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Abstract 

Lewis, Nicholas Sean (M.A., Geography) 

EMERGING USE OF SINGLE-CHANNEL SHORT WAVE INFRARED IMAGING FOR SEA ICE DETECTION 

Thesis directed by Research Professor Mark Serreze 

 

This work assesses the feasibility of using a single channel shortwave infrared (SWIR) approach 

to detect and chart sea ice in Hudson Bay using GOES-16 data as a proxy for overhead persistent 

infrared.  While not traditionally exploited for sea ice remote sensing, the availability of near continuous 

shortwave infrared data streams over the Arctic from overhead persistent infrared (OPIR) satellites 

could provide an invaluable source of information regarding the changing Arctic climate.  Traditionally 

used for the purpose of missile warning and strategic defense, characteristics of OPIR make it an 

attractive source for Arctic remote sensing as the temporal resolution can provide insight into ice edge 

melt and motion processes.  Fundamentally, the classification algorithm discerns water/ice/clouds using 

a time-based algorithm as well as raw data processing enhancements.  Demonstration of the temporal 

utility and sensitivity of GOES-16 SWIR to detect and discern water/ice/clouds provides a justification for 

exploring the utility of military OPIR sensors for civil and commercial applications.  Products will be 

limited by seasonal solar presence due to their reliance on reflected energy and will have a spatial 

resolution constrained by the underlying data set.  Potential users include the scientific community as 

well as emergency responders, the fishing, oil and gas, and transportation industries that are seeking to 

exploit changing conditions in the Arctic but require more accurate and timely ice charting products.    
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Introduction & Context:  

Short wave infrared (SWIR) remote sensing is ideal for capturing high-heat phenomena in imagery 

because of the transparency of the atmosphere at SWIR wavelengths.  Temperatures associated with these 

features reach peak emission in the SWIR portion of the electro-magnetic spectrum allowing for clear 

discernment in remotely sensed imagery.  If an aspect of a sensor’s SWIR resolution is dramatically 

increased, its utility can expand to other naturally occurring earth phenomena beside heat events.  Such is 

the case for sea ice remote sensing using single channel SWIR from Overhead Persistent Infrared (OPIR) 

satellites.  While providing continuous coverage of the North Polar region for missile warning, the U.S. Air 

Force designed the Space Based Infrared System (SBIRS) to identify high intensity heat events that 

correspond to missile/rocket launches anywhere in the world.  The nature of missile warning requires 

persistent coverage, but events occur at a relatively low frequency.  The result is a constellation of satellites 

collecting valuable continuous data over the Arctic with a very small customer base.  Given appropriate 

filtering and computational algorithms, this “noise” data for the Air Force is ripe for scientific discovery.  

The purpose of this research is to explore the utility of high temporal resolution short wave 

infrared data to determine the feasibility of using SBIRS data to create a sea ice product during spring and 

summer seasons in the Arctic.  This project will use Geostationary Operational Environmental Satellite – 16 

(GOES-16) data as a proxy for the Air Force data, due to the classified nature of “missile warning” data.  

While most of the specific characteristics about the SBIRS highly elliptical orbit (HEO) satellites is classified, 

GOES-16 can still serve as a proxy data set based on the similar physics and orbital mechanics of this 

satellite when compared to SBIRS-HEO.  While the center frequency of the SWIR band on SBIRS is unknown, 

there are two channels on GOES-16 that use portions of the SWIR spectrum (1.3-3 microns).   Similarly, the 

GOES-16 satellite is located in a geostationary orbit (GEO), and while SBIRS-HEO is an entirely different 

orbital regime, orbital altitude of the GEO is a fair approximation of an expected HEO apogee altitude.   

Constraints with regard to optics sizes for remote sensing platforms in these orbital regimes means that 
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spatial resolution may also be approximate when comparing GOES-16 and an OPIR platform.     The most 

important point of the GOES-16 proxy data is that it has a near-continuous time sampling by imaging the 

same portion of the earth at least every fifteen minutes.   

Due to this orbit, sensor design, and primary missions of existing satellites, scientists have little 

access and therefore have not explored the utility of SWIR data for remote sensing of sea ice.  Given a free, 

continuous, and available data source, there is great utility in deriving a product from currently discarded 

data.  Leveraging SBIRS for sea ice charting and characterization farther north than GOES views may yield 

products to aid in Arctic navigation, particularly for emergency response actions where timely products are 

invaluable.  Using the GOES-16 data as a proxy for SBIRS will allow increased collaboration for an effective 

algorithm, as it does not have the same dissemination restrictions as missile warning data.   

The requirement for increased Arctic navigability and domain awareness will become present in the 

coming years as sea ice continues its steady decline, particularly during summer months (Melia et al., 

2016).  As the Arctic becomes more open to navigation during polar day, maritime use will significantly 

increase with focuses on shipping, fisheries, and oil production.  Without much-needed infrastructure in 

the high Arctic, emergency response and management for these type of operations will be very limited.  

The ability to project emergency services into the Arctic will become more critical as the Arctic increases 

seasonal variability in sea ice cover, but these operations will be limited by the availability of data products 

informing current conditions.  A persistent remote sensing platform could provide this intelligence, 

enabling both the civil/military/commercial ventures as well as the emergency preparedness for first 

responders.   

Remote sensing of sea ice is currently available at a time scale of approximately 1-day to cover the 

entire Arctic.  Products are pieced together from multiple overpasses of polar-orbiting satellites, creating 

mosaics of daily conditions at a resolution of 250m – 2km.  Other products are produced daily at a scale of 

12.5km or 25km and are used to give overview of Arctic-wide conditions and trends for current and 
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historical analysis.  These products are limited in their utility for current Arctic operations because of the 

lag in production time, as well as the requirement to aggregate data over a time period (at least one day).  

This means that after the data is processed and disseminated, it is at least 24 hours old.  In an environment 

where surface and atmospheric conditions change rapidly, existing Arctic sea ice products lack the time 

scale (in both collection and processing) to be an asset in navigation and current operations.  This project 

explores an alternative to these existing products.  While the data may not be of the same spatial quality as 

mosaicked datasets, the temporal scale is a vast improvement.   

Aside from ice charting products, this project explores the remote sensing fundamentals that are 

often overlooked in an age where “more data” from “more channels” is the solution to challenges posed 

from remote sensing datasets.  The constraint of single-channel remote sensing imposed by using GOES-16 

as a representative proxy of missile warning data focuses efforts on extracting as much exploitable 

information as possible from the limited amount of data.  These efforts have applicability across all 

disciplines of remote sensing as an example of manipulating data using proven techniques to tease out the 

features of imagery that are the subject of scientific research.   

 

Research Questions:  

The proposed research will address the following questions:  

a. Is there enough sensitivity within the SWIR bands of the EM spectrum to develop an accurate 
sea ice product from a given data set?  
 

b. Can a temporal based approach overcome the data limited nature of a single-channel 
algorithm, as well as a poor spectral resolution for sea ice studies?  

 

Literature Review:  

 Passive microwave satellite sensors provide the most reliable and consistent method of measuring 

sea ice concentration and gauging the many subsequent values that are dependent upon accurate 
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concentration estimates.  These products include sea ice area, sea ice extent, and ice volume.  Many of 

these products are incorporated into numerical weather prediction, global climate models, and other 

atmospheric models that use hindcasting and forecasting to predict conditions on the surface of the earth 

in both the near and long term.   

 These sensors have become the preferred method of data collection because they operate 

regardless of sun-conditions and passive microwave data is easily converted into a useful term for earth 

surface assessments - brightness temperature.  Unlike near-infrared and visible satellites, which typically 

only capture data where the sun is shining, passive microwave collects long-wave radiation from the earth 

at different frequency intervals that correspond to naturally occurring molecular level phenomena on the 

earth’s surface.  Additionally, the atmosphere is much more transparent to microwave frequency ranges, 

allowing a broader spectrum of collection than does the visible or infrared frequencies.  Microwave 

frequencies can see through clouds as well, while clouds are opaque to infrared frequencies.   

Sea ice concentration is the measure of ice in a sampled area as a percentage between 0-1 (or 0-100).  

This value helps to determine how much ice is present in the polar regions and how that ice cover changes 

over time.  Ice concentration can then be used to gauge the spatial extent of the ice.  This is a more useful 

term for trend analysis and as such, this number is tracked throughout the satellite record (dating back to 

the late 1970s) to provide a snapshot as to how the earth’s polar ice cover is changing over the years.  

Critical to identifying any of the changes in the earth’s sea ice cover is the accurate sampling of ice 

conditions using passive microwave.   

Physical characteristics of the ice changes how it emits longwave radiation and reflects shortwave 

radiation at sampled frequencies.  In order to understand the meaning of remote sensing data, it is 

essential to understand the complex nature of sea ice formation/melt.  Many of the models that are used 

to convert satellite data into meaningful values require separate models of the earth’s surface conditions, 
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to include atmospheric information and surface characteristics.  When all of this information is synthesized, 

there is significant utility in passive microwave for sea ice measurements.   

Sea Ice Formation:  

 Sea ice forms when the fresh water layer of the Arctic Ocean (about 20m deep) reaches its 

temperature of maximum density, which for salt water is equivalent to the freezing point (Serreze & Barry, 

2014).  As the water column cools to around -1.8°C (salinity adjusted freezing point), the air temperature (2 

meters above the surface) and surface (skin) temperature are much colder.  This dramatic gradient 

between a relatively warm body of water and the frigid air causes the ocean to continue to lose heat at the 

surface levels.  Heat loss reduces the water’s top layer temperature to the point where it is able to freeze.  

Once the top layer has frozen, ice will continue to form beneath it, transmitting ocean heat through the ice 

into the atmosphere causing further freezing.  This process will continue to occur throughout the winter 

but, as the ice becomes thicker, the transfer of heat away from the water becomes less efficient.  This will 

cause the ice formation rate to decline and move toward stagnation over the course of the 6-month winter 

season.  

 The water in the top layer of the Arctic is fairly fresh compared to other ocean waters as a result of 

ice melt, precipitation, and river runoff from four major rivers in the Arctic.  The salinity, temperature, and 

density of the water all serve as a function to stratify the Arctic, keeping a cold, relatively fresh layer near 

the surface and available for freeze-up.  The Arctic warms below this layer as the salinity increases with 

depth and the density allows for a higher heat capacity.  The heat contained within the ocean at all layers is 

much higher than what is contained in the atmosphere.  The ocean continues to lose heat to the 

atmosphere, first where there is open water, and then by transmitting through the ice that forms at the 

surface.  

 When snow falls onto the ice, the temperature gradient between the water, ice and snow creates 

the conditions for kinetic metamorphism of the snow.  Even if the snow grains are fine when they initially 
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fall onto the ice, it almost immediately begins to change shape as a function of the vapor pressure gradient 

established by the temperature difference between the air and water.  This gradient causes water vapor to 

migrate through the snowpack and freeze onto other snow grains.  This increases the size of the snow 

grains within the snowpack and ultimately effects how visible and infrared light are reflected by the 

surface.  Even if there is not a significant temperature gradient, fine grains of snow on sea ice will undergo 

equilibrium metamorphism as the wind blows and breaks grains, and creates conditions for sintering. 

