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Abstract Effects of wave-driven Langmuir turbulence on the air-sea flux of carbon dioxide (CO2) are
examined using large eddy simulations featuring actively reacting carbonate chemistry in the ocean
mixed layer at small scales. Four strengths of Langmuir turbulence are examined with three types of
carbonate chemistry: time-dependent chemistry, instantaneous equilibrium chemistry, and no reactions.
The time-dependent model is obtained by reducing a detailed eight-species chemical mechanism using
computational singular perturbation analysis, resulting in a quasi steady state approximation for hydrogen
ion (H+); that is, fixed pH. The reduced mechanism is then integrated in two half-time steps before and after
the advection solve using a Runge-Kutta-Chebyshev scheme that is robust for stiff systems of differential
equations. The simulations show that as the strength of Langmuir turbulence increases, CO2 fluxes
are enhanced by rapid overturning of the near-surface layer, which rivals the removal rate of CO2 by
time-dependent reactions. Equilibrium chemistry and nonreactive models are found to bring more and less
carbon, respectively, into the ocean as compared to the more realistic time-dependent model. These results
have implications for Earth system models that either neglect Langmuir turbulence or use equilibrium,
instead of time-dependent, chemical mechanisms.

1. Introduction

The ocean is a critical component of the global carbon cycle, presently holding 60 times more carbon
than the preindustrial atmosphere (Ciais et al., 2013). Changes in ocean carbon storage also affect atmo-
spheric carbon dioxide (CO2), thereby impacting the climate system. From a dynamical perspective, ocean
carbon uptake is intricately linked to physical circulations (Graven et al., 2012), and recent research empha-
sizes the role of large-scale fluid advective processes in transporting carbon across the base of the mixed
layer (Levy et al., 2013). However, few studies have explored the role of small-scale turbulent circulations in
ocean carbon uptake, resulting in continued uncertainty regarding parameterizations of air-sea CO2 fluxes in
Earth system models (ESMs). The present study examines the ocean carbon cycle at small scales using large
eddy simulations (LES) to model reactive carbonate species evolving in the presence of realistic mixed-layer
turbulence.

Prior research on reacting flows (e.g., Hamlington et al., 2011) has shown that the strongest interactions
between reactions and turbulence occur when chemical and mixing time scales are within an order of mag-
nitude, as is the case for carbonate chemistry in the oceanic mixed layer. In the ocean surface boundary
layer, cooling-driven surface convection, wind-driven shear turbulence, and wave-driven Langmuir turbu-
lence (Langmuir, 1938) occur at time scales of roughly 1–100 min, while wave periods and breaking occur at
roughly 1–10 s. Once CO2 is transferred across the air-sea interface, it reacts with seawater to produce bicar-
bonate (HCO3

−) and carbonate (CO3
2−) in a series of reactions whose rate-limiting steps have time scales of

roughly 1 min (Zeebe & Wolf-Gladrow, 2001). As a result, the time scales of small-scale ocean turbulence and
carbonate chemistry can be of the same order, leading to strong coupling between flow physics and reac-
tions. Larger-scale turbulent processes, such as mixing by mesoscale and submesoscale eddies, have much
longer time scales and are not likely to interact strongly with carbonate chemistry reactions, although they
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may link in a similar way to the biological carbon cycle, which also has long time scales. Although there are
linkages between inorganic and biological carbon cycles that can cause slow variations in chemical com-
position, chemical reactions themselves remain fast and are coupled most strongly to correspondingly fast
turbulent mixing.

Despite the time scale matching between carbonate chemistry and ocean turbulence, however, the present
study is the first to simultaneously solve chemical and fluid flow equations in a coupled fashion. Previous
studies have shown that Langmuir turbulence produces spatial heterogeneity (or patchiness) at the ocean
surface through the aggregation of buoyant tracers such as debris, plankton, nutrients, or oil within the con-
vergence zones of its counterrotating cells (Barstow, 1982; Langmuir, 1938; Lewis, 2005; Powell et al., 1975;
Qiao et al., 2009; Smayda, 1970; Smith et al., 2016; Stommel, 1949; Suzuki et al., 2016; Thorpe, 2000, 2009). Due
to enhanced mixing, Langmuir turbulence also increases the vertical extent over which tracers are distributed
(Bees, 1998; Buranathanitt et al., 1982; Gallager et al., 1996; Johnson & Richardson, 1977; Ledbetter, 1979;
McWilliams & Sullivan, 2000; Pinelalloul, 1995; Shoener & Rowe, 1970; Solow & Steele, 1995; Woodcock, 1950;
1993; Yool, 1998). The effects of surface waves on sea surface chemistry have also been examined (Dierssen et
al., 2009; Eisenreich et al., 1978; Parsons & Takahishi, 1973; Sutcliffe et al., 1963; Williams, 1967), largely focusing
on the increase in aggregation of nutrients due to windrows and the precipitation of organic particles due to
bubble injection from surface wave breaking. In each of these cases, however, reactions were assumed to be
sufficiently fast or slow in comparison to the dominant mixing process and, as a result, significant reaction-flow
couplings were neglected.

Although some studies have examined time-dependent carbonate chemistry within the ocean, primarily
focusing on enhancement of air-sea fluxes and uptake of carbon by individual phytoplankton cells, these
studies have largely assumed that the flow is laminar, quiescent, or well-mixed by small-scale turbulence
(Guo et al., 2011; Jahne & Monahan, 1995; Johnson, 1982; Quinn & Otto, 1971; Schulz et al., 2006; Schulz
et al., 2009; Uchikawa & Zeebe, 2012; Williams, 1983; Wolf-Gladrow et al., 1999; Zeebe, 2007). Many studies
have also examined the enhancement of CO2 exchange rates across the air-sea interface as a function of
wind-driven turbulence, wave breaking, and bubble injection; however, no studies have specifically included
a time-dependent CO2 hydration mechanism (Asher & Pankow, 1986; Asher & Wanninkhof, 1998; Bolin, 1960;
Boutin et al., 1999; Farmer & Li, 1995; Goldman & Dennett, 1982; Hoover & Berkshire, 1969; Jacobs et al., 2002;
Jahne & Monahan, 1995; Kuss & Schneider, 2004; Pankow & Asher, 1982; Thorpe et al., 2003; Woolf, 1993).

The primary goals of this paper are to examine the effects of Langmuir turbulence on carbonate chemistry
by simultaneously considering the time-dependent nature of both processes and to exemplify a coupled
chemistry-physics modeling system capable of carrying out this examination. Specifically, this study seeks to
determine how Langmuir turbulence affects the amount of dissolved inorganic carbon (DIC) in the oceanic
mixed layer. As a secondary objective, this study examines how chemical model fidelity affects predictions of
DIC in the mixed layer. These objectives are addressed using LES of reactive carbonate species at small scales
for different strengths of Langmuir turbulence and different chemical models, including time-dependent
and equilibrium models. The simulations are enabled by the development of a new reduced mechanism for
carbonate chemistry, as well as the implementation of a Runge-Kutta-Chebyshev numerical integrator to han-
dle the stiffness of the governing equations. Without these developments, the computational cost of the
LES is prohibitive.

In the following, details of the numerical simulations are provided in section 2, including the development of
the reduced carbonate chemistry model. Section 3 outlines the simulation results, and section 4 discusses the
implications of these results for ESMs, as well as how the present observations might vary for different ocean
conditions. Conclusions and directions for future research are provided at the end.

