Controlling the Redox Properties of Organic Catalysts and Organic Photocatalysts - CO_{2} Reduction by Renewable Organo-Hydrides and Photocatalyzed Polymerization using Visible Light

by
Chern-Hooi Lim
B.S., Chemical and Biological Engineering, Drexel University, 2010

A thesis submitted to the
Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
Department of Chemical and Biological Engineering

2015

This thesis entitled:

Controlling the Redox Properties of Organic Catalysts and Organic Photocatalysts - CO_{2} Reduction by Renewable Organo-Hydrides and Photocatalyzed Polymerization using Visible Light written by Chern-Hooi Lim

 has been approved for the Department of Chemical and Biological Engineering, University of Colorado Boulder\qquad
Charles B. Musgrave
\qquad
Christopher N. Bowman

Date: \qquad

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Abstract

Lim, Chern-Hooi (Ph.D., Chemical and Biological Engineering) Controlling the Redox Properties of Organic Catalysts and Organic Photocatalysts CO_{2} Reduction by Renewable Organo-Hydrides and Photocatalyzed Polymerization using Visible Light

Thesis directed by Professor Charles B. Musgrave
The efficient chemical reduction of CO_{2} to fuels has been of interest to scientists for decades with growing concerns about the impact of CO_{2} on climate and future global energy demands motivating increasing efforts to meet this challenge. One conversion of specific interest - the reduction of CO_{2} to methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ - is the focus of my thesis. Arguments here involve $\mathrm{CH}_{3} \mathrm{OH}^{\prime}$ s utility as a practical C 1 source for chemical synthesis and its attractive properties as a fuel not demanding the massive changes to the transportation fuels infrastructure required for a hydrogen economy.

My thesis focuses on understanding the role of pyridine in catalyzing the conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$. In particular, I employed quantum chemical simulations as an invaluable tool to probe the redox properties of a number of pyridine-derived intermediates involved in the catalytic cycle of CO_{2} reduction. Accurate determination of redox properties e.g. reduction potentials and hydricity is important to paint a detailed picture of energetics involved in the transformation of transient species during the course of CO_{2} reduction, and thus the role of the catalytic species is revealed. One central aspect is the determination of the driving force to effect hydride transfer. 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$ is a potent recyclable organo-hydride donor because it is driven by its proclivity to regain aromaticity; this mimics important aspects of the role of NADPH in the formation of $\mathrm{C}-\mathrm{H}$ bonds in the photosynthetic CO_{2} reduction process.

The aspect of controlling redox properties of molecules was applied to organic photocatalyst that affects photo-polymerization. In collaboration with the Stansbury's group, we elucidated the mechanism of polymer synthesis involving methylene blue chromophore with a sacrificial sterically-hindered amine reductant and an onium salt oxidant. The combination of these components yield interesting results: light-initiated free-radical polymerization continues over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination. We proposed that these observations are due to the latent production of free radicals from energy stored in a redox potential through a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer process, which transforms the methylene blue chromophore to its high energy closed-shell intermediate of leuco methylene.

Dedication

To my mother, Lim Kee Moi, for her selfless sacrifices to put me through higher education. To my late father, Lim Soon Seng, for instilling discipline and courage to help me face challenges.

To my sisters, Lim Lynn Hwee and Lim Tien Hwee, for encouragement you show me.
To my wife, Foo Mei Khoon, for being there for me during the highs and lows of my life.
To my host parents, Johnny and Debbie Abel, for helping me every step of the way through college and adapting a new life in the states.

To my badminton friends, for the joys and tears on the court.

Acknowledgements

Thanks to my advisor Prof. Charles Musgrave for cultivating my Ph.D. career for the last 5 ½ years; thanks to his openness and willingness to let me explore a wide-ranging of research topics that led to my successful Ph.D. experience. Thanks to my fellow thesis committee members, Prof. Will Medlin, Prof. Chris Bowman, Prof. James Hynes, and Prof. Andrew Bocarsly, for providing mentorship throughout my Ph.D. Thanks to Prof. Chris Bowman for generously allowing me to perform experimental work in his limited lab spaces. Thanks to Prof. James Hynes for spending countless hours with me to improve the manuscripts. Thanks to Prof. Garret Miyake for intellectual and stimulating discussions on Organo-catalyzed ATRP systems. Thanks to Dr. Aaron Holder for fruitful discussions on many research topics. Thanks to Dr. Brady Worrell for mentorship in organic synthesis. Thanks to Dr. Alan Aguirre for many long discussions on the methylene blue system. Thanks to Dr. Richard Shoemaker for helping me interpreting NMR results. Thanks to Dr. Jeremy Balsbaugh for patiently obtaining many ESI-MS spectra. Thanks to the donors of CU Crowdfunding for financial support of experimental work performed in Chapter 4. Chern-Hooi Lim was partially supported by Phillips 66 Fellowship.

Table of Contents

Chapter

Introduction 1
1 Mechanism of Homogeneous Reduction of CO_{2} by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization 6
1.1 Introduction 7
1.2 Computational details 15
1.3 Results and Discussion 18
1.3.1 High barrier to formation of PyCOOH^{0} for unmediated reaction between PyH^{0} and CO_{2}. 18
1.3.2 Proton relay composed of one to three waters. 21
1.3.3 Proton relay network reduces strain in the TS. 25
1.3.4 Adding solvating waters to the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ system. 27
1.3.5 Comparison with the experimentally determined barrier. 31
1.3.6 Charge analysis, pK_{a} and EA all show step-wise ET followed by PT 34
1.3.7 Formation of PyCOO- anionic complex provides a low-energy pathway for ET 37
1.3.8 Aromatic resonance stabilization stabilizes the PyCOO- complex. 38
1.3.9 Proton shuttling reduces the radical character of Py anionic radical. 40
1.3.10 Is CO_{2} prebent to facilitate reduction? 40
1.4 Conclusion 41
2 Reduction of CO_{2} to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine 44
2.1 Introduction 45
2.2 Computational methods 48
2.3 Results and Discussion 52
2.3.1 Formation of PyH^{0} from Py via $1 \mathrm{H}^{+} / 1 \mathrm{e}^{-}$transfers. 52
2.3.2 Formation of 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$ from PyH^{0} via successive $1 \mathrm{H}^{+} / 1 \mathrm{e}^{-}$transfers. 54
2.3.3 Establishing the hydride nucleophilicity of PyH_{2} and related dihydropyridines. 57
2.3.4 First HTPT step: $\mathrm{PyH}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{Py}+\mathrm{HCOOH}$ 61
2.3.5 Second HTPT step: $\mathrm{PyH}_{2}+\mathrm{HCOOH} \rightarrow \mathrm{Py}+\mathrm{CH}_{2}(\mathrm{OH})_{2}$. 65
2.3.6 Third HTPT step: $\mathrm{PyH}_{2}+\mathrm{OCH}_{2} \rightarrow \mathrm{Py}+\mathrm{CH}_{3} \mathrm{OH}$. 71
2.3.7 Commentary on the homogeneous mechanism for CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ catalyzed by pyridine. 74
2.3.8 Recovery of aromaticity drives hydride transfer from PyH_{2} 77
2.4 Concluding Remarks 79
3 Roles of the Lewis Acid and Base in the Chemical Reduction of CO_{2} Catalyzed by Frustrated Lewis Pairs 81
3.1 Introduction 82
3.2 Computational Details 84
3.3 Results and Discussion 84
3.3.1 LB hinders HT : an anti-catalytic role. 84
3.3.2 Hydride transfer barriers and affinities reveal the catalytic role of the LA. 86
3.3.3 Positive role of the LB: establishing high concentrations of reactive CO_{2} complexes. 89
3.3.4 Reactive CO_{2} complexes formed in the absence of LB. 93
3.4 Conclusion 94
4 A Benzimidazole-Based Organo-Hydride for the Reduction of CO_{2} 95
4.1 Introduction 96
4.2 Results and Discussions 98
4.2.1 Benzimidazole-based organo-hydrides as strong hydride donors. 98
4.2.2 Formation of ${ }^{13} \mathrm{C}$-formate from ${ }^{13} \mathrm{CO}_{2}$. 100
4.2.3 Effects of salts on formate yield. 102
4.3 Conclusion 104
5 Visible-light organic photocatalysis for latent radical-initiated polymerization via $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$ transfers: Initiation with parallels to photosynthesis 105
5.1 Introduction 106
5.2 Results and discussion 110
5.2.1 Fast radical production in $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$formulations. 110
5.2.2 PET reaction of MB^{+}/DIPEA generates the colorless LMB. 111
5.2.3 Radical production from $\mathrm{LMB} / \mathrm{DPI}^{+}$reaction. 117
5.2.4 Stored energy in LMB extends radical production after irradiation. 119
5.2.5 Photocatalysis cycle mimics photosynthesis. 120
5.2.6 Spatial extension of radical production beyond the irradiation site 120
5.2.7 Photo-activated synthesis of thicker polymers. 121
5.3 Conclusion 124
5.4 Experimental section 126
Bibliography 131
Appendix 153
A. Supporting information - Mechanism of Homogeneous Reduction of CO_{2} by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization 153
A. 1 Solvated PyH^{+}Adsorption on the Pt (111) Surface 153
A. 2 Calculation of $\mathrm{K}_{\text {eq }}$ for the $\mathrm{Zwitterionic} \mathrm{Py} \bullet \mathrm{CO}_{2}$ Complex 156
A. 3 Determination of Multi-reference Character in the Reduction of CO_{2} by PyH^{0} 157
A. 4 Further Discussion on the use of CPCM to Treat Solvation 159
A. 5 Effect of Explicit Solvent 161
A. 6 Standard Reduction Potential and pKa Calculations 164
A. 7 Contribution of Strain Energies to the Activation Barrier of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$ 165
A. 8 Mulliken Population Analysis and CHELPG Charge Analysis 166
A. 9 Coordinates of Molecular Structures 167
B. Supporting information - Reduction of CO_{2} to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine 188
B.1: Computational Methods 188
B. 2 Overestimation of Activation Entropies Using Ideal Gas Partition Functions 191
B. 3 Thermodynamic Quantities Referenced to Reactant Complex 192
B. 4 Recovery of the Pyridine Catalyst from the 4,4' Coupled Dimer 194
B. 5 Linearized Poisson-Boltzmann Model of Cation Concentration Near a Negatively Biased Cathode 195
B. 6 Reactivity of 1,2-dihydropyridine and 1,4-dihydropyridine Towards CO_{2} 196
B. 7 Hydride Transfer from N-H Bond of 1,4-dihydropyridine 197
B. 8 Coordinates of Molecular Structures 198
C. Supporting information - Roles of the Lewis Acid and Base in the Chemical Reduction of CO_{2} Catalyzed by Frustrated Lewis Pairs 231
C. 1 Computational Details 231
C. 2 Benchmarking Studies 232
C. 3 Results 233
C. 4 FLP• $\mathrm{CO}_{2}+\mathrm{AB}$ Hydride Transfer (B3LYP) 237
C. 5 Thermodynamics of Complex Formation Reported in Table 2 239
C. 6 Coordinates 240
D. Supporting information - A Benzimidazole-Based Organo-Hydride for the Reduction of CO_{2}266
D. 1 Experimental details. 266
D. 2 Computational methods 273
D. $3{ }^{1} \mathrm{H}$ NMR for formate detection 274
D. 4 ESI-MS for formate detection 275
D. $5{ }^{1} \mathrm{H}$ NMR for ${ }^{13} \mathrm{CO}_{2}$ experiment 277
D. 6 Coordinates of Molecular Structures 278
E. Supporting information - Visible-light organic photocatalysis for latent radical-initiated polymerization via $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfers: Initiation with parallels to photosynthesis 285
E. 1 Reaction of alpha-amino radical (derived from DIPEA) and a HEMA monomer 285
E. 2 Coordinates of structures 285
E. 3 Supplemental figures 294

Tables

Table 1.1: Enthalpic barriers and reaction enthalpies for the reaction of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+\mathrm{mH} 2 \mathrm{O}+$ $\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$ to form PyCOOH^{0} where m is the number of active $\mathrm{H}_{2} \mathrm{O}^{\prime}$ ' in the proton relay and n is the number of solvating $\mathrm{H}_{2} \mathrm{O}^{\prime}$ s25
Table 1.2: Adiabatic electron affinities (EA) and homogeneous standard reduction potentials (E^{0}vs. SCE).37
Table 2.1: Activation and reaction free energies and enthalpies for HTPT steps from PyH_{2} to $\mathrm{CO}_{2}, \mathrm{HCOOH}$ and OCH_{2} via various HT models in Figure 2.2. 63
Table 3.1: HT barrier ($\Delta \mathrm{H}^{\ddagger}$ hydride) and hydride affinity (HA) of CO_{2} complexes at $\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1$ atm. 86
Table 3.2: Thermodynamics of complex formation relative to the reactants two free $\mathrm{CO}_{2},(\mathrm{LA})_{2}$ dimer, two free LB and two free AB at $\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$. 89
Table 4.1: Predicted thermochemical properties of CO_{2} reduction by reductants $2 \mathrm{a}-\mathrm{c}$ with their corresponding experimental formate yields. 99
Table 4.2: Reaction of species 2 c with CO_{2} at various experimental conditions 101

Figures

Figure 1.1: Formation of PyCOOH^{0} by direct (unmediated) PT from PyH^{0} to CO_{2}. 19
Figure 1.2: Localized orbitals. 20
Figure 1.3: TS structures for the formation of PyCOOH^{0} via proton shuttling through 0 to $3 \mathrm{H}_{2} \mathrm{O}$ molecules. 23
Figure 1.4: Structures along the IRC for the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ reaction step of indirect proton transfer from PyH^{0} to CO_{2} via a proton relay comprised of a chain of three $\mathrm{H}_{2} \mathrm{O}$ molecules. 24
Figure 1.5: Stationary points along the potential energy surfaces for PyCOOH^{0} formation via both direct and indirect (via the water proton relay) PT from PyH^{0} to CO_{2} 26
Figure 1.6: Strain energy contributions to the activation barrier for PyCOOH^{0} formation. 29
Figure 1.7: TS structures for PyCOOHO formation via a proton shuttling network formed by three H 2 O molecules (illustrated using a ball-and-stick model) and (a) one, (b) four, (c) six and (d) ten solvating H2O's. Solvating H2O's are depicted by a stick model. 31
Figure 1.8: Charges on PyHO (blue) and CO 2 (red) along the IRC for PyCOOHO formation from PyH^{0} and CO_{2} 36
Figure 1.9: Formation of the PyCOO- anionic complex mediated by the proton relay provides a low energy pathway for ET en route to formation of the PyCOOH^{0} carbamate species. The ET barriers are shown schematically. 39
Figure 1.10: Stabilization of the PyCOO- complex through aromatic resonance stabilization. 41
Figure 2.1: The activation free energy of hydride transfer to CO_{2} varies linearly with hydride nucleophilicity. 60
Figure 2.2: HT to CO_{2} can occur through various direct HT configurations 61
Figure 2.3: Conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ by PyH_{2} proceeds through three hydride and proton transfer steps. 67
Figure 2.4: Analysis of the coupled homogeneous HTPT process between PyH_{2} and HCOOH to form Py and $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ via the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model. 69
Figure 2.5: Reduction of formaldehyde by PyH_{2} to methanol (via the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model) in a coupled HTPT step. 73
Figure 2.6: The calculated standard activation free energy 'barrier' $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}(\mathrm{kcal} / \mathrm{mol})$ to hydride transfer to CO_{2} correlates linearly with the degree of dearomatization of the hydride donor... 78Figure 3.1: Reactive complexes of CO_{2} considered.83
Figure 3.2: Transition state structures of CO_{2} complexes with AB 84
Figure 3.3: Various complexes. 91
Figure 4.1: ${ }^{13} \mathrm{C}$-NMR spectra of species 2 c reacted with ${ }^{13} \mathrm{CO}_{2}$ in DMSO- d_{6} 100
Figure 5.1: Evidence of radical production via photoredox catalysis of methylene blue (MB^{+}) 112
Figure 5.2: Free radical initiated polymer synthesis with light energy harvesting cycle. 113
Figure 5.3: Reaction between alpha-aminoalkyl radical and HEMA monomer. 115

Figure 5.4: Dearomatization of MB^{+}after a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer... 116
Figure 5.5: Activation energy for MB^{+}regeneration matches initiation of polymerization....... 118
Figure 5.6: Radical generation in the dark from stored energy in LMB. 122

Schemes

Scheme 1.1: Two potential routes for the formation of PyCOOH^{0} in the homogeneous phase. 13 Scheme 2.1: Homogeneous reduction of CO_{2} to methanol by 1,2-dihydropyridine via hydride
and proton transfer steps ... 4747
Scheme 2.2: Formation of pyridinium radical $\left(\mathrm{PyH}^{0}\right)$ 52
Scheme 2.3: 1e-reduction of CO_{2} by PyH^{0} to form PyCOOH^{0} and self-radical quenching reactions of PyH^{0}. 54
Scheme 2.4: Formation of 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$ 56
Scheme 2.5: Reductions via direct hydride transfers from related dihydropyridine species 59
Scheme 2.6: Reduction of CO_{2} to formic acid by PyH_{2}. 62
Scheme 2.7: Reduction of formic acid to methanediol by PyH_{2}. 68
Scheme 2.8: Dehydration of methanediol to form formaldehyde and the subsequent reduction to methanol by PyH_{2} 72
Scheme 2.9: Homogeneous mechanism of Py-catalyzed CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ via $\mathrm{PyH}_{2} / \mathrm{Py}$ HTPT processes. 76
Scheme 4.1: Reduction of CO_{2} to formate anion by Benzimidazole-based organo-hydride 97

Introduction

The efficient chemical reduction of CO_{2} to fuels has been of interest to scientists for decades with growing concerns about the impact of CO_{2} on climate and future global energy demands motivating increasing efforts to meet this challenge. One conversion of specific interest - the reduction of CO_{2} to methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ - is the focus of my thesis. Arguments here involve $\mathrm{CH}_{3} \mathrm{OH}$'s utility as a practical C 1 source for chemical synthesis and its attractive properties as a fuel not demanding the massive changes to the transportation fuels infrastructure required for a hydrogen economy. The partial reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ is generally preferred over its complete reduction to methane; the former is a more valuable product, and is easier to handle and transport as a liquid fuel more compatible with existing transportation fuel technology.

$$
\begin{equation*}
\mathrm{O}=\mathrm{C}=\mathrm{O}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \longrightarrow \mathrm{H}^{\mathrm{H}^{-}} \mathrm{C}_{=1 \mathrm{H}}^{\mathrm{OH}}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

The conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ is a six electron reduction described by the overall reaction eq. 1. When this reduction is carried out as a series of six one-electron transfers (ETs) and six proton transfers (PTs), every odd reduction necessarily produces a high-energy radical (open-shell) intermediate. Consequently, the three odd ETs generally result in slow kinetics and low selectivities unless these radicals are stabilized, for example by conjugation to an aromatic π-system or by orbital mixing with delocalized states of a metal surface. The issue of the difficulty of creating high-energy intermediates by the odd electron reductions is exemplified by the one-electron reduction of CO_{2} to CO_{2}^{-}, which involves a very unfavorable reduction potential E^{0} of -2.14 V vs. SCE.

The field of CO_{2} reduction research has been largely dominated by the uses and studies of transition-metal catalysts. Despite many advances, many challenges remain: for example, CO_{2} reduction has largely been confined to $2 \mathrm{e}^{-}$products such as CO and formate, and in many cases large overpotentials are required to drive these reactions. In recent years, Bocarsly and coworkers employed pyridine in a photo-electrochemical system using a p-type GaP cathode to efficiently convert CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at 96% Faradaic efficiency and 300 mV of underpotential. Pyridine is a simple organic aromatic amine, in opposed to multifaceted transition metal complexes. The fact that it catalyzes the $6 \mathrm{H}^{+}$and $6 \mathrm{e}^{-}$reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ is rather surprising. To date, pyridine is one of the most efficient and promising catalysts in converting CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$; thus elucidation of pyridine's catalytic role will be of crucial importance in advancing the field of CO_{2} reduction research.

My thesis focuses on understanding the role of pyridine in catalyzing the conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$. In particular, I employed quantum chemical simulations as an invaluable tool to probe the redox properties of a number of pyridine-derived intermediates involved in the catalytic cycle of CO_{2} reduction. Accurate determination of redox properties e.g. reduction potentials $\left(E^{0}\right)$ is important to paint a detailed picture of energetics involved in the transformation of transient species during the course of CO_{2} reduction, and thus the role of the catalytic species is revealed.

In Chapter 1 of my thesis, we examined in detail the nucleophilic attack of pyridinium radical $\left(\mathrm{PyH}^{0}\right)$ on CO_{2} to form the transient pyridine carbamate $\left(\mathrm{PyCOOH}^{0}\right)$ species, which was proposed to be the key intermediate in the transformation of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$. PyH^{0} can be
formed by $1 \mathrm{H}^{+}$and $1 \mathrm{e}^{-}$transfers to pyridine (Py), where pK_{a} and E^{0} are two thermodynamic parameters quantifying the likelihood of the PT and ET. Our work showed that the sequence of the PT and ET during the nucleophilic attack of PyH^{0} on CO_{2} is important. In particular, we showed that the N of PyH^{0} first executes nucleophilic attack on the C of CO_{2}; this initiates an inner sphere ET process that forms a transient $\mathrm{PyH}^{+} \cdot \mathrm{CO}_{2}^{-\bullet}$ complex at the TS. This complex is stabilized by delocalization of the radical electron over PyH^{+}and CO_{2} 's conjugated π-system, thus avoiding the high energetic cost of forming the $\mathrm{CO}_{2}^{-\bullet}$ anion radical. PT from $\mathrm{PyH}^{+} \cdot \mathrm{CO}_{2}^{-\bullet}$, to first form $\mathrm{Py} \cdot \mathrm{CO}_{2}^{-\bullet}$ and a transitory $\mathrm{H}_{3} \mathrm{O}^{+}$and then PyCOOH^{0} occurs along the exit channel. The PT producing the latter is mediated by a proton relay, an aspect detailed and discussed extensively in the chapter.

In Chapter 2 of my thesis, we studied the transformation of pyridine into a closed-shell hydride donor of 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$. Hydride transfer reactions avoid the creation of open-shell radicals involving CO_{2}, thus creating low energy pathways for CO_{2} reduction. First, Py undergoes a PT to form pyridinium $\left(\mathrm{PyH}^{+}\right)$, followed by an ET to produce PyH^{0}; this step is similar to the one examined in Chapter 1. We predicted that PyH^{0} undergoes further PT-ET steps to form the key closed-shell, dearomatized $\left(\mathrm{PyH}_{2}\right)$ species. We then showed that the $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO_{2} and its two succeeding intermediates, namely formic acid and formaldehyde, to ultimately form $\mathrm{CH}_{3} \mathrm{OH}$. One central aspect of Chapter 2 is the determination of PyH_{2} 's driving force to effect hydride transfer. PyH_{2} is a potent recyclable organo-hydride donor because it is driven by its
proclivity to regain aromaticity; this mimics important aspects of the role of NADPH in the formation of $\mathrm{C}-\mathrm{H}$ bonds in the photosynthetic CO_{2} reduction process.

In Chapter 3, we moved on from the pyridine system to discover how frustrated Lewis pairs (FLP) catalyze the reduction of CO_{2} by ammonia borane (AB). Stephan and coworkers employed FLP to activate CO_{2} by irreversibly complexing with it to catalyze CO_{2} reduction via hydride transfer (HT) from AB , where they observed $37-51 \%$ yield of $\mathrm{CH}_{3} \mathrm{OH}$ was observed after 15 min . at ambient conditions. Our studies revealed that the LA (trichloroaluminum, AlCl_{3}) alone catalyzes hydride transfer (HT) to CO_{2} while the LB (trimesitylenephosphine, PMes_{3}) actually hinders HT. The LB hinders HT by donating its lone pair to the LUMO of CO_{2}, increasing the electron density on the C atom and thus lowering its hydride affinity. Although the LB hinders HT , it nonetheless plays a crucial role by stabilizing the active $\mathrm{FLP} \bullet \mathrm{CO}_{2}$ complex relative to the LA dimer, free CO_{2} and free LB. This greatly increases the concentration of the reactive complex in the form $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ and thus increases the rate of reaction.

Chapter 4 highlighted my experimental efforts to synthesize organo-hydrides capable of reducing CO_{2}, in support of hydride transfer mechanism outlined in Chapter 2. Directed by computational designs we report the metal-free reduction of CO_{2} to the formate anion, characterized and confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ and ESI-MS, by use of a benzimidazole-based organo-hydride. We obtained the highest formate yield in the presence of potassium bromide under exceedingly mild conditions; the salt was proposed to stabilize the ionic products. Such benzimidazole-based organo-hydrides rival the hydride donating ability of noble metal-based hydrides, such as $[\mathrm{Ru}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{H}]^{+}$and $\left[\mathrm{Pt}(\mathrm{depe})_{2} \mathrm{H}\right]^{+}$, thus demonstrating that these organo-
hydrides stand as low-cost hydride transfer catalyst alternatives. Both benzimidazole and pyridine are aromatic amines that we suggest that the organo-hydrides derived from these two species harness the same dearomatization-aromatization driving force to effect hydride transfer reaction.

In Chapter 5, the aspect of controlling redox properties of molecules was applied to organic photocatalyst that affects photo-polymerization. In collaboration with the Stansbury's group, we set out to elucidate the mechanism of polymer synthesis involving visible-light organic photocatalysis of methylene blue chromophore with a sacrificial sterically-hindered amine reductant and an onium salt oxidant. The combination of these components yield interesting results: light-initiated free-radical polymerization continues over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination. We proposed that these observations are due to the latent production of free radicals from energy stored in a redox potential through a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer process, which transforms the methylene blue chromophore to its high energy closed-shell intermediate of leuco methylene. This prevents immediate formation of open-shell (radical) intermediates from the amine upon lightabsorption, and enables the 'storage' of light-energy without spontaneous initiation of the polymerization. Latent energy-release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leucomethylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst.

1 Mechanism of Homogeneous Reduction of CO_{2} by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization

Chern-Hooi Lim, ${ }^{\dagger}$ Aaron M. Holder, ${ }^{\dagger, \ddagger}$ and Charles B. Musgrave ${ }^{*, \dagger, \ddagger}$
${ }^{\dagger}$ Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado 80309
${ }^{\ddagger}$ Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309

Journal of American Chemistry Society: dx.doi.org/10.1021/ja3064809

Abstract

: We employ quantum chemical calculations to investigate the mechanism of homogeneous CO_{2} reduction by pyridine (Py) in the $\mathrm{Py} / \mathrm{p}-\mathrm{GaP}$ system. We find that CO_{2} reduction by Py commences with PyCOOH^{0} formation where: a) protonated $\mathrm{Py}\left(\mathrm{PyH}^{+}\right)$is reduced to PyH^{0}, b) PyH^{0} then reduces CO_{2} by one electron transfer (ET) via nucleophilic attack by its N lone pair on the C of CO_{2} and finally c) proton transfer (PT) from PyH^{0} to CO_{2} produces PyCOOH^{0}. The predicted enthalpic barrier for this proton coupled ET (PCET) reaction is $45.7 \mathrm{kcal} / \mathrm{mol}$ for direct PT from PyH^{0} to CO_{2}. However, when PT is mediated by one to three water molecules acting as a proton relay the barrier decreases to $29.5,20.4$ and $18.5 \mathrm{kcal} / \mathrm{mol}$, respectively. The water proton relay reduces strain in the transition state (TS) and facilitates more complete ET. For PT mediated by a three water molecule proton relay, adding water molecules to explicitly solvate the core reaction system reduces the barrier to $13.6-16.5 \mathrm{kcal} / \mathrm{mol}$, depending on the number and configuration of the solvating waters. This agrees with the experimentally determined barrier of $16.5 \pm 2.4 \mathrm{kcal} / \mathrm{mol}$. We calculate a pKa for PyH^{0} of 31 indicating that PT preceding

ET is highly unfavorable. Moreover, we demonstrate that ET precedes PT in PyCOOH^{0} formation, confirming PyH^{0} s pKa as irrelevant for predicting PT from PyH^{0} to CO_{2}. Furthermore, we calculate adiabatic electron affinities in aqueous solvent for $\mathrm{CO}_{2}, \mathrm{Py}$ and $\mathrm{Py} \cdot \mathrm{CO}_{2}$ of 47.4, $37.9,66.3 \mathrm{kcal} / \mathrm{mol}$ respectively, indicating that the anionic complex PyCOO^{-}stabilizes the anionic radicals CO_{2}^{-}and Py^{-}to facilitate low barrier ET. As the reduction of CO_{2} proceeds through ET and then PT, the pyridine ring becomes aromatic and thus Py catalyzes CO_{2} reduction by stabilizing the PCET TS and the PyCOOH^{0} product through aromatic resonance stabilization. Our results suggest that Py catalyzes the homogeneous reductions of formic acid, and formaldehyde en route to formation of $\mathrm{CH}_{3} \mathrm{OH}$ through a series of one-electron reductions analogous to the PCET reduction of CO_{2} examined here, where the electrode only acts to reduce PyH^{+}to PyH^{0}.

1.1 Introduction

Growing concern over the concentration of CO_{2} in the atmosphere has motivated efforts to explore approaches to reduce the level of atmospheric $\mathrm{CO}_{2}{ }^{1-3}$ One well-known proposal involves CO_{2} sequestration and storage, which faces a number of difficult practical challenges including cost, efficiency, sustainability and safety. ${ }^{4-8}$ Another possible approach involves chemical reduction of CO_{2} into fuels, such as methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right),{ }^{9-13}$ or $\mathrm{C}_{\mathrm{n}}(\mathrm{n} \geq 2)$ products, such as polyethylene. ${ }^{3,14}$ Despite its enormous potential benefits, efficient chemical conversion of CO_{2} into useful reduced species remains a formidable challenge due to the thermodynamic and kinetic stability of CO_{2} in its highly oxidized form.

