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Abstract  14 

This paper introduces Parasol—an open source, interactive visualization library to support the 15 

development of web applications for multi-objective decision making. Multi-objective optimization is a 16 

popular way to explore competing objectives in environmental management problems. Interactive 17 

visualizations allow stakeholders to explore and gain insights about the large, high-dimensional datasets 18 

produced by multi-objective optimization. Among visualization methods, parallel coordinates are well-19 

suited for this task. However, current software and open source libraries have limited support for these 20 

plots. The Parasol library described in this work provides developers with the building blocks to create 21 

sharable, interactive parallel coordinates web applications. Moreover, by incorporating state of the art 22 

clutter reduction techniques—such as clustering, linking, brushing, marking, and bundling—Parasol 23 

improves upon traditional parallel coordinates visualizations. We demonstrate the benefit of such 24 

features through simple examples and by exploring a real-world water resources problem commonly used 25 

in multi-objective optimization literature. 26 
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Software availability 29 

- Name of software: Parasol 30 

- Description: an interactive visualization library to support the development of web applications 31 

for multi-objective decision making.  32 

- Developer: J. Jacobson (josh.jacobson@colorado.edu) with contributions by W. Raseman and J. 33 

Kasprzyk 34 

- Source Languages: JavaScript, HTML, and CSS 35 

- Supported Browsers: Chrome, Firefox, and Opera  36 

- License: MIT 37 

- Availability: https://github.com/ParasolJS/parasol-es 38 

- Cost: Free 39 

1. Introduction 40 

Multi-objective optimization methods generate a suite of diverse solutions to environmental 41 

problems with conflicting objectives. These techniques produce Pareto optimal solutions to 42 

environmental management problems—meaning that for each solution, an improvement in any objective 43 

would decrease performance in another (Pareto, 1964). Such techniques are classified as a posteriori 44 

approaches because decision maker preferences are incorporated only after the optimization has 45 

searched for solutions (Coello Coello et al., 2007; Cohon and Marks, 1975). In contrast, a priori approaches 46 

incorporate decision maker preferences before optimization and aggregate multi-objective problems to 47 

single objective problem (Castelletti et al., 2010), resulting in a single “best” solution. Such aggregated 48 

methods have been criticized because they tend to penalize and reward objectives in ways that are 49 

difficult to predict (Franssen, 2005; Kasprzyk et al., 2015) and because they reinforce “cognitive myopia” 50 

in decision making (Brill et al., 1990). By using a posteriori approaches, decision makers can gain new 51 

insights about the problem as they explore solutions and consider new objectives (Kasprzyk et al., 2009). 52 

For these reasons and due to recent advances in multi-objective optimization, these methods have 53 

become increasingly popular for solving complex environmental management problems, particularly for 54 

water resources (Maier et al., 2014; Reed et al., 2013), watershed management (Bekele and Nicklow, 55 

2005), and water distribution (Ostfeld et al., 2008; Prasad and Park, 2004). However, a posteriori 56 

approaches are criticized because they produce large, high-dimensional datasets which can overwhelm 57 

and confuse decision makers (Coello Coello et al., 2007; Haimes, 2015; Zeleny, 2005). 58 
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To address this problem, interactive visualization tools have been developed to aid in the 59 

discovery of environmental management solutions generated by multi-objective optimization (e.g., Kollat 60 

and Reed (2007a) and Hadka et al. (2015)). These tools generally apply methods from information 61 

visualization—often summarized as overview first, zoom and filter, and details on demand (Shneiderman, 62 

2003)—to explore Pareto optimal solutions using multiple linked plots. Such methods allow decision 63 

makers to sift through thousands of solutions with relative ease. Moreover, this interactive, linked 64 

visualization approach can help inform the optimization problem itself. For instance, Woodruff et al. 65 

(2013) demonstrate integrating these methods with visual analytics (Keim et al., 2008) offers useful 66 

insights for improving the problem formulation. The primary issue with this visualization approach is that 67 

many plotting types do not scale well for multi-objective problems. Due to its ability to represent high-68 

dimensional data, parallel coordinates (PC) plots have become increasingly popular for interactive, multi-69 

objective optimization visualizations [e.g., (Rosenberg, 2015; Smith et al., 2018)].  70 

Parallel coordinates (PC) is a visualization technique typically used for exploratory analysis of 71 

multivariate data and high-dimensional geometry (Inselberg, 2009). Using PC, N-dimensional data is 72 

represented by N equally spaced, parallel axes. Each data point in this N-dimensional space is represented 73 

by a so-called polyline that intersects each axis according to its value for that dimension. Despite the ability 74 

of PC to represent high-dimensional data, PC visualization software is still in its infancy. As a result, these 75 

plots tend to be simplistic, static, and difficult to share and access. Visualizing PC plots using web 76 

applications would alleviate these issues since these applications are easy to share, lend themselves to 77 

interactivity, and offer a familiar web browser experience for users (Walker and Chapra, 2014). Such 78 

features are essential for environmental decision making projects which involve diverse set of 79 

stakeholders, analysts, and decision makers. However, current methods available for developing such 80 

applications would require considerable time and money. To address this challenge and promote best 81 

practices for PC visualizations, we have created a new, open source library. 82 

In this paper, we introduce Parasol, a JavaScript library for developing parallel coordinates 83 

visualizations to enhance environmental decision making. Parasol provides developers with a toolbox for 84 

creating their own custom, interactive PC visualizations. This toolbox, known as the application 85 

programming interface (API), includes state of the art visualization techniques that allow users to better 86 

interact with PC and reduce visual clutter. Parasol is built on D3—a popular visualization library for web 87 

development (Bostock et al., 2011)—which offers developers complete control over the form and function 88 

