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Abstract. Volatile and intermediate-volatility non-methane
organic gases (NMOGs) released from biomass burning were
measured during laboratory-simulated wildfires by proton-
transfer-reaction time-of-flight mass spectrometry (PTR-
ToF). We identified NMOG contributors to more than
150 PTR ion masses using gas chromatography (GC) pre-
separation with electron ionization, H3O+ chemical ioniza-
tion, and NO+ chemical ionization, an extensive literature re-
view, and time series correlation, providing higher certainty
for ion identifications than has been previously available. Our
interpretation of the PTR-ToF mass spectrum accounts for
nearly 90 % of NMOG mass detected by PTR-ToF across all
fuel types. The relative contributions of different NMOGs
to individual exact ion masses are mostly similar across
many fires and fuel types. The PTR-ToF measurements are
compared to corresponding measurements from open-path
Fourier transform infrared spectroscopy (OP-FTIR), broad-
band cavity-enhanced spectroscopy (ACES), and iodide ion
chemical ionization mass spectrometry (I− CIMS) where
possible. The majority of comparisons have slopes near 1 and
values of the linear correlation coefficient, R2, of> 0.8, in-
cluding compounds that are not frequently reported by PTR-

MS such as ammonia, hydrogen cyanide (HCN), nitrous acid
(HONO), and propene. The exceptions include methylgly-
oxal and compounds that are known to be difficult to mea-
sure with one or more of the deployed instruments. The fire-
integrated emission ratios to CO and emission factors of
NMOGs from 18 fuel types are provided. Finally, we pro-
vide an overview of the chemical characteristics of detected
species. Non-aromatic oxygenated compounds are the most
abundant. Furans and aromatics, while less abundant, com-
prise a large portion of the OH reactivity. The OH reactivity,
its major contributors, and the volatility distribution of emis-
sions can change considerably over the course of a fire.

1 Introduction

Biomass burning, including wildfires, agricultural burning,
and domestic fuel use, is a large source of non-methane or-
ganic gases (NMOGs) to the atmosphere (Crutzen and An-
dreae, 1990; Akagi et al., 2011). These compounds can be
directly harmful to human health (Naeher et al., 2007) and
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contribute to the formation of secondary pollutants including
ozone and secondary organic aerosol (SOA; Alvarado et al.,
2009, 2015; Yokelson et al., 2009; Jaffe and Wigder, 2012).
Because NMOGs from biomass burning are a complex mix-
ture of many species that can change considerably depending
on fuel and fire characteristics, many modeling and inven-
tory efforts have had difficulty capturing subsequent chem-
istry in fire plumes (Alvarado et al., 2009; Grieshop et al.,
2009; Wiedinmyer et al., 2011; Heald et al., 2011; Müller
et al., 2016; Reddington et al., 2016; Shrivastava et al., 2017).
Additionally, a substantial portion of gas-phase carbon may
be missing from many field measurements (Warneke et al.,
2011; Yokelson et al., 2013; Hatch et al., 2017) and the
gas-phase precursors of SOA are not sufficiently understood
(Jathar et al., 2014; Alvarado et al., 2015; Hatch et al., 2017).
For these reasons, it is important to develop and understand
analytical techniques that quantify a large number of biomass
burning NMOGs.

Gas chromatography (GC) techniques have been used to
identify NMOGs emitted by biomass burning in high chem-
ical detail and provide exact isomer identifications (Hatch
et al., 2015, 2017; Gilman et al., 2015). However, online GC
techniques do not provide continuous measurement and are
limited to certain classes of NMOGs depending on the col-
umn(s) selected and required sample preconditioning steps.
This makes them nonideal for some important compounds or
situations in which fast, continuous measurements are nec-
essary. Whole-air sampling followed by GC can improve the
time resolution but is affected by artifacts from canister stor-
age (Lerner et al., 2017).

Proton-transfer-reaction mass spectrometry (PTR-MS) is
a complementary technique widely used in atmospheric
chemistry, both stand-alone and with a GC interface (de
Gouw and Warneke, 2007; Yuan et al., 2017). This chemical
ionization technique uses H3O+ to detect a wide range of un-
saturated and polar NMOGs. It can measure continuously at
a very fast rate: up to 10 Hz measurement has been reported
in the literature (Müller et al., 2010). Recently, PTR-MS
instruments using time-of-flight mass analyzers (PTR-ToF)
with mass resolution greater than 4000 m/1m have provided
fast, simultaneous measurements of exact mass and elemen-
tal formula over a wide mass range (m/z typically between
10 and 500 Th) with detection limits in the range of tens to
hundreds of parts per trillion (pptv; Jordan et al., 2009; Yuan
et al., 2016). The addition of a GC interface can resolve iso-
mers with the same elemental formula, thereby providing the
exact identity of detected NMOGs.

Several recent papers have reported the use of high-
resolution PTR-ToF to measure biomass burning NMOGs
in the laboratory (Stockwell et al., 2015; Bruns et al., 2017)
and the environment (Brilli et al., 2014; Müller et al., 2016).
Hatch et al. (2017) suggest that PTR-ToF measures a sub-
stantial fraction (50–80 %) of total NMOG carbon mass. The
mass spectra resulting from PTR-ToF detection of biomass
burning NMOGs are complex, and many peak assignments

are tentative. However, it is clear that PTR-ToF can provide
detailed NMOG measurements relevant to studying the ef-
fects of fire emissions on human health and ozone and sec-
ondary organic aerosol formation.

A PTR-ToF instrument (Yuan et al., 2016) was deployed
during the Fire Influence on Regional and Global Environ-
ments Experiment (FIREX) 2016 intensive at the US For-
est Service Fire Sciences Laboratory in Missoula, Montana.
This experiment burned a series of natural fuels and charac-
terized the gas- and particle-phase emissions with a range
of instrumentation (Selimovic et al., 2017). The aging of
these emissions was explored with additional chamber ex-
periments (described elsewhere). In this paper we describe
the PTR-ToF instrument operation and interpretation of mea-
surements. The focus is on direct emissions. Building on
work by Stockwell et al. (2015), Brilli et al. (2014), and oth-
ers, we provide new, more detailed, and more highly time-
resolved chemistry of NMOG emissions from biomass burn-
ing than previously available.

The purposes of this work are to improve our understand-
ing of the complex NMOG emissions from biomass burning
by interpreting PTR-ToF measurements of biomass burning
emissions, provide emission factors and emission ratios to
CO for many NMOGs, link PTR-ToF measurements to GC,
Fourier transform infrared spectroscopy (FTIR), and iodide
CIMS (I− CIMS) measurements, and report instrument oper-
ation and data quality assurance information that will support
future analyses. Novel tools to study NMOGs measured by
PTR-ToF applied in this work include (1) use of a GC inter-
face to provide an additional level of chemical information,
(2) use of NO+ CIMS (switchable reagent ion) chemistry to
support compound identification, and (3) use of an improved
method to estimate the instrument sensitivity to NMOGs not
directly calibrated.

2 Methods

2.1 Fire Sciences Laboratory experimental setup

Controlled biomass combustion experiments were conducted
in a large (12.5 m× 12.5 m× 22 m high) indoor facility at
the US Forest Service Fire Sciences Laboratory. Fuels were
burned underneath a 1.6 m diameter exhaust stack. Emis-
sions were vented through the stack to 17 m of height, where
a sampling platform is located. The pressure, temperature,
and relative humidity of the air in the combustion cham-
ber were monitored and low light conditions were present
during experiments. The Fire Sciences Laboratory facility is
described in more detail elsewhere (Christian, 2003, 2004;
Burling et al., 2010; Stockwell et al., 2014). The FIREX 2016
intensive burned fuels characteristic of the western US, in-
cluding ponderosa pine, lodgepole pine, Douglas fir, Engel-
mann spruce, subalpine fir, manzanita, chamise, sage, and ju-
niper. Several other types of fuels were also burned, but with
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fewer replicates, and these included additional pine species
(loblolly and Jeffrey pine), bear grass, rice straw, Ceanothus,
dung, peat, excelsior, and commercial lumber. Experiments
with western fuels included the combustion of both specific
components of the fuel, such as canopy, litter, and duff, and
more realistic burns that included a mix of components (Se-
limovic et al., 2017).

Two types of combustion experiments were conducted. In
the first set of experiments, the “stack burns”, emissions were
entrained into the ventilation stack and measured from the
17 m sampling platform. These experiments allowed for the
characterization of changes in emission composition during
the course of a fire and typically lasted 5 to 20 min. In the
second set of experiments, the “room burns”, emissions were
not vented and were allowed to mix and fill the combustion
chamber. These experiments lasted several hours and pro-
vided a more compositionally stable mixture for instruments
requiring a longer sampling time. In this work, we discuss
58 stack burns measured directly with PTR-ToF, and these
data were used for the comparison between instruments. We
also reference measurements from an additional seven stack
burns measured directly with NO+-CIMS and discuss results
from three stack burns and three room burns that were mea-
sured with GC-PTR-ToF using both H3O+ and NO+ reagent
ion chemistry. The particular fires measured with each tech-
nique were selected as follows. At least one fire of each fuel
type was measured directly with PTR-ToF, and coniferous
fuels were measured at least twice. Given these restrictions
with the PTR-ToF measurement, the widest possible range of
fuel types was measured with NO+-CIMS. GC-CIMS stack
burns were selected for longer-burning fuels that allowed
for the collection of more than one sample. GC-CIMS room
burns were selected to explore a range of fuel types. We were
not able to measure every fuel type with every instrumen-
tal technique. Because there was not a clear temporal sepa-
ration between fire processes and because some compounds
were lost to the chamber walls (Stockwell et al., 2014), room
burns measured directly with PTR-ToF were not used for
compound identification and calculation of emission factors.

2.2 Instrumentation

An overview of the instruments referenced in this work is
given in Table 1.

2.2.1 PTR-ToF and NO+-CIMS

The PTR-ToF instrument is a chemical ionization mass spec-
trometer typically using H3O+ reagent ions. Trace gases with
a proton affinity higher than that of water are protonated in
a drift tube region and are detected sensitively with typical
detection limits in the range of tens to hundreds of parts per
trillion (pptv) for a 1 s measurement time. The main advan-
tages of this technique are a response to a wide range of
polar and unsaturated NMOGs, a low degree of fragmenta-

tion, and fast, online measurement capability. PTR-ToF addi-
tionally detects several inorganic species, including ammonia
(NH3), isocyanic acid (HNCO), hydrogen sulfide (H2S), and
nitrous acid (HONO), which are included in our discussion
of NMOGs.

