
Title 1

Parasol: an open source, interactive parallel coordinates library for multi-objective decision making 2

William J. Raseman*† (william.raseman@colorado.edu), Joshuah Jacobson‡ 3
(josh.jacobson@colorado.edu), Joseph R. Kasprzyk† (joseph.kasprzyk@colorado.edu) 4
† Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 5
Boulder, Colorado 80309, United States 6
‡ Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado 80309, United 7
States 8

Highlights 9

- We introduce Parasol, an open source visualization library 10

- Parallel coordinates (PC) are well-suited for environmental decision making 11

- Parasol provides building blocks for constructing PC-based web apps 12

- Web apps are easily shared and promote interactive data visualization 13

Abstract 14

This paper introduces Parasol—an open source, interactive visualization library to support the 15

development of web applications for multi-objective decision making. Multi-objective optimization is a 16

popular way to explore competing objectives in environmental management problems. Interactive 17

visualizations allow stakeholders to explore and gain insights about the large, high-dimensional datasets 18

produced by multi-objective optimization. Among visualization methods, parallel coordinates are well-19

suited for this task. However, current software and open source libraries have limited support for these 20

plots. The Parasol library described in this work provides developers with the building blocks to create 21

sharable, interactive parallel coordinates web applications. Moreover, by incorporating state of the art 22

clutter reduction techniques—such as clustering, linking, brushing, marking, and bundling—Parasol 23

improves upon traditional parallel coordinates visualizations. We demonstrate the benefit of such 24

features through simple examples and by exploring a real-world water resources problem commonly used 25

in multi-objective optimization literature. 26

Keywords 27

visualization; parallel coordinates; decision making; optimization; web applications 28

mailto:william.raseman@colorado.edu
mailto:josh.jacobson@colorado.edu
mailto:joseph.kasprzyk@colorado.edu

Software availability 29

- Name of software: Parasol 30

- Description: an interactive visualization library to support the development of web applications 31

for multi-objective decision making. 32

- Developer: J. Jacobson (josh.jacobson@colorado.edu) with contributions by W. Raseman and J. 33

Kasprzyk 34

- Source Languages: JavaScript, HTML, and CSS 35

- Supported Browsers: Chrome, Firefox, and Opera 36

- License: MIT 37

- Availability: https://github.com/ParasolJS/parasol-es 38

- Cost: Free 39

1. Introduction 40

Multi-objective optimization methods generate a suite of diverse solutions to environmental 41

problems with conflicting objectives. These techniques produce Pareto optimal solutions to 42

environmental management problems—meaning that for each solution, an improvement in any objective 43

would decrease performance in another (Pareto, 1964). Such techniques are classified as a posteriori 44

approaches because decision maker preferences are incorporated only after the optimization has 45

searched for solutions (Coello Coello et al., 2007; Cohon and Marks, 1975). In contrast, a priori approaches 46

incorporate decision maker preferences before optimization and aggregate multi-objective problems to 47

single objective problem (Castelletti et al., 2010), resulting in a single “best” solution. Such aggregated 48

methods have been criticized because they tend to penalize and reward objectives in ways that are 49

difficult to predict (Franssen, 2005; Kasprzyk et al., 2015) and because they reinforce “cognitive myopia” 50

in decision making (Brill et al., 1990). By using a posteriori approaches, decision makers can gain new 51

insights about the problem as they explore solutions and consider new objectives (Kasprzyk et al., 2009). 52

For these reasons and due to recent advances in multi-objective optimization, these methods have 53

become increasingly popular for solving complex environmental management problems, particularly for 54

water resources (Maier et al., 2014; Reed et al., 2013), watershed management (Bekele and Nicklow, 55

2005), and water distribution (Ostfeld et al., 2008; Prasad and Park, 2004). However, a posteriori 56

approaches are criticized because they produce large, high-dimensional datasets which can overwhelm 57

and confuse decision makers (Coello Coello et al., 2007; Haimes, 2015; Zeleny, 2005). 58

mailto:josh.jacobson@colorado.edu
https://github.com/ParasolJS/parasol-es

To address this problem, interactive visualization tools have been developed to aid in the 59

discovery of environmental management solutions generated by multi-objective optimization (e.g., Kollat 60

and Reed (2007a) and Hadka et al. (2015)). These tools generally apply methods from information 61

visualization—often summarized as overview first, zoom and filter, and details on demand (Shneiderman, 62

2003)—to explore Pareto optimal solutions using multiple linked plots. Such methods allow decision 63

makers to sift through thousands of solutions with relative ease. Moreover, this interactive, linked 64

visualization approach can help inform the optimization problem itself. For instance, Woodruff et al. 65

(2013) demonstrate integrating these methods with visual analytics (Keim et al., 2008) offers useful 66

insights for improving the problem formulation. The primary issue with this visualization approach is that 67

many plotting types do not scale well for multi-objective problems. Due to its ability to represent high-68

dimensional data, parallel coordinates (PC) plots have become increasingly popular for interactive, multi-69

objective optimization visualizations [e.g., (Rosenberg, 2015; Smith et al., 2018)]. 70

Parallel coordinates (PC) is a visualization technique typically used for exploratory analysis of 71

multivariate data and high-dimensional geometry (Inselberg, 2009). Using PC, N-dimensional data is 72

represented by N equally spaced, parallel axes. Each data point in this N-dimensional space is represented 73

by a so-called polyline that intersects each axis according to its value for that dimension. Despite the ability 74

of PC to represent high-dimensional data, PC visualization software is still in its infancy. As a result, these 75

plots tend to be simplistic, static, and difficult to share and access. Visualizing PC plots using web 76

applications would alleviate these issues since these applications are easy to share, lend themselves to 77

interactivity, and offer a familiar web browser experience for users (Walker and Chapra, 2014). Such 78

features are essential for environmental decision making projects which involve diverse set of 79

stakeholders, analysts, and decision makers. However, current methods available for developing such 80

applications would require considerable time and money. To address this challenge and promote best 81

practices for PC visualizations, we have created a new, open source library. 82

In this paper, we introduce Parasol, a JavaScript library for developing parallel coordinates 83

visualizations to enhance environmental decision making. Parasol provides developers with a toolbox for 84

creating their own custom, interactive PC visualizations. This toolbox, known as the application 85

programming interface (API), includes state of the art visualization techniques that allow users to better 86

interact with PC and reduce visual clutter. Parasol is built on D3—a popular visualization library for web 87

development (Bostock et al., 2011)—which offers developers complete control over the form and function 88

of their applications. The goals of this paper are to motivate the use of parallel coordinates for 89

environmental multi-objective decision making, illustrate how Parasol can improve people’s access to and 90

the quality of PC visualizations, and more broadly, highlight the usefulness of embedding interactive 91

visualizations into academic literature. To do so, we begin by reviewing the best practices for parallel 92

coordinates described in the visualization literature (Section 2. Parallel coordinates). Next, we provide an 93

overview of Parasol, describe capabilities of the API, and walk through examples that highlight key 94

elements of the API (Section 3. Parasol). To demonstrate the accessibility of these applications, we have 95

embedded URLs in this paper for each example we discuss. We encourage the reader to navigate to and 96

explore these applications in addition to reading the text. Next, we illustrate the development and use of 97

a Parasol application for a multi-objective water resources problem, known as the Lower Rio Grande River 98

