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In order to model the spatial distributions of predators and prey many investigators have
used a simplified three-species system where a predator species consumes a prey species that
consumes a resource. One of the recurring predictions from such models is that the spatial
distribution of the predator will match the spatial distribution of the resource instead of
that of the prey; this is known as “leapfrogging”. While it is interesting that leapfrogging
is consistently predicted by models of three species, tritrophic systems, real biological com-
munities are more complicated, being less like chains and more like multi-dimensional food
webs (i.e., multiple prey and predator species interacting with each other). I ask: Are sys-
tems with more species and more connections among them well approximated by simpler,
three-species single-chain models? I construct two different five-dimensional systems (a re-
source consumed by two prey species consumed by two predator species) and compare them
to the single-chain system to see if more complicated systems yield the same predictions as
a simpler single-chain system. I discovered that, in aggregate, the dynamics of predators in
a multi-species web, is very similar to the dynamics of a simpler, single-chain system; yet
individualy the dynamics of predator species in a multi-species web are very different from
the dynamics of a simpler, single-chain system.
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1 Introduction

Extensive research has explored spatial distributions of organisms in patchy environments.

At small spatial scales, Fretwell and Lucas′s [12] Ideal Free Distribution has provided a

theoretical basis for predicting spatial distributions. Basic ideal free distribution models

assume that individual animals are “ideal” in that they have complete information about

patches of habitat, and are “free” from any costs to move from one patch to the next. With

these assumptions, foragers are predicted to move among patches of habitat until per capita

gains from foraging are equal across all patches. A distribution satisfying this condition

is called an “ideal free distribution” (henceforth, “IFD”) [12, 17]. IFD models with a wide

variety of forms of resource variation and competition have been reviewed by Schwinning and

Rosenzweig [24] as well as Whitman and Mathis [28], and can indeed predict the distribution

of foragers in different patches.

A number of researchers [1, 3, 11, 12, 14, 15, 20, 24] have also studied whether IFDs would

be reached in different multi-species models, under various assumptions about movement and

information gathering abilities. The results of these studies are quite varied with respect to

predictions about whether or not IFDs would be reached by one or more species involved,

or if the multi-species systems even have an equilibrium. Hence, much current research,

both empirical and theoretical, is aimed at providing better understanding of multi-species

habitat selection games.

The most commonly examined multi-species IFD models considered are three species

“single-chain” systems (e.g. predator - herbivore - plant) [3, 11, 12, 14, 15, 24]. A number of

previous models—focused on optimal, equilibrium distributions—predict that predators in

a single-chain system will display a “leapfrog” effect in which their spatial distribution more

closely matches that of the prey’s resource (which the predators do not consume) than that of

the prey [11, 13]. This leapfrog effect is counterintuitive and qualitatively different from the

predictions of models that only consider two trophic levels (i.e herbivore - resource), which

generally predict that there will be a close correspondence between the consumer and the

resource it eats [18]. This counterintuitive prediction (i.e., predators superficially appearing
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to ignore the distribution of their prey) arises from the fact that a single-chain system can

only reach an equilibrium when the distribution of predators is such that predation offsets

prey births. Thus, predators must concentrate where prey have the highest birth rates (i.e.,

where resources that the prey consume are most abundant; see also [11, 23, 25] for additional

explanations).

Although this leapfrogging distribution is predicted by many three species single-chain

models (reviewed in [23, 25]), when another trophic level is added (e.g. Top predator - Inter-

mediate predator - Herbivore - Plant) the leapfrog effect is altered [22, 23, 29, 30]. With four

trophic levels, Rosenheim [23] found instead that the top predator aggregated strongly where

the resource is most abundant which prevented the intermediate predator from aggregating

strongly where the resource is most abundant, and again allowed the herbivore to aggregate

more strongly where the resource is most abundant [23]. In a single-chain systems with 4

species it is the top predator who offsets the birth rates, and so the top predator concentrates

where the resource is most abundant [23].