The instrument used in this work is very similar to that de-
scribed by Yuan et al. (2016), with two relevant differences.
The PTR-ToF instrument described by Yuan et al. (2016)
includes two RF-only segmented quadrupole ion guides be-
tween the drift tube and time-of-flight mass analyzer, while
the current version has only one ion guide. The effects of
this are that the sensitivities are slightly higher (∼ 25 % on
average), low ion masses (<m/z 40 Th) are transmitted with
higher efficiency, and the humidity dependence of NMOG
sensitivity is less severe. There is also a higher flow rate
(150 sccm) into the drift tube. Second, the instrument inlet
(held at 40 ◦C) consists of 1/16′′ ID PEEK tubing rather than
1/8′′ PFA, which reduced residence time in the inlet.

The PTR-ToF instrument is equipped with a switchable
reagent ion source that allows for H3O+ and alternatively
NO+ ionization by flowing either water vapor for H3O+ or
ultrapure air for NO+ through a hollow cathode ion source
and adjusting ion source and ion guide voltages. NO+ chem-
ical ionization of NMOGs creates different product ions than
H3O+ chemical ionization, and the ionization mechanism
depends on functional group (Koss et al., 2016). The PTR-
ToF instrument in NO+ configuration (NO+-CIMS) can
therefore detect several additional classes of NMOGs (e.g.,
branched alkanes) and can differentiate some sets of isomers,
such as aldehydes and ketones, and nitriles and pyrroles.
NO+-CIMS is described in detail by Koss et al. (2016). The
NO+-CIMS was used to measure emissions directly from
a small number of coniferous fuels and as the detector for
the GC instrument for several fuel types.

In H3O+ mode the PTR-ToF instrument was operated
with an electric field to number density ratio (E/N ) of
120× 10−17 Vcm2 (= 120 Townsend or Td). Measurements
were made at a 2 Hz frequency. Ion m/z from 12–500 Th
were measured, and 12–217 Th were quantified with a maxi-
mum resolution of 4500 FWHMm (1m)−1. This is sufficient
to resolve many isobaric species, but many peaks still over-
lap in the mass spectrum. Overlap of an ion peak by an in-
tense neighbor can strongly affect the accuracy of that ion
measurement, and such affected ions were excluded from
further analysis. ToF data were analyzed using the Tofware
software package (Aerodyne Research, Inc., Tofwerk AG).
For approximately one-half of the stack experiments, NMOG
ion concentrations were temporarily high enough to deplete
the reagent ion by 10–50 %. Under these conditions, sensitiv-
ity to NMOGs is lower and nonlinear (Veres et al., 2010b).
We corrected NMOG ion signals for this effect, although ef-
fects from secondary proton-transfer reactions could still be
a significant source of inaccuracy (Sect. S1 in the Supple-
ment). Raw ion count rates (counts per second, cps) were
corrected for duty cycle discrimination in the ToF extrac-
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Table 1. Instrumentation details.

Instrument Operating principle Species measured Time
resolution

Detection limits Inlet setup Reference

PTR-ToF Chemical ionization mass
spectrometry; H3O+

reagent ions

Polar and unsaturated
NMOG (several
hundred)

2 Hz 20 pptv (acrylonitrile)
to 2.6 ppb (H2S)
at 1 Hz resolution

Stack: from sampling platform, 16 m long
Room: from 3 m above combustion
chamber floor, 7 m long
Both: 1/2′′ OD PFA inlet, 40 ◦C, flow
rate 100 lpm; subsample 500 sccm through
PEEK capillary

Yuan et al. (2016)

NO+-CIMS Chemical ionization mass
spectrometry; NO+

reagent ions

Saturated, unsaturated,
and polar NMOG
(several hundred)

2 Hz 20 pptv (aromatics) to
19 ppb (methanol)
at 1 Hz resolution

Same as PTR-ToF Koss et al. (2016)

GC-EI-MS Gas chromatographic
(GC) separation with
electron-ionization
quadrupole mass
spectrometry (EI-MS)

NMOG (several
hundred)

4 min sample
(240 sccm)
every 20 min

< 5 pptv (most species)
for 4 min sample

Stack: from sampling platform, 16 m long,
1/2′′ OD PFA inlet, flow rate 20 lpm
Room: from 3 m above combustion
chamber floor, 7 m long, 1/4′′ OD PFA,
flow rate 2–7 lpm
Both: dynamically diluted with UHP N2

Lerner et al. (2017)

GC-CIMS Gas chromatographic
separation with chemical
ionization mass
spectrometry (CIMS)

Polar and unsaturated
NMOG (several
hundred)

4 min sample
every 20 min

qualitative
measurement only

Same as GC-EI-MS (this work)

OP-FTIR Open-path FTIR
absorption spectroscopy

Small organic and
inorganic trace
gases (about 20)

0.73 Hz 1 ppbv
at 0.73 Hz resolution

From sampling platform (no inlet) Stockwell
et al. (2014);
Selimovic
et al. (2017)

ACES Broadband cavity-
enhanced spectroscopy
(Airborne Cavity-
Enhanced Spectrometer)

Glyoxal, NO2, HONO,
methyl glyoxal

1 Hz 100 pptv (glyoxal)
to 2 ppbv (HONO);
∼ 5 ppbv for
methylglyoxal

Stack: from sampling platform, 1 m long
1/4′′ OD PFA including particle filter

Min et al. (2016)

I− CIMS Chemical ionization mass
spectrometry; I− reagent
ions

Polar NMOG (several
hundred)

1 Hz 1 pptv (malonic acid) to
1.5 ppbv (peroxyacetic
acid)
at 1 Hz resolution

Shared with PTR-ToF
Stack: from sampling platform, 16 m long
Room: from 3 m above combustion
chamber floor, 7 m long
Both: 1/2′′ OD PFA inlet, flow rate
100 lpm

Lee et al. (2014)

tion region and normalized to the intensity of the reagent
ion (H3O+ 106 cps or NO+ 106 cps). Correction for humid-
ity effects and the conversion of ion signal to mixing ratio
are discussed in Sect. 2.3. Before each fire, we first measured
instrument background by passing air from the combustion
chamber through a heated platinum catalyst, then measured
chamber background. Concentrations of NMOGs during the
fire were generally several orders of magnitude higher than
either background.

The PTR-ToF instrument transfer inlet was 1/2′′ OD (3/8′′

ID) PFA heated to 40 ◦C with a flow rate of 100 slpm. It was
16 m long (residence time 0.7 s) and located on the sampling
platform for stack burns and 7 m long (residence time 0.3 s)
and located 3 m above the combustion chamber floor for
room burns. The instrument subsampled 500 sccm through
a 40 ◦C 10 cm 1/16′′ ID PEEK capillary orthogonally via a
PFA branch-reducing tee mounted to the main inlet. Most
particles were separated from the CIMS subsample capil-
lary through virtual impaction, although a small, unquanti-
fied amount of particulate matter did enter the smaller instru-
ment inlet. NMOGs could be lost to transfer inlet, instrument
tubing, or drift tube surfaces. Based on good agreement with
instrumentation on the sampling platform (Sect. 3.3.1), inlet
losses of highly volatile compounds were negligible, but we
were not able to quantify possible losses of less volatile com-

pounds. Measurement of compounds with saturation vapor
pressure (C0) less than 105 µgm−3 may be affected (Pago-
nis et al., 2017). A slight delay in the instrument response to
some compounds with C0 close to 104 µgm−3 was observed.

2.2.2 GC-MS and GC-PTR-ToF

The gas chromatograph (GC) instrument cryogenically pre-
concentrates 4 min samples of NMOGs before separation
on one of two capillary columns (Lerner et al., 2017). The
sample stream is separated into two channels that are opti-
mized to reduce water and carbon dioxide before cryogenic
trapping of NMOG. The first channel (trapping at −165 ◦C)
is connected to an Al2O3/KCl porous layer open tubular
(PLOT) column optimized for C2–C6 hydrocarbons. The sec-
ond channel (trapping at −135 ◦C) uses a medium polar-
ity polysiloxane (Restek MXT-624) column optimized for
C6–C10 hydrocarbons and many polar compounds. The two
channels are analyzed sequentially.

The eluent from the GC columns was directed to either
an electron ionization (EI) quadrupole mass spectrometer
(Agilent model 5975C) or to the PTR-ToF instrument. The
quadrupole mass spectrometer has unit mass resolution and
was operated in full ion scan mode from m/z 19 to 150 Th.
When the PTR-ToF instrument in either H3O+ or NO+ con-
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figuration was used as the detector, the 2 sccm eluent from
the columns was introduced directly into the drift tube. To
maintain pressure (2.4 mbar) in the drift tube, an additional
50 sccm of catalyst-generated clean air was added to the drift
tube. This is lower than the 150 sccm of flow used during
non-GC-PTR-ToF operation but does not affect compound
identification.

The GC inlet for stack burns was 1/2′′ OD PFA, 16 m long,
and located on the sampling platform, with a continuous flow
rate of 20 lpm. A subsample was directed to the instrument
with a 1/4′′ OD PFA, 2 m long line with flow rates from 2–
7 lpm. For room burns the inlet was 1/4′′ OD PFA, 7 m long,
and located 3 m above the combustion chamber floor. A flow
rate of 2–7 slpm was used. For both stack and room burns the
inlet was heated to 40 ◦C and the stream was dynamically di-
luted with humidified UHP N2 (1 to 3 parts smoke to 5 parts
N2). Particles were reduced by virtual impaction.

Two stack experiments (both Douglas fir) were measured
with both GC-EI-MS and GC-PTR-ToF; one stack experi-
ment (Engelmann spruce duff) and three room experiments
(Douglas fir, subalpine fir, and sage) were each measured
with GC-EI-MS, GC-PTR-ToF, and GC-NO+-CIMS. Two
additional samples (of a room burn of sage), one with H3O+

and one with NO+ chemistry, were analyzed using an ac-
celerated GC temperature ramp program to better observe
late-eluting compounds. Each 4 min sample was analyzed
with just one type of detector, and the detector was switched
for the next 4 min sample. For room experiments and duff
stack burns, NMOG composition was largely consistent be-
tween successive GC samples. Other stack burns varied more
quickly. The room experiment GC-CIMS analyses detected
NMOGs more sensitively because we were better able to ad-
just the GC sample stream dilution. Finally, we measured
a 56-component NMOG calibration standard with the GC-
PTR-ToF and GC-NO+-CIMS (three replicates) instruments
to help establish GC retention times.

