside a
kernel1, incurs substantial overhead (Figure 3). Notice that

1FreeBSD 5.5, our host OS does not support the pinning of user-space
threads necessary to eliminate unpredictable OS related stalls

1 enqueue_nonblock(data) {
2 if (NEXT(head) == tail) {
3 return EWOULDBLOCK;
4 }
5 buffer[head] = data;
6 head = NEXT(head);
7 return 0;
8 }

1 dequeue_nonblock(data) {
2 if (head == tail) {
3 return EWOULDBLOCK;
4 }
5 data = buffer[tail];
6 tail = NEXT(tail);
7 return 0;
8 }

Figure 4. Lamport’s queue implementation

Architecture # Threads Syscalls ioctl
2.0 GHz AMD Opteron 270 N/A 168 ns 556 ns
2.0 GHz AMD Opteron 270 1 1334 ns 1799 ns
2.0 GHz AMD Opteron 270 2 911 ns 1211 ns
2.0 GHz AMD Opteron 270 3 910 ns 924 ns

Table 1. System-call and ioctl costs. N/A
means no thread library is active.

even when a blocking condition variable is used Figure 3(b),
the performance is still unacceptable. Second, it is often de-
sirable for stages to be located in different processes, such
as the network example with stages in the kernel and user-
space. In these situations the only way to block on the con-
dition variable is with expensive system calls (Table 1).

Therefore a lower per operation cost technique is needed
to support fine-grain pipeline stages.

3.2 Lamport’s CLF Queue

The real problem with lock based queues is the explicit
synchronization between the producer and consumer. This
synchronization prevents independent operation even if the
producer and consumer can independently operate on dif-
ferent entries in the queue. Lamport in 1983 proved that
the locks could be removed in the single-producer/single-
consumer case (Figure 4), resulting in a concurrent lock-
free (CLF) queue requiring no explicit synchronization be-
tween the producer and consumer [8]. Notice that there
still exists an implicit synchronization between the pro-
ducer and consumer at the memory layer as the control
data (i.e., head and tail) are shared. This dependency, on
a system with caching, causes the cachelines containing the
head and tail indices to transition between the modified (M)
and shared (S) states for every enqueue or dequeue opera-
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1 enqueue_nonblock(data) {
2 if (NULL != buffer[head]) {
3 return EWOULDBLOCK;
4 }
5 buffer[head] = data;
6 head = NEXT(head);
7 return 0;
8 }

1 dequeue_nonblock(data) {
2 if (NULL == buffer[tail]) {
3 return EWOULDBLOCK;
4 }
5 data = buffer[tail];
6 buffer[tail] = NULL;
7 tail = NEXT(tail);
8 return 0;
9 }

Figure 5. FastForward queue implementation

tion [13], and therefore thrash the cache coherence protocol.
Lamport’s algorithm was proven correct under sequen-

tial consistency [5, 8], but not anything weaker, although
one can convince oneself that it is also correct under some
models (e.g., x86 [7]). Supporting weaker consistency mod-
els requires the addition of fences to ensure correct order-
ing between the data writes (i.e., buffer) and the control
writes (i.e., head/tail). While CLF data structures have been
extensively studied since Lamport’s algorithm, they do not
meet our performance requirements as they usually depend
on linked lists or double-atomic compare-and-set operations
that are not found on most processors [10].

3.3 FastForward’s CLF Queue

FastForward’s contribution is an algorithm that provides
improved performance over Lamport’s queue while oper-
ating correctly on a wider range of memory consistency
models (strong to very weak). Performance is improved
by tightly coupling control and data into a single operation,
making it possible for the producer and consumer to operate
independently when there is at least one data element in the
queue, unlike Lamport’s queue. Coupling control and data
into a single operation means that the algorithm is lineariz-
able [6], a key element in our proof (Section 4).

Figure 5 shows pseudo-code for the non-blocking en-
queue and dequeue operations. Careful reading shows that
for each operation only two memory locations are accessed,
the index into the buffer and the appropriate buffer entry.
This differs from Lamport’s queue as the buffer entry itself
is used to implicitly indicate full and empty queue condi-
tions. Control is reified by defining a known value indicat-
ing an empty slot, NULL suffices for pointers.

This optimization is critical as it permits stages to keep
the cachelines containing the indices in the modified (M)
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Figure 6. Timing of a slipped pipeline.

state [13] as they are not shared and therefore thread local.
This means that the head or tail indices may always be cache
resident and never incur a penalty to make them coherent.