The Arctic is a seasonably cloudy location and cloud coverage creates problems for satellite 

retrievals at high latitudes (Serreze & Barry, 2014).  Cloud cover peaks between April and October when 

significant temperature gradients between sea and air enable the development of low-level clouds.  

Discrimination of clouds from snow/ice is challenging due to similar reflectance values of those mediums, 

especially when only one spectral band is available for image feature discrimination.   Pertinent to this 

project is the spectral reflectance of clouds as well as the movement of cloud cover.  Despite their 

predominance in the Artic, clouds are distinguishable by their movement relative to the surface.  Sea ice 

moves with currents and wind, but not on the same timescale as clouds, enabling the possibility for cloud 

filtering through time-series images.   

Remote Sensing of Sea Ice 

Infrared Wavelengths 

Shortwave radiation is reflected by snow and ice on the surface in very specific ways.  The albedo of the 

surface is dependent upon the grain size and density of the snow/ice, as well as the angle of the sun.  In 

visible wavelengths, fresh snow has an albedo close to one (0.95).  Bare sea ice has a much lower surface 

albedo (0.8).  Albedo changes with snow grain size of the surface because the surface area of a given areal 

medium is greater when the grains are smaller.  The solar zenith angle, or the angle from directly overhead 

to the sun elevation, is significant because it scales the amount of light that can be reflected toward the 
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sensor.  When the zenith angle is large, the sun is low in the sky so there is a diffuse effect of sunlight from 

the snow/ice surface.     

 In the shortwave infrared portion of the spectrum (1.6-3microns), the albedo of sea ice and snow is 

very low.  It peaks at 2.25 microns, but even there it only reaches about 30% - a function of the snow grain 

size.  Finer grains of snow will reflect about 30% of the incoming shortwave infrared radiation, but larger 

grains have a much lower albedo.  Since snow grains begin to metamorphose shortly after deposition on 

the ice, there is a very short window when this fine grain snow exists on the surface.  When there is just ice, 

the albedo is very low in these wavelengths, but this value is distinguishable from the underlying water.  

Radiance values based on solar reflectance are very susceptible to the surface roughness (presence of 

sastrugi, etc. on the surface) and the orientation of the sun during the collection.   

 
Figure 1: Spectral reflectance of different surface mediums in the SWIR portion of the EM Spectrum.  GOES-16 Band 6 is centered 

at 2.25μm. (Hook, 2017) 

In the midwave infrared region of the electromagnetic spectrum (3-6 microns), the reflectance of 

shortwave radiation is one component of the radiance.  The other is a thermal component that is defined 

by emissivity and temperature of the surface.  The reflectance component is subject to the same conditions 
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as the shortwave infrared signal, influenced by surface roughness, orientation of the sun, and the size of 

snow grains / density of the surface.  The difficulty in separating the reflected component from the emitted 

component of radiance complicates the use of an MWIR channel in the ice-detecting algorithm.  This is 

especially the case when there is no additional dataset available to assist in the emitted vs reflected 

assessment.   

 

Infrared Algorithms 

The prevalence of snow covered land in winter months combined with the availability of visible and 

infrared space-based sensors established the requirement for development of an algorithm that uses these 

wavelengths to map and chart the earth’s snow cover (Hall et al., 1995).  Snow cover is a critical component 

to the net surface radiation budget of the earth, so accurate and complete mapping of this feature is 

valuable for other assessments and measurements.  Aside from sampling along snow courses and then at 

Snow Telemetry (SNOTEL) sites, accurate samples of snow depth, variability, and cover have remained a 

challenge for those interested in snow as a water resource as well as those who work with radiation 

budgets.  Using visible and near infrared sampling techniques from space based platforms represented an 

improvement in the ability to monitor snow cover over large areas often too remote for in situ sampling.   

Despite the availability of satellite platforms to study and assess snow cover, spatial variability, vegetation 

cover, topography, slope, and wind make this a challenging endeavor.   

Remote sensing platforms measure surface radiance.  This is different from reflectance in that radiance 

is a measurement of reflected energy at a specific point in space (the sensor), whereas reflectance is the 

total amount of energy that is reflected from the surface.  Therefore, a surface’s radiance should always be 

less than an objects’ reflectance but there are other influencing factors.  Path radiance has an influence on 

the overall radiance value, which can increase the reported value.  Path radiance is energy reflected toward 

the sensor or into the study area from adjacent objects or the atmosphere.   
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One of the major issues with remote sensing of snow covered surfaces is the visible reflectance 

properties of snow and clouds.  In visible wavelengths, the white surface of clouds is nearly 

indistinguishable from that of a snowy landscape.  The similar reflectance values translate into similar 

radiance values.  To combat this effect, near infrared channels are often incorporated into the assessment 

of snow cover from space.  While the visible wavelengths reflect similarly for clouds and snow, that is not 

the case for near infrared channels.  Clouds reflect near infrared wavelengths while snow surfaces absorb 

them much more efficiently.  This difference allows a snow surface to become distinguishable from 

overhead clouds.  One particularly effective wavelength for such discrimination is at 1.6μm.   

 Initial snow mapping algorithms built upon techniques developed for the normalized difference 

vegetative index (NDVI).  Using a normalized differencing technique contrasts coincident collections in 

different band wavelengths for the sun’s influence, as the solar zenith angle is identical for all collected 

frames.  While NDVI was effective at distinguishing vegetation cover from bare soil and water, a similar 

approach was taken for snow mapping.  Combining green and near infrared wavelengths in a normalizing 

algorithm allows for distinguishing snow cover from clouds.  This method first developed using Landsat 

Thematic Mapper channels, was designed for the improved spatial resolution found on the Moderate 

Resolution Imaging Spectroradiometer (MODIS) and named the Normalized Difference Snow Index (NDSI).   

(1) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = (𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2−𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏5)
(𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2+𝑇𝑇𝑇𝑇 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏5)

  (Hall et al., 1995) 

An NDSI assessment is less precise with regard to established thresholds than its vegetation 

counterpart.  By charting different thresholds and their respective snow covered areal estimates, a 

distribution of the algorithm’s surface types is inferred.  Values in the range of .25 and .45 were reliable and 

consistent in discerning snow cover, and water was determined using a combination of the NDSI calculated 

value as well as the reflectance in the near infrared band, in which water has a very low reflectance value 

(Hall et al., 1995).  Thresholds set above .5 for snow yielded results that showed large changes in snow 

covered regions and were ultimately determined to be too inaccurate to use.   
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 Additional methods have been developed that use similar techniques but slightly different 

frequencies for establishing the snow cover/ice cover threshold.  Dorofy, et. al 2016, used visible and 

midwave infrared channels (3.9μm) on the GOES 13 imager because the sensor did not have a 1.6μm 

channel.  Their algorithm sought to use only the reflected solar energy that is a component of the 3.9μm 

channel, so they incorporated additional bands to remove the thermal component of that band.  Using 

brightness temperatures derived from a strictly thermal infrared band (10.7μm) they were able to 

determine skin temperature of the surface and initialize their snow model from this condition (Dorofy et 

al., 2016).  It then used specific reflectance values of each of the channels of interest as well as a ratio of 

the visible and midwave infrared bands to determine the presence of lake/sea ice.   

 

Passive Microwave Frequencies 

For passive microwave, the critical component for measuring sea ice concentration is brightness 

temperature.  Brightness temperature is the temperature of a blackbody that emits the same amount of 

radiation as an observed surface (Shokr and Sinha, 2015).  The Stefan-Boltzmann law (equation 2) governs 

this quality, which relates a radiative flux (𝑅𝑅𝐵𝐵) to a physical temperature (T) using a constant value (σ: the 

Stefan-Boltzmann constant).   

(2) 𝑅𝑅𝐵𝐵 = 𝜎𝜎𝑇𝑇4 

The radiative flux of a blackbody is based upon Planck’s equation.  This theoretical construct identifies the 

radiative flux for a blackbody of a specific frequency and temperature.  Because the passive microwave 

region deals with very high frequency and low wavelengths, one of the terms in Planck’s equation 

approaches its limit of one.  This allows for an approximation of the equation which simplifies the terms.  

The resulting equation is the Rayleigh-Jean’s approximation (equation 3).   

(3) 𝑅𝑅𝐵𝐵(𝛾𝛾) = 2ℎ𝑘𝑘𝑇𝑇𝛾𝛾2

𝑐𝑐2
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This equation relates the radiance at a given frequency [𝑅𝑅𝐵𝐵(𝛾𝛾)] to Plank’s constant (h), the Boltzmann 

constant (k), the speed of light (c), and the physical temperature of an object (𝑇𝑇𝛾𝛾).  An inversion of equation 

2 yields the equation for brightness temperature in the microwave region as a function of the radiative flux, 

or intensity at a given frequency (equation 4).  

(4) 𝑇𝑇𝑏𝑏 = 𝑐𝑐2∗𝑅𝑅𝑏𝑏
2𝑘𝑘𝛾𝛾2

 

In the microwave region of the electromagnetic spectrum (1-300GHz), the brightness temperature 

of an object (surface) is equivalent to the emissivity of that object multiplied by the physical temperature 

(equation 5).   

(5) 𝑇𝑇𝐵𝐵 = 𝜀𝜀𝛾𝛾 ∗ 𝑇𝑇 

This relationship makes the brightness temperature very sensitive to changes in the emissivity value (a 

number between 0-1), which allows passive microwave sensors to be exploited fairly easily for sea ice 

assessments.  For most passive microwave sensors, the brightness temperature is a level 3 product that is 

disseminated as data from the system or data archive center.  This creates a common starting value that 

lends itself easily to computation and algorithm exploitation for many different functions.   

 While the emissivity of water is fairly consistent throughout other portions of the electro-magnetic 

spectrum used for satellite remote sensing, it varies substantially in the microwave regions (Shokr & Sinha, 

2015).  Throughout the IR bands, water’s emissivity is very close to that of snow and ice, but the values 

diverge significantly in the microwave regions.  This feature of physics creates the opportunity for scientists 

and researchers to use equation 5 to determine significant information with regard to the earth’s sea ice 

cover.   

Using the brightness temperature derived from the satellite sensor, the sea ice concentration is 

calculated using a weighted average method.  The observed/measured brightness temperature is an 

average of the concentrations of both ice and water in the pixel multiplied by their respective, 

representative, brightness temperature values.  The equation to calculate sea ice concentration makes use 
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of the Rayleigh-Jean’s approximation and the derived relationship between emissivity and physical 

temperature to brightness temperature.  It also assumes that the surface is only a combination of ice and 

water.   

(6) 𝑇𝑇𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) + 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝜀𝜀𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤) 

(7) 𝑇𝑇𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖�𝑇𝑇𝑏𝑏,𝑖𝑖𝑖𝑖𝑖𝑖� + 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�𝑇𝑇𝑏𝑏,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤� 

This is the most fundamental form of the sea ice concentration equation, and would be appropriate for 

computing concentration values given a single band (channel) of a satellite sensor.  The inherent problems 

with such a calculation, however, is that passive microwave frequencies are subject to atmospheric 

attenuation, and brightness temperatures are susceptible to variations in surface temperature that can be 

either real or perceived.   