2.2.3 Other instrumentation

A number of trace gases measured by the PTR-ToF instru-
ment were also measured by other instruments (Table 1), and
in Sect. 3.3 we compare these measurements. The OP-FTIR
instrument was located on the sampling platform with the
optical path spanning the stack and therefore did not have an
inlet (Stockwell et al., 2014). The OP-FTIR employed a time
resolution of 1.37 s and the PTR-ToF data were interpolated
to the OP-FTIR sampling times for the intercomparison.

Glyoxal, methylglyoxal, and HONO were measured with
the NOAA Airborne Cavity-Enhanced Spectrometer (ACES)
instrument, which uses broadband cavity-enhanced spec-
troscopy. Wavelength-resolved gas-phase extinction was
measured in two spectral regions, one in the UV (361 to
390 nm) and one in the blue (438–468 nm), and then fit us-
ing literature cross sections to retrieve the concentrations of
NO2, HONO, methylglyoxal, and glyoxal (Min et al., 2016).

Data from this instrument were reported at 1 s intervals. The
ACES instrument inlet was located on the sampling platform,
with an inlet of approximately 1 m length sampling from the
center of the stack flow directly above the OP-FTIR optical
path.

The I− CIMS chemically ionizes organic and inorganic
gases through iodide adduct formation and analyzes the re-
sulting ions with a high-resolution time-of-flight mass spec-
trometer (Lee et al., 2014). The I− CIMS instrument shared
an inlet with the PTR-ToF instrument. Air was subsampled
from this inlet and dynamically diluted with UHP N2 to pre-
vent reagent ion depletion. The dilution factor was deter-
mined by comparing the CO2 concentration before and after
dilution measured by a LI-COR LI-6252 colocated with the
I− CIMS. I− CIMS calibration factors were determined by
direct calibration for the species discussed here.

2.3 Calibrations and method for estimating calibration
factors

The calibration factor (units of ncps/ppbv) is the normal-
ized counts per second (ncps) per ppbv of the NMOG(s)
whose PTR product is that ion. The ncps are derived
from the raw ion count rate (counts per second, cps), cor-
rected for the mass-dependent duty cycle of the ToF extrac-
tion, and normalized to the detected ion count rate of the
primary ion (H3O+ cps× 10−6). We detect 8.5–11.5× 106

H3O+ ionsper second. We detect about 1000 cps/ppbv of
acetone and 650 cps/ppbv of benzene. We provide the sen-
sitivity here as a raw ion count rate to enable comparison
to other PTR-MS instruments, which may have different de-
tected intensity of H3O+. This is about an order of magnitude
higher than similar generation commercially available PTR-
ToF instruments (Jordan et al., 2009), but an order of magni-
tude lower than new PTR-ToF instruments that use a differ-
ent drift tube design (Breitenlechner et al., 2017). Calibration
factors in this work were obtained by (1) direct calibration,
(2) calculation using kinetic rate constants (Sekimoto et al.,
2017), or (3) comparison with OP-FTIR, which will be dis-
cussed in Sect. 3.3. Calibration factors for all ion masses are
provided in Tables S1 and S10 in the Supplement.

The calibration factors of 37 species were determined
experimentally by introducing a known concentration of
an NMOG from a standard cylinder, a permeation source
(Veres et al., 2010a), a diffusion cell for isocyanic acid and
methyl isocyanate (Roberts et al., 2010), or a liquid calibra-
tion unit (Ionicon Analytik). The calibration factors of these
species have an error of 15 % (details in Table S1).

It is unrealistic to experimentally determine calibration
factors for all NMOG species detected in biomass burn-
ing. Many compounds are highly reactive and cannot be
purchased from a commercial supplier. Several methods to
estimate calibration factors have been previously used by
PTR-MS operators. For example, both Warneke et al. (2011)
and Stockwell et al. (2015) estimated calibration factors for
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Figure 1. Comparison of measured and calculated calibration fac-
tors for several NMOGs. The nine compounds used to determine the
calibration proportionality constant are highlighted as red squares.
The shaded area shows an uncertainty of +10 %/−50 %. HONO,
HCN, and ammonia sensitivities were derived from comparison
with FTIR and are included as “measured” sensitivities.

uncalibrated species based on ion mass-to-charge ratio and
chemical formula in the latter case.

Sekimoto et al. (2017) recently developed an improved
method of estimating calibration factors. The instrument cal-
ibration factor is linearly proportional to the kinetic cap-
ture rate constant of the H3O+ proton transfer reaction,
with additional corrections for mass-dependent transmission
and NMOG ion fragmentation, both of which can be con-
strained experimentally. The proportionality is determined
by direct calibration of a small subset of NMOGs. For this
work, we used a calibration gas standard containing acetoni-
trile, acetaldehyde, acetone, isoprene, 2-butanone (methyl
ethyl ketone, MEK), benzene, toluene, o-xylene, and 1,2,4-
trimethylbenzene dynamically diluted to 1–10 ppb. The ki-
netic capture rate constant can be calculated using the po-
larizability and permanent dipole moment of the NMOG or
alternatively for unidentified ions using the NMOG molecu-
lar mass and elemental composition. Figure 1 compares the
measured (from this work) and calculated (using the method
from Sekimoto et al., 2017) calibration factors for several
compounds. Most calculated calibration factors (72 %) fall
within +10/−50 % of the measured sensitivity. The calcu-
lated calibration factor provides the upper limit to the sensi-
tivity, and some of the measured calibration factors are lower
than predicted. These typically include species with proton
affinity close to water (e.g., formaldehyde) and species that
fragment to small masses (e.g., ethanol). A detailed discus-
sion of why measured calibration factors can deviate from
calculated ones is given in Sekimoto et al. (2017).

If an identified ion mass has only one NMOG contributing,
as is the case for 65 % (102) of the ion masses with signal in
the fire, we used the calibration factor from direct calibra-

tion or the Sekimoto et al. (2017) method. If an identified
ion mass has more than one NMOG contributing, we used
a weighted average of the calibration factors of all NMOG
contributors to this ion mass (Eq. 1). The determination of
relative NMOG contributions to the total ion signal of each
individual mass was based on GC-PTR-ToF measurements,
comparisons to other instruments, time series analysis, and
reported values from the literature and will be described in
Sect. 3.

cal factoraverage =

(∑
i

contributioni
cal factori

)−1

(1)

The uncertainty for calibration factors for identified
NMOGs ranges from 15 to 50 % depending on the calibration
method used (Table S1). For ion masses for which we were
not able to propose a NMOG, a calibration factor was esti-
mated based on the elemental composition of the ion mass
(Sekimoto et al., 2017). The uncertainty for calibration fac-
tors for unidentified species is within 10 % higher to 50 %
lower.

Ambient humidity can change the measured sensitivity of
an NMOG species (Yuan et al., 2016). For species whose
calibration factor was measured, a humidity correction fac-
tor was also experimentally determined. We currently have
no method to predict the humidity dependence of the sen-
sitivity for other species, so for all other species no humid-
ity correction was applied. To minimize the error from this
omission, we calibrated compounds that were abundant in
emissions and that likely have strong humidity dependence.
These include compounds with proton affinities close to wa-
ter (e.g., HNCO) and compounds whose ionization mech-
anism includes loss of water (e.g., 1-propanol). Excluding
these compounds, the average measured humidity correction
factor was less than 15 % for the humidity conditions expe-
rienced during FIREX (5–18 gkg−1). Measured sensitivities
of different NMOGs both increased and decreased with hu-
midity and an unknown humidity correction will likely only
cause a small bias for total NMOG signals. There were no
systematic differences in humidity between fires with differ-
ent fuels.

3 Results and discussion

3.1 Identification of PTR-ToF ion masses

During the Fire Lab experiments we measured 574 ions that
were enhanced in emissions from one or more fuel types.
Of these, we identified 156 ion masses with a high degree
of certainty and for which a calibration factor can be deter-
mined. An additional 12 ion masses were identified as frag-
ments of one or more NMOGs whose main product ion was
already included in the list of 156 ions. Finally, four ions
were identified as being a common product of a large num-
ber of structurally dissimilar NMOGs. These 172 ions, their
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identification, and support for that identification are listed in
the Supplement. The Supplement provides detailed informa-
tion on the isomer contributions to each mass (Table S1),
sensitivities and calibration uncertainty (Tables S1 and S10),
literature references (Table S6 in the Supplement), GC mea-
surements (Table S7 in the Supplement), and observations
from time series correlations (Table S9 in the Supplement).
The Supplement additionally includes quantitative informa-
tion on OH rate constants (Table S5 in the Supplement), in-
strument intercomparisons (Table S8 in the Supplement), and
NO+-CIMS ion mass identifications (Table S4 in the Supple-
ment). These 172 masses represent about 95 % of the total
signal (ncps) from m/z 12–217 Th measured by PTR-ToF.
Below, we describe the methods used to ascribe NMOG iden-
tifications to PTR-ToF ion masses.

3.1.1 Literature survey

Identifications of many NMOGs emitted from biomass burn-
ing have been previously reported using GC, PTR-MS, and
optical methods. We compiled a list of observed NMOGs
and identifications to use as a starting point. The pa-
pers we referenced included Karl et al. (2007), Warneke
et al. (2011), Brilli et al. (2014), Stockwell et al. (2015),
Müller et al. (2016), and Bruns et al. (2017), which focus
on PTR-MS measurements, and Gilman et al. (2015) and
Hatch et al. (2015, 2017), which focus on GC measure-
ments. Gilman et al. (2015) used 1-D-GC and focused on
the most volatile species, and Hatch et al. (2015, 2017) used
2-D-GC and included many additional less volatile species.
NMOG emission factors of identified compounds and the
estimated mass of unidentified species have been reviewed
by fire and/or ecosystem type globally (e.g., Akagi et al.,
2011; Yokelson et al., 2013), but significant recent measure-
ments have not yet been included in the online updates: e.g.,
Hatch et al. (2017). Finally, for some compounds, we refer-
enced studies of the pyrolysis products of lignin, cellulose,
and hemicellulose, which used GC-MS, X-ray spectroscopy,
FTIR, theoretical calculations, and other analytical methods
to identify major products and common reaction pathways
(Patwardhan et al., 2009; Lu et al., 2011; Zhang et al., 2012;
Heigenmoser et al., 2013; Collard and Blin, 2014; Liu et al.,
2017a).