Each of the systems that have been studied could be argued to be over simplified. In

nearly all empirical systems, a single species each of predator, prey and resource are not the

only ones present. Rather, prey may face threats from more than one predator, predators

might be able to consume more than one species of prey, and predators or prey may face

competition from different species on the same level as them. Hence, while the leapfrog

effect has been considered to be a general, robust prediction about spatial distributions,

the addition of more biological realism raises questions about the kinds of distributions we

should actually expect in nature, and whether the distributions predicted by simple models

(single-chain or simpler) should be observed in real systems.

These questions have begun to be studied by different researchers [4, 5, 7, 8]. Abrams

[4, 5] has studied how the spatial distributions of prey change when there is intraguild

predation among predators. Intraguild predation is predation between two species on the

same trophic level (i.e. two predators who not only consume prey but one predator can

also consume the other). Abrams predicted that prey abundances would increase in patches

with enriched resources when intraguild predation of the predators was present, showing how
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the addition of biological realism may lead to important qualitative changes about predicted

distributions of organisms. While Abrams focused on how prey abundances would be affected

by intraguild predation he does discuss predator distributions to a certain extent as well. In

his paper [4], the spatial distributions of the predators seem to act more similarly to those in

the four trophic system studies by Rosenheim [23] than other tri-trophic systems. This leads

me to believe that predators individually may not be leapfrogging, although since Abrams

was focused on prey distribution, he does not talk about this in his paper.

Amarasekare [7, 8] studied more complex food web systems, focusing on what kinds

of movement dynamics would lead to the co-existence of all species in more complex food

webs. While she does not specifically study leapfrogging or spatial distributions of prey

and predators, her work with movement dynamics outlines more of the differences between

complex food webs and simple tri-trophic systems. We continue to see in these papers that

the spatial distribution of predators and prey can be altered by the complexity of the food

web. It is clear from these papers that adding another predator or prey, and adding intraguild

predations can alter predictions about the spatial distribution of predators.

Biological communities in nature are generally not linear food chains but are much more

like large, highly connected networks (i.e., food webs) [7, 8, 19, 20, 26, 29, 30]. Are there gen-

eral, robust predictions—leapfrogging or otherwise—that can be derived about the spatial

distribution of predators and prey from models with more realistic structure than a simple

three-species chain? The goal of this thesis is to investigate how different added dimensions

of competition for prey and predators to the usual tri-trophic system will affect the leapfrog-

ging prediction among predator species. This will allow us to further understand whether

simple tri-trophic models are likely to be able to correctly predict the spatial distribution of

predators in more realistic situations. This thesis will show that under specific movement

strategies individual predator species will no longer undergo the leapfrog effect in complex

food web systems, but that the aggregate of predator species in a patch do, in general,

undergo the leapfrog effect.
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2 Methods

To better understand whether predictions from simpler models may apply to more highly

connected networks, I have considered two different food web systems in addition to the

single-chain system which will be used as the base model (Figure 1a). The first food web is

a “two-chain” model (Figure 1b): it consists of two predators, two herbivores and a single

plant resource. In this system, the two species of herbivores both eat a single plant resource,

and each species of predator eats one herbivore but not the other herbivore (i.e., the two

predator species do not share the same prey). This system′s purpose is to see how two

different predators and prey species co-exist in the same patches when the prey compete

with each other but the predators do not directly compete.

In the second, five-species system, there are again two predators, two herbivores and a

single plant resource (Figure 1c). The herbivores both eat the plant resource, but this time

each predator can eat both of the herbivores. This system′s purpose is to see how predators

distribute themselves when they are competing with another species on their level.

In sum, I consider three models: (1) a “single-chain” model of three species in a tri-

trophic arrangement (Figure 1a), (2) a “two-chain” model with five species, in which the

two tri-trophic chains have a common base resource (Figure 1b), and (3) a “web” model

with five species and multiple connections between them (Figure 1c).
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Table 1: Definitions of variables used in the models

