
Understanding SpringRank through Random Utility

Models, Identifiability, and Online Updates

by

Aparajithan Venkateswaran

A thesis submitted to the

College of Engineering and Applied Science at the

University of Colorado in partial fulfillment

of the requirements for the degree of

Bachelor of Science

Department of Computer Science

2020

This thesis entitled:
Understanding SpringRank through Random Utility Models, Identifiability, and Online Updates

written by Aparajithan Venkateswaran
has been approved for the Department of Computer Science

Prof. Daniel Larremore

Prof. Stephen Becker

Prof. Manuel Lladser

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Venkateswaran, Aparajithan (B.S., Computer Science)

Understanding SpringRank through Random Utility Models, Identifiability, and Online Updates

Thesis directed by Prof. Daniel Larremore

A special class of complex systems arises when the agents involved are in competition with

one another. The outcomes of these interactions make it possible to reveal a latent ordinal hierarchy

of the entities in the system. SpringRank is a ranking method that models the network as a physical

system comprised of springs. It estimates ranks as locations of the springs that minimize the total

energy of the system.

This thesis explores SpringRank in three ways, two of which are extensions to the model.

Firstly, we make connections between SpringRank and the Boltzmann distribution, Random Utility

Models, and linear regression. We characterize SpringRank as a Random Utility Model by using the

Boltzmann distribution to notice that SpringRank makes a decision between the choices itself as

opposed to the choice items. We reconcile an ordinary least squares interpretation of SpringRank

with the results from the Boltzmann distribution. We conclude that various interpretations of

SpringRank offer the same insights but in different ways. Secondly, we extend SpringRank to

identify the effect of group characteristics on the outcomes of interactions. We develop three models

– two where group memberships are fixed and one where group memberships can change. The

two models when group memberships are fixed correspond to cases where the group effects stay

constant or are allowed to change. Both these models are non-identifiable – we cannot identify the

effect of group characteristics. We recover identifiability in the third model. Finally, we propose an

online update algorithm to accurately and efficiently update ranks inferred by SpringRank. Our

algorithm forces boundary conditions and only updates a small neighborhood. This algorithm

fails the accuracy-efficiency trade-off as it is computationally expensive. Instead, we suggest other

possible online update mechanisms.

Dedication

To my sister.

v

Acknowledgements

I would like to thank my thesis committee, Stephen Becker, Manuel Lladser, and Dan

Larremore for their advice and guidance. I am deeply indebted to my advisor, Dan, for the

continuous support and innumerable opportunities he has given me over the years. It has been

extremely rewarding and invaquably delightful to work with him. I also want to thank the Larremore

and Clauset Labs for constantly challenging me to perform better science. I am especially thankful

to Sam Way, Allie Morgan, and Ian Van Buskirk for valuable discourses and mentoring. Special

thanks to Johan Ugander for providing crucial insights regarding SpringRank.

I also want to thank the Applied Math and Computer Science departments, faculty, and

my advisors for their valuable instruction, beneficial advice, and helpful guidance throughout

my undergraduate study. I would like to thank the Engineering Honors Program for fostering a

community that gave me the opportunity to grow as an individual, and for always reminding me to

ask the more important questions. Many thanks to Aaron Clauset, Liz Bradley, Anne Dougherty,

Scot Douglass, Mary Rader, Raf Frongillo, Lesley McDowell, Jonathan Kish, Rhonda Hoenigman,

Chris Ketelsen, and Tony Wong.

I would also like to thank all of my friends. I am thankful to Avery Anderson and Suyog Soti

for our discussions, and shenanigans together. I am especially grateful to Ellen Considine for her

friendship, and many intellectual and inspiring conversations. And, lastly, I would like to thank my

family, especially my sister, for their unwavering support through every endeavor, without which I

would not be where I am today.

Contents

Chapter

1 Introduction 1

2 SpringRank 4

2.1 The original model . 4

2.1.1 SpringRank . 5

2.1.2 Other ranking methods . 6

2.2 SpringRank and the Boltzmann distribution . 7

2.3 SpringRank and Random Utility Models . 9

2.3.1 The quadratic utility . 10

2.3.2 SpringRank as a Context Dependent Random Utility Model 11

2.3.3 SpringRank as a Blade-Chest model . 12

2.3.4 A family of utilities . 13

2.3.5 Other related models . 15

2.4 SpringRank as linear regression . 15

2.5 Reconciliation . 18

3 SpringRank with Groups 20

3.1 Related work . 21

3.2 Introducing groups for nodes . 21

3.2.1 Redefining the hamiltonian . 22

vii

3.2.2 Minimizing the hamiltonian . 23

3.2.3 Generalizing to arbitrary number of group characteristics 26

3.2.4 Regularization . 26

3.2.5 Results using synthetic data . 27

3.3 Introducing arbiters for interactions . 28

3.3.1 Redefining the hamiltonian . 31

3.3.2 Minimizing the hamiltonian . 32

3.3.3 Regularization . 35

3.3.4 Results from synthetic data . 36

3.4 Model identifiability . 37

3.4.1 The model is non-identifiable . 40

3.4.2 The Equality assumption . 41

3.4.3 Resolving identifiability . 44

3.5 Conclusion . 46

4 Online SpringRanking 49

4.1 Related work . 50

4.2 Desired properties of the system . 50

4.3 Updating the neighborhood . 51

4.3.1 The update step . 51

4.3.2 One-pass update algorithm . 53

4.3.3 Recursive update algorithm . 56

4.4 Conclusion . 57

5 Conclusions and Future Directions 58

5.1 Conclusions . 58

5.2 Future directions . 60

viii

Bibliography 62

Appendix

A Supplementary Results to Chapter 3 65

A.1 Recovering group preferences (without arbiters) . 65

A.2 Recovering group preferences (with arbiters) . 69

A.3 Recovering group preferences (identifiable models) 73

ix

Figures

Figure

3.1 Recovering group preferences from synthetic data (without arbiters) - Test 1 29

3.2 Recovering group preferences from synthetic data (without arbiters) - Test 2 30

3.3 Recovering group preferences from synthetic data (with arbiters) - Test 1 38

3.4 Recovering group preferences from synthetic data (with arbiters) - Test 2 39

3.5 Ranking Computer Science departments based on region 44

3.6 Recovering group preferences from synthetic data (identifiable models) - Test 1 . . . 47

3.7 Recovering group preferences from synthetic data (identifiable models) - Test 2 . . . 47

4.1 Accuracy and runtime analysis for Algorithm 1. 54

4.2 Change in ranks as we vary k in Algorithm 1. 55

4.3 Accuracy and runtime analysis for Algorithm 2. 57

A.1 Recovering group preferences from synthetic data (without arbiters) - Test 3 66

A.2 Recovering group preferences from synthetic data (without arbiters) - Test 4 67

A.3 Recovering group preferences from synthetic data (without arbiters) - Test 5 68

A.4 Recovering group preferences from synthetic data (with arbiters) - Test 3 70

A.5 Recovering group preferences from synthetic data (with arbiters) - Test 4 71

A.6 Recovering group preferences from synthetic data (with arbiters) - Test 5 72

A.7 Recovering group preferences from synthetic data (identifiable models) - Test 3 . . . 73

A.8 Recovering group preferences from synthetic data (identifiable models) - Test 4 . . . 74

Chapter 1

Introduction

Complex systems are systems with relatively simple components whose behavior is difficult to

model due to dependencies, interactions, competitions and other types of relationships. Complex

systems are ubiquitous. They are comprised of agents that interact with one another, either

individually or as agglomerates. These interactions sustain and lend novelty to the entire system.

For instance, ecosystems form a complex system with species interacting with each other. Even

within an ecosystem, a single species could form a complex system. Social behavior of humans

is one such example. Other examples of complex systems include the metabolic network, Earth’s

climate system, the human brain, and the entire universe. Complex systems can also be artificially

constructed such as electrical power grids, transportation systems, and the world wide web.

A key factor driving such systems is the interaction between different components. A special

class of complex systems arises when the agents involved are in competition with one another. The

nature of those interactions reveals hierarchy – the outcomes are correlated with their positions in

the hierarchy. The hierarchies can be naturally occurring, such as in animals like birds, primates and

elephants that tend to organize themselves according to dominance hierarchies [Drews, 1993]. There

is also evidence of such latent hierarchies in anthropological systems where hierarchies result from

prestige, reputation, and social position [Power, 2017, Clauset et al., 2015]. In certain scenarios,

such as sports tournaments, we construct systems by forcing interactions between entities for the

sole purpose of identifying the rankings [Szymanski, 2003, Baumann et al., 2010]. Finally there are

instances where the hierarchy arises as a byproduct of the construction of the system such as the

2

world wide web [Page et al., 1999].

From these outcomes, it is possible to reveal the latent rankings of the components, or entities,

in the system. It is desirable to infer the rankings as they form the basis of strategies in complex

systems. The outcome of interactions between entities give evidence to reveal these hierarchies.

However, in some systems, even the existence of an interaction provides useful information to

determine the rankings. For example, sports tournaments are designed to match players of similar

skill levels [Szymanski, 2003, Baumann et al., 2010]. Therefore, we can infer rankings based on the

existence and the outcomes of interactions. Further, inferring an embedding of hierarchies can be

more useful than an ordinal hierarchy as it can reveal relative differences of the positions of entities

in the hierarchy.

We are interested in identifying the latent hierarchies of entities in complex systems. This

is the goal of ranking methods. Using observed data, often in the form of a directed net-

work, they aim to discover the hierarchy that could have generated the data. Since complex

systems appear throughout the world, there are many ranking methods that are unique to

fields (or applications), each with their own advantages and disadvantages. There is a fam-

ily of spectral methods that rank nodes in a network by performing random walks and cal-

culating their stationary distribution [Bonacich, 1987, Page et al., 1999, Negahban et al., 2017].

There is another family of methods that generate ordinal rankings by minimizing penalty func-

tions [Slater, 1961, Ali et al., 1986, Gupte et al., 2011]. There are ranking methods that com-

pute ranks using proportions of wins and losses [Elo, 1978, Herbrich et al., 2007, Coulom, 2008].

There are also Random Utility models that infer real valued ranks from pairwise comparison data

[Bradley and Terry, 1952, Train, 2009].

SpringRank is one such ranking method [De Bacco et al., 2018]. In SpringRank, the system

is represented as a directed weighted network, where the existence of an edge between two nodes

indicates the outcome of a single interaction between them. The direction of the edge i → j is

related to the outcome of the interaction and suggests that i is ranked above j. This model treats

the network as a system of oriented springs, where each spring represents an edge in the network,

3

and aims to minimize the total energy of the system. The optimal locations of the springs are

mapped to the ranks of the nodes.

In this thesis, we will explore the SpringRank model in three distinct ways. Firstly, we will

gain a deeper insight into SpringRank including why and how it works. In particular, we will

make important connections between SpringRank and the Boltzmann distribution, Random Utility

Models, and linear regression. This will also help us place SpringRank in the larger body of literature

concerning these fields, and reconcile the various interpretations.

Secondly, we will extend the SpringRank model to identify the effect of group characteristics

on the outcomes of the interactions. There are scenarios where some nodes may enjoy advantages

over other nodes due to their group memberships. For instance, chess players may gain an advantage

when they play White (or Black). In such cases, we are interested in distinguishing the “skill” of

the player from the “color advantage” they get from playing White (or Black). We will develop

three models to answer this question. In the process, we will address the problem of identifiability,

the ability to distinguish the skill and group advantage, and state conditions under which the model

is identifiable.

Thirdly, we will extend the SpringRank model to accurately and efficiently update ranks as

new interactions occur over time. As we will see, SpringRank can be computationally expensive.

We will explore a potential algorithm to address the problem and study its viability.

The rest of this thesis follows this natural organization: Chapter 2 formally introduces

SpringRank and is devoted to the first exploration to gain a deeper understanding of SpringRank.

Chapter 3 will deal with the second exploration (and the first extension) to identify the effect of

group characteristics on outcomes of interactions. In Chapter 4, we will concern ourselves with

the third exploration (and the second extension) to update ranks continuously as new information

comes to light. Finally, Chapter 5 will conclude our findings and discuss possible directions for

future research.

Chapter 2

SpringRank

SpringRank is a physical model for inferring a hierarchical ranking of nodes in a directed

network [De Bacco et al., 2018]. Section 2.1 is dedicated to describing the model in detail following

the original work [De Bacco et al., 2018]. The rest of this chapter is devoted to gaining a better

understanding of SpringRank and how it works. Section 2.2 explores the connection between

SpringRank and the Boltzmann distribution, that is briefly mentioned in [De Bacco et al., 2018].

Section 2.3 motivates the study of SpringRank as a Random Utility Model and helps understand

the position of SpringRank in the larger body of literature concerning pairwise choice comparisons.

Finally, Section 2.4 addresses the resemblance of SpringRank to ordinary least squares.

2.1 The original model

Consider a system with N nodes (players, individuals, universities, etc.) that interact with

each other. Let Aij describe the number of interactions between nodes i and j that suggest i is

ranked above j. In a sports tournament, this might be the number of times i beat j when they

faced off against each other. In faculty hiring, this might be the number of Ph.D. students university

j hired from university i (therefore tending to suggest that university j endorses the quality of

training university i gives its students). In online dating, this might be the number of times i and j

send a first message to a person but only i gets a reply back. Using this data about the outcomes of

many such interactions we can construct a weighted directed network A, where the weight is given

by Aij .

5

Under this setup, ranking algorithms attempt to infer the latent hierarchical ranking of nodes

that generated the observed data. This is the goal of SpringRank.

2.1.1 SpringRank

SpringRank models the ranks as the optimal location of the nodes in a physical system. Each

node i is embedded at location (rank) si, and each interaction i→ j is modeled as a spring with

displacement si − sj . We are free to scale the embedding space and the energy space. So, without

loss of generality, if we set the rest length and the spring constant to 1, the spring corresponding to

the edge i→ j has energy

Hij =
1

2
(si − sj − 1)2, (2.1)

which is minimized when si − sj = 1. The original model explicitly refrains from allowing tunable

parameters, and parameters that can be inferred (or chosen a priori) such as spring constants and

rest lengths for different springs.