We assessed each identification as strongly or weakly sup-
ported. Strong identifications include those reported by many
separate studies, NMOGs identified using GC methods (es-
pecially 2-D-GC-ToF-MS), and those supported by evidence
from pyrolysis or other literature. Weak identifications in-
clude those with disagreement between different studies, ten-
tative identifications based on only mass-to-charge ratio or
elemental formula, and identifications that are inconsistent
with reported formula or that are chemically implausible
(e.g., highly strained structure). Identifications from the lit-
erature and citations are listed in Table S6. Overall we found
literature evidence for 68 % of our ion identifications. Our

Figure 2. (a) GC-PTR-ToF chromatograph of emissions from
a Douglas fir fire. (b) Several chromatographic peaks containing
m/z 68.050 C4H5NH+ detected during the highlighted elution pe-
riod in (a). The inset pie chart shows the relative contributions of
the isomers to the total signal of C4H5NH+. (c) GC-NO+-C chro-
matographic trace of m/z 67.042 C4H5N+ from the same Douglas
fir fire. Only pyrrole is observed.

interpretation differs from previously published PTR-MS in-
terpretations for 34 ion masses as noted in Table S6. Forty-
eight ion masses have not been previously reported in PTR-
MS measurements of biomass burning.

The compounds with new and revised identifications were
compared to review values of emission factors in Akagi
et al. (2011) and Yokelson et al. (2013). A limited number of
species from PTR are included in these reviews, largely be-
cause of uncertainty in identification. PTR species that have
been detected but not included in review tables of EF include
many more highly functionalized and larger molecules, and
most of our updated identifications are these species. Yokel-
son et al. (2013) do include a number species from PTR (ion
trap) that were not identified, and the identities of many of
these have now been determined in this work.

Compounds that are included in review tables and for
which we have updated the assignment are mostly unsatu-
rated hydrocarbons and heteroatom-containing species, for
which the identifications have been updated to include other
contributing VOCs. For such species whose EF was deter-
mined solely from PTR, the actual emission factor should be
lower than the reported value.

3.1.2 GC-PTR-ToF measurement

Gas chromatographic separation before measurement with
PTR-MS is a powerful tool that has been widely used in
many environments (Warneke et al., 2003; Karl et al., 2007;
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Warneke et al., 2011; Yuan et al., 2014). The combination of
measured chromatographic retention time and product ions
with GC-PTR-ToF, GC-NO+-CIMS, and GC-EI-MS allows
for the unambiguous identification of the various isomers
contributing to the PTR-ToF signal of many ions. Some addi-
tional ion masses had a high signal in the direct measurement
of fire emissions, but did not appear in any chromatographs.
This also provides insight into the NMOG chemical struc-
ture, as certain functional groups, like acids, cannot travel
through the GC system. An example of GC-PTR-ToF mea-
surement is shown in Fig. 2. Panel (a) in this figure shows
the dense chromatographic elution of hundreds of peaks over
the 800 s elution period. These chromatographic peaks are
detected on several hundred PTR ions. Panel (b) shows the
measured intensity of m/z 68.050 C4H5NH+ during a 280 s
segment of the elution, which includes product ions from
pyrrole and several butene nitriles. These isomers cannot be
distinguished by online PTR-ToF, and each contributes a dif-
ferent amount to the total signal of m/z 68.050 C4H5NH+.
Panel (c) shows the same 280 s retention time period from
a sample taken immediately after the one shown in Panel (b),
but measured with NO+-CIMS. These isomers can be identi-
fied by comparing GC-PTR-ToF and GC-NO+-CIMS chro-
matography, as NO+ reacts with pyrrole but not nitriles. The
GC retention time, when it is known for a particular com-
pound, provides additional support for the identification.

The relative intensities of the eluted peaks were used to
quantify the relative contribution of each NMOG to each ion
mass. The size of a chromatographic peak is determined not
only by the mixing ratio of that NMOG in ambient air and
the mass spectrometer response, but also by the trapping and
elution efficiencies of the GC pre-separation unit. As isomers
have the same molecular weight and elemental composition,
their volatilities and trapping efficiencies are generally sim-
ilar. For example, pyrrole and 3-butene nitrile have similar
vapor pressures of 1.1 and 2.5 kPA at 25 ◦C compared to
ethane (4000 kPA) and 1,4-diethylbenzene (0.13 kPA), which
are the most and least volatile species measured by the GC,
respectively (values from CRC Handbook, 97th ed.). Here
we assumed that all compounds that create the same PTR
ion mass have similar GC trapping efficiencies. This as-
sumption is supported by GC-PTR-ToF measurements of C4
alkenes, C5 alkenes, C8 aromatics, and C9 aromatics in the
56-component NMOG GC calibration standard. These iso-
mer groups have equal concentrations in the calibration gas
and their resulting GC-PTR-ToF chromatographic peaks had
similar areas.

The same GC methods were used to identify some signals
from the NO+-CIMS. Observed and identified NO+-CIMS
ion masses are included in Table S4. Hundreds of carbon-
containing ion masses are also present in a typical NO+-
CIMS mass spectrum. Using GC-NO+-CIMS, we identified
the NMOG contributors to an average (across all fires mea-
sured with NO+-CIMS) of 32 % of the total signal of these
ions. More identifications could likely be made by analysis
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Figure 3. At m/z 115.039 C5H4O3H+ there are several possible
candidates with chemical structures similar to species known to be
produced by biomass burning. Candidates include furan alcohols
and methyldihydrofuran. The time series trace of m/z 115.039 dur-
ing a ponderosa pine fire (Fire 2) is shown in black and compared to
the time series of two furan alcohols: 2,5-(hydroxymethyl)furfural
(yellow) and 2-furanmethanol (red); and to dihydro-2,5-furandione
(blue). The identities of the furan alcohols and dihydro-2,5-
furandione were confirmed through other methods. The superior
correlation with furan alcohols is evidence that m/z 115.039 is
more likely a furan alcohol than a dione (see text). NO and NH3
are shown as a reference for higher- and lower-temperature fire pro-
cesses, respectively. NO described by Stockwell et al., 2017. NH3
from PTR-ToF.

with other techniques (intercomparisons, time series corre-
lations, literature review, etc.) but were not attempted here.
The NO+-CIMS ion mass identifications are included here
as a reference for future work, but are not discussed further.

3.1.3 Time series correlation

Some species measured by the PTR-ToF instrument have
several possible isomers, have not been previously reported
in the literature, and are not transmittable through the GC.
The identifications of these compounds are less certain. For
these, we selected several reasonable isomeric structures
based on the types of compounds typically seen in biomass
burning emissions: substituted furans and aromatics, nitriles,
pyridines, terpenes, and carbonyls. Then, we compared the
temporal profile of these ion signals during several fires
to compounds with more certain identification. Compounds
with similar structure and functionality likely have similar
behavior. Dissimilar compounds can also sometimes have
similar temporal profiles (Yokelson et al., 1996), but it is still
likely that time series correlation points to the correct assign-
ment or a species with similar chemical functionality as the
true assignment.

An example of how time series correlation is used to
identify a species is shown in Fig. 3; m/z 115.039 Th
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C5H4O3H+ is the unidentified species, for which there
is no strong literature or GC evidence. This formula
has several plausible isomers, including furan alco-
hols (e.g., dihydro(hydroxymethyl)furanone) and methyl-
dihydrofurandione. Several other furan alcohols have been
unambiguously identified, including 2-furanmethanol (from
GC-PTR-ToF) and 2,5-(hydroxymethyl)furfural (reported in
the pyrolysis literature; Lu et al., 2011). Dihydrofuran-
dione has also been identified (limited isomeric possibil-
ities). Comparing the time series of these species during
a stack experiment fire shows that m/z 115.039 C5H4O3H+

correlates better with furan alcohols than with dihydrofu-
randione. Thus m/z 115.039 is more likely to be a furan
alcohol. Based on structural similarity and reported pyrol-
ysis pathways that frequently produce 2,5-substituted fu-
rans (Collard and Blin, 2014), dihydro-5-(hydroxymethyl)-
2[3H]-furanone is a likely compound.

3.2 NMOG ion speciation for different fuel types and
fire conditions

The contribution of isomers to any particular PTR ion exact
mass was consistent among the four fuels (Douglas fir, En-
gelmann spruce duff, subalpine fir, and sage) sampled with
GC-PTR-ToF (Table S7). Comparing all GC-PTR-ToF sam-
ples, the isomeric speciation on a particular exact mass typ-
ically varied by only 11 % (the SD of the contribution of
each isomer to total signal on that mass) and therefore the
same study-average NMOG contributions to each ion ex-
act mass were used for all fuel types, regardless of whether
or not supporting GC information was available. This is
similar to the variation in isomer speciation reported by
Hatch et al. (2015; 5 % on average), who investigated six di-
verse fuel types. Compounds that had larger variability be-
tween GC-PTR-ToF samples (and between fuel types) in-
clude m/z 67.054 C5H6H+ (cyclopentadiene), which has
substantial and variable interference from an isoprene frag-
ment, and m/z 153.127 C10H16OH+, which consists mainly
of camphor in sagebrush fires and of other oxygenated
monoterpenes in fires of other fuels. Additionally, in burns
of Ceanothus, which was not sampled with GC-PTR-ToF,
m/z 133.065 C9H8OH+ was enhanced, did not correlate as
well with benzofuran (m/z 119.049 C8H6OH+), and may
include a contribution from another isomer such as cin-
namaldehyde.

The instantaneous speciation of isomers may also change
over the course of a fire, especially as the fire shifts between
various higher- and lower-temperature chemical processes.
We used time series correlation to identify several masses
that may have variable NMOG contributors. This analysis
was done on Fire 2, which burned representative ponderosa
pine forest-type fuels. This fire was selected because pon-
derosa pine was the most comprehensively measured fuel
type during the FIREX 2016 experiment, this particular fire
had distinctly different NMOG speciation at the beginning

(higher temperature) and end (lower temperature) of the fire,
and reagent ion depletion did not affect the results.