2. Description of Numerical Simulations
2.1. Governing Equations and Solver
The governing equations solved in the simulations are the wave-averaged Boussinesq equations (Suzuki et al.,
2016) with additional transport equations for reactive species concentrations (termed tracers in the following;
Smith et al., 2016), namely,

Du
Dt

= −∇p − fc × uL − uL,j∇us,j + bẑ + SGSu , (1)
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Db
Dt

= SGS b , (2)

Dc
Dt

= S + SGSc , (3)

∇ ⋅ u = 0 , (4)

where D∕Dt ≡ 𝜕∕𝜕t+(uL ⋅∇) is the material derivative, uL ≡ u+us is the Lagrangian velocity, u is the Eulerian
velocity averaged over surface gravity waves, us is the Stokes drift velocity created by surface gravity waves,
p is the pressure normalized by a reference density 𝜌0, fc is the Coriolis parameter, and b is the buoyancy.
Buoyancy and density 𝜌 are related by b = −g𝜌∕𝜌0, where g is the gravitational acceleration. The density is
related to the potential temperature 𝜃 by the relation 𝜌 = 𝜌0[1+𝛽T (𝜃0−𝜃)], where 𝛽T is the thermal expansion
coefficient and 𝜃0 is a reference temperature. In equation (3), c denotes the vector of Eulerian concentration
fields for each of the tracers. The tracers are passive and thus do not impact the dynamics of u or b. However,
they are nonconserved and S in equation (3) accounts for sources and sinks due to chemical reactions, as
outlined in section 2.2. Each of the subgrid-scale (SGS) terms in equations (1)–(3) are fluxes from the SGS
model used in the LES. Note that the form of equation (1) was outlined by Suzuki and Fox-Kemper (2016),
although it is mathematically identical to the form in McWilliams et al. (1997).

Langmuir turbulence is created in the simulations by the Stokes drift velocity us, which appears in equations
(1)–(3). This additional forcing term is expressed in the present LES as

us(z) = us(z)
[
cos(𝜗s)x̂ + sin(𝜗s)ŷ

]
, (5)

where us(z) is the Stokes drift magnitude vertical profile, which decays faster than exponentially from the sur-
face (Donelan et al., 1985; Webb & Fox-Kemper, 2011), and 𝜗s is the angle of the Stokes drift velocity in the
horizontal (i.e., x-y) plane. Note that in the present study, us is constant in time and the same at all horizontal
locations and thus depends only on z. Wind, 𝜗w, and Stokes drift, 𝜗s, directions are taken to be the same in
all simulations (thereby representing wind, as opposed to crossing swell, waves), and both wave-spreading
and breaking wave effects are neglected (Webb & Fox-Kemper, 2015). Prior studies (Hamlington et al., 2014;
McWilliams et al., 1997; Smith et al., 2016; Van Roekel et al., 2012) have shown that the inclusion of the
Stokes drift velocity in equations (1)–(3) leads to the creation of small-scale, counterrotating Langmuir cells
throughout the domain, with the strongest cells occurring close to the surface.

The numerical code used to perform the simulations is the National Center for Atmospheric Research (NCAR)
LES model (McWilliams et al., 1997; Moeng, 1984; Sullivan et al., 2007). Horizontal spatial derivatives are cal-
culated pseudospectrally, while second- and third-order finite differences are used for vertical derivatives of
velocity and tracers, respectively. Third-order Runge-Kutta (RK) time-stepping is used with a constant Courant
number. Subgrid-scale viscosity, buoyancy diffusivity, and tracer diffusivity are spatially varying according to
the scheme outlined by Sullivan et al. (1994).

2.2. Reduced Carbonate Chemistry Model
The reduced carbonate chemistry model implemented in the LES is based on the mechanism from Zeebe and
Wolf-Gladrow (2001) for carbonate reactions in seawater. This mechanism includes seven species concentra-
tions for CO2, HCO3

−, CO3
2−, H+, OH−, B(OH)3, and B(OH)4

− (denoted c1 –c7; see Table 1), plus H2O, which is
assumed to have a constant concentration. The system of seven reactions describing the mechanism is given
as (Zeebe & Wolf-Gladrow, 2001)

CO2 + H2O
𝛼1
⇌
𝛽1

HCO3
− + H+

CO2 + OH− 𝛼2
⇌
𝛽2

HCO3
−

CO3
2− + H+

𝛼3
⇌
𝛽3

HCO3
−

HCO3
− + OH− 𝛼4

⇌
𝛽4

CO3
2− + H2O

H2O
𝛼5
⇌
𝛽5

H+ + OH−

B(OH)3 + OH− 𝛼6
⇌
𝛽6

B(OH)4
−

CO3
2− + B(OH)3 + H2O

𝛼7
⇌
𝛽7

B(OH)4
− + HCO3

−
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Table 1
Definition of Tracer Concentrations ci, Terminology, and Equilibrium Values of Tracer
Concentrations Used to Initialize the Simulations

Tracer Species Name Equilibrium value (μmol/kg)

c1 CO2 Carbon dioxide 7.57

c2 HCO3
− Bicarbonate 1.67 × 103

c3 CO3
2− Carbonate 3.15 × 102

c4 H+ Hydrogen ion 6.31 × 10−3

c5 OH− Hydroxyl 9.60

c6 B(OH)3 Boric acid 2.97 × 102

c7 B(OH)4
− Tetrahydroxyborate 1.19 × 102

Note. The equilibrium values correspond to approximate surface values at a tem-
perature of 25 ∘C, salinity of 35 ppt, alkalinity of 2,427.89 μmol/kg, and dissolved
inorganic carbon concentration of 1992.28 μmol/kg.

where 𝛼i and 𝛽i are, respectively, forward and backward reaction coefficients. Table 2 provides temperature-
and salinity-dependent equations for each of these coefficients, as well as values for the coefficients at a
temperature of 25 ∘C and salinity of 35 ppt (Dickson & Goyet, 1994; Zeebe & Wolf-Gladrow, 2001).

The source terms Si on the right-hand side of equation (3) for the rate equation of each tracer ci are obtained
using the law of mass action as

S1 = −(𝛼1 + 𝛼2c5)c1 + (𝛽1c4 + 𝛽2)c2 , (6)

S2 = (𝛼1 + 𝛼2c5)c1 − (𝛽1c4 + 𝛽2 + 𝛽3 + 𝛼4c5 + 𝛽7c7)c2 + (𝛼3c4 + 𝛽4 + 𝛼7c6)c3 , (7)

S3 = (𝛽3 + 𝛼4c5 + 𝛽7c7)c2 − (𝛼3c4 + 𝛽4 + 𝛼7c6)c3 , (8)

S4 = 𝛼1c1 − (𝛽1c4 − 𝛽3)c2 − 𝛼3c4c3 + (𝛼5 − 𝛽5c4c5) , (9)

S5 = −𝛼2c5c1 + (𝛽2 − 𝛼4c5)c2 + 𝛽4c3 + (𝛼5 − 𝛽5c4c5) − (𝛼6c5c6 − 𝛽6c7) , (10)

Table 2
Temperature- and Salinity-Dependent Reaction Coefficient Equations and Values at a Temperature of
25 ∘C and Salinity of 35 ppt for the Carbonate Chemistry Model Used in the Present Study