Several chemical approaches have been explored in attempts to reduce CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$, including homogeneous, ${ }^{15-21}$ heterogeneous, ${ }^{22-24}$ electrochemical ${ }^{25-27}$, photochemical ${ }^{28-31}$ and
photoelectrochemical (PEC) reactions. ${ }^{14,32-38}$ PEC approaches show particularly significant promise because they can directly use sunlight as the renewable energy source to reduce CO_{2}. One especially intriguing PEC approach was discovered by Bocarsly et al. in 2008. ${ }^{39}$ This system involves the use of pyridine (Py), which is suggested to undergo protonation to pyridinium $\left(\mathrm{PyH}^{+}\right)$in acidic aqueous solutions and act as an electron transfer (ET) mediator that is electrochemically reduced to pyridinium radical $\left(\mathrm{PyH}^{0}\right)$ at a photoexcited p-type GaP electrode surface with an indirect bandgap of $2.24 \mathrm{eV} .{ }^{39} \mathrm{PyH}^{0}$ has been proposed to act as the active catalyst that chemically reduces CO_{2} to $\mathrm{CH}_{3} \mathrm{OH} \cdot{ }^{39-41}$ Although many details of the mechanism of CO_{2} reduction by this system remain unknown, it is one of the most efficient PEC systems in reducing CO_{2}, converting CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at near 100% Faradaic efficiency at underpotentials ~300 mV below the standard potential of -0.52 V vs. SCE at a pH of $5.2 .{ }^{39} \mathrm{PyH}^{+}$was also observed to be electrochemically reduced by a Pd cathode, and to subsequently reduce CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at an overpotential of $\sim 200 \mathrm{mV} .{ }^{42}$

In 2010 Bocarsly et al. reported experimentally derived mechanistic steps for the reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ by PyH^{0}, which they proposed occurs in the homogeneous phase. ${ }^{40}$ However, Keith et al. argue that PyH^{0} cannot be the active species that chemically reduces CO_{2} in the homogeneous phase ${ }^{43}$ based on their calculated homogeneous standard reduction potential $\left(E^{0}\right)$ for PyH^{+}of -1.47 V vs. SCE, which is -0.9 V more negative than the -0.58 V experimental value measured on a Pt electrode. ${ }^{40}$ Thus, they conclude that PyH^{0} should not be formed at $\mathrm{E}^{0}=-0.58 \mathrm{~V}$ and proceed to chemically reduce $\mathrm{CO}_{2}{ }^{43}$ Their calculated E^{0} agrees with the homogeneous PyH^{+}reduction potentials calculated by ourselves (-1.31 V) and Tossell $(-1.44 \mathrm{~V}) .{ }^{44}$

Because electrochemical reduction of PyH^{+}is a highly surface dependent process ${ }^{40,45}$ experimentally measured reduction potentials on various electrode surfaces may deviate from calculated $E^{0} S$ that assume a homogeneous process absent of surface effects. For example, in 1979 Yasukouchi et al. concluded that the $\mathrm{PyH}^{+} / \mathrm{PyH}^{0}$ reduction potential "at various metals (Pt, $\mathrm{Pd}, \mathrm{Au}, \mathrm{Ti}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Hg}$, etc.), on the whole, shifted to more negative potentials from platinum to mercury in the order similar to that of the well-known hydrogen overvoltage" . ${ }^{45}$ For instance, on Pt the peak potential, $\mathrm{E}_{\mathrm{p}}\left(\mathrm{PyH}^{+} / \mathrm{PyH}^{0}\right)$ is -0.41 V vs. $\mathrm{SCE}\left(-0.75 \mathrm{~V}\right.$ vs. $\left.\mathrm{Ag} / \mathrm{AgClO}_{4}\right)$, which is consistent with $E^{0}=-0.58 \mathrm{~V}$ vs. SCE measured by Bocarsly et al. ${ }^{40}$ In contrast, on a dropping mercury electrode the measured -1.19 V vs. $\left.\mathrm{SCE}(-1.53 \mathrm{~V} \text { vs. } \mathrm{Ag} / \mathrm{AgClO})_{4}\right)$ reduction half-wave potential approaches the calculated homogeneous E^{0}, which we propose results from diminishing surface effects of the Hg electrode on PyH^{+}reduction. Conservation of energy dictates that the decreased reduction potential of PyH^{+}exhibited on several surfaces, including Pt^{40} and $\mathrm{Pd},{ }^{42}$ must be accounted for by endothermic PyH^{0} desorption, which may be overcome thermally or by applied overpotentials. Specifically, at least $16.8 \mathrm{kcal} / \mathrm{mol}$ or -0.73 V (the difference between the calculated homogeneous E^{0} of -1.31 V and the experimentally measured -0.58 V) is required to produce PyH^{0} in the homogeneous phase.

A number of experiments have demonstrated the surface-mediated reduction of PyH^{+}to PyH^{0}, which then desorbs from the electrode and diffuses into the homogeneous phase. ${ }^{39-42,45-}$ ${ }^{48}$ Yasukouchi et al. showed that peak currents in cyclic voltammograms (CV) a) varied linearly with acid concentration at constant Py concentration, and b) varied linearly with Py concentration at constant acid concentration, confirming that the protonated species PyH^{+}is
reduced to $\mathrm{PyH}^{0} .^{45}$ These results are consistent with measurements performed independently by Bocarsly et al. in 1994 where at an electrolyte $\mathrm{pH}>7$ "no cyclic voltammetric features associated with pyridine are observed, indicating that the electroactive species is the protonated pyridinium cation ".42 The linear dependence of peak current on PyH^{+} concentration shown by Yasukouchi et al. rules out the reduction of dimeric derivatives of PyH^{+}, such as the 4,4'-bipyridine dimer suggested by Keith et al. ${ }^{43}$ in agreement with Bocarsly et al. , s experimental observation that no Py is consumed to form dimers. ${ }^{42}$ Furthermore, the oxidation current in CV observed when the potential scan was reversed indicates PyH^{0} in the homogeneous phase. ${ }^{40,42,45}$ Finally, in the PEC experiment performed by Bocarsly et al., in addition to illumination of the p-GaP electrode, a negative electrical bias was applied. ${ }^{39}$ Under these conditions the p-GaP electrode should possess a reduction potential significantly above the homogeneous E^{0} of $\mathrm{PyH}^{+}(-1.31 \mathrm{~V})$, assuming that the conduction band edge of $\mathrm{p}-\mathrm{GaP}$ is above the LUMO of PyH^{+}. Thus, PyH^{0} should exist in the aqueous phase to homogeneously catalyze CO_{2} reduction.

To further elucidate the surface dependence of PyH^{+}electrochemical reduction we have performed calculations of PyH^{+}adsorption on a water solvated unbiased Pt (111) surface (see Supporting Information (SI), section 1). Our calculations predict a strong binding interaction of PyH^{+}with the electrode surface resulting in an adsorption energy of $1.0 \mathrm{eV} / \mathrm{molecule}$ on Pt (111). The strong binding energy of PyH^{+}to the electrode surface is evident by the significant mixing of the adsorbate and surface states. This leads to broadening of the $\mathrm{PyH}^{+} \mathrm{LUMO}$ upon adsorption, resulting in transfer of $0.56 \mathrm{e}^{-}$from Pt to PyH^{+}and disruption of the aromaticity of
PyH^{+}. Consequently, the strong binding interaction of heterocyclic aromatic ${ }^{49} \mathrm{PyH}^{+}$with Pt (111) significantly lowers (becomes less negative) its heterogeneous reduction potential, ${ }^{50}$ explaining the discrepancy between the experimentally measured heterogeneous E^{0} and calculated homogeneous E^{0} for PyH^{+}.

Keith et al. suggested that even if PyH^{0} were formed it would not catalyze CO_{2} reduction due to the difficulty in deprotonating the reduced species, based on their calculated pKa for PyH^{0} of $\sim 27 .{ }^{43}$ Although we calculate a similar pKa for PyH^{0} of ~ 31, we predict that PyH^{0}, spKa does not indicate the reactivity of PyH^{0} towards CO_{2} reduction because as we show, ET from PyH^{0} to CO_{2} precedes PT , which effectively lowers the pKa of the partially oxidized PyH^{0} species; Our results demonstrate that the electrochemically produced PyH^{0} reacts with CO_{2} in the homogeneous phase to form the carbamate species PyCOOH^{0}, consistent with the $E C^{\prime}$ mechanism ${ }^{50}$ previously proposed by Bocarsly et al. ${ }^{40-41}$ Furthermore, our calculated enthalpic barrier agrees with Bocarsly' s experimentally determined barrier of $16.5 \pm 2.4 \mathrm{kcal} / \mathrm{mol} .{ }^{41} \mathrm{We}$ predict that two effects significantly lower the barrier for this process; 1) water molecules play a central role in facilitating PyCOOH^{0} formation by solvent assisted proton coupled electron transfer (PCET) where ET precedes PT and 2) aromatic stabilization leads to the production of the low energy one e^{-}transfer product $\left(\mathrm{PyCOO}^{-}\right)$to significantly lower the barrier for this process.

This contribution focuses on predicting a detailed mechanism of CO_{2} reduction in the $\mathrm{Py} / \mathrm{p}-\mathrm{GaP}$ system with associated energetics and providing a thorough understanding of the intriguing effects that underlie the homogeneous reduction of CO_{2} by PyH^{0} to form PyCOOH^{0}. In
particular, we attempt to answer several fundamental questions related to CO_{2} reduction in this system. These include: i) Is CO_{2} reduced through one e^{-}or two e^{-}transfers?; ii) If CO_{2} reduction proceeds through one e^{-}transfers as proposed by Bocarsly et al., ${ }^{40}$ how does Py act as a catalyst to stabilize the high-energy $\mathrm{CO}_{2}{ }^{-}$anionic radical ($\mathrm{E}^{0}{ }_{\exp }=-2.18 \mathrm{~V} \mathrm{vs}$. SCE) $?^{51}$; iii) Is ET and PT from PyH^{0} to CO_{2} stepwise or concurrent?; iv) If ET and PT occur sequentially, does ET precede PT or vice-versa?; and finally, v) Is CO_{2} prebent to lower its reorganization energy for ET from PyH^{0} and is prebending of CO_{2} a general requirement for facile ET and thus an efficient reduction process?

Formation of the PyCOOH^{0} carbamate species has been identified as an important intermediate and its production has been proposed to be the rate-determining step for the reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH} .{ }^{40-41}$ Scheme 1.1 shows two potential homogeneous routes to PyCOOH^{0} formation. ${ }^{40}$ Route 1 begins with the protonation of Py to form $\mathrm{PyH}^{+} . \mathrm{PyH}^{+}$is then reduced at the p-GaP surface by a photoexcited electron to form PyH^{0}, which then diffuses into solution from the electrode. PyH^{0} then reacts with CO_{2} to form PyCOOH^{0} in the homogeneous phase, which becomes further reduced into $\mathrm{CH}_{3} \mathrm{OH}$ through a series of subsequent reduction steps. Route 2 is an alternative path that first involves the formation of the zwitterionic complex $\mathrm{Py} \cdot \mathrm{CO}_{2}$, which is then reduced and subsequently protonated. Bocarsly et al. determined that Route 2 does not contribute significantly to the overall reduction of CO_{2} due to the presence of $\mathrm{Py} \cdot \mathrm{CO}_{2}$ at low concentration, ${ }^{40}$ consistent with our calculated equilibrium constant of 1.0×10^{-6} for $\mathrm{Py} \cdot \mathrm{CO}_{2}$ formation (See SI , section 2).

In contrast, experimental evidence suggests that PyCOOH^{0} formation proceeds through Route 1. The pKa of Py is 5.3 and thus at a pH of 5.2 (slight acidic conditions due to the acid dissociation equilibrium of $\mathrm{CO}_{2} / \mathrm{Py}$ species in aqueous solution) $\sim 40 \%$ of Py is protonated in aqueous solution at equilibrium. Consequently, a considerable concentration of PyH^{+}exists in the bulk solution, which can then be reduced to form PyH^{0} either electrochemically ${ }^{40,42,45}$ at various metal electrodes with different values of E^{0} (see above) or photoelectrochemically by photoexcited p-GaP..40 The reported -0.58 V (vs. SCE) E^{0} of PyH^{+}was measured on a Pt surface whereas E^{0} at $\mathrm{p}-\mathrm{GaP}$ is unknown. The PyH^{0} formed by this reduction can then operate as an active species that is proposed to react with CO_{2} to form PyCOOH^{0} through inner-sphere $\mathrm{ET} .{ }^{40}$ Alternatively, as shown in Scheme 1.1, two PyH^{0} s can form H_{2} as an unwanted side reaction ${ }^{40,42}$ through a self-quenching reaction at a rate constant of $\sim 10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1} .{ }^{52}$ However, the concentration of PyH^{0} derived from Bocarsly et. al.'s reported CV is only $\sim 10^{-9} \mathrm{M} .{ }^{40}$ At this low concentration, the bimolecular self-quenching rate is estimated to be only $\sim 10^{-10} \mathrm{Ms}^{-1}$, consistent with the observed nearly reversible CV. In contrast, the concentration of CO_{2} in the
solution is $\sim 30 \mathrm{mM}$, more than $\sim 10^{7}$ times that of PyH^{0}. Therefore, the bimolecular collision probability between PyH^{0} and CO_{2} is much higher than for PyH^{0} self-quenching.

While PyH^{0} radical has been proposed as the active species catalyzing CO_{2} reduction in this system, here we present a detailed mechanism with associated energetics for PyCOOH^{0} formation from PyH^{0} and CO_{2} including kinetic barriers and TS structures and a specific description of Py’ s mechanism of activation. We calculate a high pKa for PyH^{0} of ~ 31, in agreement with Keith et al.' s calculated pKa of $\sim 27,{ }^{43}$ indicating that deprotonation of PyH^{0} is thermodynamically unfavorable. Furthermore, Bocarsly et al. proposed that interaction between PyH^{0} and the $\mathrm{p}-\mathrm{GaP}$ surface may facilitate deprotonation or dissociation of the $\mathrm{N}-\mathrm{H}$ bond of $\mathrm{PyH}^{0.41}$ Our results do not rule out active participation of p -GaP in activating PyCOOH^{0} formation. ${ }^{53}$ However, we do predict a pathway for homogeneous PyCOOH^{0} formation with kinetics consistent with experiment ${ }^{41}$ where the $\mathrm{p}-\mathrm{GaP}^{39}$ or other metal surfaces ${ }^{40,42,45}$ only serve as the donor of a high-energy electron with sufficient energy to reduce PyH^{+}. We also show that the effects of proton shuttling and aromatic stabilization play key roles in the overall PCET process, catalyzing $\mathrm{N}-\mathrm{H}$ bond dissociation and PyCOOH^{0} formation, which have not been previously proposed.

The goals of this paper are: i) to identify a mechanism for homogeneous CO_{2} reduction in this system, ii) to determine whether this mechanism is kinetically viable, iii) to elucidate the role of aqueous solvent in catalyzing PyCOOH^{0} formation through prediction of the activation barriers of possible pathways, iv) to identify the properties of $\mathrm{PyH}^{+} / \mathrm{PyH}^{0}$ that enable it to perform as a $1 e^{-}$transfer mediator to facilitate CO_{2} reduction, and v) to uncover the principles
of CO_{2} reduction at work in this system. We anticipate that the understanding our results provide will guide the catalyst community to discover additional systems similar to PyH^{0} competent in reducing CO_{2}.

1.2 Computational details

The results we report were calculated using the unrestricted coupled-cluster method $\operatorname{uCCSD}(\mathrm{T})^{54}$ combined with the cc-PVDZ, cc-PVTZ ${ }^{55-56}$ and $6-311++\mathrm{G}^{* * 57}$ basis sets and the Restricted-Open Shell Moller-Plesset second order perturbation method ${ }^{58}$ (roMP2) combined with the $6-31+G^{* *}$ basis set as implemented in the GAMESS ${ }^{59-60}$ and Gaussian09 ${ }^{61}$ computational chemistry software packages. Computational details of the calculated adsorption energies discussed in the Introduction are provided in SI, section 1. roMP2 was chosen over the unrestricted uMP2 method largely because of its higher computational efficiency. The use of roMP2 was validated using both $u C C S D(T)$ and $u M P 2$ where roMP2/6$31+\mathrm{G}^{* *}$ reproduces $\mathrm{uCCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{PVDZ}$ enthalpic barriers evaluated at roMP2/6-31+G** geometries to within $\sim 1.0 \mathrm{kcal} / \mathrm{mol}$ and $\mathrm{uMP2} / 6-31+\mathrm{G}^{* *}$ enthalpic barriers to within 2.5 $\mathrm{kcal} / \mathrm{mol}$ (see Table 1.1). At the uCCSD(T) level of theory, the cc-PVDZ, cc-PVTZ and 6-311++G** basis sets result in similar enthalpic barriers (within $\sim 2.5 \mathrm{kcal} / \mathrm{mol}$) for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$ (see footnote of Table 1.1).

We determined that the open-shell systems investigated are doublets and are not significantly multi-reference. Thus, they are well represented using a single Slater determinant by examining all stationary structures along the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}$ (where a single $\mathrm{H}_{2} \mathrm{O}$ acts as a proton relay) reaction pathway at the complete active space CASSCF $(15,14)$ level of theory. ${ }^{62}$ We found each structure to be dominantly composed (greater than 0.9 coefficient) of the
ground state electronic configuration (see SI, section 3). Thus, the high-level uCCSD(T) method should provide a reliable benchmark for energies for this reaction (see Table 1.1). We found that various density functional theory (DFT) methods produced results with artifacts associated with DFT' s tendency to over stabilize zwitterionic charge transfer states, which arises from self-interaction and delocalization errors. ${ }^{63-66}$ This is problematic when describing processes involving ET and aromaticity such as the PCET process catalyzed by PyH^{0} examined here.

All reactant and product structures were verified to have real vibrational frequencies, meanwhile TSs were verified to have only one imaginary frequency corresponding to the reaction coordinate of interest as confirmed by both inspection of the normal mode and intrinsic reaction coordinate (IRC) calculations. Frequency calculations at the roMP2/6-31+G** level of theory were also employed for calculation of zero-point energies (ZPE), and thermal contributions to the enthalpy at 298 K and 1 atm.

All calculations employed the conductor-like polarizable continuum implicit solvent model (CPCM) to describe the effects of solvation, ${ }^{67-68}$ where only electrostatic solute-solvent interactions were considered. We used the SMD solvent model ${ }^{69}$ to calculate that neglect of non-electrostatic terms in CPCM leads to errors in the activation enthalpies of less than 2 $\mathrm{kcal} / \mathrm{mol}$. The details regarding these SMD calculations and the use of the CPCM model to describe the effects of solvation on enthalpic barriers are described in the SI , section 4. Because CPCM is less accurate in describing solvation of species with concentrated charges, ${ }^{70-72}$ we also report energies where explicit $\mathrm{H}_{2} \mathrm{O}$ molecules were added to explicitly solvate the system.

In the mechanism of CO_{2} reduction catalyzed by PyH^{0} we propose that $\mathrm{H}_{2} \mathrm{O}$ actively participates in the PCET mechanism by undergoing $\mathrm{O}-\mathrm{H}$ bond formation and dissociation to transfer protons. Consequently, we explicitly include these active $\mathrm{H}_{2} \mathrm{O}$ ' s as part of the core reaction system. For example, in the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ reaction, three $\mathrm{H}_{2} \mathrm{O}$ molecules actively participate in the reaction while ten $\mathrm{H}_{2} \mathrm{O}$ molecules are included to solvate the core reaction system and are labeled as $\mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ to indicate that they are explicit solvent. For each system, PyH^{0} and CO_{2} together with the active and solvating water molecules are embedded in a CPCM implicit solvent. All explicit $\mathrm{H}_{2} \mathrm{O}$ molecules are treated quantum mechanically at the same level of theory as PyH^{0} and CO_{2}. Using explicit solvent introduces challenges associated with particular solvent configurations producing different enthalpic reaction barriers. ${ }^{73-74}$ One approach to examine how solvent dynamics leads to kinetic dispersion is to use molecular dynamics to sample the effect of solvent configurations on the reaction barrier. ${ }^{73}$ On the other hand, CPCM implicit solvent empirically describes the contributions of solvent configurations to solvation energies in aqueous solutions in close agreement with explicit molecular dynamics. ${ }^{73}$ We discuss the effects of solvent configurations on the reaction barrier below and in the SI , section 5 .

Atomic charges were calculated using a Mulliken ${ }^{75}$ population analysis and the CHELPG electrostatic potential derived charges method ${ }^{76}$ at the roMP2/6-31+G**/CPCM $-\mathrm{H}_{2} \mathrm{O}$ level of theory. In contrast, adiabatic electron affinity (EA) and E^{0} calculations employed the high-level CBS-QB3/CPCM- $\mathrm{H}_{2} \mathrm{O}$ compound method. ${ }^{77} \mathrm{E}^{0} \mathrm{~s}$ were calculated following the same procedure used by Winget et al. and Tossell; ${ }^{44,78}$ details describing this approach can be found in the SI ,
section 6. pKa calculations were performed using a similar approach to that used by Liptak et al., ${ }^{79}$ as described in the SI , section 6.

1.3 Results and Discussion

1.3.1 High barrier to formation of PyCOOH^{0} for unmediated reaction between PyH^{0}
and CO_{2}. The PEC reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ in the $\mathrm{Py} / \mathrm{p}-\mathrm{GaP}$ system has been observed to proceed at room temperature via a rate-limiting step with an effective activation barrier of $16.5 \pm 2.4 \mathrm{kcal} / \mathrm{mol}^{41}$ The rate-limiting step for this process has been proposed ${ }^{41}$ to be the formation of PyCOOH^{0} (see Figure 1.1) from PyH^{0} and CO_{2} where a proton is transferred from the nitrogen atom of PyH^{0} to an oxygen atom of CO_{2}. Figure 1.1 shows the cis and trans isomers of PyCOOH^{0} with the trans isomer being the more stable of the two by $6.1 \mathrm{kcal} / \mathrm{mol}$. Our calculations predict a $45.7 \mathrm{kcal} / \mathrm{mol}$ enthalpic barrier for this step when it occurs in the homogeneous phase and is modeled as $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$ in an implicit aqueous solvent. The calculated $\sim 46 \mathrm{kcal} / \mathrm{mol}$ barrier lies significantly higher than the experimentally determined barrier of $\sim 17 \mathrm{kcal} / \mathrm{mol}$. Furthermore, we obtained a similar barrier of $46.8 \mathrm{kcal} / \mathrm{mol}$ with the high-level uCCSD(T)/roMP2 method, confirming that this pathway is not active at 298 K . Figure 1.1 shows the optimized reactant, TS and product structures. In this reaction the less stable cis isomer of PyCOOH^{0} (Figure 1.1c) is formed. We calculate an isomerization barrier of 1.6 $\mathrm{kcal} / \mathrm{mol}$ to convert the cis isomer to the trans isomer (Figure 1.1d).

In the formation of PyCOOH^{0} the reaction proceeds via nucleophilic attack where PyH^{0} approaches CO_{2} with its N lone pair directed towards the C atom of CO_{2}. Figure 1.2 presents a localized orbital representation to illustrate donation of electron density from the $\mathrm{PyH}^{0} \mathrm{~N}$ lone pair into the π^{*} orbital of CO_{2} along the reaction coordinate $\mathrm{R}_{\mathrm{N}-\mathrm{C}}$. As $\mathrm{R}_{\mathrm{N}-\mathrm{c}}$ decreases, CO_{2} first
bends as a result of nucleophilic attack and subsequently a proton transfers from PyH^{0} to CO_{2}, suggesting that ET precedes and is coupled to PT (vide infra).

Figure 1.1: Formation of PyCOOH^{0} by direct (unmediated) PT from PyH^{0} to CO_{2}.
(a) Reactant complex, (b) TS for direct PT; RN-C = $1.61 \AA$, α is the $C-N-H$ angle and β is the $C-O-H$ angle, as shown, (c) cis isomer and (d) trans isomer products with γ indicating the dihedral angle O1-C1-N-C2.

Calculating the energetics of this PCET reaction step does not pose any particularly difficult challenges. For example, proper description of the electronic structure of the reacting system does not require a multi-reference method and should be well-described by reliable single Slater determinant $a b$ initio methods. Consequently, the considerable disagreement between the barrier for the formation of PyCOOH^{0} calculated using reliable quantum chemical methods and the experimentally determined barrier suggests that either a heterogeneous process involving the p -GaP electrode catalyzes PyCOOH^{0} formation, ${ }^{41}$ or that alternative lower barrier pathways occurring in the homogeneous phase may be active. However, a thorough
search for alternative TSs for homogeneous formation of PyCOOH^{0} by direct PT from PyH^{0} to CO_{2} (TS shown in Figure 1.1 b) yielded no low barrier pathways.

Figure 1.2: Localized orbitals.
(a) Localized representation of the N lone pair orbital of PyH^{0} and (b) Localized representation of the π^{*} orbital of C in CO_{2} for a molecular structure along the IRC for PyCOOH^{0} formation at $\mathrm{R}_{\mathrm{N}-\mathrm{C}}=2.01 \AA$. The TS occurs at $\mathrm{R}_{\mathrm{N}-\mathrm{C}}=1.61$ Å.

After a comprehensive search did not identify alternative low barrier pathways for the homogeneous formation of PyCOOH^{0} via direct PT from PyH^{0} to CO_{2}, we hypothesized that $\mathrm{H}_{2} \mathrm{O}$ molecules in the aqueous solvent act as proton relays to catalyze PyCOOH^{0} formation. This supposition was based on thorough inspection of the TS structure for direct PT from PyH^{0} to CO_{2} (illustrated in Figure 1.1b), which exhibits considerable strain. The substantial strain present in the TS primarily arises from: i) bending of the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle to 79° relative to its near tetrahedral strain-free angle of 112° in the product structure, ii) bending of the $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angle to 68° relative to its nearly strain-free angle of between 109° and 120°, and iii) rotation of the dihedral angle between the Py and CO_{2} planes to 68° relative to its angle of 15° in the product. We suggest that $\mathrm{H}_{2} \mathrm{O}$ molecules in the aqueous solvent form a proton shuttling network that lowers the barrier to PyCOOH^{0} formation by providing alternative, lower barrier paths for PT
from PyH^{0} to CO_{2}. Although PT from PyH^{0} to CO_{2} via proton shuttling mediated by water is indirect, the TSs involve substantially less strain and thus a considerably lower barrier than direct PT from PyH^{0} to CO_{2} (vide infra).

Although a proton relay has not been previously proposed for CO_{2} reduction in the Py / p GaP system, proton shuttling mechanisms have been proposed for a number of other processes. ${ }^{80-90}$ While enthalpic barriers to reaction generally determine the kinetics of reactions, especially at low to moderate temperatures, entropic considerations should not be neglected. For example, because CO_{2} reduction in the $\mathrm{Py} / \mathrm{p}-\mathrm{GaP}$ system occurs in aqueous solvent, pathways that involve specific solvent configurations may be entropically disfavored. However, if interactions in the solute-solvent system arrange the solvent into configurations that require little solvent reorganization to configure the solvent into the TS structure, a minimal entropic penalty will be required for solvent reorganization to configurations of the TS.

1.3.2 Proton relay composed of one to three waters. To determine whether a proton relay

 through water can indeed lower the barrier to PyCOOH^{0} formation via mediated PT from PyH^{0} to CO_{2} we calculated the transition states for proton shuttling from PyH^{0} to CO_{2} through one, two, and three $\mathrm{H}_{2} \mathrm{O}$ molecules. In each case, hydrogen bonding positioned the water molecules relative to PyH^{0} and CO_{2} with the hydrogen atoms of the water arranged to facilitate PT (see Figure 1.3); these configurations are stabilized by significant hydrogen bonding. In addition to the explicit inclusion of water molecules that actively participate in the reaction, the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$ $+\mathrm{mH}_{2} \mathrm{O}$ core reaction system (with $\mathrm{m}=1$ to 3) was solvated in implicit solvent. Figure 1.3a shows the TS for PyCOOH^{0} formation via direct PT (repeat of Figure 1.1b for comparison). Figure 1.3bshows the TS for PyCOOH^{0} formation where a single $\mathrm{H}_{2} \mathrm{O}$ acts as a proton shuttle between PyH^{0} and CO_{2}; the water molecule concomitantly accepts a proton from the N of PyH^{0} and donates a different proton to an O atom of CO_{2}.

Remarkably, a single water molecule catalyzes PyCOOH^{0} formation and lowers the barrier $16.2 \mathrm{kcal} / \mathrm{mol}$ from $\Delta \mathrm{H}^{0}{ }_{\text {act }}=45.7$ to $29.5 \mathrm{kcal} / \mathrm{mol}$. The TS for PyCOOH^{0} formation via proton shuttling through one $\mathrm{H}_{2} \mathrm{O}$ molecule involves little strain; i) the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle (β) in the TS is 109°, similar to its angle of 112° in the product; ii) the $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angle (α) in the TS is 98°, close to the strain-free angle between 109° and 120° and iii) the dihedral angle (γ) between the Py and CO_{2} planes in the TS is 27°, similar to its angle of 15° in PyCOOH°. Although these results predict that water catalyzes $\mathrm{PyCOOH}{ }^{0}$ formation and facilitates PT from the PyH^{0} to CO_{2} by shuttling protons, the predicted barrier of $29.5 \mathrm{kcal} / \mathrm{mol}$ is still significantly above the experimentally determined barrier of $16.5 \mathrm{kcal} / \mathrm{mol}$ for CO_{2} reduction in this system. However, this pathway involves only a single water molecule acting as a proton shuttle.