We identified three ions with a high signal whose NMOG
contributors may be substantially different between high-
and low-temperature processes in a fire: m/z 109.065
C7H8OH+, which likely includes more 2-methylphenol from
high-temperature processes and more anisole from lower-
temperature processes, m/z 112.039 C5H5NO2H+, which
likely includes a greater contribution from methyl maleimide
in high-temperature processes and more dihydroxy pyri-
dine from low-temperature processes, and m/z 123.080
C8H10OH+, which likely includes more C2 phenols from
high-temperature processes and more methylanisole from
low-temperature processes (similar to m/z 109). Time series
comparisons are shown in Fig. S2 in the Supplement.

These three pairs of identifications in Fig. S2 and their rel-
ative contributions to total ion signal are not well constrained.
An additional instrument technique, such as a fast GC capa-
ble of separating substituted furans and aromatics or a better
understanding of I− CIMS chemical specificity and more ac-
curate calibration on both instruments, would be helpful. To
convert the instrument signal (ncps) of these ions to mixing
ratio, we applied the average calibration factor of the two
isomers.

3.3 Intercomparison with other instruments

Several species detected by the PTR-ToF instrument were
also measured by other instruments. The intercomparison is
summarized in Fig. 4. All slopes shown in the figure and
discussed in the text are the orthogonal distance regression
(ODR) slope of H3O+-CIMS to the other instrument;R2 val-
ues are from vertical distance regression of PTR-ToF against
the other instrument. The scatter plots are shown in Figs. S3–
S5 in the Supplement.

3.3.1 Comparison with OP-FTIR

Fifteen species were compared between the PTR-ToF and
FTIR instruments (Fig. S4). Methanol, formaldehyde, formic
acid, propene, acetic acid, ethene, acetylene, furan, phenol,
and furfural were calibrated directly on the PTR-ToF instru-
ment and have an uncertainty of 15 %. For HONO, HCN,
and ammonia, we were not able to determine a calibration
factor directly and so we set the calibration factors equal
to the slope of the comparison between the FTIR and PTR-
ToF instruments during Fire 72 (ponderosa pine with realistic
fuel mixture, selected for early data availability, long burning
time of 30 min, and mix of flaming and smoldering condi-
tions). Sensitivity to HCN has strong humidity dependence
(Knighton et al., 2009; Moussa et al., 2016), and this was ex-
perimentally determined and corrected. Glycolaldehyde was
calibrated using the method from Sekimoto et al. (2017)
with an uncertainty of 50 %; the PTR-ToF measurement of
m/z 61.028 C2H4O2H+ (sum of glycolaldehyde and acetic
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tone, glycolaldehyde, methylglyoxal, acrylic acid, and glyoxal were calibrated using calculation, have an uncertainty of 50 %, and represent
the lower bound of concentration.

acid) has an uncertainty of 27 %. FTIR hydroxyacetone was
compared to PTR-ToF m/z 75.044 C3H6O2H+, which was
calibrated using the Sekimoto et al. (2017) method and is
the sum of methyl acetate (estimated 37 % of mixing ra-
tio), ethyl formate (14 %), and hydroxyacetone (48 %), with
an uncertainty 50 %. 1,3-Butadiene was calibrated with the
Sekimoto et al. (2017) method and has an uncertainty of
50 %. The method from Sekimoto et al. (2017) provides the
lower bound of concentration.

Methanol has agreed within stated uncertainties between
PTR-MS and FTIR in several previous studies (Christian,
2004; Karl et al., 2007; Warneke et al., 2011; Stockwell
et al., 2015), and this work shows an average slope of 0.99
and R2 of 0.95. The comparison of formaldehyde between
PTR-ToF and FTIR has an average slope= 1.1 and average
R2
= 0.94, which is consistent with the comparison shown in

Warneke et al. (2011). Other compounds that compare within
the stated uncertainty in slope and have correlation coeffi-
cient> 0.8 are ammonia, the sum of acetic acid and glyco-
laldehyde (compared to PTR-ToF m/z 61.028 C2H4O2H+),
formic acid, HONO, acetylene, propene, and HCN. HONO

was sufficiently concentrated (900 ppbv max) in the fire, and
the precision and accuracy of the FTIR HONO measurement
were adequate to estimate a PTR-ToF 3σ LoD for HONO
of about 9.5 ppbv. This is likely not sufficient to measure
HONO in ambient air except in the most highly concentrated
fresh biomass burning plumes.

The high degree of correlation between PTR-ToF and
FTIR for acetylene and ethene is notable because these two
compounds cannot be ionized by proton transfer from H3O+

as their proton affinities are too low. The detected NMOG
product ions (acetylene, at m/z 26.015 C2H+2 ) and ethene
(m/z 28.031 C2H+4 ) are most likely the product of charge
transfer from contaminant O+2 from the ion source, which
was high at 12 % of H3O+ during this experiment. The acety-
lene comparison has a higher degree of scatter (R2

= 0.83),
which is likely an effect of interferences from fragments of
other species as identified by GC-PTR-ToF. Ethene has a bet-
ter correlation (R2

= 0.94); from the GC-PTR-ToF we ob-
served that m/z 28.031 C2H+4 is specific for ethene. The dis-
agreement in slope may be due to variability in O+2 .
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Other compounds, including 1,3-butadiene, furan, hydrox-
yacetone, phenol, and furfural, agreed within a factor of 2
(slopes of 1.6, 1.5, 0.6, 0.7, and 0.6, respectively) and average
R2 values< 0.8. These species were often near the 0.73 Hz
detection limit of the OP-FTIR instrument and the discrep-
ancy in slopes and low correlation coefficients are sometimes
an effect of including these data in the intercomparison. An-
other reason for the disagreement may be that these species
have either more interference or weaker spectral features
than other compounds reported from FTIR. Furan may have
an interference in PTR-ToF measurements of some fuels (Ta-
ble S7). Emission ratios and emission factors (EFs) are based
on fire-integrated excess values that benefit from significant
signal averaging. Many of the above species have EFs that
agree between PTR-ToF and FTIR within 10 % (Selimovic
et al., 2017; Table S8). Additionally, it has been shown that
the FTIR fire-integrated emission factors derived for hydrox-
yacetone are in excellent agreement with that reported for
real wildfires by Liu et al. (2017b; Selimovic et al., 2017).

3.3.2 Comparison with ACES

Three species were compared between the PTR-ToF and
ACES instruments: HONO, glyoxal, and methylglyoxal
(Fig. S3). HONO agrees with an average slope of 1.13 and
R2
= 0.95. Since the PTR-ToF sensitivity factor for HONO

was determined by comparison to FTIR, this slope indicates
the agreement between FTIR and ACES. Methylglyoxal has
a slope of 0.42 and R2

= 0.85. The poorer agreement for
methylglyoxal is probably due to interferences on both in-
struments. The PTR-ToF instrument measures both methyl-
glyoxal and acrylic acid at m/z 73.028 C3H4O2H+; both
were calibrated using the Sekimoto et al. (2017) method.
The calculation has an uncertainty of 50 % and gives the
lower bound of concentration. The ACES instrument mea-
sures a series of substituted α-dicarbonyls, including 2,3-
butadione, from a relatively diffuse absorption band that is
common to these species. The development of a specific
measurement for methyl glyoxal is a target of future re-
search because this compound is an important SOA precur-
sor whose emission from biomass burning has not been well
constrained (Hays et al., 2002; Fu et al., 2008). The methyl-
glyoxal measurement may be improved with changes to the
ACES resolution and spectral correction routines.

The comparison of glyoxal is similarly poor (slope= 2.56
and R2

= 0.64). This is probably because of the incom-
plete resolution ofm/z 59.013 C2H2O2H+ fromm/z 59.049
C3H6OH+ (acetone), which is a very large neighboring peak
in the PTR-ToF mass spectrum. Poorly resolved peaks such
as glyoxal are normally not reported (Sect. 2.2.1). PTR-
MS has been shown to have low sensitivity to glyoxal
(LoD= 250–700 pptv), with strong humidity dependence,
and can be easily lost on inlet surfaces (Stönner et al., 2017).
Additionally, the PTR-ToF glyoxal sensitivity was calculated
and has an uncertainty of 50 %. The glyoxal measurement

may be significantly improved with better PTR-ToF sensitiv-
ity and mass resolution.

3.3.3 Comparison with I− CIMS

Some data were compared to I− CIMS for one fire (Fire 72,
ponderosa pine with realistic blend of fuel); a more detailed
comparison will require significant additional analysis of the
I− CIMS data set. Although many ion masses overlap be-
tween the PTR-ToF and I− CIMS instruments, we selected
seven that have straightforward interpretation on both instru-
ments: HCN, formic acid, phenol, vanillin, acetic acid and
glycolaldehyde, acrylic acid and methylglyoxal, and cresol
and anisole (Fig. S5). These compounds were all directly
calibrated on the I- CIMS, with an uncertainty of ± 15 %.
Formic acid, phenol, vanillin, acetic acid, cresol, and anisole
were calibrated directly on the PTR-ToF instrument, and the
HCN sensitivity was taken from the comparison to FTIR.
Glycolaldehyde, acrylic acid, and methylglyoxal were cali-
brated using the Sekimoto et al. (2017) method with an un-
certainty of 50 %. The comparison for HCN, formic acid, and
phenol is excellent (slopes= 0.97, 0.94, and 1.08; R2

= 0.99,
0.99, 0.98, respectively). The vanillin measurements also
agree quantitatively (slope= 0.92), but the I− CIMS mea-
surement is noisier (R2

= 0.71). For the other three species,
the I− CIMS measures only one isomer, while PTR-ToF
measures a sum of several isomers. For all three, the compar-
ison is within the stated uncertainties of both instruments, but
the PTR-ToF measurement is lower than the I− CIMS mea-
surement. The PTR-ToF measurement of acrylic acid plus
methylglyoxal is 31 % lower than the I− CIMS measurement
of acrylic acid, the PTR-ToF measurement of acetic acid plus
glycolaldehyde is 17 % lower than the I− CIMS measure-
ment of acetic acid, and the PTR-ToF measurement of cresol
plus anisole is 1 % lower than the I− CIMS measurement of
cresol. The low PTR-ToF measurement for the acrylic acid
and cresol comparison is possibly due to uncertainty in the
calculated calibration factors, which give the upper limit to
sensitivity (and the lower limit to derived concentration). The
acetic acid comparison is within the stated uncertainty (27 %
for PTR-ToFm/z 61.028 C2H4O2H+ and 15 % for I− CIMS
acetic acid).