of their applications. The goals of this paper are to motivate the use of parallel coordinates for 89 



environmental multi-objective decision making, illustrate how Parasol can improve people’s access to and 90 

the quality of PC visualizations, and more broadly, highlight the usefulness of embedding interactive 91 

visualizations into academic literature. To do so, we begin by reviewing the best practices for parallel 92 

coordinates described in the visualization literature (Section 2. Parallel coordinates). Next, we provide an 93 

overview of Parasol, describe capabilities of the API, and walk through examples that highlight key 94 

elements of the API (Section 3. Parasol). To demonstrate the accessibility of these applications, we have 95 

embedded URLs in this paper for each example we discuss. We encourage the reader to navigate to and 96 

explore these applications in addition to reading the text. Next, we illustrate the development and use of 97 

a Parasol application for a multi-objective water resources problem, known as the Lower Rio Grande River 98 

(LRGV) case study (Section 4. Multi-objective decision making with Parasol). Last, we discuss further 99 

applications for Parasol and future directions (Section 5. Conclusions).  100 

2. Parallel coordinates  101 

Parallel coordinates (PC) is commonly used for exploratory analysis of multivariate data and high-102 

dimensional geometry (Inselberg, 2009). These plots scale well for high-dimensional datasets but PC is 103 

often criticized for issues related to overplotting, crossover, order of axes (Fua et al., 1999; Zhou et al., 104 

2008). Parasol implements best practices from recent PC literature to alleviate these issues.  105 

Overplotting, also known as visual clutter, occurs when overlapping polylines obscure patterns of 106 

the data. Next, the problem of crossover (i.e., line-tracing) arises when multiple polylines intersect an axis 107 

at the same value, making it impossible to be certain which line is which (Heinrich and Weiskopf, 2013). 108 

Another criticism of PC is that the ordering of axes “implicitly defines which patterns emerge between 109 

adjacent axes” (Heinrich and Weiskopf, 2013). This is important for determining correlations between 110 

variables. The ordering of axes issue is commonly alleviated by making the axes interactively reorderable 111 

so that users can dynamically explore various pairwise comparisons. Both overplotting and crossover can 112 

be mitigated using clutter reduction strategies (Figure 1).  113 

Clutter reduction methods include brushing, density, clustering (using either color or geometry), 114 

bundling, highlighting, marking and linking. Brushing allows users to dynamically filter plotted data, 115 

reducing the total number of polylines significantly (compare Figures 1a and 1b). In addition to filtering, 116 

other brushing operations include deleting and labeling data (Becker and Cleveland, 1987). Moreover, 117 

altering the transparency of polylines can illustrate high- and low-density regions of data (Figure 1c). 118 

Allowing the user to specify transparency dynamically, can enhance the utility of such density-based  119 



Figure 1. Clutter reduction strategies: a) example of overplotting, b) interactive brushes allow users to 121 

subset the data, c) transparency reveals density of the data, d) clustering encoded using color (bottom 122 

left), e) clustering encoded geometrically using curve bundling (bottom center), and f) an example of 123 

combining clutter reduction strategies—cluster encoding with color and curve bundling and adjusting 124 

polyline transparency.  125 

clutter reduction methods. Regarding clustering, there are several approaches that have been developed 126 

for PC, each intended to reveal structure within the underlying data. Clusters can be visually encoded 127 

using color (Figure 1d) or geometrically using bundling (Figure 1e) (Johansson et al., 2005; Palmas et al., 128 

2014; Zhou et al., 2008). Bundling is a technique that provides visual separation between clusters and is 129 

typically implemented with Bézier curves (Figure 1e) to reduce crossover issues, known as curve bundling. 130 

In a fourteen participant evaluation, Luo et al. (2008) found curve bundling to be equally effective as linear 131 

polylines for understanding correlations among variables and displaying cluster information. 132 

Furthermore, many of these clutter reduction methods can be employed simultaneously in a 133 

complementary manner (Figure 1e).   134 

Lastly, clutter can be reduced by linking multiple plots together or even connecting them to other 135 

plots or data tables. This feature is central to the Parasol library. Linking PC to interactive data tables helps 136 

users focus on individual solutions using marking and highlighting, provides details on demand, and 137 

dramatically reduces crossover problems.  138 



3. Parasol  139 

3.1 Library overview 140 

Parasol is an open source, interactive visualization library for developing PC web applications for 141 

environmental decision making. We chose a web-based approach for Parasol because web applications 142 

are easily shared  across diverse groups (Walker and Chapra, 2014), such as the stakeholders, decision 143 

makers, and analysts involved in the multi-objective decision making process. Parasol is distinct from most 144 

PC software because it is a library rather than a tool, meaning that developers have the freedom to create 145 

customized visualizations for their datasets. This library enables users to link multiple PC plots and 146 

interactive data tables together, making it ideal for exploratory data analysis for multivariate datasets. 147 

Furthermore, Parasol incorporates state of the art clutter reduction techniques to improve user 148 

understanding of large datasets.  149 

At its core, the Parasol library is built on D3 (data-driven documents) (Bostock et al., 2011), a 150 

popular library for web-based visualization, and three other libraries: Parcoords—a D3-based PC library, 151 

SlickGrid—a fast, interactive data table library, and ML—for machine learning. A full list of dependencies 152 

can be found in Table 2. We decided to build Parasol around D3 because it is a visualization library that 153 

provides developers with enormous control over the aesthetics and function of their visualizations. This 154 

control makes Parasol-based visualizations highly customizable and allows developers to couple Parasol 155 

visualizations with other plotting types. Parasol streamlines the integration of D3 and the other libraries 156 

to lower the barrier for developers creating linked parallel coordinates visualizations. 157 