Symbol Equation Value Unit

𝛼1 exp[1,246.98 – 6.19 × 104 / 𝜃 – 183.0 ln (𝜃)] 0.037 s−1

𝛽1 𝛼1∕K∗
1 2.66 × 104 kg⋅mol−1⋅s−1

𝛼2 A1 exp(−E1∕R𝜃) 4.05 × 103 kg⋅mol−1⋅s−1

𝛽2 𝛼2K∗
W∕K∗

1 1.76 × 10−4 s−1

𝛼3 constant 5.0 × 1010 kg⋅mol−1⋅s−1

𝛽3 𝛼3K∗
2 59.4 s−1

𝛼4 constant 6.0 × 109 kg⋅mol−1⋅s−1

𝛽4 𝛼4K∗
W∕K∗

2 3.06 × 105

𝛼5 constant 1.40 × 10−3 kg⋅mol−1⋅s−1

𝛽5 𝛼5∕K∗
W 2.31 × 10−10 kg⋅mol−1⋅s−1

𝛼6 A6 exp(−E7∕R𝜃) 1.04 × 107 kg⋅mol−1⋅s−1

𝛽6 𝛼6K∗
W∕K∗

B 249 s−1

𝛼7 A7 exp(−E8∕R𝜃) 6.92 × 106 kg⋅mol−1⋅s−1

𝛽7 𝛼7K∗
2∕K∗

B 3.26 × 106 kg⋅mol−1⋅s−1

Note. All values and expressions are taken from Zeebe and Wolf-Gladrow (2001). Here A1 = 4.70×
107 kg⋅mol−1⋅s−1, E1 = 23.2 kJ/mol, A6 = 4.58 × 1010 kg⋅mol−1⋅s−1, E6 = 20.8 kJ/mol, A7 = 3.05 ×
1010 kg⋅mol−1⋅s−1, and E7 = 20.8 kJ/mol. The temperature- and salinity-dependent equilibrium
constant equations for K∗

1 , K∗
2 , K∗

W , and K∗
B are given by Dickson and Goyet (1994).
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S6 = 𝛽7c7c2 − 𝛼7c6c3 − (𝛼6c5c6 − 𝛽6c7) , (11)

S7 = −𝛽7c7c2 + 𝛼7c6c3 + (𝛼6c5c6 − 𝛽6c7) . (12)

The system of rate equations resulting from this reaction mechanism is, however, numerically stiff and
requires a prohibitively small time step to accurately and stably integrate within NCAR LES using the native
third-order RK scheme. To overcome this difficulty, two measures were taken: (i) a computational singular
perturbation (CSP) analysis and subsequent quasi steady state (QSS) approximation were used to reduce the
chemical mechanism and (ii) a Runge-Kutta-Chebyshev scheme was used to integrate the resulting system of
rate equations.

2.2.1. CSP Analysis
CSP analysis (Goussis & Lam, 1992; Lam, 1993; Lam & Goussis, 1989; 1994) was applied to the chemical kinetic
system represented by equations (6)–(12) to identify candidate species for QSS approximations following the
approach outlined by Lu and Law (2008a, 2008b) and Niemeyer and Sung (2015). To perform the CSP analysis,
the reaction rate equations from equations (3) and (6)–(12) were first written as a zero-dimensional (i.e., only
time-dependent) system given by

dc
dt

= S(c) ⇒
dS
dt

= JS, (13)

where J = 𝜕S∕𝜕c is the Jacobian matrix. The CSP analysis decomposes the source terms S into a vector of
modes f using row basis vectors B as f = BS. The time derivative of f then gives

df
dt

=
(dB

dt
+ B ⋅ J

)
S = 𝚲f , (14)

where 𝚲 is given by

𝚲 =
(dB

dt
+ BJ

)
A , (15)

and A = B−1. For simplicity, the Jacobian matrix was assumed to be time independent such that dB∕dt = 0,
leading to

𝚲 = BJA , (16)

where 𝚲 contains the eigenvalues of J on the diagonal. The eigendecomposition of the Jacobian was per-
formed using the NumPy function numpy.linalg.eig (Van der Walt et al., 2011); the Jacobian itself was
evaluated analytically using SymPy (Meurer et al., 2017). The CSP basis vectors A and B are then the right and
left eigenvectors of J, respectively.

Using the eigenvalues from equation (16), the system dynamics were separated into fast and slow subspaces,
where the evolution of the modes f in each subspace is given from equation (14) as (Niemeyer & Sung, 2015)

d
dt

[
ffast

fslow

]
=
[
𝚲fast

𝚲slow

] [
ffast

fslow

]
. (17)

The fast modes ffast decay rapidly and have negative eigenvalues 𝚲fast that are much larger in magnitude
than the eigenvalues 𝚲slow associated with the slow-subspace, fslow .

Formally, the fast and slow subspaces were identified by defining a cutoff time scale 𝜏c∕𝛾CSP, where 𝜏c is a
characteristic time scale of the global system dynamics and 𝛾CSP is a safety factor. The two subspaces were
then separated by requiring that the time scale associated with the smallest magnitude eigenvalue in the fast
subspace (corresponding to the slowest mode in the fast subspace), denoted 𝜆min (𝚲fast ), be less than the
cutoff time scale:

−1

𝜆min

(
𝚲fast

) <
𝜏c

𝛾CSP
. (18)

The negative-valued eigenvalues in 𝚲 with magnitudes greater than 𝜆min are all part of the fast subspace,
while the remaining eigenvalues are part of the slow subspace. From 𝚲fast and 𝚲slow, it was then possible to
identify the fast and slow subspace modes, ffast and fslow, respectively. The characteristic time 𝜏c was defined
to be the relaxation time for CO2 to reach 1% of its equilibrium concentration after a 1-μmol/kg increase in
CO2, a 1-μmol/kg decrease in CO3

2−, and a 2-μmol/kg increase in OH− (Zeebe & Wolf-Gladrow, 2001), giving
𝜏c = 63.03 s. The safety factor was set as 𝛾CSP = 50.
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2.2.2. Quasi Steady State Approximation
Projecting S onto the fast and slow subspaces gives S = Sfast + Sslow, where Sfast = QfastS and Sslow = QslowS.
Here Qfast and Qslow are, respectively, the fast and slow projection matrices given by

Qfast = AfastBfast , Qslow = AslowBslow . (19)

The basis vectors were split into fast- and slow-mode vectors by applying equation (18) to identify the associ-
ated fast and slow eigenvalues, and Qslow was constructed. Then, species were identified as good candidates
for the QSS assumption if they correlated (or projected) weakly to the slow subspace. For the ith species, this
was determined using |||Qslow

i,i
||| < 𝜖CSP , (20)

where Qslow
i,i is the ith diagonal element of Qslow and 𝜖CSP is a small threshold value (0.1 was used here). Prac-

tically, species were determined to satisfy the criterion given by equation (20) by calculating the maximum
values of Qslow

i,i for all species over a simulated relaxation back to equilibrium after a 10% perturbation to the
concentration of CO2, at a temperature of 25 ∘C and salinity of 35 ppt.

The CSP analysis identified two QSS candidates: H+ and OH−, with slow-subspace contributions (i.e., Qslow
i,i )

of 1.81 × 10−5 and 2.72 × 10−2, respectively. Both species satisfied the criterion in equation (20), but it was
found that the approximation could only be applied to H+ without introducing significant error. Thus, the CSP
analysis determined that H+ (which is connected to the pH) was a candidate for the QSS approximation by
identifying it as a radical (in the CSP context) because it contributed little to the slow, controlling modes of
the system dynamics, below a safety factor.