(LRGV) case study (Section 4. Multi-objective decision making with Parasol). Last, we discuss further 99

applications for Parasol and future directions (Section 5. Conclusions). 100

2. Parallel coordinates 101

Parallel coordinates (PC) is commonly used for exploratory analysis of multivariate data and high-102

dimensional geometry (Inselberg, 2009). These plots scale well for high-dimensional datasets but PC is 103

often criticized for issues related to overplotting, crossover, order of axes (Fua et al., 1999; Zhou et al., 104

2008). Parasol implements best practices from recent PC literature to alleviate these issues. 105

Overplotting, also known as visual clutter, occurs when overlapping polylines obscure patterns of 106

the data. Next, the problem of crossover (i.e., line-tracing) arises when multiple polylines intersect an axis 107

at the same value, making it impossible to be certain which line is which (Heinrich and Weiskopf, 2013). 108

Another criticism of PC is that the ordering of axes “implicitly defines which patterns emerge between 109

adjacent axes” (Heinrich and Weiskopf, 2013). This is important for determining correlations between 110

variables. The ordering of axes issue is commonly alleviated by making the axes interactively reorderable 111

so that users can dynamically explore various pairwise comparisons. Both overplotting and crossover can 112

be mitigated using clutter reduction strategies (Figure 1). 113

Clutter reduction methods include brushing, density, clustering (using either color or geometry), 114

bundling, highlighting, marking and linking. Brushing allows users to dynamically filter plotted data, 115

reducing the total number of polylines significantly (compare Figures 1a and 1b). In addition to filtering, 116

other brushing operations include deleting and labeling data (Becker and Cleveland, 1987). Moreover, 117

altering the transparency of polylines can illustrate high- and low-density regions of data (Figure 1c). 118

Allowing the user to specify transparency dynamically, can enhance the utility of such density-based 119

Figure 1. Clutter reduction strategies: a) example of overplotting, b) interactive brushes allow users to 121

subset the data, c) transparency reveals density of the data, d) clustering encoded using color (bottom 122

left), e) clustering encoded geometrically using curve bundling (bottom center), and f) an example of 123

combining clutter reduction strategies—cluster encoding with color and curve bundling and adjusting 124

polyline transparency. 125

clutter reduction methods. Regarding clustering, there are several approaches that have been developed 126

for PC, each intended to reveal structure within the underlying data. Clusters can be visually encoded 127

using color (Figure 1d) or geometrically using bundling (Figure 1e) (Johansson et al., 2005; Palmas et al., 128

2014; Zhou et al., 2008). Bundling is a technique that provides visual separation between clusters and is 129

typically implemented with Bézier curves (Figure 1e) to reduce crossover issues, known as curve bundling. 130

In a fourteen participant evaluation, Luo et al. (2008) found curve bundling to be equally effective as linear 131

polylines for understanding correlations among variables and displaying cluster information. 132

Furthermore, many of these clutter reduction methods can be employed simultaneously in a 133

complementary manner (Figure 1e). 134

Lastly, clutter can be reduced by linking multiple plots together or even connecting them to other 135

plots or data tables. This feature is central to the Parasol library. Linking PC to interactive data tables helps 136

users focus on individual solutions using marking and highlighting, provides details on demand, and 137

dramatically reduces crossover problems. 138

3. Parasol 139

3.1 Library overview 140

Parasol is an open source, interactive visualization library for developing PC web applications for 141

environmental decision making. We chose a web-based approach for Parasol because web applications 142

are easily shared across diverse groups (Walker and Chapra, 2014), such as the stakeholders, decision 143

makers, and analysts involved in the multi-objective decision making process. Parasol is distinct from most 144

PC software because it is a library rather than a tool, meaning that developers have the freedom to create 145

customized visualizations for their datasets. This library enables users to link multiple PC plots and 146

interactive data tables together, making it ideal for exploratory data analysis for multivariate datasets. 147

Furthermore, Parasol incorporates state of the art clutter reduction techniques to improve user 148

understanding of large datasets. 149

At its core, the Parasol library is built on D3 (data-driven documents) (Bostock et al., 2011), a 150

popular library for web-based visualization, and three other libraries: Parcoords—a D3-based PC library, 151

SlickGrid—a fast, interactive data table library, and ML—for machine learning. A full list of dependencies 152

can be found in Table 2. We decided to build Parasol around D3 because it is a visualization library that 153

provides developers with enormous control over the aesthetics and function of their visualizations. This 154

control makes Parasol-based visualizations highly customizable and allows developers to couple Parasol 155

visualizations with other plotting types. Parasol streamlines the integration of D3 and the other libraries 156

to lower the barrier for developers creating linked parallel coordinates visualizations. 157

Table 2. Dependencies for the Parasol library include, D3, Parcoords, Lodash, ML, FileSaver, and SlickGrid. 158

Dependency Purpose npm
Package

D3 Interactive visualization library, serves as the foundation for Parcoords. d3

Parcoords Interactive parallel coordinates library. parcoord-es

SlickGrid Interactive data table that can be linked to parallel coordinates plots. slickgrid-es6

ML Machine learning library for implementing k-means clustering. ml-kmeans

FileSaver Library for exporting data and plots across different browsers. file-saver

Lodash Utility function library for JavaScript. Specifically, the functions intersection,
union, and difference are used for selections logic.

lodash-es

https://www.npmjs.com/package/d3
https://www.npmjs.com/package/parcoord-es
https://www.npmjs.com/package/slickgrid-es6
https://www.npmjs.com/package/ml-kmeans
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/lodash-es

Among the dependencies, Parasol is most similar to Parcoords, and therefore, we find it important 159

to distinguish between features that we have introduced in Parasol and those that Parasol inherits from 160

Parcoords. In Table 3, we provide a side-by-side comparison of important features for both libraries. This 161

is not an exhaustive list by any means. For a full list of features, please refer to the API for each library. 162

With respect to clutter reduction techniques, Parasol contributes clustering methods to dynamically keep 163

or remove data from plots and the ability to easily link plots and tables together. Moreover, we 164

collaborated with Parcoords developers to add marking (i.e., selecting individual solutions) to the 165

Parcoords API because we felt it was an important feature to include in both libraries. Next, we 166

incorporated a simple approach from multi-criteria decision analysis called the weighted sum method into 167

the Parasol API which reflects that Parasol has been tailored to decision making applications. The 168

weighted sum method (i.e., weighting) allows users to apply weights to different variables according to 169

their preference for each variable. Based on user-defined weights, each data point is scored from zero to 170

one, with one being the most preferred. Lastly, Parasol has functions that allow user to export data and 171