The total energy of the system is given by the Hamiltonian

H(s) =
N∑

i,j=1

AijHij =
1

2

N∑
i,j=1

Aij(si − sj − 1)2. (2.2)

The optimal rankings, s∗ = (s∗1, s
∗
2, . . . , s

∗
N), correspond to ranks (locations) that minimize the

energy of the system. We minimize the Hamiltonian by noticing that it is convex in s. Therefore,

we find the optimal ranking of the nodes, s∗, by setting ∇H(s) = 0. This gives us the linear system

[
Dout +Din − (A+AT)

]
s∗ =

[
Dout −Din

]
1,

where 1 is vector of all-ones, and Dout and Din are diagonal matrices whose entries are the weighted

out- and in-degrees, Dout
ii =

∑
j Aij and Din

ii =
∑

j Aji. D
out +Din−(A+AT) is the Laplacian of the

network A. The derivation of this solution is omitted here and can be found in [De Bacco et al., 2018].

However, two other derivations that follow a similar flavor are shown in Sections 3.2.2 and 3.3.2.

For succinctness of notation, we will denote the Laplacian by L and (Dout − Din)1 = d̂.

Further, we will refer to the optimal solution simply by s from this point. So, we can rewrite the

6

system as

Ls = d̂. (2.3)

By construction, L is rank deficient. If there are k disconnected components in the undirected

network of A, rank(L) = N − k. Therefore, rank(L) ≤ N − 1. And, 1 resides in the kernel of L.

This means that the family of solutions s is translation-invariant i.e., translating the ranks by a

constant yields another valid solution. In practice, we solve this system by fixing the position of an

arbitrary node sN = 0, and compute the remaining ranks in an iterative fashion.

SpringRank assigns real-valued ranks to nodes in an embedding. This gives interpretability to

ranks. Further, SpringRank assumes that interactions are more likely to occur between similarly

ranked nodes. This assumption is discussed in detail in Section 2.3.1.

2.1.2 Other ranking methods

As previously noted, ranking is not a problem unique to one field and arises in various

contexts. As a consequence, a plethora of ranking methods exists each with their own advantages

and disadvantages. In this section, we will attempt to discuss some other ranking methods and

explain how SpringRank differs.

There is a class of spectral ranking methods like Eigenvector Centrality [Bonacich, 1987],

PageRank [Page et al., 1999], the method of Callaghan [Callaghan et al., 2003], and Rank Centrality

[Negahban et al., 2017]. The ranks produced by these methods are given by stationary distributions

of different types of random walks. However, by design, they tend to give high ranks to a small

number of important nodes, and provide little information about the lower-ranked nodes. In contrast,

SpringRank provides an embedding of the ranks and relative distances between the ranks of two

nodes are interpretable.

A second class of methods such as Minimum Violation Rank [Slater, 1961, Ali et al., 1986,

Gupte et al., 2011], SerialRank [Fogel et al., 2016], and SyncRank [Cucuringu, 2016] propose ordinal

rankings that minimize various penalty functions. For instance, Minimum Violation Rank (MVR)

7

imposes a uniform penalty for every violation, defined as an edge that has a direction opposite

to the one expected by the rank difference between the two nodes. Non-uniform penalties and

other generalizations are often referred to as agony methods [Letizia et al., 2018]. The problem

with ordinal rankings is, once again, interpretability.

Random Utility Models [Train, 2009] are designed to infer real-valued ranks from pairwise

comparison data. Bradley-Terry-Luce (BTL) model [Bradley and Terry, 1952, Luce, 1959] is one

such model. They assign utilities to various choices and define a probability, based on this utility,

to the direction of an edge conditioned on its existence, but they do not assign a probability to the

existence of an edge. They find applications in instances when an experimenter presents subjects

with choices between pairs of items, and asks them which they prefer. They are commonly used in,

but not limited to, economics. Section 2.3 is devoted to studying SpringRank as a Random Utility

Model.

Another class of methods like David’s Score [David, 1987] and the Colley matrix [Colley, 2002]

compute rankings from proportions of wins and losses. Widely used win-loss methods such as Elo

score [Elo, 1978], TrueSkill [Herbrich et al., 2007], and Go Rank [Coulom, 2008] update ranks after

every match rather than taking all previous interactions into account. This specialization makes

them useful when ranks evolve over sequential matches, but less useful otherwise. In Section 2.3, we

briefly discuss how SpringRank is similar to one such method called Elo++ [Sismanis, 2010].

The methods highlighted in this section illustrate the range of techniques used to construct

rankings from pairwise interaction data. Though many others exist, we now focus on some of the

more popular approaches, comparing each one to SpringRank

2.2 SpringRank and the Boltzmann distribution

Consider a thermodynamic system consisting of multiple particles. The Boltzmann distribution

gives us the probability of each microstate (a configuration of the particles) existing in the system

as a function of its energy. In particular, at temperature T , if a microstate x has energy Ex, the

8

probability of this microstate existing is given by

P (x) ∝ e−Ex/kT ,

where k is the Boltzmann constant. To normalize the probability, we use the canonical partition

function,

Q =
∑
j∈X

e−Ej/kT

=⇒ P (x) =
1

Q
e−Ex/kT

where X is the set of all possible microstates.

SpringRank uses the Boltzmann distribution to make predictions of outcomes. This intuitively

makes sense because SpringRank is a physical system where each spring contributes to the total

energy of the system, which we wish to minimize. In SpringRank, (oriented) springs constitute the

microstates whose energy is given by the corresponding Hamiltonian contribution. For instance,

take a spring oriented from i→ j. According to the Boltzmann distribution, the probability of this

microstate is

P (i→ j) ∝ e−βHij

where β = 1/kT is the inverse temperature and Hij = 1
2(si − sj − 1)2. Finally, since the Boltzmann

distribution maximizes entropy of the system, SpringRank can be thought of as a maximum entropy

model.

Consider an instance where i and j interact and there is only one winner. There are two

possible outcomes: (1) i beats j, or (2) j beats i. These two outcomes correspond to two possible

microstates: (1) a spring oriented i→ j, or (2) a spring oriented j → i. Without loss of generality,

we can compute the probability that i beats j, P (i→ j), as

P (i→ j) =
e−βHij

e−βHij + e−βHji
(2.4)

=
1

1 + e−2β(si−sj)
(2.5)

9

2.3 SpringRank and Random Utility Models

Now, let us take a step back and consider Random Utility Models (RUMs) [Train, 2009]. In

this scenario, an agent is given multiple items to choose a single item from. Each item x has an

observed utility ux for the agent. Each item also has an unobserved utility, εx for the agent. The

agent tries to maximize the utility. Random Utility Models model the decision of the agents.

According to the Bradley-Terry-Luce model (BTL) [Bradley and Terry, 1952, Luce, 1959], a

commonly used RUM, the probability that the agent chooses an item x from a set of items X is

given by the multinomial logit distribution,

P (x) =
eux∑
j∈X e

uj
.

Multinomial logit model assumes that the unobserved utility is drawn from a Gumbel distribution

[Train, 2009]. If the agent is presented only two choices, i and j, the probability that the agent

chooses i over j is given by

P (i→ j) =
eui

eui + euj

=
1

1 + e−(ui−uj)
(2.6)

Observe that the predictions from SpringRank (Equation 2.5) and RUM (Equation 2.6) both

follow the logistic distribution. In fact, we can interpret SpringRank as a Random Utility Model.

In SpringRank, if we know that i and j interact with each other (and that exactly one of them

will win), there are two possible microstates – two directed springs. So, in the language of RUMs,

the choice is actually between the two directed springs, where the utility of each spring is given

by −βHij and −βHji respectively. RUMs consider the utility of the choice items, ui, uj whereas

SpringRank considers the utility of the choice itself −βHij ,−βHji. In other words, SpringRank

recasts the springs as the choice items. The spring i→ j corresponds to the statement (decision)

that i beats j.

Note that, we can add a constant to all of the utilities, and the results (probabilities and

decisions) remain the same. So, to make the utilities positive in SpringRank, we can add the same

10

constant to all the utilities without changing the results. Although this is worth observing, we will

not do that.

A missing piece of this interpretation is the unobserved utilities in SpringRank. This question

is addressed in Section 2.5.

2.3.1 The quadratic utility

SpringRank models the utilities as a quadratic function. This has three interesting implications

in the generative model. Firstly, SpringRank operates differently in how it places edges in the

network. Assume that all ranks si are fixed. We wish to add a new edge (a spring) to the system.

The probability of this new edge is given by the Boltzmann distribution,

P (i→ j) ∝ e−βHij .

According to this model, there is a high probability of adding an edge between i and j when e−βHij

is large i.e., when Hij is small. Hij is small whenever i and j are close to each other. Therefore,

SpringRank chooses to add edges between choices that are similarly positioned (ranked). And the

model is forced to compromise when we need to make a choice between two items that are very far

apart.

This is a well-motivated assumption. Sports tournaments and leagues are often designed to

match players or teams based on similar skills [Szymanski, 2003, Baumann et al., 2010]. Further,

[Hobson and DeDeo, 2015] find that this is also the case in parakeets’ pecking order. Newly

introduced birds have one bit of information on the other birds: are you below me or above me

in the hierarchy? However, once they settle, after about a week, they start targeting just a little

down the hierarchy. From the bird cognition point of view, this suggests that they can now estimate

more than one bit about the other birds: how far above or below me are you? This is exactly what

SpringRank is asking when placing new edges.

Secondly, the quadratic utility is that SpringRank functions, doubly, as regularization. In

the absence of other information, SpringRank will place things near each other. RUMs like BTL

11

maximize the separation as much as possible. This prevents the ranks from diverging to ±∞. This

regularization can also be thought of as a consequence of the maximum entropy framework provided

by the Boltzmann distribution.

Finally, due to the coupled utility, SpringRank’s requirement for inference is that the undirected

graph needs to be connected. On the other hand, BTL requires the directed graph to be strongly

connected.

2.3.2 SpringRank as a Context Dependent Random Utility Model

The Context Dependent Random Utility Model (CDM) [Seshadri et al., 2019] is an extension

to the multinomial logit model that allowed for a general choice system in which the utility of an

item is uniquely expanded into contextual utilities,

u(x | C) =
∑

B⊆C\{x}

v(x | B)

= v(x)︸︷︷︸
1st order

+
∑

y∈C\{x}

v(x | {y})

︸ ︷︷ ︸
2nd order

+ · · ·+ v(x | C \ {x})︸ ︷︷ ︸
|C|th order

where C is a subset of X that has more than two elements. Here the pth order terms represent

the contextual contributions to the utility that is not already modeled by lesser order terms.

By truncating this expansion at order p, they develop a class of models called Mp. This leads

to n − 1 classes of models: M1 ⊂ M2 ⊂ . . .Mn−1 where Mn−1 is the universal logit model

[McFadden et al., 1977]. Further, M1 is the multinomial logit model:

P (x | C) =
ev(x)∑
y∈C e

v(y)

They refer toM2, the minimal model that accounts for context effects, as the context dependent

random utility model. In particular, they re-parametrize the utility as uxz = v(x | {z})− v(x) as

the “pairwise push and pull of z on x’s utility” and rewrite the choice probability as

P (x | C) =
exp(

∑
z∈C\{x} uxz)∑

y∈C exp(
∑

z∈C\{x} uyz)
.

12

Notice that SpringRank is exactly a CDM when C = {x, y}. SpringRank cannot say anything

about an arbitrarily sized C as the SpringRank choices are always between directed springs between

two nodes. In the language of CDM, v(x) = βsx and v(x | {y}) = −β
2 (s2

y + s2
x − 2sxsy + 2sy + 1)

are the “pairwise push and pull”.

The authors note that the pairwise contextual utilities uxy can be modeled by a lower-

dimensional parameterization, defined as the low-rank CDM. The utilities jointly admit a low-rank

factorization uxy = cTy tx, where tx, cx ∈ Rr are the target and context vectors, and r is the rank of

the CDM. Finally, they state that this featurization must by learned as we assume that it is not

available in the notion of contextual utility.

2.3.3 SpringRank as a Blade-Chest model

The Blade-Chest model [Chen and Joachims, 2016a, Chen and Joachims, 2016b] is aimed

at learning possibly intransitive relations from pairwise comparison data. In Blade-Chest, the

probability that i beats j is also modeled as a logistic function, but differs in the argument:

P (i beats j) =
1

1 + exp(−M(i, j))

where M(i, j) is the matchup function of i and j. Notice that M(i, j) = ui − uj recovers the

multinomial logit, or the BTL model. Using this function, they define a N ×N skew-symmetric

matchup matrix M where Mij = M(i, j).

They define two d dimensional vectors iblade, ichest. These vectors can be viewed as the

“attack” and “defense” of an item, and the interaction between these terms forms the basis of the

matchup function. In particular, they describe two matchup functions – the Blade-Chest dist and

Blade-Chest inner model – that represent any possible matchup matrix:

M(i, j) = ‖jblade − ichest‖22 − ‖iblade − jchest‖
2
2 Blade-Chest dist model

M(i, j) = iblade · jchest − jblade · ichest Blade-Chest inner model

The authors term the ability of these two models to represent any possible matchup matrix as

13

expressiveness. They also remark, “although the two models are closely related, neither one

generalizes the other.”

Observe that there are a couple of resemblances and allusions to how SpringRank works.

Firstly, the probability that i beats j in SpringRank also reduces to the logistic function. However, it

is not as straightforward as BTL which brings us to the second observation. The matchup function

in Blade-Chest represents the interaction between the two choice items. The utilities in SpringRank

perform a similar role.

This naturally raises the question, what is the Blade-Chest representation of SpringRank?

As SpringRank involves Hamiltonians, it is easier to construct the Blade-Chest dist model with

iblade = si, ichest = si + 1 and notice that

M(i, j) = ‖jblade − ichest‖22 − ‖iblade − jchest‖22

= (sj − si − 1)2 − (si − sj − 1)2

The Blade-Chest inner formulation is less straightforward. Given that neither model generalizes

the other, it is unclear if such a formulation even exists. However, in Section 2.3.2, we noted that

CDMs admit a low-rank factorization. Since SpringRank is also a CDM, the contextual utilities

must admit a factorization into target and context vectors. In the language of Blade-Chest,

these correspond to the blade and chest vectors. So, indeed, SpringRank can be formulated as a

Blade-Chest inner model, whose vectors need to be learned.

At this point, it is important to note that Blade-Chest abstracts away from the utilities

associated with the choice items. In Section 2.3.4, we construct a family of utilities, using the

SpringRank model as inspiration, that give rise to the multinomial logit model.