Table 2. Dependencies for the Parasol library include, D3, Parcoords, Lodash, ML, FileSaver, and SlickGrid. 158 

Dependency Purpose npm 
Package 

D3 Interactive visualization library, serves as the foundation for Parcoords. d3 

Parcoords Interactive parallel coordinates library. parcoord-es 

SlickGrid Interactive data table that can be linked to parallel coordinates plots.  slickgrid-es6  

ML Machine learning library for implementing k-means clustering. ml-kmeans 

FileSaver Library for exporting data and plots across different browsers. file-saver 

Lodash Utility function library for JavaScript. Specifically, the functions intersection, 
union, and difference are used for selections logic.  

lodash-es 

https://www.npmjs.com/package/d3
https://www.npmjs.com/package/parcoord-es
https://www.npmjs.com/package/slickgrid-es6
https://www.npmjs.com/package/ml-kmeans
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/lodash-es


Among the dependencies, Parasol is most similar to Parcoords, and therefore, we find it important 159 

to distinguish between features that we have introduced in Parasol and those that Parasol inherits from 160 

Parcoords. In Table 3, we provide a side-by-side comparison of important features for both libraries. This 161 

is not an exhaustive list by any means. For a full list of features, please refer to the API for each library. 162 

With respect to clutter reduction techniques, Parasol contributes clustering methods to dynamically keep 163 

or remove data from plots and the ability to easily link plots and tables together. Moreover, we 164 

collaborated with Parcoords developers to add marking (i.e., selecting individual solutions) to the 165 

Parcoords API because we felt it was an important feature to include in both libraries. Next, we 166 

incorporated a simple approach from multi-criteria decision analysis called the weighted sum method into 167 

the Parasol API which reflects that Parasol has been tailored to decision making applications. The 168 

weighted sum method (i.e., weighting) allows users to apply weights to different variables according to 169 

their preference for each variable. Based on user-defined weights, each data point is scored from zero to 170 

one, with one being the most preferred. Lastly, Parasol has functions that allow user to export data and 171 

PC plots.   172 

Table 3. Comparison of features between Parcoords and Parasol parallel coordinates libraries. *Denotes 173 

a feature of Parcoords contributed by the authors of this manuscript.  174 

Feature Category Feature Parcoords  Parasol  
Clutter reduction 
techniques 

Brushing   
Transparency   
Bundling    
Clustering   
Marking *  
Keep/remove data   
Linking   

Alleviate order of 
axes issue 

Reorderable axes   

Multi-criteria 
decision analysis 

Weighting   

Export  Export data   
 175 

3.2 API 176 

In this section, we discuss the core elements of the Parasol API and walkthrough example code 177 

for Parasol-based web applications. To understand how to create a web application, we begin by providing 178 

background about web development practices. Web applications are primarily created using web 179 

technologies, such as Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. 180 



Together these technologies integrate with one another to create what is known as the document object 181 

model (DOM) to represent a web page (Bostock et al., 2011). HTML code dictates the structure of the 182 

webpage, the styling is described in CSS, and JavaScript provides the computational engine and 183 

interactivity. Creating a webpage requires a familiarity with web technologies and an understanding of 184 

how they communicate with one another.  185 

Developers do not need extensive web development experience to create Parasol-based web 186 

applications. The Parasol examples, tutorials, and documentation provides novice developers with the 187 

information they need to create an array of simple applications. These developers will likely find example 188 

apps similar to those they wish to create and edit the code to better suit their needs. In contrast, 189 

experienced web developers will have the freedom to create highly custom and varied applications by 190 

leveraging the full capacity of web technologies and other open source visualization libraries. These users 191 

will likely go far beyond the examples we provide, finding new and innovative applications for the Parasol 192 

library. In other words, we created Parasol and its documentation to scale well for all levels of web 193 

development experience. To prove this, we will now demonstrate how to create a simple Parasol web 194 

application.  195 

Figure 2. Example code for how to create a Parasol object that links together two parallel coordinates 197 

plots and a data table. In the HTML body, space is allocated for the plots and data table. In the HTML 198 

script, JavaScript is used to read in and visualize the data using the Parasol API.  199 



To create an application, the developer must first create an HTML document, which will contain 200 

HTML and JavaScript code (Figure 2) and references to CSS files for aesthetics. Within this HTML 201 

document, the developer must designate space for any PC plot or data table they would like to include in 202 

a web page using an HTML <div> elements tag. By creating a <div> element in HTML, the developer can 203 

divide a web page into sections. Assigning a unique id to each element offers developers the ability to 204 

manipulate elements individually. By grouping elements into classes, it is possible to manipulate the 205 

styling and function of any element within that class simultaneously. For example, in Figure 2, we created 206 

three <div> elements, for two PC plots and one SlickGrid data table. In Parasol, we use the class convention 207 

of “parcoords” for PC plots and “slickgrid-container” for data tables. Following this convention will 208 

preserve the styling and function of the Parasol library. 209 

After allocating space for plots and tables, the developer can bring them to life by creating a 210 

Parasol object. To do so, the developer must write JavaScript that reads in a dataset and passes it into a 211 

function that visualizes the data. In our example (Figure 2), we read in a dataset on the attributes of cars—212 

a popular dataset for multivariate visualizations—using methods from D3. Then, we pass that data into a 213 

user-defined function called visualize(). Within visualize(), we first specify on which plots the cars variables 214 

are rendered by defining an object we call layout which contains variables names from the dataset.  Next, 215 

we create a Parasol object called ps that initializes the PC plots of class “parcoords”. Once we create ps, 216 

we can add features from the API by chaining commands together. For example, by chaining 217 