Using the QSS approximation for the concentration of H+ (tracer c4; see Table 1), it was assumed that S4 = 0
and that c4 could be obtained algebraically as

c∗4 =
𝛼1c1 + 𝛽3c2 + 𝛼5

𝛽1c2 + 𝛼3c3 + 𝛽5c5
, (21)

where c∗4 denotes the QSS approximation for c4. Computationally, the resulting reduced chemical mechanism
was less stiff due to the use of QSS for one of the three fastest-evolving species, allowing a 50% increase
in the time step required for the simulations, and required the integration of only six, as opposed to seven,
coupled differential equations (i.e., no differential equation needed to be integrated for c4, since this tracer
concentration was given algebraically by equation (21)).

The error due to the QSS assumption was estimated using a zero-dimensional test where the system was per-
turbed by a 1-μmol/kg increase in c1, a 1-μmol/kg decrease in c3 (to maintain constant DIC concentration), and
a 2-μmol/kg increase in c5 (to maintain constant alkalinity; Zeebe & Wolf-Gladrow, 2001), after which all species
relaxed back to their respective equilibrium values. Examining the temporal evolution, the concentrations
of all species in the reduced model agreed within 1 × 10−5% of the full model (except for the concentration
of c4, which was analytically provided by equation (21) resulting from the QSS assumption) over the entire
equilibration period (∼60 s). Figure 1 shows the results from this test.

2.2.3. Runge-Kutta-Chebyshev Solver
In the simulations, time integration of the advection and chemistry was split (Strang, 1968) such that the
advection remained within the preexisting third-order RK scheme in NCAR LES and the chemistry was inte-
grated in two half steps, before and after the advection step. The chemistry integration used an explicit
second-order Runge-Kutta-Chebyshev (RKC) scheme that is robust for moderately stiff equations (Niemeyer &
Sung, 2014; Sommeijer et al., 1997; Verwer et al., 2004). While explicit, the RKC algorithm is stabilized to handle
more stiffness than traditional RK methods. The RKC scheme is explicit and constructed like other multistage
explicit RK methods but uses an increased, variable number of stages and coefficients chosen to increase the
stability region rather than accuracy—thus, the method is known as a stabilized explicit scheme. The use of
the RKC solver provided an additional increase in the time step required for the simulations, from roughly
10−5 s without the RKC solver (i.e., using the native third-order RK scheme in NCAR LES) to roughly 0.1 s with
the RKC solver.
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Figure 1. Relaxation times for the concentration of CO2, denoted c1,
determined using the full kinetic model (black solid line) and using the
reduced model with the QSS approximation in equation (21) applied to H+

(red dash-dotted line). QSS = quasi steady state.

2.3. Physical Setup
The physical and computational parameters used to set up the simulations
are summarized in Table 3. All simulations were initialized with a mixed
layer depth of 30 m, with uniform stratification (i.e., linearly increasing
density) below. Buoyancy, density, and temperature were all spatially and
temporally varying in the simulations, but salinity was assumed fixed at 35
ppt. The physical domain size was Lx × Ly × Lz = 320 × 320 × −96 m3 with
a horizontal (x-y) resolution of 2.5 m and a vertical (z) resolution of 0.75 m.
The initial velocities were motionless. Periodic boundary conditions were
used in horizontal directions, and a zero vertical velocity condition was
applied at the bottom boundary. A surface wind stress of 0.025 N/m2 was
applied to all simulations along the x direction, with a friction velocity of
u𝜏 = 5.3 × 10−3 m/s, corresponding to a 10-m wind speed of 5.75 m/s.
Zero-gradient boundary conditions were used for the temperature at the
top and bottom of the domain, and the diurnal cycle was not modeled in
the simulations.

Four wave-forcing scenarios were examined by varying the Stokes drift
velocity: a single case with no Langmuir turbulence and three cases with

increasing strengths of Langmuir turbulence. The Stokes drift velocity profiles, us(z), applied in each of the
Langmuir cases are shown in Figure 2. The strength of the Langmuir turbulence is characterized by its tur-
bulent Langmuir number, La2

t = u𝜏∕us(0), where us(0) is the surface Stokes drift from each of the profiles
shown in Figure 2. The four scenarios examined correspond to Lat = ∞, 0.4, 0.3, and 0.2, where Lat = ∞ is the
non-Langmuir case. The range of Langmuir numbers explored here is realistic (Li et al., 2016; Li & Fox-Kemper,
2017), and 0.3 is the value attained under fully developed seas (Webb & Fox-Kemper, 2011). The Lat = 0.4 and
0.2 cases are intended to reveal the effects of weaker and stronger Langmuir turbulence, respectively, as com-
pared to the baseline value. Additional discussion of the physical setup represented by these simulations, as
well as how turbulence-chemistry interactions would vary for different conditions, is provided in section 4.2.

According to Callaghan et al. (2008), less than 0.25% of the global sea surface area is expected to be covered by
whitecapping (i.e., breaking waves) for the wind strength considered here. Consequently, no wave-breaking
parameterization was used in these simulations, although one has been developed for the NCAR LES model
(Sullivan et al., 2007) and could be explored in future work. Similarly, bubble parameterizations were not

Table 3
Summary of Physical and Computational Parameters Used in the Numerical Simulations

Parameter Value

Physical size, Lx × Ly × Lz 320 m × 320m × –96 m

Grid size, Nx × Ny × Nz 128 × 128 × 128

Grid Resolution, △x ×△y ×△z 2.5 m × 2.5 m × 0.75 m

Reference density, 𝜌0 1,000 kg/m3

Thermal expansion coefficient, 𝛽T 2 × 10−4 K−1

Coriolis parameter, fc 0.729 × 10−4 ẑ

Initial mixed layer depth, HML,0 30 m

Wind speed at 10 m, U10 5.75 m/s

Stokes drift direction, 𝜗s 0∘

Water-side wind friction velocity, u𝜏 =
√
𝜏∕𝜌o 5.3 × 10−3 m/s

Wind stress, 𝜏 0.025 N/m2

Wind direction, 𝜗w 0∘

Surface stokes drift, us(0) (m/s) 0.000 0.032 0.080 0.132

Langmuir number, Lat ≡ [u𝜏∕us(0)]1∕2 ∞ 0.40 0.30 0.20

Simulation label NS La04 La03 La02

Note. NS = non-Langmuir.
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Figure 2. Stokes drift velocity us(z) as a function of depth z for Langmuir
numbers Lat = 0.4, 0.3, and 0.2 (red, blue, and green lines, respectively),
where Lat ≡ [u𝜏∕us(0)]1∕2. The main plot shows us(z) on linear axes, and the
inset shows us(z) on semilog axes.

included in these simulations (Liang et al., 2011), although the effects
of bubbles are likely to be significant (Woolf, 1993), particularly given
their connection to Langmuir turbulence (Farmer & Li, 1995; Thorpe et al.,
2003). Although the present study is specifically focused on the effects
of enhanced vertical mixing by Langmuir turbulence, future work will
explore the effects of bubbles, for example, using the parameterization for
bubble-enhanced air-sea fluxes given by Woolf (1993).

For each physical scenario, species concentrations were initialized uni-
formly throughout the domain using equilibrium values for a temperature
of 25∘C salinity of 35 ppt, alkalinity of 2,427.89μmol/kg, and DIC of 1,992.28
μmol/kg (see Table 1). Here DIC is the sum of all carbon containing species,
and its concentration, denoted cDIC, is defined as cDIC ≡ c1 + c2 + c3. Each
tracer was subject to periodic boundaries in horizontal directions with,
initially, no vertical fluxes at the bottom and top boundaries.