3.4 Temporal Slipping

Avoiding thrashing of cachelines (i.e., memory hotspots)
is critical for FastForward, and CLF data structures in gen-
eral. Temporally slipping the producer and consumer in
FastForward eliminates thrashing by ensuring that enqueue
and dequeue operations operate on different cachelines.

Consider a pipeline where stages are working in lock
step with no buffered entries separating them. In this sce-
nario the buffer accesses will cause the cacheline contain-
ing the buffer entry to bounce between the caches incurring
penalties for the coherence traffic just as in Lamport’s queue
with the head/tail comparisons.

Thrashing can be eliminated in FastForward by recogniz-
ing that a pipeline’s goal is to maximize throughput while
minimizing the communication overhead. It is possible to
reach the theoretic minimum number of compulsory cache-
line transfers by temporally slipping the processing stages
to ensure there is never a time when the producer and con-
sumer are operating on the same cacheline. The minimum
number of compulsory cacheline transfers, to be explicit,
is one per cacheline, so a 64-bit platform with 64B cache-
lines incurs only 1 transfer for 8 accesses. This reduction
in communication overhead incurs only a modest increase
in latency. Section 5.4 demonstrates the performance im-
provement of temporal slipping.

Figure 6 shows a slipped two stage pipeline on a ma-
chine with four entries per cacheline. In this scenario, the
consumer stage is delayed by four iterations to permit the
producer stage to enqueue four data elements. Once the first
cacheline is filled, the producer and consumer run simulta-
neously with a throughput that is still 2x the non-pipelined
version. Further, by minimizing the communication over-
head the time available for work in each stage is increased
by minimizing the communication overhead.

Initializing and maintaining this slip is straightforward

4



given stages of uniform duration and a zero mean distribu-
tion of unexpected delays. Balancing the stages so that they
are all of uniform duration can be accomplished by spinning
on the equivalent of the TimeStampCounter in x86 to match
the duration of the longest stage.

3.5 Prefetching

Temporal slipping provides an opportunity for a hard-
ware prefetch unit to minimize the cost of the compulsory
per buffer cacheline penalty by transparently prefetching
cachelines into the L2 data cache. Experiments show that,
with the AMD Operton 270’s stride prefetcher, only 1.5%
of cacheline accesses were not serviced by the L1 or L2 data
caches. Results are detailed in Section 5.4.

Prefetching provides additional potential for perfor-
mance improvement when passing references to exter-
nal buffers; discussed in the following section. Content
prefetching can be used to hide the transfer cost of transfer-
ring such indirect blocks by finding pointers in cachelines
and transparently moving them to the local L2 cache [3].
This is will cause no additional cacheline thrashing as the
data block must be complete before its reference is inserted
into the queue. Alternatively, a cache-to-cache push mech-
anism could be implemented to preemptively transfer the
data as done in Intel’s work on ETA [15].

3.6 Large Payloads

FastForward as described assumes that every data ele-
ment can be transfered in a single linearizable write. Larger
transfers are possible by dividing each datum into a series of
linearizable writes, or by transfering a reference to an exter-
nal buffer via the queue. Transferring a reference is ideal as
communication overhead must be paid for each transfer. On
processors with program ordered remote stores (e.g., x86),
FastForward operates correctly as writes from remote pro-
cessors are visible in the writer’s program order.

On processors with weaker consistency models the algo-
rithm needs to be slightly modified to introduce a memory
store-fence before the reference is written into the queue’s
buffer. Without a store-fence the queue’s buffer write could
be visible to the remote stage before the payload writes
complete, potentially resulting in a read of stale data. While
store-fences may have significant overheads on some pro-
cessors (e.g., Power4), this is an unavoidable cost and must
be paid with any communication mechanism, be it based
on CLF data structures or mutexes. Therefore FastForward
will still be better for large payloads on all architectures.

4 Proof of Correctness

The intuitive notion of correctness for the point-to-point
FastForward queues is that the consumer dequeues values
from the queue in the same order the producer enqueued
them. However, stating this fact formally is more compli-
cated because modern processors do not execute code in-
order, nor are remote writes necessarily seen in the program
order of the writer. With this in mind, a more precise state-
ment to prove the correctness of FastFoward is to show that
“in the program order of the consumer, the consumer de-
queues values in the same order that they were enqueued in
the producer’s program order.”