.setAxesLayout(), .attachGrid(), and .linked() to ps, we can set the axes structure for the plots, initialize 218 

the interactive data table, and connect the plots and table together, respectively.  219 

Now that we have described how to implement the API, we will step through three example web 220 

applications that provide an overview of the API and illustrate the versatility of the library. The first web 221 

application (Figure 3) shows the cars data using two linked PC plots for which the polylines are colored 222 

according to their fuel economy. By default, the user can dynamically filter the data on a PC plot by clicking 223 

and dragging their mouse along an axis, creating what are known as brushes. Brushes, marks, and 224 

highlights (described below) are referred to collectively as selections in the Parasol API. Brushes can be 225 

resized or deleted completely by clicking anywhere on the brushed axis outside the brushed extents. Since 226 

the PC plots are linked, brushing in one plot will impact the data that appears in the other. However, 227 

brushes merely filter the data temporarily; if the brushes are removed the data will reappear on the plot.  228 



Figure 3. Parasol-based web application that demonstrates brushing across linked parallel coordinates 230 

plots and how buttons can be used to modify a Parasol object, ps, using the Parasol API. Parasol API: 1) 231 

ps.resetSelections() clears any brushes on either plot; 2) ps.keepData() keeps any data within the brush 232 

extents from ps and removes the rest; 3) ps.removeData() removes only the data within the brush extents; 233 

and 4) ps.exportData() exports only the data within the brush extents. URL: 234 

https://parasoljs.github.io/demo/paper-example-1.html 235 

To remove data from the Parasol object permanently, we have developed the keepData() and 236 

removeData() methods for the API. ps.keepData() keeps all data within the brushed extents but removes 237 

all other data from  the Parasol object, ps, whereas ps.removeData() removes the data within the brushed 238 

extents. As shown in Figures 3 and 4, methods from the Parasol API, like keepData(), can be embedded 239 

into interactive buttons. The other buttons shown in Figure 3 allow users to reset brushes across plots 240 

and export the brushed data to a comma-separated value file.   241 

https://parasoljs.github.io/demo/paper-example-1.html


Figure 4. HTML and JavaScript code demonstrating how the Parasol API can be embedded in interactive 243 

elements of a web page. In this example, ps.keepData() and ps.removeData() are activated when their 244 

respective buttons are clicked by users and their effects are applied to brushed data.  245 

The next two web applications (Figures 5 and 6) visualize the same dataset as the first and each 246 

apply clustering to reduce visual clutter. As discussed previously, clustering is used to reveal structure 247 

within the data by identifying which data are most similar. In the Parasol API, cluster() performs the 248 

clustering analysis using k-means clustering—an algorithm often used for clustering in PC literature. Using 249 

this approach, to specify a k of three, the developer would write ps.cluster(k=3). However, choosing this 250 

value k is not always clear as there is no consensus on a single best approach for how k should be chosen 251 

(James et al., 2013). One method is to choose k based on the number of clusters based on how effectively 252 

each additional cluster reduces the within cluster sum of squared deviations from each observation and 253 

its centroid. If the best k is not clear from such an analysis, the developer can make it possible to change 254 

k dynamically. For example, in Figure 5, we have created an example in which k can be altered using an 255 

interactive slider. In contrast, the number of clusters can also be hard-coded by the developer, like in 256 

Figure 6 where k is set equal to four. The clustering method in Parasol can also be used to specify which 257 

variables are included in the clustering calculation. Figure 5 shows an example in which the user can 258 

interactively specify which variables are included in the clustering calculation.   259 



After each data point is assigned to a cluster, the clusters can be encoded geometrically, using 260 

color, or both with the Parasol API. By default, the ps.cluster() method will assign color to the polylines 261 

according to each cluster. If the developer would like to use color for another purpose, clusters can be 262 

represented geometrically using bundling instead. As mentioned previously, bundling is generally 263 

combined with the use of Bézier curves called curve bundling (Luo et al., 2008). Curve bundling is 264 

controlled by two parameters: bundling strength—bundlingStrength()—and curve smoothness—265 

smoothness(). To bundle based on clusters, the clustering variable would be input to bundleDimension(). 266 

Since there is currently no automated procedure for determine the best values of these curve bundling 267 

parameters (Luo et al., 2008), they can be tuned by the user as they see fit. This approach is demonstrated 268 

in Figure 6. 269 

In addition to clustering, these figures demonstrate highlighting (Figure 5) and marking (Figure 270 

6)—features that are most useful when linking plots and tables using the Parasol API. To highlight a data 271 

point, the user can simply hover the computer mouse over the row of interest on the data table. Once the 272 

user moves the mouse outside that row, the highlight will vanish. On the other hand, if users want a more 273 

permanent way to select individual polylines, they can mark them using the checkbox on the data table. 274 

Marked data will remain marked unless the box is unchecked or unless the ps.resetSelection() API is used 275 

to clear the selected data. Both highlighting and marking are highly effective for clutter reduction and 276 

alleviating crossover issues.  277 

Lastly, we have incorporated the weighted sum method from multi-criteria decision analysis 278 

(MCDA) literature into the API so that users can assign preference to different variables and calculate an 279 

aggregate score for each data point. In Figure 6, weights can be assigned based on user input and 280 

implemented in Parasol using the weightedSum() method. These weights can be determined based on 281 