While one water molecule can relay a proton, multiple water molecules can also be arranged to form a chain of proton shuttles where protons are relayed from one water molecule to the next. Figure 1.3 c and d show proton relays composed of a chain of two and three water molecules. When two $\mathrm{H}_{2} \mathrm{O}$ molecules are arranged to relay the proton from PyH^{0} to CO_{2}, we calculate that the activation barrier (Figure 1.3 c shows the TS) is lowered by an additional $9 \mathrm{kcal} / \mathrm{mol}$ to $20.4 \mathrm{kcal} / \mathrm{mol}$. Similarly, arranging three water molecules into a proton shuttling sequence lowers the barrier to $18.5 \mathrm{kcal} / \mathrm{mol}$ (TS shown in Figure 1.3 d). We also examined longer chains of $\mathrm{H}_{2} \mathrm{O}$ molecules; however, each relaxed to a chain of three $\mathrm{H}_{2} \mathrm{O}^{\prime} \mathrm{s}$
with the remaining waters solvating the chain. Like direct PT (Figure 1.3a), PT from PyH^{0} to CO_{2} mediated through one and two water molecules produces the higher energy cis isomer of PyCOOH^{0}, which is easily converted to the more stable trans isomer through a barrier of only $1.6 \mathrm{kcal} / \mathrm{mol}$. In contrast, PT through the three $\mathrm{H}_{2} \mathrm{O}$ molecule shuttle yields the more stable PyCOOH^{0} trans isomer (Figure 1.1d).

Figure 1.3: TS structures for the formation of PyCOOH^{0} via proton shuttling through 0 to $3 \mathrm{H}_{2} \mathrm{O}$ molecules.
(a) Direct PT from PyH^{0} to CO_{2} (same as Figure 1.1b), (b) PT from PyH^{0} to CO_{2} mediated by a one water molecule proton relay, (c) PT mediated by a chain of two water molecules and (d) PT mediated by a chain of three water molecules. α refers to angle $\mathrm{C}-\mathrm{N}-\mathrm{H}, \beta$ to angle $\mathrm{C}-\mathrm{O}-\mathrm{H}$ and γ refers to the dihedral $01-\mathrm{C} 1-\mathrm{N}-\mathrm{C} 2$.

The ability of the three $\mathrm{H}_{2} \mathrm{O}$ proton relay to form the more stable PyCOOH^{0} trans isomer is illustrated in Figure 1.4. It shows the proton transfer from PyH^{0} to CO_{2} via a sequence of three $\mathrm{H}_{2} \mathrm{O}$ molecules using several structures along the IRC of the reaction step $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{PyCOOH}^{0}+3 \mathrm{H}_{2} \mathrm{O}$. The reaction begins at reactant (a), followed by $\mathrm{N}-\mathrm{C}$ bond formation through nucleophilic attack by the N of PyH^{0} on the C of CO_{2}, similar to the direct PT case presented in Figure 1.2. The reaction then proceeds through (b), a TS for PT from $\mathrm{PyH}^{0} \cdot \mathrm{CO}_{2}$ to the first water
molecule in the shuttling chain, followed by (c) and (d), which show subsequent PTs from $\mathrm{H}_{3} \mathrm{O}^{+}$ to the next water in the chain and finally (e), PT from $\mathrm{H}_{3} \mathrm{O}^{+}$to PyCOO^{-}to form (f) PyCOOH^{0} (trans). The ability of the three $\mathrm{H}_{2} \mathrm{O}$ molecule proton relay to produce the more stable trans isomer further demonstrates the ability of the proton shuttle to lower the barrier to form PyCOOH ${ }^{0}$. We summarize the enthalpic barriers ($\Delta \mathrm{H}_{\text {act }}^{0}$) and reaction enthalpies ($\Delta \mathrm{H}_{\mathrm{rxn}}$) at standard conditions in Table 1.1 for PyCOOH^{0} formation by various PT pathways involving proton relays formed by different numbers of $\mathrm{H}_{2} \mathrm{O}$ molecules. Figure 1.5 depicts the stationary points along the PES for PyCOOH^{0} formation from the data in Table 1.1 and emphasizes proton shuttling in lowering PyCOOH^{0} formation barriers.

Figure 1.4: Structures along the IRC for the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ reaction step of indirect proton transfer from PyH^{0} to CO_{2} via a proton relay comprised of a chain of three $\mathrm{H}_{2} \mathrm{O}$ molecules.
(a) Reactants, (b) TS for PyCOO^{-}formation by PT from PyH^{0} to a $\mathrm{H}_{2} \mathrm{O}$, (c) and (d) PT from a $\mathrm{H}_{3} \mathrm{O}^{+}$to a neighboring $\mathrm{H}_{2} \mathrm{O}$, (e) PT from $\mathrm{H}_{3} \mathrm{O}^{+}$to PyCOO^{-}and (f) the trans PyCOOH^{0} product. The dashed orange arrows indicate the direction of PT and the blue arrow the nucleophilic attack on the C of CO_{2}.

The results shown above demonstrate that the $45.7 \mathrm{kcal} / \mathrm{mol}$ barrier to form PyCOOH^{0} without the aid of the water proton relay is $\sim 30 \mathrm{kcal} / \mathrm{mol}$ above the experimentally determined barrier of $16.5 \mathrm{kcal} / \mathrm{mol}$. Furthermore, we predict that the barrier decreases to ~ 18 to 20
$\mathrm{kcal} / \mathrm{mol}$ when multiple water molecules form a proton shuttling relay. As we discuss in detail below, the barrier declines further to between 13.6 to $16.5 \mathrm{kcal} / \mathrm{mol}$ when the TSs are calculated with explicit water molecules solvating the reaction complex (Table 1.1 cases e-i and Figure 1.5). We speculated that proton shuttling via water may partially lower the reaction barrier by alleviating strain in the TS in the: i) $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angle, α ii) $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle, β and iii) the dihedral angle, γ, between the Py and CO_{2} planes. Next, we analyze how proton shuttling via water reduces those strains.
1.3.3 Proton relay network reduces strain in the TS. Figure 1.1 shows the reactant, TS and product structures for PyCOOH^{0} formation for direct PT from PyH^{0} to CO_{2}. While the product has a $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle of 112°, this angle is 79° in the TS structure. This suggests that part of the activation barrier can be attributed to this angular strain. Although this analysis compares the TS structure to the product rather than the reactant to estimate the strain in the TS from the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle, it still indicates a high-lying TS because this reaction step is relatively thermoneutral (see Table 1.1). If this reaction were significantly exothermic, this approach to analyzing the strain could be misleading because a reaction with a low barrier in the forward direction could still exhibit a large degree of strain between the TS and product.

Table 1.1: Enthalpic barriers and reaction enthalpies for the reaction of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+\mathrm{mH} 2 \mathrm{O}+\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$ to form PyCOOH ${ }^{0}$ where m is the number of active $\mathrm{H}_{2} \mathrm{O}^{\prime}$ s in the proton relay and n is the number of solvating $\mathrm{H}_{2} \mathrm{O}^{\prime}$ s

System $^{\mathrm{a}}$	$\Delta \mathrm{H}^{0}{ }_{\text {act }}$		$\Delta \mathrm{H}^{0}{ }_{\text {rxn }}$	
	$\operatorname{CCSD}(\mathrm{T})^{\mathrm{b}}$	$\mathrm{MP2}^{\mathrm{C}}$	$\operatorname{CCSD}(\mathrm{T})^{\mathrm{b}}$	$\mathrm{MP2}{ }^{\mathrm{c}}$
a) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$	46.8^{d}	45.7	9.3^{e}	8.9^{e}
b) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	29.9	29.5^{\dagger}	5.7^{e}	6.0^{e}
c) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	21.2	20.4	3.4^{e}	3.3^{e}

d) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	18.6	18.5	-5.2	-3.2
e) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	-	16.5	-	-2.2
f) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	-	14.6	-	-4.0
g) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	-	14.6	-	$0.6^{\mathrm{e}, \mathrm{g}}$
h) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	-	14.5^{h}	-	-4.2
i) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	-	13.6	-	-5.8

${ }^{\text {a }}$ All enthalpies in $\mathrm{kcal} / \mathrm{mol}$ at 298 K and 1 atm where electrostatic solute-solvent interactions were treated using CPCM with aqueous solvent. In case e-i, explicit solvent was also employed to treat
 barrier at cc-PVDZ ($46.8 \mathrm{kcal} / \mathrm{mol}$) basis set agrees with cc-PVTZ ($44.5 \mathrm{kcal} / \mathrm{mol}$) and 6-311++G** (46.9 $\mathrm{kcal} / \mathrm{mol}$). ${ }^{e} \mathrm{Cis}$ isomer of PyCOOH^{0} was produced (Figure 1.1c). ${ }^{\dagger}$ uMP2/6-31+G** produced a similar barrier of $31.9 \mathrm{kcal} / \mathrm{mol}$. ${ }^{\mathrm{s}} \mathrm{PyCOOH}^{0}$ (cis) product with partial PT from $\mathrm{H}_{3} \mathrm{O}^{+}$to CO_{2} (see SI , section 5). ${ }^{\mathrm{h}} 15.3$ $\mathrm{kcal} / \mathrm{mol}$ barrier obtained with a different explicit $\mathrm{H}_{2} \mathrm{O}$ configuration (see SI section 5).

Figure 1.5: Stationary points along the potential energy surfaces for PyCOOH^{0} formation via both direct and indirect (via the water proton relay) PT from PyH^{0} to CO_{2}.
The PyCOOH ${ }^{0}$ formation barrier (TS1) decreases with increasing number of water molecules \mathbf{m} in the proton relay from 0 to 3 and by including explicit water (denoted by \mathbf{S}) to solvate the reaction complex. TS2 is for cis-trans isomerization, which lies $1.6 \mathrm{kcal} / \mathrm{mol}$ above the cis isomer. Cases \mathbf{g} and \mathbf{h} reported in Table 1.1 have been omitted for clarity.

We estimate that strain in the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle accounts for $\sim 15 \mathrm{kcal} / \mathrm{mol}$ of the activation energy (see Figure 1.6a and the SI , section 7). In contrast, for the one water molecule proton relay (Figure 1.3 b), the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle in the TS is 109°, similar to its angle of 112° in the product, leading to a substantial reduction in strain and a decrease of $16.2 \mathrm{kcal} / \mathrm{mol}$ in the barrier (see Table 1.1). In the cases of the two (Figure 1.3c) and three (Figure 1.3d) water molecule proton relays, the TS involves PT to form a $\mathrm{H}_{3} \mathrm{O}^{+}$intermediate. Consequently, the $\mathrm{O}-\mathrm{H}$ bond of the product is not in the process of forming at the TS. Another potential source of strain is the $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angle. In the event of direct PT (Figure 1.1b or Figure 1.3a), this angle is 68° compared to a strain-free angle between 109 and 120°; the proton relay partially alleviates this strain, leading to $\mathrm{C}-\mathrm{N}-\mathrm{H}$ angles in the TSs of 98° (one $\mathrm{H}_{2} \mathrm{O}$), 100° (two $\mathrm{H}_{2} \mathrm{O}$'s) and 99° (three $\mathrm{H}_{2} \mathrm{O}$'s).

Lastly, strain can also be attributed to the rotation of the dihedral angle between the PyH^{0} and CO_{2} planes, i.e. the dihedral angle is 68° at the TS versus 15° in the product PyCOOH^{0}. Using PyCOO^{-}as a model system, we determined that this dihedral strain contributes ~ 10 $\mathrm{kcal} / \mathrm{mol}$ to the activation barrier (see Figure 1.6 b), which is consistent with the $16 \mathrm{kcal} / \mathrm{mol}$ barrier to internal rotation of this dihedral previously calculated by Han et al. ${ }^{91}$ They explained that the barrier to rotation of this dihedral angle arises from the π character of the $\mathrm{N}-\mathrm{C}$ bond, ${ }^{91}$ which is supported by the $\mathrm{N}-\mathrm{C} \pi$ orbital shown in Figure 1.6 b .

1.3.4 Adding solvating waters to the $\mathrm{PyH}^{\mathbf{0}}+\mathbf{C O}_{2}+\mathbf{3} \mathbf{H}_{2} \mathbf{O}$ system. Although CPCM

 generally calculates solute-solvent electrostatic interactions correctly, it describes solvation of solutes possessing concentrated charges less accurately. ${ }^{70-72}$ For example, the negative charge of the PyCOO^{-}complex at the TS is concentrated on CO_{2} (discussed further below) andconsequently, CPCM may not accurately describe solvation of this TS. Thus, to determine the effect of describing the solvation of species with concentrated charge, we also employed explicit $\mathrm{H}_{2} \mathrm{O}$ to solvate the reacting system. ${ }^{74,92}$ To examine the significance of including explicit solvent, we added one, four, six and ten additional $\mathrm{H}_{2} \mathrm{O}$ molecules to solvate the reaction core consisting of $\mathrm{PyH}^{0}, \mathrm{CO}_{2}$ and the $\mathrm{H}_{2} \mathrm{Os}$ of the proton relay. These additional water molecules were treated at the same level of theory as the rest of the system. Similar to the previously discussed calculations, the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$ systems, consisting of the core reactive system and \mathbf{n} explicit solvating water molecules, are embedded in a continuum polarizable solvent. The effect of additional explicit solvent is reflected in the results shown in Table 1.1 entries e-i and Figure 1.5. We find that adding one solvating water molecule to hydrogen bond with an O of CO_{2} and a H of the neighboring $\mathrm{H}_{2} \mathrm{O}$ of the proton relay included in the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$ $+3 \mathrm{H}_{2} \mathrm{O}$ core reaction system (Figure 1.7 a) decreases the barrier by $2 \mathrm{kcal} / \mathrm{mol}$ to $16.5 \mathrm{kcal} / \mathrm{mol}$. Adding four and six solvating $\mathrm{H}_{2} \mathrm{O}$ ' s (Figure 1.7b and c) only decreases the barrier by 4 $\mathrm{kcal} / \mathrm{mol}$ to 14.6 and $14.5 \mathrm{kcal} / \mathrm{mol}$. Finally, upon adding ten solvating $\mathrm{H}_{2} \mathrm{O}$ ' s , the reaction barrier decreases to $13.6 \mathrm{kcal} / \mathrm{mol}$, as shown in Figure 1.7 d . In the SI , section 5 , we show that the barrier calculated using four to ten explicit solvating $\mathrm{H}_{2} \mathrm{O}$ ' s is converged within the accuracy of the methods employed.

Figure 1.6: Strain energy contributions to the activation barrier for PyCOOH^{0} formation.
Estimated using (a) COOH^{0} as a model to estimate the angular strain in the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle β and (b) PyCOO^{-}as a model to estimate the dihedral strain between the Py and CO_{2} planes, γ.

Adding multiple solvating $\mathrm{H}_{2} \mathrm{O}$ molecules leads to stabilization of one of the shuttling protons such that a $\mathrm{H}_{3} \mathrm{O}^{+}$intermediate results. Here, the $14.6,14.5$ and $13.6 \mathrm{kcal} / \mathrm{mol}$ barriers for four, six and ten solvating $\mathrm{H}_{2} \mathrm{O}^{\prime} \mathrm{s}$, respectively, are the activation energies to form the $\mathrm{PyCOO}^{-}\left(\mathrm{PyCOO}^{-} \cdot \mathrm{H}_{3} \mathrm{O}^{+} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ intermediate rather than PyCOOH^{0}. In these three cases, the formation of PyCOOH^{0} proceeds through a second TS where a proton is relayed from the $\mathrm{H}_{3} \mathrm{O}^{+}$• $2 \mathrm{H}_{2} \mathrm{O}$ complex to PyCOO^{-}with a negligible activation energy (less than $0.1 \mathrm{kcal} / \mathrm{mol}$ at OK) which becomes barrierless upon addition of the ZPE and the thermal correction at 298K. Thus, the $14.6,14.5$ and $13.6 \mathrm{kcal} / \mathrm{mol}$ barriers to form the $\mathrm{PyCOO}^{-} \cdot \mathrm{H}_{3} \mathrm{O}^{+}$intermediate are effectively the barriers to form PyCOOH^{0} and this pathway contributes to the overall rate of PyCOOH^{0} formation. We calculated a pKa of 10.2 for $\mathrm{PyCOO}^{-} / \mathrm{PyCOOH}^{0}$, thus PyCOOH^{0} should dominate over PyCOO^{-}at thermodynamic equilibrium. Our results demonstrate that inclusion of explicit $\mathrm{H}_{2} \mathrm{O}$ molecules to solvate the active reaction complex lowers the reaction barrier. This effect is caused by additional solvent stabilization of the concentrated charges on CO_{2} (in the PyCOO^{-}
complex) at the TS relative to the reactants than what is provided by the implicit CPCM solvent. However, the lowering of the activation barrier from $18.5 \mathrm{kcal} / \mathrm{mol}$ (CPCM only) to 13.6 $\mathrm{kcal} / \mathrm{mol}$ (ten $\mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ case) is likely overestimated.

Inclusion of an explicit first solvation shell with no surrounding solvent can result in over polarization between the explicit solvent and the core reaction system ${ }^{73}$ due to the absence of interactions with additional solvation shells. In the case of aqueous solvent and a TS more polar than the reactants, this may result in excessive lowering of the activation barrier. However, embedding of the explicit solvent in implicit solvent mitigates this effect through interactions of the infinite bath of implicit solvent with the first solvation shell. For example, the PCET barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ increased from $12.5 \mathrm{kcal} / \mathrm{mol}$ (gas phase) to $14.6 \mathrm{kcal} / \mathrm{mol}$ (CPCM) with addition of implicit solvent (see the SI, section 4). The extent to which CPCM alleviates the error of over polarization of the first solvation shell effect is unknown and beyond the scope of this study. However, for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$, the results with explicit solvent (over polarization) and CPCM only (under polarization), respectively, set a lower and an upper bound to the barrier; thus, our results predict that the PCET barrier lies between 13.6 and 18.5 $\mathrm{kcal} / \mathrm{mol}$.

Introduction of explicit solvent can introduce additional challenges due to the large solvent configurational space. For example, particular solvent configurations stabilize the TS relative to the reactants more than others. These configurational variations introduce a distribution of enthalpic barriers. ${ }^{73}$ For example, in Table 1.1, we report the barrier for $\mathrm{PyH}^{0}+$ $\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ to be 14.6 and $15.3 \mathrm{kcal} / \mathrm{mol}$ in two possible solvent configurations (see

SI, section 5). Solvent reorganization due to thermal fluctuations introduces similar effects and consequently a distribution of enthalpic barriers such that the experimentally determined barrier corresponds to an ensemble average over many solvent configurations. The barriers involving explicit $\mathrm{H}_{2} \mathrm{O}$ reported in Table 1.1 are calculated for only a few of the many possible configurations that can contribute to the ensemble averaged barrier. Moreover, configurations that result in proton relays composed of various numbers of $\mathrm{H}_{2} \mathrm{O}$ can contribute to the ensemble averaged barrier. For instance, the barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ in a two water proton relay is $14.6 \mathrm{kcal} / \mathrm{mol}$ (Table 1.1, entry \mathbf{g}), similar to the barrier of the three water proton relay.

Figure 1.7: TS structures for PyCOOHO formation via a proton shuttling network formed by three H 2 O molecules (illustrated using a ball-and-stick model) and (a) one, (b) four, (c) six and (d) ten solvating H2O's. Solvating H2O's are depicted by a stick model.
1.3.5 Comparison with the experimentally determined barrier. Our results demonstrate the central role of proton shuttling via water in catalyzing the formation of PyCOOH^{0}, where
shuttling through the three water molecule relay lowers the reaction barrier by $\sim 27 \mathrm{kcal} / \mathrm{mol}$ relative to direct PT. The $18.5 \mathrm{kcal} / \mathrm{mol}$ barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ modeled in CPCM, confirmed by high-level $\operatorname{CCSD}(\mathrm{T})$ results, should provide a reliable baseline estimate for the activation barrier to form PyCOOH^{0} from reaction of PyH^{0} and CO_{2} in the homogeneous phase because the continuum description of the solvent implicitly averages out the variations in the enthalpic barrier resulting from solvent fluctuations despite its limitation in describing solute with concentrated charges. ${ }^{73,93}$ To better describe interaction between the solvent and the solute with localized charges, four, six and ten solvating $\mathrm{H}_{2} \mathrm{O}$ ' s were included. These models all predicted a barrier within $0.5 \mathrm{kcal} / \mathrm{mol}$ of $14.1 \mathrm{kcal} / \mathrm{mol}$, which is well within the accuracy of roMP2. Thus, $14.1 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$ provides our best estimate of the barrier for the three water proton relay configuration, assuming that CPCM alleviates most of the over polarization of the TS by the first solvation shell (see discussion above). This estimate does not explicitly consider how other solvent configurations might affect the barrier beyond demonstrating that it changes by less than $1 \mathrm{kcal} / \mathrm{mol}$ for four to ten explicit $\mathrm{H}_{2} \mathrm{O}$ ' s and for two different solvent configurations for the case of six explicit solvating $\mathrm{H}_{2} \mathrm{O}^{\prime} \mathrm{s}$, as shown in Table 1.1. Moreover, the two water proton relay also proves to be a viable pathway with a $14.6 \mathrm{kcal} / \mathrm{mol}$ barrier for PyH^{0} $+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ (see Table 1.1, case \mathbf{g}).

We propose that the experimentally determined barrier of $16.5 \pm 2.4 \mathrm{kcal} / \mathrm{mol}$ is consistent with a weighted average of active pathways that consist of proton transfers through relays of one to three $\mathrm{H}_{2} \mathrm{O}$ molecules where the ensemble averaged barrier depends on both the configurational and Boltzmann weight for each pathway. Although an exhaustive
examination of all possible pathways and calculation of the configurational weights for the pathways we report is beyond the scope of this study, the ensemble average for the lowest energy pathways we report must lie within the range of $13.6 \mathrm{kcal} / \mathrm{mol}$ (two and three water proton relays) and $22.8 \mathrm{kcal} / \mathrm{mol}$ (one water proton relay, see SI, section 5 for estimation of this barrier). Because the barrier for reaction through the one $\mathrm{H}_{2} \mathrm{O}$ shuttle is $\sim 9 \mathrm{kcal} / \mathrm{mol}$ larger than the barrier for PCET through two and three $\mathrm{H}_{2} \mathrm{O}$'s the configurational weight on the one $\mathrm{H}_{2} \mathrm{O}$ shuttle must be at least $\sim 10^{6}$ times larger for it to contribute significantly to the reaction rate at 298 K . For example, with relative configurational weights of 10^{5} and 10^{6} on the one $\mathrm{H}_{2} \mathrm{O}$ shuttle pathway and configurational weights of one on each of the two and three $\mathrm{H}_{2} \mathrm{O}$ shuttle pathways the average barriers are 13.9 and $14.9 \mathrm{kcal} / \mathrm{mol}$, respectively. Consequently, although it is possible that other active pathways exist and we do not explicitly calculate the configurational weights required for evaluating the ensemble averaged barrier, we expect that ensemble averaging the pathways we report will result in a predicted barrier of between 13.6 to 15 $\mathrm{kcal} / \mathrm{mol}$.

These results predict that the homogeneous formation of PyCOOH^{0} is viable, mediated by proton shuttling in aqueous solvent, and does not require the p -GaP electrode surface to play an active role in $\mathrm{N}-\mathrm{H}$ bond cleavage of PyH^{0}. However, it is also possible that the experimentally measured barrier corresponds to thermally activated desorption of PyH^{0} from the Pt electrode to the homogeneous phase. In the Py/Pt system the measured reduction potential for PyH^{+}suggests that desorption of PyH^{0} from Pt into the homogeneous phase requires at least $16.8 \mathrm{kcal} / \mathrm{mol}$ (see Introduction), a value that coincides with both the
experimentally determined barrier and our calculated barrier for homogeneous reaction between PyH^{0} and CO_{2}. Consequently, desorption of the reduced PyH^{0} species from Pt may limit PyCOOH ${ }^{0}$ formation. However, the observed first order dependence on both PyH^{+} concentration and CO_{2} concentration is indicative of a bimolecular homogeneous process. ${ }^{41} \mathrm{We}$ suggest that use of an electrode material with minimal surface effects on the reduction of PyH^{+} (e.g. a Pb or dropping Hg electrode) should exhibit the homogeneous barrier for catalytic reduction of CO_{2} by PyH^{0}. However, aqueous solvent should be used with caution because the homogeneous E^{0} of $\mathrm{PyH}^{+}(-1.31 \mathrm{~V}$ vs. SCE$)$ is more negative than the reduction potential of $\mathrm{H}_{2} \mathrm{O}$, $E^{0}=-1.07 \mathrm{~V}$ vs. SCE.
1.3.6 Charge analysis, pK_{a} and EA all show step-wise ET followed by PT. Next, we examine the interplay between ET and PT from PyH^{0} to CO_{2} to accomplish the chemical reduction of CO_{2} through the formation of PyCOOH^{0}. Fundamental questions at the heart of pyridine-catalyzed reduction of CO_{2} include: Do ET and PT occur concomitantly or sequentially? If sequentially, in what order do ET and PT occur? In this section, we focus on providing insight into these questions to understand the nature of CO_{2} reduction in this system to reveal the role of the Py catalyst in CO_{2} reduction. Figure 1.8 shows a plot of the net charges on PyH^{0} and CO_{2} as a function of the distance between the N of PyH^{0} and the C of CO_{2}, which we define as $\mathrm{R}_{\mathrm{N}-\mathrm{C}}$. The atomic charges were determined using the CHELPG method for several structures along the IRC of PyCOOH^{0} product formation to delineate the details of the ET process. A charge analysis based on Mulliken populations shows the same qualitative trend as CHELPG derived atomic charges (see SI, section 8).

In particular, we examine the net charges on CO_{2} and PyH^{0} for two cases: PyCOOH^{0} formation in the absence of the proton shuttling network (direct PT) and PyCOOH^{0} formation mediated by proton shuttling through three water molecules. For both cases, the charge on CO_{2} becomes negative while the charge on PyH^{0} becomes more positive as the reaction proceeds from reactant towards the TS along the IRC (see Figure 1.8). This result demonstrates that ET from PyH^{0} to CO_{2} occurs as the $\mathrm{N}-\mathrm{C}$ bond is formed and prior to PT . The charge transfer involves the donation of the N lone pair into a π^{*} orbital of CO_{2}, as shown in Figure 1.2. For the case of no proton shuttle, the charge on CO_{2} reaches a minimum of -0.60 e at $\mathrm{R}_{\mathrm{N}-\mathrm{c}}=1.66$ å and increases to -0.44 e at the $T S\left(R_{N-c}=1.61 \AA\right.$) because the proton is now partially transferred to CO_{2} along with its partial positive charge (see inset of Figure 1.8). These results predict that reduction of CO_{2} through PyCOOH^{0} formation occurs through a stepwise charge transfer mechanism where ET to reduce CO_{2} precedes PT. Our calculations predict this same mechanism for the case of PyCOOH^{0} formation through the three $\mathrm{H}_{2} \mathrm{O}$ molecule proton relay. In this case, the charge decreases to a minimum of -0.86 e at $R_{N-C}=1.50$ å, just after the $T S$ at $R_{N-C}=1.57 \AA$, followed by the onset of PT to CO_{2} at $\mathrm{R}_{\mathrm{N}-\mathrm{C}}=1.45 \AA$ (see inset of Figure 1.8 for the structure at $R_{N-C}=1.45 \AA$).

Figure 1.8: Charges on PyHO (blue) and CO (red) along the IRC for PyCOOHO formation from PyH^{0} and CO_{2}. $\left(0 \mathrm{H}_{2} \mathrm{O}\right)$ and $\left(3 \mathrm{H}_{2} \mathrm{O}\right)$ denote the cases of no proton relay (direct PT) and a three $\mathrm{H}_{2} \mathrm{O}$ molecule proton relay. ET from PyH^{0} to CO_{2} is significant at $\mathrm{C}-\mathrm{N}$ distances significantly longer than the TS ($\sim 1.6 \AA$). Charges determined using the CHELPG method at roMP2/6-31+G**.

An alternative mechanism might occur by PyH^{0} first transferring its proton to CO_{2}, followed by ET to reduce CO_{2}. However, we calculate a pKa of 31 for PyH^{0} in agreement with Keith et al.’s calculated pKa of $\sim 27 .{ }^{43}$ This suggests that direct PT from PyH^{0} to CO_{2} without ET first is highly thermodynamically unfavorable because it leads to the formation of the highenergy Py^{-}anionic radical. The energetic cost to form the Py^{-}anionic radical, either by direct PT from PyH^{0} or ET to Py is also evident from the adiabatic electron affinity (EA) analysis summarized in Table 1.2, which also lists our calculated E^{0} values for related Py and CO_{2} species. We find that Py^{-}formation is even less favorable than formation of the high-energy $\mathrm{CO}_{2}{ }^{-}$anionic radical as demonstrated by our calculations showing that Py’s EA of $37.9 \mathrm{kcal} / \mathrm{mol}$ is less positive than CO_{2} ' s EA of $47.4 \mathrm{kcal} / \mathrm{mol}$. These calculated EAs are consistent with Tossell's CBS-QB3 thermochemical calculations for a number of reduced Py complexes. ${ }^{44}$ This analysis
based on the pKa of PyH^{0} and the EA's of CO_{2} and PyH^{0} clearly demonstrates that if PyH^{0} and CO_{2} were to react, ET must precede PT to avoid the high energy cost of producing the Py^{-} anionic radical. This result explains and confirms the results of the charge analysis described above.

Table 1.2: Adiabatic electron affinities (EA) and homogeneous standard reduction potentials (E^{0} vs. SCE).

System $^{\mathrm{a}}$	EA^{b}	$\mathrm{E}^{\text {0(c) }}$
a) $\mathrm{Py}+\mathrm{CO}_{2}+\mathrm{e}^{-}=\mathrm{Py}^{-}+\mathrm{CO}_{2}$	37.9	-2.90
b) $\mathrm{Py}+\mathrm{CO}_{2}+\mathrm{e}^{-}=\mathrm{Py}+\mathrm{CO}_{2}^{-}$	47.4	-2.34
c) $\mathrm{Py}+\mathrm{CO}_{2}+\mathrm{e}^{-}=\mathrm{PyCOO}^{-}$	66.3	-2.05
d) $\mathrm{PyH}^{+}+\mathrm{e}^{-}=\mathrm{PyH}^{0}$	73.9	-1.31

${ }^{\text {a }}$ Calculations performed using CBS-QB3/CPCM $-\mathrm{H}_{2} \mathrm{O}$. ${ }^{\mathrm{b}} \mathrm{EA}=-\Delta \mathrm{H}_{\text {reduction }}^{0}$ in aqueous solution in $\mathrm{kcal} / \mathrm{mol}^{\mathrm{C}} \mathrm{E}^{0}$ in aqueous solvent in V vs. SCE.