Symbols Meaning
Ri resource abundance in patch i
Ni, Ni,j abundance of prey in patch i (= 1 or 2, single-chain model);

abundance of prey species j (= A or B) in patch i (models with 5 species)
Pi, Pi,l abundance of predator in patch i (chain model);

abundance of predator species l (= X or Y) in patch i (models with 5 species)
ai resource growth rate in patch i
K carrying capacity of the resource
α, αj consumption rate of the resource by the prey;

consumption rate of the resource by the prey species j
r, rj growth rate of prey;

growth rate of prey species j
b, bj,l consumption rate of the prey by the predator;

consumption rate of prey species j by predator species l
k, kl intrinsic death rate of the predator; intrinsic death rate of predator species l
c, cj,l growth rate of the predator;

growth rate of predator species l due to consumption of prey species j

Predator X Predator Y Predator Y Predator X Predator 

Prey B Prey A Prey A Prey B Prey 

Resource Resource Resource 

(a) Single - Chain (b) Two - Chain (c) Web 

Figure 1: Representations of the three different models considered. Each arrow points from
a food source to a species that consumes it.

For the scope of this thesis I will consider modeling resource growth logistically [9, 15],

while having exponential growth of all other species. Since the resource is being modeled lo-

gistically the prey and predators can not grow infinitely, as they are limited by the abundance

of the resource. Standard functional forms for birth and death processes [8, 9, 21, 15, 27]
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were used to model these dynamics with systems of ordinary differential equations, which,

for three species, take the following form:

Ṙi = ai(1−
Ri

K
)Ri − αRiNi (1)

Ṅi = rRiNi − bNiPi (2)

Ṗi = cNiPi − kPi (3)

where Ri, Ni, Pi are the abundances of resources, prey, and predators (respectively) in patch

i (= 1or2) at time t, and Ṙi, Ṅi, and Ṗi are the rates of change in these abundances. ai is the

intrinsic growth rate of the resource in patch i, K is the carrying capacity of the resource, α

is the consumption rate of the resource by prey, r is the intrinsic growth rate of the prey, b is

the consumption rate of the prey by the predator, c(< b) is the growth rate of the predator

(due to consumption of prey), and k is the intrinsic rate of death of predators. Note that

here and elsewhere, ai is the only source of between-patch heterogeneity that is built into

the model (i.e., I assume a1 6= a2).

For the five-species systems, these equations become:

Ṙi = ai(1−
Ri

Ki

)Ri − αARiNi,A − αBRiNi,B (4)

Ṅi,j = rjRiNi,j − bj,XNi,jPi,X − bj,YNi,jPi,Y (5)

Ṗi,l = cA,lNi,APi,l + cB,lNi,BPi,l − klPi,l (6)

where variables have the same meanings as in equations (1)-(3), but subscripts are added

as needed to incorporate two species of prey and two species of predators (see Table 1).

Specifically, I represent prey species j (= A or B) by abundance Ni,j in patch i at time t.

Likewise, I represent predator species l (= X or Y ) by abundance Pi,l in patch i at time

t. Consumption and growth parameters also become species-specific: αj is the consumption
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rate of the resource by prey species j, bj,l is the consumption rate of prey species j (= A or

B) by predator species l (= X or Y ), and cj,l(< bj,l) is the growth rate of predator species l

from consumption of prey species j. Note that for the “two-chain” model (Figure 1b), each

predator consumes only one species of prey, and thus in equations 5 and 6, bA,Y = bB,X =

cA,Y = cB,X = 0. In the “web” model (Figure 1c) we instead have bA,Y , bB,X , cA,Y , cB,X > 0,

reflecting the fact that both species of predator consume both species of prey.

Multiple types of movement dynamics for foragers and predators in have been discussed

[2, 6, 16]. No specific movement dynamic has been found to be the best strategy for every

situation, although much of previous research has modeled random movement alone or in

combination with some linearly conditional movement term(s). I considered conditional

movement strategies that were discussed in the review paper by Krivan et al. [16] as well as

those discussed by Abrams [2, 6, 16] and used in some of his investigation of complex food

webs. For animals engaged in habitat selection behavior, conditional movement strategies

are generally regarded as being more realistic than random movement (or no movement)

[1, 2, 6, 8, 16]. Note that, “movement” in this context is cost-free, fixed, and may be

considered to be “habitat selection”, i.e., small scale movements that a single organism can

make many times within its expected lifetime.

The analysis of the three different systems with conditional movement dynamics leads to

two different sources of information by which to define the predator and the prey’s movement.