MCDA weighting schemes (Zanakis et al., 1998), such as Analytic Hierarchy Process (Saaty, 2008), or 282 

specified by the user. To accommodate differing scaling practices across approaches, weightedSum() 283 

allows the user to specify whether the variables are normalized from zero to one. After the weighted sum 284 

is calculated, the score is also normalized. 285 



Figure 5. Parasol-based web application that colors parallel coordinates plot polylines based on k-means 287 

clustering. Using HTML sliders and checkboxes, the user can alter arguments to the clustering method, 288 

ps.cluster(). The web application also demonstrates how linking plots and tables allows the user to 289 

highlight individual data points by hovering their mouse over a row on the data table.  URL: 290 

https://parasoljs.github.io/demo/paper-example-2.html 291 

 292 

https://parasoljs.github.io/demo/paper-example-2.html


Figure 6. Parasol-based web application that allows users to specify weights to different metrics to 294 

calculate an aggregate score for each data point (i.e., car). This is achieved using the ps.weightedSum() 295 

function of the Parasol API. This example also shows how linking a data table with the plot allows users to 296 

mark solutions of interest and how curve bundling can be used to reduce visual clutter.  URL: 297 

https://parasoljs.github.io/demo/paper-example-3.html 298 

4. Multi-objective decision making with Parasol 299 

In the previous section, we described the functionality of Parasol using a multivariate dataset 300 

about cars. Although Parasol is suited for many forms of multivariate analysis, we created it specifically 301 

for a posteriori multi-objective decision making. As discussed previously, such a posteriori methods search 302 

for Pareto optimal solutions (i.e., management alternatives), which can inform decision makers about 303 

https://parasoljs.github.io/demo/paper-example-3.html


tradeoffs between the objectives they care about. Instead of aggregating objectives based on a priori 304 

preferences to find a single solution, a posteriori methods use an exploratory approach to make decisions. 305 

Using this discovery-based method of multi-objective decision making, the decision maker can gain 306 

insights about the problem that may diverge from their a priori preferences.  307 

In this section, we demonstrate the utility of Parasol for performing such an analysis by 308 

investigating the Pareto optimal solutions from the Lower Rio Grande Valley (LRGV) water resources 309 

management case study (Characklis et al., 2006; Kirsch et al., 2009). This case study has been widely used 310 

in the literature as representative of a real-world management problem. In this paper, we use a dataset 311 

which results from the “constrained” multi-objective formulation described in Clarkin et al. (2018) that is 312 

based on the problem formulations in Kasprzyk et al. (2012, 2009).  313 

4.1 Lower Rio Grande Valley (LRGV) case study  314 

In the LRGV case study, a hypothetical municipality attempts to manage their water supply 315 

efficiently in the face of uncertain supply and demand due to population growth, agricultural demand, 316 

and transboundary water issues between the United States and Mexico. This municipality has three 317 

instruments with which it develops its water supply planning portfolio: permanent rights, spot market 318 

leases, and adaptive options contracts. It is assumed that the city and all other water users in the region 319 

get their supply from a single reservoir source. By buying permanent rights, the city can acquire a 320 

percentage of reservoir inflows. The city can also purchase water using two market-based instruments 321 

known as “transfers”: spot market leases and adaptive options contracts. Spot market leases can be 322 

acquired in any month of the year but have a variable price. Adaptive options contracts can be purchased 323 

early in the year to guarantee a fixed price for purchasing water at a specified time later in the year. These 324 

market-based instruments enable the city to diversify its water supply portfolio, rather than relying solely 325 

on permanent rights. 326 

Supply portfolios are evaluated based on their performance for two types of simulation: 1) a 327 

Monte Carlo approach representative of historical conditions and 2) a drought scenario characterized by 328 

low flow and high demand (Kasprzyk et al., 2009). Both simulations are run on a monthly timestep. For 329 

the Monte Carlo approach, each portfolio is evaluated based on its performance over a 10-year period 330 

across 1,000 Monte Carlo simulations of supply, demand, and market prices from historical data. Portfolio 331 

metrics are calculated using expected values and other statistical measures from the distribution of Monte 332 

Carlo simulations. In contrast, the drought scenario is single-year, deterministic simulation; therefore, 333 

performance metrics for drought do not need to be summarized using statistical measures.  334 



For the multi-objective optimization problem formulation in this paper, there are nine objectives 335 

(i.e., performance metrics) which are controlled by eight decision variables and subject to four constraints 336 

(equations 1-6): 337 

𝐹𝐹(𝑥𝑥) = (𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛.  𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑐𝑐,𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣.,𝑓𝑓𝑑𝑑𝑣𝑣𝑐𝑐𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑 ,𝑓𝑓𝑑𝑑𝑣𝑣.  𝑐𝑐𝑣𝑣𝑙𝑙𝑛𝑛𝑐𝑐.  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙.,𝑓𝑓𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐.  𝑣𝑣𝑙𝑙𝑙𝑙.,𝑓𝑓𝑑𝑑𝑣𝑣.  𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛.,𝑓𝑓𝑐𝑐𝑛𝑛𝑣𝑣𝑑𝑑𝑙𝑙𝑛𝑛𝑐𝑐) (1) 338 

𝑥𝑥 = (𝑁𝑁𝑅𝑅 ,𝑁𝑁𝑂𝑂,𝑙𝑙𝑐𝑐𝑙𝑙,𝑁𝑁𝑂𝑂,ℎ𝑐𝑐𝑖𝑖ℎ , 𝜉𝜉,𝛼𝛼𝐽𝐽𝑙𝑙𝑛𝑛−𝐴𝐴𝑑𝑑𝑣𝑣,𝛽𝛽𝐽𝐽𝑙𝑙𝑛𝑛−𝐴𝐴𝑑𝑑𝑣𝑣,𝛼𝛼𝑀𝑀𝑙𝑙𝑀𝑀−𝐷𝐷𝑙𝑙𝑐𝑐 ,𝛽𝛽𝑀𝑀𝑙𝑙𝑀𝑀−𝐷𝐷𝑙𝑙𝑐𝑐)    (2) 339 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡 ∶      𝑆𝑆 𝑣𝑣𝑙𝑙𝑙𝑙. ∶   𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙. ≥ 0.98        (3) 340 