 
(Cavalieri et al., 2014) 

Figure 2: Brightness Temperature Data from the Advanced Microwave Scanning Radiometer - Earth Observing Satellite. 
 

The atmosphere is transparent to the microwave region of the electro-magnetic spectrum.  Unlike 

the infrared portions of the spectrum, large atmospheric windows in the microwave region enable passive 
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microwave remote sensing.  However, even these bands are attenuated by the atmosphere.  Across the 

most prominent bands for passive microwave sensors (18GHz, 37GHz, 89GHz) some of the microwave 

signal is attenuated by water vapor, ozone, and CO2 in the Earth’s atmosphere.  Because the attenuation is 

fairly low compared to IR regions, these minor fluctuations by frequency allow algorithm optimization to 

detect or remove atmospheric phenomena.   

 Significant variations in surface temperature values across a remotely sensed scene can skew data 

when the surface is fairly uniform in type, but has substantial variation in surface roughness.  Emissivity will 

remain constant in this scenario, but the changes in physical temperature can have a dramatic effect on the 

brightness temperature.  To correct for these conditions, brightness temperature data is often converted 

into more useful terms that limit the impact of physical temperature variation and surface roughness on 

measured brightness temperature.  These terms are ratios derived from plotting passive microwave band 

collections in different polarities, or at different frequencies, and identifying noteworthy traits like 

correlation values.  The resultant ratios are independent of physical temperature influences, increasing 

utility of the measured data.   

 The polarization ratio is a term developed by plotting the different polarization collections from the 

same frequency against one another.  This allows normalization of the brightness temperatures by 

correcting for variations in perceived surface temperatures.  The scatterplots developed from comparing 

multiple polarization ratios help to identify correlations of ice concentrations and provide sample regions 

for which representative brightness temperatures of either water or ice can be selected.   

(8) 𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑏𝑏,𝛾𝛾,𝑉𝑉−𝑇𝑇𝑏𝑏,𝛾𝛾,𝐻𝐻

𝑇𝑇𝑏𝑏,𝛾𝛾,𝑉𝑉+𝑇𝑇𝑏𝑏,𝛾𝛾,𝐻𝐻
 

 Similarly, the spectral gradient ratio compares the same polarity of different spectral bands to 

identify patterns in the data.  These spectral gradient ratios can then be compared to the opposite polarity, 

or against polarization ratios to identify patterns in the brightness temperature data while minimizing the 

influence of surface temperatures and surface roughness.  Some common comparisons are the GR(85V19V) 
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and GR(85H19H) which identify perturbations in low concentration areas due to surface roughness, and 

GR(37V19V) and PR(19) which can identify portions of the data that are most representative of 100% 

concentration values for open water and ice (Markus et al., 2008).  These data segments can then be 

assessed to determine representative brightness temperature values for inclusion in the inversion of 

equation 7 to solve for ice concentration.  

(9) 𝐺𝐺𝐺𝐺 = 𝑇𝑇𝑏𝑏,𝛾𝛾1𝑝𝑝−𝑇𝑇𝑏𝑏,𝛾𝛾2,𝑝𝑝

𝑇𝑇𝑏𝑏,𝛾𝛾1,𝑝𝑝+𝑇𝑇𝑏𝑏,𝛾𝛾2,𝑝𝑝
 

 

Passive Microwave Algorithms:  

 There are two primary passive microwave algorithms used to calculate sea ice concentration, the 

Bootstrap Algorithm and the Advanced NASA Team Algorithm (NT2)1.  Both of these algorithms use passive 

microwave channels in the ≈19GHz and ≈37GHz regions that produce brightness temperature data.  In both 

algorithms the multiple channels are plotted against one another to form scatterplots from which patterns 

are discernable.  The method of comparing the channels varies, however, and there are substantial 

differences in how these two algorithms model the environment, exploit the electromagnetic spectrum, 

and derive reference brightness temperature values or tie points.   

Bootstrap Algorithm: 

 The bootstrap algorithm makes use of the ≈36GHz channel of passive microwave sensors in both 

polarizations.  This channel is used because the emissivity of sea water in both polarities is near equivalent 

and accounts for spatial variation in surface temperature (Markus et al., 2008). When plotted against one 

another (vertical polarity on the x-axis, and horizontal polarity on the y-axis) in a scatterplot, there are 

                                                           
1 The Bootstrap Algorithm is applied to data from the Defense Meteorological Satellite Program (DMSP) passive 
microwave sensor (SSMI/S) while the Advanced NASA Team 2 algorithm is applied to AMSR-E and AMSR2 data 
collected from a different satellite at a different spatial resolution.  The original NASA Team algorithm was also 
applied to DMSP passive microwave data.   
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distinctive linear trend lines that form within the data.  These linear trends correspond to high ice 

concentration (around the line AD) and high water concentration (around the line OW). 

 
(Markus et al., 2008) 

Figure 3: The pattern formed from plotting different polarities of the same passive microwave channel are identified in the figure.  
Line AD represents 100% ice concentration values, while Line OW denotes 100% water concentration values. 
 

 The bootstrap algorithm also makes use of the ≈19GHz vertical polarity band.  This band is plotted 

against the ≈36GHzV channel to make a plot (V1936).  The utility in this additional frequency band is the 

ability to correct for atmospheric effects as the two channels are impacted differently by atmospheric 

attenuation.  The V1936 plot assists by more clearly distinguishing open water which will cluster around the 

line OA in figure 3.  By understanding the slope of this line, and visualizing the data in this manner, water 

brightness temperature values are identified for references.  The V1936 plot also better discriminates the 

ice water interface, as there is a high contrast evident between the emissivity of ice and water in this 

frequency combination.   

 When the slope of the line AD is approximately equal to one, the data is thought to correlate well 

to the variation in brightness temperature for 100% ice concentration.  This is due to more substantial 

differences in the brightness temperature with regard to 100% ice than there is difference in the brightness 

temperature for 100% water concentration in the VH36 and V1936 scatterplots.  In order to better assess 
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these values, the entire plot is rotated so that the AD line is vertical.  With these rotated values, a 

histogram can be generated to create a probability density function of the ice concentration values 

(Markus et al., 2008).   

This process works best for surveyed areas where there is not a need to apply a land mask or 

correct for land/water interaction.  If these areas exist in a given region, there are different 

bands/combinations of bands that can be viewed as scatterplots to better model the ice concentration 

conditions.  These methods are applied before a landmask is used to remove land surface from the 

products.   

Advanced NASA Team Algorithm:  

 The Advanced NASA Team Algorithm (NT2) also uses the ≈19GHz and ≈37GHz bands of passive 

microwave to identify sea ice concentrations.  This algorithm shifts away from using the calculated 

brightness temperatures, however, and instead uses forms of the polarization ratio and spectral gradient 

ratios.  While both the Bootstrap algorithm and NT2 seek to model sea ice concentration, there are a few 

significant differences.  These differences make the NT2 algorithm more complex than the Bootstrap 

algorithm, and incorporate more data from outside the passive microwave collections.   

 While the Bootstrap algorithm still operates using the most basic form of the weighted average 

algorithm for sea ice concentration (equation 7), the NT2 algorithm uses a form that accounts for the 

variation in ice type.  The NT2 models both first-year (or thin) ice as well as multi-year (or thick) ice in the 

production of concentration values.  The baseline algorithm for this model still follows a weighted average 

form, but has an additional term included.  

(10) 𝑇𝑇𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑇𝑇𝑏𝑏,𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑐𝑐𝑚𝑚𝑚𝑚−𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑏𝑏,𝑚𝑚𝑚𝑚−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖𝑖𝑖𝑇𝑇𝑏𝑏,𝑓𝑓𝑓𝑓−𝑖𝑖𝑖𝑖𝑖𝑖 

The variation from the standard weighted average equation is because of the difference in emissivity values 

for multi-year ice and first-year ice.  The emissivity difference impacts the calculated brightness 
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temperature values, so the NT2 algorithm distinguishes between the two in computation, but can also 

equate it altogether as sea ice for reporting concentrations.   

 The calculation of sea ice concentration comes from the interpolation of points on a scatterplot of 

the gradient ratio of ≈19GHz V and ≈37GHz V (GR V1937) and the polarization ratio for ≈19GHz (PR 19).  

This plot forms a distinctive shape that is then used to interpolate concentration values.  The interpolation 

follows what is known as the NASA tie point triangles (shown below) – a curvilinear triangle that spans 

between 0% concentration of sea ice and 100% concentration of sea ice.   

   
(Shokr & Sinha, 2015) 

Figure 4: Advanced NASA Algorithm (NT2) Tie Point Triangle depicts the regions of the scatterplot that correlate to each level of 
sea ice concentration over the entire Arctic Ocean 

 The NT2 also makes use of another ratio, known as the rotated polarization ratio.  This is a 

calculated value that attempts to normalize the data for better comparison and correction of surface 

roughness effects.  The rotated polarization ratios adjust the slope of the polarization ratio and gradient 

ratio plots by an angle (ϕ) to show deviations from the norm.  The equations that govern the rotated 

polarization ratios are listed below.  
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(11) 𝑃𝑃𝑃𝑃𝑅𝑅(19) = −𝐺𝐺𝐺𝐺𝑉𝑉3719 sin𝜑𝜑19 + 𝑃𝑃𝑃𝑃19 cos𝜑𝜑19 

(12) 𝑃𝑃𝑃𝑃𝑅𝑅(85) = −𝐺𝐺𝐺𝐺𝑉𝑉3719 sin𝜑𝜑85 + 𝑃𝑃𝑃𝑃85 cos𝜑𝜑85 

The last significant value that is used is the gradient difference (∆GR).  The ∆GR identifies the effects of 

weather and allows the algorithm to reduce the impact with regard to the tie points.   

(13) ∆GR = 𝐺𝐺𝐺𝐺𝐻𝐻8519 − 𝐺𝐺𝐺𝐺𝑉𝑉8519 

When these values are used and plotted together, they create a picture of the sea and ice conditions.  They 

identify the thin ice, thick ice, open water, and areas of varying concentrations of ice.  The use of these 

equations, however, takes the algorithm far away from the initial convention of the weighted average.   

 The algorithm ultimately follows this process:  First it identifies brightness temperatures for pure 

surfaces that represent 100% concentrations of sea water, first-year ice, or multi-year ice.  Next it 

determines the appropriate emissivity value given the surface type by accounting for atmospheric 

conditions that govern a series of twelve atmospheric variables.  According to the variables, the correct 

emissivity value is applied to calculate a typical reference brightness temperature for the surface.  These 

reference brightness temperatures for the three possible surfaces are used to calculate reference sets at 

combinations in 10% increments for all combinations of surfaces within the pixels (10% FYice, 10% MYice, 

80% water; 20%FYice, 10% MYice, 70% water; …etc.).  These are the possible values for a pixel and are 

referred to as model values.  The rotated polarization ratios and difference gradient values are then 

calculated for the observed brightness temperatures, and an actual value is determined.  This calculated 

value is compared to the modeled values, and the concentration levels of the closest modeled value is 

applied for that pixel (using the minimum error technique – square root of the difference between the 

model and computed values squared) (Shokr & Sinha, 2015).   