2.3.4 A family of utilities

Consider an arbitrary utility for the choice x→ y, u(x, y), we want the difference in utilities

u(x, y) − u(y, x) = k(x − y) to give rise to a multinomial logit. Looking at the degree n Taylor

14

polynomial, we have

u(x, y) =

n∑
p=0

n−p∑
q=0

kp,qx
pyq, (2.7)

where kp,q are real constants. In order to generate the multinomial logit, the coefficients need to

satisfy the following:

kp,p = free constant (2.8)

k1,0 6= k0,1 (2.9)

kp,q = kq,p, (p, q) 6= (1, 0), (0, 1) (2.10)

We can easily verify that the Hamiltonian in SpringRank satisfies this condition.

Now, instead, if we want the utility to be a function of a linear combination of x, y i.e.,

u(x, y) = u(ax + by + c), we notice that this utility cannot have any (ax + by + c) term with an

exponent larger than 2. To see why, let

u(x, y) = (ax+ by + c)n, n ≥ 3

where the coefficient of xpyq is given by

kp,q =
(n)!

p!q!(n− p− q)!
apbqcn−p−q.

First, consider the case where n is odd. From Equation 2.10, kn,0 = k0,n. Therefore a = b as n is

odd. But, from Equation 2.9, k1,0 6= k0,1 gives a 6= b. This is a contradiction.

Now, consider the case where n is even. Similarly Equation 2.9 gives a 6= b. From Equation

2.10, kn,0 = k0,n. This gives a = ±b. Therefore, a = −b. But, then k1,2 6= k2,1. This is a

contradiction. Therefore, u(x, y) have any (ax+ by + c) term with an exponent larger than 2.

Notice that SpringRank captures all possible quadratic solutions if we recall that the rest

length of the spring was arbitrarily scaled to 1. In other words, SpringRank captures all possible

utilities that build in regularization.

15

2.3.5 Other related models

Another pairwise ranking model that achieves a similar effect to SpringRank is Elo++

[Sismanis, 2010]. Sismanis attempts to rank chess players and predict the outcome of chess games

by combining a logistic error term with a quadratic term that acts as regularization by penalizing

ranks that deviate away from the average rank of their neighbors as

ŝi =

∑
k wiksk∑
k wik

pij =
1

1 + exp(sj − si − γ)

l =
∑
i,j

wij(pij − oij)2 + λ
∑
i

(si − ŝi)

where wij is a weight based on how recently i and j played (larger value indicating more recency),

oij is the outcome of that game, γ, λ are global parameters and l is the total loss. Notice that ŝi is

the average rank of the neighbors of player i, weighted by how recently they played. The aim of

Elo++ is to find ranks si that minimize the loss l.

As a consequence of the regularization, the rank of i is pulled closer to the average of the

ranks of neighbors. This suggests that the rank of a player is similar to that of their opponents.

Under the microstate interpretation of SpringRank, the probabilistic model suggests the same by

favoring (assigning a higher likelihood) to edges whose nodes are similarly ranked. The energy of

the spring automatically kicks in the same effect of the regularization of Elo++.

Two key differences between Elo++ and SpringRank are: (1) Elo++ attempts to minimize

the prediction accuracy explicitly and simultaneously, while SpringRank does it implicitly through

the probabilistic model, and (2) Elo++ weighs games based on how recently it occurred, while

SpringRank is agnostic to time.

2.4 SpringRank as linear regression

Recall that the Hamiltonian is described as

H(s) =
1

2

∑
i,j

Aij(si − sj − 1)2

16

=
1

2

∑
i,j

(
√
Aij(si − sj)−

√
Aij)

2.

Our goal is to minimize H(s). Notice that this resembles the method of least squares to solve a

linear regression problem. And we can recover the linear system that generates this least squares

formulation.

√
A11 0 . . . 0

0
√
A12 . . . 0

...
...

. . .
...

0 0 . . .
√
Ann

s1 − s1

s1 − s2

...

sn − sn

=

√
A11

√
A12

...

√
Ann

=⇒ A
1
2

n2

s1 − s1

s1 − s2

...

sn − sn

= A

1
2

n21. (2.11)

We can rewrite the vector with difference in scores as

s1 − s1

s1 − s2

...

s1 − sn

s2 − s1

...

sn − sn

=

s1

s1

...

s1

s2

...

sn

−

s1

s2

...

sn

s1

...

sn

=

1 0 . . . 0

1 0 . . . 0

...
...

...
...

1 0 . . . 0

0 1 . . . 0

...
...

...
...

0 0 . . . 1

s1

s2

...

sn

−

1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

1 0 . . . 0

...
...

. . .
...

0 0 . . . 1

s1

s2

...

sn

= I
(+)
n2 s− I

(−)
n2 s

= Ĩn2s. (2.12)

Therefore, SpringRank can be re-imagined as solving the following regression problem via the

method of least squares

A
1
2

n2 Ĩn2s = A
1
2

n21. (2.13)

17

Observe that Ĩn2 does not have linearly independent columns. Therefore, A
1
2

n2 Ĩn2 also does

not have linearly independent columns. As a consequence, s cannot be determined uniquely. This is

not surprising as we already know from SpringRank that s is translation-invariant.

Notice that if we attempt to directly solve this linear system using least squares, we have to

pre-multiply by (A
1
2

n2 Ĩn2)T . And we get

(A
1
2

n2 Ĩn2)TA
1
2

n2 Ĩn2s = (A
1
2

n2 Ĩn2)TA
1
2

n21

=⇒ ĨTn2A
1
2

T

n2 A
1
2

n2 Ĩn2s = ĨTn2A
1
2

T

n2 A
1
2

n21

=⇒ ĨTn2An2 Ĩn2s = ĨTn2An21. (2.14)

The last equation is simply a decomposition of

Ls = d̂.

Therefore, we recover the SpringRank solution. This verifies the alternative least squares formulation

of the problem.

Now, let us take a step back to the regression equations. We have

√
Aij(si − sj) =

√
Aij + εij , ∀i 6= j (2.15)

where εij is some unobserved quantity, which we will call residuals. We can obtain certain nice

properties by assuming that εij is drawn from some fixed probability distribution.

For instance, Gauss-Markov Theorem [Amemiya, 1985] asserts that under Gauss-Markov

assumptions, which are

(i) E(εij) = 0, ∀ i, j,

(ii) V ar(εij) = σ2 <∞, ∀ i, j, and

(iii) Cov(εij , εkl) = 0, whenever i 6= k and j 6= l,

the least squares estimate ŝ is the best linear unbiased estimator. It is best in the sense that is

optimal to minimizing the mean squared error (the Hamiltonian). It is linear in the outcome

18

variables,
√
Aij . And, it is unbiased as E(ŝ) = s. However, note that we may have to translate ŝ

appropriately in order to satisfy the unbiased property, although it will not invalidate the other two

properties.

Further, if we assume normality i.e., ε ∼ Normal(0, σ2I), then the estimator ŝ is also normally

distributed, ŝ ∼ Normal(s, σ2Q) [Amemiya, 1985]. Here Q = ((A
1
2

n2 Ĩn2)TA
1
2

n2 Ĩn2)−1 is the cofactor

matrix. We can simplify this

Q = ((A
1
2

n2 Ĩn2)TA
1
2

n2 Ĩn2)−1

= (ĨTn2A
1
2

T

n2 A
1
2

n2 Ĩn2)−1

= (ĨTn2An2 Ĩn2)−1

= L−1

where L is the Laplacian of the network A. So, ŝ ∼ Normal(s, σ2L−1). Of course, this holds

assuming that we shift ŝ and s appropriately and that we define L−1 as the Moore-Penrose

pseudo-inverse because L is rank deficient.

This is interesting because [De Bacco et al., 2018] show that if we assume a multivariate

Gaussian distribution for s with covariance matrix Σ, and use the formulation given by the

Boltzmann distribution, we get that the covariance matrix Σ = 1
βL
−1.

2.5 Reconciliation

The results in the preceding sections are intriguing. In Section 2.2, we started with the

Boltzmann distribution to predict states in the SpringRank model. These states correspond to edge

directions i.e., the Boltzmann distribution characterized the probability that node i beats node j.

And this characterization is natural as SpringRank is a physical system of springs.

In Section 2.3, we saw that the multinomial logit model, a Random Utility Model, characterizes

the same probability in a similar manner. We reconciled the two models saying that SpringRank

is also a Random Utility Model. In particular, there is a generalized version of multinomial logit

models, called the context dependent random utility model and SpringRank is just a special case

19

of the generalization. Through this lens, we decomposed the observed utility of choosing a winner

into the utility determined solely by the winner and the contextual utility determined as a function

of the opponent. However, we observed that there is a missing piece to the puzzle: what is the

unobserved utility in the RUM formulation of SpringRank?

In Section 2.4, we discovered that SpringRank is a least squares solution to a linear regression

problem with normally distributed residuals. We also noted that this is the same result obtained

from the Boltzmann distribution. So, if the residuals, εij ∼ Normal(0, σ2), then

√
Aij(si − sj − 1) ∼ σNormal(0, 1)

=⇒ 1

2
(si − sj − 1)2 ∼ σ2

Aij
χ2

1

=⇒ −βHij ∼
−βσ2

Aij
χ2

1 (2.16)

where we assume Aij 6= 0 and χ2
1 is the Chi-squared distribution with 1 degree of freedom. And

this completes the Random Utility Model formulation. The unobserved utilities in SpringRank are

drawn from a Gaussian distribution and takes the form of a Chi-squared distribution.

We have closed the problem of interpreting SpringRank through various perspectives by

realizing that they offer the same insights. These interpretations are simply different sides to the

same problem, each more natural in a particular context: When we want to infer the ranks from

observed data, we use the least squares approach. When we wish to predict new edges i.e., winners

in future interactions, we use the Boltzmann distribution. When we want to study the contextual

effects of choosing the direction of the edge i.e., the winner in presence of different nodes, a Random

Utility Model is best suited.

Chapter 3

SpringRank with Groups

There are scenarios where the nodes that are interacting may have an advantage (or disad-

vantage) that could potentially influence the outcome. For instance, in turn-based games such as

chess we may believe that the player who goes first may gain an advantage. Home-field advan-

tage in sports has been well studied [Courneya and Carron, 1992, Jones, 2007, Lidor et al., 2010].

[Clauset et al., 2015] report a hierarchical structure in faculty hiring that reflects a social inequality.

When viewed as a competition for endorsements (e.g., by hiring doctoral students), this suggests

that some institutions may enjoy an advantage over others. Further, there may be arbiters, having

different preferences, who judge the outcome of the interaction. [Bruch and Newman, 2019] find

that such a racial stratification occurs in online dating platforms.

These situations raise the question, how can we use SpringRank to identify these group

preferences? SpringRank, by itself, does not account for such preferences. In this chapter, we

develop methods to address this problem. In Section 3.1, we discuss some existing methods that

tackle similar situations. In Section 3.2, we develop a model that takes into account group preferences

when ranking nodes, assuming that group preferences are constant with respect to nodes. In Section

3.3, we extend the model to consider scenarios where arbiters making decisions have different group

preferences, relaxing the constant group preferences assumption. Finally, in Section 3.4, we explore

the model identifiability problem that arises throughout this chapter.

21

3.1 Related work

We want to infer the effect of group characteristics on the outcomes of interactions be-

tween nodes in the system. This is reminiscent of hierarchical models (or multilevel models)

[Gelman and Hill, 2006]. Hierarchical models are often used when the data is nested. In such

scenarios, each observation (node) is a member of a group and the group membership has significant

effects on the outcome (ranks). Hierarchical models are used to estimate parameters that vary at

more than one level i.e., at the group and individual level. [Slaughter and Koehly, 2016] discusses a

hierarchical Bayesian approach to modeling exponential random graphs.

There has been work done in ranking individuals based on exclusively group comparisons,

such as players in team-based games [Huang et al., 2008]. This does not help us because our system

does not consist of just inter-group interactions; it also consists of intra-group interactions. There is

also an existing body of literature that discusses network generation algorithms that produces high

clustering of nodes [Ravasz and Barabási, 2003, Noh, 2003]. While we can estimate the parameters

of such generative algorithms from data, this does not generalize well to systems where the group

information is not correlated with the structure of the network.

3.2 Introducing groups for nodes

SpringRank is agnostic to characteristics that differentiate nodes thereby giving advantage (or

disadvantage) with respect to the outcomes. By being able to identify these group preferences (or

equivalently, penalties), we can get better insights into the behavior of the system. At this point, it

is important to distinguish group memberships and community structure in networks. Community

structure can be inferred from the network. Group membership information, which is the focus

here, need not be evident from the structure of the network.

In this section, we extend the SpringRank model to infer these group preferences. Throughout

this section, we will assume that the group preference for each node remains fixed. In other words,

if a node i has a group preference θi, then it will have the same group preference in all of its

22

interactions recorded in the data. In Section 3.3, we will relax the assumption and deal with a more

general situation.

3.2.1 Redefining the hamiltonian

Recall that in the original model, we set all springs to have the same rest positions. Here, we

allow different springs to have different rest positions. In particular, we have a priori knowledge

about the group memberships of the nodes. So, each node’s final combined rank is a function of its

individual rank (score) and the group membership. All nodes in a particular group have the same

rest position. Consequentially, nodes belonging to one group may have an advantage over a different

group, while nodes in the same group do not. These group preferences allow us to incorporate

nested structure of the network when ranking its members. This nested structure can be given as

such, or inferred from the network itself.

Now, assume there are k groups in the network, where 0 < k ≤ N . The group membership is

given by the matrix G ∈ RN×k, where Git = 1 if node i belongs to group t and 0 otherwise. We can

also define Git = δgi,t. Here, δa,b is the Kronecker delta such that,

Git = δgi,t =

1, gi = t

0, gi 6= t

.

Let θ ∈ Rk denote the group penalties, where θt is the penalty for the tth group. Finally, let

si denote the rank (or total score) and ai denote the individual score for node i. So, the spring

corresponding to the edge i→ j has energy,

Hij =
1

2
(si − sj − 1)2

=
1

2
([ai + θgi]− [aj + θgj]− 1)2, (3.1)

where gi is the group that node i belongs to. Therefore, the total energy of the system is given by

the revised Hamiltonian

H(a,θ) =

N∑
i,j=1

AijHij =
1

2

N∑
i,j=1

Aij([ai + θgi]− [aj + θgj]− 1)2. (3.2)

23

3.2.2 Minimizing the hamiltonian

To minimize the Hamiltonian, observe that it is convex in a and θ. Therefore, we can find

the optimal ranking, a, and the optimal group penalties, θ, by solving ∇H(a,θ) = 0.