𝑆𝑆𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐.  𝑣𝑣𝑙𝑙𝑙𝑙. ∶   𝑓𝑓𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐.  𝑣𝑣𝑙𝑙𝑙𝑙. ≥ 0.99       (4) 341 

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣. ∶   𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣. ≤ 1.2       (5) 342 

𝑆𝑆𝑑𝑑𝑣𝑣.  𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛. ∶   𝑓𝑓𝑑𝑑𝑣𝑣.  𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛. = 0       (6) 343 

where 𝐹𝐹(𝑥𝑥) is a vector of the objectives, 𝑥𝑥 is a vector of decisions and 𝑆𝑆𝑐𝑐 is a constraint on objective 𝑖𝑖. 344 

These nine objectives are categorized into three groups: efficiency, risk indicator, and market use. The 345 

five efficiency objectives include the cost, surplus, cost variability, dropped transfers, and drought transfer 346 

cost. The three risk indicator objectives include the reliability, critical reliability, drought vulnerability. The 347 

ninth objective is the 10-year expected surplus water, an indirect measure of environmental impacts of 348 

water supply management. By lowering surplus, the municipality can divert water to nonurban uses such 349 

as ecological flows. We provide additional details about these objectives in Table 4. The performance of 350 

the portfolios is subject to four constraints on reliability, critical reliability, cost variability, and drought 351 

vulnerability (equations 3-6). Each supply portfolio is comprised of eight decisions that dictate the timing 352 

and magnitude of water purchases and the instrument by which the water is purchased. These decisions 353 

are fixed in time for each simulation but are formulated so the acquisition of water by the city via market-354 

based instruments is flexible to changing conditions.  355 

Unlike market-based instruments, permanent rights can only be bought at the beginning of the 356 

simulation; therefore, the municipality’s rights, NR, are constant throughout the simulation. Permanent 357 

rights are purchased volumetrically (in acre-ft), but water is allocated as a percentage of the total inflow 358 

to the reservoir for each month after accounting for losses like evaporation. Allocating water proportional 359 

to inflow means the city generally does not receive its full volume. On average 0.725 acre-ft is allocated 360 

for every 1 acre-ft purchased for this system (Characklis et al., 2006; Kasprzyk et al., 2009).  361 

 362 



Table 4. Objectives for Lower Rio Grande Valley water resources problem 363 

Objective 
type 

Objective Symbol Description 

Efficiency Cost fcost  Minimize cost of rights, options, and leases over 10 years 
Market 
use 

Number of 
leases 

fnum. 

leases  
Minimize number of spot leases over 10 years: a proxy for 
transaction costs for acquiring leases 

Efficiency Cost variability fcost var. Minimize cost variability for the year with the highest 
variability over 10 year planning horizon 

Efficiency Dropped 
transfers 

fdropped  Minimize the number of leases and exercised options that 
expired after nonuse over 10 years 

Efficiency Drought 
transfer cost 

fdr. trans. 

cost  
Minimize cost of options and leases during the drought 
scenario 

Risk 
indicator 

Reliability frel.   Maximize the probability of avoiding failure (i.e., expected 
supply is less than expected demand in a given month). Based 
on the worst year of the 10-year simulation 

Risk 
indicator 

Critical 
reliability 

fcrit. rel.  Maximize the probability of avoiding critical failure (i.e., 
expected supply is less than 60% of expected demand in a 
given month) over 10 years 

Risk 
indicator 

Drought 
vulnerability 

fdr. vuln.  Minimize the volume of the most severe supply failure during 
the drought scenario 

Efficiency Surplus water fsurplus  Minimize average surplus water at the end each year to 
support nonurban uses (e.g., ecological flows) over 10 years 

 364 

The choice of options contract, NO, determines the maximum volume of water the city can 365 

purchase in the options exercise month (i.e., May). Each simulation year, whether the city can purchase 366 

high- (NO,high)  or low-volume options (NO,low) is dependent on their ratio of current supply at the start of 367 

the year to its permanent rights, ξ. These three decisions, NO,high, NO,low, and ξ, dictate the type of options 368 

contracts available to the municipality each year. If the city purchases transfers during the options exercise 369 

month, they will buy options unless spot leases are less expensive. In all other months, they can only buy 370 

spot leases. How much and when the city purchases water on the market is dependent on two anticipatory 371 

thresholds, α and β.   372 

With regard to market-based supply, the city’s choice of α and β determine “when” and “how 373 

much” water they will purchase, respectively. Specifically, they must buy water on the market when the 374 

ratio of the city’s current supply to expected demand is less than α in that month. The amount of water 375 

they purchase through leases or options must increase that ratio to β. In this problem formulation, the 376 

values of α and β are time-dependent; one set of thresholds is used from January-April (αJan-Apr and βJan-377 

Apr) and another is used from May-December (αMay-Dec and βMay-Dec). The beginning of the year (January-378 



April) is characterized by lower flows and demand than the May-December period on average (Characklis 379 

et al., 2006).  380 

4.2 LRGV web application and analysis 381 

Based on the problem formulation described above, Clarkin et al. (2018) generated a Pareto 382 

optimal set of water supply portfolios using the Borg Multi-Objective Evolutionary Algorithm (Hadka and 383 

Reed, 2013). Using this dataset, we created a Parasol-based web application to perform an exploratory 384 

analysis of these Pareto optimal portfolios. In this section, we describe: 1) the structure of the web 385 

application and the API that was  used to create the example and 2) an example analysis of the the data. 386 