PC plots. 172

Table 3. Comparison of features between Parcoords and Parasol parallel coordinates libraries. *Denotes 173

a feature of Parcoords contributed by the authors of this manuscript. 174

Feature Category Feature Parcoords Parasol
Clutter reduction
techniques

Brushing
Transparency
Bundling
Clustering
Marking *
Keep/remove data
Linking

Alleviate order of
axes issue

Reorderable axes

Multi-criteria
decision analysis

Weighting

Export Export data
 175

3.2 API 176

In this section, we discuss the core elements of the Parasol API and walkthrough example code 177

for Parasol-based web applications. To understand how to create a web application, we begin by providing 178

background about web development practices. Web applications are primarily created using web 179

technologies, such as Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript. 180

Together these technologies integrate with one another to create what is known as the document object 181

model (DOM) to represent a web page (Bostock et al., 2011). HTML code dictates the structure of the 182

webpage, the styling is described in CSS, and JavaScript provides the computational engine and 183

interactivity. Creating a webpage requires a familiarity with web technologies and an understanding of 184

how they communicate with one another. 185

Developers do not need extensive web development experience to create Parasol-based web 186

applications. The Parasol examples, tutorials, and documentation provides novice developers with the 187

information they need to create an array of simple applications. These developers will likely find example 188

apps similar to those they wish to create and edit the code to better suit their needs. In contrast, 189

experienced web developers will have the freedom to create highly custom and varied applications by 190

leveraging the full capacity of web technologies and other open source visualization libraries. These users 191

will likely go far beyond the examples we provide, finding new and innovative applications for the Parasol 192

library. In other words, we created Parasol and its documentation to scale well for all levels of web 193

development experience. To prove this, we will now demonstrate how to create a simple Parasol web 194

application. 195

Figure 2. Example code for how to create a Parasol object that links together two parallel coordinates 197

plots and a data table. In the HTML body, space is allocated for the plots and data table. In the HTML 198

script, JavaScript is used to read in and visualize the data using the Parasol API. 199

To create an application, the developer must first create an HTML document, which will contain 200

HTML and JavaScript code (Figure 2) and references to CSS files for aesthetics. Within this HTML 201

document, the developer must designate space for any PC plot or data table they would like to include in 202

a web page using an HTML <div> elements tag. By creating a <div> element in HTML, the developer can 203

divide a web page into sections. Assigning a unique id to each element offers developers the ability to 204

manipulate elements individually. By grouping elements into classes, it is possible to manipulate the 205

styling and function of any element within that class simultaneously. For example, in Figure 2, we created 206

three <div> elements, for two PC plots and one SlickGrid data table. In Parasol, we use the class convention 207

of “parcoords” for PC plots and “slickgrid-container” for data tables. Following this convention will 208

preserve the styling and function of the Parasol library. 209

After allocating space for plots and tables, the developer can bring them to life by creating a 210

Parasol object. To do so, the developer must write JavaScript that reads in a dataset and passes it into a 211

function that visualizes the data. In our example (Figure 2), we read in a dataset on the attributes of cars—212

a popular dataset for multivariate visualizations—using methods from D3. Then, we pass that data into a 213

user-defined function called visualize(). Within visualize(), we first specify on which plots the cars variables 214

are rendered by defining an object we call layout which contains variables names from the dataset. Next, 215

we create a Parasol object called ps that initializes the PC plots of class “parcoords”. Once we create ps, 216

we can add features from the API by chaining commands together. For example, by chaining 217

.setAxesLayout(), .attachGrid(), and .linked() to ps, we can set the axes structure for the plots, initialize 218

the interactive data table, and connect the plots and table together, respectively. 219

Now that we have described how to implement the API, we will step through three example web 220

applications that provide an overview of the API and illustrate the versatility of the library. The first web 221

application (Figure 3) shows the cars data using two linked PC plots for which the polylines are colored 222

according to their fuel economy. By default, the user can dynamically filter the data on a PC plot by clicking 223

and dragging their mouse along an axis, creating what are known as brushes. Brushes, marks, and 224

highlights (described below) are referred to collectively as selections in the Parasol API. Brushes can be 225

resized or deleted completely by clicking anywhere on the brushed axis outside the brushed extents. Since 226

the PC plots are linked, brushing in one plot will impact the data that appears in the other. However, 227

brushes merely filter the data temporarily; if the brushes are removed the data will reappear on the plot. 228

Figure 3. Parasol-based web application that demonstrates brushing across linked parallel coordinates 230

plots and how buttons can be used to modify a Parasol object, ps, using the Parasol API. Parasol API: 1) 231

ps.resetSelections() clears any brushes on either plot; 2) ps.keepData() keeps any data within the brush 232

extents from ps and removes the rest; 3) ps.removeData() removes only the data within the brush extents; 233

and 4) ps.exportData() exports only the data within the brush extents. URL: 234

https://parasoljs.github.io/demo/paper-example-1.html 235

To remove data from the Parasol object permanently, we have developed the keepData() and 236

removeData() methods for the API. ps.keepData() keeps all data within the brushed extents but removes 237

all other data from the Parasol object, ps, whereas ps.removeData() removes the data within the brushed 238

extents. As shown in Figures 3 and 4, methods from the Parasol API, like keepData(), can be embedded 239

into interactive buttons. The other buttons shown in Figure 3 allow users to reset brushes across plots 240

and export the brushed data to a comma-separated value file. 241

https://parasoljs.github.io/demo/paper-example-1.html

Figure 4. HTML and JavaScript code demonstrating how the Parasol API can be embedded in interactive 243

elements of a web page. In this example, ps.keepData() and ps.removeData() are activated when their 244

respective buttons are clicked by users and their effects are applied to brushed data. 245

The next two web applications (Figures 5 and 6) visualize the same dataset as the first and each 246

apply clustering to reduce visual clutter. As discussed previously, clustering is used to reveal structure 247

within the data by identifying which data are most similar. In the Parasol API, cluster() performs the 248

clustering analysis using k-means clustering—an algorithm often used for clustering in PC literature. Using 249

this approach, to specify a k of three, the developer would write ps.cluster(k=3). However, choosing this 250

value k is not always clear as there is no consensus on a single best approach for how k should be chosen 251

(James et al., 2013). One method is to choose k based on the number of clusters based on how effectively 252

each additional cluster reduces the within cluster sum of squared deviations from each observation and 253

its centroid. If the best k is not clear from such an analysis, the developer can make it possible to change 254

k dynamically. For example, in Figure 5, we have created an example in which k can be altered using an 255

interactive slider. In contrast, the number of clusters can also be hard-coded by the developer, like in 256

Figure 6 where k is set equal to four. The clustering method in Parasol can also be used to specify which 257

variables are included in the clustering calculation. Figure 5 shows an example in which the user can 258

interactively specify which variables are included in the clustering calculation. 259