 In this manner the NT2 algorithm does an excellent job at limiting the influence of surface 

roughness, atmospheric absorption (attenuation) of the passive microwave signal, and atmospheric effects 

in calculating the concentration of sea ice in a sampled area.  It does require a bank of reference knowledge 
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however, to determine the potential combination values (model values) to serve as a look up table for the 

computed terms. In comparing the differences in practical terms between the Bootstrap algorithm and 

NT2, the NT2 is better suited to correct for atmospheric effects (weather) and the tie points are viewed as 

more representative.   

 

Combining Efforts:  

 Due to the low spatial resolution of passive microwave products, visible and near infrared satellite 

sensors are also employed to assess sea ice conditions.  These measurements often serve as seasonal 

enhancements for passive microwave data as they can provide dramatic spatial improvements by 

functioning at 1-4km resolution as opposed to a 25km microwave resolution.  They only serve as “seasonal” 

enhancements because these frequencies rely upon solar radiation, only present during polar day.  Two 

products developed through cooperation between NOAA and the National Ice Center (NIC) include 

Interactive Multisensor Snow and Ice Mapping System (IMS) and MASAM2.   

 IMS uses a combination of satellite sources to provide a more accurate ice product for regional 

uses by incorporating higher resolution imagery than passive microwave.  The system is effective at 

charting ice-edge at a 4km scale by using a combination of visible/IR imagery, as well as microwave and 

synthetic aperture radar data.  The purpose of this product is to provide daily hemispheric data as to the 

extent of ice/snow cover for incorporation into numerical weather prediction models, and as a standalone 

product for ice edge detection/analysis (National Ice Center, 2017).  

 MASAM2 is a blend of the IMS product from NIC (repackaged by NSIDC as “MASIE – Mulitsensor 

Analyzed Sea Ice Extent) and AMSR2 sea ice concentration data.  This method of product development 

ensures a more accurate map of where ice truly is in the Northern hemisphere by combining visible/IR 

observations with passive microwave to assess the concentration as well as the extent (F. Fetterer et al., 

2015).  The resulting MASAM2 (MASIE + AMSR2) product is a 4km resolution product that incorporates all 
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available data to establish the initial conditions for ice predictability models.  It improves IMS by being 

reliant upon passive microwave as opposed to visible interpretation of multiple sources and availability of 

imagery analysts.  This product is not limited by ambiguous visible cues, as the passive microwave provides 

a definitive assessment of the pixel composition.   

Error & Uncertainty:  

 There are many significant sources of error and uncertainty with regard to passive microwave 

collections and the processing of brightness temperature data into sea ice concentration values.  These 

sources of error include poor calibrations of the sensor for initial collection, as well as charged particle 

interaction with the spacecraft than can cause a “bit-flip” where data is influenced by a photon and is 

falsely reported (a bit changes from a 0 to a 1 or the opposite).  More substantial errors arise from 

computational influences.  

 Tie points are the most substantial source of error in sea ice concentration estimates.  This is 

reflected by the painstaking process the NT2 algorithm uses to identify appropriate values to serve as 

references for 100% concentration of ice and water.  For the Bootstrap algorithm, these tie points are 

entirely dependent on how well the line AD models 100% concentration of ice (see Figure 3).  When the 

scatterplot generated by comparing different polarities and/or frequencies is rotated so that line AD is 

parallel to the Y-axis, the correlation of the data to 100% ice concentration is easily visualized (Markus et 

al., 2008).  If points have a normal distribution around this line, the data is likely good, while if the 

distribution is not focused on this line, the data likely does not correlate well to a 100% ice concentration 

tie point.   

 Other errors arise in the data when land masking is applied.  Without a land mask, returned values 

over land do not correlate correctly to their cover type with regard to ice or water.  To reduce this inherent 

confusion, pixels in an image that correspond to land are cancelled.  This is effective in improving the 

meaningfulness of the data, but if the land mask is produced from higher (or lower) resolution imagery, or 
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if the land/water boundary has changed since the mask was produced, this could be a source of significant 

errors.  Changes in the land/water boundary could occur from glacial calving, erosion, or permafrost melt 

(Markus et al., 2008).   

 A significant source of error in concentration use for ice charting is the low spatial resolution of the 

data.  SSMI/S sea ice concentration maps are produced at 25km resolution (each pixel represents 25km x 

25km on the surface of the earth).  When computed, an area that is 625km2 is recorded at a uniform 

concentration.  This is known to not be the case, but because this is the level at which the sampling is 

completed, it is the best approximation of sea ice concentration.  Some products are released at 12.5km 

which reduce this error.  Further, the threshold for calculating sea ice area is held at 15% ice concentration.  

This value was chosen because it is a point at which the satellite data correlates well with in situ 

observations in the arctic.  Due to this low threshold and low spatial resolution, a pixel may be included in 

the summation of ice area, even though only 93.75km2 are actually present in the 625km2 pixel.   

 

Data Source & Specifics:  

 The Geostationary Operational Environmental Satellite – 16, or GOES-16, was launched from Cape 

Canaveral Air Force Station on 19 November 2016 with the purpose of providing continuous imagery and 

atmospheric measurements of the Earth’s western hemisphere.  It also collects and monitors lightning 

data, space weather, and provides critical data for atmospheric, hydrologic, oceanic, climatic, solar, and 

space sciences (Leslie, 2016) .  The 16th in a series of environmental monitoring satellites operated by the 

National Oceanic and Atmospheric Administration (NOAA), GOES-16 represents an improvement in spectral 

resolution, spatial resolution, and temporal resolution.   

 The satellite has significant utility for all aspects of environmental monitoring.   Its broad spectral 

range across the several onboard instruments allows for effective mapping of atmospheric and surface 
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phenomena with the potential for raw exploitable data as well as product development for more 

immediate application.  The many products and data available from this satellite’s sensors are more 

effective because of the other aspects of resolution that are improvements over previous iterations of 

geostationary weather monitoring satellites.   

 The instrument of interest for this project is the Advanced Baseline Imager, which is the primary 

payload of the GOES-16 satellite.  It is an imaging sensor with sixteen spectral bands covering visible light 

through thermal infrared portions of the electromagnetic spectrum (John Leslie, 2016).  These spectral 

bands are each centered on particular wavelengths to ensure data collection that can be used to exploit 

and identify many environmental processes.  The satellite operates in a geostationary orbit, giving it the 

ability to image the western hemisphere every fifteen minutes, the continental United States every five 

minutes, and at a mesoscale (1000km x 1000km) every 30-60 seconds (Harris Corporation, 2017a).  This 

high temporal resolution allows for near continuous monitoring of environmental phenomena as they 

occur.  The revisit rate supports customers requiring continued updates regarding atmospheric and 

weather conditions like the transportation industry.   

 The ABI instrument on GOES-16 is an improvement over the previous version on the GOES-15 

platform.  Not only has the number of bands increased from five to sixteen, or the revisit rate decreased, 

but the spatial resolution is also a dramatic improvement over the previous version.  With most spectral 

bands available at 1km (at nadir), and full disk scan at 2km (nadir resolution), the ABI can resolve objects 

half the size of its predecessor in all bands (Harris Corporation, 2017).   Data covering the observed 

hemisphere is available at fifteen-minute time chips, enabling 96 frames of data per day, and providing the 

opportunity for effective time sequencing products. While Level 2 products built from ABI data are 

available from NOAA, the data is also available as Level 1B radiances.   
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Data 

 This project uses full disk scans.  Before they are subset the center point of the images are 0° North 

Latitude, and 89.5° W longitude.2  The data is provided by NOAA in a gridded format that corresponds to a 

geostationary weather satellite projection.  The (x,y) values of each collection file are the east-west (x) and 

north-south(y) scan angle (in radians) of the sensor to the center of the pixel on the earth.  This data is then 

able to be projected into a latitude and longitude format using the characteristics of the projection ellipsoid 

(which for this product is GRS80), and the orbital characteristics of the satellite (mainly the height above 

the ellipsoid).  The data, even without conversion into a latitude/longitude format, is provided on a fixed 

grid so that pixels in subsequent collections are not subject to variations in location due to perturbations of 

the satellite orbit.3   

 The principle channel of interest for this study is the 2.25μm channel, which corresponds to 

channel 6 on the Advanced Baseline Imager.  The bandwidth of channel 6 is .5μm.  This channel and 

channel 7 (3.9μm) are on different focal planes of the imager which could potentially cause issues with 

regard to calibration in a dual-channel approach, but that was not evident in the data assessed for this 

study.  

 Channel 6 is known as the “Cloud Particle Size” near infrared band and is idealized for daytime 

applications in snow and cloud regions, and during nighttime for fire applications (GEOS-R Program Office, 

2015, p.1).  The focus of this project being ice and water, there is no thermal component to the data, so 

there is little utility for nighttime observations.  While 2.25μm is not a sensitive to differences in reflectance 

between clouds and ice as the 1.6μm band, it is more utilitarian in that the reflectance behavior of ice 

                                                           
2 Data was collected prior to GOES-16’s move in orbit to current positioning over 72.5°W longitude, which began on 
30 November 2017.  
3 At the time of this project, the data is restricted and not for public dissemination as there are final tests required 
prior to public release.  To this end, none of the major data processing toolsets has a completely effective means for 
projecting the data accurately on a fine scale.  The “fixed grid” that the data is provided in allows for data processing 
without projecting, but preprocessing steps require an approximate geolocation that is accurate at the nadir point of 
the satellite and degrades from there.  Future releases of ESRI software will include the ability to project data into and 
from a geostationary satellite projection that is common with GOES series satellites.   
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around 2.25μm is comparable to any adjacent frequency ranges, making it a good proxy for an unknown 

“shortwave infrared” band.  

 Channel 7 is knowns as the “Shortwave window” infrared band, but for the purposes of this study it 

is a proxy for “midwave infrared”.  This band has a thermal component as well as a reflective component, 

allowing it to provide data during night but exaggerating daytime reflectance values with the addition of 

this thermal component.  This band is used primarily for fire detection, but is also valuable in determining 

cloud presence during darkness because of the thermal component (GEOS-R Program Office, 2015b).   

 The study area for this project is Hudson Bay.  While Hudson Bay does not lie within the Arctic 

Circle, the orbital geometry of the GOES-16 ABI limits the utility of “Arctic data” because of the distance 

from the nadir point and the associated perspective.  Hudson Bay is at a low enough latitude that the data 

is not terribly skewed.  Additionally, Hudson Bay is seasonally ice covered sea water, which is sufficient for 

an assessment of a sea ice detection/characterization algorithm.  The data is subset to include only Hudson 

Bay prior to processing, and then masked using a land mask developed from a GOES-16 ABI Level 2B 

product: Sea Surface Temperature.   