These conditional movement dynamics are very similar to those used in previous research

done by Flaxman et al. [10, 11]. Specifically, prey’s conditional movement dynamics could

be defined by movement toward the patch where the resource was more abundant or where

the predators were least abundant. Predators’ conditional movement dynamics could be

defined by movement toward where either the prey were most abundant or the resource was

most abundant. (Reasons why it might be adaptive for predators to move up the gradient

of a resource they do not consume are discussed by Flaxman and Lou [11].) These differ-

ent movement dynamics gave us a variety of different combinations of prey and predator

movement strategies to consider. The most intuitive movement dynamics to use [2, 10], and

the one I will focus on here, is when the prey’s conditional movement dynamics are defined
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by movement towards the patch where resource was more abundant; and where the preda-

tor’s conditional movement dynamics could be defined by movement towards where the prey

were most abundant. In other words, both species are moving towards where their “food”

is more abundant. To model the different systems with these movement dynamics I added

corresponding conditional movement terms to the dynamics of each patch. The equations

for the resource dynamics are still given by equations 1 and 4 depending on if we are in the

three-species or five-species systems, respectively. The equations for the prey and predator

species are now modified with the addition of the following conditional movement terms:

For prey movement dependent on resource abundance:

−d ∗max(0, (R2 −R1)/(R2 +R1)) ∗N1,j + d ∗max(0,−(R2 −R1)/(R2 +R1)) ∗N2,j (7)

or

+d ∗max(0, (R2 −R1)/(R2 +R1)) ∗N1,j − d ∗max(0,−(R2 −R1)/(R2 +R1)) ∗N2,j (8)

is added to equation 5 in patch 1 and patch 2 respectively.

For predator movement dependent on prey abundance:

−D ∗max(0, (N2 −N1)/(N2 +N1)) ∗ P1,l +D ∗max(0,−(N2 −N1)/(N2 +N1)) ∗ P2,l (9)

or

+D ∗max(0, (N2 −N1)/(N2 +N1)) ∗ P1,l −D ∗max(0,−(N2 −N1)/(N2 +N1)) ∗ P2,l (10)

is added to equation 6 in patch 1 and patch 2 respectively.

Similar movement strategies have been considered and are discussed by Flaxman and

colleagues [10, 11] as well as Abrams [2]. These movement strategies have also been discussed

by Krivan et al. [16]; where it has been noted that simple linear relationships between

predator and prey species, like the ones described in the above movement equations, are

some of the more realistic ways of representing predator and prey movement in nature [16].

In equations 7-10, d and D are movement rate parameters, or can also be thought of as

the sensitivity parameters, of the prey and predator species, respectively. Larger values of

these parameters cause higher movement rates for a given difference between patches. The
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max functions found in these equations define information use by the predators or prey.

Each function has a normalized difference of the abundances being used for conditional

movement. I also note that, with the conditional movement the prey and predators species

are only moving in one direction without error.

For the scope of this thesis, I am interested in whether equilibria exist, and if so, if equi-

librium abundances of organisms in the two patches are (1) IFDs and (2) exhibit leapfrogging

in food webs with various numbers of species and links between them. In order to examine

whether they are IFD, the abundances of the predators and prey were compared with abun-

dances that would be expected when predators and prey maximize their fitness by foraging

in the highest quality patch (i.e. predators and prey choose to forage in the “ideal” patch).

In order to examine whether leapfrogging distributions are predicted at equilibrium, I asked

whether predator abundance in a patch was proportional to resource abundance in a patch

(not necessarily proportional to prey abundance in the patch). That is, if a leapfrogging

distribution occurs at equilibrium, for the single-chain system I should observe that

P̂1

P̂2

= C
R̂1

R̂2

(11)

where C is a combination of parameters (constants) from the model, and P̂i, R̂i are the

equilibrium abundances of predators and resources in patch i respectively. If C = 1, we

say that the predators undergo perfect resource matching, because the ratio of predators is

equivalent to the ratio of resources. If C 6= 1 but is still constant over time, we say that the

predators undergo resource matching but not perfect resource matching.