After each data point is assigned to a cluster, the clusters can be encoded geometrically, using 260

color, or both with the Parasol API. By default, the ps.cluster() method will assign color to the polylines 261

according to each cluster. If the developer would like to use color for another purpose, clusters can be 262

represented geometrically using bundling instead. As mentioned previously, bundling is generally 263

combined with the use of Bézier curves called curve bundling (Luo et al., 2008). Curve bundling is 264

controlled by two parameters: bundling strength—bundlingStrength()—and curve smoothness—265

smoothness(). To bundle based on clusters, the clustering variable would be input to bundleDimension(). 266

Since there is currently no automated procedure for determine the best values of these curve bundling 267

parameters (Luo et al., 2008), they can be tuned by the user as they see fit. This approach is demonstrated 268

in Figure 6. 269

In addition to clustering, these figures demonstrate highlighting (Figure 5) and marking (Figure 270

6)—features that are most useful when linking plots and tables using the Parasol API. To highlight a data 271

point, the user can simply hover the computer mouse over the row of interest on the data table. Once the 272

user moves the mouse outside that row, the highlight will vanish. On the other hand, if users want a more 273

permanent way to select individual polylines, they can mark them using the checkbox on the data table. 274

Marked data will remain marked unless the box is unchecked or unless the ps.resetSelection() API is used 275

to clear the selected data. Both highlighting and marking are highly effective for clutter reduction and 276

alleviating crossover issues. 277

Lastly, we have incorporated the weighted sum method from multi-criteria decision analysis 278

(MCDA) literature into the API so that users can assign preference to different variables and calculate an 279

aggregate score for each data point. In Figure 6, weights can be assigned based on user input and 280

implemented in Parasol using the weightedSum() method. These weights can be determined based on 281

MCDA weighting schemes (Zanakis et al., 1998), such as Analytic Hierarchy Process (Saaty, 2008), or 282

specified by the user. To accommodate differing scaling practices across approaches, weightedSum() 283

allows the user to specify whether the variables are normalized from zero to one. After the weighted sum 284

is calculated, the score is also normalized. 285

Figure 5. Parasol-based web application that colors parallel coordinates plot polylines based on k-means 287

clustering. Using HTML sliders and checkboxes, the user can alter arguments to the clustering method, 288

ps.cluster(). The web application also demonstrates how linking plots and tables allows the user to 289

highlight individual data points by hovering their mouse over a row on the data table. URL: 290

https://parasoljs.github.io/demo/paper-example-2.html 291

 292

https://parasoljs.github.io/demo/paper-example-2.html

Figure 6. Parasol-based web application that allows users to specify weights to different metrics to 294

calculate an aggregate score for each data point (i.e., car). This is achieved using the ps.weightedSum() 295

function of the Parasol API. This example also shows how linking a data table with the plot allows users to 296

mark solutions of interest and how curve bundling can be used to reduce visual clutter. URL: 297

https://parasoljs.github.io/demo/paper-example-3.html 298

4. Multi-objective decision making with Parasol 299

In the previous section, we described the functionality of Parasol using a multivariate dataset 300

about cars. Although Parasol is suited for many forms of multivariate analysis, we created it specifically 301

for a posteriori multi-objective decision making. As discussed previously, such a posteriori methods search 302

for Pareto optimal solutions (i.e., management alternatives), which can inform decision makers about 303

https://parasoljs.github.io/demo/paper-example-3.html

tradeoffs between the objectives they care about. Instead of aggregating objectives based on a priori 304

preferences to find a single solution, a posteriori methods use an exploratory approach to make decisions. 305

Using this discovery-based method of multi-objective decision making, the decision maker can gain 306

insights about the problem that may diverge from their a priori preferences. 307

In this section, we demonstrate the utility of Parasol for performing such an analysis by 308

investigating the Pareto optimal solutions from the Lower Rio Grande Valley (LRGV) water resources 309

management case study (Characklis et al., 2006; Kirsch et al., 2009). This case study has been widely used 310

in the literature as representative of a real-world management problem. In this paper, we use a dataset 311

which results from the “constrained” multi-objective formulation described in Clarkin et al. (2018) that is 312

based on the problem formulations in Kasprzyk et al. (2012, 2009). 313

4.1 Lower Rio Grande Valley (LRGV) case study 314

In the LRGV case study, a hypothetical municipality attempts to manage their water supply 315

efficiently in the face of uncertain supply and demand due to population growth, agricultural demand, 316

and transboundary water issues between the United States and Mexico. This municipality has three 317

instruments with which it develops its water supply planning portfolio: permanent rights, spot market 318

leases, and adaptive options contracts. It is assumed that the city and all other water users in the region 319

get their supply from a single reservoir source. By buying permanent rights, the city can acquire a 320

percentage of reservoir inflows. The city can also purchase water using two market-based instruments 321

known as “transfers”: spot market leases and adaptive options contracts. Spot market leases can be 322

acquired in any month of the year but have a variable price. Adaptive options contracts can be purchased 323

early in the year to guarantee a fixed price for purchasing water at a specified time later in the year. These 324

market-based instruments enable the city to diversify its water supply portfolio, rather than relying solely 325

on permanent rights. 326

Supply portfolios are evaluated based on their performance for two types of simulation: 1) a 327

Monte Carlo approach representative of historical conditions and 2) a drought scenario characterized by 328

low flow and high demand (Kasprzyk et al., 2009). Both simulations are run on a monthly timestep. For 329

the Monte Carlo approach, each portfolio is evaluated based on its performance over a 10-year period 330

across 1,000 Monte Carlo simulations of supply, demand, and market prices from historical data. Portfolio 331

metrics are calculated using expected values and other statistical measures from the distribution of Monte 332

Carlo simulations. In contrast, the drought scenario is single-year, deterministic simulation; therefore, 333

performance metrics for drought do not need to be summarized using statistical measures. 334

For the multi-objective optimization problem formulation in this paper, there are nine objectives 335

(i.e., performance metrics) which are controlled by eight decision variables and subject to four constraints 336

(equations 1-6): 337

𝐹𝐹(𝑥𝑥) = (𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛. 𝑙𝑙𝑙𝑙𝑙𝑙𝑐𝑐𝑙𝑙𝑐𝑐,𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣.,𝑓𝑓𝑑𝑑𝑣𝑣𝑐𝑐𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑 ,𝑓𝑓𝑑𝑑𝑣𝑣. 𝑐𝑐𝑣𝑣𝑙𝑙𝑛𝑛𝑐𝑐. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙.,𝑓𝑓𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐. 𝑣𝑣𝑙𝑙𝑙𝑙.,𝑓𝑓𝑑𝑑𝑣𝑣. 𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛.,𝑓𝑓𝑐𝑐𝑛𝑛𝑣𝑣𝑑𝑑𝑙𝑙𝑛𝑛𝑐𝑐) (1) 338