Methods:   

While this project was initially conceived as the development of a dual-channel algorithm, the 

complexity of isolating a reflected signal and emitted signal from channel 7 data, as well as the limited 

distinguishing characteristics of ice/water data in that band pushed the efforts to focus on single-channel 

applications.  This decision constrained the amount of data available at any given moment for the purpose 

of surface phenomenology classification requiring more substantive and meaningful preprocessing steps 

for the channel 6 (2.25μm) data.   

 The original design of this project used channels 6 and 7 from GOES-16 in a normalized difference 

algorithm to distinguish ice from sea.  This ultimately proved to be an unreliable venture because of the 



25 
 

minute distinction in albedo between ice and water in these SWIR wavelengths as well as the complexity of 

the channel 7 (3.9μm) data.   Because channel 7 is comprised of both thermal and reflected radiance values 

(which proved extraordinarily difficult to isolate without additional data channels) the data, when 

compared in an algorithm, did not divert in exploitable ways.  On its own, the channel 6 data demonstrated 

much more utility for sea ice detection, and ultimately the project moved in the direction of a single-

channel approach.  This decision also simplified future applications with other datasets as single-channel 

data sources are thought of as reliable, while multichannel sources may be less common.   

Data Preprocessing:  

 Single-channel remote sensing techniques were established in the early days of remote sensing as a 

means to extract as much meaningful data as possible from a limited data source.  With the prevalence of 

multi-channel sensors, the need to tool data to be more substantive diminished as more complicated 

problems could rely upon additional data from other portions of the electro-magnetic spectrum.  This has 

ultimately resulted in a decrease in the focus of pulling as much information out of each available data set 

as possible.  
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Figure 5: Raw datasets from GOES-16 Band 6 (2.25micron).  Scaled image allows for enhanced visual interpretation. (The poor 
contrast in the images is intentional and intended to show the inherit difficulty in exploiting a single-channel SWIR sensor).   
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For this project the data is extremely limited because it is focused on a single-channel.  

Preprocessing is therefore a means to create more meaningful data by influencing the collected radiance 

values provided in the Level 1B data source and tailoring it to better suit needs.  Prior to this data 

enhancement, traditional methods for data preparation were conducted.   

 

Figure 6: Subset of the study area is shown.  Left image shows natural contrast present in raw data - notice that Hudson Bay is 
indistinguishable.  The right image is scaled to enhance contrast. (Poor contrast is again intentional [left] as it depicts the original 

data set well).  

Hudson Bay Subset 

 The first step in preprocessing was to subset the image from a 5424x5424 pixel image into a 

325x550 pixel box around Hudson Bay.  The subset scene represents only 0.6% of the original full disk 

image.  This fraction is visually displayed in figures 10 and 11.  This step also assists in improving the 

contrast that allows the ice and water to be distinguishable from one another as well as reducing the 

overall number of pixels for subsequent calculations.  As other regions are removed from the target area, 

the variability in radiance is greatly reduced, allowing for improved contrast enhancements between the 

radiance values which remain.   
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 The data from multiple time slices is combined into a data cube for further processing.  The cube’s 

four dimensions include the X component, Y component, Z (radiance) component, and lastly the time 

component.  By layering and packaging the data this way, locations remain consistent and time steps are 

more easily processed simultaneously.   

 

Figure 7: Data cube structure.  The Z values represent the satellite reported radiance from the Level 1B product, T is the time 
component, while X and Y combine to determine the location of the pixel in physical space. 

Once the data is subset, a land mask is applied to the data to ensure that the remaining pixels are 

only those that are located over the water features of Hudson Bay.  A land mask was not readily available, 

so one was developed from the Level 2 Sea Surface Temperature product for GOES-16.  A full disk image of 

the SST product was reduced to the same subset as the study area, and then used to mask out any land 

features in the Hudson Bay Subset.  All reported pixel values (water) in the SST product are changed to a 1 

while all masked pixels (land) are reduced to zero.  When this “land-mask” image is multiplied by a valid 

data set, only the region of interest (water on Hudson Bay) remains.  Zeros are then converted to “NaN” 

values (not-a-number) so that they are not included in future mathematical processes.   

 In the subset images, the size of the pixels is not consistent with regard to their spatial 

representation.  This is a result of the unique geometry of the GOES-16 constellation, and the high latitude 

location of Hudson Bay.  A quick assessment of the size of Hudson Bay and its representation in the subset 

images shows that pixels represent approximately 2.1km x 4.6km.  The stretch in the y-direction is a result 
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of the nadir position of the satellite (at 0° N latitude) when compared to Hudson Bay which is centered at 

approximately 60° N latitude.   

  

 

Figure 8: The land mask (right) is applied to the study area scene in order to increase ability to decipher surface phenomena in a 
single scene.  It also removes ambiguity with regard to surface type (as "surface" can only be land/water - or atmospheric effect). 
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Figure 10: Histogram of the full disk scan from 26 April 2017 at 12:00pm local yellow box denotes area of the graph below.  (Red 
values depicting the Hudson Bay Subset are indistinguishable at this scale because they comprise such a small portion of the full-

disk data set).   

Figure 9: Full disk image of band 6.  Subset of Hudson Bay after land-masking and contrast stretching enhancements  are 
applied. 
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Figure 11: Same histogram as shown above, zoomed in to show the pixels that make up the Hudson Bay Subset scene. 

Sun Angle Corrections:  

The high latitude of the subset region coupled with the variation in the time of image collection 

creates a substantive sun influence variation throughout a single time series as well as between monthly 

collections.  To minimize the influence of the sun’s differing perspective throughout the test images, a sun 

angle correction is performed for each pixel in the subset scene.  Using a matrix of latitude and longitude 

that correlate to each of the pixel points, as well as the start date and time of the image capture, an 

additional matrix is created that is comprised of the solar zenith angle for each pixel.  This is used to 

normalize the data for solar influence by multiplying each pixel by the cosine of the zenith angle (θ).   

(14)   θ = arcos(sin∅ sin δ + cos∅ cosδ cosωt) 
 

∅ = latitude 
δ = solar declination 
ωt = hour angle4 

 

                                                           
4 Hour angle is determined by converting the time of day to a number that represents hours from noon as a decimal 
and then multiplying this value by 15°.  (10:30 am local time is therefore -1.5 hours from noon.  −1.5 𝑥𝑥 15° = −22.5°) 
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Figure 12: Sun Elevation Angle of Hudson Bay Subset scene.  Image depicts the sun angle for each pixel at 0900 Local time 
(1400GMT).  Difference in sun angle for scene exceeds 14°. This difference equates to a 12% difference in W/m2 given an identical 

TOA radiance. 

 While efforts are made to reduce sun angle influence, this technique only improves radiance 

reporting by attempting to normalize the data through time.  It does not correct sun angle influence 

completely and the remaining influence of sun angle will likely continue to pose a problem throughout a 

sensitive classification scheme.  Additionally, surface roughness is not accounted for in this model, but may 

have a substantive impact on reported radiance.  The large pixel size assumes a flat surface, but micro-

terrain within a pixel can skew radiance values as scattering and reflecting regimes change over short 

distances.  This unaccounted for surface roughness combined with the legacy (or remaining after 

correction) influence of sun angle likely contribute to the remaining variance in pixel radiance among pixels 

with similar surface conditions.   
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Atmospheric Correction:  

In order to reduce the changes in atmospheric contributions to include path irradiance, a dark 

object subtraction correction was applied to all data sets. To accomplish this effort, the data is converted 

into a vector, and the minimum value pixel is reduced to zero by subtracting the minimum pixel value from 

every pixel within the scene.  This step is performed after land masking to ensure that no significant pixel 

(one over water) is converted to a NaN value as part of the land-masking process (which takes all zero 

values derived from the mask and converts them to NaNs).  This process assumes that the darkest pixel in 

the scene likely has a reflectivity of zero, but because of atmospheric contributions, that value is recorded 

as greater than zero.  While this is an assumption, because of its equal application across the single image, 

as well as the individual application for all images in a time-series, the data is more closely normalized 

through time.  

These pre-processing steps assist in improving the histogram distribution and create a more stable 

histogram that is less influenced by solar zenith angle or atmospheric contributions to the captured scenes.  

This ultimately improves the ability to characterize surface phenomena throughout a daily time series as 

well as a seasonal time series.  The more stable an image’s histogram is throughout a time series, the more 

likely a classification algorithm will be successful and accurate in categorizing data.  The point at which 

histograms change significantly with regard to scene distribution (clustering) and radiance drifting 

(recorded radiance for similar surface conditions) will determining the effective time scale of a specified 

classification scheme.   



34 
 

 

Figure 13: Graphs show single pixel (one for ice, one for water) before and after sun angle correction & dark object correction.  
Data from April 26, 2017. 
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Figure 14: Dark Object values for every frame of test data.  Daily mean and standard deviation values are provided. 
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Figure 15: Histograms (and corresponding images) for raw data and pre-processed data (using sun angle correction and dark 

object subtraction). 
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Snow on Sea Ice – constraining the problem:  

 Both snow and ice have a high albedo for visible wavelengths, but this is significantly attenuated in 

short-wave infrared frequencies.  Despite this significant drop in reflectivity, grain size of snow particles still 

has an influence on albedo.  This difference can account for a 10% increase or decrease depending on the 

surface cover.  While this difference exists particularly between fine-grained snow and bare sea-ice, this 

project assumes that any snow on the surface is quickly metamorphosed into medium to coarse grain snow 

because of the significant temperature gradient between the underlying water and the atmosphere (Sturm, 

2002).  So while there may be spikes in reported radiance values following a snowfall event, these values 

should quickly return to a normal snow-on-sea-ice range because of the kinetic metamorphism that occurs 

regarding the snow grains.   

 

Figure 16: Spectral reflectance of different surface mediums over bandwidth of GOES 16 Band 6 (2.25microns). (Hook, 2017) 
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Classification: 

 The initial classification algorithm uses k-means clustering for “k” number of classes.  In order to 

execute the classification schema, a number of classes is specified.  The function (which is built into 

MatLab) then uses this number of classes to partition the data into the most likely class by minimizing the 

distance between the class centroid and the underlying data.  This occurs many times until each distance 

between data point and cluster centroid is minimized, and the classes are approximately of equal size.  

Because this clustering technique requires classes to contain values that are equidistant to determined 

centroids, the number of distinct classes must be greater than the number of distinct scene elements.  This 

is the case for a distinction between ice/water and ice/cloud as these “classes” are very similar.  By 

implementing extra classes that the algorithm can use in order to discern more distinct (or discrete) classes, 

the result is several “classes” that represent similar surface/atmospheric medium.  While the underlying 

images contain pixels with values representing ice, water, or cloud, in order to get a quality discernment 

between surface/atmospheric classes there needs to be between 5-8 distinct classes for clustering.  This 

means that K equals 5+, and several classes of data are representative of the same surface medium.   