2.4. Simulation Procedure
After approximately 7 days during which turbulence was allowed to
develop and tracers relaxed to their equilibrium values based on the local
value of the temperature (salinity is fixed), additional CO2 was allowed to

enter through the top boundary according to Henry’s law for gas flux across the air-sea interface (Wanninkhof,
1992). This flux law is given as (Smith et al., 2016)

FCO2
(x, y, t) = kCO2

[
cair

1 − c1(x, y, 0, t)
]
, (22)

where FCO2
is the downward flux rate across the boundary, which varies over horizontal directions and time

as temperature and c1 vary, kCO2
is the species flux rate (or piston velocity), cair

1 is the concentration in air, and
c1(x, y, 0, t) is the concentration just below the surface. The value of cair

1 was fixed at a 10% increase above the
initial mixed layer average of c1 (viz., cair

1 = 8.3 μmol/kg; see Table 1). The piston velocity, kCO2
, is given as a

function of the 10-m wind speed U10 (see Table 3) and Schmidt number Sc as

kCO2
= 0.31U2

10

√
660
Sc

, (23)

where Sc is a function of temperature given by (Wanninkhof, 1992)

Sc = 2073.1 − 125.62𝜃 + 3.6276𝜃2 − 0.043219𝜃3 . (24)

Note that in the above expressions, kCO2
has units of centimeters per hour and 𝜃 in equation (24) is assumed

to have units of degrees Celsius. The piston velocity kCO2
from equation (23) does not include a bubble param-

eterization, but consideration of bubbles, as well as their coupling to Langmuir turbulence, is an important
direction for future research.

The simulations were run for six additional hours after initiating the air-sea flux of CO2 and analysis of the data
was carried out after this period. Longer simulations were not performed due to the computational expense of
integrating the time-dependent chemistry, and also due to the artificiality of neglecting the diurnal cycle over
long periods. Six hours was found to be sufficient for identifying trends in the data, but all of the conclusions
contained herein should be understood as only strictly valid up to 6 hr; future work is necessary to determine
carbonate chemistry evolution over much longer time periods, including diurnal and seasonal cycles.

Two additional sets of simulations were also performed: one in which each of the chemical species concen-
trations were calculated at carbonate chemical equilibrium (Zeebe & Wolf-Gladrow, 2001) and one in which
there were no chemical reactions, but still including surface fluxes, transport, and mixing. The equilibrium
model was implemented by ensuring that at each location and time, there was no propensity for the con-
centrations ci to change due to reactions. This was accomplished by setting S to 0 and solving the system
of nonlinear coupled algebraic equations represented by equations (6)–(12) to find the equilibrium values
of c. The three chemistry models are referred to in the following as the time-dependent chemistry (TC), the
equilibrium chemistry (EC), and the no chemistry (NC) models. The physical scenarios for these three sets of
simulations were identical and are described in section 2.3.
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Figure 3. Fields of (a–d) vertical velocity w in units of meters per second and (e–h) potential temperature fluctuation 𝜃 − ⟨𝜃⟩0 in units of kelvin in horizontal
planes at the surface (top subpanels) and in vertical planes in the middle of the domain (bottom subpanels) for Langmuir numbers Lat = ∞ (a and e), 0.4 (b and
f), 0.3 (c and g), and 0.2 (d and h) using time-dependent chemistry. The background potential temperature ⟨𝜃⟩0 is computed as the x-y average of 𝜃 at the surface.

The EC model is representative of how carbonate chemistry is most commonly calculated within ESMs, where
reactions are assumed to be instantaneous (i.e., infinitely fast) with respect to modeled physical processes. The
NC model, by contrast, effectively represents reactions that are infinitely slow. These two sets of simulations
thus give upper and lower bounds for ocean carbonate chemistry reaction times.

3. Results
3.1. Physical Ocean State
Figure 3 shows fields of vertical velocity and potential temperature fluctuations for the non-Langmuir (Lat =
∞) and three Langmuir (Lat = 0.4, 0.3, 0.2) cases. The x-y surface fields of vertical velocity in Figures 3b–3d
for the three Langmuir cases show the streak-like patterns formed by long counterrotating Langmuir cells
that are characteristic of Langmuir turbulence. Although these streaks are spatially variable in direction and
magnitude, they are preferentially aligned with the wind direction along the x axis (since 𝜗s = 𝜗w = 0∘;
see Table 3) and generally increase in magnitude as Lat decreases (i.e., with increasing strength of Langmuir
turbulence).

The vertical velocities are smallest in the shear-only non-Langmuir case (Figure 3a) and largest in the Lat = 0.2
case (Figure 3d). These enhanced vertical velocities are also evident in the x-y averaged depth profiles of
vertical velocity variance shown in Figure 4a, where the peak magnitude of the vertical velocity variance is
greatest for the smallest Langmuir number (i.e., Lat = 0.2), with a progressive increase in magnitude from the
non-Langmuir (i.e., Lat = ∞) case.

Figure 3 further shows that in addition to the increase in magnitude of vertical mixing, the vertical extent
of mixing is greater for the Langmuir cases than for the non-Langmuir case. This enhanced mixing, which
increases in strength as Langmuir number decreases, results in a deeper mixed layer. This is indicated by
the fluctuating potential temperature fields in Figures 3e–3h, which show that as the Langmuir number
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Figure 4. Vertical profiles of (a) vertical velocity variance ⟨w′2⟩ and (b) average potential temperature ⟨𝜃⟩ for Langmuir
numbers Lat = ∞, 0.4, 0.3, and 0.2 (black, red, blue, and green lines, respectively). Statistics are computed in horizontal
x-y planes as a function of depth z. The gray dashed line in (b) shows the initial temperature profile with uniform
temperature above z = −30 m and constant stratification below.

decreases, greater temperature fluctuations are observed throughout the mixed layer, and the mixed layer
extends to slightly greater depths.

The deepening of the mixed layer is perhaps more evident in the x-y averaged potential temperature profiles
shown in Figure 4b. All simulations begin with the same temperature profile (the gray dashed line in Figure 4),
and all deviate from this initial profile by the end of the 7-day spin-up period, but the deviation becomes
increasingly pronounced as the strength of Langmuir turbulence increases. In particular, the increased mixing
associated with Langmuir turbulence has deepened the mixed layer by approximately 1–3 m, depending on
the case, over the course of the spin-up.

This deepening not only increases the total volume of the mixed layer, thereby increasing the short-term
new carbon reservoir size, but also decreases the average temperature of the mixed layer by entraining
cooler waters from below. While this decrease in temperature may not seem substantial in the larger con-
text, carbonate chemistry and air-sea gas fluxes are both sensitive to temperature, as indicated by the
temperature-dependent reaction rate coefficients in Table 2 and the Henry’s law gas flux expression in
equation (23). As temperatures cool, CO2 becomes more soluble in water, allowing more CO2 to enter the
domain. However, reaction times also decrease, leaving carbon as CO2 longer before it is converted into HCO3

−

and CO3
2−. This effect of temperature (i.e., the competition between increased solubility and decreased reac-

Figure 5. Fields of DIC concentration cDIC in units of micromoles per kilogram in horizontal planes at the surface (top subpanels) and in vertical planes in the
middle of the domain (bottom subpanels) for Langmuir numbers Lat = ∞, 0.4, 0.3, and 0.2 (a–d) using time-dependent chemistry. DIC = dissolved inorganic
carbon.
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Figure 6. Vertical profiles of (a) average cDIC , (b) standard deviation of cDIC , and (c) vertical flux of cDIC for Langmuir numbers Lat = ∞, 0.4, 0.3, and 0.2 (black,
red, blue, and green lines, respectively), using time-dependent chemistry. Statistics are computed in horizontal x-y planes as a function of depth z. DIC =
dissolved inorganic carbon.

tion times) is not directly examined in this study, although future studies exploring these effects within the
context of Langmuir turbulence and carbonate chemistry are certainly warranted.