To solve ∇H(a,θ) = 0, where H is defined in Equation 3.2, first consider ∂H
∂ai

.

∂H

∂ai
=
∑
j

Aij([ai + θgi]− [aj + θgj]− 1)−
∑
j

Aji([aj + θgj]− [ai + θgi]− 1)

= (ai + θgi)
∑
j

Aij −
∑
j

Aij(aj + θgj)−
∑
j

Aij

+ (ai + θgi)
∑
j

Aji −
∑
j

Aji(aj + θgj) +
∑
j

Aij .

Now, let dout
i =

∑
j Aij and din

i =
∑

j Aji. Further, for the sake of convenience, let us define a new

vector θg ∈ RN such that the ith element of θg denotes the group preference for node i. Thus,

∂H

∂ai
= (ai + θgi)(d

out
i + din

i)−
(
(A+AT)(a+ θg)

)
i
− (dout

i − din
i).

We want ∂H
∂ai

= 0. So,

(ai + θgi)(d
out
i + din

i)−
(
(A+AT)(a+ θg)

)
i

= (dout
i − din

i).

Now, we can rewrite this as a system of N equations by recalling that Dout and Din are diagonal

matrices representing the out- and in-degrees. This gives us

[Dout +Din − (A+AT)](a+ θg) = [Dout −Din]1.

Here, 1 is the all-ones vector of appropriate dimension. Notice that θg = Gθ. Therefore, we can

write the linear system as

[Dout +Din − (A+AT)](a+Gθ) = [Dout −Din]1. (3.3)

Now, consider ∂H
∂θt

. This is more difficult to represent using θgi because more than one node

can belong to the same group. So, using the Kronecker delta, equivalently we have

∂H

∂θt
=
∑
i,j,r

Aij([ai + θt]− [aj + θr]− 1)δgi,tδgj ,r −
∑
i,j,r

Aij([aj + θr]− [ai + θt]− 1)δgi,tδgj ,r.

24

To simplify, it is worth investigating each term in this equation individually.

∑
i,j,r

Aijaiδgi,tδgj ,r =
∑
i

aiδgi,t
∑
j,r

Aijδgj ,r

=
∑
i

aiδgi,t
∑
j

Aij (
∑
r

becomes redundant.)

=
∑
i

aid
out
i δgi,t =

∑
i

GTtiD
out
ii si (GTti = Git = δgi,t)

= (GTDouta)t.∑
i,j,r

Ajiaiδgi,tδgj ,r = (GTDina)t. (a similar argument)

∑
i,j,r

Aijθtδgi,tδgj ,r = θt
∑
i

δgi,t
∑
j,r

Aijδgj ,r

= θt
∑
i

δgi,t
∑
j

Aij (
∑
r

becomes redundant.)

= θt
∑
i

dout
i δgi,t = θt

∑
i

GTtiD
out
ii Git (GTti = Git = δgi,t)

= (GTDoutG)ttθt = (GTDoutGθ)t.∑
i,j,r

Ajiθtδgi,tδgj ,r = (GTDinGθ)t. (a similar argument)

∑
i,j,r

Aijajδgi,tδgj ,r =
∑
i

δgi,t
∑
j

Aijaj
∑
r

δgj ,r

=
∑
i

δgi,t
∑
j

Aijaj (
∑
r

becomes redundant.)

=
∑
i

δgi,t(Aa)i =
∑
i

GTti(Aa)i (GTti = Git = δgi,t)

= (GTAa)t.∑
i,j,r

Ajiajδgi,tδgj ,r = (GTATa)t. (a similar argument)

∑
i,j,r

Aijθrδgi,tδgj ,r =
∑
i

δgi,t
∑
j

Aij
∑
r

θrδgj ,r

=
∑
i

δgi,t
∑
j

Aij
∑
r

Gjrθr (Gjr = δgj ,r)

25

=
∑
i

δgi,t
∑
j

Aij(Gθ)j =
∑
i

GTti(AGθ)i (GTti = Git = δgi,t)

= (GTAGθ)t.∑
i,j,r

Ajiθrδgi,tδgj ,r = (GTATGθ)t. (a similar argument)

∑
i,j,r

Aijδgi,tδgj ,r =
∑
i

δgi,t
∑
j

Aij
∑
r

δgj ,r

=
∑
i

δgi,t
∑
j

Aij (
∑
r

becomes redundant.)

=
∑
i

dout
i Git =

∑
i

GTtiD
out
ii Git (GTti = Git = δgi,t)

= (GTDoutG)t.∑
i,j,r

Ajiδgi,tδgj ,r = (GTDinG)t. (a similar argument)

Substituting these simplifications into ∂H
∂θt

= 0, we have

[
GT (Dout +Din − (A+AT))s

]
t
+
[
GT (Dout +Din − (A+AT))Gθ

]
t

=
[
GT (Dout −Din)G

]
t
.

Now, we can rewrite this as a system of k equations

[
GT (Dout +Din − (A+AT))

]
(a+Gθ) =

[
GT (Dout −Din)G

]
1,

where 1 is the vector of all-ones. If we impose the restriction that a node belongs to exactly one

group, we can simplify G1 = 1 (assuming they are of appropriate dimensions). This gives us

[
GT (Dout +Din − (A+AT))

]
(a+Gθ) =

[
GT (Dout −Din)]1. (3.4)

Equations 3.3, 3.4 give us the following linear systems:

L(a+Gθ) = d̂, (3.5)

GTL(a+Gθ) = GT d̂, (3.6)

where L = Dout +Din − (A+AT) and d̂ if the difference between out- and in-degrees. We can also

visualize this as a single system of N + k equations if we concatenate a and θ vectors as L LG

GTL GTLG

a
θ

 =

 d̂

GT d̂

 . (3.7)

26

3.2.3 Generalizing to arbitrary number of group characteristics

We can generalize the results in the previous section to m sets of group characteristics. For

characteristic i, let ki denote the number of groups, Gi ∈ RN×ki denote the group membership

matrix for characteristic, and θi ∈ Rki denote the preferences vector.

We get the following linear systems:

L(a+
m∑
j=1

Gjθj) = d̂, (3.8)

GTi L(a+
m∑
j=1

Gjθj) = GTi d̂, 1 ≤ i ≤ m. (3.9)

If we visualize this as a single system of N +
∑m

i=1 ki equations, we have:

L LG1 LG2 . . . LGm

GT1 L GT1 LG1 GT1 LG2 . . . GT1 LGm

GT2 L GT2 LG1 GT2 LG2 . . . GT2 LGm

...
...

...
. . .

...

GTmL GTmLG1 GTmLG2 . . . GTmLGm

a

θ1

θ2

...

θm

=

d̂

GT1 d̂

GT2 d̂

...

GTmd̂

. (3.10)

3.2.4 Regularization

Observe that Equation 3.6 is identical to Equation 3.5, but left multiplied by GT . This is in fact

an underdetermined system. This system has at least k + 1 degrees of freedom as rank(L) ≤ N − 1.

This means that we cannot infer group penalties because we do not know if node i is inherently

better than j or if it is because group gi is superior to gj . In other words, this is an identifiability

problem. We will take a closer look at this in Section 3.4.

For now, if we introduce L2 regularization for a and θ, with regularization coefficients λa

and λθ respectively, we can get a unique solution to the system. For brevity, we will deal with the

case with only one set of group characteristics, but we can directly extend this idea to m group

characteristics. Specifically, in m = 1 case, we have the regularized Hamiltonian:

Hr(a,θ) = H(a,θ) + 1
2λa||a||

2
2 + 1

2λθ||θ||
2
2. (3.11)

27

We want to solve ∇Hr(a,θ) = 0, which gives:

∇a : ∇aH + λaa = 0,

∇θ : ∇θH + λθθ = 0.

If we define, Λa = λaI and Λθ = λθI, where I is the identity matrix of appropriate dimensions, we

get the following system: L+ Λa LG

GTL GTLG+ Λθ

a
θ

 =

 d̂

GT d̂

 . (3.12)

The regularization coefficients control how much the group preferences and the individual

scores contribute to the final ranks of the nodes. A relatively small λa (compared to λθ) places a

greater importance on the individual scores. On the other hand, a relatively large λa places a greater

importance on the group preferences. The choice of these regularization coefficients determine how

we resolve the identifiability problem.

3.2.5 Results using synthetic data

Here, we present results from synthetic data. We generated data by first assigning groups to

each node, G. Then, we drew individual scores aplanted and group preferences, θplanted from Gaussian

distributions. Thus, the total rank is splanted = aplanted +Gθplanted. Then an average degree 〈k〉 and

inverse temperature β were chosen. Finally, edges were drawn from the generative model described

in the original paper [De Bacco et al., 2018].

For Test 1, we drew individual scores for 500 nodes from Normal(1
2 , 10). We fixed the number

of groups to be 4 and drew the corresponding group preferences from Normal(2, 1
2). Here, β = 0.1,

〈k〉 = 10. The results are shown in Figure 3.1. In each subfigure, the left panel plots the recovered

individual scores â against the planted individual scores a. The middle panel plots the recovered

group preferences θ̂ against the planted group preferences θ. And the right panel plots the recovered

ranks ŝ against the planted ranks s. Figure 3.1(a) corresponds to the solution when regularization

was used. Figure 3.1(b) shows the solution when attempting to resolve identifiability by setting the

28

average individual scores across all groups to 0. Figure 3.1(c) shows the solution when we arbitrarily

set the average individual scores for each group. Note that the final rank ŝ remains unchanged.

This illustrates the non-identifiability problem which is discussed in detail in Section 3.4 (where we

will revisit this experiment).

To introduce variety, in Test 2 we drew individual scores for 600 node. 200 of them were

drawn from Normal(1
2 , 10), 200 from Normal(0, 1

2), 200 from Normal(−1, 1). We fixed the number

of groups to be 4 and drew the corresponding group preferences from Normal(2, 10). The results

are shown in Figure 3.2. The subfigures correspond to plots described above. We performed more

tests under a similar setup but varied the inverse temperature β. These plots can be found in

Appendix A.1.

3.3 Introducing arbiters for interactions

In Section 3.2 we assumed that the group characteristics of nodes directly affect the outcome

of the interactions. In this section, we introduce arbiters who determine the outcomes of interactions.

So, the arbiters’ preferences influence the outcomes. Further, we also assume that the arbiters have

group memberships which determine their preferences. In essence, we are relaxing the assumption

that group preferences stay constant across interactions. However, for now, we still assume that

group memberships remain the same. We will briefly relax this assumption in in Section 3.4 when

studying identifiability.

This is inspired by competition in online dating platforms [Bruch and Newman, 2018]. In

such a system, suitors compete for attention. Concretely, suitor i beats suitor j when i gets the

attention of an arbiter k, but j fails. This happens when i and j send a first message to k, who

replies to i but not j. Suitors have characteristics such as ethnicity, age and education that may give

an advantage. Arbiters also have the same characteristics which may determine their preferences for

suitors. So, an arbiter belonging to group a will have preference θa,s for a suitor belonging to group

s, while an arbiter in group b will have a, possibly, different preference θb,s for suitors in group s.

The problem here is infer these group preferences.

29

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

(c) Setting average individual scores across groups to
(10,−10, 0, 5).

Figure 3.1: Results from Test 1 with synthetic data (without arbiters). N = 500; aplanted ∼
Normal(1

2 , 10); 4 groups; θplanted ∼ Normal(2, 1
2). The individual scores correspond to aplanted and

group preferences refer to θplanted. The ranks refer to the total score of each node (individual and
group preference) i.e., splanted. Here, β = 0.1, 〈k〉 = 10.

30

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure 3.2: Results from Test 2 with synthetic data (without arbiters). N = 600: 200
from Normal(1

2 , 10); 200 from Normal(0, 1
2); 200 from Normal(−1, 1); 4 groups; θplanted ∼

Normal(2, 10). The individual scores correspond to aplanted and group preferences refer to θplanted.
The ranks refer to the total score of each node (individual and group preference) i.e., splanted. Here,
β = 0.1, 〈k〉 = 10.

31

While this question is inspired online dating platforms, the answer is more broadly applicable

to any pairwise comparison data. Consider a different scenario where a researcher presents pairs

of items to an arbiter, who is to choose one item. In the language of Random Utility Models, the

arbiter gains some utility from choosing each item and attempts to maximize their utility. Of course,

each arbiter may gain different utilities from the same item (in the same situation). The problem,

then, is to identify these preferences that are characteristic to arbiters.

To make this concrete, consider a situation where a publisher is choosing book covers for a

book. The publisher knows that people are more likely to buy the book if the cover appeals to

them. Further, different target audiences, based on age and region, may have different preferences

for book covers. The question here is to identify these different preferences.

To motivate the solution, we will use the example of suitors and arbiters in Sections 3.3.1

and 3.3.2. After that, we will switch the terminology and refer to suitors as items (and continue

using arbiters). This is to remind ourselves of the broader applicability.

3.3.1 Redefining the hamiltonian

Consider a situation with N suitors and M arbiters. The matrix F ∈ RN×M denotes the

first message indicators. Fik = 1 if suitor i sent a first message to arbiter k, and 0 otherwise. Let

R ∈ RN×M denote the reply indicators. Rik = 1 if arbiter k replied to a first message sent by suitor

i, and 0 otherwise. Consequentially, let us define R̄ = 1 − R for convenience. Hence, R̄ik = 0 if

arbiter k replied to a first message sent by suitor i, and 1 otherwise. Using this notation, we can

construct the adjacency matrix, A ∈ RN×N , for the directed network as follows:

Aij =

M∑
k=1

FikFjkRikR̄jk.

In other words, Aij denotes the number of times suitor i beat j in the competition for attention. It

is the number of times i and j sent a first message to the same arbiter say k (FikFjk), and that

arbiter k chose to reply to i, but not j (RikR̄jk).

Let the suitors be grouped into n groups and the arbiters into m. Let gx denote the group

32

membership of individual x. Let GS ∈ RN×n denote the group membership matrix of suitors.

Further, let A(t) denote the directed network formed when we only consider the competitions for

arbiters in group t i.e., competitions decided by arbiters belonging to group t. Clearly, A =
∑m

t=1A
(t).