1.3.7 Formation of PyCOO- anionic complex provides a low-energy pathway for ET.

 The calculated high pKa of PyH^{0}, low EA of Py and net charge versus IRC analysis all suggest that ET to CO_{2} must precede PT in the formation of PyCOOH^{0}. If this is indeed the case, what then enables ET, especially given the fact that the anionic radical CO_{2}^{-}is high-energy? The answer lies in the unusual nature of the PyCOO^{-}complex (Figure 1.6 b , left) and it is this anionic complex that forms, not $\mathrm{CO}_{2}{ }^{-}$. As shown in Figure 1.9 and Table 1.2, the PyCOO^{-}anionic complex is significantly more stable than the CO_{2}^{-}or Py^{-}anions as reflected by their EA' s , consistent with Tossell's calculations. ${ }^{44}$ It is this unusual stability of PyCOO^{-}that provides a low energy pathway for ET from PyH^{0} to CO_{2} and which results in forming PyCOO^{-}. Formation of the PyCOO^{-}anionic complex in the three $\mathrm{H}_{2} \mathrm{O}$ proton shuttle case is evident in Figure $1.4 \mathrm{c}-\mathrm{e}$, where PyCOO^{-}is formed transiently after ET and during PT by proton shuttling through the threewater molecule chain en route to PyCOOH^{0} formation. Thus, the formation barriers for PyCOOH^{0} shown in Figure 1.5 and schematically in Figure 1.9 are primarily the ET energy cost to form PyCOO^{-}by this low energy pathway; PyCOO^{-}is subsequently stabilized by protonation at a calculated pKa of 10.2. The existence and stability of the PyCOO^{-}complex is also supported experimentally where Han and Kamrath et al. generated the PyCOO^{-}complex through highenergy ionization, ${ }^{91,94}$ in contrast to the PEC reduction of CO_{2}, where PyCOO^{-}is generated transiently through homogeneous reaction between PyH^{0} and CO_{2} mediated by the proton relay. These results prompt the question: What provides PyCOO^{-}with its unusual stability?
1.3.8 Aromatic resonance stabilization stabilizes the PyCOO- complex. From the analysis above, we can deduce the role of the pyridine catalyst in the PEC reduction of CO_{2}. Py acts as a catalyst by stabilizing the high-energy anionic radical of CO_{2}^{-}by forming the stable PyCOO^{-}complex, thus providing a low energy pathway for PyCOOH^{0} formation. What makes PyCOO unusually stable? Aromatic resonance stabilization. ${ }^{95-96}$ Reduction of PyH^{+}to PyH^{0} increases the number of π electrons of from six to seven, resulting in a loss of aromaticity and PyH^{+}s large negative reduction potential (Figure 1.10). The drive to regain the aromaticity lost upon PyH^{+}reduction compels ET from PyH^{0} to CO_{2} to transiently form PyCOO^{-}. The resulting negative charge localized on CO 2 then drives PT from PyH to CO 2 through the water proton relay to ultimately form PyCOOH°. Six electrons remain in the π system of Py after ET , thus making both PyCOO^{-}and PyCOOH^{0} aromatic and lowering their energy. This stabilizes the TS to lower the PCET barrier, as described by the Evans-Polanyi principle. ${ }^{97}$

Figure 1.9: Formation of the PyCOO- anionic complex mediated by the proton relay provides a low energy pathway for ET en route to formation of the PyCOOH^{0} carbamate species. The ET barriers are shown schematically.

Without aromatic stabilization one electron reduction of CO_{2} or PT from PyH^{0} leading to the one electron reduction of Py^{2} to Py^{-}are both prohibitively high in energy (see Figure 1.9). We test this suggestion using protonated 1,4-azaborinine (AB). Because the transferred electron is added to and removed from the $s p^{2}$ orbital localized on $B, A B$ maintains its aromaticity on being reduced and during reduction of CO_{2} via PCET. For reduction of CO_{2} by PCET from $A B$ we calculate an enthalpic barrier of $33.8 \mathrm{kcal} / \mathrm{mol}$ at the MP2 level of theory compared to $18.5 \mathrm{kcal} / \mathrm{mol}$ for PyH^{0} where three waters act as a proton relay for both cases. The high barrier for $A B$ catalyzed CO_{2} reduction is a consequence of AB maintaining it aromaticity throughout PCET, thus providing no driving force for ET. Our results provide direct evidence and a detailed and fundamental explanation in support of Bocarsly et al.'s suggestion that Py-catalyzed CO_{2} reduction proceeds through one electron reduction of $\mathrm{CO}_{2}{ }^{40}$ The inverse view in which CO_{2} stabilizes the high energy Py^{-}anionic radical is an equally valid alternative
picture of this process. While both views are correct, a more complete analysis demonstrates that Py and CO_{2} stabilize each other's anionic radical in the form of the PyCOO^{-}complex.

1.3.9 Proton shuttling reduces the radical character of Py anionic radical. We

 emphasize again that ET precedes PT for cases of direct PT and for PT through the $\mathrm{H}_{2} \mathrm{O}$ molecule relay, as shown in Figure 1.8. However, the proton relay offers the advantage of more extensive ET to CO_{2} prior to PT ; Figure 1.8 shows the minimum charge on CO_{2} for the case of the three $\mathrm{H}_{2} \mathrm{O}$ molecule relay to be - 0.86 e compared to -0.60 e for direct PT in the absence of the relay. The more complete ET to CO_{2} prior to PT enables Py to approach its low-energy neutral closedshell state, reducing its high energy Py^{-}anionic radical character and consequently lowering the barrier to PyCOOH^{0} formation. In other words, we propose that the high $45.7 \mathrm{kcal} / \mathrm{mol}$ barrier for direct PT is partially due to the larger Py anionic radical character of Py that results from less charge transfer to CO_{2} prior to PT . Thus, the proton relay provides an additional important effect to catalyze CO_{2} reduction; In addition to providing a pathway that lowers the strain in the TS, it also provides a favorable configuration that facilitates more complete ET to CO_{2} during the formation of the PyCOO^{-}complex to reduce the high-energy anion radical character of Py^{-} prior to PT. This effect is also consistent with the lowering of the reaction barrier by the proton relay as shown in Figure 1.5.1.3.10 Is CO_{2} prebent to facilitate reduction? The result that ET precedes PT introduces the question of whether CO_{2} must be prebent to prepare it for reduction where bending CO_{2} may lower the reorganization energy required for ET. The case where PT is mediated through the three water proton shuttle solvated by ten quantum solvating waters (as shown in Figure 1.5)
exhibits the most extensive ET to CO_{2} and a barrier of $13.6 \mathrm{kcal} / \mathrm{mol}$ for PyCOOH^{0} formation. At the TS ET is mostly complete, and as seen in Figure $1.7 \mathrm{~d}, \mathrm{CO}_{2}$ is not bent prior to ET , but is in fact bent as a result of ET . This shows that CO_{2} prebending is not a generally required condition to effect low barrier CO_{2} reduction.

Figure 1.10: Stabilization of the PyCOO- complex through aromatic resonance stabilization.
PyH^{0} possesses seven electrons in its π system. Nucleophilic attack at the C of CO_{2} by the N of PyH^{0} transfers electron density to CO_{2} to reduce it while recovering the aromaticity of PyH^{+}and facilitate proton transfer to form PyCOOH .

1.4 Conclusion

We have performed $a b$ initio quantum chemical calculations on proposed pathways for homogeneous PyCOOH^{0} formation to examine how Py catalyzes the PEC reduction of CO_{2} in the $\mathrm{Py} / \mathrm{p}-\mathrm{GaP}$ system. We predict that the barrier to homogeneous PyCOOH^{0} formation lies between 13.6 and $18.5 \mathrm{kcal} / \mathrm{mol}$ where PCET proceeds through a proton relay of three $\mathrm{H}_{2} \mathrm{O}{ }^{\prime} \mathrm{s}$ and the solvent is modeled using mixed implicit/explicit and only implicit solvation, respectively. A weighted average of PCET' s through one to three $\mathrm{H}_{2} \mathrm{O}$ relays also falls within this range for weights of the higher barrier one $\mathrm{H}_{2} \mathrm{O}$ relay path as large as $\sim 10^{6}$ times the weights on the two and three $\mathrm{H}_{2} \mathrm{O}$ relays. Furthermore, this range is consistent with the
experimentally determined barrier of $16.5 \pm 2.4 \mathrm{kcal} / \mathrm{mol}$. In contrast, in the absence of the proton relay we predict a barrier for direct PT from PyH^{0} to CO_{2} of $\sim 46 \mathrm{kcal} / \mathrm{mol}$. The predicted solvent assisted PCET suggests a favorable pathway to CO_{2} reduction through $\mathrm{PyCOOH}{ }^{0}$ formation in the homogeneous phase where the purpose of the p-GaP surface is the PEC reduction of PyH^{+}to produce active PyH^{0} species and may not be an active heterogeneous catalyst for CO_{2} reduction. The water proton shuttling network has multiple effects: a) it reduces the strain in the TS, b) it produces the more stable PyCOOH^{0} trans isomer and c) it reduces the radical character of the Py^{-}anion prior to PT . However, it is also possible that the experimentally measured barrier corresponds to endothermic desorption of PyH^{0} from the Pt electrode to the homogeneous phase, which requires at least $16.8 \mathrm{kcal} / \mathrm{mol}$ of thermal energy, a value that coincides with both the experimentally determined barrier and our calculated barrier for homogeneous reaction between PyH° and CO_{2}.

We determine that Py facilitates the PEC reduction of CO_{2} by avoiding the formation of high-energy Py^{-}and $\mathrm{CO}_{2}{ }^{-}$anionic radicals. A population analysis to describe details of charge transfer indicates that PyCOOH^{0} formation occurs by a stepwise charge transfer mechanism where ET precedes PT. Consequently, the pKa of PyH^{0} is irrelevant in predicting $\mathrm{PyH}^{0}{ }^{\prime}$ s ability to transfer a proton to CO_{2}. Furthermore, our calculated pKa of 31 for PyH^{0} predicts that PT from PyH^{0} does not occur before ET. This is also supported by the calculated EA's of $\mathrm{CO}_{2}, \mathrm{Py}$ and Py $\cdot \mathrm{CO}_{2}$ which show that the one-electron reductions of CO_{2} and Py are prohibitively high in energy, whereas PyCOO^{-}is a low energy one-electron reduced state with little radical character. Although the one electron reduced states of Py and CO_{2} are high energy, aromatic
resonance stabilization reduces the energies of the transiently formed PyCOO^{-}anionic complex and PyCOOH^{0} to lower the barrier to PyCOOH^{0} formation. We demonstrate that prebending of CO_{2} is not a requirement in achieving a low barrier to CO_{2} reduction.

2 Reduction of CO_{2} to Methanol Catalyzed by a Biomimetic OrganoHydride Produced from Pyridine

Chern-Hooi Lim ${ }^{1}$, Aaron M. Holder ${ }^{1,2}$, James T. Hynes ${ }^{2,3}$, and Charles B. Musgrave ${ }^{1,2 *}$
${ }^{1}$ Department of Chemical and Biological Engineering and ${ }^{2}$ Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309. ${ }^{3}$ Chemistry Department, Ecole
Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France

Journal of American Chemistry Society: dx.doi.org/10.1021/ja510131a

Abstract

: We use quantum chemical calculations to elucidate a viable mechanism for pyridine-catalyzed reduction of CO_{2} to methanol involving homogeneous catalytic steps. The first phase of the catalytic cycle involves generation of the key catalytic agent, 1,2-dihydropyridine (PyH_{2}). First, pyridine (Py) undergoes a H^{+}transfer (PT) to form pyridinium $\left(\mathrm{PyH}^{+}\right.$), followed by an e^{-}transfer (ET) to produce pyridinium radical $\left(\mathrm{PyH}^{0}\right)$. Examples of systems to effect this ET to populate PyH^{+}s LUMO ($\mathrm{E}_{\text {calc }}^{0} \sim-1.3 \mathrm{~V}$ vs. SCE) to form the solution phase PyH^{0} via highly reducing electrons include the photo-electrochemical p-GaP system ($\mathrm{E}_{\text {Свм }} \sim-1.5 \mathrm{~V}$ vs. SCE at $\mathrm{pH}=5$) and the photochemical $\left[\mathrm{Ru}(\mathrm{phen})_{3}\right]^{2+} /$ ascorbate system. We predict that PyH^{0} undergoes further PTET steps to form the key closed-shell, dearomatized $\left(\mathbf{P y H}_{2}\right)$ species (with the PT capable of being assisted by a negatively biased cathode). Our proposed sequential PT-ET-PT-ET mechanism transforming Py into PyH_{2} is analogous to that described in the formation of related dihydropyridines. Because it is driven by its proclivity to regain aromaticity, PyH_{2} is a potent recyclable organo-hydride donor that mimics important aspects of the role of NADPH in the

formation of $\mathrm{C}-\mathrm{H}$ bonds in the photosynthetic CO_{2} reduction process. In particular, in the second phase of the catalytic cycle, which involves three separate reduction steps, we predict that the $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple is kinetically and thermodynamically competent in catalytically effecting hydride and proton transfers (the latter often mediated by a proton relay chain) to CO_{2} and its two succeeding intermediates, namely formic acid and formaldehyde, to ultimately form $\mathrm{CH}_{3} \mathrm{OH}$. The hydride and proton transfers for the first of these reduction steps, the homogeneous reduction of CO_{2}, are sequential in nature (in which the formate to formic acid protonation can be assisted by a negatively biased cathode). In contrast, these transfers are coupled in each of the two subsequent homogeneous hydride and proton transfer steps to reduce formic acid and formaldehyde.

2.1 Introduction

Conversion of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ to fuels enabling a closed-carbon cycle powered by renewable energy has the potential to dramatically impact the energy and environmental fields. ${ }^{1-3,9-13,17,25}$ However, the chemical reduction of CO_{2} to highly reduced products such as methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ remains a daunting task. The groups of Fujita, ${ }^{35,98-99}$ Kubiak, ${ }^{25,100}$ Meyer, ${ }^{29,}$ ${ }^{101-102}$ Savéant $^{27,103-104}$ and others ${ }^{15-16,18,20,26,30,39,42, ~ 105-108 ~}$ have made significant contributions to this field, particularly in the fundamental understanding of using transition-metal complexes to catalyze CO_{2} 's transformation. Despite these advances, many challenges remain: for example, CO_{2} reduction has largely been confined to $2 \mathrm{e}^{-}$products such as CO and formate, and in many cases large overpotentials are required to drive these reactions. ${ }^{35,100,103,105}$

Recently, Bocarsly and coworkers ${ }^{39-40}$ employed pyridine (Py) in a photo-electrochemical system using a p-type GaP cathode to efficiently convert CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at 96% Faradaic
efficiency and 300 mV of underpotential; ${ }^{39}$ it is notable that although semiconductor cathodes, such as n-GaAs, p-GaAs and p-InP, have been shown to convert CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ without Py when biased to potentials more negative than -1 V vs. SCE, ${ }^{109-110}$ on a $\mathrm{p}-\mathrm{GaP}$ cathode under illumination and biased to only ${ }^{\sim}-0.2 \mathrm{~V}$ vs. $\mathrm{SCE},{ }^{39} \mathrm{CH}_{3} \mathrm{OH}$ is only produced in the presence of Py ; thus Py evidently plays a key role in catalyzing the formation of $\mathrm{CH}_{3} \mathrm{OH}$ from CO_{2}. Clearly, thorough understanding of any Py-catalyzed CO_{2} reduction is required not only to elucidate Py 's catalytic role in general, but also to develop related catalysts that exploit the fundamental phenomena at play in such a reduction. In this contribution, we use quantum chemical calculations to discover that the key to Py's catalytic behavior lies in the homogeneous chemistry of the 1,2-dihydropyridine/pyridine redox couple, driven by a dearomatizationaromatization process, in which 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$ acts as a recyclable organo-hydride that reduces CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ via three hydride and proton transfer (HTPT) steps (see Scheme 2.1).

We pause to stress that while the fundamental reduction mechanism we develop --- the generation of PyH_{2} and three catalytic steps to reduce CO_{2} progressively to $\mathrm{CH}_{3} \mathrm{OH}$--- can operate under homogeneous conditions (although probably with low $\mathrm{CH}_{3} \mathrm{OH}$ yield at typically employed pH values; vide infra), we do find that the mechanism can be assisted at two stages by the influence of the double layer adjoining the negatively biased cathode. These involve a step in the PyH_{2} formation and the formate-formic acid conversion preparatory to formic acid reduction. Even with these assisting heterogeneous aspects, the overall process is predominantly homogeneous and is active in their absence. We will use 'homogeneous' as a
descriptor for reaction steps where appropriate, and will explicitly indicate the two junctures where cathode heterogeneous effects assist the mechanism.

Hydride transfer (HT) reactions --- which are formally equivalent to $2 e^{-} / \mathrm{H}^{+}$reductions --have been proven adept in forming $\mathrm{C}-\mathrm{H}$ bonds, converting CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ at mild conditions. ${ }^{16 \text {, }}$ ${ }^{20,108}$ For example, we have shown how ammonia borane $\left(\mathrm{H}_{3} \mathrm{~N}-\mathrm{BH}_{3}\right)^{111}$ accomplishes hydride $\left(\mathrm{H}^{-}\right.$) and proton $\left(\mathrm{H}^{+}\right)$transfers to CO_{2} that ultimately lead to $\mathrm{CH}_{3} \mathrm{OH}^{21,112}$ The particular relevance of this example is that PyH_{2}, the hydride reagent of special focus in this article, is similar to ammonia borane in that both involve a protic hydrogen on N which has neighboring hydridic hydrogens, on the ortho-C of 1,2-dihydropyridine and on the B of ammonia borane. However, PyH_{2} is unique in the critical sense that it is a catalytic hydride donor (vide infra), similar to NADPH in photosynthesis (as discussed within), rather than a stoichiometric hydride reagent (such as ammonia borane and silanes).

Scheme 2.1: Homogeneous reduction of CO_{2} to methanol by 1,2-dihydropyridine via hydride and proton transfer steps

The outline of the remainder of this paper is as follows. Using quantum chemical calculations whose methodology is outlined in section 2.2, we will: 1) demonstrate how Py is transformed into the recyclable organo-hydride PyH_{2}, via a sequential PT-ET-PT-ET process (sections 2.3.1 and 2.3.2). PyH_{2} is a $2 \mathrm{H}^{+} / 2 e^{-}$transfer product of pyridine (Py). ${ }^{113-116}$ We note that the formation of related dihydropyridines proceeds via sequential PT and ET steps. ${ }^{117-119} 2$) establish the hydride nucleophilicity of $\mathbf{P y H}_{2}$ and related dihydropyridines (section 2.3.3); 3) calculate key transition states and reaction free energies to demonstrate that PyH_{2} is both kinetically and thermodynamically proficient in reducing CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ through three successive homogeneous HTPT steps (sections 2.3.4-2.3.7); and 4) show that the catalytic hydride transfer reaction by the $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple is driven by a dearomatizationaromatization process (section 2.3.8). ${ }^{120}$ Concluding remarks are given in section 2.4.

2.2 Computational methods

We compute stationary geometries (reactants, transition states and products) for all systems studied using density functional theory based on the M06 density functional ${ }^{121}$ and 6$31+G^{* *}$ basis set ${ }^{57}$ and a water solvent model described below. The M06 functional was chosen because it has been parameterized with experimental thermodynamic data, should provide a reliable description of the molecular structures for the reactions of interest. ${ }^{121}$ To further improve the reported energies, we performed single point energy calculations at the M06/6$31+G^{* *}$ geometries using $2^{\text {nd }}$ order Møller-Plesset perturbation theory (MP2) ${ }^{58}$ with the extensive aug-ccPVTZ basis sets. ${ }^{56}$ We previously found that MP2 accurately reproduces the $\operatorname{CCSD}(\mathrm{T})$ reaction and transition state (TS) energies for reactions between pyridine (Py) and
$\mathrm{CO}_{2},{ }^{120}$ and have further benchmarked this method against $\operatorname{CCSD}(\mathrm{T})$ for reactions involving HT to CO_{2}, as summarized in Table S 1 of the Supporting Information (SI), section 1.

An adequate treatment of solvent is crucial to correctly describe reactions involving a polar TS, such as those involving electron, proton, or hydride transfers which are of particular interest here. Therefore, we employed the implicit polarized continuum solvation model (CPCM) in all calculations to treat the solute-solvent electrostatic interactions in aqueous solvent. ${ }^{67-68}$ In addition to the CPCM-description, in the direct hydride transfer models DHT$1 \mathrm{H}_{2} \mathrm{O}$ and DHT-2 $\mathrm{H}_{2} \mathrm{O}$ of section 2.3.3, we explicitly included one and two water molecules to quantum mechanically model the solvent polarization essential for correctly describing the ionic HT TS. In addition to stabilizing the TS, these water molecules also intimately participate in the reaction by acting as a proton relay chain during the proton transfer event. ${ }^{80-81,83-84,86,89,120,}$ ${ }^{122-129}$ The treatment of explicit waters is discussed in greater detail in SI, section 1d.

We calculate vibrational force constants at the M06/6-31+G** level of theory to: 1) verify that the reactant and product structures have only positive vibrational modes, 2) confirm that each TS has only one imaginary mode and that it connects the desired reactant and product structures via Intrinsic Reaction Coordinate (IRC) calculations, and 3) compute entropies, zero-point energies (ZPE) and thermal corrections included in the reported free energies at 298 K .

For the activation and reaction enthalpies, entropies and free energies for each of the various reactions examined within, we define the reference state as the separated reactants in solution, as is appropriate for solution phase bimolecular reactions. ${ }^{130}$ It is important to
recognize that commonly employed entropy evaluations within the rigid rotor, harmonic oscillator and ideal gas approximations normally overestimate the entropic cost for reactions occurring in solution phase, because ideal gas partition functions do not explicitly take into account hindered translation, rotation and vibration of the solute surrounded by solvent molecules. ${ }^{18,131-136}$ For example, Huang and coworkers observed that the calculated standard activation entropy values ($-T \Delta S_{\text {calc }}^{\ddagger}$) consistently overestimate the experimental $-T \Delta S_{\text {exp }}^{\ddagger}$ values by $\sim 4-5 \mathrm{kcal} / \mathrm{mol}$ at $298 \mathrm{~K} .{ }^{133-134}$ Liang and coworkers also observed that $-T \Delta \mathrm{~S}^{\ddagger} \exp$ values are $50-$ 60% of the computed $-\mathrm{T} \Delta \mathrm{S}_{\text {calc, }}^{\ddagger}$ and in some cases activation entropic costs $-\mathrm{T} \Delta \mathrm{S}^{\ddagger}$ exp are overestimated by $\sim 11 \mathrm{kcal} / \mathrm{mol}{ }^{132} \mathrm{In} \mathrm{SI}$, section 2 , we show that $-\mathrm{T} \Delta \mathrm{S}_{\text {calc }}^{\ddagger}$ overestimates $-\mathrm{T} \Delta \mathrm{S}_{\text {exp }}^{\ddagger}$ by $\sim 12 \mathrm{kcal} / \mathrm{mol}$ for the analogous HT reaction from the $\mathbf{P y H}_{2}$-related dihydropyridine 1-benzyl-1,4-dihydronicotinamide (in eq. 1). Clearly, ideal gas-based calculated -T ΔS^{\ddagger} calc values can have significant errors.

While various empirical correction factors for $-T \Delta S^{\ddagger}$ calc values have been proposed, ${ }^{18,131,}$ ${ }^{136-137}$ all of which significantly lower $-T \Delta S^{\ddagger}$ calc, our approach to better estimate $-T \Delta S^{\ddagger}$ is to employ the experimentally obtained $-T \Delta S_{\text {exp }}^{\ddagger}$ value for an analogous $H T$ reaction; as we discuss later, the transition states for all three steps in reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ are of HT character. This $-\mathrm{T} \Delta \mathrm{S}^{\ddagger}{ }_{\text {exp }}$ value is then added to our calculated $\Delta \mathrm{H}^{\ddagger} \mathrm{HT}$ in order to obtain more accurate estimates to the activation free energy $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$. In particular, the homogeneous HT from the $\mathbf{P y H}_{2}$-related dihydropyridine 1-benzyl-1,4-dihydronicotinamide to Δ^{1}-pyrroline-2-carboxylic acid (zwitterionic form) in aqueous methanol (eq. 1) ${ }^{138}$ is analogous to each of the three HTs from PyH_{2} of interest here: to CO_{2}, formic acid (HCOOH) and formaldehyde $\left(\mathrm{OCH}_{2}\right)$. We thus
add the $-T \Delta S^{\ddagger}$ exp of $2.3 \mathrm{kcal} / \mathrm{mol}(298 \mathrm{~K})$ determined experimentally for eq. 1^{138} to the calculated $\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}$ values in Table 2.1 to obtain our estimates for $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$. This procedure is further discussed in section 2.3.5. As comparison, we also employed the approach of Morokuma and coworkers ${ }^{139}$ to omit the translational contribution from computed gas phase entropies. We obtained $-T \Delta \mathrm{~S}_{\text {calc }}^{\ddagger}=3.0,2.2$, and $2.7 \mathrm{kcal} / \mathrm{mol}$ for the reduction of CO_{2}, formic acid and formaldehyde, respectively, (via the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model defined in section 2.3.3); these values are similar to the experimental $-\mathrm{T} \Delta \mathrm{S}^{\ddagger} \exp$ of $2.3 \mathrm{kcal} / \mathrm{mol}$ for eq. 1 that we have employed. See SI , section 2 for details.

Finally, reaction free energies $\left(\Delta G^{0}{ }_{r x n}\right)$ are reported by adding $\Delta H_{r x n}^{0}$ to $-T \Delta S^{0}{ }_{r x n}$ in Table 2.1. Because the number of species remains constant on going from reactants to products in the HTPT reactions described here, the overestimation issue for the calculated $-T \Delta S^{0}{ }_{r x n}$ is less severe. All reported energies were referenced to separated reactants in solution (as noted above) and calculations were performed using the GAUSSIAN 09^{61} and GAMESS ${ }^{59}$ computational software packages. Often, reported bimolecular reaction activation and thermodynamic quantities in the literature are referenced to reactants within a reactant complex rather than to the separated reactants. Thermodynamic quantities with the former reference are given for comparison in SI , section 3.

2.3 Results and Discussion

2.3.1 Formation of $\mathbf{P y H}^{0}$ from Py via $\mathbf{1 H}^{+} / \mathbf{1} \mathbf{e}^{-}$transfers. We begin with the key issue of the generation of PyH^{0} from Py via sequential PT-ET steps. In Scheme 2.2, route I, Py first undergoes protonation to form pyridinium $\left(\mathrm{PyH}^{+} ; \mathrm{pK}_{\mathrm{a}}=5.3\right)$ in a $\mathrm{pH}=5$ solution. Subsequent $1 \mathrm{e}^{-}$ reduction (route II) produces PyH^{0}. Experimentally, photo-excited electrons of the $\mathrm{p}-\mathrm{GaP}$ semiconductor are sufficiently reducing to populate PyH^{+}s $\operatorname{LUMO}\left(\mathrm{E}^{0}{ }_{\text {calc }}{ }^{\sim}-1.3 \mathrm{~V} \text { vs. SCE }\right)^{43-44,120}$ via $1 \mathrm{e}^{-}$transfer to form solution phase $\mathrm{PyH}^{0.140}$ For example, at a pH of 5 the conduction band minimum of $\mathrm{p}-\mathrm{GaP}\left(\mathrm{E}_{\mathrm{CBM}}\right)^{141-142}$ lies at approximately -1.5 V vs. SCE, ${ }^{143-144}$ a more negative potential than PyH^{+}s LUMO. Furthermore, the p-GaP electrode is electrochemically biased by 0.2 to $-0.7 \mathrm{~V},{ }^{39}$ which further increases the reducing ability of the transferring electron.

Scheme 2.2: Formation of pyridinium radical (PyH^{0})

We pause to consider other PyH^{0} generation routes. PyH^{0} can also be produced electrochemically at inert electrodes. For instance, a glassy carbon electrode ${ }^{145-147}$ has been used to electrochemically produce similar neutral radicals from the Py-related species nicotinamide and acridines. ${ }^{117-119}$ In another case, photochemical production of PyH^{0} driven by visible light was recently demonstrated by MacDonnell and coworkers using a surface-free photochemical process in which $\mathrm{Ru}(\mathrm{II})$ trisphenanthroline (chromophore) and ascorbate (reductant) act in concert to reduce PyH^{+}to PyH^{0} via $1 \mathrm{e}^{-}$transfer. The produced PyH^{0} radical is actively involved in the observed homogeneous reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ (albeit at low
yield), ${ }^{148-150}$ an observation in contrast with recent studies focused on the specific case using a Pt cathode ${ }^{43,145,151-155}$ that rule out participation of homogenous PyH^{0} in Py -catalyzed CO_{2} reduction. We stress that we consider a Pt electrode to be a special case. There, $1 \mathrm{e}^{-}$reduction of PyH^{+}is favored to form adsorbed H -atoms $\left(\mathrm{Pt}-\mathrm{H}^{*}\right)^{45,153-156}$ such that its use introduces additional routes (e.g. H_{2} formation) which likely outcompete any processes catalyzed by Py. Therefore, surface pathways ${ }^{152,154}$ for CO_{2} reduction on Pt may predominate such that the homogeneous mechanism discussed in the text requiring the production of PyH^{0} becomes a minor pathway. Nonetheless, the mechanism we elucidate involving hydride and proton transfers by dihydropyridines may provide useful insights into any presumably minority surfacemediated pathways that may occur on (including Pt) active cathodes.