To understand the interactive experience more fully, we recommend that the reader opens the example 387 

using their web browser to perform their own mock analysis.   388 

4.2.1 Creating the web application 389 

The LRGV application is composed of two PC plots and an interactive data table. For this 390 

application, we chose to visualize the objectives and decisions for the portfolios in separate but linked 391 

parallel coordinates plots. Kollat and Reed (2007a) suggest that linking the objective and decision space 392 

in the manner provides a more holistic at the performance and design of the Pareto optimal solutions. 393 

Like the first example Parasol application above (Figure 4), assigning different variables in the dataset to 394 

different plots is achieved by using ps.setAxesLayout(). Using this method, we assign the objectives to the 395 

top plot and the decisions to the bottom. Adding the interactive data table using ps.attachGrid() provides 396 

the user with details on demand for individual solutions of interest, and linking the plots and table 397 

together using ps.linked() enables the user to explore the relationship between the objectives and 398 

decisions.   399 

By default, the extents of the PC plots are set to the maximum and minimum value of the data for 400 

each axis. In this case, we would like to alter these extents manually to improve the visual comparison 401 

between similar decision variables. For instance, α and β have the same units and their ranges are nearly 402 

identical.  By setting the extents for each αJan-Apr, βJan-Apr, αMay-Dec, and βMay-Dec based on their joint maximum 403 

and minimum values, it is easier to examine the relationships between these variables (Figure 7a). The 404 

same is true with the options variables NO,high and NO,low. Therefore, ps.scale() was used to alter the extents 405 

the α, β, and NO axes. By doing so, it becomes clear that the NO,high and NO,low are nearly equal to one 406 

another for all the Pareto optimal portfolios. This might suggest that the problem formulation could be 407 

simplified by combining these decisions into a single number of options variables, NO.  408 



To help users of the application identify similar water supply portfolios, we implemented k-means 409 

clustering with ps.cluster(). We decided to encode these clusters using color in this case. We chose k = 3 410 

for the number of clusters by performing an external analysis of the within cluster sum of squared 411 

deviations from each observation and its centroid for several values of k. Because the k-means clustering 412 

algorithm does not guarantee the best global solution, the search is inherently random; therefore, the 413 

clusters may vary between runs of the algorithm (James et al., 2013). In this web application, the user has 414 

the option to search for clusters based on the objectives alone, decisions alone, or both the objectives 415 

and decisions together. A user that clusters based on the objectives is looking for similar performing 416 

portfolios, while one that clusters on decisions might be more interested in similar portfolio design. In our 417 

example, we will consider performance and design in the clustering. Based on this procedure, we arrive 418 

at the clusters shown in Figure 7 and perform an exploratory analysis of the solutions.  419 

4.2.2 Exploratory analysis  420 

Before we begin the analysis, it is important to note that each solution in this dataset is Pareto 421 

optimal and meets the constraints defined in the problem formulation. Therefore, all solutions should be 422 

acceptable to the decision maker. The goal of this exploratory analysis is to gain insights about the 423 

problem to inform the decision maker about what solutions they prefer most. To begin our example 424 

analysis, we will examine the tradeoffs between the Pareto optimal solutions (i.e., portfolios).  425 

Horizontal lines between two objectives axes suggests that the objectives are highly correlated. 426 

In other words, there is little to no conflict between these objectives among the Pareto optimal solutions. 427 

For instance, this is the case with surplus supply and cost (Figure 7c). Portfolios with high cost related to 428 

rights, leases, and options also have high surplus, which may lead to low ecological flows. Tradeoffs, or 429 

negative correlations, are represented by crossing lines. This behavior is demonstrated between the 430 

number of leases and surplus water (Figure 7d). This suggests that for solutions that there is a conflict 431 

between leases and surplus water for our Pareto optimal solutions: decreased market activity leads to 432 

increases in surplus supply.  433 

If this PC were static, the user would only be able to examine pairwise relationships between 434 

variables. However, Parasol-based PC plots can be made dynamically reorderable axes using the 435 

reorderable() method. With reordering enabled, the user can simply click on the axis label and drag axes 436 

around to analyze relationships between any variable on that plot (Figure 7e). For example, by moving 437 

the dropped transfers axis next to the leases axis, we notice an interesting relationship between these 438 

variables. Most portfolios—those in the blue and green clusters—exhibit a tradeoff between leases and 439 



Figure 7. The Lower Rio Grande Valley Parasol-based web application. A) Using ps.scale(), the extents of 443 

parallel coordinate axes can be altered. B) The objectives are oriented so there is a common preferred 444 

direction across all objectives—negative values indicate that the objective was maximized during the 445 

optimization. C) Horizontal lines represent that there is no tradeoff between variables, while D) crossing 446 

lines represent tradeoffs. E) To examine additional pairwise relationships, the user can dynamically 447 

reorder parallel coordinates axes. F) Filtering solutions using brushes reduces the number of plotted 448 

solutions and can be exported using ps.exportData(). URL: https://parasoljs.github.io/demo/lrgv.html  449 

https://parasoljs.github.io/demo/lrgv.html


From a risk perspective, the clusters have similar performance with respect to reliability and 450 

critical reliability and all solutions are constrained to have zero drought vulnerability. In fact, even if we 451 

filter out solutions with reliability less than 99.5% with brushing, we still have multiple portfolios from 452 

each cluster (Figure 7f). Assuming a risk-averse perspective, we can select these “high reliability” solutions 453 

to examine the clusters further. Since there is little difference between clusters with respect to risk, the 454 

differences must lie in efficiency and market activity objectives and the decisions that make up the 455 

portfolios. Let us examine each cluster individually.  456 

The orange cluster is characterized by high surplus water and cost and low dropped transfers and 457 

number of leases. Drought transfer costs and cost variability tend to be low but have considerable 458 

variability. In fact, the orange cluster contains portfolios with the lowest and the highest cost variability 459 

among these “high reliability” solutions. The decisions that make up this cluster are distinct from the 460 

others in a few ways. The orange cluster has most permanent rights by far, with some portfolios 461 

purchasing nearly the maximum allowable volume of 60,000 acre-ft. These portfolios also have strikingly 462 

similar α and β values, with high values during January-April and relatively low values during May-463 