To formalize this notion, we will not reason about the
order in which operations actually execute; instead we will
reason about possible operation orderings whose results
would be indistinguishable from the values read and writ-
ten during execution. Using this reasoning, this section
proves that FastForward is correct, to the best of our knowl-
edge, on all general-purpose shared-memory multiproces-
sor hardware.

The proof will proceed as follows.

1. Assumptions will be defined. In particular, the proof
assumes a cache coherent system in which aligned
stores are linearizable [6], potentially out-of-order pro-
cessors preserve the illusion of program order for sin-
gle threads, and speculative stores are not visible to
remote loads until they are non-speculative2. To the
best of our knowledge, every modern general-purpose
processor satisfies the above criteria.

2. The proof then shows that in every execution, based on
the definition of cache coherence, values read and writ-
ten to a particular buffer location (e.g., buffer[i])
are indistinguishable from the values that would have
been read or written if all read and write operations
to this location executed in the program order of the
readers and writers of the location.

3. From the above, the proof shows that for a given i,
in the consumer’s program order, the consumer reads
elements from buffer[i] in the order in which they
were written by the producer in the producer’s program
order.

4. From this the proof then shows that because of the
guarantees of a correct potentially out-of-order proces-
sor for single-threaded applications, results of execu-
tion are indistinguishable from an execution in which
both the producer and consumer iterate over the buffer
slots in queue order in their respective program order.

2Note that this condition is stronger than the statement that speculative
stores not appear on the memory interface. However, the latter is sufficient
in the absence of techniques such as value prediction (see Hill et al. [9])
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5. Finally the proof shows that the prior two statements
mean that the values produced in an actual execution
are indistinguishable from an execution in which “in
the program order of the consumer, the consumer de-
queues values in the same order that they were en-
queued in the producer’s program order.”

4.1 Single Processor Execution

We begin by defining some basic notation and formal-
ize our intuitive notion of a correct processor (i.e., one that
preserves the illusion of program order for a single thread).
Without loss of generality we assume no instruction reads
from a location it writes; if this is the case, one can split the
instruction’s effects into multiple operations.

Defn 1 (Access) An access is a tuple a = (l, v) where the
value v is read or written from location l.

Location l can be either a memory location or a register
location (e.g., read of the value 5 from general purpose reg-
ister 3 is denoted (r3,5)). When reasoning about multipro-
cessor systems, we assume that registers are processor local
(i.e., not shared).

An operation corresponds to the notion of a dynamic
instruction instance. Below, let PC denote the program
counter value associated with an operation’s corresponding
static instruction. Let seq be a number that uniquely iden-
tifies operations from the same PC. Let writes be the set
of write accesses performed by an operation and let reads
be the set of read accesses. cpuid is a an identifier that
identifies which CPU, and thus which set of registers, the
operation is accessing when reasoning about parallel pro-
grams. We introduce cpuid here to allow the definitions to
carry through our correctness proof for FastForward.

Defn 2 (Operation – Dynamic Instruction) An operation
is a tuple o = (seq, cpuid,PC,writes, reads).

The following formalizes the notion of an execution of a
program, which results in a set of operations.

Defn 3 (Execution) An execution, E, is a set of operations.

An execution is a set and not a sequence because reasoning
will be on orders whose results are indistinguishable from
those of the actual execution, not on the execution order.

The following definition captures the notion that the re-
sults of a potential order of execution are indistinguishable
from the results of actual execution.

Defn 4 (Execution consistent with an Order) An execu-
tion, E, is consistent with an ordering of its operations3,

3An ordering, σ, is a anti-symmetric, reflexive, and transitive relation
on some set Ω. If the order σ states that a ∈ Ω comes before b ∈ Ω we
write a ≤σ b. If a must not equal b we write a <σ b.

σ, if and only if for every operation o ∈ E, if o reads a
value v from location l (i.e., (l, v) ∈ reads for o), v is the
value written by the latest writer to l in σ, or l is uninitial-
ized before o in σ.

More formally, E is consistent with σ if and only if for
every operation o ∈ E with a read access (l, v) (1) there
exists a unique largest (according to σ) operation, ow, such
that ow <σ o and o′ has a write access (l, v), or (2) there
does not exist any ow <σ o where ow has a write access to
location l.

Intuitively, a correct uniprocessor executes instructions
so that the results of execution are indistinguishable from
execution in program order. We now have enough formal-
ism to define this notion..