With this group membership information, we can introduce group preferences for arbiters. Let us

define this group preference matrix by Θ ∈ Rm×n where Θrs is the group preference of arbiters in

group r for suitors in group s. Further, let θr ∈ Rn be the vector of group preferences of arbiters in

group r. It is easy to see that this corresponds to row r in the matrix Θ.

Now, we are ready to define the new Hamiltonian, H(a,Θ):

H(a,Θ) =
1

2

∑
i,j

∑
k

FikFjkRikR̄jk(ai + Θgk,gi − aj −Θgk,gj − 1)2, (3.13)

where ai is the individual rank (or score) for suitor i. If Θ is identically 0, we recover the original

SpringRank model defined in Equation 2.2 as Aij =
∑

k FikFjkRikR̄jk. Further, if there is only

one group for the arbiters, we recover SpringRank with groups (and without arbiters) defined in

Equation 3.2.

3.3.2 Minimizing the hamiltonian

We minimize the Hamiltonian by noticing that it is once again convex in a and Θ. So, we

can minimize the energy, by solving for ∇H(a,Θ) = 0.

To solve for ∇H(a,Θ) = 0, first, consider ∂H
∂ai

:

∂H

∂ai
=
∑
j,k

FikFjkRikR̄jk(ai + Θgk,gi − aj −Θgk,gj − 1)

−
∑
j,k

FjkFikRjkR̄ik(aj + Θgk,gj − ai −Θgk,gi − 1).

Let us look at just the first term,

∑
j,k

FikFjkRikR̄jk(ai + Θgk,gi − aj −Θgk,gj − 1)

= ai
∑
j,k

FikFjkRikR̄jk +
∑
j,k

FikFjkRikR̄jkΘgk,gi −
∑
j,k

FikFjkRikR̄jkaj

33

−
∑
j,k

FikFjkRikR̄jkΘgk,gj +
∑
j,k

FikFjkRikR̄jk

= aid
out
i +

∑
j,t

A
(t)
ij Θt,gi −

∑
j

Aijaj −
∑
j,t

A
(t)
ij Θt,gj − dout

i

= aid
out
i +

(∑
t

D(t),outGSθt

)
i
− (Aa)i −

(∑
t

A(t)GSθt

)
i
− dout

i .

Here, (·)(t) corresponds to the quantity (·) formed by arbiters belonging to group t. The second

term is symmetrical,

∑
j,k

FjkFikRjkR̄ik(aj + Θgk,gj − ai −Θgk,gi − 1)

= −

[
aid

in
i +

(∑
t

D(t),inGSθt

)
i
− (ATa)i −

(∑
t

A(t),TGSθt

)
i
+ din

i

]
.

Combining both, setting the sum to 0, and vectorizing, we get:

La+
m∑
t=1

L(t)GSθt = d̂,

where L is the full graph Laplacian and L(t) is the Laplacian of the graph formed by arbiters

belonging to group t.

Now, consider ∂H
∂Θrs

.

∂H

∂Θrs
=
∑
i,j,k

FikFjkRikR̄jk(ai + Θrs − aj −Θr,gj − 1)δgk,rδgi,s

−
∑
i,j,k

FjkFikRjkR̄ik(aj + Θr,gj − ai −Θrs − 1)δgk,rδgi,s.

This is slightly more complicated. So, let us analyze this term-by-term.

∑
i,j,k

FikFjkRikR̄jkaiδgk,rδgi,s =
∑
i

aiδgi,s
∑
j

∑
k

FikFjkRikR̄jkδgk,r

=
∑
i

aiδgi,s
∑
j

A
(r)
ij

=
(
GTSD

(r),outa
)
s
.∑

i,j,k

FjkFikRjkR̄ikaiδgk,rδgi,s =
(
GTSD

(r),ina
)
s
.

∑
i,j,k

FikFjkRikR̄jkajδgk,rδgi,s =
∑
j

aj
∑
i

δgi,s
∑
k

FikFjkRikR̄jkδgk,r

34

=
∑
j

aj
∑
i

A
(r)
ij δgi,s

=
∑
j

(GTSA
(r))sjaj

=
(
GTSA

(r)a
)
s
.∑

i,j,k

FjkFikRjkR̄ikajδgk,rδgi,s =
(
GTSA

(r),Ta
)
s
.

∑
i,j,k

FikFjkRikR̄jkΘrsδgk,rδgi,s =
∑
j

∑
i

δgi,s
∑
k

FikFjkRikR̄jkΘrsδgk,r

=
∑
j

∑
i

δgi,sA
(r)
ij Θrs

=
∑
j

(GTSA
(r))sjΘrs

=
(
GTSD

(r),outGSθr

)
s
.∑

i,j,k

FjkFikRjkR̄ikΘrsδgk,rδgi,s =
(
GTSD

(r),inGSθr

)
s
.

∑
i,j,k

FikFjkRikR̄jkΘr,gjδgk,rδgi,s =
∑
i

δgi,s
∑
j

∑
k

∑
k

FikFjkRikR̄jkΘr,gjδgk,r

=
∑
i

δgi,s
∑
j

A
(r)
ij Θr,gj

=
∑
i

δgi,s
∑
j,v

A
(r)
ij Θr,gjδgj ,v

= A
(r)
ij Θr,gj (A

rGSθr)s

=
(
GTSA

(r)GSθr

)
s
.∑

i,j,k

FjkFikRjkR̄ikΘr,gjδgk,rδgi,s =
(
GTSA

(r),TGSθr

)
s
.

∑
i,j,k

FikFjkRikR̄jkδgk,rδgi,s =
∑
i,j

δgi,sA
(r)
ij

=
(
GTSd

(r),out
)
s
.∑

i,j,k

FjkFikRjkR̄ikδgk,rδgi,s =
(
GTSd

(r),in
)
s
.

35

This gives us the following linear system:

GTSL
(r)a+GTSL

(r)GSθr = GTS d̂
(r)

Together, this gives us the following linear system:

La+
m∑
t=1

L(t)GSθt = d̂
(t)
, (3.14)

GTSL
(t)a+GTSL

(t)GSθt = GTS d̂
(t)
, 1 ≤ t ≤ m, (3.15)

We can visualize Equations 3.14, 3.15 as a single system of equations:

L L(1)GS L(2)GS . . . L(m)GS

GTSL
(1) GTSL

(1)GS 0 . . . 0

GTSL
(2) 0 GTSL

(2)GS . . . 0

...
...

...
. . .

...

GTSL
(m) 0 0 . . . GTSL

(m)GS

a

θ1

θ2

...

θm

=

d̂

GTS d̂
(1)

GTS d̂
(2)

...

GTS d̂
(m)

. (3.16)

3.3.3 Regularization

Once again, the system is non-identifiable. To see why, notice the following:

m∑
r=1

L(r) = L

=⇒
m∑
t=1

(
GTSL

(t)a+GTSL
(t)GSθt

)
= GTSLa+

m∑
t=1

L(t)GSθt. (3.17)

In other words, Equation 3.15 is a rewritten version of Equation 3.14. This means that the system

is low-rank and the model is non-identifiable i.e., we cannot distinguish the group preferences from

the individual scores. We will take a closer look at identifiability in Section 3.4.

For now, we can make the system full-rank by introducing regularization. With regularization

coefficients λa, λθ1 , λθ2 , . . . , λθm , and the corresponding diagonal matrices Λa,Λθ1 ,Λθ2 , . . . ,Λθm of

appropriate dimensions, we can solve the regularized system described in Equation 3.18.

36

L+ Λa L(1)GS L(2)GS . . . L(m)GS

GTSL
(1) GTSL

(1)GS + Λθ1 0 . . . 0

GTSL
(2) 0 GTSL

(2)GS + Λθ2 . . . 0

...
...

...
. . .

...

GTSL
(m) 0 0 . . . GTSL

(m)GS + Λθm

a

θ1

θ2

...

θm

=

d̂

GTS d̂
(1)

GTS d̂
(2)

...

GTS d̂
(m)

.

(3.18)

The regularization coefficients determine how the scores and group preferences are controlled. A

large regularization coefficient makes the individual score vector (or corresponding group preference

vector) small giving more importance to other vectors when finding a solution.

3.3.4 Results from synthetic data

Here, we present results from synthetic data. We generated data by first assigning groups to

each item. Then, we fixed the number of groups the arbiters can belong to. Then, we drew the

individual scores for the items and the group preferences for each class of arbiters. To generate the

full directed network, we generated a directed network for each group of arbiters like in Section 3.2.

For Test 1, we drew individual scores for 500 items from Uniform(1, 10). We fixed n = m = 4

groups for the items and arbiters. We introduced a systematic bias against the fourth group of items

i.e., a negative group preference drawn from a Normal(0, 1). For others, arbiters from group i had

a positive preference towards items from group i, and no preference for other items. Here, β = 0.5.

The results are shown in Figure 3.3. Figure 3.3(a) shows the solution obtained using regularization.

Figure 3.3(b) shows the solution after correcting for identifiability. The left panel in each subfigure

plots the recovered individual scores against the planted individual scores. Each of the other four

panels plot the recovered group preferences against the planted group preferences, for each group of

arbiters.

For Test 2, we drew individual scores for 600 items from Uniform(1, 10). We fixed n = m = 4

groups for the items and arbiters. This time, the group preferences were completely randomized

37

and drawn from Normal(2, 1). Here, β = 0.1. The results are shown in Figure 3.4. The plots in

each subfigure is described above. We performed more tests whose results are shown in Appendix

A.2 varying β and the distributions from which the ranks were drawn from.

3.4 Model identifiability

In our development of models so far, we have constantly been confronted by model identifiability.

In this section, we will delve deeper into understanding why the models are non-identifiable and

attempt to provide conditions under which we can possibly recover identifiability. Here, we will

concern ourselves only with the case where there are no arbiters i.e., group preferences remain fixed,

for each node, across all interactions. However, the arguments made will generalize to the scenario

with aribters having varied preferences.

Recall that the Hamiltonian is given by Equations 3.1 and 3.2:

Hij =
1

2
(si − sj − 1)2

=
1

2
([ai + θgi]− [aj + θgj]− 1)2, (3.1 revisited)

H(a,θ) =
1

2

N∑
i,j=1

Aij([ai + θgi]− [aj + θgj]− 1)2. (3.2 revisited)

And the solution is given by Equations 3.5, 3.6, and 3.7:

L(a+Gθ) = d̂, (3.5 revisited)

GTL(a+Gθ) = GT d̂, (3.6 revisited) L LG

GTL GTLG

a
θ

 =

 d̂

GT d̂

 . (3.7 revisited)

Here, model identifiability corresponds to finding a unique linear decomposition of si as

si = ai + θgi .

38

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure 3.3: Results from Test 1 with synthetic data (with arbiters). 500 items from Uniform(1, 10).
There are 4 groups for items and arbiters. There is a systematic bias against the fourth group of
items i.e., a negative group preference drawn from a Normal(0, 1). For others, arbiters from group
i had a positive preference towards items from group i, and no preference for other items. Here,
β = 0.5.

39

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure 3.4: Results from Test 2 with synthetic data (with arbiters). 600 items from Uniform(1, 10).
There are 4 groups for items and arbiters. Group preferences were drawn from Normal(2, 1). Here,
β = 0.1.

40

3.4.1 The model is non-identifiable

The operator in Equation 3.7 is low-rank. To see this observe that Equation 3.6 is a compressed

version of Equation 3.5. This is a consequence of attempting to decompose the rank (full score)

of a node, si, into individual score, ai, and group preference (group score), θgi . This is a model

identifiability problem.

The full score of node i is invariant in terms of an arbitrary constant c if we consider the

following shift:

a′i = ai + c

θ′gi = θgi − c

=⇒ s′i = a′i + θ′gi

= (ai + c) + (θgi − c)

= si.

Therefore, the energy of this spring does not change. Now, if we increase the individual scores of

all nodes belonging to group gi by c, the Hamiltonian does not change. Hence, the Hamiltonian

itself is invariant in terms of the constant c. In other words, it is no longer meaningful to compare

the individual scores of nodes (and the groups scores) between two different groups. It is only

meaningful to compare the full scores of nodes.

This confounding of the model is illustrated in Figure 3.1. Figure 3.1(a) shows the solution

when we use regularization. In Figure 3.1(b), we shift the individual scores (and group preferences)

by arbitrary constants such that the average individual score for each group is 0. Firstly, notice that

the final ranks, si remain unchanged. This verifies that the Hamiltonian is still minimized. Then,

notice that the distribution of individual ranks also remains relatively unchanged. This is because

we drew all individual scores from the same Gaussian distribution. In an attempt to confound

the model, in Figure 3.1(b), we shift the individual scores (and group preferences) by arbitrary

constants such that the average individual score for each group is very different. Observe that the

41

final ranks still remain unchanged. However, the individual scores follow different distributions. If

we did not have prior information about the individual scores, it will be impossible to distinguish

results in Figures 3.1(b) and 3.1(c).

Consider an example of chess games. We have a set of players who always play Black and a

different set of players who always play White1. We wish to score (rank) players and understand

how much of their score can be attributed to their inherent skill (individual score) versus the color

of the pieces they play with (group preference). Using this, we wish to compare players based

on their inherent skill. Since the players can only play with the same color, it is impossible for

us to discern their skill from the color they choose. Mathematically, we can arbitrarily increase

the individual scores of all Black players by c units and decrease the group score for Black by c

units. And suddenly, when comparing the inherent skills (individual scores) of Black and White

players, Black players appear to be more highly skilled. But, we could repeat this arbitrary shift

procedure for just the White players and White players will appear to be more skilled than Black

players. Clearly, we cannot decompose the full score into individual and group score preserving

comparability.

3.4.2 The Equality assumption

So, when can we meaningfully compare the individual scores, if at all possible? For now, we

will continue assuming that once a chess player chooses a color, they can never change it.

The decomposition fails because the individual scores for each group becomes coupled with

that particular group preference, but is not directly coupled with the individual scores of different

groups. In other words, we can shift individual scores for nodes within a certain group without

altering the individual scores of other nodes. To make the individual scores comparable across

groups, we can remove the dependence on the group score using the following Equality assumption:

E
[
a | gi = r

]
= E

[
a
]

(3.19)

1In chess, White always goes first.