3.4 Emission factors, emission ratios, and emission
chemistry

We quantified the emission ratios relative to CO and the
emission factors in gkg−1 of fuel burned of both the iden-
tified and unidentified species. The emission ratio (ER) is
calculated by using Eq. (2):

ER =

∫ t=end
t=0 NMOG−NMOGbkgddt∫ t=end

t=0 CO−CObkgddt
, (2)

where the excess mixing ratios (ppbv above pre-fire chamber
background) of the NMOG and of CO are integrated over the
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Figure 5. Comparison of emission ratios (ppbNMOG : ppmCO,
fire-integrated) between this work and several previously published
studies. The emission ratios shown are various NMOGs averaged
over all the fires and fuel types reported in each study.

fire from time t = 0 to t = end. The emission factors (EFs)
are in units of gram NMOG emitted per kg of dry fuel burned
and are derived from the emission ratios using the carbon
mass balance (Akagi et al., 2011; Selimovic et al., 2017):

EFNMOG = Fc ·
MNMOG

MC
·
(1NMOG/1CO)∑n
x=1

(
NCx · 1Cx

1CO

) , (3)

where EFNMOG is the emission factor of the NMOG, Fc is the
carbon fraction of the fuel in gkg−1, MNMOG is the molec-
ular mass of the NMOG, MC is the molecular mass of car-
bon, (1NMOG/1CO) is the emission ratio of the NMOG
relative to CO, NCx is the number of carbon in carbon-
containing species x, and (1Cx/1CO) is the emission ratio
of species x to CO;1 indicates the excess mixing ratio above
background, as is explicitly written in Eq. (2). This method
assumes that all of the carbon lost from the fuel as it burns
is emitted and measured, which is a reasonable approxima-
tion as CO, CO2, and CH4 account for most of the emitted
carbon (Akagi et al., 2011). The denominator of the last term
estimates total carbon relative to CO. Species Cx includes all
species measured by PTR-ToF (excluding overlapped species
with FTIR), all species measured by FTIR (including CO,
CO2, and CH4), and black carbon as described by Selimovic
et al. (2017). Emission ratios and factors were determined
on a fire-by-fire basis, then averaged over all fires (Table 2)
or all fires of a particular fuel type (Tables S2 and S3 in the
Supplement).

The emission ratios and emission factors of the identified
compounds averaged over all fires are reported in Table 2.
Emission ratios and emission factors of both identified and
unidentified compounds for specific fuel types are given in
Tables S2 and S3. The large relative SDs of both emission
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Figure 6. Comparison of emission ratios to Stockwell et al. (2015).
The dashed line in each panel shows a 1 : 1 line. The NMOGs are
divided into three structural classes: benzenes, furans, and phenols.
In each class, the emission ratio is taken against benzene, furan,
and phenol, respectively. Three types of fuels (coniferous canopy,
chaparral, and peat) were sampled in both this work and Stockwell
et al. (2015) and the data shown are averaged over all the fires of
a particular fuel type.

ratio and emission factor for each NMOG indicate large dif-
ferences in emission composition between different fires. An
analysis of the differences in emission composition between
different fuels and combustion processes will be presented
in a separate paper. Figure 5 compares the average emission
ratios determined in this work to several other studies. Our
emission ratios have similar values, ranging from a factor of
1.7 higher on average than Gilman et al. (2015) to 0.7 higher
than the average of Stockwell et al. (2015). The differences
in slopes and scatter are likely due to different fuel types, fire
conditions, and sampling strategies. Stockwell et al. (2015)
also reported detailed speciation within particular structural
categories (non-oxygenated aromatics, phenols, and furans).
We compared our speciation for comparable fuel types –
coniferous canopy, chaparral, and peat – and the agreement
for coniferous fuels and chaparral is within a factor of 2 de-
spite differences in ion identification and calibration factor
(Fig. 6). The ER to CO are likely the easiest way to incor-
porate this new NMOG data into models since CO emissions
from wildfires are relatively well characterized (Liu et al.,
2017b).

The 156 PTR ions for which we have identified the NMOG
contributors account for a significant fraction of the instru-
ment signal and total NMOG detected by the PTR-ToF in-
strument in each fire. Across all 58 stack fires measured with
PTR-ToF, an average of 90 % of the instrument signal from
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Table 2. Ion exact masses, formulas, and NMOG contributor(s); the emission ratios and emission factors of those contributors.

Ion exact Ion formula NMOG contributor(s) ER to CO, EF, g kg−1 (σ )
m/z (Th) (details in Table S1) ppb/ppm (σ )

18.034 NH3H+ ammonia 17 (13) 0.82 (0.80)
26.015 C2H+2 acetylene 5.0 (2.5) 0.36 (0.24)
28.018 HCNH+ hydrogen cyanide 3.9 (3.6) 0.33 (0.47)
28.031 C2H+4 ethene 7.1 (3.8) 0.54 (0.38)
30.034 CH3NH+ methanimine 0.0092 (0.012) 0.00073 (0.0010)
31.018 CH2OH+ formaldehyde 20 (10) 1.7 (1.2)
33.034 CH4OH+ methanol 12 (5.9) 1.1 (0.82)
34.995 H2SH+ hydrogen sulfide 0.26 (0.51) 0.029 (0.062)
42.034 C2H3NH+ acetonitrile 1.0 (1.4) 0.13 (0.22)
43.054 C3H6H+ propene 4.5 (2.9) 0.55 (0.44)
44.013 HNCOH+ isocyanic acid 4.6 (2.5) 0.53 (0.34)
44.050 C2H5NH+ etheneamine 0.052 (0.055) 0.0064 (0.0069)
45.034 C2H4OH+ acetaldehyde 7.4 (5.2) 0.92 (0.73)
46.029 CH3NOH+ formamide 0.10 (0.12) 0.013 (0.018)
46.065 C2H7NH+ ethylamine 0.0030 (0.0080) 0.00038 (0.0010)
47.013 CH2O2H+ formic acid 2.2 (1.4) 0.28 (0.22)
47.049 C2H6OH+ ethanol 0.56 (0.92) 0.072 (0.11)
48.008 HNO2H+ nitrous acid 4.1 (1.8) 0.49 (0.23)
49.011 CH4SH+ methane thiol 0.13 (0.27) 0.020 (0.043)
49.028 CH4O2H+ methanediol 0.0040 (0.0028) 0.00051 (0.00039)
52.018 C3HNH+ propyne nitrile 0.0090 (0.0068) 0.0013 (0.0011)
53.039 C4H4H+ 1-buten-3-yne 0.35 (0.20) 0.049 (0.035)
54.034 C3H3NH+ acrylonitrile 0.16 (0.12) 0.025 (0.021)
55.018 C3H2OH+ 2-propynal 0.20 (0.10) 0.029 (0.019)
55.054 C4H6H+ butadienes 1.8 (1.2) 0.28 (0.23)
56.050 C3H5NH+ propanenitrile 0.10 (0.14) 0.017 (0.027)
57.034 C3H4OH+ acrolein 5.4 (3.0) 0.80 (0.52)
57.070 C4H8H+ butenes, other hydrocarbon 1.2 (1.0) 0.21 (0.21)
58.029 C2H3NOH+ methyl isocyanate, hydroxy acetonitrile 0.089 (0.086) 0.015 (0.016)
58.065 C3H7NH+ propene amine 0.022 (0.034) 0.0036 (0.0059)
59.013 C2H2O2H+ glyoxal 1.7 (1.3) 0.26 (0.23)
59.049 C3H6OH+ acetone 2.3 (1.7) 0.39 (0.35)
60.044 C2H5NOH+ acetamide 0.46 (1.1) 0.086 (0.21)
60.081 C3H9NH+ C3 amines 0.023 (0.052) 0.0041 (0.010)
61.028 C2H4O2H+ acetic acid, glycolaldehyde 15 (11) 2.5 (2.2)
62.024 CH3NO2H+ nitromethane 0.34 (0.21) 0.053 (0.036)
63.026 C2H6SH+ dimethyl sulfide 0.012 (0.018) 0.0024 (0.0041)
66.034 C4H3NH+ butynenitriles, cyanoallene 0.0020 (0.0017) 0.00037 (0.00035)
67.054 C5H6H+ 1,3-cyclopentadiene 0.16 (0.13) 0.030 (0.029)
68.050 C4H5NH+ butenenitrile isomers, pyrrole 0.36 (0.46) 0.071 (0.10)
68.997 C3O2H+ carbon suboxide 0.016 (0.0093) 0.0028 (0.0018)
69.034 C4H4OH+ furan 1.9 (1.1) 0.36 (0.25)
69.070 C5H8H+ isoprene 1.0 (0.82) 0.21 (0.20)
70.065 C4H7NH+ butanenitriles, dihydropyrrole 0.076 (0.12) 0.016 (0.028)
71.013 C3H2O2H+ propiolic acid 0.046 (0.025) 0.0088 (0.0057)
71.049 C4H6OH+ MVK, methacrolein, crotonaldehyde 1.7 (1.0) 0.32 (0.21)
71.086 C5H10H+ pentenes, methylbutenes 0.12 (0.11) 0.026 (0.029)
72.081 C4H9NH+ butene amines, tetrahydropyrrole 0.0077 (0.014) 0.0016 (0.0031)
73.028 C3H4O2H+ methyl glyoxal, acrylic acid 1.4 (1.0) 0.28 (0.19)
73.065 C4H8OH+ MEK, 2-methylpropanal, butanal 0.52 (0.50) 0.11 (0.13)
74.024 C2H3NO2H+ nitroethene 0.0068 (0.0039) 0.0013 (0.00084)
75.044 C3H6O2H+ hydroxyacetone, methyl acetate, ethyl formate 2.8 (2.3) 0.55 (0.45)
76.039 C2H5NO2H+ nitroethane 0.0034 (0.0022) 0.00072 (0.00057)
78.001 CH3NOSH+ n-sulfinylmethanamine 0.00031 (0.00022) 6.9e-05 (5.9e-05)
79.054 C6H6H+ benzene 1.7 (1.1) 0.37 (0.30)
80.050 C5H5NH+ pyridine, C5 nitriles 0.13 (0.18) 0.031 (0.049)
81.034 C5H4OH+ 2,4-cyclopentadiene-1-one, other hydrocarbon 0.61 (0.40) 0.13 (0.093)
82.065 C5H7NH+ methylpyrrole, pentenenitriles 0.093 (0.15) 0.023 (0.041)
83.049 C5H6OH+ methylfurans, other hydrocarbon 1.51 (1.01) 0.35 (0.28)
84.081 C5H9NH+ pentanenitriles 0.035 (0.066) 0.0094 (0.019)
85.011 C4H4SH+ thiophene 0.057 (0.041) 0.014 (0.011)
85.028 C4H4O2H+ 2-(3H)-furanone 1.7 (1.1) 0.39 (0.30)
85.065 C5H8OH+ 3-methyl-3-butene-2-one, cyclopentanone, other hydrocarbon 0.52 (0.35) 0.12 (0.10)
87.044 C4H6O2H+ 2,3-butanedione, methyl acrylate, other hydrocarbon 2.0 (1.7) 0.46 (0.35)
87.080 C5H10OH+ 3-methyl-2-butanone, methylbutanals, pentanones 0.16 (0.20) 0.042 (0.059)
89.023 C3H4O3H+ pyruvic acid 0.041 (0.027) 0.010 (0.0070)
89.060 C4H8O2H+ methyl propanoate 0.34 (0.27) 0.081 (0.067)
90.055 C3H7NO2H+ nitropropanes 0.0022 (0.0037) 0.00056 (0.0010)
92.050 C6H6N+ ethynylpyrrole 0.0066 (0.0054) 0.0017 (0.0016)
93.070 C7H8H+ toluene 0.9 (0.72) 0.24 (0.24)
94.029 C5H3NOH+ furan carbonitriles 0.01 (0.012) 0.0031 (0.0044)
94.065 C6H7NH+ methylpyridines 0.075 (0.12) 0.022 (0.037)
94.998 C2H6S2H+ dimethyl disulfide 0.0082 (0.0064) 0.0022 (0.0020)
95.049 C6H6OH+ phenol 2.0 (1.4) 0.55 (0.46)
96.044 C5H5NOH+ 4-pyridinol 0.048 (0.071) 0.014 (0.021)
96.081 C6H9NH+ C2-substituted pyrroles 0.043 (0.081) 0.013 (0.025)
97.028 C5H4O2H+ furfurals, other hydrocarbons 2.1 (1.4) 0.60 (0.58)
97.065 C6H8OH+ C2-substituted furans 0.83 (0.65) 0.22 (0.20)
98.096 C6H11NH+ 4-methylpentanenitrile 0.013 (0.026) 0.004 (0.0084)
99.026 C5H6SH+ methylthiophene 0.079 (0.072) 0.021 (0.020)
99.044 C5H6O2H+ 2-methanol furanone 1.5 (1.1) 0.40 (0.31)
99.080 C6H10OH+ methylcyclopentanone, cyclohexanone, hexenones 0.086 (0.087) 0.024 (0.028)
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Table 2. Continued.