𝑥𝑥 = (𝑁𝑁𝑅𝑅 ,𝑁𝑁𝑂𝑂,𝑙𝑙𝑐𝑐𝑙𝑙,𝑁𝑁𝑂𝑂,ℎ𝑐𝑐𝑖𝑖ℎ , 𝜉𝜉,𝛼𝛼𝐽𝐽𝑙𝑙𝑛𝑛−𝐴𝐴𝑑𝑑𝑣𝑣,𝛽𝛽𝐽𝐽𝑙𝑙𝑛𝑛−𝐴𝐴𝑑𝑑𝑣𝑣,𝛼𝛼𝑀𝑀𝑙𝑙𝑀𝑀−𝐷𝐷𝑙𝑙𝑐𝑐 ,𝛽𝛽𝑀𝑀𝑙𝑙𝑀𝑀−𝐷𝐷𝑙𝑙𝑐𝑐) (2) 339

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑡𝑡 ∶ 𝑆𝑆 𝑣𝑣𝑙𝑙𝑙𝑙. ∶ 𝑓𝑓𝑣𝑣𝑙𝑙𝑙𝑙. ≥ 0.98 (3) 340

𝑆𝑆𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐. 𝑣𝑣𝑙𝑙𝑙𝑙. ∶ 𝑓𝑓𝑐𝑐𝑣𝑣𝑐𝑐𝑐𝑐. 𝑣𝑣𝑙𝑙𝑙𝑙. ≥ 0.99 (4) 341

𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣. ∶ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑙𝑙𝑣𝑣. ≤ 1.2 (5) 342

𝑆𝑆𝑑𝑑𝑣𝑣. 𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛. ∶ 𝑓𝑓𝑑𝑑𝑣𝑣. 𝑣𝑣𝑛𝑛𝑙𝑙𝑛𝑛. = 0 (6) 343

where 𝐹𝐹(𝑥𝑥) is a vector of the objectives, 𝑥𝑥 is a vector of decisions and 𝑆𝑆𝑐𝑐 is a constraint on objective 𝑖𝑖. 344

These nine objectives are categorized into three groups: efficiency, risk indicator, and market use. The 345

five efficiency objectives include the cost, surplus, cost variability, dropped transfers, and drought transfer 346

cost. The three risk indicator objectives include the reliability, critical reliability, drought vulnerability. The 347

ninth objective is the 10-year expected surplus water, an indirect measure of environmental impacts of 348

water supply management. By lowering surplus, the municipality can divert water to nonurban uses such 349

as ecological flows. We provide additional details about these objectives in Table 4. The performance of 350

the portfolios is subject to four constraints on reliability, critical reliability, cost variability, and drought 351

vulnerability (equations 3-6). Each supply portfolio is comprised of eight decisions that dictate the timing 352

and magnitude of water purchases and the instrument by which the water is purchased. These decisions 353

are fixed in time for each simulation but are formulated so the acquisition of water by the city via market-354

based instruments is flexible to changing conditions. 355

Unlike market-based instruments, permanent rights can only be bought at the beginning of the 356

simulation; therefore, the municipality’s rights, NR, are constant throughout the simulation. Permanent 357

rights are purchased volumetrically (in acre-ft), but water is allocated as a percentage of the total inflow 358

to the reservoir for each month after accounting for losses like evaporation. Allocating water proportional 359

to inflow means the city generally does not receive its full volume. On average 0.725 acre-ft is allocated 360

for every 1 acre-ft purchased for this system (Characklis et al., 2006; Kasprzyk et al., 2009). 361

 362

Table 4. Objectives for Lower Rio Grande Valley water resources problem 363

Objective
type

Objective Symbol Description

Efficiency Cost fcost Minimize cost of rights, options, and leases over 10 years
Market
use

Number of
leases

fnum.

leases
Minimize number of spot leases over 10 years: a proxy for
transaction costs for acquiring leases

Efficiency Cost variability fcost var. Minimize cost variability for the year with the highest
variability over 10 year planning horizon

Efficiency Dropped
transfers

fdropped Minimize the number of leases and exercised options that
expired after nonuse over 10 years

Efficiency Drought
transfer cost

fdr. trans.

cost
Minimize cost of options and leases during the drought
scenario

Risk
indicator

Reliability frel. Maximize the probability of avoiding failure (i.e., expected
supply is less than expected demand in a given month). Based
on the worst year of the 10-year simulation

Risk
indicator

Critical
reliability

fcrit. rel. Maximize the probability of avoiding critical failure (i.e.,
expected supply is less than 60% of expected demand in a
given month) over 10 years

Risk
indicator

Drought
vulnerability

fdr. vuln. Minimize the volume of the most severe supply failure during
the drought scenario

Efficiency Surplus water fsurplus Minimize average surplus water at the end each year to
support nonurban uses (e.g., ecological flows) over 10 years

 364

The choice of options contract, NO, determines the maximum volume of water the city can 365

purchase in the options exercise month (i.e., May). Each simulation year, whether the city can purchase 366

high- (NO,high) or low-volume options (NO,low) is dependent on their ratio of current supply at the start of 367

the year to its permanent rights, ξ. These three decisions, NO,high, NO,low, and ξ, dictate the type of options 368

contracts available to the municipality each year. If the city purchases transfers during the options exercise 369

month, they will buy options unless spot leases are less expensive. In all other months, they can only buy 370

spot leases. How much and when the city purchases water on the market is dependent on two anticipatory 371

thresholds, α and β. 372

With regard to market-based supply, the city’s choice of α and β determine “when” and “how 373

much” water they will purchase, respectively. Specifically, they must buy water on the market when the 374

ratio of the city’s current supply to expected demand is less than α in that month. The amount of water 375

they purchase through leases or options must increase that ratio to β. In this problem formulation, the 376

values of α and β are time-dependent; one set of thresholds is used from January-April (αJan-Apr and βJan-377

Apr) and another is used from May-December (αMay-Dec and βMay-Dec). The beginning of the year (January-378

April) is characterized by lower flows and demand than the May-December period on average (Characklis 379

et al., 2006). 380

4.2 LRGV web application and analysis 381

Based on the problem formulation described above, Clarkin et al. (2018) generated a Pareto 382

optimal set of water supply portfolios using the Borg Multi-Objective Evolutionary Algorithm (Hadka and 383

Reed, 2013). Using this dataset, we created a Parasol-based web application to perform an exploratory 384

analysis of these Pareto optimal portfolios. In this section, we describe: 1) the structure of the web 385

application and the API that was used to create the example and 2) an example analysis of the the data. 386

To understand the interactive experience more fully, we recommend that the reader opens the example 387

using their web browser to perform their own mock analysis. 388

4.2.1 Creating the web application 389

The LRGV application is composed of two PC plots and an interactive data table. For this 390

application, we chose to visualize the objectives and decisions for the portfolios in separate but linked 391

parallel coordinates plots. Kollat and Reed (2007a) suggest that linking the objective and decision space 392

in the manner provides a more holistic at the performance and design of the Pareto optimal solutions. 393