December. The decisions related to options, on the other hand, are quite mixed. There is a negative 464 

correlation between the number of options and the options threshold, ξ, for these solutions, which is a 465 

behavior unique to this cluster. In contrast, the green cluster represents the opposite end of the spectrum 466 

compared to the orange cluster with respect to both performance and decision making.  467 

The green cluster has high market activity—represented by many leases, drought transfers costs, 468 

and cost variability. However, these seemingly volatile portfolios do have the best performance regarding 469 

surplus water and cost. This cluster also has some of the lowest dropped transfers performance, second 470 

to the orange cluster. Additionally, the portfolios in the green cluster have remarkably similar objective 471 

and decisions values except for the number of leases which appears to be controlled by varying ξ. It 472 

appears that incremental improvements in other objectives have a dramatic effect on the number of 473 

leases required.  474 

In many respects, the blue cluster can be described as a compromise between the orange and 475 

green clusters. It has moderate performance in the number of leases, drought transfers, and cost 476 

variability compared to the other clusters. The values of surplus water and cost for blue portfolios are 477 

nearly as low as the green. What differentiates this cluster from the rest is the high number of dropped 478 

transfers. As a reminder, dropped transfers are volumes of water that were purchased on the market but 479 

expired before they could be used by the city. The decisions that characterize this cluster are low 480 



permanent rights and relatively constant α and β values over time. The portfolios in the other clusters 481 

tend to have higher αJan-Apr and βJan-Apr and αMay-Dec and βMay-Dec values than. These decisions represent 482 

higher market activity during the low flow and demand period at the beginning of the year. Market activity 483 

for the blue cluster solution is relatively independent of time, with the exception of a few solutions that 484 

actually increase market activity during the latter part of the year. These portfolios are also the ones with 485 

the highest dropped transfer values. 486 

In summary, each cluster represents a group of similar solutions with respect to both performance 487 

and design. These clusters reveal structure in the data and provide visual separation between different 488 

types of solutions (Luo et al., 2008) for decision makers. For instance, in the LRGV case study the orange 489 

cluster relies most heavily on permanent rights and has low market activity. It contains the highest cost 490 

and surplus portfolios but has low cost variability, drought transfer costs, and number of leases. The green 491 

cluster portfolios take the opposite approach, with high market activity few rights. The blue cluster has 492 

moderate performance across objectives, in general, but has the highest volume of dropped transfers. 493 

Each of these clusters represents characteristics that might align with different stakeholder preferences. 494 

For instance, if a user has no preference about dropped transfers, then they would likely want to consider 495 

the portfolios within the blue cluster. If this is the case, they could use brushing to examine exclusively 496 

portfolios from the blue cluster. Then, using highlighting on the interactive data table, the user can inspect 497 

individual solutions in detail and mark solutions of interest.  498 

At any point during this analysis, the user can export data of interest. In the LRGV Parasol 499 

application, we demonstrate the use of exportData() for exporting brushed and marked data to a comma-500 

separated values (CSV) file. This method can also be used to export any selected data—either brushed or 501 

marked data—and or to export all plotted data.  502 

5. Conclusions  503 

This paper presented Parasol, an interactive parallel coordinates library to support multi-objective 504 

decision making in environmental management. This library was created to fill the need for high quality, 505 

accessible parallel coordinates visualizations for a posteriori decision making. Developed using the 506 

JavaScript programming language, Parasol builds upon D3, Parcoords, SlickGrid, and ML. Parcoords 507 

provides the foundation for the PC visualizations, SlickGrid offers fast and dynamic data tables, ML support 508 

machine learning techniques, and D3 provides general purpose visualization functions like web page and 509 

data manipulation. By integrating and expanding upon these libraries, the Parasol API provides developers 510 



with the building blocks to create web applications for interactive, linked PC plots and data tables. Using 511 

simple examples and real-world environmental management problems, we showed that Parasol 512 

applications enable users to efficiently explore high-dimensional datasets and with best practice parallel 513 

coordinates features.  514 

We envision that Parasol applications will be used by decision making practitioners and 515 

researchers in environmental management and beyond. We expect most developers will create Parasol-516 

based tools composed of exclusively of parallel coordinates and data tables, similar to those we have 517 

described in this paper. However, we built Parasol on D3 to provide developers with the freedom to create 518 

linked visualizations that accommodate a range of plotting types. For example, parallel coordinates plots 519 

linked to interactive maps have been shown to facilitate the understanding of multivariate spatial data 520 

(Opach and Rød, 2014). Such tools could be developed using Parasol in conjunction with D3 or other 521 

visualization libraries.  522 

More broadly, it is our vision that the multi-objective decision making community will embrace 523 

the use of interactive plots for publications, rather than relying solely on static visualizations. Such 524 

interactive visualizations would allow the reader to experience the process of a posteriori decision making 525 

firsthand. We have illustrated this vision in this paper by including hyperlinks to Parasol visualizations in 526 

addition to traditional, static plots. Eventually, we imagine a future in which authors could embed 527 

interactive visualizations directly into the body of publications. As the dissemination of research continues 528 

to shift from a print-centric paradigm towards a more modern, digital approach, such functionality may 529 

not be far off. Until that time, we see external, web-based visualizations—like those made with Parasol—530 

as one way to bridge that gap.  531 
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