3.2. Effects of Langmuir Turbulence on Carbonate Chemistry
As Langmuir turbulence strengthens, additional carbon is brought through the surface and progressively fur-
ther down into the mixed layer, as shown in Figure 5. In particular, Figure 5 shows that the vertical extent of
cDIC distribution in the mixed layer increases as Lat decreases, while the peak surface concentrations decrease.
This is partially due to the fast mixing and increased vertical flux associated with Langmuir turbulence but also
to the mixed layer deepening effect of Langmuir turbulence (Hamlington et al., 2014); both of these physical
effects were described in section 3.1.

Figures 6a and 6b show the x-y average and standard deviation, respectively, of cDIC as a function of depth for
Lat = ∞, 0.4, 0.3, and 0.2. In the non-Langmuir case (i.e., Lat = ∞), there is a much greater concentration and
standard deviation of cDIC near the surface and very little near the base of the mixed layer. Conversely, the
three Langmuir cases have progressively more uniform concentrations and lower variance throughout the
mixed layer. Again, the more uniform vertical distribution and decreased standard deviation of the three Lang-
muir cases, in comparison to the non-Langmuir case, can largely be attributed to the faster vertical mixing
associated with Langmuir turbulence. Figure 6c shows that the Langmuir cases all exhibit increased down-
ward vertical flux near the surface in comparison to the non-Langmuir case. While their magnitudes are quite
similar near the surface, the stronger Langmuir cases have sustained increased flux deeper into the domain.

Figure 7. Dependence on Langmuir number of (a) volume-integrated change in cDIC , where ΔcDIC is given by equation (25); (b) time series of the enhancement
in cDIC within the domain, where EDIC is defined in equation (26); and (c) time series of the normalized change in surface flux, where Δ̃FCO2

is defined in
equation (27). All panels show results for Langmuir numbers Lat = ∞, 0.4, 0.3, and 0.2 (black, red, blue, and green bars and lines, respectively) using
time-dependent chemistry. DIC = dissolved inorganic carbon.
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As CO2 is mixed away from the surface, a larger air-sea flux results from Henry’s law in equation (23). Thus, an
increase in cDIC is expected to occur as the strength of Langmuir turbulence increases. Figure 7a shows the
total domain-integrated change in cDIC after 6 hr relative to the initial concentration when the air-sea flux of
CO2 begins (defined here to be at t = 0). This total change, denoted ΔcDIC , is expressed as

ΔcDIC (t) = ⟨cDIC ⟩V (t) − ⟨cDIC ⟩V (t = 0) , (25)

where ⟨⋅⟩V is an average over the entire domain in x-y-z directions at a particular time. Figure 7a shows that
ΔcDIC (t = 6 hr) progressively increases as Lat decreases, indicating that the Langmuir cases have indeed
brought additional DIC into the domain as compared to the non-Langmuir case.

At first glance, the differences in Figure 7a may appear to be small. However, Figure 7b shows that there can
be a significant enhancement in the amount of DIC brought into the mixed layer by Langmuir turbulence.
This can be quantified by comparing ΔcDIC for the Langmuir and non-Langmuir cases at each time and by
defining an enhancement parameter, EDIC , that expresses the difference relative to the non-Langmuir case.
This parameter is calculated as

EDIC (t) = 100 ×
ΔcDIC (t) − [ΔcDIC ]base (t)

[ΔcDIC ]base (t)
, (26)

where EDIC is expressed as a percentage and [ΔcDIC ]base is the baseline change in domain-integrated cDIC

against which the Langmuir cases are compared. In this section, [ΔcDIC ]base is taken to be ΔcDIC for the
non-Langmuir case with time-dependent chemistry. Figure 7b shows that for this simulation configura-
tion and after 6 hr of constant, uniform wind and wave forcing, there is a Langmuir-induced enhancement
of 0.09–0.14% more DIC in the domain as compared to the non-Langmuir case with just wind-driven
shear turbulence.

Fundamentally, the observed differences in new DIC brought into the domain are due to differences in the
flux rate of CO2 across the air-sea interface, given by FCO2

in equation (22). Figure 7c shows the change in
horizontally (x-y) averaged FCO2

as a function of time, denoted Δ̃FCO2
, where the notation Δ̃ reflects the fact

that the change is normalized by the average FCO2
at the initial time. This quantity is calculated as

Δ̃FCO2
(t) = 100 ×

⟨FCO2
⟩(t) − ⟨FCO2

⟩(t = 0)
⟨FCO2

⟩(t = 0)
, (27)

where, as with EDIC in equation (26), Δ̃FCO2
is expressed as a percentage. The time series of Δ̃FCO2

in Figure 7c
show that all cases have a sharp initial decline in air-sea flux rate. However, Δ̃FCO2

for the non-Langmuir case
continues to decrease at a faster rate in comparison to the three Langmuir cases, indicating that Langmuir
flux enhancement may persist over diurnal and synoptic time scales if saturation does not occur. If there is a
buildup of CO2 at the surface, the air-sea gradient in CO2 concentration decreases, thereby decreasing FCO2

locally, and ⟨FCO2
⟩ over the entire surface. If, instead, the concentration of CO2 at the surface is maintained at

a lower value for a longer period of time, the air-sea gradient in CO2 is relatively unchanged and FCO2
is not

reduced as dramatically.

3.3. Effects of Chemical Model Fidelity on Carbonate Chemistry
To isolate the effect of chemical model fidelity on the air-sea flux rate of CO2 and the resulting enhancement
of DIC within the upper ocean, this section compares the shear-only non-Langmuir case and the Lat = 0.3
case for each of the three chemistry models (i.e., TC, EC, and NC).

The volume-integrated change in DIC (defined in equation (25)) shown in Figure 8a indicates that both the
TC and EC models bring more carbon into the domain in comparison with the NC model. This is because
carbonate chemistry, in either time-dependent or equilibrium forms, provides a sink of CO2 and preserves
the air-sea gradient, resulting in chemistry flux enhancement. The EC case exceeds the TC case in carbon
uptake. This occurs because reactions in the EC case are infinitely fast and thus aqueous CO2 is instantly con-
verted into its respective proportions (based on the local temperature, salinity, DIC, and alkalinity) of CO2,
HCO3

−, and CO3
2−. For the TC case, by contrast, CO2 persists for a finite amount of time before reacting and/or

being removed by advection, leaving an increased surface concentration of CO2, which slows fluxes. Notably,
the same trend between the non-Langmuir case and Lat = 0.3 is seen for each chemistry model; however,
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Figure 8. Dependence on chemical model fidelity of (a) volume-integrated change in cDIC , where ΔcDIC is given by equation (25); (b) time series of the
enhancement in cDIC within the domain, where EDIC is defined in equation (26) and the non-Langmuir equilibrium chemistry case is used as a baseline; and (c)
time series of the normalized change in surface flux, where Δ̃FCO2

is defined in equation (27). All panels show results for the time-dependent (TC), equilibrium
(EC), and no (NC) chemistry models, for both non-Langmuir (NS) and Lat = 0.3 (La03) cases. DIC = dissolved
inorganic carbon.

the difference between the two sets varies with the chemistry model (combined effects are discussed in the
next section).