42

Equation 3.19 means that the average individual score of nodes belonging to a group r, is the same

as the average individual score of all nodes. Note that this is weaker than assuming that nodes

across all groups have identically distributed individual scores. We call this the Equality assumption

because it implicitly says, “All nodes are created equally, on average.” Once this assumption

is satisfied, we can compare the group preferences directly without worrying about confounding

SpringRank.

We will argue that to confront the identifiability problem in the absence of external information,

this assumption is necessary. The word external refers to information about the system that cannot

be inferred from the win-loss and group matrices. For the sake of contradiction, assume that there

is some grouping of nodes F such that each group has a different expected value of individual scores.

There are two cases:

(i) We want to infer group preferences in the same group space i.e., the group preferences are

to be inferred using a grouping G that is a partition of F .2 Any group preference that G

provides will become indistinguishable from F because we will only see the effects due to

both preferences. We have a model identifiability problem once again.

(ii) We want to infer group preferences in a different group space, G. Note that this includes

the cases where G is “orthogonal” to F , and where F is a partition of G. This case is not

meaningful to consider. If we are in a different group space, then the group preferences that

came with the original grouping simply manifest themselves in the form of individual scores.

Therefore, in the absence of external information, this assumption is a necessary evil. As a

remark, if we do have external information about the relative differences in expected values across

groups, or group preferences, then we can easily impose those restrictions by directly modifying

Equation 3.19.

Now, we will see how to impose this assumption. We want to find the proper constant cr

2Partition means that if nodes x, y belong to different groups under F , then they cannot belong to the same group

under G.

43

for each group r such that the resulting translated individual scores satisfy Equation 3.19. First,

we find the average individual scores of nodes in group r, 〈a〉r. Then, we translate the individual

scores of nodes in group r by this value. To preserve the Hamiltonian of the system, we also need

to translate the group score θr accordingly. Therefore, for each group r, we perform the following

translation:

âi = ai − 〈a〉r, ∀ i where gi = r (3.20)

θ̂r = θr + 〈a〉r. (3.21)

The translation ensures that the average individual score in each group is 0. Therefore, the average

individual score across all groups is also 0. Therefore, Equation 3.19 is satisfied. Thus, in order to

resolve the model identifiability problem, and be able to compare individual and group scores, we

need to fix the group scores to be the average individual score of nodes in that group. But, from the

example shown in Figure 3.1, we know that this assumption can be wrongly imposed to generate

false results and interpretations. So, we must tread with caution when imposing this.

To illustrate this on a real dataset, we ranked universities in North America based on Computer

Science faculty hiring networks [Clauset et al., 2015]. The data consists of 4388 tenure-track faculty

hired by 205 Computer Science departments. If department v hires a doctoral student from

department u for a tenure-track position, then the edge goes from u → v, because endorsed v

department u. We ranked the 205 departments using SpringRank, and grouped them into 5 regions

– Canada, Midwest, Northeast, South, and West.

The results are shown in Figure 3.5. The left panel shows the distribution of ranks of the

departments sorted by region. In the middle panel, we shift the individual scores in order to conform

to the Equality assumption. The right panel shows the “region preferences”. Just by looking at this,

it is tempting to say that departments located in the Northeast get a boost to their rank simply by

being there. However, given our discussion about identifiability, we should be careful not to jump

to such conclusions without knowing more about the underlying process that generated these ranks.

44

Figure 3.5: 205 Computer Science departments in North America ranked based on tenure-track
faculty hiring network using SpringRank grouped into 5 regions – Canada, Midwest, Northeast, South,
and West. Given our arguments about non-identifiability, we must be careful when interpreting
these results about group preferences.

3.4.3 Resolving identifiability

So far we have been spuriously assuming that chess players are fixed to playing with one color

throughout their career. Although it has served us well in developing our arguments, we now turn

to a realistic situation (at least in some scenarios, including the game of chess): players are not

restricted to a single color. In other words, let us assume that the groups are not fixed (nodes can

change their groups in their interactions).

For the sake of simplicity, assume there are two different groupings given by the group matrices

G(1), G(2). Assume that the individual scores a, and the group preferences θ are fixed under both

groupings. When the nodes interact under G(1), call the resulting directed network A(1), the

difference between out- and in-degrees d̂
(1)

, and the Laplacian L(1). Similarly, define A(2), d̂
(2)
, L(2)

when the nodes interact under G(2).

If we were agnostic to groups, the two corresponding SpringRank solutions will take the form:

L(1)s(1) = d̂
(1)

L(2)s(2) = d̂
(2)
.

45

But, we want s(1) and s(2) to decompose as:

s(1) = a+G(1)θ

s(2) = a+G(2)θ

Therefore,

L(1)a+ L(1)G(1)θ = d̂
(1)

(3.22)

L(2)a+ L(2)G(2)θ = d̂
(2)

(3.23)

=⇒

L(1) L(1)G(1)

L(2) L(2)G(2)

a
θ

 =

d̂(1)

d̂
(2)

This is a system with 2N equations and N + k variables. To make this a system of N + k equations,

we can pre-multiply Equation 3.23 by G(2),T and we get L(1) L(1)G(1)

G(2),TL(2) G(2),TL(2)G(2)

a
θ

 =

 d̂
(1)

G(2),T d̂
(2)

 (3.24)

Unlike in previous cases, Equation 3.24 generally has rank N + k − 2. This is because Equations

3.22 and 3.23 are generally independent from each other. So, the resulting rank of the system is

N + k − 2, where the −2 comes from the fact that each Laplacian is rank deficient. This gives us

two free variables, one for each of a and θ, and we can uniquely solve for the individual scores and

the group preferences (up to one free variable). Therefore, we recover identifiability.

Note that this system can still be low-rank in specific scenarios where we lose identifiability.

One such instance is when the top row of the matrix in Equation 3.24 is a linear combination of

the bottom row. This corresponds to a case where every group interacts with every node the same

number of times under both groupings. To see why observe that GTL = GT [Dout +Din −A−AT]

has dimensions k × N and in particular reflects the interactions between every group and node.

Therefore, when every group interacts with every node the same number of times under both

groupings, G(1),TL(1) = G(2),TL(2). This also implies that G(1),TL(1)G(1) = G(2),TL(2)G(2) and

G(1),T d̂
(1)

= G(2),T d̂
(2)

. In other words, Equations 3.22 and 3.23 become linearly dependent when

46

grouped together, and Equation 3.24 has rank N − 1 resulting in non-identifiability. Of course, now

we can relax that assumption and conclude that when the ratio of number of interactions between

every group and every node across both groupings is constant, we lose identifiability.

In order to demonstrate this, we performed several tests with synthetic data. For Test 1, we

generated 500 nodes whose individual scores were drawn from Normal(0, 10). We fixed the number

of groups to be 2 and the group preferences was [0.5, 0]. The 500 nodes were randomized into two

groups, in two different ways. Under the first grouping, a directed network was generated with

〈k(1)〉 = 20. And under the second grouping, a directed network was generated with 〈k(2)〉 = 5. Here,

β = 0.1. The results are shown in Figure 3.6. The left panel plots the recovered individual scores

against the planted individual scores. And the right panel plots the recovered group preferences

against the planted group preferences.

For Test 2, we generated data in a fashion similar to chess i.e., only opposite groups can

interact with each other. We drew 500 individual scores from Normal(1, 5
2). We fixed the number

of groups to be 2 and the group preferences was [0.5, 0]. The 500 nodes were randomized into a

grouping. In the second grouping, the groups were flipped. Under the first grouping, a directed

network was generated with 〈k(1)〉 = 20. And under the second grouping, a directed network was

generated with 〈k(2)〉 = 5. Here, β = 0.4. We performed more tests, whose results are shown in

Appendix A.3.

3.5 Conclusion

In this chapter, we developed a series of three models in order to identify the effect of node

characteristics on the outcome of interactions. In order to account for node characteristics, we

sorted nodes into different groups, each of which provide an additional boost. To model this boost,

which we called group preference, we attempted to decompose the rank, s, into individual scores, a,

and the group preference θ.

In the first model, we assumed that the groups of the nodes were fixed and that the group

preference remained constant in all the interactions. In the second model, we introduced arbiters

47

Figure 3.6: Results on identifiability with synthetic data - Test 1. 500 nodes drawn from
Normal(0, 10). There were two groups and the group preferences was [0.5, 0]. Under the two
groupings, network was generated with 〈k(1)〉 = 20 and 〈k(2)〉 = 5. Here, β = 0.1

Figure 3.7: Results on identifiability with synthetic data - Test 2. 500 nodes drawn from
Normal(1, 5

2). There were two groups and the group preferences was [0.5, 0]. We allowed only
opposite groups to interact with each other. Further, in the second grouping, nodes were assigned
groups opposite from their first assignment. Under the two groupings, network was generated with
〈k(1)〉 = 20 and 〈k(2)〉 = 5. Here, β = 0.4

48

who determined the outcome of the interactions, and thus the group preferences could change over

the interactions. We saw that both of these models are non-identifiable i.e., we cannot discern

the individual score from the group preference. We studied identifiability in detail and saw that

this corresponds to underdetermined systems. Without external information, we cannot recover

identifiability. If we are willing to make an assumption that the average individual score for each

each group is the same, we can partly recover identifiability. However, we noted that this assumption

is flawed and can lead to misinterpretation of results. To recover identifiability, we developed a

third model where the nodes can change group memberships in different interactions. This model is,

generally, identifiable although there might be specific instances where we lose identifiability again.

Chapter 4

Online SpringRanking

So far, we have considered inferring rankings where all pairwise interactions are observed up

front. However, in many applications, it’s desirable to be able to compute rankings while interactions

are being observed (e.g., inferring sports rankings throughout the season, as games are won and

lost). In this chapter, we propose an extension to SpringRank to accurately and efficiently update

rankings as new interactions occur over time. We term this process online ranking or an online

update.

SpringRank computes the ranks by solving a linear system. The system grows quadratically

with the number of nodes in the network. Recomputing the ranks every time a new interaction

occurs can, therefore, be an expensive process. By being able to accurately and efficiently update

existing ranks, we can study the temporal behavior, and the life cycle of the system. This has

interesting applications in short time-scale networks (such as career trajectories of sports players

and faculty), and long time-scale networks (such as behavior and evolution of biological species).

The rest of this chapter is organized as follows: In Section 4.1, we will discuss some related

work that has already been done. In Section 4.2, we describe some properties that we may desire

for such an online ranking algorithm. In Section 4.3, we propose an iterative update algorithm and

discuss the results.

50

4.1 Related work

The problem of updating ranks continuously as new interactions occur is well studied. These

include online ranking adaptations of commonly used methods such as PageRank [Page et al., 1999],

and the Bradley-Terry-Luce model [Bradley and Terry, 1952, Luce, 1959]. Methods such as Elo

score [Elo, 1978] and TrueSkill [Herbrich et al., 2007] are designed to be online in nature – updates

occur after every game. There are also Bayesian ranking systems such as Glicko [Glickman, 1995]

and Whole History Ranking [Coulom, 2008]. These methods approach ranking from a different

perspective with contrasting assumptions, and are therefore ill-suited for adaptation to online

SpringRank. These methods do not allow for conservation of ranks i.e., the order in which

interactions are used to update the ranks can change the final ranking. Further, ranking methods

that solely focus on pairwise interactions fail to propagate the changes in ranks throughout the

entire system. The drawbacks suggest that a novel approach is needed to solve the problem of online

ranking in SpringRank.

4.2 Desired properties of the system

To make this scenario concrete, consider an example. We have results from the original set of

games in the form of a directed network A0, and the corresponding ranking s0. Then, the players

play additional games. The results from the original and additional games are described in the new

directed network A. The corresponding final ranking is given by s. According to the original model,

we have to repeat the computation to calculate s. Here, we consider the possibility of updating the

old rankings s0 with new information from the additional games to get an approximation of s. A

successful online update will account for the following properties:

(i) Coupled system: Due to the coupled nature of the system, games between a pair of players,

has the potential to not only affect the players’ ranks, but also the ranking of other players

in the system.

(ii) Conserved system: The rankings are computed from the Hamiltonian of a physical represen-

51

tation of the system. This means that the resulting rankings are conserved. In other words,

the order in which the games are played should not affect the final rankings.

(iii) Non-conserved system: On the other hand, sometimes, we may desire the rankings to be

dependent on the order of edge formation. An example of such a situation is where the

players learn from the games and gain experience. Here, the ability to learn creates a friction

that changes the underlying rank distribution. Another instance where the system may not

be conserved is when a new node enters the system.

4.3 Updating the neighborhood

In this method, we propose to update the ranks of nodes in the neighborhood of the change,

by fixing the ranks of all other nodes. Here, we define the k-th neighborhood of a node to be the set

of all nodes in the network that are k edges away i.e., can be reached in k steps.

4.3.1 The update step

Let s0 be the original ranks, L0 be the original Laplacian, and d̂0 be the original difference of

out- and in-degrees. Consider adding new edges between a subset of nodes, P = {x1, x2, . . . xm}.

Let L be the new Laplacian, d̂ be the new difference of out- and in-degrees. Let δ denote the change

in ranks.

As new notation, let XQ denote the sampled version of X where we keep only elements (rows

and columns) corresponding to the set Q and remove all others. So, LP is the sampled Laplacian

for nodes in P and sP is the corresponding sampled ranks. Note that LP is, still, a square matrix

of dimension |P | × |P | and sP is a vector of length |P |.

First, we will consider the case where we add new edges between nodes x and y. Then, we

can generalize the results. Now, consider the new Hamiltonian

H(s) =
1

2

∑
i,j

Aij(si − sj − 1)2.

52

Recall that we are fixing the ranks of all nodes except for x and y. Therefore, when we want to

minimize the new Hamiltonian, we only need to consider terms involving sx and sy. Let us look at

the two partials,

∂H

∂sx
=
∑
i

Axi(sx − si − 1)−
∑
i

Aix(si − sx − 1)

= sx(dout
x + din

x)−
∑
i

(Axi +Aix)si − dout
x + din

x

= (sx − s0,x + s0,x)dx − (Axy +Ayx)(sy − s0,y)− ((A+AT)s0)x − d̂x

= dxδx − (Axy +Ayx)δy + (Ls0)x − d̂x.

Similarly,
∂H

∂sy
= dyδy − (Ayx +Axy)δx + (Ls0)y − d̂y.