 The data for classification is very limited given the pixel size and study area.  Two methods are 

assessed in this project, one which moves forward in the data limited environment and one which seeks to 

compensate for it.  The first develops a classification scheme by using a “snapshot in time” – using a single 

image in the classification algorithm, and applying the results to the target data.  The second method 

attempts to increase the quality and reliability of the classification scheme by combining three subsequent 

images into a single data array.  This data set (with three values for each pixel location) is then used for k-

means clustering.  This yields a product that uses 45 minutes worth of data (three images taken 15 minutes 

apart), rather than a single value representing a singular 15-minute period.  This is tested to determine if it 

improves discernment in cloud versus ice classification as well as ice versus water classification.  Combining 
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this time series increases the classification training data set from 178,750 pixels to 536,250 pixels (or 

178,750 x 3).   

 

Figure 17: 3-images in a time series used to increase data available for the development of the classification schema through k-
means clustering. 

 The initial classification of training dataset (either the “snapshot in time” or the 3-image time 

series) yields a single classification schema.  This schema is a binary decision tree that ultimately identifies a 

pixel value from subsequent images, and filters through the decision tree until the class number of the pixel 
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is determined.  While a single image classification scheme may have 5-7 decision points on the decision 

tree, a combined 3-image set can have 50 or more decision points increasing the specification of class 

determination.   This binary decision tree is then applied to each of the images in a time-series data cube 

that was corrected for both atmospheric contribution as well as sun angle.   

 

Figure 18: Binary Decision Tree for classification schema using a single image as the basis of classification.  This decision tree has 
five decision points.  A decision tree from a 3-image series has 50+ decision points (denoted by a triangle).  At each decision point, 

moving down the ‘tree’ Right is "True”, Left is “False”. 

 Post classification, the user must identify the specific classes and correlate them to surface features 

(ice, water, cloud).  This process is not a part of the classification algorithm, as the program only looks for 

the best pattern within the underlying data, but is unaware of the meaning applied to each of the classes of 

data.  This is a process that can likely be automated in future work with the incorporation of machine 

learning or hierarchical agglomerative clustering (but there is a tradeoff with significant computational 

requirements).  Users can accomplish this task, by looking at an image used for development of the binary 

decision tree prior to classification.  The data clustering should be congruent with visual interpretation of 
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the image (previous ice conditions, shape of feature, relative motion of feature) and after initial application 

will remain consistent through the entire time-series data cube.   

 

Figure 19: Histogram of Day 116 (noon) w/ breakdown of classification and centroids that determined classification scheme. 



42 
 

 

Figure 20: Histograms and corresponding image scenes for pre-processed data (left) and classified data (right). 
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Validation Method: 

 While many products that assess sea ice conditions exist, the temporal scale of this product 

exceeds any currently available.  In order to validate the results of the classification schemas, classified 

images were initially compared to MASIE NH data for Hudson Bay (Region 10).  When the MASIE data 

showed no significant structure in the ice (i.e. the scene is completely ice covered), visible MODIS imagery 

is used as a visual check to ensure that the classification schema is performing adequately.  Statistical 

metrics were not used to assess accuracy of classification models because direct comparisons to other 

derived products are difficult given the difference in temporal resolution, spatial resolution, and 

atmospheric conditions at the collection time.   

 Metrics of ice covered / open water percentages were not used because of the cloudy nature of 

the GOES-16 imagery.  While the MASIE product shows only a binary product (ice or water) in the Hudson 

Bay, the nature of the GOES/MODIS imagery is such that there are a large percentage of pixels that are not 

able to be classified because of their obscuration by clouds.  This ultimately eliminated MASIE as a 

reasonable resource for validating results of the GOES-16 product.  Instead MODIS imagery is used to 

provide a cursory check that the classification appears to be similar to what visible imagery from the day 

shows.  This method was deemed sufficient given the exploratory nature of this product and the level of 

detail evident in the ice structure in the MODIS data.    
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(National Ice Center and NSIDC, 2010)                                        (EOSDIS - NASA Worldview, 2018) 

Figure 21: MASIE-NH Region 10 (left) and MODIS visible imagery (right) for April 26, 2017.  Because MASIE shows complete ice 
cover for the time period, the MODIS imagery is used as a visible check to ensure quality of the binary decision tree schema. 

 

Results: 

Most of the results are generated from the March and April data sets as these were of the highest 

quality and offered the most consistency in a time series acquired from NOAA.  The quality of the data is 

determined by its consistency in time (a collection is available for every 15 minute period) and is most 

representative in its mix of surface types (clouds, water, ice).  Much earlier in the season there is very little 

open water and much later in the season there is very little ice which complicates training a classification 

algorithm.  Additionally, the May data set is limited because not all collections were available from NOAA 

for unknown reasons (significant gaps of 2-4 hours in the 15 (minute time series).  Other monthly data sets 

have high concentrations of clouds which limits the usefulness of a classification product.     
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Technique Comparison:  

To assess the utility of a 3-image time series for classification schema development, this technique 

was compared to a single-image classification schema development model.  Each technique had strengths 

and weaknesses when compared to the other, but both methods informed similar conclusions with regard 

to follow-on processing.  Because of the difficulty in developing an unbiased metric for validation, visual 

interpretation of the classified images and the enhanced data was conducted to determine the best 

technique.  Both methods require similar timelines (less than one minute of processing time), and the only 

substantive difference was the complexity of the binary decision tree used in the model which is a function 

of the increased data input for the 3-image time series approach.   

To test the two techniques, classification schemas were developed for each method on each of four 

days (April 26 (116), April 27 (117), March 13 (072), March 14, 2017 (073)).  These classification schemas 

were then applied to images captured by GOES-16 at +1 hour, +3 hours, and +5 hours.  Each of the 

classified images was subjected to the same pre-processing previously outlined  in order to yield a test 

dataset for the classification algorithm.  The images were then compared with emphasis on ice-edge 

detection, cloud discernment, and performance over time.   

At +1 hour, both classification schemas perform similarly with regard to ice edge determination.  

The single image schema is more sensitive to clouds in the scene, while the 3-image series is less sensitive.  

This is principally a function of the movement of clouds in a 45 minute time series.  With high cirrus clouds 

moving upwards of 100mph and lower cumulus clouds moving between 30-40mph, the clouds will move 

significant distances during the 45minute capture window for the time-series images.  This results in a 

decreased sensitivity to moving clouds, as the radiance values of pixels in the path of clouds will change 

significantly if underlying surface is imaged during the time-series window.  (See Day 072 +1hour classified 

images).   
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Figure 22: Day 072 classification examples.  Left column is the 3-image time series, while the right column is the 1-image 

classification method.  The center column shows the baseline images for classification. 
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The classification comparisons from April (days 116 and 117) show that both schemas deteriorate 

in their performance with an increase in time.  Each of these tests show that at +1hour, the schemas 

perform well at discerning ice edge and clouds.  These images show much more open water than is likely 

present as the time from classification schema development increases.  While the structure of the ice likely 

changes throughout the course of the day, it is unlikely that it changes as much as is indicated in these 

classification results.  The MODIS imagery from the day shows that there is likely thin ice in the 

Northwestern portion of Hudson Bay, and some leads/fractures are evident, but the imagery does not 

show the magnitude of change indicated by the classification results.  This over-assessment of open water 

is likely the result of a significant change (≈ ±0.15 W/m2)5 in radiance value as more thin ice is exposed as a 

result of snow blowing from the ice, or a thinning of the ice over the course of the day.  Both of these 

events would likely cause a change in the radiance value of the surface significant enough to change the 

classification category.  The residual sun angle difference (that persists after sun angle correction attempts) 

is a significant factor in the difficulty in extended timeline classifications.  

 
Figure 23: MODIS visible imagery from Day 116.  Shown for comparison to the assessed ice-edge in the classified images. 

                                                           
5 For example – in the dataset shown on the following page, pixel (118,102) has a value of 1.154 W/m2 at D+1hr, but 
that value changes to 1.022W/m2 at the D+3hr mark.  This change of 0.13W/m2 is sufficient to change classes in the 
classified image.  This threshold is common between water/ice classification.   
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Figure 24: Day 116 classification schemas depicted.  Sensitivity of the ice edge is evidenced by the rapid change over the time series 

in the classified images. 
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 The most significant differences between the two classification techniques is in the sensitivity to 

clouds.  Because there is no significant advantage in processing time between the two techniques, the 3-

image time series technique is preferred because of this decreased cloud sensitivity within the scene.  With 

the goal of the algorithm to ultimately classify the surface as water or ice, the minimizing of cloud-covering 

pixels is ideal as it results in more pixels classified as either ice or water.  Both methods show signs of 

deterioration in their classifications as time increases.  This is likely the result of the limitations of sun-angle 

correction, and as such, classification training should occur on an interval of 3 hours or less during daylight 

conditions.     

 

Figure 25: Difference map highlighting discrepancies between 3-image and 1-image classification schemas at +1hour (Day 116). 

 The above difference map shows the results of subtracting the 3-image time series classification 

image from the single-image classification image.  This highlights the difference between the two models.  

The above histogram helps to explain this map.  The values that hover around zero represent no-change, or 
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a very minor change in the classification level of the cloud cover in the image.  The values between 150-200 

are depicted in yellow on the map, and are areas where the 1-image schema classified the surface as either 

water or ice, but the 3-image schema classified the surface differently.  The value of 170 is a pixel classified 

as ice in the 1-image schema and as water in the 3-image schema.  Values around 185 are those classified 

as ice in the 1-image schema and as cloud in the 3-image schema.  The negative values represent the 3-

image schema classifying water or ice differently than the 1-image schema.  The value of -185 is similarly a 

cloud in the 3-image schema, but ice in the 1-image schema, while the values of -170 represent ice in the 3-

image schema, but cloud in the 1-image schema.   

 This depiction helps to identify the regions where the classification techniques disagree.  Referring 

to the graphic above, the majority of disagreements occur at cloud edges.  This highlights the difficulty in 

classifying cloud edges and cloud shadows which look much different than clouds or the underlying 

ice/water.  It also highlights the sensitivity of the 1-image schema to clouds, and the more robust nature of 

the 3-image series.  There are many more ice/cloud disagreements between 1-image and 3-image 

(histogram @ 170 vs. histogram @ -170) further demonstrating that the single image schema is much more 

sensitive to cloud presence in an image.   