3 Results

Since analytical solutions were not possible with conditional movement I used numerical

simulations, using MATLAB’s ode45 routine to explore the dynamics of the three different

systems. These simulations were used to verify whether systems would reach an equilibrium

and to quantify the degree of departure from perfect resource matching (the value of C) as
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parameters of the system were changed. The initial conditions for each system had little to

no bearing on the end results of the simulations. Large changes in initial conditions could

change the end abundances of prey or predators, but would never change the behavior of the

systems. The parameter values assigened to the variables in equations (1) - (6) represent each

species′ effectiveness at surviving, reproducing or consuming. I explored the equilibra of the

system while allowing the birth/growth and consumption/death parameters to vary between

0 and 1, where a value closer to 1 means the species are more efficient at reproducing or

consuming (with the exception of the death parameter for the predators where a higher value

implies a higher mortality rate). The carrying capacity of the resource was allowed to vary

between 20 and 50, maintaining only that one patch had a higher capacity than the other.

Since abundance is an arbitrary unit in this thesis, the carrying capacities only purpose is

to cap predator and prey abundances. For the scope of this thesis, I only considered regions

of parameter space (numerically determined) in which none of the species would go extinct.

(While extinction and coexistence are, of course, important questions, they are beyond the

scope of the current thesis.) I also have different movement rates for both the predators (D)

and the prey(d), which I allowed to vary between 0 and 1 with a step size of 0.1. As was

discussed earlier this is to vary the sensitivity of prey and predators to differences between

patches, the closer the value is to one the more sensitive the predators and prey are to the

information. A value greater than 1 would lead to another growth term for predators or

prey, while a value less than 0 would imply that the predators are moving opposite what is

ideal. Either one of these cases is unrealistic and so values were only varied between 0 and

1.

Once the parameters were chosen, ode45 was run until an equilibrium was reached, or a

max number of time steps was reached (5000). In this thesis 50 time steps represents the

time it takes for one generation of prey to be replaced by a new generation, and 75 time

steps represents the time it takes for one generation of predators to be replaced by a new

generation. The predator species in the systems that reached an equilibrium were analyzed

to see if they were resource matching. In the systems that did not reach an equilibrium,

the sum of the predator species was analyzed to see if there was “trophic level” leapfrogging
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even if individual species were not showing that pattern. Using this information each of the

systems could be compared to one another. I used these analyses to derive predictions about

the effects of explicit, conditional movement on dynamics and spatial distributions.

3.1 Single-chain Model

Examining different movement strategies in the single-chain model (figure 1a), the prey and

predator abundances always reached an equilibrium. However, when an equilibrium was

reached the spatial distributions of the predators and prey were not always IFDs. Figures

2 and 3 show that when the prey are allowed to move the distributions of the predators

and prey no longer matched the IFD. In fact, the more sensitive the prey are (i.e. as d gets

larger), the farther the predators will be from IFD. Figure 4 shows that the predators only

undergo perfect leapfrogging when the prey are not moving.
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Figure 2: Behavior of the single-chain system when both the prey and predator species are
allowed to move. The prey move depending on the resource abundance, the predators move
depending on the prey abundance. Parameter values are a = 4, a2 = 4.2, α = .25, r = .2, b =
1.5, c = .15, k = 1, K = 30, K2 = 40, d = .5, D = .8.
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Figure 3: Behavior of the single-chain system when only the predator species are allowed
to move. The predators move depending on the prey abundance. Parameter values are
a = 4, a2 = 4.2, α = .25, r = .2, b = 1.5, c = .15, k = 1, K = 30, K2 = 40, d = 0, D = .5.

Figure 4 shows how close the single-chain system is to resource matching (represented by

the equilibrium value of C) when D and d are varied from 0 to 1. Note that the value of D

does not matter when it comes to the resource matching constant. As was mentioned above

I observe that the predators exhibit perfect resource matching (C = 1) if the prey are not

moving (i.e., whenever d = 0). However, as the prey movement rate, d, is increased from

zero, the predators get farther and farther away from perfect resource matching, as well as

IFD. Specifically, as the prey movement rate increases the predator’s resource matching, C,

value increases above 1. This means that the predators are overmatching (i.e. there are

more predators in the patch with more resources than there would be at the IFD [18].
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Figure 4: Values of the resource matching constant, C, with D and d varied from 0 (no
movement) to 1 in step size of 0.1. Values of C > 1, indicate overmatching and departure
from IFD by the predators (see text). Parameter values (other than D and d) are as in
Figure 2.