Like the first example Parasol application above (Figure 4), assigning different variables in the dataset to 394

different plots is achieved by using ps.setAxesLayout(). Using this method, we assign the objectives to the 395

top plot and the decisions to the bottom. Adding the interactive data table using ps.attachGrid() provides 396

the user with details on demand for individual solutions of interest, and linking the plots and table 397

together using ps.linked() enables the user to explore the relationship between the objectives and 398

decisions. 399

By default, the extents of the PC plots are set to the maximum and minimum value of the data for 400

each axis. In this case, we would like to alter these extents manually to improve the visual comparison 401

between similar decision variables. For instance, α and β have the same units and their ranges are nearly 402

identical. By setting the extents for each αJan-Apr, βJan-Apr, αMay-Dec, and βMay-Dec based on their joint maximum 403

and minimum values, it is easier to examine the relationships between these variables (Figure 7a). The 404

same is true with the options variables NO,high and NO,low. Therefore, ps.scale() was used to alter the extents 405

the α, β, and NO axes. By doing so, it becomes clear that the NO,high and NO,low are nearly equal to one 406

another for all the Pareto optimal portfolios. This might suggest that the problem formulation could be 407

simplified by combining these decisions into a single number of options variables, NO. 408

To help users of the application identify similar water supply portfolios, we implemented k-means 409

clustering with ps.cluster(). We decided to encode these clusters using color in this case. We chose k = 3 410

for the number of clusters by performing an external analysis of the within cluster sum of squared 411

deviations from each observation and its centroid for several values of k. Because the k-means clustering 412

algorithm does not guarantee the best global solution, the search is inherently random; therefore, the 413

clusters may vary between runs of the algorithm (James et al., 2013). In this web application, the user has 414

the option to search for clusters based on the objectives alone, decisions alone, or both the objectives 415

and decisions together. A user that clusters based on the objectives is looking for similar performing 416

portfolios, while one that clusters on decisions might be more interested in similar portfolio design. In our 417

example, we will consider performance and design in the clustering. Based on this procedure, we arrive 418

at the clusters shown in Figure 7 and perform an exploratory analysis of the solutions. 419

4.2.2 Exploratory analysis 420

Before we begin the analysis, it is important to note that each solution in this dataset is Pareto 421

optimal and meets the constraints defined in the problem formulation. Therefore, all solutions should be 422

acceptable to the decision maker. The goal of this exploratory analysis is to gain insights about the 423

problem to inform the decision maker about what solutions they prefer most. To begin our example 424

analysis, we will examine the tradeoffs between the Pareto optimal solutions (i.e., portfolios). 425

Horizontal lines between two objectives axes suggests that the objectives are highly correlated. 426

In other words, there is little to no conflict between these objectives among the Pareto optimal solutions. 427

For instance, this is the case with surplus supply and cost (Figure 7c). Portfolios with high cost related to 428

rights, leases, and options also have high surplus, which may lead to low ecological flows. Tradeoffs, or 429

negative correlations, are represented by crossing lines. This behavior is demonstrated between the 430

number of leases and surplus water (Figure 7d). This suggests that for solutions that there is a conflict 431

between leases and surplus water for our Pareto optimal solutions: decreased market activity leads to 432

increases in surplus supply. 433

If this PC were static, the user would only be able to examine pairwise relationships between 434

variables. However, Parasol-based PC plots can be made dynamically reorderable axes using the 435

reorderable() method. With reordering enabled, the user can simply click on the axis label and drag axes 436

around to analyze relationships between any variable on that plot (Figure 7e). For example, by moving 437

the dropped transfers axis next to the leases axis, we notice an interesting relationship between these 438

variables. Most portfolios—those in the blue and green clusters—exhibit a tradeoff between leases and 439

Figure 7. The Lower Rio Grande Valley Parasol-based web application. A) Using ps.scale(), the extents of 443

parallel coordinate axes can be altered. B) The objectives are oriented so there is a common preferred 444

direction across all objectives—negative values indicate that the objective was maximized during the 445

optimization. C) Horizontal lines represent that there is no tradeoff between variables, while D) crossing 446

lines represent tradeoffs. E) To examine additional pairwise relationships, the user can dynamically 447

reorder parallel coordinates axes. F) Filtering solutions using brushes reduces the number of plotted 448

solutions and can be exported using ps.exportData(). URL: https://parasoljs.github.io/demo/lrgv.html 449

https://parasoljs.github.io/demo/lrgv.html

From a risk perspective, the clusters have similar performance with respect to reliability and 450

critical reliability and all solutions are constrained to have zero drought vulnerability. In fact, even if we 451

filter out solutions with reliability less than 99.5% with brushing, we still have multiple portfolios from 452

each cluster (Figure 7f). Assuming a risk-averse perspective, we can select these “high reliability” solutions 453

to examine the clusters further. Since there is little difference between clusters with respect to risk, the 454

differences must lie in efficiency and market activity objectives and the decisions that make up the 455

portfolios. Let us examine each cluster individually. 456

The orange cluster is characterized by high surplus water and cost and low dropped transfers and 457

number of leases. Drought transfer costs and cost variability tend to be low but have considerable 458

variability. In fact, the orange cluster contains portfolios with the lowest and the highest cost variability 459

among these “high reliability” solutions. The decisions that make up this cluster are distinct from the 460

others in a few ways. The orange cluster has most permanent rights by far, with some portfolios 461

purchasing nearly the maximum allowable volume of 60,000 acre-ft. These portfolios also have strikingly 462

similar α and β values, with high values during January-April and relatively low values during May-463

December. The decisions related to options, on the other hand, are quite mixed. There is a negative 464

correlation between the number of options and the options threshold, ξ, for these solutions, which is a 465

behavior unique to this cluster. In contrast, the green cluster represents the opposite end of the spectrum 466

compared to the orange cluster with respect to both performance and decision making. 467

The green cluster has high market activity—represented by many leases, drought transfers costs, 468

and cost variability. However, these seemingly volatile portfolios do have the best performance regarding 469

surplus water and cost. This cluster also has some of the lowest dropped transfers performance, second 470

to the orange cluster. Additionally, the portfolios in the green cluster have remarkably similar objective 471

and decisions values except for the number of leases which appears to be controlled by varying ξ. It 472

appears that incremental improvements in other objectives have a dramatic effect on the number of 473

leases required. 474

In many respects, the blue cluster can be described as a compromise between the orange and 475

green clusters. It has moderate performance in the number of leases, drought transfers, and cost 476

variability compared to the other clusters. The values of surplus water and cost for blue portfolios are 477

nearly as low as the green. What differentiates this cluster from the rest is the high number of dropped 478

transfers. As a reminder, dropped transfers are volumes of water that were purchased on the market but 479

expired before they could be used by the city. The decisions that characterize this cluster are low 480

permanent rights and relatively constant α and β values over time. The portfolios in the other clusters 481

tend to have higher αJan-Apr and βJan-Apr and αMay-Dec and βMay-Dec values than. These decisions represent 482

higher market activity during the low flow and demand period at the beginning of the year. Market activity 483

for the blue cluster solution is relatively independent of time, with the exception of a few solutions that 484

actually increase market activity during the latter part of the year. These portfolios are also the ones with 485

the highest dropped transfer values. 486

In summary, each cluster represents a group of similar solutions with respect to both performance 487

and design. These clusters reveal structure in the data and provide visual separation between different 488

types of solutions (Luo et al., 2008) for decision makers. For instance, in the LRGV case study the orange 489

cluster relies most heavily on permanent rights and has low market activity. It contains the highest cost 490

and surplus portfolios but has low cost variability, drought transfer costs, and number of leases. The green 491

cluster portfolios take the opposite approach, with high market activity few rights. The blue cluster has 492

moderate performance across objectives, in general, but has the highest volume of dropped transfers. 493