 

Multi-Day Schema Assessment:  

 While sun angle correction efforts may not account well enough for the sun’s influence in order to 

classify an entire day’s worth of images a classification from the same time period may be effective on D+1 

or beyond.  To test this theory, a 3-image time series classification schema was developed for Day 072 

around noon local (1800GMT).  This schema is then applied to D+1 (Day 073), D+2 (Day 074), and D+3 (Day 

075) to assess if a “time of day” classification schema can be applied across a multi-day span with 

satisfactory results.   
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Figure 26: Classification results when schema from approximately noon on Day 072 is applied to Day 073 at noon.  Deterioration in 

the ability to classify is evident as the time period is extended. 
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Figure 27: Classification results when schema from approximately noon on Day 072 is applied to Days 074 & Day 075 at noon.  
Deterioration in the ability to classify is evident as the time period is extended. 
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The schema developed on Day 072 (D-day) is shown above.  It used a 3-image series (local times: 

1130, 1145, 1200 [1730, 1745, 1800 GMT]) during the middle of the daylight period.  Despite efforts to 

normalize the data through time using dark object subtraction and sun angle correction, the same point 

(and with similar surface type) can range in radiance value by more than .09W/m2  and over a three day 

period the sun angle at the same location can change by more than .73°.  While these are contributing 

factors to the difficulty using the same schema to classify images spanning multiple days, the biggest factor 

is the precision used for the 3-image series classification.  The algorithm uses a decision tree with 

approximately 50 different decision points in order to develop six distinct classes.  The sensitivity at which 

these classes are distinguished is likely greater than the sensitivity between subsequent days resulting from 

the change in sun angle and reported radiance.   

 
Figure 28: Sun Angle changes over a 3-day period (Day 72-Day 74).  Scenes show sun angle at 1145 local time (1745GMT). 

 A single image classification decision tree can also be applied across multiple days.  The results 

show that this method performs similarly in its ability to classify across multiple days.  While the changes in 

sun angle remain a constant for this type of classification, the single image decision tree only has 5 decision 

points.  While this eliminates the precision and decision points factor that may confound the multi-day 

classification for a 3-image time series, the results for the single-image schema classification appear quite 

similar.  The inability of a classification scheme derived from either a single image or a 3-image time series 
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on subsequent days within a short time period indicates it is unlikely to be effective on an extended time 

scale like weeks or months.   

While a single classification schema is effective for a time series data cube, these schema are 

sensitive to changes in the data.  Specifically they are not interchangeable between days in which 

atmospheric conditions (cloud cover percentage, ice cover percentage, water percentage) are dramatically 

different, or when sun conditions have substantially changed (as they would over the course of 

weeks/months).  The corrective pre-processing measures described above, do not create similar enough 

reflectance values that a classification schema from mid-March would be effective in mid-June (or even 

mid-April).   

 

Contrast Enhancements:  

 Another technique to better classify the data is to apply an artificial enhancement.  This method 

seeks to separate the distinct clusters on the histogram of a scene in order to aid in the classification 

process.  It does so by increasing the difference between the values that represent water and those that 

represent ice and clouds.  In the process of “spreading” the histogram, measurement units are lost 

however, and the histogram becomes a chart of digital numbers rather than W/m2.   

 The process of enhancing the data set in this way begins with performing a histogram equalization 

across the daily data set.  Histogram equalization is a technique that analyzes the histogram of a set scene, 

calculates the probability that a pixel value will fall into a specific bin, and then multiplies the pixel value by 

that probability (Jensen, 2015).  The resulting histogram is one where the data is spread across the 

histogram of possible pixels values according to its likelihood of occurrence.  This process is accomplished 

using a transformation curve like the one shown below.   
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Figure 29: Transformation curve for histogram equalization on Day 117.  Values on the Y-axis replace values on the X-axis once the 

histogram equalization is complete. 

In this dataset, the result of a histogram equalization is that pixels are consolidated toward the low 

end of values (representing water) or the high end of values (clouds).  While this step is limiting in the 

amount of information that can be drawn from the data, it can serve as an intermediate step to further 

enhance the data produced following the pre-processing steps.  When the histogram equalization is 

multiplied by the pre-processed dataset, the cloud and ice values remain fairly consistent (because they are 

multiplied by values very close to 1) but values that represent water are driven to be lower, further 

separating them on the histogram (because they are multiplied by values between .5 and .7).  This step 

enhances the difference in values that represent ice and water by providing a more clear break between 

the representative values.  
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Figure 30: Process for enhancing the preprocessed data to increase contrast between water, ice and clouds using histogram 

equalization. (Print versions of this graphic may not show a significant distinction between the top-left image and bottom-left image 
– ice in the bottom left image is much less uniform following the data enhancement showing that there is a distinction in ice-cover)  
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 This step to enhance the data creates a new set of conditions to test through the classification 

algorithm for both the single image technique as well as the 3-image time series technique.  The results of 

these tests is shown below.   

 
Figure 31: Day 117 Enhanced Data used in 3-image and single image classification algorithms. 
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 When this data is compared to MODIS data from Day 117 it is apparent that there is different 

structure within the ice.  This feature is more easily discernable in the enhanced data classifications than in 

the pre-processed data classifications as a result of the amplification of water and ice features through 

histogram equalization.  The MODIS data is shown below.   
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Figure 32: Comparison of the preprocessed SWIR Product, a 250m resolution MODIS product, and the outcome of the classification 
algorithm using enhanced data. 
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Figure 33: A comparison of Day116 from  SWIR vs. Day116 from MODIS visible imagery (Bands 1,4,3). 

Other Techniques: 

 While k-means clustering for data classification is a simple and efficient method for data 

segregation, there are likely better techniques for classifying the data once pre-processed.  In brief 

experimentation, Gaussian mixture models seem like there is some promise in providing a reliable 

classification schema that may be able to persist throughout or potentially beyond a 3-hour timeline.  

Gaussian mixture models assume that an underlying dataset is a combination of multiple Gaussian 

distributions together, rather than assuming that the overall distribution of a dataset is normal.  This 

technique is also able to assess the underlying data identify how many classes (or separate Gaussian 

distributions) the data ought to be separated into based on minimizing the Akaike information criterion 

(AIC).  By minimizing this value, the quality of the model is assessed and the model (regardless of the 

number of “k” classes) with the lowest AIC is selected as that which best models the data.  

 The below examples show Day 116 data prior to Gaussian mixture modeling (blue histogram) and 

the Gaussian distributions determined to be a composite of the overall dataset.  As is evident from the lack 
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of discreteness amongst classes, the classification product is unclear, as the Gaussian classification causes 

many of the classes to blur together.   

 

Figure 34: Histogram of Day 116 (0945Local time) and the Gaussian mixture model classification curves associated with the 
dataset. 
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 While the data visually appears to be a combination of Gaussian distributions, none of the classes 

presents as normal a distribution as would be desired for a quality model.  This is particularly true in the 

discernment between ice and water when clouds are present in the scene.  While this technique is 

imperfect, if it is used as an intermediary to filter clouds, it can yield a better product.   

 

Figure 35: Classification from the Gaussian mixture model, and the histogram as divided by classes.  Ice and water are not discrete 
as evidenced in the image as well as the histogram (orange/ green in the histogram and blue/mustard in the image).  
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If the  yellow, purple and blue classes (from the figure 35 - histogram) are removed from the 

dataset, another Gaussian mixture model can then be developed.  This one would then be built from data 

that is only representative of ice and water (or some combination of those two elements with thin clouds). 

This process will still require a man-in-the-loop to remove specific classes that correspond to clouds, and 

will need enhancements to upscale for application on time-series datasets but the initial tests were 

promising.     

 

Figure 36: Histogram and Gaussian distribution curves of a cloud-free dataset developed from a previous Gaussian mixture model. 
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Figure 37: Classified image and histogram distribution from cloud free dataset.  The results are promising, but will require 

enhancements to streamline the transition between initial Gaussian mixture model and the cloud-free Gaussian mixture model. 
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Figure 38: Comparison of Day 116 enhanced data set single-image classification scheme result, and cloud-filtered Gaussian 

Mixture Model classification.  (of note, the enhanced data set classification is based on a 3hr old schema, whereas the Gaussian 
mixture model schema is applied within the hour.   
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Discussion:  

As the results demonstrate, there is a clear ability to use single-channel short-wave infrared to detect 

and distinguish sea ice in remotely sensed imagery.  This demonstration is significant in that it is unlike any 

other sea ice product currently available because of the spectral characteristics of the underlying data.  

While the products generated may not replace current products, the amount of information that is derived 

from a single file is noteworthy, and the temporal resolution of the underlying dataset makes these 

techniques and capabilities much more interesting.   

Short wave infrared channels on remote sensing platforms are typically used to identify cloud 

properties, assess vegetative health, and assess snow cover (Harris Corporation, 2017a).  While there is 

utility in assessing snow cover using short-wave infrared, it stems from the fact that snow is such a poor 

reflector of SWIR.  This thinking is counter to the techniques and methods applied above, in which the 

ability of snow (on sea ice) to reflect SWIR energy is the entire basis of the research.  While both water and 

snow are poor SWIR reflectors, the strength of snow albedo in the short-wave portion of the EM spectrum 

when compared to sea water albedo in the same EM region makes this classification possible.  

An initial assessment of the full disk image for Band 6 (Short-Wave infrared  at approximately 2.25μm) 

should deter use for sea ice research given that the only identifiable features in these images are cloud, and 

land.  Further, the histogram of the full disk scene compared to the subset area of interest shows that at a 

cursory level, information regarding sea ice is likely lost in the noise.  Upon closer scrutiny however, and 

with intensive efforts, a signal is derived from the noise.   

While the SWIR images are produced at 10 bit (meaning there are 1024 shades of gray available for 

interpretation), the full disk image only uses 400 of 1024 shades (approximately 39%).  In the Hudson Bay 

subset, only 267 shades of gray  are used, meaning that the data of interest is contained in approximately 



67 
 

26% of the available spectrum of data possibilities.  This severely limited condition makes deriving 

information regarding sea ice cover a difficult problem, but one that is not insurmountable.   

Other techniques to characterize or detect sea ice use multiple channels of data in concert to inform 

product development.  In the case of passive microwave remote sensing of sea ice, in addition to different 

channels being used, different polarities of the same channel are also used.  This technique effectively 

doubles the data available for the classification algorithm.  Conversely in this product, a single-channel is 

used which requires that the data be massaged and manipulated in a way that it provides enough 

information to develop a product while still remaining recognizable and meaningful when it stands on its 

own.   

  Most remarkable throughout this process is the ability to discern structure within the ice cover in the 

SWIR dataset.  This structure is evident in the MODIS 250m visible imagery, but is also present in the GOES-

16 SWIR at a resolution of approximately 2km x 4.6km.  Preserving and highlighting this structure in the ice 

supports the viability of a single channel ice characterization and detection product from SWIR imagery.  

This detail is precisely the information that is important in understanding sea ice cover and using a product 

for transportation applications.   
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(EOSDIS - NASA Worldview, 2018) 

Figure 39: Zoomed view shows structure of the ice that is evident in MODIS (250m resolution) and is also present in GOES-16 Band 
6 @ 2x4.5km resolution). 

 

The yellow circles in the images above highlights one such structure in the ice.  Despite the surface 

feature being at a sub-pixel resolution in the GOES-16 dataset, its appearance demonstrates that there is 

an ability to discern these features in SWIR imagery.  The structure and breaks in ice cover occur at scales 

less than 2km but the difference in surface albedo is significant enough in the preprocessed and enhanced 

≈160 km 

≈100 mi 
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data sets to be the dominant feature in a pixel.  That means that the pixels display this feature despite it 

occurring at that sub-pixel resolution scale.    