3.2 Two-Chain Model

In the two-chain system where there are two different prey species and two different predators

species, I first explored whether or not the system reached an equilibrium for the given

movement strategy. It was found that reaching an equilibrium was dependent the movement

rates (D and d). Figure 6 has a region of black where the system leads to oscillations in the

predator and/or prey abundances (i.e., the system did not reach equilibrium). In parameter

regions where an equilibrium was reached, I then asked how much or little predators deviated

from resource matching, much like I did in the single-chain system.

In this system I examined whether the predator species individually and in aggregate

reached IFD and in turn perfect resource matching when the system is in an equilibrium.

Figure 5 demonstrates that, as in the single-chain model, the predators will not reach the

IFD when the prey have conditional movement. Since I focus on the predators individually

as well as in aggregate, there are three sets of results on resource matching (one for predator
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species A, one for predator species B, and one for the sum of the predator species).
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Figure 5: Behavior of the two-chain system when only the predator species are allowed to
move. Only one predator and prey species from patch 1 is displayed for clarity. The predators
move depending on the prey abundance.Parameter values are a = 4, a2 = 4.2, α = .15, β =
.1, r1 = .11, r2 = .1, b1 = .55, b2 = .5, c1 = .11, c2 = .1, k1 = .55, k2 = .5, K = 30, K2 = 40.

Figure 6 demonstrates these different sets of results (each panel is for one of the three

different cases). Panel (a) displays the degree of resource matching, C, for predator species

A, panel (b) displays C for predator species B, and panel (c) displays C for the sum of the

predator species. In each of the panels the predators only exhibit perfect resource matching

if the prey are not moving (d = 0), and as the prey’s movement rate, d, increases C increases

from 1, indicating overmatching (i.e. the predators are over-aggregated in the best quality

patch compared to the IFD). Thus, as was observed in the single-chain model, only when

prey do not move do I see both species at an IFD.
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Figure 6: Values of the resource matching constant, C, for predator species (a,b) individually
and (c) in aggregate, with D and d varied from 0 (no movement) to 1 in step size of 0.1.
(a) The degree of resource matching by predator A. (b) The degree of resource matching
by predatorB. (c) The degree of resource matching by the sum of the predator species.
Interpretations of shading are as in Figure 4, with the exception that black regions represent
areas lacking a stable equilibrium. Parameter values are as in figure 5.

3.3 Web Model

The web model consists of two different prey species and two different predator species

that are generalists. While the two predator species are to be distinct from one another and

generalists, simply making one predator species more adept at consuming and/or reproducing

would lead to the extinction of one of the prey species and/or one of the predator species.

Instead, I considered two predator species distinguished by the prey that they “preferred”.

While both predator species consume both of the prey species (since they are generalists to

a certain degree), each predator has higher rates of consumption and reproduction stemming

from one of the prey. This in turn also creates a distinction between the two prey species,

since they are consumed at different rates from the two different predator species. When

considering a web system, as described, where neither predator species has an outright

competitive advantage, but instead vary in the consumption rates by each of the prey species,

the system will exhibit an oscillatory behavior where all the predator and prey species may

exist.

As in the two-chain system, I examined if the predators distribution individually and in
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aggregate reached perfect resource matching. Figure 7 demonstrates the oscillatory behavior

the web systems will exhibit under the scenario that allows all species to exist. Given that the

predators are oscillating, there is no way that individually they can undergo perfect resource

matching when the resource is constant. Still, the spatial distribution of the predators in

aggregate can be examined, to see if they exhibit perfect resource matching. I discovered

that the predators in aggregate will exhibit “leapfrogging” (C = 1). Figure 8 displays this

constant C for the aggregate predators in the web model. From this figure it can be observed

that C is 1 for the aggregate predators regardless of the movement value D and much like

the previous two systems only when the prey movement rate is zero (d = 0).
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Figure 7: Oscillatory behavior of the predators and prey in one of the patches of the web
model. The prey move depending on the resource abundance, the predators move depending
on the prey abundance. Parameter values are a = 4, a2 = 4.2, α = .25, β = .25, r1 =
.21, r2 = .21, b1 = .525, b2 = .525, c1 = .21, c2 = .21, k1 = 1, k2 = 1, x1 = .5, x2 = .5, z1 =
.2, z2 = .2, K = 30, K2 = 40, d = .5, D = .8.
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Figure 8: Values of the resource matching constant, C, for predator species in aggregate,
with D and d varied from 0 (no movement) to 1 in step size of 0.1. Interpretations of shading
are as in Figure 4. Parameter values are as in figure 7.