Each of these clusters represents characteristics that might align with different stakeholder preferences. 494

For instance, if a user has no preference about dropped transfers, then they would likely want to consider 495

the portfolios within the blue cluster. If this is the case, they could use brushing to examine exclusively 496

portfolios from the blue cluster. Then, using highlighting on the interactive data table, the user can inspect 497

individual solutions in detail and mark solutions of interest. 498

At any point during this analysis, the user can export data of interest. In the LRGV Parasol 499

application, we demonstrate the use of exportData() for exporting brushed and marked data to a comma-500

separated values (CSV) file. This method can also be used to export any selected data—either brushed or 501

marked data—and or to export all plotted data. 502

5. Conclusions 503

This paper presented Parasol, an interactive parallel coordinates library to support multi-objective 504

decision making in environmental management. This library was created to fill the need for high quality, 505

accessible parallel coordinates visualizations for a posteriori decision making. Developed using the 506

JavaScript programming language, Parasol builds upon D3, Parcoords, SlickGrid, and ML. Parcoords 507

provides the foundation for the PC visualizations, SlickGrid offers fast and dynamic data tables, ML support 508

machine learning techniques, and D3 provides general purpose visualization functions like web page and 509

data manipulation. By integrating and expanding upon these libraries, the Parasol API provides developers 510

with the building blocks to create web applications for interactive, linked PC plots and data tables. Using 511

simple examples and real-world environmental management problems, we showed that Parasol 512

applications enable users to efficiently explore high-dimensional datasets and with best practice parallel 513

coordinates features. 514

We envision that Parasol applications will be used by decision making practitioners and 515

researchers in environmental management and beyond. We expect most developers will create Parasol-516

based tools composed of exclusively of parallel coordinates and data tables, similar to those we have 517

described in this paper. However, we built Parasol on D3 to provide developers with the freedom to create 518

linked visualizations that accommodate a range of plotting types. For example, parallel coordinates plots 519

linked to interactive maps have been shown to facilitate the understanding of multivariate spatial data 520

(Opach and Rød, 2014). Such tools could be developed using Parasol in conjunction with D3 or other 521

visualization libraries. 522

More broadly, it is our vision that the multi-objective decision making community will embrace 523

the use of interactive plots for publications, rather than relying solely on static visualizations. Such 524

interactive visualizations would allow the reader to experience the process of a posteriori decision making 525

firsthand. We have illustrated this vision in this paper by including hyperlinks to Parasol visualizations in 526

addition to traditional, static plots. Eventually, we imagine a future in which authors could embed 527

interactive visualizations directly into the body of publications. As the dissemination of research continues 528

to shift from a print-centric paradigm towards a more modern, digital approach, such functionality may 529

not be far off. Until that time, we see external, web-based visualizations—like those made with Parasol—530

as one way to bridge that gap. 531

Acknowledgements 532

This work was supported by the U.S. Environmental Protection Agency “National Priorities: 533

Systems-Based Strategies to Improve the Nation's Ability to Plan and Respond to Water Scarcity and 534

Drought Due to Climate Change”, Grant No. R835865 and the Discovery Learning Apprenticeship Program 535

at the University of Colorado Boulder. The contents of this manuscript are solely the responsibility of the 536

grantee and do not necessarily represent the official views of either funding organization. Figures 2 and 3 537

were created using Carbon which is published and sponsored by Dawn Labs. 538

References 539

Becker, R.A., Cleveland, W.S., 1987. Brushing Scatterplots. Technometrics 29, 127–142. 540

https://doi.org/10.1080/00401706.1987.10488204 541

Bekele, E.G., Nicklow, J.W., 2005. Multiobjective management of ecosystem services by integrative 542

watershed modeling and evolutionary algorithms. Water Resour. Res. 41. 543

https://doi.org/10.1029/2005WR004090 544

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3 Data-Driven Documents. IEEE Trans. Vis. Comput. Graph. 545

17, 2301–2309. https://doi.org/10.1109/TVCG.2011.185 546

Brill, E.D., Flach, J.M., Hopkins, L.D., Ranjithan, S., 1990. MGA: a decision support system for complex, 547

incompletely defined problems. IEEE Trans. Syst. Man Cybern. 20, 745–757. 548

https://doi.org/10.1109/21.105076 549

Castelletti, A., Lotov, A.V., Soncini-Sessa, R., 2010. Visualization-based multi-objective improvement of 550

environmental decision-making using linearization of response surfaces. Environ. Model. Softw. 551

25, 1552–1564. https://doi.org/10.1016/j.envsoft.2010.05.011 552

Characklis, G.W., Kirsch, B.R., Ramsey, J., Dillard, K.E., Kelley, C.T., 2006. Developing portfolios of water 553

supply transfers. Water Resour. Res. 42. 554

Clarkin, T., Raseman, W., Kasprzyk, J., Herman, J.D., 2018. Diagnostic Assessment of Preference 555

Constraints for Simulation Optimization in Water Resources. J. Water Resour. Plan. Manag. 144, 556

04018036. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000940 557

Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A., 2007. Evolutionary algorithms for solving multi-558

objective problems. Springer. 559

Cohon, J.L., Marks, D.H., 1975. A review and evaluation of multiobjective programing techniques. Water 560

Resour. Res. 11, 208–220. https://doi.org/10.1029/WR011i002p00208 561

Franssen, M., 2005. Arrow’s theorem, multi-criteria decision problems and multi-attribute preferences in 562

engineering design. Res. Eng. Des. 16, 42–56. 563

Fua, Y.-H., Ward, M.O., Rundensteiner, E.A., 1999. Hierarchical parallel coordinates for exploration of large 564

datasets, in: Proceedings of the Conference on Visualization’99: Celebrating Ten Years. IEEE 565

Computer Society Press, pp. 43–50. 566

Hadka, D., Herman, J., Reed, P., Keller, K., 2015. An open source framework for many-objective robust 567

decision making. Environ. Model. Softw. 74, 114–129. 568

https://doi.org/10.1016/j.envsoft.2015.07.014 569

Hadka, D., Reed, P., 2013. Borg: An auto-adaptive many-objective evolutionary computing framework. 570

Evol. Comput. 21, 231–259. 571

Haimes, Y.Y., 2015. Risk modeling, assessment, and management. John Wiley & Sons. 572

Heinrich, J., Weiskopf, D., 2013. State of the Art of Parallel Coordinates., in: Eurographics (STARs). pp. 95–573