Defn 5 (Correct Processor) A processor is correct for any
process P if for every execution, E, of P there exists a total
order σ that is consistent with E and has all operations in
the program order of P .

In this definition, the existence of σ for any execution is
what implies that the values produced by the execution of
the CPU are indistinguishable from those that would be pro-
duced had the program run in program order.

To extend this definition to multiple processors, we sim-
ply restrict the program order requirement to order oper-
ations only from one cpu, C (i.e., program order is only
enforced for cpuid = C for every o). With this extension
to Definition 5, one can reason about programs on a given
CPU as if they executed in program order and generate cor-
rect proofs. However, the definition does not guarantee that
there exists some order σ that is consistent with E in which
program order for two or more processors is preserved. In
other words, when reasoning about program order on the
local CPU using Definition 5, there are no guarantees about
the order in which operations from remote CPUs will be
observed. Imposing such orders is the domain of the multi-
processor memory model.

4.2 Correctness of FastForward

For the proof we assume a point-to-point connection
between a producer and consumer. The producer re-
peatedly calls enqueue_nonblock and the consumer
repeatedly calls dequeue_nonblock. The producer
only considers the value sent if enqueue_nonblock
returns 0. The consumer considers a value read
only if enqueue_nonblock returns 0. A return of
EWOULDBLOCK means the producer (or consumer) will
retry the call.

As mentioned earlier, the proof will rely only on the
fact that (1) each potentially out-of-order CPU is correct,
(2) stores are not visible to remote processor loads until the
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stores are no longer speculative, (3) the multiprocessor has
a coherent memory, and (4) aligned word-sized stores are
linearizable [6]. We will call these assumptions M .

The following theorem formalizes the correctness crite-
rion for FastForward under the above assumptions.

Theorem 1 Under machine assumptions M , for any execu-
tion E, there exists a total ordering, σ, of the operations in
E such that (1) E is consistent with σ, (2) σ contains the op-
erations from the consumer in program order, (3) such that
the values read by dequeue_nonblock in this ordering
are those written by the producer, and (4) in σ, the values
dequeued by the consumer are dequeued in the same order
they were written in the program order of the producer.

First we show that in program order for the consumer
routine, the consumer’s dequeue_nonblock routine
(see Figure 5), for a given buffer location, will read the val-
ues written to that location in the order they are written in
the program order of the producer routine.

Lemma 1 Under the aforementioned machine assump-
tions, M , for any buffer location buffer[i] in the word-
aligned word-size buffer buffer, the enqueue code in Fig-
ure 5 will only write a new value to buffer[i] after the
entry has been read by the dequeue routine in Figure 5. Fur-
thermore, the dequeue routine will always read the value
written by the enqueue routine before clearing the contents
of buffer[i].

Proof To reason simultaneously about the program order
of writes to buffer[i] in both the enqueue and dequeue
routines, we invoke the definition of cache coherence cited
as weakest and most common by Adve and Gharachor-
loo [1]. They define a system to be cache coherent if every
execution of the system is cache coherent.

Defn 6 (Cache Coherent Execution) An execution, E, is
cache coherent if and only if, for each memory location l
there exists a total order σl that orders the set of memory
operations that access location l, call this set El; such that
(1) σl is consistent with El, (2) for each processor, σl has
each memory operation on l in program order for the pro-
cess on that processor (write serialization), and (3) all pro-
cessors eventually see all writes to l (write propagation).

Unlike Definition 5, the above requires the reads and writes
to l from each processor appear in program order. Note that
the order is only over the memory operations that access l
because coherence is only part of the memory model.

By Lemma 1, there exists a σl that has the memory oper-
ations to any given buffer location buffer[i], from both
the producer and consumer, in program order. Thus we
can reason simultaneously about program order for both the
enqueue_nonblock and the dequeue_nonblock on
this location.

Notice that in σl enqueue_nonblock only writes to
the location buffer[i] when it contains a NULL. Fur-
thermore, only dequeue_nonblock will write NULL to
buffer[i] and, since speculative remote stores not visi-
ble, it will only do so only after it sees that buffer[i] is
not NULL. Finally, dequeue_nonblock will only write
NULL after reading the contents of buffer[i]. This
completes the proof of Lemma 1.

From the above, we have the following, now obvious,
corollary

Corollary 1 In the program order of the consumer,
the dequeue_nonblock routine reads values out of
buffer[i] in the order in which they are written by
enqueue_nonblock in the program order of the pro-
ducer.