Figure 8b shows the percent enhancement in the volume-integrated new DIC as a function of time for each
of the chemistry models with respect to the non-Langmuir EC case. The enhancement is given by equation
(26), with [ΔcDIC ]base now defined as the non-Langmuir EC case. This case is chosen as the baseline since this
chemistry model and physical configuration resemble those used in ESMs. Once again, the general trends
between the non-Langmuir and Lat = 0.3 cases are consistent across the different chemistry models, with
Lat = 0.3 showing greater enhancement, but the detailed differences between these cases are dependent
on the chemistry model (i.e., 0.12%, 0.16%, and 2.7% increases in new DIC between the non-Langmuir and
Lat = 0.3 cases for the TC, EC, and NC models, respectively).

Finally, Figure 8c shows time series of the change in air-sea flux rate of CO2 (defined in equation (27)) for the
three chemistry models. The NC case undergoes a dramatic decline in air-sea flux rate as nonreactive aqueous
CO2 builds up and slows fluxes. The two reactive cases (TC and EC), by contrast, have much higher flux rates.
Both the TC and EC cases convert CO2 into HCO3

− and CO3
2−, which maintains a greater air-sea gradient of

CO2 and allows more CO2 to enter the ocean. Comparing the two reactive cases, the EC case has an elevated
flux rate over the TC case due to its faster reaction sink.

Figure 9. Percent enhancement of new DIC, denoted EDIC and defined in equation (26), in comparison to the non-Langmuir, time-dependent chemistry case for
the three chemical models (a–c) and the four Langmuir cases. Gray dashed lines are least squares fits for the decrease in percent enhancement as a function of
Langmuir number, and the gray number is the slope of the fit. All panels show results for Langmuir numbers Lat = ∞, 0.4, 0.3, and 0.2 (black, red, blue, and green
symbols, respectively). DIC = dissolved inorganic carbon.
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3.4. Combined Effects of Langmuir Turbulence and Chemical Model Fidelity
The previous sections have shown that both the enhanced vertical flux due to Langmuir turbulence and
the chemical model fidelity affect the air-sea flux rate and reduce surface concentrations of CO2, thereby
impacting the DIC content of the oceanic mixed layer. Here the combined effects of Langmuir turbulence
enhancement and chemical model fidelity are considered.

Figure 9 shows the percent enhancement in the volume-integrated new DIC at 6 hr for each of the three chem-
istry models and for each of the four Langmuir cases. The expression in equation (26) is once again used to
compute the percentage of new DIC, and all values are now referenced to the non-Langmuir, time-dependent
case, which occupies the zero value in Figure 9a.

Figure 9 shows that the Langmuir flux enhancement is a function of the chemistry model, reflecting a complex,
nonlinear relationship between the chemical model and small-scale turbulence. Langmuir turbulence in the
NC case provides a large enhancement over just wind-driven shear turbulence, while TC and EC cases have
modest Langmuir enhancement. Consequently, the effect of Langmuir turbulence on air-sea fluxes of a gas
varies substantially depending on whether the gas is reactive (e.g., CO2) or nonreactive (e.g., oxygen).

Smaller differences distinguish the two reactive cases. For the EC case, the Langmuir enhancement is greater
than in the TC case, yet successive increases in Langmuir strength do not affect the EC case as much as in the
TC case.

4. Discussion

In the following, the implications of the results described in section 3 are discussed with respect to ESMs,
and variations in these results for different ocean conditions are outlined. The latter discussion is focused, in
particular, on how the strength of the interactions between vertical mixing and chemical processes vary over
the global ocean, as well as over diurnal and seasonal cycles.

4.1. Implications for ESMs
The results in section 3.2 indicate that over the entire ocean surface, approximately 0.07-0.1 Pg of extra carbon
per year is brought into the ocean due to the presence of Langmuir turbulence. This estimate is based on an
approximate global air-to-sea CO2 flux for 2000–2009 of 80 Pg C/year; for reference, the estimated global net
air-sea CO2 flux for this same period is 2.3± 0.7 Pg C/year (Ciais et al., 2013). This assumes that these exact con-
ditions remain constant throughout the year across the entire ocean surface and that the air concentration
of CO2 is always 10% greater than the mixed layer equilibrium concentration. Regional and seasonal devia-
tions are likely, as imbalances will occur, for example, during upwelling, cooling, and warming events. These
deviations are not random and may introduce systematic biases depending on the turbulence forcing mech-
anism. Nevertheless, the results in section 3.2 indicate that Langmuir turbulence has a meaningful effect on
the uptake of carbon by the ocean.

Similarly, the results in section 3.3 indicate that the finite-time delay in CO2 conversion due to the use of TC
chemistry would result in a roughly 0.1 Pg decrease in the global uptake of carbon by the ocean in comparison
with models that use the instantaneous EC chemistry. Even larger discrepancies in total domain carbon are
found between the NC and other cases.

These changes in CO2 flux rate with chemical model and Langmuir turbulence are on the same order as
basin-scale differences in flux rate for different ESMs. Most current ESM simulations make two assumptions:
(i) that boundary layer turbulence effects on all chemical species can be parameterized in the same way and
(ii) that carbonate chemistry is virtually instantaneous in comparison to turbulent processes and thus can be
represented by an equilibrium chemistry model. Results from the present study thus contradict these assump-
tions and indicate that errors from both assumptions combine in a complex and nonlinear way. It should be
noted, however, that errors resulting from the neglect of Langmuir turbulence and the use of equilibrium
chemistry are likely to be dominated by errors in other physical models within ESMs, particularly for globally
integrated annual quantities. The greatest impacts from the inclusion of a Langmuir parameterization and
finite-rate chemistry are thus likely to be felt at regional spatial scales and over shorter time scales.

4.2. Dependence on Ocean Conditions
The physical parameters chosen for the simulations, as outlined in section 3.1 and summarized in Table 3, were
selected on the basis of convenience combined with realism. These parameters result in potentially matched
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time scales for chemical and turbulent processes, and the extent of the matching can be expressed using vari-
ous nondimensional time scale ratios. To this end, the Damköhler number is given as the ratio of the turbulent
advection time scale, 𝜏t, to a characteristic time scale of the overall reaction process, 𝜏c, namely, Da = 𝜏t∕𝜏c.

In general terms, 𝜏t can be estimated from the integral or eddy turnover time scale. For a configuration sim-
ilar to that studied here, Teixeira and Belcher (2010) estimated a near-surface integral time scale of 430 s for
a Langmuir turbulence simulation with u𝜏 = 6.1 × 10−3 m/s. Calculations of the integral time scale in the
present simulation yield a similar result, and so 𝜏t can be estimated as 𝜏t ≈ 400 s. In determining 𝜏c, it is com-
mon to use a characteristic time scale associated with the global rate of reaction, and the relaxation time after
a 10% perturbation to the concentration of CO2 (discussed in more detail in section 2.2) gives 𝜏c ≈ 60 s. As a
result, Da in the present case can be estimated as Da ≈ 400 s/60 s = 6.7. This value of Da indicates that inter-
actions between Langmuir turbulence and carbonate chemical reactions are important, but that reactions
are favored. This is consistent with results outlined in section 3, particularly with respect to those in Figure 9
where variations in the chemical model fidelity were shown to have a larger impact on the amount of DIC in
the mixed layer than the strength of Langmuir turbulence, at least for the present ocean conditions.