There is merit to both of the techniques discussed above (using pre-processed data and using 

enhanced data), but they perhaps serve different purposes and utilities.  The enhanced data set seems to 

provide the best characterization of sea ice cover, particularly when applied using a single image as the 

basis for the classification algorithm.  This process moves the underlying data away from a recognizable 

measurement (W/m2) however, thus requiring additional steps to map the data back to radiance values.  If 

the end state of this process is the classification map itself, then this product seems to yield the most 

reliable and accurate results, specifically when the classification algorithm is derived from data that is not 

older than one hour.  This means that a classification algorithm can be produced every hour and applied for 

the next four images to be received with reliable results.  The processing requirements for this type of data 

production is minimal and can likely be accomplished in less than one minute from receipt of the raw full-

disk image of SWIR data.   

This type of data production does little to minimize the effect of clouds on the classified scene, but 

creates a usable product for cloud-free regions that is reliable, quick, and constructed using simple remote 

sensing principles.  These methods rely upon the quality of the data available, while applying a simple yet 

effective process for detecting sea ice within a scene.  The simple methodology is critical to ensuring a 

quick processing timetable to capitalize on the temporal resolution of the sensor.   

The 3-image time series approach for classification retains the units of measure for radiance while 

being less susceptible to cloud interference.  The time series method reduces the influence of fast-moving 

clouds in scenes by sampling from a longer time series.  This limits the cloud albedo influence on a single 

pixel later used for classification training.  This method, more robust in its approach, is more appropriate 

for studies less reliant on the high-temporal aspect of the produced data.  The time series can be increased 
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or decreased as necessary (scaled by using more subsequent images in a time-series), and while the 

complexity of the underlying decision tree will increase, processing time will not change significantly.   

 

Utility:  

This research into understanding the capabilities and limitations of short wave infrared remote 

sensing applications is some of the foundational research for an ongoing research collaboration between 

the National Snow and Ice Data Center and the US Air Force Space and Missile Systems Center.  NSIDC 

responded to a broad agency announcement published by the US Air Force which sought investments into 

innovative concepts, capability developments, and applied research, using data from the SBIRS payloads.  

Because of the persistent nature of these satellites, and the polar geometry of the HEO satellites, NSIDC 

submitted a proposal to assess the applicability of this data to near-real-time monitoring of sea ice 

conditions of Arctic sea ice.  This type of temporal scale product has applications for civil, military, and 

commercial ventures as well as scientific applications for both military and civil agencies.   

The Air Force ultimately funded the project under the name ICARTA – Ice Characterization of the 

Arctic for Transportation Applications and tasked to accomplish the following:  

1. Develop and deliver prototype ICARTA algorithms to demonstrate that OPIR can monitor sea 
ice conditions.  

2. Test these algorithms within the OPIR framework.  
3. Identify and document requirements to move prototype to operational product.   
4. Incorporate prototype algorithms into lab environment to demonstrate production capabilities.   

NSIDC assumed a partnership with Net-centric Design Professionals (NDP) to complete the work with the 

understanding that algorithm development was the responsibility of NSIDC while implementation and 

upscaling the purview of NDP.  
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Figure 40: Logo for ICARTA project. 

 The research conducted using GOES-16 SWIR bands ice characterization and detection served two 

functions with regard to the ICARTA project.  It first assessed whether single-channel shortwave infrared 

remote sensing was a feasible platform for sea ice detection at a degraded spatial scale but impressive 

temporal scale.  Secondly, it served to provide unclassified data for research and collaboration to develop 

and refine algorithms to eventually apply toward SBIRS payload data.  The foundational research using 

GOES-16 applied to contract requirement one (stated above).  It used Hudson Bay sea ice rather than Arctic 

sea ice because of the limitations of the satellite, but this distinction in location is insignificant for research 

implications.    
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 Use of GOES-16 established a proven ability to distinguish sea ice, clouds, and water in the GOES-16 

SWIR spectrum and allowed for the development of processes to make detection and discernment more 

reliable.  These processes include the preprocessing requirements to allow short-scale time series images 

to cooperate with one another in classification algorithms.  These steps included atmospheric corrections 

and sun angle corrections.  While sun angle corrections are applied for most satellite platforms, these are 

often done to correct for time of year, not time of day.  Because polar orbiting satellites image the same 

portions of the earth at similar times each day, the corrections applied are to adjust for large-scale sun 

angle changes that may occur over the course of 16 days or fewer.  This project required correction of sun 

angle due to the persistent coverage of the GOES-16 platform, and required this be done at a time scale 

that was not prohibitive to rapid product development.  The sun angle correction algorithm was applied 

because it was necessary to correlate similar surface features throughout the significant sun angle changes 

within a single day.   

 The classification algorithm was developed to be robust in its ability to accommodate the 

significant differences anticipated between SBIRS payload data and GOES-16 SWIR data.  This thinking led 

to the use of data cubes built on a fixed array with z values representing the underlying data, and the depth 

of the cube representing the temporal aspect of the data.  By reducing data to four characteristics (X, Y, Z, 

& time) following the preprocessing steps, the data was made to be more flexible to different user 

interface applications, and available for manipulation and feasibility testing.   Building algorithms that 

assume this data structure makes them more adaptable to different data sources and data formats for 

initial input data.  

 Since this research determined SWIR does possess the sensitivity to discriminate between cloud, 

ice, and water, the next steps for the ICARTA project are to test it in the lab environment on a dataset that 

likely has different spatial, spectral, temporal, and radiometric resolutions.  Additionally, the classification 

algorithm will likely need to be improved in order to produce more consistent results through a time series 
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without requiring the same post-processing as described in the methods.  There will need to be significant 

modifications to the algorithm, but the structure and underlying processes will remain in an effort to 

generate products as both a test, and eventually as an operational product to support emergency 

preparedness and civil, commercial, and military operations in the Arctic.  

Conclusions:  

 This research has many implications for follow-on work as well as having significant merit of its 

own.  The purpose of this research was to answer the following questions:  

a. Is there enough sensitivity within the SWIR bands of the EM spectrum to develop an accurate 
sea ice product from a given data set?  
 

b. Can a temporal based approach overcome the data limited nature of a single-channel 
algorithm, as well as a poor spectral resolution for sea ice studies?  

 
While those questions are answered within this paper, there are significant implications for further 

research and potential capabilities.   

 The preprocessing procedures, as well as data enhancement techniques, demonstrated that short 

wave infrared bands do have enough sensitivity in reflected radiance to develop an accurate sea ice 

product.  The quality of these products is dependent upon the effectiveness of preprocessing steps, as well 

as the length of time between the development of the classification algorithm and the application of this 

algorithm.  The work demonstrated that as the time between algorithm development and subsequent 

images increases, the accuracy with which the classification performs significantly degrades.  In order to be 

effective, the data for classification likely needs to be within three hours of the development of the 

classification model.  This ensures that the sun angle corrections as well as atmospheric correction 

techniques are still relevant and effective.  Even within these constraints, the shorter the time between 

classification algorithm development and application the better.  In order to ensure applicability and 

consistency, a single classification scheme (for GOES-16) should be applied for at least one hour, or four 
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subsequent images in the time series.  Production of classification schemas on a shorter timeline will 

increase the amount of post-processing time required to ensure consistency with regard to surface type 

classification between subsequent algorithms.  

 The second research question is more complicated in its answer.  While using a time-series based 

approach does indeed increase the number of data points available for the development of a classification 

algorithm, the product of such an algorithm performs similarly to a single-image algorithm with few 

exceptions.  Increasing the training data through a time-series makes an algorithm more robust in its 

approach to classification of cloud covered pixels.  Because this approach looks at a pixel changing in 

reflected radiance over a period of 45 minutes, it is able to minimize the cloud coverage of atmospheric 

features moving through the scene during the time period.  This is more effective in that it often allows the 

algorithm to classify more pixels as either water or ice, but it might also create classes that represent 

reflected radiance values that are too broad to accurately classify the surface medium effectively.  Meaning 

that if a cloud moves through a pixel during the 45 minute time series, the classification will be made based 

on the three values recorded (in this case two cloud free and one clouded).  This classification 

determination will then be based upon three values, one of which may be a 50% or more increase in 

reflected radiance than the other two.  This adds complexity to the decision tree as well as possibly blurring 

the edges of each class boundary.  In the case of clouds this results in a minimized impact, but at the 

water/ice interface, this could result in a much more disputable boundary.  To minimize this impact, a 

single image classification should likely be applied simultaneously to identify any significant discrepancy 

with boundaries between classes.   

 This research yielded many additional observations besides answering the above questions.  While 

the project confirmed SWIRs utility in sea ice remote sensing, it demonstrated the difficulty in undertaking 

SWIR sea ice characterization on such a coarse spatial scale.  A scale finer than 2km is ideal for such studies 

if the work is to be truly applicable for the purposes of emergency response and Arctic transportation.  This 
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resolution is required at a minimum in order to convey current ice conditions throughout the Arctic.  A 

scale greater than 2km lacks the ability to chart features that occur at a smaller scale, but are significant 

factors for navigation – principally leads and thin ice.   

 While there is clearly an emergency preparedness and transportation application to this research 

given the time scale available, the scientific implications of similar datasets are noteworthy.  Datasets 

occurring at a fifteen minute (or finer) time scale can assist significantly in our understanding of surface 

feature timelines.  This avenue of research could capture the timescale on which leads can form and 

refreeze or could be applied over ice sheets to identify the time scale at which melt ponds grow and drain 

under specific conditions.  While neither of these undertakings is likely appropriate for a single-channel 

approach, the SWIR dataset could be invaluable in filling-in timeline gaps between polar orbiting satellite 

overpasses.  While other satellites likely have much finer spatial resolution and the ability to image in 

multiple channels across the EM spectrum, this SWIR dataset can provide continuity of surface conditions 

between satellite overflights.  This technique could be used to complete the record in a time series study 

on any number of surface phenomena on the earth, whether in the cryosphere or elsewhere.   

 Lastly, this project demonstrated the amount of information that is present in even a single-

channel of remotely sensed data.  Unlike other ice detecting algorithms which use between two and six 

channels to identify and characterize ice, this research accomplished similar results using only a single 

channel with relatively poor spectral resolution.  This indication of the inherent value of small datasets 

should encourage approaching remote sensing problem sets with the intention of minimizing the 

complexity of the algorithms as well as limiting the data requirements to achieve a purpose.  By keeping 

data sets limited and focusing more on each individual data source, results of remote sensing applications 

are more likely to resemble the underlying dataset.  This effort preserves confidence in the results and 

likely creates algorithms that are less complicated; more easily comprehended, and therefore have a more 

defensible epistemology.    
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Appendix A 

 
Figure 41: Day 072 classification examples at +5hrs from classification schema development.  
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Figure 42: Day 116 classification examples at +5hrs from classification schema development.  
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Appendix B 

 
Figure 43: Comparison of the enhanced dataset when classified and the preprocessed dataset when classified.  Center shows 

preprocessed data for comparison. 
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Appendix C 

 
Figure 44: Decision tree for 3-image time series.  This example has 74 decision points for classification.  
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