We can now prove Theorem 1. Note that the only shared
variable between the sender and reciever is buffer. Using
definition 5, we know there exists an order σc that is con-
sistent with any execution, E, and has all the consumer’s
operations in program order. In σc, the slots of buffer
are read, and cleared in ascending order with wrap around
(thus the use of NEXT(tail) instead of tail++). Now
consider the corresponding order σp for the producer. Here,
the slots of buffer are written in the same order. Fur-
thermore, note that the producer and consumer start with
head==tail.

Now from Corrollary 1, we have that each buffer slot
buffer[i] is read by the consumer, in its program or-
der, in the order in which it was written by the pro-
ducer in its program order. Furthermore, in the re-
spective program orders the enqueue_nonblock and
dequeue_nonblock routines access the buffer slots in
the same order. Thus, in the consumer’s program order, val-
ues are read in exactly the order they were enqueued in the
producers program order. QED

4.3 Leveraging Weak Ordering

Note that the above proof is subtle. The proof of correct-
ness only shows that FastForward has the data transmission
properties of a queue. The proof says nothing about the
synchronizing properties of lock-based queues. Consider
the case where one uses FastForward to enqueue pointers
that will be read and dereferenced to access the payload
data in the dequeuing stage. Here, there may be a problem
on some memory consistency models because the dequeue
routine may read the value of the pointer out of the queue
and dereference the pointer before the dequeuing stage sees
the writes that define the payload data. In this case, the de-
queue routine will read a correct pointer but get the wrong
(i.e., stale) payload data.

By separating the data transmission properties from
the synchronization properties FastForward enhances queue
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performance on machines with weakly ordered memory
models. On some weak memory models (e.g., sequential
consistency, total store ordering, and the x86 model) Fast-
Forward also has all the necessary synchronization proper-
ties of a queue. On other models (e.g., Itanium and Power4,
5, and 6), if synchronization is needed, a store fence before
an enqueue is needed.

5 Evaluation

This section presents an evaluation of FastForward. It
shows that FastForward’s performance is 2.5x-4x better
than Lamport’s queue on real hardware, and that FastFor-
ward works for real applications. Results show that Fast-
Forward’s performance is work load invariant, queue size
invariant, and insensitive to core placement.

Section 5.2 evaluates the performance across, queue size,
workload, and spinning vs. blocking. Section 5.3 evalautes
the effect of fences. Section 5.4 shows the cache benefits of
temporally slipping and prefetching. Section 5.5 finds that
there is no penalty for communicating off die as compared
to on die. Section 5.6 concludes by applying FastForward
to a full network frame processing application.

5.1 Evaluation Environment

Each parameter is evaluated on looped pipelines with 2
or 3 stages 4 in which the last pipeline stage communicates
a message back to the first. We used a looped pipeline to
demonstrate message passing with pointer-based external
payload buffers. Each stage is identical; all read from their
input queue, spin for a specified amount of time (to mea-
sure performance with varying workloads), and write the
input value to their output queue. The initial stage is iden-
tified by filling its input queue with an initial set of payload
buffer pointers. Spin time is reliably measured using a cycle
accurate TimeStampCounter (≈ 2-4 cycles).

All data points, unless specified otherwise, were gener-
ated by taking the mean of 100 executions and calculating
one standard deviation. In all executions one million data
elements were passed through the pipeline, and the queuing
costs were identified by subtracting the time spent spinning
from the average per stage time.

The test hardware consisted of an AMD Opteron system
with a Tyan Thunder K8SR (S2881) motherboard equipped
with two dual-core 2.0GHz AMD Opteron 270s.

5.2 Performance

Figure 7 compares the performance of FastForward to
Lamport’s queue with respect to work load, queue size, and

4Our evaluation hardware only had 4 processors, and one must be re-
served for OS activity for accurate timing measurements.
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Figure 7. Queue Comparison.

spinning vs. blocking with a three stage pipeline. Each
graph shows the per operation costs for a single enqueue
or dequeue with either spinning or blocking behavior; the
queue size (number of slots) and work time (different bars)
are also varied.

The main observation is that FastForward is insensitive
to both queue size and simulated work load while Lamport’s
queue is not. FastForward, in spinning mode, takes an aver-
age of 36-40 ns per operation with standard deviations less
than 1 ns for all configurations. FastForward is 3-4x faster
than Lamport’s queue for the smallest work loads (hardest)
and 2.5x faster for longer workloads.