The conversion of the produced solution phase PyH^{0} to the desired intermediate PyH_{2} will be taken up in section 2.3.2. Here we pause to discuss some competing routes. The first of these arises because PyH^{0} is a dearomatized species driven to donate an electron in order to recover its aromaticity. ${ }^{120,157}$ For example, Bocarsly and coworkers ${ }^{40-41}$ proposed that PyH^{0} reacts with CO_{2} to form a pyridine-carbamate $\left(\mathrm{PyCOOH}^{0}\right)$ intermediate (Scheme 2.3, route III) prior to $\mathrm{CH}_{3} \mathrm{OH}$ formation. ${ }^{40} \mathrm{PyCOOH}^{0}$ formation by this route is supported by our recent computational study, ${ }^{120}$ and spectroscopic measurements. ${ }^{94}$ In particular, using a hybrid explicit/implicit solvent model, we calculated low enthalpic barriers with respect to the complexed reactants of $13.6-18.5 \mathrm{kcal} / \mathrm{mol}$ (depending on the number of solvating waters) for PyCOOH^{0} formation via a proton relay mechanism; the importance of proton relays have been extensively described in assorted chemical reactions. ${ }^{80-81,83-84,86,89,122-127}$ Charge analysis on CO_{2} and PyH^{0} along the reaction coordinate reveals that PyH^{0} 's propensity to recover its aromaticity
drives the sequence of ET to CO_{2} followed by PT (mediated by a proton relay) to ultimately form PyCOOH ${ }^{0} .{ }^{120,158}$ While this particular reaction is not of direct interest in the present work (see the end of section 2.3.2), we will see that the themes of aromaticity recovery and proton relay mechanisms also prove to be important for our three HTPT step reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$.

Another oxidation channel for PyH^{0} is via radical self-quenching, shown in route IV. PyH^{0} undergoes self-quenching ${ }^{52}$ to form either $\mathrm{H}_{2}+2 \mathrm{Py}$ or a $4,4^{\prime}$ coupled dimer; ${ }^{45,159}$ the recovery of Py catalyst from the $4,4^{\prime}$ coupled dimer is demonstrated in SI, section 4. Interestingly, the PyH^{0} self-quenching can also lead to a productive outcome: disproportionation ${ }^{160}$ of two PyH^{0} radicals leads to Py and the desired $\mathbf{P y H}_{2}$ species. ${ }^{161}$ However, we consider the main route to PyH_{2} is not this, but instead a successive PT and ET to $\mathrm{PyH}^{0},{ }^{0} 62-163$ now described.

Scheme 2.3: 1e- reduction of CO_{2} by PyH^{0} to form PyCOOH^{0} and self-radical quenching reactions of PyH^{0}

2.3.2 Formation of $\mathbf{1 , 2}$-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$ from PyH^{0} via successive $\mathbf{1 H}^{+} / \mathbf{1 e} \mathbf{e}^{-}$

transfers. We now discuss production of $\mathbf{P y H}_{\mathbf{2}}$ from $\mathrm{PyH}^{\mathbf{0}}$ via routes \mathbf{V} and $\mathbf{V I}$ of Scheme 2.4 in which PyH^{0} undergoes further $1 \mathrm{H}^{+}$and $1 \mathrm{e}^{-}$transfers to form closed-shell solution phase $\mathbf{P y H}_{\mathbf{2}}$. We propose that these routes are competitive with, if not predominant over, Scheme 2.3 's quenching routes III and IV. In particular, given that quenching routes are second-order in $\left[\mathrm{PyH}^{0}\right]$ and that routes III and \mathbf{V} are first-order in $\left[\mathrm{PyH}^{0}\right]$, it is likely that quenching would
prevent the concentration of PyH^{0} from reaching a level at which the second-order process dominates. Furthermore, a significant fraction of any self-quenching of PyH^{0} that does occur could lead to the desired PyH_{2} species, as observed experimentally for quenching of the related 3,6-diaminoacridinium radical to form the corresponding dihydropyridine species (3,6diaminoacridan). ${ }^{160-161}$

The protonation of PyH^{0} by our proposed route \mathbf{V} depends on the rate of PT to PyH^{0}, which we now address in some detail. The pK_{a} of PyH_{2}^{+}is calculated to be 4.1 (at the C_{2} carbon), ${ }^{164-166}$ indicating that at a pH of $5, \sim 13 \%$ of PyH^{0} is protonated in the bulk solution. However, in the case of photo-electrochemical reduction on a $\mathrm{p}-\mathrm{GaP}$ cathode, PyH^{0} is produced by reduction of PyH^{+}at the cathode near the double layer region where the lower pH facilitates its protonation to form PyH_{2}^{+*}. The key here is that near the double layer region, the electric field created by the applied negative bias at the cathode concentrates cationic PyH^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$ species according to a Poisson-Boltzmann distribution, ${ }^{167-169}$ lowering the pH near the cathode surface. For example, in SI section 5, we use a linearized Poisson-Boltzmann model to show that the concentrations of cation acids, e.g. $\mathrm{H}_{3} \mathrm{O}^{+}$and PyH^{+}, increase considerably as they approach the negatively biased cathode. While these calculations are certainly not quantitative very near the cathode, our estimate at $\sim 5 \AA$ of a factor of ~ 10 increase in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{PyH}^{+}\right]$from their bulk values is reasonable. A decrease of the effective pH by one unit to a pH of 4 raises the percentage of PyH^{0} protonated by PyH^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$from $\sim 13 \%$ to ${ }^{\sim} 50 \%$. Thus, protonation of PyH^{0} by PyH^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$near the cathode double layer to form the desired radical cation PyH_{2}^{+-} becomes a quite probable event with a much higher probability than radical self-quenching via route IV because [cation acids]>>[PyH ${ }^{0}$.

Scheme 2.4: Formation of 1,2-dihydropyridine $\left(\mathrm{PyH}_{2}\right)$

It is noteworthy that the lack of any negative cathode double layer assistance in the surface-free $\mathrm{Ru}(\mathrm{II}) /$ ascorbate photochemical system mentioned in section 2.3.1 is consistent with the observation that high $\mathrm{PyH}^{+} / \mathrm{Ru}(\mathrm{II})$ ratios of ~ 100 were required to produce $\mathrm{CH}_{3} \mathrm{OH}$, which we suggest is required to drive protonation of PyH^{0} in a cathode's absence. ${ }^{148}$

Finally, $\mathbf{P y H}_{2}$ is produced by reduction of $\mathrm{PyH}_{2}{ }^{++}$in proposed route $\mathbf{V I}$ in Scheme 2.4; our calculated positive reduction potential for $\mathrm{PyH}_{2}{ }^{+\cdot}$ of $\mathrm{E}_{\text {calc }}^{0}=0.11 \mathrm{~V}$ vs. SCE indicates that $\mathrm{PyH}_{2}{ }^{+}$ reduction is facile and consequently that $1 e^{-}$transfer (from PyH^{0} or via a photoexcited electron) to $\mathrm{PyH}_{2}{ }^{+\cdot}$ to form PyH_{2} is realized on $\mathrm{p}-\mathrm{GaP}$ and in the homogeneous $\mathrm{Ru}(I I) /$ ascorbate photochemical system. We note that in the presence of an electrode (e.g. p-GaP), 1e- reduction of $\mathrm{PyH}_{2}{ }^{+}$occurs near the double layer to form PyH_{2}, although diffusion of the neutral PyH_{2} into the reaction layer and bulk solution allows catalytic homogeneous HT reaction to occur.

Our suggested sequential PT-ET-PT-ET sequence (Scheme 2.2 and Scheme 2.4, route I-II-V-VI) to form $\mathbf{P y H}_{\mathbf{2}}$ from Py is strongly supported by the fact that an analogous process has been observed for the conversion of the Py-related species nicotinamide, ${ }^{117,170}$ acridine, ${ }^{118,171}$ and 3,6-diaminoacridine (proflavine) ${ }^{119}$ to their related dihydropyridine species. We point out that we propose the formation of 1,2-dihydropyridine as the kinetic product ${ }^{113}$ because protonation of the $\mathrm{PyH}^{0}{ }^{0} \mathrm{~S}_{2}$ carbon is more facile than protonation at the C_{4} position, ${ }^{164}$ analogous to
protonation of nicotinamide where the related 1,2-dihydropyridine is formed. ${ }^{117}$ However, 1,4dihydropyridine can also be produced, although at a slower rate. ${ }^{113} \mathrm{In} \mathrm{SI}$, section 6, we show both dihydropyridine species to be capable of direct HT, with 1,2-dihydropyridine being the slightly more reactive species. We also note that acid-catalyzed hydration of both 1,2dihydropyridine and 1,4-dihydropyridine may generate undesirable side products. ${ }^{172-173}$

The focus of this work is to demonstrate the formation of PyH_{2} and its subsequent hydride transfer reactions to form methanol (Scheme 2.1). Routes III (PyCOOH^{0} formation), IV (radical quenching), and V (PT to PyH^{0}) are all bimolecular reactions with corresponding rate constants of $\sim 10^{0} \mathrm{M}^{-1} \mathrm{~s}^{-1},{ }^{120} \sim 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1},{ }^{52}$ and $\sim 10^{4}-10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1},{ }^{162}$ respectively. At the commonly employed experimental conditions/ concentrations, the rates of routes IV and \mathbf{V} are both expected to be concentration dependent whereas the rate of route III is activation dependent. Therefore, we expect the contribution of route III to be minor under these conditions, but we note that insufficient evidence exists to conclude the fate of PyCOOH^{0} species; thus far there is also no experimental verification for the existence of PyCOOH^{0} species (as well as several intermediates leading to methanol production) produced under electrochemical/ photoelectrochemical conditions.

We have thus far described likely steps that transform Py into PyH_{2}, a species which we now show to be competent in performing catalytic direct HT to carbonyls.

2.3.3 Establishing the hydride nucleophilicity of PyH_{2} and related dihydropyridines.

First, it is noteworthy that $\mathbf{P y H}_{2}$ chemically resembles the NADPH dihydropyridine species found in nature (see Scheme 2.5a and caption) that acts in the NADPH/NADP ${ }^{+}$redox cycle of
photosynthesis to produce sugars from CO_{2} by hydride transfers. ${ }^{174-175}$ In particular, NADPH creates a C-H bond by HT to a carbonyl group --- not in CO_{2}--- in a key reduction in the multistep photosynthetic process. Although HT from NADPH is catalyzed by enzymes, both NADPH and PyH_{2} share the same dihydropyridine core, the $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$redox cycle that produces the dihydropyridines and the subsequent HT chemistry. More generally, since the discovery of NADPH in the 1930's, related dihydropyridine compounds have been studied, especially in connection with their HT to various substrates containing $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ groups. ${ }^{113-116} \mathrm{HT}$ to carbonyls is obviously of particular interest here: the reactant CO_{2} and its reduced intermediates formic acid (HCOOH) and formaldehyde $\left(\mathrm{OCH}_{2}\right)$ leading to $\mathrm{CH}_{3} \mathrm{OH}$ formation all contain $\mathrm{C}=\mathrm{O}$ groups susceptible to HT .

Here we mention two examples of related recyclable dihydropyridines performing HT to the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$ groups. Tanaka and coworkers demonstrated ${ }^{176}$ (Scheme 2.5 b) that the electrochemical reduction of $\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{pbn})^{2+}$ forms the NADPH-like $\operatorname{Ru}(\mathrm{bpy})_{2}\left(\mathbf{p b n H}_{2}\right)^{\mathbf{2 +}}$, where the pbn ligand has undergone $2 \mathrm{H}^{+} / 2 \mathrm{e}^{-}$transfer to form a dihydropyridine-like hydride donor. ${ }^{177}$ Association of $\mathrm{Ru}(\mathrm{bpy})_{\mathbf{2}}\left(\mathrm{pbnH}_{2}\right)^{\mathbf{2 +}}$ with a benzoate base (PhCOO) then activates its hydride donation to CO_{2} to form HCOO^{-}and PhCOOH and to concomitantly regenerate $\operatorname{Ru}(\mathrm{bpy})_{2}(\mathrm{pbn})^{2+} .{ }^{107}$ An H/D kinetic isotope effect of 4.5 further supports the direct hydride transfer mechanism to CO_{2} to form HCOO^{-107} Similarly, Zhou et al.'s dihydrophenanthridine $\left(\mathbf{P h e n H}_{2}\right)$, a $\mathbf{P y H}_{2}$ analog, catalytically transfers both its hydride and proton to benzoxazinone and regenerates the phenanthridine catalyst (Scheme 2.5c), further demonstrating the competence of dihydropyridine species as recyclable hydride donors. ${ }^{178}$
(a)

(b)

(c)

(a) NADPH/NADP ${ }^{+}$redox cycle of photosynthesis to produce sugars from CO_{2} by hydride transfers. NADPH creates a C-H bond by HT to a carbonyl group --- not in $\mathrm{CO}_{2}---$ in a key reduction in the multi-step photosynthetic process. (b) Catalytic reduction of CO_{2} to formate via HT involving Tanaka's Ru-based dihydropyridine species (Ru(bpy) $\mathbf{2}_{2}\left(\mathbf{p b n H}_{2}\right)^{\mathbf{2 +}}$); bpy= 2,2'-bipyridine, pbn= 2-(pyridin-2-yl)benzo[b][1,5]naphthyridine). ${ }^{107,176}$ (c) Catalytic hydrogenation (via hydride and proton transfer) of benzoxazinone by Zhou's dihydrophenanthridine species (PhenH2). ${ }^{178}$

We have thus far argued that the HT reactivity of related dihydropyridine hydrides

NADPH, $\mathrm{Ru}(\mathrm{bpy})_{\mathbf{2}}\left(\mathrm{pbnH}_{2}\right)^{\mathbf{2 +}}$ and $\mathbf{P h e n H}_{\mathbf{2}} \quad--$ especially the extraordinary ability of $\mathbf{R u}(\text { bpy })_{2}\left(\text { pbnH } \mathbf{H}_{2}\right)^{\mathbf{2 +}}$ to effect CO_{2} reduction --- strongly implicates $\mathbf{P y H}_{\mathbf{2}}$ as a robust hydride donor in Py-catalyzed CO_{2} reduction. The next step is to quantify PyH_{2} 's ability as a hydride donor, i.e. its hydride nucleophilicity. Figure 2.1 shows the quantification of this aspect of hydride donors using Mayr and coworkers' Nucleophilicity (N) values, ${ }^{179-180}$ where large N values indicate strong hydride donor ability. Note that the N scale is a kinetic parameter quantifying the HT rate, whereas the often-employed hydricity is a thermodynamic parameter. ${ }^{181-183}$ In order to place the N values of PyH_{2} and $\mathrm{Zhou's}$ PhenH \mathbf{H}_{2} in perspective relative to established values for dihydropyridines and NaBH_{4}, we calculate activation free energies for $\mathrm{HT}\left(\Delta \mathrm{G}^{\ddagger}{ }_{H T}\right)$ from these donors to CO_{2} to reduce it to formate $\left(\mathrm{HCOO}^{-}\right)$via the Direct-Hydride-Transfer (DHT) model illustrated in Figure 2.2a.

Figure 2.1: The activation free energy of hydride transfer to CO_{2} varies linearly with hydride nucleophilicity. $\Delta \mathrm{G}^{\ddagger}{ }_{H T}(\mathrm{kcal} / \mathrm{mol})$ is our calculated activation free energy for direct HT to CO_{2} to form $\mathrm{HCOO}^{-} . \Delta \mathrm{G}^{\ddagger}{ }_{H T}$ is obtained by adding our calculated $\Delta \mathrm{H}^{\ddagger}{ }_{H T}$ to the experimental $-\mathrm{T} \Delta \mathrm{S}^{\ddagger}{ }_{\text {exp }}=2.3 \mathrm{kcal} / \mathrm{mol}$ for the analogous HT reaction eq. 1 , with all quantities referenced to the separated reactants (see section 2.2). Nucleophilicity (N) values quantify the strength of hydride donors. ${ }^{179-180}$ The equation $\log \mathrm{k}\left(20^{\circ} \mathrm{C}\right)=s(N+E)$ was used to obtain N and s (the slope factor) values in order to generalize various classes of hydride donors, including dihydropyridines and borohydrides. HT rate constants k are measured at $20^{\circ} \mathrm{C}$ for HT to acceptors with known E (Electrophilicity) values. Our calculated $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ values are used to estimate k, and thus N values of PyH_{2} and Zhou 's PhenH_{2} relative to established N values for dihydropyridines and NaBH_{4}. These $\Delta \mathrm{G}_{\mathrm{HT}}^{\ddagger}$ values are obtained with CO_{2} acting as the hydride acceptor; CO_{2} 's E value is unknown but this is immaterial to the estimation of PyH_{2} and $\mathrm{PhenH}_{2}{ }^{\prime} \mathrm{s} \mathrm{N}$ values. ${ }^{184}$ The comparatively low $\Delta \mathrm{G}^{\ddagger}{ }^{\boldsymbol{T}}$ and high hydride nucleophilicity of PyH_{2} are apparent in this Figure.

In Figure 2.1, we use the experimental N and our calculated $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ values (in $\mathrm{kcal} / \mathrm{mol}$) of 1,4-cyclohexadiene (0.09, 53.0), 10-methyl-9,10-dihydroacridine (5.54, 40.5), Hantzsch's ester (9.00, 29.9), and $\mathrm{NaBH}_{4}(14.74,13.8)$ to obtain a nearly linear relationship between $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ and $\mathrm{N}: \Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=-2.70^{*} \mathrm{~N}+54.1 .{ }^{185} \mathrm{We}$ then use this linear relation together with our calculated $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ barriers to estimate that the N values of PhenH_{2} and PyH_{2} are 8.1 and 11.4, respectively. Although PyH_{2} is a less capable hydride donor than the well-known strong donor NaBH_{4}, it is the most reactive dihydropyridine, reducing CO_{2} to HCOO^{-}at $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=23.2 \mathrm{kcal} / \mathrm{mol}$ by the DHT model. The hydricity of $\mathbf{P y H}_{2}$ was also calculated according to Muckerman et al.'s approach; ${ }^{183}$ we obtained $41.5 \mathrm{kcal} / \mathrm{mol}\left(<43 \mathrm{kcal} / \mathrm{mol}\right.$ of HCOO^{-}), which supports that HT from PyH_{2} to CO_{2} is thermodynamically favorable. ${ }^{186}$ We note that although cyclic voltammetry shows that the
oxidation of PyH_{2}-related dihydronicotinamide by ET-PT-ET-PT is irreversible and indicates that it is a poor electron transfer catalyst, ${ }^{170}$ this does not preclude dihydronicotinamide or dihydropyridines in general from being competent hydride transfer catalysts.
(a)

(b)

Figure 2.2: HT to CO_{2} can occur through various direct HT configurations.
Here, we model three possible HT configurations, without (a) and with (b and c) the active participation of $\mathrm{H}_{2} \mathrm{O}$, which we demonstrate are kinetically and thermodynamically favorable towards reducing CO_{2} : (a) Direct-HydrideTransfer (DHT) model, (b) DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model where one $\mathrm{H}_{2} \mathrm{O}$ acts as a proton relay and (c) DHT- $2 \mathrm{H}_{2} \mathrm{O}$ model where two $\mathrm{H}_{2} \mathrm{O}$'s act as a proton relay. Details of these relays are discussed subsequently.

With these important preliminaries concerning $\mathbf{P y H}_{2}$'s generation and HT ability concluded, we now turn to the three HTPT steps in the reduction of CO_{2} to methanol.
2.3.4 First HTPT step: $\mathrm{PyH}_{\mathbf{2}}+\mathbf{C O}_{\mathbf{2}} \rightarrow \mathbf{P y}+\mathbf{H C O O H}$. We now elaborate the first HTPT step in CO_{2} 's conversion to $\mathrm{CH}_{3} \mathrm{OH}$: HT to CO_{2} by PyH_{2} to form formic acid (HCOOH). This step is illustrated in Scheme 2.6, route VII, although as we will see, there are two sequential steps involved, namely first formate ion HCOO^{-}production followed by formic acid generation. ${ }^{187}$ $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ for this step without the electrostatic effects and active participation of the proton relay (predicted using the DHT model in Figure 2.2a) is $23.2 \mathrm{kcal} / \mathrm{mol}$. This shows that even without the effects described by explicit water, HT is kinetically viable.

Scheme 2.6: Reduction of CO_{2} to formic acid by PyH_{2}.

In an attempt to improve the description beyond the DHT model, we have considered two likely elaborations in aqueous solution. We added one and two solvating water molecules (DHT- $-\mathrm{H}_{2} \mathrm{O}$ and DHT-2 $\mathrm{H}_{2} \mathrm{O}$, Figure 2.2 b and c) to polarize the reactive complex beyond the polarization afforded by implicit solvent, and thus stabilize the ionic TS relative to the neutral reactants. As will be seen, in the formic acid and formaldehyde reductions, the solvating water molecule(s) play an additional, more active role; they act as a proton relay, for which this mixed explicit/implicit solvation approach ${ }^{73,} 123-124$ is especially important for an accurate description. ${ }^{80-81,83-84,120}$ For the DHT- $-\mathrm{H}_{2} \mathrm{O}$ and DHT- $2 \mathrm{H}_{2} \mathrm{O}$ models, we obtain the barriers of $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=17.1$ and $14.3 \mathrm{kcal} / \mathrm{mol}$ for the CO_{2} reduction to $\mathrm{HCOO}^{-}, \sim 6$ and $9 \mathrm{kcal} / \mathrm{mol}$ lower than for the DHT model, reflecting the importance of quantum mechanically described water polarization (see Table 2.1).

Analysis of the reaction path using an IRC calculation shows that the TS is of HT character, such that the use of the experimental HT activation entropy discussed at the end of section 2.2 is appropriate. ${ }^{188}$ The IRC analysis also shows that the product complex consists of the formate anion HCOO^{-}and PyH^{+}; the reaction is pure HT without any PT , even with a proton relay chain of one or more explicit water molecules included. Because $\mathrm{HCOOH}^{\prime} \mathrm{pK}_{\mathrm{a}}$ of 3.8 is relatively low, the carbonyl of HCOO^{-}is not basic enough to abstract a proton from its
neighboring H -bonded water to initiate a proton relay that would effectively transfer the proton from PyH^{+}to HCOO^{-}. In contrast, in sections 2.3.5 and 2.3.6, we will show that the HT intermediary products of formic acid (hydroxymethanolate (HCOOH) H^{-}) and formaldehyde (methoxide, $\mathrm{OCH}_{3}{ }^{-}$) are highly basic and do initiate a proton relay; $\mathrm{PyH}^{+\prime}$ s proton is effectively transferred to these species through the proton relay to form methanediol and methanol, respectively.

Table 2.1: Activation and reaction free energies and enthalpies for HTPT steps from PyH_{2} to $\mathrm{CO}_{2}, \mathrm{HCOOH}$ and OCH_{2} via various HT models in Figure 2.2.

Model ${ }^{\text {a }}$	$\mathrm{CO}_{2}{ }^{\text {b }}$		$\mathrm{HCOOH}^{\text {c }}$		$\mathrm{OCH}_{2}{ }^{\text {d }}$	
	$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}\left(\Delta \mathrm{H}^{\ddagger}{ }_{H T}\right)$	$\Delta \mathrm{G}^{0}{ }_{\text {rx }}\left(\Delta \mathrm{H}^{0}{ }_{\text {rxn }}\right)$	$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}\left(\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}\right)$	$\Delta \mathrm{G}^{0}{ }_{\text {rxx }}\left(\Delta H^{0}{ }_{\text {rxn }}\right)$	$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}\left(\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}\right)$	$\Delta \mathrm{G}^{0}{ }_{\text {rx }}\left(\Delta \mathrm{H}^{0}{ }_{\text {rxx }}\right)$
DHT	23.2 (20.9)	-9.2 (-5.5)	25.6 (23.3)	-12.8 (-12.8)	14.5 (12.2)	-31.3 (-31.4)
DHT-1 $\mathrm{H}_{2} \mathrm{O}$	17.1 (14.8)	-8.3 (-10.8)	23.4 (21.1)	-10.6 (-10.8)	8.9 (6.6)	-31.9 (-31.8)
DHT-2 $\mathrm{H}_{2} \mathrm{O}$	14.3 (12.0)	-5.6 (-9.8)	18.7 (16.4)	-11.9 (-12.2)	6.0 (3.7)	-30.8 (-31.9)

${ }^{\text {a }}$ All free energies and enthalpies, referenced to separated reactants in solution, are reported in $\mathrm{kcal} / \mathrm{mol}$ at 298 K and 1 atm. $2 \mathrm{e}^{-} / 2 \mathrm{H}^{+}$transfer products: ${ }^{\mathrm{b}}$ formic acid, ${ }^{\mathrm{c}}$ methanediol and ${ }^{\mathrm{d}}$ methanol. The CO_{2} pathway involves a sequential HT (to produce formate) followed by cathode-assisted PT (to produce formic acid); the activation barriers displayed refer to the HT portion of the reaction. The formic acid and formaldehyde reduction pathways both involve a coupled HTPT process, where PyH_{2} transfers both its hydridic and protic hydrogens to HCOOH and OCH_{2}, respectively: each case involves a single TS of HT character, with the PT following at a slightly later time, without a separate TS. The formaldehyde reduction step is preceded by the dehydration of methanediol to formaldehyde $\left(K_{\text {eq }}={ }^{\sim} 5 \times 10^{-4}\right)$; see Figure 2.3 and section 2.3.6. Calculated imaginary frequencies corresponding to the transition state structures are reported in the SI, section 8.

Thus, with all three models, the formate product remains unprotonated. However, for the next HTPT step to proceed, HCOO^{-}must first be protonated to form formic acid (HCOOH). $\mathrm{HCOOH}^{\prime} \mathrm{pK}_{\mathrm{a}}$ of 3.8 indicates that at equilibrium, 298 K and a $\mathrm{pH}=5$, only $\sim 1 / 16$ of HCOO^{-}is protonated to produce HCOOH ; such a low $[\mathrm{HCOOH}]$ combined with its high reduction barrier
(vide infra) leads to the observed formate accumulation in the homogeneous Ru(II)/ascorbate photochemical system. ${ }^{148}$ However, heterogeneous assistance (not shown explicitly in Scheme 2.6) can be provided by a cathode, as described in section 2.3.2; the enhanced concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and PyH^{+}near the cathode (e.g. p-GaP) ${ }^{40,167}$ increases the concentration of HCOOH in equilibrium with HCOO^{-}which increases the reduction rate in the reaction layer.

Thus, the first HTPT step to reduce CO_{2} is sequential, with HT (to produce a relatively stable HCOO^{-}intermediate corresponding to a minimum on the HT potential energy surface) followed by a subsequent cathode-assisted PT (to produce HCOOH), which we write collectively as $\mathrm{PyH}_{\mathbf{2}}+\mathrm{CO}_{2} \rightarrow \mathrm{Py}+\mathrm{HCOOH}$. We could also term this step-wise HTPT as uncoupled HTPT.

Py and HCOOH formation by $\mathrm{PyH}_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{Py}+\mathrm{HCOOH}$ with all three DHT models have negative reaction free energies $\Delta \mathrm{G}^{0} \mathrm{rxn}$ of ~-9 to $-6 \mathrm{kcal} / \mathrm{mol}$ as shown in Table 2.1. This demonstrates that PyH_{2} is both kinetically and thermodynamically competent in catalytically reducing CO_{2}, at least for the first HTPT step. We will show that this catalytic ability also holds for the remaining two HTPT steps to attain methanol. The schematic free energy surface for this first HTPT step to transform CO_{2} into HCOOH is shown in Figure 2.3, which also illustrates the free energies of the two subsequent HTPT steps described in sections 2.3.5 and 2.3.6.

We close the discussion of this first CO_{2} reduction step with two remarks. First, although we have considered only three models (Figure 2.2a-c) for HT from PyH_{2} to CO_{2}, other configurations --- such as DHT- K^{+}and $\mathrm{DHT}-\mathrm{PyH}^{+}$where a potassium cation (present as an electrolyte) and the pyridinium cation act as a Lewis acid and a Brønsted acid, respectively, to activate and stabilize HT^{189} to $\mathrm{CO}_{2}--$ - can also lead to the desired HCOOH and Py products.

Furthermore, because the reaction is carried out in aqueous solvent, we propose that DHT$1 \mathrm{H}_{2} \mathrm{O}$, DHT- $2 \mathrm{H}_{2} \mathrm{O}$ and other likely DHT models with somewhat longer water proton relay chains contribute significantly to the ensemble-weighted average $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$. Secondly, all reported $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ values in Table 2.1 (including $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ for the first HTPT step to form HCOOH and Py) are derived by adding our calculated $\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}$ to the experimentally obtained $-\mathrm{T} \Delta \mathrm{S}^{\ddagger}$ exp $=2.3 \mathrm{kcal} / \mathrm{mol}$ for an analogous HT reaction eq. 1 (again, all quantities are referenced to separated reactants). This is a significantly more reliable estimate for solution phase HT from PyH_{2} than a calculated - $\mathrm{T} \Delta \mathrm{S}^{\ddagger}$ calc based on ideal gas assumptions, which can severely overestimate the entropic contribution to $\Delta G^{\ddagger} ;{ }^{18,131-136}$ see section 2.2.
2.3.5 Second HTPT step: $\mathrm{PyH}_{2}+\mathbf{H C O O H} \rightarrow \mathbf{P y}+\mathbf{C H}_{2}(\mathbf{O H})_{2}$. We now turn to the second HTPT step: the homogeneous reduction of formic acid to methanediol $\left(\mathrm{CH}_{2}(\mathrm{OH})_{2}\right)$, as illustrated in Scheme 2.7, route VIII. HCOOH's reduction is actually more challenging than that of CO_{2}, a feature implied by the fact that most CO_{2} reduction catalysts produce $\mathrm{HCOO}^{-} / \mathrm{HCOOH}$, but fail to convert HCOOH to more reduced products. ${ }^{35,100,103}$ A further indication is provided by the observations of MacDonnell and coworkers, who found a significant build-up of HCOO^{-}in their photochemical CO_{2} reduction study referred to earlier, reflecting the challenge of HCOOH reduction. ${ }^{148}$ The key characteristic of HCOOH that makes it difficult to reduce is its highly negative electron affinity (EA); we calculated the gas phase adiabatic EA of HCOOH to be -1.22 eV , which is significantly more negative than the -0.60 eV EA of CO_{2} (see SI , section 1c) and indicates that, as noted above, formic acid is even more challenging to reduce than $\mathrm{CO}_{2} .{ }^{190-191}$ We now examine $\mathbf{P y H}_{2}$'s ability to reduce HCOOH .