After setting the partials to 0 (to minimize H), we can visualize the equations as the following linear

system: dx −(Axy +Ayx)

−(Ayx +Axy) dy

δx
δy

 =

(d̂− Ls0)x

(d̂− Ls0)y

 . (4.1)

Now, observe that the 2× 2 matrix in Equation 4.1 is exactly the the Laplacian L but with only

the rows and columns corresponding to nodes x and y. The same is true for the vector on the

right hand side – it is the vector d̂− Ls0 but with only elements corresponding to nodes x and y.

Essentially, this is the sampled version of the original SpringRank model, concerning only the nodes

between which we added new edges. So, in the case where we add edges between nodes in the set P ,

Equation 4.1 generalizes to

LPδP = (d̂− Ls0)P ,

where XQ is the sampled version of X . Note that, without loss of generality, we can set P to be any

arbitrary subset of the nodes. So, we can set P to be the k-th neighborhood of the nodes x, y.

As a final observation, note that if P is the entire set of nodes in the network, we have

Lδ = d̂− Ls0

53

=⇒ L(s0 + δ) = d̂

=⇒ Ls = d̂,

and we recover the full SpringRank problem.

We can encompass these results into the following update steps:

LPδP = (d̂− Ls0)P (Step (i)) (4.2)

sP = s0,P + δP (Step (ii)) (4.3)

sP̄ = s0,P̄ , (Step (iii)) (4.4)

where P̄ is the complement of P .

4.3.2 One-pass update algorithm

Using Equations 4.2 – 4.4, we have a one-pass update algorithm described in Algorithm 1.

Algorithm 1: One-pass update algorithm for online ranking

Input : Original network A0

Original ranks s0

New edges ∆A
Subset of nodes between which new edges were added P
Neighborhood k

A = A0 + ∆A
L = Laplacian(A)
s = s0

d̂ = Difference out- and in-degrees of A
N = k-th neighborhood of nodes in P
Solve for δN , LNδN = (d̂− Ls0)N
sN = sN + δN
Output : Updated ranks s

This algorithm does not perform as expected. It seems that when we fix the boundary condi-

tions (fix ranks of nodes outside the neighborhood), the ranks of the nodes inside the neighborhood

change drastically in order to minimize the Hamiltonian. This is also interesting because in our

experiments, we observed that the ranks of the nodes outside the neighborhood do not change at

all! We conjecture that this could be due to the one-pass update algorithm creating a subsystem

54

whose Hamiltonian we are trying to minimize. And since this subsystem is closed (to nodes from

outside the neighborhood), minimizing the Hamiltonian results in a different solution to the overall

problem.

In the following simulation, we generated a network with 10,000 nodes. We computed the

original ranks of the nodes using SpringRank. Then, we randomly chose two nodes and added a

directed edge between them. We computed the new ranks using SpringRank. Then, we used the

one-pass update algorithm to compute the online ranks by changing the neighborhood degree from

k = 0 (just the two nodes) to k = 7. k = 7 was chosen as an upper bound because it generally

captured the entire network. The results from this simulation are shown in Figures 4.1, 4.2

Figure 4.1: Accuracy and runtime analysis for Algorithm 1.

In Figure 4.1, the left panel shows the log error between estimates of ranks using Algorithm 1

and SpringRank for each neighborhood. The error was computed as the L2 norm of the difference

between the SpringRank estimate and the online estimate. Notice that the error first increases

before decreasing. The increase can be attributed to the fixed boundary conditions. The error

decreases when the entire network is captured in the neighborhood. This situation is exactly the

same as plain SpringRank. The middle panel shows the runtime for the algorithm. The gray line

denotes the baseline from using SpringRank to compute the ranks and the green-blue line shows

the runtime of Algorithm 1. A further decomposition shows the solve time decreases with a larger

neighborhood, but the neighbor collection process becomes more expensive. This decrease is due to

55

the usage of sparse solvers which perform faster than traditional solvers when the network is very

large with few non-zero entries. The right panel shows the fraction of the network covered with

each neighborhood.

Figure 4.2: Change in ranks as we vary k in Algorithm 1.

In Figure 4.2, the top-left plot shows the ranks of the nodes after and before the new node

was introduced. Both these estimates are calculated using SpringRank. In each subsequent plot, the

estimates from Algorithm 1 (for each k) are plotted against the SpringRank estimates. The green

and red nodes are the winning and losing nodes respectively. The grey nodes are the boundary

nodes i.e., their ranks are fixed. The green-blue nodes are nodes that belong to that corresponding

neighborhood, and are therefore updated. As we can see, the fixed boundary conditions change the

ranks of nodes inside the neighborhood drastically in order to minimize the Hamiltonian. Once the

neighborhood covers the entire network, however, our results completely agree with the estimates

56

from SpringRank.

4.3.3 Recursive update algorithm

Using Equations 4.2 – 4.4 we can also design an algorithm to recursively update the ranks.

This algorithm is defined in Algorithm 2. Here the convergence can be defined by some tolerance ε

and we declare convergence if ||s
(i)−s(i−1)||2
||s(i−1)||2

< ε, where s(i) is the updated ranks after iteration i.

Algorithm 2: Recursive update algorithm for online ranking

Input : Original network A0

Original ranks s0

New edges ∆A
Subset of nodes between which new edges were added P

A = A0 + ∆A
L = Laplacian(A)
s = s0

d̂ = Difference out- and in-degrees of A
Solve for δP , LPδP = (d̂− Ls0)P
sP = sP + δP
N = neighbors of P in A
while s not coverged do

Solve for δN , LNδN = (d̂− Ls)N
sN = sN + δN
N = neighbors of N in A

Output : Updated ranks s

The error and speed will depend on the number of nodes in P , |P |, as it determines the number

of iterations until convergence. Generally, we expect the effect of change in sx on a second-degree

neighbor of x to be smaller than the effect on a first-degree neighbor, which will result in convergence.

In fact, as ε→ 0, this algorithm is asymptotically the same as SpringRank. However, this algorithm

becomes computationally more expensive due to the recursive nature.

In the following simulation, we generated a network with 10000 nodes. We computed the

original ranks of the nodes using SpringRank. Then, we randomly chose two nodes and added a

directed edge between them. We computed the new ranks using SpringRank. Then, we used the

recursive update algorithm to compute the online updates. The results are shown in Figure 4.3.

In Figure 4.3, the left panel shows the error as a function of the number of iterations. The

57

Figure 4.3: Accuracy and runtime analysis for Algorithm 2.

error is computed as the norm of the difference between the online and SpringRank estimates. As we

can see, the error first increases, but then the online estimates converge to the SpringRank estimates

asymptotically. The right panel shows the runtime as a function of the number of iterations. The

gray line shows the time it takes SpringRank to solve the system i.e., the time we need to beat.

Comparing both the plots, notice that while Algorithm 2 is accurate, it compromises on the speed.

This shows that Algorithm 2 is actually worse than SpringRank.

4.4 Conclusion

We developed two algorithms that focused on updating the ranks in a particular neighborhood

of the network. When the neighborhood spans the network, we saw that we recovered SpringRank.

However, when updating the ranks for just a small neighborhood, the boundary conditions created

a smaller system whose energy, the Hamiltonian, we minimize. And the solution we obtain by

minimizing the Hamiltonian for the smaller system corresponds to a different solution to the problem.

Therefore, when the neighborhood does not span the network, the updated ranks diverge from the

expected ranks. Although the updated ranks converge to the expected ranks when the neighborhood

spans the network, the algorithm becomes computationally more expensive than SpringRank. This

suggests that we need to find alternative methods to accurately and efficiently update ranks in

SpringRank.

Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In the preceding chapters, we developed several insights into, and extensions of, SpringRank,

a model for inferring a hierarchical ranking of nodes in a network. In Chapter 2, we made important

connections between SpringRank, the Boltzmann distribution, Random Utility Models, and linear

regression. This helped us gain a better understanding of how the model fits into the larger body of

literature concerning these fields. In Chapter 3, we extended SpringRank in order to identify the

effect of node covariates that may influence the outcome of the interactions. We saw that such a

model is generally non-identifiable and found conditions under which the model becomes identifiable.

Finally, in Chapter 4, we designed an online update algorithm to update the ranks, efficiently and

accurately, as new information comes to light.

Chapter 2 was devoted to understanding SpringRank. SpringRank is a ranking algorithm

to rank nodes in a network. The network can be thought of as a win-loss matrix representing the

outcomes of interactions between nodes. SpringRank models the network as a physical system with

edges representing springs and aims to minimize the energy of the system, given by the Hamiltonian.

From statistical physics, this gives rise to the Boltzmann distribution for predicting new edges. The

Boltzmann distribution simplifies to a multinomial logit model that is a commonly used Random

Utility Model. We reconciled the two different models by observing that SpringRank makes a choice

between the springs (the choices itself) as opposed to making a choice between the nodes (like in

the multinomial logit model). In order to concretely justify SpringRank as a Random Utility Model,

59

we formulated SpringRank as a specific instance of the Context Dependent Random Utility Model,

which is a generalization of Random Utility Models. Finally, we noted that SpringRank can be

viewed as an ordinary least squares solution to a linear regression problem. By assuming that the

noise is drawn from a multivariate Gaussian distribution, we recover results obtained from using the

Boltzmann distribution to predict new edges. We concluded our discussion by noting that there are

multiple perspectives to SpringRank, and that all of them offer the same insights.

In Chapter 3, we developed a series of three models in order to identify the effect of node

characteristics on the outcome of interactions. In order to account for node characteristics, we sorted

nodes into different groups, each of which provide an additional boost. To model this boost, which

we called group preference, we attempted to decompose the rank s, into individual scores a, and the

group preference θ. In the first model, we assumed that the groups of the nodes were fixed and that

the group preference remained constant in all the interactions. In the second model, we introduced

arbiters who determined the outcome of the interactions, and thus the group preferences could

change with respect to the interactions. Both of these models are non-identifiable i.e., we cannot

discern the individual score from the group preference. To recover identifiability, we developed a

third model where the nodes can change group memberships in different interactions.

In Chapter 4, we designed an algorithm to continuously update ranks efficiently and accurately.

Our algorithm updated a small neighborhood of the network centered around the change, keeping

all other ranks constant. However, imposing these boundary conditions changed the behavior of

the system, thereby causing the updated ranks to diverge from the expected ranks. In order for

convergence, we noted that neighborhood should span the entire network. But then, it becomes

computationally cheaper to simply perform SpringRank again instead of using our algorithm.

Therefore, we concluded that we should not force boundary conditions on the physical system.

While this formulation proved to be less efficient than SpringRank, our analyses reveal promising

directions for future investigations.

60

5.2 Future directions

This thesis explored three important ideas to broaden the applicability of SpringRank to

diverse problems. While the research answers many questions, it asks new questions in the process.

Here, we summarize these questions for possible future work.

Chapter 2 closed by conclusively tying several approaches to SpringRank together. This

does not imply that there is no future work left here. This actually questions the existence of

other perspectives to SpringRank that can offer additional insights to our understanding. For

instance, we discovered a family of utilities that simplify to the multinomial logit model, without

fully exploring them. What models do each of these utilities correspond to? Another idea that was

briefly mentioned was learning the feature vectors that the Context Dependent Random Utility

Model proposes. It will be interesting to find closed form expressions for these feature vectors in

order to better understand the model.

In Chapter 3, we developed models to identify the effect of group characteristics and concluded

that the model is non-identifiable, unless in special cases. We introduced the Equality assumption

in order to compare group preferences and noted that, in the absence of external information,

this assumption can be flawed. A natural question to ask is, what other information is needed to

recover identifiability? Following this, how do we encode this information into the model? Our

inability to do so restrained us from applying our methods to real world applications to prevent

incorrect interpretation of the results. Explicitly encoding the external information into our model

will help us successfully apply our methods to real data and interpret the results accurately. This

may help us quantify social inequalities, in the language of Random Utility Models, mentioned by

[Clauset et al., 2015] in faculty hiring networks. This may also be applicable while studying social

support networks [Power, 2017] and online social interactions [Bruch and Newman, 2019].

In Chapter 4, we designed an online update algorithm to update ranks by forcing boundary

conditions and updating only a neighborhood in the network. We saw that this boundary condition

changes the behavior of the system. Our attempts to update the ranks by only considering certain

61

neighborhoods of the network fails to be accurate and efficient. And this was a key requirement in

order to beat SpringRank. Here, we propose four other avenues worth investigating in the space of

online ranking.

Firstly, during our discussion, we noted that a change in rank of node x has a larger effect on

its first-degree neighbors than second- or third-degree neighbors. We can leverage this to weigh

the perturbations in ranks depending on how far they are from the local disturbance. Secondly, we

assumed that the system is closed. However, adding an edge is an external interaction. Therefore,

the system is most likely not closed. So, it makes sense to take a simulated annealing approach

by increasing the energy of all springs and then allowing them to settle down to final ranks. As a

third approach, let us assume that we have already computed and stored the inverse of the graph

Laplacian L, L−1. If the new edges added to the network is a low-rank perturbation to L, then

we can exactly update L−1 using the matrix inversion lemma [Hager, 1989]. Using this updated

inverse, we can compute the new ranks. Finally, we can take a stochastic approach. Whole History

Ranking leverages the Bradley-Terry-Luce model to model the variations (changes) in rankings over

time as a Wiener process [Coulom, 2008]. Then, a maximum likelihood estimation is performed

to find the best change in rankings. As another approach, we can also model the ranks as an

Ornstein-Uhlenbeck process, which is essentially a random walk with a drift to the long-term mean

of the ranks.

In the end, our goal is developing tools to analyze complex systems. And we wish to use

apply these tools to understand such systems that surround us. Answering these questions will give

us further insights into uncovering the hierarchical structure of complex systems.

Bibliography

[Ali et al., 1986] Ali, I., Cook, W. D., and Kress, M. (1986). On the minimum violations ranking of
a tournament. Management Science, 32(6):660–672.

[Amemiya, 1985] Amemiya, T. (1985). Advanced econometrics. Harvard university press.

[Baumann et al., 2010] Baumann, R., Matheson, V. A., and Howe, C. A. (2010). Anomalies in
tournament design: The madness of march madness. Journal of Quantitative Analysis in Sports,
6(2).

[Bonacich, 1987] Bonacich, P. (1987). Power and centrality: A family of measures. American
journal of sociology, 92(5):1170–1182.

[Bradley and Terry, 1952] Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete
block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345.