4 Discussion

Previous research that has explored spatial distributions of predators in three species, “single-

chain” systems has predicted that the predator’s spatial distribution (instead of the prey’s)

should match the distribution of resources in each patch instead of matching the distribution

of the prey which they consume (a phenomenon known as “leapfrogging”) [3, 11, 12, 14, 15].

However, as more complex systems have been studied it has been found that predictions

about the spatial distributions of prey do not match those from simpler systems [4, 5]. This

casts doubt on the generality of the leapfrogging prediction.

Here I have analyzed two more complex tri-trophic systems: (1) a two-chain system in

which an immobile resource is consumed by two different prey species, that are each attacked

by a different specialist predator species, and (2) a web system in which an immobile resource

is consumed by two different prey species, that are attacked by two different predators that

are generalists (i.e. each predator can consume both of the prey species). In each system

the predators and the prey were given explicit movement dynamics similar to the linear
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movement dynamics discussed by Kriv̌an et al. [16]. In order to examine the leapfrogging

distributions at equilibrium, I asked whether the ratio of predator species′ abundances in

the two patches was proportional to the ratio of the resource abundance in the two patches

(this ratio is the constant referred to as C). For the scope of this thesis, I am interested

in the degree to which C deviates from unity, which would mean perfect resource matching

and mean that the predator was “leapfrogging”.

For each of the models considered, conditional movement of the prey was based on relative

resource abundance. It was found that only in the absence of conditional movement of the

prey did the systems reach an IFD. In nature it cannot be expected that prey species will not

move, so my conditional movement strategies are not maximally adaptive for these systems.

Instead random discrete diffusion in complement with conditional movement of the prey

species could be considered. Adding random discrete diffusion may lead to more realistic

results, however I believe that the general findings discussed in this thesis would still hold

true. Further, the question of which movement strategy is best used to represent prey and

predator species has been, and is currently, a topic of discussion by other researchers in this

field [2, 10, 16], but is not the focus of this thesis.

The focus of this thesis is on the “leapfrogging” distribution of the predators. As in

previous research [3, 11, 12, 14, 15, 24], when the single-chain system is in IFD the predators

exhibit the strongest “leapfrogging” (C = 1) and outside of IFD predators over-match or

under-match the resource. As conditional prey movement was increased (d > 0) C increased

from 1 which implies that the predators over-aggregated in the best quality patch compared

to IFD. Since the prey’s movement here was based on the resource, as the prey become

more sensitive to movement information (i.e d is increased) more prey move to the patch

with greater abundance of resource. This in turn increases the birth rate of the prey in

that patch and in order to offset this increased birth rate the predator′s birth rates in that

patch must also increase causing the spatial distribution to fall away from IFD and over-

aggregate in the best quality patch. While the prey movement rate (d) had a large effect on

the predators “leapfrogging” distribution, the predator movement rate (D) had no effect on

C. Regardless of the value of D the predators stop moving if the prey′s distribution becomes
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uniform across the two patches, so the value of D does not affect the equilibrium distribution

of the predators if the prey are uniformly distributed. However, the predators fall away from

an IFD when d > 0 because the prey reach a uniform distribution between patches with

abundances below their IFD, which does not allow the predators to reach their IFD, and so

changes the degree to which they are “leapfrogging” (C = 1 only when an IFD is reached).

In the cases with no conditional movement both the predators and the prey can reach IFD.