Table 2.1 summarizes both $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ and $\Delta \mathrm{G}^{0}{ }_{\text {rxn }}$ for the second HTPT step: $\mathrm{PyH}_{2}+\mathrm{HCOOH} \rightarrow$ $\mathrm{Py}+\mathrm{CH}_{2}(\mathrm{OH})_{2}$ via the three HT models shown in Figure 2.2a-c; note that the $\mathrm{CO}_{2} 4 \mathrm{e}^{-}$reduction product methanediol is formed along with the recovery of the Py catalyst. The $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ of 23.4 $\mathrm{kcal} / \mathrm{mol}$ for the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ case is $\sim 2 \mathrm{kcal} / \mathrm{mol}$ lower than the DHT barrier ($25.6 \mathrm{kcal} / \mathrm{mol}$), while the DHT- $2 \mathrm{H}_{2} \mathrm{O}$ model reaction results in a further lowering of $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ to $18.7 \mathrm{kcal} / \mathrm{mol}$ (see Figure 2.3 for the computed TSs for the DHT- $2 \mathrm{H}_{2} \mathrm{O}$ model). As we will soon see, this reduction only involves a single TS and is thus a coupled HTPT process. The character of the TS is primarily that of HT, with PT occurring subsequently without its own TS (as implied in Figure 2.4, to be discussed). This supports our use of the HT activation entropy factor of section 2.2. In fact, because the PT occurs along the exit channel $\sim 12 \mathrm{kcal} / \mathrm{mol}$ below the TS, even an unusually large -T $\Delta \mathrm{S}^{\ddagger}$ for PT would not limit the rate of HTPT.

The DHT model results with one and two explicit waters show that HCOOH reduction to generate $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ is aided by a proton relay chain involving explicit water. Such chains of course stabilize the ionic TS, but they also facilitate PT by reducing strain in the TS and in addition, the PT from the $\mathrm{H}_{2} \mathrm{O} \mathrm{H}$-bonded to HCOOH (see Figure 2.4) stabilizes the partially reduced product as negative charge accumulates on HCOOH . Consequently, the coupled PT helps to overcome the reduction challenges associated with HCOOH's low EA.

This PT and subsequent PTs in the relay chain occur after the HT barrier (see Figure 2.4a) and of course before the stable products are formed (see Figure 2.4 for the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ case). Only a very modest activation entropy effect is anticipated here because in the coupled HTPT process, the PT step(s) is (are) considerably delayed relative to the HT such that any entropic
penalties due to PT contribute to the free energies of structures well past the TS. This view is also supported by the prior configuration of the water molecules in the aqueous solution solvating the reactant complex and the widespread occurrence of proton relays in other processes, ${ }^{80-81,83,86,123-124,127-129}$ including water oxidation ${ }^{84,122}$ and enzymatic reactions. ${ }^{89,125-}$
${ }^{126}$ In any event, the $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$'s reported in Table 2.1 show that the homogeneous reaction is viable even without involvement of any proton relay chain.

Figure 2.3: Conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ by PyH_{2} proceeds through three hydride and proton transfer steps.
The reported free energies correspond to stationary points along the reaction potential energy surface using the DHT- $2 \mathrm{H}_{2} \mathrm{O}$ (Black), DHT- $1 \mathrm{H}_{2} \mathrm{O}$ (Green) and DHT (Orange) models, catalyzed by HTPT reactions of the $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple. The $1^{\text {st }}$ HTPT step (Scheme 2.6, route VII) is sequential where HT from PyH_{2} to CO_{2} forms stable formate (HCOO^{-}), with a single TS of HT character, and subsequent PT follows to produce formic acid (HCOOH); (*the dashed line indicates that the product of HT to CO_{2} is formate where a separate cathode-enhanced protonation step forms formic acid.) In the $2^{\text {nd }}$ HTPT step (Scheme 2.7, route VIII), homogeneous coupled HTPT occurs with a single TS: HT from PyH_{2} to HCOOH , which dominates the barrier and is followed by PT without an additional TS (from oxidized PyH_{2}, essentially a PyH^{+}), is mediated by a proton relay involving water molecules, ultimately producing methanediol $\left(\mathrm{CH}_{2}(\mathrm{OH})_{2}\right)$. Prior to the next reduction step, $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ is dehydrated to form the reactive formaldehyde $\left(\mathrm{OCH}_{2}\right)$ species at $\mathrm{K}_{\text {eq }} \sim 5 \times 10^{-4}$ (Scheme 2.8 , route $\mathbf{I X}$); thus this constitutes an additional free energy activation cost of $\sim 4.5 \mathrm{kcal} / \mathrm{mol}$ for OCH_{2} reduction. (**The rate constant for the dehydration of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to OCH_{2} at 298 K and pH of 6-7.8 is $\sim 5 \times 10^{-3} \mathrm{~s}^{-1}$ or equivalently the estimated $\Delta \mathrm{G}^{\ddagger}$ dehyd is $\sim 20 \mathrm{kcal} / \mathrm{mol}$. ${ }^{192-193}$ Consequently, the effective rate constant for transformation of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to $\mathrm{CH}_{3} \mathrm{OH}$ is that of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ dehydration.) In the $3^{\text {rd }}$ and final, homogeneous, HTPT step (Scheme 2.8, route \mathbf{X}), which is similar to HCOOH reduction, coupled HTPT occurs where HT from PyH_{2} to OCH_{2}, involves a single TS of HT character, and is followed by a proton relay-mediated PT without an additional TS to ultimately form methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. During each reaction step, the Py catalyst is
recovered, thus confirming PyH_{2} as a recyclable organo-hydride. TS structures for the HTPT steps from PyH_{2} to CO_{2}, HCOOH and OCH_{2} are shown for the DHT- $2 \mathrm{H}_{2} \mathrm{O}$ model. (Coordinates for the TS structures for all three DHT models are reported in SI , section 9.) All TS structures are HT in character.

Scheme 2.7: Reduction of formic acid to methanediol by PyH_{2}.

To better understand how coupled HT and PT enables PyH_{2} to reduce formic acid and indeed to further support our statements above concerning its coupled character, we analyze HCOOH's reduction by $\mathrm{PyH}_{\mathbf{2}}$ and its proton relay process in greater detail. In Figure 2.4a we show how DHT- $1 \mathrm{H}_{2} \mathrm{O}$'s energy (the internal energy $\mathrm{E}_{0 \mathrm{k}}$ calculated at OK and not ZPE-corrected) changes from the reactant complex (R), through the TS and structures (i , ii , and iii) energetically downhill from the TS, before ultimately reaching the product complex (P) along the computed reaction coordinate. Along the same coordinate reaction we plot the change of key bond lengths (Figure 2.4b). This analysis shows that the transformation from the reactant to the TS is dominated by HT. That is, $\mathrm{R}_{\mathrm{C}-\mathrm{H}}$ (defined in Figure 2.4 a) shortens from $2.82 \AA$ at R to $1.29 \AA ̊$ at the TS while $\mathrm{R}_{\mathrm{O}-\mathrm{H}}$ and $\mathrm{R}_{\mathrm{N-H}}$ do not change appreciably. Consequently, PT either to HCOOH or from oxidized PyH_{2} does not occur until well past the TS. There is no TS associated with either of these PTs, although PT does produce a shoulder in the potential energy surface $\sim 12 \mathrm{kcal} / \mathrm{mol}$ below the TS caused by HT.

Despite the important distinction between the first two HTPT reduction steps just emphasized, the character of HCOOH 's reduction by PyH_{2} is similar to that of the reduction of CO_{2} in the sense that HT dominates the energetics leading to the TS for both reactions; thus, as
commented upon in the caption of Figure 2.4, the experimental $-T \Delta S^{\ddagger}{ }_{\text {exp }}$ value of $2.3 \mathrm{kcal} / \mathrm{mol}$ for HT from the related dihydropyridine HT reaction (eq. 1) is also a reasonable $-\mathrm{T}_{\mathrm{L}} \mathrm{S}^{\ddagger}{ }_{H T}$ estimate

for HT to HCOOH by PyH_{2}.

(c)

Figure 2.4: Analysis of the coupled homogeneous HTPT process between PyH_{2} and HCOOH to form Py and $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ via the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model.
Similar results are found for HTPT to formaldehyde. Panels: (a) energy ($\mathrm{E}_{0 \text { ok, }}$ not ZPE-corrected); R denotes the reactant complex, TS the transition state, i , ii , and iii are structures in the exit channel, and P , the product complex, (b) bond length, and (c) structures and charges q (calculated with the CHELPG method ${ }^{76}$ and in the units of e) of important moieties along the reaction coordinate (corresponding to structures in (a)). Both bond length and charge analyses show that the TS is dominated by HT (which is similar to the case of CO_{2} reduction by PyH_{2}). Thus, the experimentally obtained $-T \Delta \mathrm{~S}^{\ddagger}{ }_{\text {exp }}=2.3 \mathrm{kcal} / \mathrm{mol}$ for a related HT reaction (eq. 1) is a good estimate for the $T \Delta S^{\ddagger}{ }_{H T}$ of the HCOOH reduction, despite the involvement of PT because PT occurs well after the HT TS, though well
before the product is formed. Here, PT occurs via proton relay $\sim 12 \mathrm{kcal} / \mathrm{mol}$ below (after) HCOOH's TS. This feature, as well as the absence of a TS for the PT, confirms the coupled character of the HTPT reaction. Because the HT and PT reactions occur in a process characterized by a single free energy TS, ${ }^{194-198}$ we have characterized this HTPT process as coupled. ${ }^{199}$ It is so distinguished from the uncoupled HTPT reduction of CO_{2} to ultimately produce HCOOH , where first HT involving a single TS produces the HCOO^{-}intermediate, and subsequently PT to HCOO^{-}occurs independently to produce HCOOH .

On the other hand, the HCOOH reduction is different from that of CO_{2} in that --- as we noted above --- HCOOH's HT reaction is followed by coupled PT along the reaction coordinate, mediated by a proton relay via H -bonded water molecule(s). The first PT occurs along the exit channel $\sim 12 \mathrm{kcal} / \mathrm{mol}$ downhill from the TS (Figure 2.4 a and b), where the $\mathrm{C}=\mathrm{O}$ oxygen of the hydroxymethanolate anion ((HCOOH$) \mathrm{H}^{-}$product of HT to HCOOH) abstracts a H^{+}from its $\mathrm{H}-$ bonded $\mathrm{H}_{2} \mathrm{O}$ to form methanediol and a hydroxide $\left(\mathrm{OH}^{-}\right)$-like moiety (characterized further below). In contrast to CO_{2} reduction where the produced HCOO^{-}is not basic enough to initiate a proton relay, the HT intermediary product of formic acid, $(\mathrm{HCOOH}) \mathrm{H}^{-}$, is sufficiently basic (pK_{a} of methanediol is $\sim 13)^{200-201}$ to commence a proton relay by abstracting a H^{+}from the neighboring H-bonded water.

This first PT event (PT1) is marked by the shortening of $\mathrm{R}_{\mathrm{O}-\mathrm{H}}$ from ~ 1.6 to $\sim 1.0 \AA$. Immediately following PT1, the second PT event (PT2) occurs where the just-formed OH^{-}-like moiety now abstracts a H^{+}from its H -bonded partner PyH^{+}(formed by HT from PyH_{2}) to form $\mathrm{H}_{2} \mathrm{O}$ and more importantly, to recover the Py catalyst. This aspect of the proton relay process is marked by the lengthening of R_{N-H} from ~ 1.0 to $\sim 1.8 \AA$. This analysis clearly shows the cooperative nature of the HT and PT and that although PTs occur well into the exit channel, they act to stabilize the HT TS without participating in the TS's configuration.

Finally, we analyze how the charges on various moieties change along the reaction coordinate. In Figure 2.4c it is apparent that as the reaction proceeds from R to TS the charge of PyH_{2} becomes increasingly positive ($q=0.43 \mathrm{e}$), while HCOOH becomes increasingly negative ($q=$ $-0.46 e)$; this is consistent with a HT reaction and correlates with the motions along the reaction coordinate in Figure 2.4b. As the hydride transfer from PyH_{2} to the HCOOH carbon becomes more complete (structure i), the (HCOOH) H^{-}moiety becomes increasingly basic ($\mathrm{q}=-0.83 \mathrm{e}$) such that its carbonyl oxygen begins to abstract a proton from the H -bonded water molecule (structure ii) to form an intermediate hydroxide OH^{-}type moiety ($q=-0.62 \mathrm{e}$). Structure iii shows that this basic species then abstracts a proton from PyH^{+}, completing the proton relay to ultimately produce $\mathrm{CH}_{2}(\mathrm{OH})_{2}$, while recovering the Py catalyst in the product $\mathrm{P} ; \mathrm{H}_{2} \mathrm{O}^{\prime}$ denotes a newly formed water as a result of proton relay. Figure 2.4 shows that $\mathrm{PyH}_{\mathbf{2}}$ contains both hydridic $\left(\mathrm{C}_{2}-\mathrm{H}\right)$ and protic $(\mathrm{N}-\mathrm{H})$ hydrogens; this is analogous to the situation for ammonia borane, which we previously showed reduces CO_{2} by HTPT. ${ }^{21,112}$
2.3.6 Third HTPT step: $\mathrm{PyH}_{2}+\mathbf{O C H}_{2} \rightarrow \mathbf{P y}+\mathbf{C H}_{3} \mathbf{O H}$. We now address the third and final reduction step to produce the desired product, $\mathrm{CH}_{3} \mathrm{OH}$. This homogeneous step follows the formation of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$, which is a hydrated formaldehyde $\left(\mathrm{OCH}_{2}\right)$. To effect further reduction, the sp^{3}-hybridized $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ produced by the second HTPT must first be dehydrated to form the $s p^{2}$-hybridized species OCH_{2} at $\mathrm{K}_{\text {eq }} \sim 5 \times 10^{-4}$ (Scheme 2.8 , route IX). ${ }^{202}$ While equilibrium strongly favors the diol species, OCH_{2} is significantly more reactive to HT , producing methanol via $\mathrm{PyH}_{2}+$ $\mathrm{OCH}_{2} \rightarrow \mathrm{Py}+\mathrm{CH}_{3} \mathrm{OH}$ (route \mathbf{X}) at low barrier, e.g. $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=6.0 \mathrm{kcal} / \mathrm{mol}$ calculated for the DHT$2 \mathrm{H}_{2} \mathrm{O}$ model (see Table 2.1 for $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ values and Figure 2.3 for TSs). This low $\Delta \mathrm{G}^{\ddagger}{ }_{H T}$ value suggests that the slowest step from $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to $\mathrm{CH}_{3} \mathrm{OH}$ is in fact likely to be the dehydration of
$\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to OCH_{2}. The rate constant for the dehydration of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to OCH_{2} at ambient conditions ${ }^{192-193}$ is $\sim 5 \times 10^{-3} \mathrm{~s}^{-1}$ (obtained in the pH range $6.0-7.8$) or equivalently the estimated free energy barrier $\Delta \mathrm{G}^{\ddagger}{ }_{\text {dehyd }}$ is $\sim 20 \mathrm{kcal} / \mathrm{mol}$. Consequently, the effective rate constant for transformation of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ to $\mathrm{CH}_{3} \mathrm{OH}$ is that of $\mathrm{CH}_{2}(\mathrm{OH})_{2}$ dehydration (for all three of our models; see Table 2.1 and Figure 2.3). ${ }^{203}$

In a fashion similar to the HCOOH reduction, the reduction of OCH_{2} proceeds homogeneously via a coupled HTPT step, which we illustrate using structures determined via IRC calculations. Figure 2.5 shows the reactant complex R involving $\mathrm{PyH}_{2}, \mathrm{OCH}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ for the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model. In this complex, the C of OCH_{2} is still far from the hydridic H of $\mathrm{PyH}_{\mathbf{2}}$ (e.g. $\mathrm{R}_{\mathrm{C}-\mathrm{H}}$ $=2.39 \AA ̊)$ and all moieties are approximately charge neutral (e.g. HT has not yet commenced and all species have $\mathrm{q}^{\sim} 0$). At the $\mathrm{TS}, \mathrm{OCH}_{2}$ is in the process of accepting a hydride from $\mathbf{P y H}_{2}$ and importantly, there is no significant PT, as evidenced by the relatively large $\mathrm{R}_{\mathrm{O-}}=1.73 \AA$ value relative to the $R_{\text {O-н }}$ value $0.98 \AA$ of the product. Thus, the TS consists of HT character, again justifying our use of the experimental HT activation entropy factor proposed in section 2.2.

Scheme 2.8: Dehydration of methanediol to form formaldehyde and the subsequent reduction to methanol by PyH_{2}.

As the reaction progresses energetically downhill from the TS towards the product, HT completes, transiently forming the methoxide $\left(\mathrm{OCH}_{3}{ }^{-}\right)$anion-type moiety, displayed in structure
i of Figure 2.5. In analogy to the second HTPT step, the PT occurs well into the exit channel after the HT TS and involves no TS on the way to the reaction product. Thus, the HT and PT are coupled in this HTPT process. The PT aspect of the reaction involves a proton relay chain for the one and two $\mathrm{H}_{2} \mathrm{O}$ DHT model cases. The newly formed methoxide anion-like moiety is negatively charged $\left[q\left(\mathrm{OCH}_{3}{ }^{-}\right)=-0.76 \mathrm{e}\right]$ and possesses a sufficiently basic carbonyl (pK_{a} of methanol is $\sim_{16)^{204}}$ that it abstracts a proton from a neighboring hydrogen-bonded $\mathrm{H}_{2} \mathrm{O}$ (structure ii) to initiate a proton relay cascade: a transient hydroxide anion-like moiety is produced (structure ii), which then abstracts an H^{+}from PyH^{+}(the oxidized PyH_{2} which has earlier resulted from HT) as $\mathrm{CH}_{3} \mathrm{OH}$ formation is completed (structure iii), to finally form Py together with $\mathrm{H}_{2} \mathrm{O}^{\prime}$ and $\mathrm{CH}_{3} \mathrm{OH}$ in the product complex, P. The HTPT activation free energies for the three cases are reported in Table 2.1. Our earlier remark about a minor activation entropy effect for the proton relay aspects of the second step also applies here.

$\bigcirc \mathrm{CH} O \mathrm{O}$

Figure 2.5: Reduction of formaldehyde by PyH_{2} to methanol (via the DHT- $1 \mathrm{H}_{2} \mathrm{O}$ model) in a coupled HTPT step. In the reactant complex R , all moieties $\left(\mathrm{PyH}_{2}, \mathrm{OCH}_{2}\right.$, and $\mathrm{H}_{2} \mathrm{O}$) are approximately neutral (e.g. q ~ 0, in electronic charge units, e) and the HT reaction from PyH_{2} to OCH_{2} has not commenced (e.g. $\mathrm{R}_{\mathrm{C}-\mathrm{H}}=2.39 \AA \AA$). The reaction then proceeds to the TS, which is of HT character: OCH_{2} becomes more negatively charged $\left[\mathrm{q}\left(\mathrm{OCH}_{2}\right)=-0.40 \mathrm{e}\right]$ on the
way to full HT, while PyH_{2} becomes more positive $\left[\mathrm{q}\left(\mathrm{PyH}_{2}\right)=0.44 \mathrm{e}\right]$, without any significant PT (e.g. $\mathrm{R}_{\mathrm{O-H}}=1.73 \AA$). As the reaction progresses energetically downhill from the TS towards the product, the HT completes and methoxide anion $\left(\mathrm{OCH}_{3}{ }^{-}\right)$is formed in structure i. The basic methoxide $\left[q\left(\mathrm{OCH}_{3}{ }^{-}\right)=-0.77 \mathrm{e}\right]$ now begins to abstract a proton from the neighboring $\mathrm{H}_{2} \mathrm{O}$ in structure ii to form methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ in structure iii. The proton relay continues as the first PT-produced transient hydroxide anion-like OH^{-}now abstracts a proton from PyH^{+}to finally form the product complex P of $\mathrm{Py}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ ', where ' denotes the water molecule newly formed in the proton relay.

It is noteworthy that HT from a related dihydropyridine species to an aldehyde has been observed. ${ }^{205-206}$ In eq. 2, 10-methyl-9,10-dihydroacidine transfers its hydride to benzaldehyde to form benzyl alcohol in the presence of perchloric acid $\left(\mathrm{HClO}_{4}\right)$, which acts as the H^{+}donor. ${ }^{205}$ The HTPT reaction between PyH_{2} and OCH_{2} to form methanol (Scheme 2.8 , route \mathbf{X}) is analogous to eq. 2; however route \mathbf{X} differs slightly because $\mathbf{P y H}_{2}$ acts as both the hydride and proton donor.

2.3.7 Commentary on the homogeneous mechanism for CO_{2} reduction to $\mathbf{C H}_{3} \mathbf{O H}$

 catalyzed by pyridine. The preceding results in this section allow us to map out a complete mechanism of Py-catalyzed CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ via three HTPT steps (Scheme 2.9) where the first HTPT to CO_{2} is uncoupled, and PT may be cathode-assisted, and sequential and the final two HTPT steps are coupled in character and homogeneous. These results are summarized in Table 2.1 and Figure 2.3. Examination of Table 2.1 and Figure 2.3 shows that the second HTPT step, that of HCOOH reduction, is the highest HTPT free energy barrier step for the reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ by PyH_{2} in all cases. However, in the DHT-2 $\mathrm{H}_{2} \mathrm{O}$ case, the second HTPT barrier $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=18.7 \mathrm{kcal} / \mathrm{mol}$ is lower than the methanediol dehydration barrier $\Delta \mathrm{G}^{\ddagger}{ }_{\text {dehyd }}$ of $\sim 20$$\mathrm{kcal} / \mathrm{mol}$ (see section 2.3.6 and Figure 2.3). In this connection, it is noteworthy that substrate and/or hydride donor activation ${ }^{107,189,205,207}$ can act to further lower $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$. For example, K^{+}and PyH^{+}in solution can activate the carbonyls for HT (see discussion at end of section 2.3.4). However, even without this additional activation, the PyH_{2}-catalyzed reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ is kinetically facile. Moreover, we have found that for the second and third reduction steps, a proton relay chain can noticeably reduce the reaction barriers. However, even without these proton relays, Table 2.1 --- and the methanediol dehydration barrier $\Delta \mathrm{G}^{\ddagger}{ }_{\text {dehyd }}$ of ~ 20 $\mathrm{kcal} / \mathrm{mol}$--- indicate that these reactions remain viable in activation free energy terms.

For completeness, we have also considered a potential side reaction that might significantly impact the Faradaic yield for the overall PyH_{2}-catalyzed CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$: HT from PyH_{2} to a proton donor such as PyH^{+}to evolve $\mathrm{H}_{2}\left(\mathrm{PyH}_{2}+\mathrm{PyH}^{+}=\mathrm{PyH}^{+}+\mathrm{Py}+\mathrm{H}_{2}\right)$. We have calculated that this route involves a $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ of $24.0 \mathrm{kcal} / \mathrm{mol}$, which demonstrates that such unproductive heterolytic quenching to form H_{2} is dominated by the PyH_{2}-catalyzed HT to CO_{2}, HCOOH , and OCH_{2}, as well as the methanediol dehydration. The higher barrier for H_{2} production is supported by the fact that the HT reaction by the corresponding dihydropyridine species in eq. 2a can be carried out in acidic conditions without appreciable H_{2} production. ${ }^{205}$ The very high (96\%) Faradaic yield of the p-GaP system ${ }^{39}$ is also consistent with the unfavorable heterolytic quenching to form H_{2}.

We recognize that homogeneous components of a pathway for a pyridine-mediated CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ have been argued to be ruled out in several recent theoretical studies, ${ }^{43,151}$ and we briefly address this here. One key premise raised by the studies' authors is that $1 \mathrm{e}^{-}$
reduction of PyH^{+}to PyH^{0} cannot occur at experimental conditions. ${ }^{43}$ But this statement is not supported by the fact that highly reducing electrons are present in both the photoelectrochemical p-GaP system ($\mathrm{E}_{\mathrm{CBM}} \sim-1.5 \mathrm{~V}$ vs. SCE at $\left.\mathrm{pH}=5\right)^{74,75}$ and the photochemical $\left[\mathrm{Ru}(\text { phen })_{3}\right]^{2+} /$ ascorbate system ${ }^{148}$ to populate $\mathrm{PyH}^{+\prime}$ s LUMO ($\mathrm{E}_{\text {calc }}^{0} \sim-1.3 \mathrm{~V}$ vs. SCE) to form the solution phase PyH^{0} (see the discussion in section 2.3.1). Another premise is that radical selfquenching will render PyH^{0} inactive. ${ }^{151}$ We have already pointed out in section 2.3.1 that radical self-quenching of PyH^{0} can actually yield the productive PyH_{2} via disproportionation. ${ }^{160}$ In addition, it is relevant to note that Py-related neutral radicals of nicotinamide, ${ }^{117}$ acridine, ${ }^{118}$ and 3,6-diaminoacridine ${ }^{119}$ have been experimentally observed and are key intermediate species en route to forming the related dihydropyridine species.

Scheme 2.9: Homogeneous mechanism of Py-catalyzed CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ via $\mathrm{PyH}_{2} /$ Py HTPT processes.

VII-X

 PyH_{2} Production

(b)

CO_{2} Reduction
(a) PyH_{2} formation issues. In routes \mathbf{I} and $\mathrm{II}{ }^{120}$ Py accepts an H^{+}to form PyH^{+}and then an e^{-}to form the PyH^{0} neutral radical, which then either reduces CO_{2} by $1 \mathrm{e}^{-}$reduction to form PyCOOH^{0} (route III) ${ }^{120}$ or undergoes radical self-quenching (route IV) to produce $\mathrm{H}_{2}+2 \mathrm{Py}$, a $4,4^{\prime}$ coupled dimer or $\mathrm{Py}+\mathrm{PyH}_{2}$. Alternatively, and of most importance in the present work, in routes \mathbf{V} and $\mathbf{V I}, \mathrm{PyH}^{0}$ accepts a second H^{+}and then a second e^{-}to form the potent recyclable organo-hydride $\mathbf{P y H}_{2}$. (b) CO_{2} reduction to methanol. In routes $\mathrm{VII}-\mathbf{X}$, the produced PyH_{2} then participates in each of three catalytic HTPT steps to reduce CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$, while recovering the Py catalyst.

Finally, and in contrast to the present identification of PyH_{2} as the important catalytic agent in homogeneous and cathode-assisted Py -mediated CO_{2} reduction, it has been suggested that a surface-adsorbed dihydropyridine reduces CO_{2} by HT from its $\mathrm{N}-\mathrm{H}$ bond. ${ }^{151-152}$ We already noted that a solution phase dihydropyridine is normally involved in observed HT reactions such as those in eq. 1 and 2 . In any event, in our view, the proposed reduction through the surfaceadsorbed species does not provide a viable HT mechanism. ${ }^{208} \mathrm{~A}$ key issue is that the adsorbed dihydropyridine's N-H bond is proposed to act as a hydride donor. ${ }^{152}$ However, the N-H hydrogen is protic, not hydridic; accordingly, this suggestion is inconsistent with the extensive literature concerning HT from dihydropyridines, ${ }^{107,113-114,116,138,176,178-180,182,205-206}$ including the present work, which uniformly shows that the hydride transfers from the hydridic hydrogen of the $\mathrm{C}-\mathrm{H}$ bond and not from $\mathrm{N}-\mathrm{H} .{ }^{209}$
2.3.8 Recovery of aromaticity drives hydride transfer from PyH_{2}. We have shown that CO_{2} reduction to $\mathrm{CH}_{3} \mathrm{OH}$ is accomplished via three successive HTPT steps by PyH_{2}. We now describe the principle that makes $\mathbf{P y H}_{2}$ an effective HT agent. In fact, $\mathbf{P y H}_{\mathbf{2}}$'s strong hydride nucleophilicity could be regarded in a certain sense as rather surprising; it is an organo-hydride where the hydridic H is provided by a C-H bond. Consequently, PyH_{2} differs significantly from conventional transition-metal hydrides $(\mathrm{M}-\mathrm{H})^{105-106,181,183}$ in that C is more electronegative than the transition metals (M), e.g., Co, Ni and Pt . We suggest that the origin of the hydride nucleophilicity of the hydridic $\mathrm{C}-\mathrm{H}$ bonds of PyH_{2} lies in the energetics of dearomatization and aromatization of $\mathrm{PyH}^{+},{ }^{120}$ a concept similar to one applied to metal-ligand cooperation in catalysis involving transition-metal complexes. ${ }^{210-211}$ During the formation of PyH_{2}, the first reduction of PyH^{+}to PyH^{0} dearomatizes $\mathrm{PyH}^{+ \text {'s }}$ ring (Scheme 2.9 a, route II), a destabilization
consistent with PyH^{+}s highly negative E^{0} of $\sim-1.3 \mathrm{~V}$ vs. SCE. PyH^{+}s proclivity to regain its aromaticity drives HT from the hydridic $\mathrm{C}-\mathrm{H}$ bond of PyH_{2} to the carbon atoms of $\mathrm{CO}_{2}, \mathrm{HCOOH}$ and OCH_{2} to form reduced products and to recover the aromatic PyH^{+}(or Py) catalyst. This mirrors the aromatization driving force several of us previously described in PyCOOH^{0} formation via a $1 \mathrm{e}^{-}$process. ${ }^{120}$

Figure 2.6: The calculated standard activation free energy 'barrier' $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}(\mathrm{kcal} / \mathrm{mol})$ to hydride transfer to CO_{2} correlates linearly with the degree of dearomatization of the hydride donor.
$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}(\mathrm{kcal} / \mathrm{mol})$ is calculated for hydride transfer to CO_{2} to form HCOO^{-}using the DHT model of Figure 2.2a (also shown here in the inset). E^{0} measures the energy required to dearomatize PyH^{+}and related protonated aromatic amines and thus serves as a quantitative measure of the degree of dearomatization. E^{0} (V vs. SCE) is our calculated standard reduction potential for the protonated pyridine species indicated in Scheme 2.9 a, route II, e.g. $\mathrm{PyH}^{+}+\mathrm{e}^{-}=$ PyH^{0} (see SI , section 1b for details of E^{0} calculations). We substitute PyH_{2} with electron-withdrawing ($\mathrm{R}=\mathrm{CN}$, CONH_{2}) and electron-donating ($\mathrm{R}=\mathrm{OH}, \mathrm{NH}_{2}$) groups in the para position of the ring to establish a wide range of E^{0}, spanning from -0.49 to -2.10 V vs. SCE, and thus a broad degree of dearomatization.