Variations in the value of Da can be inferred for different ocean conditions from the analysis of Teixeira and
Belcher (2010). In that study, 𝜏t = 430 s was obtained from the turbulent kinetic energy k and the dissipation
rate 𝜀 following the k − 𝜀 modeling approach, which in later work was extended to Langmuir turbulence in a
variety of settings (Belcher et al., 2012; Grant & Belcher, 2009). This approach, validated against LES, predicts
𝜏t ∼ k∕𝜀, where

k ∝ u2
𝜏

or [u2
𝜏

us(0)]2∕3 or (B0hb)2∕3 , (28)

for wind-, wave-, and convection-dominated conditions, respectively, and

𝜀 ∝
2u3

𝜏
[1 − exp(−Lat∕2)]

hb
+ 0.22

u2
𝜏

us(0)
hb

+ 0.3B0 . (29)

Here B0 is the buoyancy flux and hb is the turbulent boundary layer depth. Thus, for wind-dominated con-
ditions Da ∝ hb∕[u𝜏 (1 − exp(−Lat∕2))], for wave-dominated conditions Da ∝ hb∕[u2

𝜏
us(0)]1∕3, and for

convection-dominated conditions Da ∝ (h2
b∕B0)1∕3. Observations suggest that the real ocean is typically

somewhere between these different scalings (Belcher et al., 2012; Li & Fox-Kemper, 2017).

Assuming that hb is proportional to the initial mixed layer depth HML,0, the scalings above indicate that Da ∝
HML,0 or H2∕3

ML,0. In the present simulations, HML,0 = 30 m, but variations between 10 and 500 m can occur in the
real ocean depending on location and season (Li et al., 2016). The depth hb has a similar range, but a value of
30 m or less is typical in the tropics and during the summertime. This range roughly corresponds to a decrease
in Da by a factor of 3 for the shallowest layers, or 15 times larger for the deepest layers. In the former case,
this corresponds to a stronger interaction between Langmuir turbulence and carbonate chemistry, while the
latter case corresponds to a weaker interaction. Assuming a fixed reaction rate (i.e., neglecting temperature
and salinity effects on reaction rates) and using the Large and Yeager (2009) monthly mean wind stresses
and the updated de Boyer Montégut et al. (2004) mixed layer depth climatology, Da based on wind stress
scaling was estimated to have 90% confidence limits of 3 and 20 with a median near 7. As higher-frequency
winds tend to induce faster mixing during intermittent events, it is expected that these estimates are biased
toward high Da.

Surface cooling is not used here, but B0 is an important scaling parameter for the amount of convective mixing
in the world oceans, and varies from 1 × 10−9 to 5 × 10−7 m2/s3 by season and time of day. As a result, the
dependence on B0 might further decrease Da by a factor of 7 under extreme events, once again corresponding
to stronger turbulence-chemistry interactions. Similarly, the typical wind stress over the ocean is 0.1 N/m2, or 4
times the value used here, which would roughly halve the value of Da (holding other parameters fixed). Using
the Large and Yeager (2009) monthly mean buoyancy fluxes and the updated de Boyer Montégut et al. (2004)
mixed layer depth climatology, the convection-based Da scaling using the same data sets had a factor of 7
spread for 90% confidence limits, although a median value cannot be calculated without the normalization
factor from a convectively forced LES.

Note that it is also possible to define and estimate other relevant Damköhler numbers. For example, a method
to determine the smallest possible time scale of oceanic turbulence is to use the Kolmogorov (1941) time scale,
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typifying the time scale of the smallest-scale turbulence in the ocean. However, the vast range of energy dis-
sipation rates throughout the world ocean does not make this estimate very precise (Pearson & Fox-Kemper,
2018) beyond a range such as 0.1 to 1,000 s, which spans a wide range enclosing Da = (1). Similarly, the
second Damköhler number, Da2, is the dimensionless ratio of mass diffusion time scale 𝜏𝜅 to 𝜏c, namely,

Da2 =
𝜏𝜅

𝜏c
. (30)

In the models used here, the subgrid-scale viscosity, buoyancy diffusivity, and tracer diffusivity are spatially
varying according to the scheme proposed by Sullivan et al. (1994). The diffusivities provided by this scheme
are much larger than the molecular values for seawater. However, they are scaled in a flow-aware way through
the LES approach such that Da ≪ Da2. As the simulations and Langmuir turbulence in the ocean are already
in the regime where Da ≥ 1, it is expected that the consequences of using the LES diffusivities rather than the
molecular diffusivities will be small since Da2 ≫ Da ≥ 1. Note that the modeled LES diffusivities are not used
for the Schmidt number when calculating the piston velocity from equation (24) (Wanninkhof, 1992). Instead,
the values of seawater Schmidt number consistent with observations are used, which probably includes the
effects of turbulence not resolved in these simulations.

In summary, the wind stress and surface cooling used here are conservative estimates of conditions typically
observed in the ocean, while boundary layer depth is typical of the tropics or midlatitude summers. From
the estimate Da ≈ 6.7, lower values of Da will result for stronger surface winds and cooling, while larger Da
will result from deeper boundary layers. Thus, finite-time chemistry effects will typically be strongest during
mixed layer deepening under strong wind and cooling events, such as cold air outbreaks. A full assessment
of the climatology of Da for a full range of seasonal and regional conditions is beyond the scope here but is
planned for future work.

5. Conclusions

The interactions between carbonate chemical reactions and turbulent mixing in the upper ocean have been
examined using LES for four different strengths of wave forcing and three different carbonate chemistry mod-
els, from infinitely slow nonreactive chemistry to infinitely fast equilibrium chemistry. The novel model in
between is a time-dependent seven-species carbonate chemistry model that uses a QSS assumption for H+

and is integrated using an efficient RKC solver that is robust for stiff problems.

The results presented here indicate that enhanced vertical mixing by Langmuir turbulence results in a small,
but measurable, increase in DIC in the ocean mixed layer as compared to a case with no Langmuir turbulence.
Conversely, the use of a more realistic time-dependent chemical model results in a small, but measurable,
reduction of DIC in the mixed layer as compared to an equilibrium model. The combined effects of Langmuir
turbulence and chemical model fidelity are complicated and coupled, but the effects of Langmuir turbulence
are more pronounced when using time-dependent chemistry than when using equilibrium chemistry.

With respect to ESMs, this study has resulted in three major insights. First, compared with shear-only turbu-
lence, Langmuir turbulence increases the flux rate of CO2 across the air-sea interface by approximately 0.1%,
or 0.07–0.1 Pg C/year globally. Second, the more accurate finite-time chemistry decreases the flux rate of
CO2 into the domain by approximately 0.1%, or 0.1 Pg C/year, in comparison with equilibrium chemistry (and
increases versus no chemistry). Third, Langmuir turbulence has a much greater effect on flux rates of a non-
reactive gas such as oxygen than on a reactive gas such as CO2. The magnitude of these differences is also
expected to depend on other aspects of the ocean state, requiring further study in the future.

In the future, additional research is required to determine whether Langmuir turbulence and finite-rate chem-
istry have different impacts at other ocean locations and for different conditions. The effects of wave breaking
and bubbles are also likely to be important in air-sea fluxes of CO2, and future simulations are planned using
a bubble parameterization. Finally, carbonate chemistry evolution was only examined over a relatively short
period in the present study, and longer simulations that incorporate diurnal and seasonal cycles will be per-
formed in the future, thus providing more accurate estimates of the annual impacts of Langmuir turbulence
and chemical model fidelity on CO2 flux rates.
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