The two-chain model made predictions that were very similar to those of the single-chain

model when a steady state equilibrium was reached; in the two-chain model, the predators,

both individually and in aggregate, were predicted to undergo the leapfrog effect, and were

observed to undergo perfect resource matching when the prey were not moving. Again when

the prey were allowed to move (d > 0), the system either reached an equilibrium that was

not an IFD or did not reach an equilibrium at all. The movement sensitivity of the predators

(D) again did not have an effect on C for similar reasons to those discussed above. This

implies that both the predator species in aggregate and independently act the same way

in the two-chain model as in the single-chain model. Given that the two-chain and single-

chain models act similarly, it can be said that the “leapfrogging” phenomenon found in the

single-chain model can be translated to the predators individually, and in aggregate, in the

two-chain model.

In the web model, simply making one predator species more adept at consuming and/or

reproducing would lead to the extinction of one of the prey species and/or one of the predator

species. Intuitively, since one of the prey and predator species are more adept they will be

the ones to survive. Instead, I considered two predator species who’s distinction was in

the prey that they “preferred”. While both predator species consume both of the prey

species (since they are generalists to a certain degree) each predator has higher rates of

consumption and reproduction steaming from one of the prey. This in tern also creates a

distinction between the two prey species, since they are consumed at different rates from the

two different predator species. In this system each of the species will exist, and I observed

the system to exhibit an oscillatory behavior. This oscillatory behavior can be explained

by the fact that since the prey and predators do not start with equal abundances the prey
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with the higher starting abundance will allow the predator who more strongly consumes that

prey to do better until there are too many of those predators which causes the oscillations.

In the very specific case where equilibrium abundances are equal to begin, I will have a

steady state equilibrium where movement does not matter since all abundances are equal,

and so is a trivial case. Since the predators individually exhibit periodic oscillations and the

resource abundance is constant, the predator species individually cannot exhibit leapfrogging.

Instead I focused on the predator spatial distribution in aggregate, which was found to

exhibit leapfrogging, regardless of the movement rates of the predators, and in the absence

of prey movement. The movement rates, D, fail to affect the leapfrogging phenomenon since,

similarly to the past two systems, the predators are moving based on the sum of the prey and

the prey in aggregate are uniformly distributed between the two patches. Again similarly to

the previous two systems, as the prey movement rate is increased the system falls away from

IFD and so falls away from leapfrogging but still undergeso resource matching to a degree.

Previous research has discovered that in single-chain models predators exhibiting IFD will

also exhibit the “leapfrogging” phenomenon. Here, I have ascertained that “leapfrogging”

will also be the IFD distribution of predators in more complex systems. Further, predators in

aggregate will always exhibit some degree of resource matching, while predators individually

may fail to exhibit resource matching in highly complex systems like the web model where

no steady state equilibrium can be reached. In general my research has found that if we

are dealing with the spatial distribution of individual predator species in systems more

complicated than the two-chain system should not always be modeled with the simpler

single-chain system. Yet if we are simply dealing with the spatial distribution of predators

in aggregate, then they can be modeled with the simpler single-chain system.

5 Conclusions

Previous research [3, 11, 12, 14, 15, 18, 24] has looked at single-chain systems and answered

questions about IFDs and the behaviors of predators in such systems. It was found that

when the predator species reaches its IFD it will be more closely matching the distribution
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of the resource (which the prey consume), which is known as “leapfrogging”. I have sought to

take the results around this idea of “leapfrogging” and understand if the single-chain system

is a good approximation of more complicated systems that are much more likely to occur in

nature. The research discussed in this thesis shows us that the single-chain system should

not be used to model the predators individually in more complicated systems, though single-

chain systems can be used to model predators in aggregate for more complicated systems

that are expected to reach IFD. Through the research discussed in this thesis we can see

that the results found in previous research must be looked at in the very specific case of a

single-chain system, or for aggregate predators in systems that are expected to reach IFD.

The findings discussed in this thesis were found with the mathematical assumption that

both prey and predator species from one patch to the next will have the same consumption

and death parameter. Biologically, this means that both prey and predator species are the

same from one patch to the next, which is a reasonable assumption especially since our

patches are close enough to allow for movement. The research discussed in this thesis has

also led to some more interesting questions that include: What changes in the models when

the species in one patch are allowed to have different parameters than the species in the

other patch? When do systems with conditional movement reach an equilibrium and when

do they fail to reach an equilibrium? What makes these systems fail or succeed to reach an

equilibrium? These questions will be the focus of future work.
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