Figure 2.6 confirms the dearomatization-aromatization principle by demonstrating that the free energy barrier for HT to $\mathrm{CO}_{2}, \Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$, decreases with increasing cost of dearomatization as measured by the standard reduction potential E^{0} defined in Scheme 2.9a, route II. We obtain a wide range of E^{0} spanning from -0.49 to -2.10 V vs. SCE by substituting electron-withdrawing (e.g. $\mathrm{CN}, \mathrm{CONH}_{2}$) and electron-donating (e.g. $\mathrm{OH}, \mathrm{NH}_{2}$) groups at PyH_{2} 's para position. We contend that as the E^{0} of an aromatic species becomes increasingly negative, more energy is
required to dearomatize that species by populating its LUMO (a benzene-like π^{*} orbital); ${ }^{96}$ thus E^{0} is a quantitative measure of the energetic cost of dearomatization. The linear trend established in Figure 2.6 has a firm physical basis: as E^{0} becomes more negative, the driving force to recover aromaticity increases accordingly, which in turn results in lower $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ and consequently a higher hydride transfer rate. Figure 2.6 shows that the effect of dearomatization/aromatization on $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ enables PyH_{2} to act in its unique role as a potent hydride donor, here one that catalyzes the reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ through three HTPT steps and which is regenerated through the $\mathbf{P y H}_{\mathbf{2}} / \mathrm{Py}$ redox couple (Scheme 2.9 a, route $\mathbf{I - I I - V - V I) . ~}$

2.4 Concluding Remarks

In summary, we have elucidated a kinetically and thermodynamically viable mechanism for the reduction of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ by 1,2-dihydropyridine, PyH_{2}, via primarily homogeneous steps with some heterogeneous cathode assistance. ${ }^{212}$ Our proposed sequential PT-ET-PT-ET process of alternating proton and electron transfers (Scheme 2.9a, routes I-II-V-VI) that initially transforms Py into the catalytic species $\mathrm{PyH}_{\mathbf{2}}$ is supported by the observation of a similar process occurring in Py-related species, e.g. nicotinamide and acridines, ${ }^{117-119}$ where the aromatic PyH^{+}is dearomatized during the process. Subsequently, driven by the proclivity to recover aromaticity, PyH_{2} transfers its hydridic hydrogen in three successive steps to CO_{2}, HCOOH and OCH_{2} to ultimately form $\mathrm{CH}_{3} \mathrm{OH}$ (Scheme 2.9b, routes VII-X). The initial reduction of CO_{2} is mediated by an uncoupled, sequential HTPT process; for the subsequent HCOOH and OCH_{2} reductions, coupled HTPT occurs, in which PT is mediated by a proton relay via one or two water molecules.

We stress that while we have theoretically demonstrated CO_{2} reduction proceeding primarily homogeneously after $\mathrm{PyH}_{\mathbf{2}}$ formation, we do not rule out possible intrinsically surfacecatalyzed events, most especially on a Pt electrode (see section 2.3.1). On the other hand, we suggest that both Bocarsly's p-GaP ${ }^{39}$ (modulo the two cathode-assisted aspects we have described within) and MacDonnell's surface-free $\mathrm{Ru}(I I) /$ ascorbate ${ }^{148}$ systems are homogeneous processes mediated by our proposed recyclable $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple. This suggestion is reinforced by Tanaka's demonstration that the related dihydropyridine $\left(\mathbf{R u}(\mathbf{b p y})_{2}\left(\mathbf{p b n H} \mathbf{2}^{2+}\right)\right.$ species homogeneously reduces CO_{2} to HCOO^{-}by hydride transfer; ${ }^{107}$ in addition, the related 10-methyl-9,10-dihydroacidine has been demonstrated to convert benzaldehyde into benzyl alcohol via a HTPT step. ${ }^{205}$ We thus theoretically predict that pyridine's intriguing catalytic behavior lies in the fundamentally homogeneous HT chemistry of the $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple, whose production (Scheme 2.9a) is driven by a dearomatization-aromatization process, as argued in connection with Figure 2.6.

It is noteworthy that the $\mathrm{PyH}_{2} /$ Py redox couple --- by its hydride transfer to carbonyl for C-H bond formation --- closely imitates the NADPH/NADP ${ }^{+}$catalyzed reduction step in photosynthesis (see Scheme 2.5a). Our results thus suggest that the NADPH/NADP ${ }^{+}$couple is similar to the $\mathrm{PyH}_{2} / \mathrm{Py}$ couple in that dearomatization is used to store energy that is subsequently used to drive HT while regaining aromaticity. Finally, we propose that the advantage of the recyclable $\mathrm{PyH}_{2} / \mathrm{Py}$ redox couple extends beyond the mechanism of CO_{2} reduction described within to provide inexpensive and green alternatives to commonly used hydride donors in organic synthesis.

3 Roles of the Lewis Acid and Base in the Chemical Reduction of CO_{2} Catalyzed by Frustrated Lewis Pairs

Chern-Hooi Lim, ${ }^{\dagger}$ Aaron M. Holder, ${ }^{\dagger, \ddagger}$ James T. Hynes, ${ }^{\ddagger, \xi}$ and Charles B. Musgrave ${ }^{*,,^{\dagger},}$
${ }^{\dagger}$ Department of Chemical and Biological Engineering and ${ }^{\ddagger}$ Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States ${ }^{5}$ Department of Chemistry, UMR ENS-CNRS-UPMC-8640, Ecole Normale Supérieure, Paris 75005, France Inorganic Chemistry: dx.doi.org/10.1021/ic4013729

Abstract

: We employ quantum chemical calculations to discover how frustrated Lewis pairs (FLP) catalyze the reduction of CO_{2} by ammonia borane (AB); specifically, we examine how the Lewis acid (LA) and Lewis base (LB) of an FLP activate CO_{2} for reduction. We find that the LA (trichloroaluminum, AlCl_{3}) alone catalyzes hydride transfer (HT) to CO_{2} while the LB (trimesitylenephosphine, PMes_{3}) actually hinders HT ; inclusion of the LB increases the HT barrier by $\sim 8 \mathrm{kcal} / \mathrm{mol}$ relative to the reaction catalyzed by LAs only. The LB hinders HT by donating its lone pair to the LUMO of CO_{2}, increasing the electron density on the C atom and thus lowering its hydride affinity. Although the LB hinders HT , it nonetheless plays a crucial role by stabilizing the active $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex relative to the LA dimer, free CO_{2} and free LB . This greatly increases the concentration of the reactive complex in the form $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ and thus increases the rate of reaction. We expect that the principles we describe will aid in understanding of other catalytic CO_{2} reductions.

3.1 Introduction

The rising concentration of atmospheric carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and its potential to impact global climate has motivated a growing effort to lower atmospheric CO_{2} levels. ${ }^{9}$ One approach that has gained significant attention is the capture and sequestration of CO_{2}. However, among the many obstacles to this approach is the significant challenge of long-term, stable storage of CO_{2} in vast quantities. ${ }^{213}$ An alternative approach that has received less attention and avoids the issue of long-term CO_{2} sequestration is the chemical reduction of CO_{2} into valuable materials such as methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ or its dehydrated form dimethyl ether ${ }^{10}$ or possibly C_{n} ($\mathrm{n} \geq 2$) products. The conversion of CO_{2} into $\mathrm{CH}_{3} \mathrm{OH}$ or other fuels using renewable energy input would enable a carbon-neutral energy cycle that could have a dramatic effect on atmospheric CO_{2} levels. The successful conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ by various homogeneous catalysts and reducing agents has been reported elsewhere; ${ }^{15,18-19,108,214}$ here we use quantum chemistry to discover the underlying principles that govern CO_{2} conversion by frustrated Lewis pairs (FLP) catalysts.

Experimentally, an FLP was first used to activate CO_{2} by irreversibly complexing with it to catalyze CO_{2} reduction via hydride transfer (HT) from ammonia borane $\left(\mathrm{NH}_{3} \mathrm{BH}_{3}, \mathrm{AB}\right)$, which acts as a sacrificial hydride donor; ${ }^{20,215}$ each HT is equivalent to a two-electron reduction. 37$51 \%$ yield of $\mathrm{CH}_{3} \mathrm{OH}$ was observed after 15 min . at ambient conditions. The FLP consists of a Lewis acid (LA) and a Lewis base (LB) with bulky ligands that prevent these species from neutralizing each other. ${ }^{216}$ In particular, the FLP used to activate CO_{2} for reduction (and our focus in this work) consists of two trichloro-aluminum (AlCl_{3}) LAs and the
trimesitylenephosphine $\left(\mathrm{PMes}_{3}\right.$, Mes $=2,4,6-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$) LB, where the LAs and $L B$ datively bond to the oxygens and carbon of CO_{2}, respectively, to form an $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex (Figure 3.1b).

Figure 3.1: Reactive complexes of CO_{2} considered.
(a) Free CO_{2} molecule, (b) $\mathrm{FLP} \bullet \mathrm{CO}_{2}$, composed of CO_{2}, two LAs and one LB , (c) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}$, (d) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$, and (e) $\mathrm{CO}_{2} \cdot(\mathrm{LA})$. H atoms in (b) omitted for clarity. Al, light gray; C, gray; Cl , green; O , red; and P , orange.

Recent experimental efforts have aimed at modifying the original $\mathrm{AlCl}_{3}-\mathrm{PMes}_{3}$ FLP system, ${ }^{217-218}$ e.g. by varying the LA bound to $\mathrm{CO}_{2}{ }^{219}$ and employing geminal P/Al-based FLPs, ${ }^{220}$ but those systems afforded weaker complexation to CO_{2} than the $\mathrm{AlCl}_{3}-\mathrm{PMes}_{3} \mathrm{FLP}$. Additionally, recent theoretical studies identify the mechanistic steps for conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ catalyzed by the FLP^{221} and provide insights into the effect of explicit $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ solvent in $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ formation. ${ }^{222}$ However, these experimental and theoretical efforts have not examined several key issues of CO_{2} reduction by FLPs, namely, the mode of CO_{2} activation, the roles of the LA and LB in CO_{2} reduction, the effect of LA dimerization, and the possible need for pre-bending CO_{2} prior to its reduction. The use of an expensive FLP and AB as a sacrificial hydride source will unlikely be pragmatic for CO_{2} reduction, however we examine the basic aspects of CO_{2}
reduction by FLPs and LAs to further the fundamental understanding of CO_{2} activation that may provide insight into developing improved CO_{2} reduction catalysts.

3.2 Computational Details

See supporting information attached in the appendices.

3.3 Results and Discussion

3.3.1 LB hinders HT: an anti-catalytic role. One might expect both members of the FLP to assist in catalysis. However, close inspection of the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex shown in Figure 3.1 b reveals a striking chemical contradiction in the role of the LB in FLP activation of CO_{2} for its chemical reduction; in the complex, the LB donates its lone pair to the carbon of CO_{2}, which should decrease the electrophilicity of the CO_{2} carbon and hence lower its tendency to accept a hydride. We thus hypothesize that: 1) the LB in FLP• CO_{2} actually hinders HT , and consequently 2) the LA must act as the catalyst that both activates CO_{2} for reduction and overcomes the hindrance to HT caused by the LB.

Figure 3.2: Transition state structures of CO_{2} complexes with $A B$.
(a) $\mathrm{CO}_{2}+\mathrm{AB}$, (b) $\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$, (c) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}+\mathrm{AB}$, (d) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{AB}$ and (e) $\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{AB}$. The H atoms of PMes_{3} ligands in (b) are omitted for clarity. Al, light gray; B, pink; C, gray; Cl, green; H, white; N, blue; O, red; P, orange.

To test these hypotheses, we have calculated the reaction barrier (activation enthalpy, $\Delta \mathrm{H}_{\text {hydride }}^{\ddagger}$) for HT from AB to CO_{2} using AlCl_{3} as the LA and PMes_{3} as the LB for the following five cases: a) the reference uncatalyzed reduction (Figure 3.2a) where AB reduces CO_{2} in the absence of the FLP, b) catalyzed reduction by the FLP (Figure 3.2b), c) and d) catalyzed reduction by two LAs (isomer 1, Figure 3.2c and isomer 2, Figure 3.2d) and e) catalyzed reduction by a single LA (Figure 3.2e). Cases c-e involve only LAs and thus allow us to determine whether LAs alone catalyze CO_{2} reduction and if so, which arrangement is most effective, and by comparison with the FLP catalyzed reaction (case b), whether the LB hinders HT.

One of us previously published a detailed mechanistic study using the accurate $\operatorname{CCSD}(\mathrm{T})$ method for the uncatalyzed conversion of CO_{2} to $\mathrm{CH}_{3} \mathrm{OH}$ by AB where complete conversion to $\mathrm{CH}_{3} \mathrm{OH}$ requires three HTs . ${ }^{21}$ Here, we instead examine the first catalyzed HT in order to focus on the roles of the LA and LB in CO_{2} activation. It is important to note in this connection that in the uncatalyzed case \mathbf{a}, the hydride and proton transfer concomitantly react to produce formic acid, ${ }^{21}$ whereas in the catalyzed (vide infra) cases b-e our calculations predict HT occurs to produce (complexed) formate (HCOO^{-}). Table 3.1 reports the predicted $\Delta \mathrm{H}^{\ddagger}$ hydride for the aforementioned five cases in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ solvent, described by the implicit polarizable continuum model (CPCM). ${ }^{68,223}$

Before discussing the results in Table 3.1, an important computation issue requires comment. The FLP system involves significant dispersion interactions that affect complexation energies and thus HT barriers. Therefore, we employed the B97-D exchange-correlation
functional to obtain TS and equilibrium geometries as this method accounts for dispersion effects important in complex formation. ${ }^{224}$ Grimme et al. previously used this functional to describe the heterolytic cleavage of H_{2} by an FLP catalyst for which the popular B3LYP functional gave erroneous results due to its neglect of dispersion. ${ }^{225}$ For accurate energies, we performed MP2 single-point energy calculations at the B97-D identified stationary point geometries, which we found differ from high-level $\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP2}$ energies by less than 1 kcal/mol for both HT barriers and complexation energies (see Supporting Information for additional computational details).

Table 3.1: HT barrier ($\Delta \mathrm{H}_{\text {hydride }}^{\ddagger}$) and hydride affinity (HA) of CO_{2} complexes at $\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1$ atm.

System	$\Delta \mathrm{H}^{\ddagger}$ hydride $^{\mathrm{a}}$	HA^{b}
a) CO_{2}	25.3	40.5
b) $\mathrm{FLP} \bullet \mathrm{CO}_{2}$	7.9	79.9
c) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}$	-0.2	131.9
d) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$	4.1	99.1
e) $\mathrm{CO}_{2} \bullet(\mathrm{LA})$	3.8	91.7

${ }^{a} \mathrm{HT}$ (from AB) enthalpic barriers, in kcal/mol, referenced to the reactant complex. ${ }^{\text {b }} \mathrm{Hydride}$ affinity, in $\mathrm{kcal} / \mathrm{mol}$. All calculations performed using MP2/6-311++G(d,p)//B97-D/6-311G(d,p) [MP2//B97-D], except $\Delta H^{\ddagger}{ }_{\text {hydride }}$ of case c, which was calculated using $\operatorname{CCSD}(\mathrm{T}) / 6-311++G(d, p) / / M P 2 / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})[\operatorname{CCSD}(\mathrm{T}) / / \mathrm{MP2}$]. All enthalpies include zeropoint energies (ZPE) and thermal corrections at 298 K . Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ was treated with the CPCM solvent model.

3.3.2 Hydride transfer barriers and affinities reveal the catalytic role of the LA. We

 now return to the main focus of this paper and observe that the $\Delta \mathrm{H}^{\ddagger}$ hydride values reported in Table 3.1 indicate that although the FLP does indeed catalyze CO_{2} reduction by lowering $\Delta \mathrm{H}^{\ddagger}$ hydride from $25.3 \mathrm{kcal} / \mathrm{mol}$ for the uncatalyzed case a to $7.9 \mathrm{kcal} / \mathrm{mol}$ for the FLP catalyzed case \mathbf{b}, the barriers are even lower for cases \mathbf{c}-e that exclude the LB and only involve the LAs. This confirms our hypothesis that the LB impedes HT and that the LAs alone activate CO_{2} forreduction (see SI, Section 3 for additional TS properties). The previously reported $\Delta \mathrm{H}^{\ddagger}$ hydride using B3LYP for case \mathbf{b} is $\sim 7 \mathrm{kcal} / \mathrm{mol}$ higher than our calculated barrier, ${ }^{221}$ which we attribute to B3LYP's neglect of dispersion (see SI , Section 4). Furthermore, in contradiction to the suggestion that "pre-bending" of CO_{2} is necessary to assist its reduction, we show that LAs catalyze the reduction of the linear form of CO_{2} resulting in low HT barriers (see Figure 3.1c-e). For example, at the transition state (TS) for case c $\angle \mathrm{O}-\mathrm{C}-\mathrm{O}$ is 178° (Figure 3.1 c) and HT is barrierless. In addition, in case \mathbf{b} where CO_{2} is pre-bent (Figure $3.1 \mathrm{~b}, \angle \mathrm{O}-\mathrm{C}-\mathrm{O}=126^{\circ}$), the LB raises $\Delta \mathrm{H}^{\ddagger}{ }_{\text {hydride }}$ by $\sim 8 \mathrm{kcal} / \mathrm{mol}$ compared to case \mathbf{c}; this is due to the nucleophilic competition between the donating lone pairs of the $L B$ and the transferring hydride from $A B$ to the LUMO of CO_{2}.

We now examine the relative roles of the LB and LA moieties in further detail. We start with the case of two LAs (case \mathbf{c}), obtained by elimination of the $\mathrm{PMes}_{3} \mathrm{LB}$ from the FLP case \mathbf{b}. We could not locate a TS for this step with B97-D, but were able to determine a TS using MP2 (single imaginary frequency of $182 i \mathrm{~cm}^{-1}$). A CCSD(T) energy at the MP2 TS geometry predicts a barrierless reaction after addition of ZPE and thermal contributions. Thus, the two LAs catalyze CO_{2} reduction and adding the LB increases the barrier. With the catalytic importance of the two LAs of case cthus established, we ask if a different arrangement of the LAs would be more effective. The alternate arrangement $\mathrm{CO}_{2} \bullet\left(\mathrm{AlCl}_{3}\right)_{2}$ was suggested by Olah et al. as one of the reactive complexes in the addition of CO_{2} to $\mathrm{C}_{6} \mathrm{H}_{6}$ to produce benzoic acid. ${ }^{226}$ We examine this type of complex involving a $(\mathrm{LA})_{2}$ dimer in case \mathbf{d}. We find that $\Delta \mathrm{H}^{\ddagger}{ }_{\text {hydride }}=4.1 \mathrm{kcal} / \mathrm{mol}$, showing that this dimer also catalyzes HT to CO_{2}. These results suggest examination of the single LA (case e). And here we calculate a HT barrier of $3.8 \mathrm{kcal} / \mathrm{mol}$. Thus, as we have previously noted,
all three LA configurations \mathbf{c}-e have HT barriers substantially below that of the FLP case \mathbf{b} involving two LAs and the LB.

What is the key property of the LAs for catalytic CO_{2} reduction efficacy? For FriedelCrafts acylation where CO_{2} adds to $\mathrm{C}_{6} \mathrm{H}_{6}$ to produce benzoic acid, Olah et al. concluded that the reaction was catalyzed by AlCl_{3} 's superelectrophilic activation of $\mathrm{CO}_{2}{ }^{226}$ Also, Ren et al. observed a notable increase in the electrophilicity of simple aldehydes and ketones (carbonylcontaining species, like CO_{2}) when complexed to the $\mathrm{LA}_{\mathrm{BF}}^{3}$. ${ }^{227}$ These observations are consistent with our results, which show that the LAs lower the HT barriers by electrophilic activation of CO_{2}. We elaborate upon this explanation via hydride affinity (HA) calculations, reported in Table 3.1. HA is here defined as the negative of the change of enthalpy when CO_{2} 's carbon (in complexes a-e) accepts a hydride. HA quantifies the electrophilicity of the carbon of CO_{2} to accept a hydride, and as we now discuss, the fact that complexes a-e are more electrophilic with increasing HA is key for understanding the trends in Table 3.1's HT barriers.

As can be seen in Table 3.1, the FLP catalyst increases the HA of CO_{2} from 40.5 (a) to $79.9 \mathrm{kcal} / \mathrm{mol}(\mathrm{b})$, a result consistent with the increase in CO_{2} electrophilicity and thus the lowering of the HT barrier from 25.3 to $7.9 \mathrm{kcal} / \mathrm{mol}$. When CO_{2} is complexed with LAs only, as in cases c-e, the HA markedly increases to greater than $90 \mathrm{kcal} / \mathrm{mol}$, consistent with the low HT barriers of \mathbf{c}-e. This is especially true for \mathbf{c}, where the HA is $131.9 \mathrm{kcal} / \mathrm{mol}$ and HT is barrierless. Thus, the role of the LAs is to render CO_{2} more electrophilic (high HA), and as a result lower the barrier to HT. These results also support Stephan et al.'s very recent proposal that coordination of LAs to the oxygens of formate promotes $\mathrm{HT} .{ }^{228}$ The hindering role of the LB that we have
emphasized is evident when the HAs of cases \mathbf{b} and \mathbf{c} are compared: removing the LB from (b) to create (c) results in a significant increase in HA from 79.9 to $131.9 \mathrm{kcal} / \mathrm{mol}$.

Table 3.2: Thermodynamics of complex formation relative to the reactants two free $\mathrm{CO}_{2},(\mathrm{LA})_{2}$ dimer, two free $L B$ and two free $A B$ at $T=298 K$ and $P=1$ atm.

Complexes	$\Delta H^{\text {a }}$	$T \Delta S^{\text {a }}$	$\mathrm{K}_{\text {eq }}{ }^{\text {b }}$
1) $2 \mathrm{CO}_{2}+(\mathrm{LA})_{2}+2 \mathrm{LB}+2 \mathrm{AB}$	0.0	0.0	1.0
2) $\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{CO}_{2}+\mathrm{LB}+2 \mathrm{AB}$	-49.0	-26.5	2.8×10^{16}
3) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}+\mathrm{CO}_{2}+2 \mathrm{LB}+2 \mathrm{AB}$	12.9	-5.1	7.3×10^{-14}
4) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{CO}_{2}+2 \mathrm{LB}+2 \mathrm{AB}$	0.8	-9.1	5.4×10^{-8}
5) $2\left[\mathrm{CO}_{2} \bullet(\mathrm{LA})\right]+2 \mathrm{LB}+2 \mathrm{AB}$	4.9	-5.6	2.1×10^{-8}
6) $\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{CO}_{2}+\mathrm{LA} \cdot \mathrm{LB}+\mathrm{LB}+2 \mathrm{AB}$	-20.9	-12.6	1.2×10^{6}
7) $\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{CO}_{2}+\mathrm{LA} \bullet \mathrm{AB}+2 \mathrm{LB}+\mathrm{AB}$	-9.8	-8.0	2.1×10^{1}
8) $\mathrm{CO}_{2} \bullet \mathrm{NH}_{3} \mathrm{BH}_{2}^{+}+\mathrm{AlCl}_{3} \mathrm{H}^{-}+\mathrm{CO}_{2}+\mathrm{LA} \bullet \mathrm{AB}+2 \mathrm{LB}$	24.3	-7.5	4.7×10^{-24}
9) $2 \mathrm{CO}_{2}+2[\mathrm{LA} \cdot \mathrm{LB}]+2 \mathrm{AB}$	-46.7	-19.6	7.1×10^{19}
10) $2 \mathrm{CO}_{2}+2[\mathrm{LA} \cdot \mathrm{AB}]+2 \mathrm{LB}$	-24.5	-10.4	2.1×10^{10}
11) $2 \mathrm{CO}_{2}+\mathrm{LA} \cdot \mathrm{LB}+\mathrm{LA} \cdot \mathrm{AB}+\mathrm{LB}+\mathrm{AB}$	-35.6	-15.0	1.21×10^{15}

${ }^{a} \Delta \mathrm{H}$ and $\mathrm{T} \Delta \mathrm{S}$ in $\mathrm{kcal} / \mathrm{mol}$ referenced to two free $\mathrm{CO}_{2},(\mathrm{LA})_{2}$ dimer, two free LB and two free $A B$ of case 1 (see eq. 1 below). ${ }^{b}$ Equilibrium constant of the complexes (unitless), defined as $K_{e q}=\exp (-\Delta G / R T)$. Calculations were performed using MP2//B97-D in CPCM modeled $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ solvent.

3.3.3 Positive role of the $L B$: establishing high concentrations of reactive $\mathbf{C O}_{2}$

 complexes. We have already established that the role of the LB in the key CO_{2} reduction step is a negative one - to hinder HT. We now ask if the LB might play any positive role in the FLP activation of CO_{2}; we will find that the answer is yes, but its origin lies in the formation of reactive CO_{2} complexes rather than in their activation for reduction. Table 3.2 shows the calculated thermochemistry for several complexes (shown in bold and defined in equation 1; see SI , section 5) referenced to the starting reactants in case 1 ; two free $\mathrm{CO}_{2},(\mathrm{LA})_{2}$ dimer [(AlCl $)_{2}$), two free LB $\left(\mathrm{PMes}_{3}\right)$, and two free AB . Ammonia borane has been included herebecause, even though it was added to function as a reducing agent, it also complexes with the electrophilic LA through its hydridic hydrogens. ${ }^{228}$ Dimeric $\left(\mathrm{AlCl}_{3}\right)_{2}$ was chosen as the reference for Table 3.2 because AlCl_{3} is known to predominantly form dimers ${ }^{226}$ at various conditions; ${ }^{229-}$ ${ }^{231}$ the dimerization enthalpy of the LAs must be considered in determining the relative concentrations of reactive CO_{2} complexes (vide infra).

$$
2 \mathrm{CO}_{2}+(\mathrm{LA})_{2}+2 \mathrm{LB}+2 \mathrm{AB} \stackrel{\Delta \mathrm{H} ; \mathrm{T} \Delta \mathrm{~S} ; \mathrm{Keq}}{\longleftrightarrow} \text { Complexes } 1 \text { to } 11 \quad \text { (eq. 1) }
$$

The thermodynamic variables reported in Table 3.2 allow us to predict the relative concentrations of a number of reactive CO_{2} complexes. We calculate that $\mathrm{K}_{\text {eq }}$ for $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}$ (3) formation is 7.3×10^{-14}. This exceptionally low equilibrium constant is due to both the enthalpic and entropic costs of forming the complex from the $\left(\mathrm{AlCl}_{3}\right)_{2}$ dimer and CO_{2}. The $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ complex (4), where the LA dimer complexes with CO_{2}, initially looks more promising. $\mathrm{K}_{\text {eq }}$ for this case is $5.4 \times 10^{-8}, \sim 6$ orders of magnitude higher than for LA-O=C=O-LA. But this is still low, mainly due to the entropic cost of complex formation, which for this case is approximately enthalpically neutral. This $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ complex should attain its equilibrium concentration with CO_{2} and $(\mathrm{LA})_{2}$ dimer in the absence of LB and AB because the barriers for its formation ($10.6 \mathrm{kcal} / \mathrm{mol}$) from and dissociation ($9.9 \mathrm{kcal} / \mathrm{mol}$) to $\mathrm{CO}_{2}+(\mathrm{LA})_{2}$ are thermally accessible at room temperature (see SI section 3b). However its low $\mathrm{K}_{\text {eq }}$ suggests that it will not in fact be present in significant concentration. Thus, although complexes LA-O=C=O-LA and $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ both have low barriers to HT (Table 3.1, cases \mathbf{c} and \mathbf{d}), their equilibrium concentrations are too low to have a significant reaction rate in reducing CO_{2}.

Figure 3.3: Various complexes.
(a) $\mathrm{LA} \bullet \mathrm{LB}$ complex, (b) $\mathrm{LA} \bullet \mathrm{AB}$ complex and (c) TS structure of $\mathrm{CO}_{2} \bullet \mathrm{NH}_{3} \mathrm{BH}_{2}^{+}+\mathrm{AlCl}_{3} \mathrm{H}^{-}$, calculated at MP2//B97-D. $\mathrm{LA}=\mathrm{AlCl}_{3}, \mathrm{LB}=\mathrm{PMes}_{3}$, and $\mathrm{AB}=\mathrm{NH}_{3} \mathrm{BH}_{3}$. The H atoms in (a) are omitted for clarity. Al, light gray; B, pink; C, gray; Cl , green; H , white; N , blue; O , red; and P , orange.