116. 574

Inselberg, A., 2009. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer-575

Verlag, New York. 576

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning. Springer. 577

Johansson, J., Ljung, P., Jern, M., Cooper, M., 2005. Revealing structure within clustered parallel 578

coordinates displays, in: IEEE Symposium on Information Visualization, 2005. INFOVIS 2005. 579

Presented at the IEEE Symposium on Information Visualization, 2005. INFOVIS 2005., pp. 125–580

132. https://doi.org/10.1109/INFVIS.2005.1532138 581

Kasprzyk, J.R., Reed, P.M., Characklis, G.W., Kirsch, B.R., 2012. Many-objective de Novo water supply 582

portfolio planning under deep uncertainty. Environ. Model. Softw., Emulation techniques for the 583

reduction and sensitivity analysis of complex environmental models 34, 87–104. 584

https://doi.org/10.1016/j.envsoft.2011.04.003 585

Kasprzyk, J.R., Reed, P.M., Hadka, D.M., 2015. Battling arrow’s paradox to discover robust water 586

management alternatives. J. Water Resour. Plan. Manag. 142, 04015053. 587

Kasprzyk, J.R., Reed, P.M., Kirsch, B.R., Characklis, G.W., 2009. Managing population and drought risks 588

using many-objective water portfolio planning under uncertainty. Water Resour. Res. 45, 589

W12401. https://doi.org/10.1029/2009WR008121 590

Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G., 2008. Visual analytics: 591

Definition, process, and challenges, in: Information Visualization. Springer, pp. 154–175. 592

Kirsch, B.R., Characklis, G.W., Dillard, K.E.M., Kelley, C.T., 2009. More efficient optimization of long-term 593

water supply portfolios. Water Resour. Res. 45. https://doi.org/10.1029/2008WR007018 594

Kollat, J.B., Reed, P., 2007. A framework for Visually Interactive Decision-making and Design using 595

Evolutionary Multi-objective Optimization (VIDEO). Environ. Model. Softw. 22, 1691–1704. 596

https://doi.org/10.1016/j.envsoft.2007.02.001 597

Luo, Y., Weiskopf, D., Kirkpatrick, A.E., 2008. Cluster Visualization in Parallel Coordinates Using Curve 598

Bundles. IEEE Trans. Vis. Comput. Graph. 12. 599

Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C., Gibbs, M.S., 600

Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D.P., Vrugt, J.A., Zecchin, A.C., Minsker, 601

B.S., Barbour, E.J., Kuczera, G., Pasha, F., Castelletti, A., Giuliani, M., Reed, P.M., 2014. 602

Evolutionary algorithms and other metaheuristics in water resources: Current status, research 603

challenges and future directions. Environ. Model. Softw. 62, 271–299. 604

https://doi.org/10.1016/j.envsoft.2014.09.013 605

Opach, T., Rød, J.K., 2014. Do choropleth maps linked with parallel coordinates facilitate an understanding 606

of multivariate spatial characteristics? Cartogr. Geogr. Inf. Sci. 41, 413–429. 607

https://doi.org/10.1080/15230406.2014.953585 608

Ostfeld, A., Uber, J.G., Salomons, E., Berry, J.W., Hart, W.E., Phillips, C.A., Watson, J.-P., Dorini, G., 609

Jonkergouw, P., Kapelan, Z., others, 2008. The battle of the water sensor networks (BWSN): A 610

design challenge for engineers and algorithms. J. Water Resour. Plan. Manag. 134, 556–568. 611

Palmas, G., Bachynskyi, M., Oulasvirta, A., Seidel, H.P., Weinkauf, T., 2014. An Edge-Bundling Layout for 612

Interactive Parallel Coordinates, in: 2014 IEEE Pacific Visualization Symposium. Presented at the 613

2014 IEEE Pacific Visualization Symposium, pp. 57–64. https://doi.org/10.1109/PacificVis.2014.40 614

Pareto, V., 1964. Cours d’économie politique. Librairie Droz. 615

Prasad, T.D., Park, N.-S., 2004. Multiobjective genetic algorithms for design of water distribution 616

networks. J. Water Resour. Plan. Manag. 130, 73–82. 617

Reed, P.M., Hadka, D., Herman, J.D., Kasprzyk, J.R., Kollat, J.B., 2013. Evolutionary multiobjective 618

optimization in water resources: The past, present, and future. Adv. Water Resour., 35th Year 619

Anniversary Issue 51, 438–456. https://doi.org/10.1016/j.advwatres.2012.01.005 620

Rosenberg, D.E., 2015. Blended near-optimal alternative generation, visualization, and interaction for 621

water resources decision making. Water Resour. Res. 51, 2047–2063. 622

https://doi.org/10.1002/2013WR014667 623

Saaty, T.L., 2008. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98. 624

Shneiderman, B., 2003. The eyes have it: A task by data type taxonomy for information visualizations, in: 625

The Craft of Information Visualization. Elsevier, pp. 364–371. 626

Smith, R., Kasprzyk, J., Basdeka, L., 2018. Experimenting with Water Supply Planning Objectives Using the 627

Eldorado Utility Planning Model Multireservoir Testbed. J. Water Resour. Plan. Manag. 144, 628

04018046. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000962 629

Walker, J.D., Chapra, S.C., 2014. A client-side web application for interactive environmental simulation 630

modeling. Environ. Model. Softw. 55, 49–60. https://doi.org/10.1016/j.envsoft.2014.01.023 631

Woodruff, M.J., Reed, P.M., Simpson, T.W., 2013. Many objective visual analytics: rethinking the design 632

of complex engineered systems. Struct. Multidiscip. Optim. 48, 201–219. 633

https://doi.org/10.1007/s00158-013-0891-z 634

Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S., 1998. Multi-attribute decision making: A simulation 635

comparison of select methods. Eur. J. Oper. Res. 107, 507–529. https://doi.org/10.1016/S0377-636

2217(97)00147-1 637

Zeleny, M., 2005. The Evolution of Optimality: De Novo Programming, in: Evolutionary Multi-Criterion 638

Optimization, Lecture Notes in Computer Science. Presented at the International Conference on 639

Evolutionary Multi-Criterion Optimization, Springer, Berlin, Heidelberg, pp. 1–13. 640

https://doi.org/10.1007/978-3-540-31880-4_1 641

Zhou, H., Yuan, X., Qu, H., Cui, W., Chen, B., 2008. Visual Clustering in Parallel Coordinates. Comput. Graph. 642

Forum 27, 1047–1054. https://doi.org/10.1111/j.1467-8659.2008.01241.x 643

 644

	Title
	Highlights
	Abstract
	Keywords
	Software availability
	1. Introduction
	2. Parallel coordinates
	3. Parasol
	3.1 Library overview
	3.2 API

	4. Multi-objective decision making with Parasol
	4.1 Lower Rio Grande Valley (LRGV) case study
	4.2 LRGV web application and analysis
	4.2.1 Creating the web application
	4.2.2 Exploratory analysis

	5. Conclusions
	Acknowledgements
	References