[Bruch and Newman, 2018] Bruch, E. E. and Newman, M. (2018). Aspirational pursuit of mates in
online dating markets. Science Advances, 4(8):eaap9815.

[Bruch and Newman, 2019] Bruch, E. E. and Newman, M. (2019). Structure of online dating
markets in us cities. Sociological science, 6:219–234.

[Callaghan et al., 2003] Callaghan, T., Mucha, P. J., and Porter, M. A. (2003). Random walker
ranking for ncaa division ia football. arXiv preprint physics/0310148.

[Chen and Joachims, 2016a] Chen, S. and Joachims, T. (2016a). Modeling intransitivity in matchup
and comparison data. In Proceedings of the ninth acm international conference on web search
and data mining, pages 227–236.

[Chen and Joachims, 2016b] Chen, S. and Joachims, T. (2016b). Predicting matchups and pref-
erences in context. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 775–784.

[Clauset et al., 2015] Clauset, A., Arbesman, S., and Larremore, D. B. (2015). Systematic inequality
and hierarchy in faculty hiring networks. Science advances, 1(1):e1400005.

[Colley, 2002] Colley, W. N. (2002). Colleys bias free college football ranking method: The colley
matrix explained. Princeton University, Princeton.

[Coulom, 2008] Coulom, R. (2008). Whole-history rating: A bayesian rating system for players
of time-varying strength. In International Conference on Computers and Games, pages 113–124.
Springer.

63

[Courneya and Carron, 1992] Courneya, K. S. and Carron, A. V. (1992). The home advantage in
sport competitions: a literature review. Journal of Sport & Exercise Psychology, 14(1).

[Cucuringu, 2016] Cucuringu, M. (2016). Sync-rank: Robust ranking, constrained ranking and rank
aggregation via eigenvector and sdp synchronization. IEEE Transactions on Network Science and
Engineering, 3(1):58–79.

[David, 1987] David, H. A. (1987). Ranking from unbalanced paired-comparison data. Biometrika,
74(2):432–436.

[De Bacco et al., 2018] De Bacco, C., Larremore, D. B., and Moore, C. (2018). A physical model
for efficient ranking in networks. Science advances, 4(7):eaar8260.

[Drews, 1993] Drews, C. (1993). The concept and definition of dominance in animal behaviour.
Behaviour, 125(3-4):283–313.

[Elo, 1978] Elo, A. E. (1978). The rating of chessplayers, past and present. Arco Pub.

[Fogel et al., 2016] Fogel, F., d’Aspremont, A., and Vojnovic, M. (2016). Spectral ranking using
seriation. The Journal of Machine Learning Research, 17(1):3013–3057.

[Gelman and Hill, 2006] Gelman, A. and Hill, J. (2006). Data analysis using regression and
multilevel/hierarchical models. Cambridge university press.

[Glickman, 1995] Glickman, M. E. (1995). The glicko system. Boston University, 16.

[Gupte et al., 2011] Gupte, M., Shankar, P., Li, J., Muthukrishnan, S., and Iftode, L. (2011).
Finding hierarchy in directed online social networks. In Proceedings of the 20th international
conference on World wide web, pages 557–566.

[Hager, 1989] Hager, W. W. (1989). Updating the inverse of a matrix. SIAM review, 31(2):221–239.

[Herbrich et al., 2007] Herbrich, R., Minka, T., and Graepel, T. (2007). Trueskill: a bayesian skill
rating system. In Advances in neural information processing systems, pages 569–576.

[Hobson and DeDeo, 2015] Hobson, E. A. and DeDeo, S. (2015). Social feedback and the emergence
of rank in animal society. PLoS computational biology, 11(9).

[Huang et al., 2008] Huang, T.-K., Lin, C.-J., and Weng, R. C. (2008). Ranking individuals by
group comparisons. Journal of Machine Learning Research, 9(Oct):2187–2216.

[Jones, 2007] Jones, M. B. (2007). Home advantage in the nba as a game-long process. Journal of
Quantitative Analysis in Sports, 3(4).

[Letizia et al., 2018] Letizia, E., Barucca, P., and Lillo, F. (2018). Resolution of ranking hierarchies
in directed networks. PloS one, 13(2).

[Lidor et al., 2010] Lidor, R., Bar-Eli, M., Arnon, M., and Bar-Eli, A. A. (2010). On the advantage
of playing the second game at home in the knock out stages of european soccer cup competitions.
International Journal of Sport and Exercise Psychology, 8(3):312–325.

[Luce, 1959] Luce, R. D. (1959). On the possible psychophysical laws. Psychological review, 66(2):81.

64

[McFadden et al., 1977] McFadden, D., Tye, W. B., and Train, K. (1977). An application of
diagnostic tests for the independence from irrelevant alternatives property of the multinomial
logit model. Institute of Transportation Studies, University of California Berkeley.

[Negahban et al., 2017] Negahban, S., Oh, S., and Shah, D. (2017). Rank centrality: Ranking from
pairwise comparisons. Operations Research, 65(1):266–287.

[Noh, 2003] Noh, J. D. (2003). Exact scaling properties of a hierarchical network model. Physical
Review E, 67(4):045103.

[Page et al., 1999] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab.

[Power, 2017] Power, E. A. (2017). Social support networks and religiosity in rural south india.
Nature Human Behaviour, 1(3):0057.

[Ravasz and Barabási, 2003] Ravasz, E. and Barabási, A.-L. (2003). Hierarchical organization in
complex networks. Physical review E, 67(2):026112.

[Seshadri et al., 2019] Seshadri, A., Peysakhovich, A., and Ugander, J. (2019). Discovering context
effects from raw choice data. arXiv preprint arXiv:1902.03266.

[Sismanis, 2010] Sismanis, Y. (2010). How i won the” chess ratings-elo vs the rest of the world”
competition. arXiv preprint arXiv:1012.4571.

[Slater, 1961] Slater, P. (1961). Inconsistencies in a schedule of paired comparisons. Biometrika,
48(3/4):303–312.

[Slaughter and Koehly, 2016] Slaughter, A. J. and Koehly, L. M. (2016). Multilevel models for
social networks: hierarchical bayesian approaches to exponential random graph modeling. Social
Networks, 44:334–345.

[Szymanski, 2003] Szymanski, S. (2003). The economic design of sporting contests. Journal of
economic literature, 41(4):1137–1187.

[Train, 2009] Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university
press.

[Weng and Lin, 2011] Weng, R. C. and Lin, C.-J. (2011). A bayesian approximation method for
online ranking. Journal of Machine Learning Research, 12(Jan):267–300.

Appendix A

Supplementary Results to Chapter 3

A.1 Recovering group preferences (without arbiters)

For each subfigure in the following plots, the left panel plots the recovered individual scores â

against the planted individual scores a. The middle panel plots the recovered group preferences θ̂

against the planted group preferences θ. And the right panel plots the recovered ranks ŝ against the

planted ranks s. The top subfigure corresponds to the solution when regularization was used. The

bottom subfigure shows the solution when setting the average individual scores across all groups to

0. Note that the final rank ŝ remains unchanged. This illustrates the non-identifiability problem

which is discussed in detail in Section 3.4.

For Test 3, we generated 500 nodes with individual scores drawn from Normal(1, 5
2). There

were 4 groups with group preferences drawn from Normal(2, 5
2). Here, β = 0.4 and 〈k〉 = 10. The

results are shown in Figure A.1.

For Test 4, we generated 500 nodes with individual scores drawn from Normal(0, 0.2). There

were 4 groups with group preferences drawn from Normal(0, 0.2). Here, β = 5 and 〈k〉 = 10. The

results are shown in Figure A.2.

For Test 5, we generated 600 nodes. 200 individual scores were drawn from Normal(0, 1),

200 from Normal(1, 5
2), and 200 from Normal(4, 1). There were 4 groups with group preferences

drawn from Normal(1, 1). Here, β = 0.4 and 〈k〉 = 10. The results are shown in Figure A.3.

66

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.1: Results from Test 3 with synthetic data (without arbiters). N = 500; aplanted ∼
Normal(1, 5

2); 4 groups; θplanted ∼ Normal(2, 5
2). The individual scores correspond to aplanted and

group preferences refer to θplanted. The ranks refer to the total score of each node (individual and
group preference) i.e., splanted. Here, β = 0.4, 〈k〉 = 10.

67

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.2: Results from Test 4 with synthetic data (without arbiters). N = 500; aplanted ∼
Normal(0, 0.2); 4 groups; θplanted ∼ Normal(0, 0.2). The individual scores correspond to aplanted

and group preferences refer to θplanted. The ranks refer to the total score of each node (individual
and group preference) i.e., splanted. Here, β = 5, 〈k〉 = 10.

68

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.3: Results from Test 5 with synthetic data (without arbiters). N = 600: 200 from
Normal(0, 1); 200 from Normal(1, 5

2); 200 from Normal(4, 1); 4 groups; θplanted ∼ Normal(1, 1).
The individual scores correspond to aplanted and group preferences refer to θplanted. The ranks
refer to the total score of each node (individual and group preference) i.e., splanted. Here, β = 0.4,
〈k〉 = 10.

69

A.2 Recovering group preferences (with arbiters)

The left panel in each subfigure plots the recovered individual scores against the planted

individual scores. Each of the other four panels plot the recovered group preferences against the

planted group preferences, for each group of arbiters. The top subfigure shows the solution obtained

using regularization. The bottom subfigure shows the solution when setting the average individual

scores across all groups to 0.

For Test 3, we drew 500 individual scores for items from Uniform(1, 10). We fixed 4 groups

for the items and the arbiters. There is a systematic bias against the fourth group of items. There

is a systematic bias against the fourth group of items i.e., a negative group preference drawn

from a Normal(0, 1). For others, arbiters from group i had a positive preference, also drawn from

Normal(0, 1) towards items from group i, and no preference for other items. Here, β = 5. The

results are shown in Figure A.4.

For Test 4, we drew 600 individual scores for items from Normal(0, 1). We fixed 4 groups for

the items and the arbiters. The group preference matrix was drawn from Uniform(−5, 5). Here,

β = 0.5. The results are shown in Figure A.5.

For Test 5, we drew 600 individual scores for items from Normal(2, 10). We fixed 4 groups

for the items and the arbiters. The group preference matrix was drawn from Uniform(−2, 2). Here,

β = 1. The results are shown in Figure A.6.

70

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.4: Results from Test 3 with synthetic data (with arbiters). 500 items were drawn from
Uniform(1, 10). There are 4 groups for items and arbiters. There is a systematic bias against the
fourth group of items i.e., a negative group preference drawn from a Normal(0, 1). For others,
arbiters from group i had a positive preference towards items from group i, and no preference for
other items. Here, β = 5.

71

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.5: Results from Test 4 with synthetic data (with arbiters). 600 items from Normal(0, 1).
There are 4 groups for items and arbiters. Group preferences were drawn from Uniform(−5, 5).
Here, β = 0.5.

72

(a) Solution using regularization.

(b) Setting average individual scores across groups to 0.

Figure A.6: Results from Test 5 with synthetic data (with arbiters). 600 items from Normal(2, 10).
There are 4 groups for items and arbiters. Group preferences were drawn from Uniform(−2,−2).
Here, β = 1.

73

A.3 Recovering group preferences (identifiable models)

In each of the following figures, the left panel plots the recovered individual scores against the

planted individual scores. And the right panel plots the recovered group preferences against the

planted group preferences.

For Test 3, we drew 100 nodes from Normal(1, 5
2), Normal(0, 1), and Normal(−2, 2) each

for a total of 300 nodes. There were two groups and the group preferences was [0.5, 0]. Under the

two groupings, network was generated with 〈k(1)〉 = 20 and 〈k(2)〉 = 5. Here, β = 0.4. The results

are shown in Figure A.7.

Figure A.7: Results on identifiability with synthetic data - Test 3. 100 nodes drawn from
Normal(1, 5

2), Normal(0, 1), and Normal(−2, 2) each for a total of 300 nodes. There were two
groups and the group preferences was [0.5, 0]. Under the two groupings, network was generated
with 〈k(1)〉 = 20 and 〈k(2)〉 = 5. Here, β = 0.4.

For Test 4, we drew 200 nodes from Normal(3, 5
2), Normal(0, 1), and Normal(−3, 2) each

for a total of 600 nodes. There were two groups and the group preferences was drawn from

Uniform(−3, 3). We allowed only opposite groups to interact with each other. Further, in the

second grouping, nodes were assigned groups opposite from their first assignment. Under the two

74

groupings, network was generated with 〈k(1)〉 = 10 and 〈k(2)〉 = 10. Here, β = 0.4. The results are

shown in Figure A.8.

Figure A.8: Results on identifiability with synthetic data - Test 4. 200 nodes drawn from
Normal(3, 5

2), Normal(0, 1), and Normal(−3, 2) each for a total of 600 nodes. There were two
groups and the group preferences was drawn from Uniform(−3, 3). We allowed only opposite groups
to interact with each other. Further, in the second grouping, nodes were assigned groups opposite
from their first assignment. Under the two groupings, network was generated with 〈k(1)〉 = 10 and
〈k(2)〉 = 10. Here, β = 0.4.

	Introduction
	SpringRank
	The original model
	SpringRank
	Other ranking methods

	SpringRank and the Boltzmann distribution
	SpringRank and Random Utility Models
	The quadratic utility
	SpringRank as a Context Dependent Random Utility Model
	SpringRank as a Blade-Chest model
	A family of utilities
	Other related models

	SpringRank as linear regression
	Reconciliation

	SpringRank with Groups
	Related work
	Introducing groups for nodes
	Redefining the hamiltonian
	Minimizing the hamiltonian
	Generalizing to arbitrary number of group characteristics
	Regularization
	Results using synthetic data

	Introducing arbiters for interactions
	Redefining the hamiltonian
	Minimizing the hamiltonian
	Regularization
	Results from synthetic data

	Model identifiability
	The model is non-identifiable
	The Equality assumption
	Resolving identifiability

	Conclusion

	Online SpringRanking
	Related work
	Desired properties of the system
	Updating the neighborhood
	The update step
	One-pass update algorithm
	Recursive update algorithm

	Conclusion

	Conclusions and Future Directions
	Conclusions
	Future directions

	 Bibliography
	Supplementary Results to Chapter 3
	Recovering group preferences (without arbiters)
	Recovering group preferences (with arbiters)
	Recovering group preferences (identifiable models)