Ion exact Ion formula NMOG contributor(s) ER to CO, EF, gkg−1 (σ )
m/z (Th) (details in Table S1) ppb/ppm (σ )

101.023 C4H4O3H+ dihydrofurandione 0.18 (0.15) 0.052 (0.052)
101.060 C5H8O2H+ methyl methacrylate, other hydrocarbon 0.51 (0.34) 0.14 (0.10)
101.096 C6H12OH+ hexanals, hexanones 0.017 (0.021) 0.0052 (0.0072)
103.039 C4H6O3H+ acetic anhydride, 0.34 (0.28) 0.092 (0.075)
103.054 C8H6H+ phenylacetylene 0.039 (0.037) 0.011 (0.012)
104.049 C7H5NH+ benzonitrile 0.076 (0.057) 0.023 (0.024)
105.070 C8H8H+ styrene 0.27 (0.21) 0.079 (0.073)
106.065 C7H7NH+ vinyl pyridine 0.010 (0.011) 0.0033 (0.0038)
107.049 C7H6OH+ benzaldehyde 0.26 (0.15) 0.079 (0.056)
107.086 C8H10H+ C8 aromatics 0.40 (0.33) 0.13 (0.13)
108.044 C6H5NOH+ pyridine aldehyde 0.018 (0.015) 0.0058 (0.0059)
108.081 C7H9NH+ dimethyl+ ethyl pyridine, heptyl nitriles 0.027 (0.052) 0.009 (0.018)
109.028 C6H4O2H+ quinone 0.34 (0.27) 0.093 (0.065)
109.065 C7H8OH+ cresol, anisole 1.5 (1.0) 0.46 (0.39)
110.096 C7H11NH+ C7 acrylonitriles, C3-substituted pyrroles 0.017 (0.032) 0.0057 (0.012)
111.044 C6H6O2H+ methyl furfural, benzene diols, 2-acetyl furan 2.4 (1.4) 0.75 (0.62)
111.080 C7H10OH+ C3-substituted furans, other compounds 0.3 (0.27) 0.093 (0.10)
112.039 C5H5NO2H+ dihydroxy pyridine, methyl maleimide 0.021 (0.023) 0.0071 (0.0088)
113.023 C5H4O3H+ 5-hydroxy 2-furfural, 2-furoic acid 0.32 (0.22) 0.11 (0.10)
113.060 C6H8O2H+ 2-hydroxy-3-methyl-2-cyclopenten-1-one 0.67 (0.50) 0.21 (0.17)
113.096 C7H12OH+ ethyl cyclopentanone 0.036 (0.034) 0.012 (0.013)
114.019 C4H3NO3H+ nitrofuran 0.0037 (0.0025) 0.0012 (0.001)
115.039 C5H6O3H+ 5-hydroxymethyl-2[3H]-furanone 0.63 (0.52) 0.20 (0.18)
115.075 C6H10O2H+ C6 diketone isomers, C6 esters 0.10 (0.074) 0.032 (0.028)
115.112 C7H14OH+ heptanal, 2,4-dimethyl-3-pentanone, heptanone 0.030 (0.030) 0.010 (0.011)
117.055 C5H8O3H+ 5-hydroxymethyl tetrahydro 2-furanone, 5-hydroxy tetrahydro 2-furfural 0.43 (0.50) 0.13 (0.12)
117.070 C9H8H+ indene, methyl ethynyl benzene 0.081 (0.081) 0.027 (0.031)
117.091 C6H12O2H+ butyl ester acetic acid, other C6 esters 0.033 (0.045) 0.012 (0.019)
118.050 C4H7NO3H+ butene nitrates 0.008 (0.0066) 0.0027 (0.0025)
118.065 C8H7NH+ benzeneacetonitrile 0.032 (0.039) 0.011 (0.015)
119.049 C8H6OH+ benzofuran 0.12 (0.088) 0.038 (0.029)
119.086 C9H10H+ methylstyrene, propenyl benzene+methyl ethenyl benzene, indane 0.12 (0.10) 0.043 (0.043)
120.081 C8H9NH+ dihydro pyridine 0.0049 (0.0075) 0.0018 (0.0029)
121.065 C8H8OH+ tolualdehyde 0.34 (0.31) 0.11 (0.11)
121.101 C9H12H+ C9 aromatics 0.15 (0.13) 0.056 (0.060)
123.044 C7H6O2H+ salicyladehyde 0.21 (0.15) 0.074 (0.070)
123.080 C8H10OH+ ethylphenol+ dimethylphenol, methylanisole 0.37 (0.28) 0.13 (0.12)
124.039 C6H5NO2H+ nitrobenzene 0.019 (0.013) 0.0068 (0.0062)
125.023 C6H4O3H+ hydroxy benzoquinone 0.18 (0.10) 0.060 (0.044)
125.060 C7H8O2H+ guaiacol 1.3 (1.0) 0.48 (0.59)
126.128 C8H15NH+ C8 nitriles 0.0015 (0.0042) 0.00062 (0.0017)
126.970 C2H6S3H+ dimethyl trisulfide 0.0024 (0.0036) 0.00081 (0.0011)
127.039 C6H6O3H+ 5-hydroxymethyl 2-furfural 0.88 (0.65) 0.32 (0.32)
129.055 C6H8O3H+ 2,5-di(hydroxymethyl)furan, methyl hydroxy dihydrofurfural 0.39 (0.27) 0.14 (0.13)
129.070 C10H8H+ naphthalene 0.20 (0.16) 0.07 (0.067)
131.086 C10H10H+ dihydronaphthalene 0.078 (0.063) 0.030 (0.030)
132.081 C9H9NH+ methyl benzene acetonitrile 0.014 (0.020) 0.0056 (0.0088)
133.065 C9H8OH+ methylbenzofurans 0.19 (0.35) 0.068 (0.11)
133.101 C10H12H+ ethylstyrene, butenyl benzene isomers, methylindane 0.086 (0.071) 0.034 (0.033)
135.080 C9H10OH+ methyl acetophenone 0.11 (0.073) 0.041 (0.033)
135.117 C10H14H+ C10 aromatics 0.11 (0.10) 0.045 (0.049)
137.060 C8H8O2H+ methylbenzoicacid 0.22 (0.13) 0.083 (0.063)
137.132 C10H16H+ monoterpenes 2.7 (4.2) 1.1 (2.0)
138.055 C7H7NO2H+ nitrotoluene 0.019 (0.023) 0.0080 (0.011)
139.075 C8H10O2H+ methylguiacol 0.77 (0.63) 0.34 (0.46)
143.086 C11H10H+ methyl naphthalene 0.08 (0.063) 0.033 (0.032)
145.050 C6H8O4H+ levoglucosan pyrolysis product 0.35 (0.27) 0.15 (0.17)
145.065 C10H8OH+ 2-ethenyl benzofuran 0.05 (0.037) 0.020 (0.018)
145.101 C11H12H+ ethylindene 0.037 (0.036) 0.016 (0.019)
147.080 C10H10OH+ dimethylbenzofuran, ethyl benzofuran 0.10 (0.065) 0.043 (0.034)
149.096 C10H12OH+ estragole 0.069 (0.066) 0.029 (0.033)
149.132 C11H16H+ C11 aromatics 0.026 (0.022) 0.012 (0.012)
151.075 C9H10O2H+ vinylguaiacol 0.35 (0.31) 0.15 (0.16)
153.055 C8H8O3H+ vanillin 0.37 (0.31) 0.17 (0.22)
153.070 C12H8H+ acenaphthylene 0.025 (0.026) 0.010 (0.013)
153.127 C10H16OH+ camphor, other oxygenated monoterpenes 0.070 (0.15) 0.031 (0.066)
155.070 C8H10O3H+ syringol 0.12 (0.14) 0.046 (0.055)
155.143 C10H18OH+ cineole, other oxygenated monoterpenes 0.013 (0.012) 0.0059 (0.0061)
157.101 C12H12H+ C2-substituted naphthalenes 0.051 (0.039) 0.024 (0.025)
157.159 C10H20OH+ decanal 0.0051 (0.0051) 0.0024 (0.0030)
163.148 C12H18H+ C12 aromatics 0.013 (0.012) 0.0067 (0.0073)
165.091 C10H12O2H+ eugenol, isoeugenol 0.22 (0.17) 0.11 (0.12)
177.164 C13H20H+ C13 aromatics 0.0094 (0.0079) 0.0053 (0.0058)
205.195 C15H24H+ sesquiterpenes 0.15 (0.13) 0.090 (0.090)