FastForward also demonstrates excellent performance
over Lamport’s queue while in blocking mode with an av-
erage of 39-45 ns with standard deviations less than 1 ns;
queue size equal to 64 and work load equal to 0 ns a sole
outlier. Blocking mode is important because in many uses
data may pause in between bursts, and therefore the ability
to sleep is important to conserve processor resources.

5.3 Performance with Memory Fences

This section briefly evaluates the potential impact of
adding a store-fence to both FastForward and Lamport’s
queue. Figure 8 suggests that while adding a fence may
slow down the performance of the queues, it does so in
a uniform manner with no impact on algorithmic perfor-
mance. The impact of fences vary by platform, but for x86
remote writes are guaranteed to be seen in program order
and thus store fences are inexpensive.
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Figure 8. Queue Comparison with Fences.
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Figure 9. Cache Behavior

5.4 Cache Behavior

Figure 9(a) compares the extremes of cache behavior for
FastForward based on hardware performance counter mea-
surements of the number of L1 data cache accesses and the
number of misses serviced by the L2 cache or by the sys-
tem (both cache-to-cache transfers and transfers from main
memory). To highlight how slipping behaves, we present
the cache measurements for a good run and a run with de-
liberately unbalanced stages to cause cache thrashing.

From Figure 9(b), the difference between slipped and
non slipped is immediately obvious. In the slipped case,
87.5% of the queue data references are serviced by the L1
data cache, corresponding to the predicted 8:1 reduction in
compulsory misses. Further notice that 87.5% of the L1
data cache misses are serviced by the L2 cache, leaving only
1.5% of the original access to be serviced by the system.
This clearly demonstrates that combining slipping with the
hardware prefetcher may increase the cache hit rate to to
98.5%. As expected the non-slipped case performs poorly.
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Figure 10. Queue Comparison, On vs. Off Die

5.5 Performance On and Off Die

This section isolates and evaluates the performance of
FastForward for two stages communicating on and off die.
Figure 10 shows that the performance of FastForward and
Lamport are insensitive to core placement. This behavior
can also be observed in the previous Figures (7 & 8), al-
though the performance was not isolated. That FastForward
is insensitive to core placement is not surprising as Figure 9
shows that most communication overhead is masked by the
prefetcher. That Lamport’s queue is insensitive is surprising
and suggests that our AMD processors may not be taking
advantage of a fast-path short circuit optimization for cache
sharing enabled by the MOESI coherence protocol.

5.6 Network Frame Processing

We conclude our evaluation by confirming that the per-
formance isolating benchmarks described above are realis-
tic for implementation in applications by evaluating the net-
work frame forwarding example described in Section 2.2.
The time available for processing by the input and applica-
tion stages (in order) is quantified in Figure 11 showing that
the stage-to-stage communication time is small and con-
stant regardless of frame size. The input time for the input
stage my appear longer than expected because it includes
the time to pull data out of the data structures shared with
the network interface. Recall that the system is capable of
forwarding a record-breaking 1.428 million 64byte frames
per second with pipeline stages distributed between the ker-
nel and user-space. Additionally, the system is capable of
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Figure 11. Network Frame Forwarding

forwarding the theoretic maximum number of frames for all
frame sizes≥80bytes. The general applicability of the tech-
nique even for small data elements is therefore confirmed.
This performance is not possible with Lamport’s queue.

6 Conclusion

This paper presented FastForward, a high-rate core-
to-core communication algorithm for instantiating effi-
cient fine grain pipeline-parallel applications. Fast-
Forward uses a software-only domain-specific adapta-
tion of single-producer/single-consumer concurrent lock-
free (CLF) queues to provide fully decoupled operation
for cross-domain (process) communication. By leveraging
temporal slipping and hardware cache prefetching, FastFor-
ward can enqueue or dequeue pointer sized data elements
in 36-40 ns on the tested hardware, 2.5x faster than the next
fastest CLF queue implementation and up to 4x faster for
very fine grain stages (≤200 ns). The performance was
found to be insensitive with respect to work load, queue
size, or core allocation (i.e., on or off die). A proof of cor-
rectness is provided for machines with strong to very weak
consistency models. Finally, the efficiency of FastForward
is demonstrated for real applications by using it to imple-
ment a network processing engine.
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