m/z 12–m/z 217 (excluding primary and contaminant ions)
is explained by these ions and associated fragments. After
calibration, an average of 92 % and a minimum of 88 % of
the total NMOG mixing ratio detected by PTR-ToF con-

sists of identified compounds (Fig. 7a). The mixing ratios
of unidentified species were determined using a calibration
factor calculated from the elemental composition of the ion.
They are therefore a lower limit and the actual unidentified
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Subplots (b and c) use data from Fire 2 (ponderosa pine with a realistic blend of fuel components).

fraction could be higher (Sect. 2.3). The PTR-ToF instrument
detects about 80–90 % of the total NMOG emissions (on
a molar basis) based on the composition reported by Gilman
et al. (2015).

In terms of NMOG mass detected by PTR-ToF, an average
of 88 % and a minimum of 82 % is accounted for by identi-
fied species (Fig. 7b). This is an improvement over Warneke
et al. (2011), in which only 50–75 % of the detected mass
was identified, and is comparable to Stockwell et al. (2015),
with improved identification of emissions from peat and up-
dated ion assignments (Table S6). Identifying the NMOG
contributors to additional ions will not increase this by much
because the remaining (unidentified) ions each account for
only a small part of the remaining signal. The unidentified
portion is a small fraction of the overall detected emissions,
but compared to the identified portion, it consists of species
that are heavier, contain more oxygen atoms, and are less
volatile (Fig. 8). The average molecular mass of unidentified
species is 120 u compared to 50 u for identified species, and
species with three or more oxygen atoms comprise 24 % of
unidentified NMOG emissions but only 2.5 % of identified
NMOG emissions. Many of the unidentified emissions are
of intermediate volatility, while most identified species are
highly volatile. Species that could be efficient SOA precur-
sors may therefore be underrepresented in the list of identi-
fied NMOGs. Additionally, the heavier, more polar unidenti-
fied compounds may be preferentially lost in inlet lines and
could comprise a larger fraction of emissions than measured
by the PTR-ToF instrument.

The detected and identified NMOGs fall into several broad
structural categories: furan-type compounds, benzene-type
compounds (aromatics), terpenes, non-aromatic molecules
containing oxygen, nitrogen, or sulfur, and other hydro-
carbons (mostly alkenes). We also included pyrroles, thio-
phenes, and pyridines as structural categories, but these ac-
count for less than 1 % of detected emissions on a molar
basis. Terpenes include isoprene, monoterpenes, oxygenated
monoterpenes, and sesquiterpenes. Non-aromatic oxygen-
containing molecules include alkyl carbonyls, esters, and
acids. Non-aromatic nitrogen-containing molecules include
HCN, HONO, isocyanic acid, methyl isocyanate, amines (in-
cluding ammonia), and nitriles. Aromatics and furans include
alkyl-substituted and oxygenated derivatives of benzene and
furan. On average over all fires, non-aromatic oxygenates
were the most abundant, comprising 51 % of detected emis-
sions (Fig. 9a). The compounds in each category include
a range of functional groups, of which alcohols and carbonyls
were the most abundant (Fig. 9b). Many compounds also in-
clude an alkene functional group. Some compounds, such as
guaiacol, have several functional groups. In these cases, the
NMOG was counted once in each category.

Compared to several previous laboratory studies reporting
highly chemically detailed emissions using GC instruments
(Hatch et al., 2015; Gilman et al., 2015; Hatch et al., 2017),
we observed a similar range and type of speciation for non-
oxygenated aromatics, thiophenes, pyrroles, pyridines, alkyl
nitriles, alkyl ketones, alkyl esters, and small alcohols. How-
ever, this work and a previous PTR-MS study (Stockwell

www.atmos-chem-phys.net/18/3299/2018/ Atmos. Chem. Phys., 18, 3299–3319, 2018
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et al., 2015) also observed more highly substituted oxygen-
containing aromatics and furans, such as hydroxymethyl-
furanone and syringol. These substituted compounds con-
tribute significant additional reactivity. For example, Gilman
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gory averaged over all fires during FIREX 2016. (b) Average rate
constant with OH of NMOGs detected by PTR-ToF during Fire 2.

et al. (2015), who studied similar fuels, reported OH reactiv-
ity of 1.3–5.5 s−1 (ppmCO)−1 for furans. In this study, the
average OH reactivity of furans is 14.2 s−1 (ppmCO)−1. The
SOA yields of many of these compounds are unknown but
they are likely important SOA precursors (Yee et al., 2013;
Gilman et al., 2015; Hatch et al., 2017; Bruns et al., 2016).

Reaction with the hydroxyl radical ( qOH) is an important
removal pathway for gas-phase biomass burning emissions

Atmos. Chem. Phys., 18, 3299–3319, 2018 www.atmos-chem-phys.net/18/3299/2018/
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Figure 11. Volatility of NMOGs during Fire 2 (ponderosa pine). For
simplicity, ammonia is excluded from this figure because of its very
high concentration (600 ppb) and volatility (C0= 7× 109 µgm−3).

in the atmosphere. NMOGs have been previously shown to
be an important sink for the OH radical, despite comprising
less than 1 % by mass of the total measured gas-phase emis-
sions (Gilman et al., 2015). We compiled the rate constants
with qOH of the identified species. Where an experimen-
tally determined rate constant was not available, the rate con-
stant of a structurally similar species was used (rate constants
and citations in Table S5). On average, furans, aromatics,
terpenes, and non-aromatic oxygenates contribute a roughly
equal amount to total OH reactivity (Fig. 10a). It has been
shown that the average reactivity of NMOG emissions can
vary greatly among fuel types (Gilman et al., 2015); here, we
show that the average reactivity and the types of compounds
that contribute most to reactivity also vary greatly over the
course of a fire (Fig. 10b). The spike in average reactivity at
the beginning of the fire is due to the distillation of terpenes.

The volatility distribution of emitted species also changes
over the course of these lab fires. We determined the satura-
tion vapor concentration (C0, in µgm−3 at 25 ◦C) for each of
the identified and unidentified species. The values were taken
from databases (CRC Handbook, NIST Chemistry Web-
Book, Yaws, 2015) or estimated based on elemental compo-
sition via the parameterization described by Li et al. (2016).
Species emitted from lower-temperature processes during the
fire have a higher fraction of compounds with low volatil-
ity compared to the high-temperature processes (later and
earlier in the fire shown in Fig. 11). Further discussion of
chemical differences and low- and high-temperature pro-
cesses will be presented in a separate paper (Sekimoto et al.,
2018). The PTR-ToF instrument measures mostly species
whose volatility is classified as volatile organic compounds
(VOC, C0> 3× 106 µgm−3), and a few intermediate volatil-
ity compounds (IVOC, 300<C0< 3× 106 µgm−3) and
semivolatile compounds (SVOC, 0.3<C0< 300 µgm−3) are

detected. Many more IVOC species have been measured by
2-D-GC (Hatch et al., 2017). It is expected that many species
of C0< 104 µgm−3 were not transmitted through the transfer
inlet and instrument tubing quickly enough to be quantifiable
by the PTR-MS (Pagonis et al., 2017).

4 Conclusions

Gas-phase emissions of NMOGs and some inorganic com-
pounds were measured with a high-resolution PTR-ToF in-
strument during the FIREX 2016 laboratory intensive. Using
a combination of techniques, including GC pre-separation,
NO+ CIMS, and time series correlation, we have identi-
fied many more compounds with greater certainty than has
been reported in previous PTR-MS studies of biomass burn-
ing emissions. We have identified the NMOG contributors to
∼ 90 % of the PTR-ToF signal, accounting for ∼ 90 % of the
NMOG mass detected by the instrument, and determined the
emission factors of these compounds. The NMOG ions not
identified are in general larger, more oxygenated, and less
volatile than the identified species. This should be consid-
ered if using PTR-ToF to study SOA precursors. Uniden-
tified compounds may also be preferentially lost in inlets.
The PTR-ToF measurement generally agrees well with other
instrumentation for many species. However, small, multiply
oxygenated species such as glyoxal and methylglyoxal may
have significant interferences. We determined the reaction
rate constant of each identified NMOG with the OH radi-
cal. Furans, aromatics, and terpenes are the most important
reactive species measured by PTR-ToF instrument. We show
that the reactivity of the emissions, volatility of the emis-
sions, and the compounds that contribute to the reactivity
can change considerably as different combustion processes
occur.

This work provides a guide to interpreting PTR-ToF mea-
surements of biomass burning that is strongly supported by
the literature and complementary analytical techniques. This
will serve as a foundation for future use of FIREX 2016 PTR-
ToF data and interpretation of PTR-ToF field measurements.
Finally, this work provides the best available emission fac-
tors and emission ratios to CO for many wildfire-generated
NMOGs.

Data availability. Data are available from the CSD NOAA archive
at https://esrl.noaa.gov/csd/groups/csd7/measurements/2016firex/
FireLab/DataDownload/ (NOAA, 2018).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-18-3299-2018-supplement.
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