We next analyze reactive CO_{2} complexes involving monomeric LA (Table 3.2, cases 5-7). Case 5 results from dissociation of the AlCl_{3} dimer to form two $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ complexes. Its $\mathrm{K}_{\text {eq }}$ is low (2.1×10^{-8}) because $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ complexation is less exothermic than AlCl_{3} dimerization. However, this dimerization is suppressed and an effective concentration of $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ established when $L B$ or $A B$ dissociate the AlCl_{3} dimer by forming $L A \bullet L B$ (Figure 3.3a) or $L A \bullet A B$ (Figure 3.3b) complexes, Table 3.2 cases 6 and 7 , where $K_{\text {eq }}$ is 1.2×10^{6} and 2.1×10^{1}, respectively. Thus, in addition to its key role as a hydride donor, AB complexes with the LA via its hydridic H and promotes $\mathrm{LA} \bullet \mathrm{AB}$ adduct formation that increases $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ concentration. Given that $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ forms in non-vanishing concentrations relative to the dominant cases (Table 3.2, $\mathbf{2}$ and $\mathbf{9}$), combined with the low HT barrier of $3.8 \mathrm{kcal} / \mathrm{mol}$ (Table 3.1, case e), CO_{2} reduction via reactive $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ contributes to the CO_{2} reduction rate. Case 8 in Table 3.2 is similar to CO_{2} activation by one LA (Table 3.1, case e). Here, borenium cation $\mathrm{NH}_{3} \mathrm{BH}_{2}{ }^{+}$acts as a LA that activates CO_{2} for HT from the $\mathrm{AlCl}_{3} \mathrm{H}^{-}$counter ion. Figure 3.3 c shows the TS for this HT where $\Delta \mathrm{H}^{\ddagger}$ hydride $=3.0 \mathrm{kcal} / \mathrm{mol}$. But despite the low HT barrier, the endothermic formation of $\mathrm{CO}_{2} \cdot \mathrm{NH}_{3} \mathrm{BH}_{2}^{+}$and $\mathrm{AlCl}_{3} \mathrm{H}^{-}$results in a vanishingly low $\mathrm{K}_{\text {eq }}$ value of 4.7×10^{-24}, thus making this pathway inactive.

The single case that exhibits a positive role for LB is case $\mathbf{2}$ of Table 3.2 in which CO_{2} is activated in the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex. $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ proves to be one of the most readily formed CO_{2} complexes. The large formation constant of $\mathrm{K}_{\text {eq }}=2.8 \times 10^{16}$ results from a favorable $-49.0 \mathrm{kcal} / \mathrm{mol}$ enthalpy of formation relative to the $(L A)_{2}$ dimer, free CO_{2} and free LB ; this enthalpic contribution is nearly double the unfavorable entropic contribution (see Table 3.2). We conclude that the role of the LB in FLP-catalyzed reduction of CO_{2} by AB is to provide a sufficient enthalpic driving force for the formation of the reactive FLP•CO2 complex. Thus, we predict that, given its large $\mathrm{K}_{\text {eq }}$ and relatively low $7.9 \mathrm{kcal} / \mathrm{mol}$ HT barrier (Table 3.1, case b), FLP-catalyzed CO_{2} reduction via $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex will dominate the HT rate, with minor contributions from $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ formed through Table 3.2 cases 6 and 7.

In view of the above predictions, we now discuss the recent proposal by Stephan et al. ${ }^{228}$ that in the presence of AB , the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex first dissociates to produce different reactive CO_{2} complexes that can dominate the HT rate. For the specific LA and LB choices considered here, our results we discussed above indicate that the dominant HT pathway proceeds through the undissociated $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex, with only minor contributions involving the AB -induced $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ dissociation product $\mathrm{CO}_{2} \cdot(\mathrm{LA})$ (Table 3.2, case 7). On the other hand, when $L A=A I\left(C_{6} F_{5}\right)_{3}$, and $L B=P(o \text {-tol })_{3}$, where o-tol $=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}$ and $A B=\mathrm{NMe}_{3} \mathrm{BH}_{3},{ }^{228}$ the equilibrium of the analogues of $\mathbf{6}$ and $\mathbf{7}$ relative to $\mathbf{2}$ in Table 3.2 will be shifted due to the steric effects introduced by $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. This effect may increase the contribution to the HT rate by $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ in Table 3.2 cases $\mathbf{6}$ and $\mathbf{7}$ as proposed by Stephan et al.

In Table 3.2 cases $\mathbf{9 - 1 1}$, favorable $\mathrm{LA} \bullet \mathrm{LB}$ and $\mathrm{LA} \bullet \mathrm{AB}$ interactions lead to CO_{2} not being complexed and thus not activated. In case 9, LA•LB exists in equilibrium ($\mathrm{K}_{\mathrm{eq}}=7.1 \times 10^{19}$) with $\mathrm{FLP} \cdot \mathrm{CO}_{2}\left(\mathrm{~K}_{\text {eq }}=2.8 \times 10^{16}\right)$. In fact, $\mathrm{LA} \cdot \mathrm{LB}$ was isolated experimentally in the absence of CO_{2}. In contrast, $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ was isolated (as a solid) when the solvent was evaporated from mixtures containing LA, LB and $\mathrm{CO}_{2} .{ }^{20}$ In the solid-state structure, the enthalpy of formation dominates $\mathrm{K}_{\text {eq }}$, thus $\mathrm{FLP} \cdot \mathrm{CO}_{2}(\Delta \mathrm{H}=-49.0 \mathrm{kcal} / \mathrm{mol})$ is predicted to exist in greater abundance than $\mathrm{LA} \cdot \mathrm{LB}$ $(\Delta H=-46.7 \mathrm{kcal} / \mathrm{mol})$. In the presence of LB, 9 likely dominates over 10, although $L A \bullet A B$ can still coexist with $L A \bullet L B$ through 11. Interactions of the $L B$ and $A B$ with the $L A$ in $L A \cdot L B$ and $L A \bullet A B$ complexes significantly shift the equilibrium concentrations and are key factors to consider in optimizing concentrations of reactive CO_{2} complexes.
3.3.4 Reactive $\mathbf{C O}_{2}$ complexes formed in the absence of $\mathbf{L B}$. In addition to revealing the roles of the LAs and LB in the FLP-catalyzed reaction, our results suggest an alternate approach to CO_{2} reduction using only LAs. None of the cases $\mathbf{1 , 3 , 4 , 5 , 7 , 8}$, and 10 in Table 3.2 involve the LB and are thus relevant for the LB-free situation. The comparison of their equilibrium constant values indicates that when LB is absent, the equilibrium established by $\mathbf{1 0}$ dominates in which $A B$ dissociates the $\mathrm{AlCl}_{3} \mathrm{LA}$ dimer to form $\mathrm{LA} \bullet \mathrm{AB}$ in abundance. This conclusion agrees with the reported isolation of analogous $L A \bullet A B$ complexes $\left(L A=A I\left(C_{6} F_{5}\right)_{3}\right.$ and $\left.A B=N M e_{3} B H_{3}\right)$ in high yield. ${ }^{228}$ But, CO_{2} is not activated by $\mathrm{LA} \bullet \mathrm{AB}$. Our results suggest that reactive CO_{2} species are instead formed as $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ by reaction 7 in equilibrium with 10 . This proposal that CO 2 is activated in the $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ form is supported by isolation of $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{HCO}_{2}\right) \mathrm{H}_{2} \mathrm{BNMe}_{3}$ formate species in the absence of LB; ${ }^{228}$ the observed formate species is analogous to the HT product of the reaction of $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ with AB (Table 3.1, case \mathbf{e}). We suggest that in the absence of LB , the
relative $K_{\text {eq }}$ values for cases $\mathbf{1 , 7}$, and $\mathbf{1 0}$ must be considered to optimize the concentration of $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ in order to lead to rapid CO_{2} reduction. Ideally, the $\mathrm{K}_{\text {eq }}$ value for $\mathbf{7}$ should be high ${ }^{232}$ relative to $\mathbf{1}$ and $\mathbf{1 0}$. In other words, a relatively high $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ complexation enthalpy and low binding affinities for $\mathrm{LA} \bullet \mathrm{LA}$ (dimer) and $\mathrm{LA} \bullet \mathrm{AB}$ formation will lead to significant concentrations of activated CO_{2} complexes for CO_{2} reduction. We propose that this can be achieved by employing $L A$ and $A B$ with bulky ligands ${ }^{233-234}$ to weaken $L A \cdot L A$ and $L A \bullet A B$ interactions relative to $\mathrm{CO}_{2} \bullet(\mathrm{LA})$.

3.4 Conclusion

In summary, we have determined a number of the underlying principles that govern CO_{2} conversion by FLP catalysts. It is the LAs of the FLP that act as the catalyst by polarizing CO_{2} to render it more electrophilic to accept a hydride at low barriers, which are strongly correlated with the hydride affinity of CO_{2} in the complex. Furthermore, the LAs catalyze HT to CO_{2} without pre-bending it from its linear geometry. Although we find that the LB hinders HT within the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex by lowering the hydride affinity of CO_{2}, its role is to stabilize that complex relative to the $(\mathrm{LA})_{2}$ dimer, free CO_{2} and free LB . This results in a high HT rate due to the high concentration of reactive CO_{2} species in the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex and a low HT barrier. In the presence of $L B$, and for the $L A$ and $L B$ considered here, we predict that the reactive CO_{2} complex $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ is a minor pathway to HT relative to CO_{2} reduction via the $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex. However, in the absence of LB, we predict that instead $\mathrm{CO}_{2} \bullet(\mathrm{LA})$ will be the dominant reactive CO_{2} complex responsible for forming HT products ${ }^{228}$ such as formate and methoxide. We anticipate that the principles found here should prove useful in the understanding and discovery of other catalytic CO_{2} reductions.

4 A Benzimidazole-Based Organo-Hydride for the Reduction of CO_{2}

Chern-Hooi Lim ${ }^{1 *}$, Brady T. Worrell ${ }^{1}$, Samuel S. Bacon ${ }^{1}$, Christopher N. Bowman ${ }^{1,2,3}$, James T. Hynes 2,4, and Charles B. Musgrave ${ }^{1,2,3 *}$
${ }^{1}$ Department of Chemical and Biological Engineering and ${ }^{2}$ Department of Chemistry and Biochemistry, ${ }^{3}$ Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States. ${ }^{4}$ Chemistry Department, Ecole Normale Supérieure-PSL Research University, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur, 24 rue Lhomond, 75005 Paris, France

Abstract

:

We report the metal-free reduction of CO_{2} to the formate anion by a benzimidazole-based organo-hydride guided by quantum chemical calculations. The formate product was characterized and confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and ESI-MS. We obtained the highest formate yield in the presence of potassium bromide under mild conditions; the proposed role of exogenous salt additives in this reaction is to stabilize and shift the equilibrium towards the ionic products. Such benzimidazole-based organo-hydrides rival the hydride donating abilities of noble metal-based hydrides, such as $[\mathrm{Ru}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{H}]^{+}$and $\left[\mathrm{Pt}(\text { depe })_{2} \mathrm{H}\right]^{+}$, demonstrating that these organo-hydrides stand as powerful, renewable, and inexpensive hydride transfer catalyst alternatives. We envision a catalytic cycle wherein benzimidazole-based organo-hydrides reduce CO_{2} to fuels and their regeneration is driven by renewable energy, thereby catalytically and sustainably producing usable fuel from CO_{2}.

4.1 Introduction

The chemical reduction of gaseous carbon dioxide $\left(\mathrm{CO}_{2}\right)$ to liquid fuels (e.g. methanol) powered by renewable energy could revolutionize the future landscape of energy. ${ }^{235-236}$ Although such a technology could effectively close the carbon cycle and despite much progress in the conversion of CO_{2} to utilizable fuels, no process has effectively met the requirements for the practical conversion of CO_{2} to fuels nor has the scientific community yet reached a consensus on a general approach.

The reduction of CO_{2} via hydride $\left(\mathrm{H}^{-}\right)$transfers stands as one of the most promising approaches to CO_{2} conversion, ${ }^{179-180,} 237$ with several reports describing progress towards implementation of such a system. ${ }^{106-107,238}$ Naturally, CO_{2} cannot proceed directly to methanol by a reductive pathway; rather it undergoes a series of three reductions followed by protonations; first, to formic acid (HCOOH), second to methanediol, which converts to formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ with loss of water, and finally to methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right) .{ }^{239}$ Overall, this exergonic process requires the addition of three hydrides and three protons.

Transition metal hydrides have been studied and proven effective for such reductions, with some efforts focused on determining their relative hydricities: the thermodynamic property which quantifies their potency as hydride $\left(\mathrm{H}^{-}\right)$donors. ${ }^{181,183,240}$ Strong transition metal hydrides normally involve noble metals, such as $[\mathrm{Ru}(\mathrm{tpy})(\mathrm{bpy}) \mathrm{H}]^{+}$and $\left[\mathrm{Pt}(\text { depe })_{2} \mathrm{H}\right]^{+} ;{ }^{240}$ however, recent advances using non-precious metal species, such as Co(dmpe) $)_{2} \mathrm{H}$, were developed to reduce CO_{2} to HCOO^{-}, however this requires a strong sacrificial base to form the requisite reducing complex in situ. ${ }^{106}$ Beyond the realm of transition metal catalyzed processes, only one example of an organo-hydride has been shown to reduce CO_{2} to HCOO^{-107} However, the
intermediacy of a Ru metal center was still required in this case where the dihydropyridine organo-hydride is part of the pbn (2-(pyridin-2-yl)benzo[b][1,5]naphthyridine)) ligand of the $\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{pbnH}_{2}\right)^{2+}$ complex. Moreover, a stoichiometric quantity of Br . n nted base is required to activate the H^{-}transfer from the pbn ligand of the Ru complex. ${ }^{241}$ Although many of these transition metal catalyzed and coupled complexes can effectively reduce CO_{2} to the formate ion and beyond, the high cost of homogeneous noble metal catalysts effectively hampers the development of economical processes for production of utilizable fuels from CO_{2}.

Scheme 4.1: Reduction of CO_{2} to formate anion by Benzimidazole-based organo-hydride

Directed by computational designs, we herein report benzimidazole-based organo-hydrides for the reduction of CO_{2} to HCOO^{-}(Scheme 4.1). To the best of our knowledge this is the first report of a non-sacrificial (vide infra) metal-free organo-hydride that reduces CO_{2} to HCOO^{-}; moreover, it is worth noting that the CO_{2} reduction illustrated in Scheme 4.1 proceeds in the absence of biological enzymes, ${ }^{174}$ a sacrificial Lewis acid, or a base to activate the substrate or reductant. ${ }^{20,112}$ Specifically, as detailed in Scheme 4.1, we chemically transformed
benzimidazolium cations (1,3-dimethyl-1H-benzimidazol-3-ium derivatives, species 1a-c) into their corresponding dihydrobenzimidazole organo-hydrides (1,3-dimethyl-2,3-dihydro-1Hbenzimidazole derivatives, species $\mathbf{2 a - c}$), which, as reported here, are capable of efficiently reducing gaseous CO_{2} to HCOO^{-}. This demonstrates possible routes for the transformation of species $\mathbf{1}$ to $\mathbf{2}$ via electrochemical, photochemical, or photoelectrochemical pathways powered by renewable energy, thereby, closing the catalytic cycle for HCOO^{-}generation. We envision that with the introduction of an appropriate H^{+}source, exhaustive reduction of HCOO^{-}to methanol via species 2 would be possible. We also foresee that metal-free organo-hydrides ${ }^{114,}$ ${ }^{242}$ provide an exciting new direction as low-cost, versatile, and tunable catalysts for future CO_{2} reduction research.

4.2 Results and Discussions

4.2.1 Benzimidazole-based organo-hydrides as strong hydride donors.

A number of previously reported studies have suggested that benzimidazole-based organohydrides are potential strong hydride donors. ${ }^{179,240,243}$ Using density functional theory (DFT) calculations, we predicted the thermochemical properties of CO_{2} reduction by benzimidazolebased organo-hydrides (2a-c) to determine if such hydrides were capable of reducing CO_{2} to HCOO. As shown in Table 4.1, species $\mathbf{2 a}$ (the most simplified system, where $R_{1}=H$ and $R_{2}=H$) was predicted to reduce CO_{2} to HCOO^{-}with reaction free energy of $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}=4.2 \mathrm{kcal} / \mathrm{mol}$, while regenerating species $\mathbf{1 a}$. Species $\mathbf{2 b}$, where $R_{1}=C H_{3}$ and $R_{2}=H$, was predicted to be a stronger hydride donor (when compared to our base case); the $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}$, is now improved to $2.0 \mathrm{kcal} / \mathrm{mol}$. Finally, our results predict that substitution of CH_{3} at R_{2} has a considerably larger effect towards the strengthening the hydricity, improving the hydride strength of $\mathbf{2 c}$ such that $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}=0.7$
$\mathrm{kcal} / \mathrm{mol}$. Our experimental results have corroborated these predictions. As noted in Table 4.1, the strongest hydride donor 2c produced the correspondingly highest yield of HCOO^{-}(59\%) relative to complexes $\mathbf{2 b}$ and $\mathbf{2 a}$ (4% and 5%, respectively). We note here that these reactions were performed under mild conditions ($\mathrm{T}=50^{\circ} \mathrm{C}$ and $\mathrm{P}_{\mathrm{CO} 2}=30 \mathrm{psig}$) in DMSO- d_{6} for 24 hours or less; the addition of salts, such as KBr, was empirically discovered to significantly increase the yield of the formate anion (vide infra).

Table 4.1: Predicted thermochemical properties of CO_{2} reduction by reductants 2a-c with their corresponding experimental formate yields.

Reductant $^{\mathrm{a}}$	Formate yield $(\%)^{\mathrm{b}}$	$\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ $(\mathrm{kcal} / \mathrm{mol})^{\mathrm{c}}$	$\Delta \mathrm{G}_{\mathrm{rxn}}^{0}$ $(\mathrm{kcal} / \mathrm{mol})^{\mathrm{c}}$	$\mathrm{R}_{\mathrm{C}-\mathrm{H}}(\AA)^{\mathrm{d}}$
2a	5	23.1	4.2	1.37
2b	4	22.1	2.0	1.39
2c	59	20.6	-1.2	1.38

${ }^{\mathrm{a}}$ Reaction conditions: $0.50 \mathrm{ml} \mathrm{DMSO}-\mathrm{d}_{6},[$ reductant $]=0.10 \mathrm{M},[\mathrm{KBr}]=0.50 \mathrm{M}, \mathrm{P}_{\mathrm{co2}}=30 \mathrm{psig}, \mathrm{T}=50^{\circ} \mathrm{C}$ and $\mathrm{t}=24 \mathrm{hr}$ (except $t=11 \mathrm{hr}$ for 2 c). ${ }^{\mathrm{b}}$ Determined from ${ }^{1} \mathrm{H}$-NMR using 0.05 M of 1,3,5-trimethoxybenzene as internal standard. ${ }^{c}$ Activation free energy ($\left.\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}\right)$ and reaction free energy ($\left.\Delta \mathrm{G}^{0} \mathrm{rxn}\right)$ at standard conditions were computed at rM06/6$31+G(d, p) / C P C M-D M S O$ level of theory. ${ }^{d}$ Transition state bond distance between the transferring hydride (H) and the carbon (C) of CO_{2}.

Figure 4.1: ${ }^{13} \mathrm{C}$-NMR spectra of species 2 c reacted with ${ }^{13} \mathrm{CO}_{2}$ in DMSO- d_{6}
Reaction conditions: $[\mathbf{2 c}]=0.10 \mathrm{M},[\mathrm{KBr}]=0.20 \mathrm{M}, \mathrm{P}_{\mathrm{CO} 2}={ }^{\sim} 20 \mathrm{psig}, \mathrm{T}=50^{\circ} \mathrm{C}$ and $\mathrm{t}=16 \mathrm{hr} .0 .05 \mathrm{M} 1,3,5-$ trimethoxybenzene was introduced as internal standard. ${ }^{13} \mathrm{C}$-formate appeared at 165.70 ppm ; dissolved ${ }^{13} \mathrm{CO}_{2}$ appeared at $124.18 \mathrm{ppm} .{ }^{244}$

4.2.2 Formation of ${ }^{13} \mathrm{C}$-formate from ${ }^{13} \mathrm{CO}_{2}$.

To confirm the formation of the presumed formate anion in our reaction we have sought to detect its presence under synthetically relevant conditions via ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and electrospray ionization mass spectrometry (ESI-MS). The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra obtained after completion of the reaction exhibited a peak at 8.46 ppm , which was confirmed to be the formate anion by comparison to the authentic sample (see supporting information S3 for experimental details). To further confirm the presence of the formate anion, ESI-MS (negative ion mode) was employed. The formate anion was observed to form complexes with the added salts: for example, in S 4 , we detected the presence of the $\mathrm{KBr} \cdot \mathrm{HCOO}^{-}$complex with $\mathrm{m} / \mathrm{z}=162.9,164.9$, and 166.9 in the correct isotopic ratios. Thus, these two analytical methods have unambiguously confirmed the presence of the formate anion in our product solution.

To further validate our proposed mechanism of reduction, we conducted experiments with isotopically enriched ${ }^{13} \mathrm{CO}_{2}$ gas (99 atom $\%{ }^{13} \mathrm{C}$). Figure 4.1 confirms the presence of $\mathrm{H}^{13} \mathrm{COO}^{-}$ (appearing at 165.70 ppm ; see S 5 for comparison to the authentic sample) in the product solution after ${ }^{13} \mathrm{CO}_{2}$ is reacted with the hydride species $\mathbf{2 c}$. The significant enhancement of $\mathrm{H}^{13} \mathrm{COO}^{-1}{ }^{13} \mathrm{C}$-NMR signal relative to other species in the solution (peaks a-d) is apparent in Figure 4.1. In addition, in S 5 , we show that the ${ }^{13} \mathrm{C}$ nuclear spin splits the ${ }^{1} \mathrm{H}$-NMR peak of $\mathrm{H}^{13} \mathrm{COO}^{-}$into a doublet (at 8.27 and 8.72 ppm), further corroborating the presence of isotopically enriched $\mathrm{H}^{13} \mathrm{COO}^{-}$. These results conclusively prove that the formate anion detected in the reaction mixture is derived from the chemical reduction of carbon dioxide introduced to our solution.

Table 4.2: Reaction of species 2 c with CO_{2} at various experimental conditions.

Entries $^{\mathrm{a}}$	Salts	$[$ Salts] (M)	Solvent $^{\mathrm{b}}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (hr)	Consumption of 2c $(\%)^{\mathrm{c}}$	Formation of 1c $(\%)^{\mathrm{c}}$	Formate Yield (\%)
1	-	-	${\text { DMSO- } d_{6}}$	50	24	69	69	5
2	KBr	0.20	${\text { DMSO- } d_{6}}$	25	24	52	51	27
3	KBr	0.50	${\text { DMSO- } d_{6}}$	25	24	79	77	33
4	KBr	0.20	${\text { DMSO- } d_{6}}$	50	11	86	86	40
5	KBr	0.50	${\text { DMSO- } d_{6}}$	50	11	92	91	59^{d}
6	KI	0.50	${\text { DMSO- } d_{6}}$	50	11	82	82	40^{d}
7	LiBr	0.50	${\text { DMSO- } d_{6}}$	50	11	95	94	36^{d}
8	NaI	0.50	${\text { DMSO- } d_{6}}$	50	11	87	86	25^{d}

${ }^{\mathrm{a}}$ [species 2 c] $=0.10 \mathrm{M}, \mathrm{P}_{\mathrm{CO2}}=30 \mathrm{psig}{ }^{\mathrm{b}}$ Deuterated solvents at 0.50 ml ; in DMSO- d_{6}, the solution appeared slightly cloudy after reactions were completed, 0.20 ml methanol- D^{4} was added to the solution to improve solubility prior to acquiring NMR spectrums. ${ }^{\text {C D Determined from }}{ }^{1} \mathrm{H}$-NMR using 0.05 M of $1,3,5$-trimethoxybenzene as internal standard. ${ }^{d}$ formate yield was determined from the average of three runs with reproducibility of $\pm 5 \%$.

4.2.3 Effects of salts on formate yield.

During the course of these studies we have empirically discovered that the addition of various salts to the reaction mixture greatly enhanced the observed formation of the formate anion. As noted in Table 4.2, it is apparent that without any salts the HCOO^{-}yield was nearly undetectable (5\%, entry 1). Alternatively, under various reaction conditions, the presence of salts (e.g. $\mathrm{KBr}, \mathrm{KI}, \mathrm{LiBr}$ and NaI) resulted in markedly higher yields of the reduced product (25$59 \%$, entries 2-8); of which KBr gave the highest formate yield (59%, entry 3) in comparison to others salts under the same conditions. To explain the effect of such additives in this reaction we propose that salts increase the ionic strength of the solution, which in turn creates a more polar environment that stabilizes the ionic products (species 1 c and HCOO^{-}) and corresponding intermediates leading to their formation; this thus biases the equilibrium towards ionic product formation (e.g. HCOO^{-}).

Although we have, to this point, performed the reductions of CO_{2} at slightly elevated temperatures $\left(50^{\circ} \mathrm{C}\right.$, entries $\left.1-6\right)$, we anticipated that species $\mathbf{2 c}$ could be capable of reducing CO_{2} to HCOO^{-}at room temperature $\left(\mathrm{T}=25^{\circ} \mathrm{C}\right)$, corroborating the low free energy activation barrier $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}=20.6 \mathrm{kcal} / \mathrm{mol}$ as predicted in Table 4.1. Indeed, species $\mathbf{2 c}$ was effective as a reductant under ambient conditions; however, lower yields of the formate anion were obtained (27-33\%, entries 7-8). We also examined this reduction in different solvents including $\mathrm{MeOH}-d_{4}$ and $\mathrm{MeCN}-d_{3}$. However, essentially no formate anion was measured in either case. Taken together, we propose that the observed lapsed activity in these solvents ($\mathrm{MeOH}-d_{4}$ and MeCN -
d_{3}) can be attributed to their lower polarity, as evidenced by their polarity index values of 5.1 and 5.8 , respectively, in comparison to 7.2 for DMSO-d ${ }_{6}$. Following the same argument as the previously discussed effect of salt in this reaction, lower solvent polarity disfavors ionic product formation, thus leading to lower yields of our reduced product.

The data reported in Table 4.2 shows that despite introducing CO_{2} in great excess, in the best case only 59% of the hydride of $\mathbf{2 c}$ is productively consumed to form the formate anion (Table 4.2, entry 3), while the remainder is presumably consumed by side reactions. We have identified two potential channels for the non-productive hydride consumption of species $\mathbf{2 c}$. First, we anticipate that the H^{-}can react with trace water in DMSO (due to its hygroscopic nature) to form H_{2} and hydroxide $\left(\mathrm{OH}^{-}\right) .{ }^{245}$ Second, the hydride form of 2c could also nonproductively react with DMSO to form dimethyl sulfide and hydroxide. The hydroxide generated from these two sources (trace water and DMSO) can balance with potassium cations available in the solution to form insoluble KOH salts, potentially explaining the slight cloudiness of the solution after completion of the reaction.

We propose that a dearomatization-aromatization process is at play to create the driving force for CO_{2} reduction by this hydride, similar to the pyridine system ${ }^{39}$ we examined previously. ${ }^{239}$ As species 1 is aromatic and becomes dearomatized upon its reduction to compound 2, the proclivity of this species to recover aromaticity drives $\mathbf{2}$ to transfer its H^{-}to CO_{2}, forming the reduced product while recovering the aromatic species 1. Further elaboration of the general structure of species 1 based on such mechanistic investigations is currently underway in an attempt to maximize yield, stability, and reduction potential.

4.3 Conclusion

In conclusion, we have demonstrated the use of non-sacrificial and metal-free benzimidazole-based organo-hydrides (2) for the reduction of CO_{2} to the formate anion. The quantitative recovery of benzimidazolium cations (1) from species 2 after hydride transfer to CO_{2} establishes that a redox couple (2/1) could function effectively in CO_{2} reduction. This not only shows the possibility of utilizing organically derived hydride sources to efficiently reduce CO2 to usable fuels, but also opens the door for future development of reducing species $\mathbf{1}$ to $\mathbf{2}$ electrochemically, photochemically or photoelectrochemically powered by renewable energy, thereby closing the carbon cycle. We envision this work will inspire future research that incorporates an appropriate proton source into our proposed catalytic cycle to affect the exhaustive reduction of CO_{2} to methanol.

5 Visible-light organic photocatalysis for latent radical-initiated polymerization via $\mathbf{2 e} / \mathbf{1} \mathbf{H}^{+}$transfers: Initiation with parallels to photosynthesis

Alan Aguirre-Soto ${ }^{\dagger}$, Chern-Hooi Lim ${ }^{\dagger}$, Albert T. Hwang ${ }^{\dagger}$, Charles B. Musgrave ${ }^{\dagger}$, Jeffrey W. Stansbury ${ }^{*+, \ldots}$
${ }^{\dagger}$ Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave., Boulder, Colorado 80303, USA.
${ }^{*}$ Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, 12800 East $19^{\text {th }}$ Ave., Aurora, Colorado 80045, USA.
Journal of American Chemistry Society: dx.doi.org/10.1021/ja502441d

Abstract

: We report the latent production of free radicals from energy stored in a redox potential through a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically-hindered amine reductant and an onium salt oxidant. This enables lightinitiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination, and beyond the spatial reach of light by diffusion of the meta-stable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$shuttle mechanism, as opposed to the $1 \mathrm{e}^{-}$ transfer process typical of organometallic-based and conventional organic multi-component photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light-absorption, and enables the 'storage' of light-energy

without spontaneous initiation of the polymerization. Latent energy-release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporallycontrolled redox initiation of polymer syntheses under low-intensity short exposure conditions, and permits visible-light-mediated synthesis of polymers at least one order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.

5.1 Introduction

Free radicals (radicals) participate in a wide variety of organic synthetic ${ }^{246}$ and polymerization reactions, ${ }^{247}$ e.g., vinyl homo- and co-polymerizations, ${ }^{248}$ thiol-ene click chemistry, ${ }^{249}$ Cu-catalyzed azide-alkyne cycloadditions, ${ }^{250}$ Atom Transfer Radical Additions, ${ }^{251-}$ 252 and alcohol to halide conversions. ${ }^{253}$ Radical production by light activation provides unique temporal control of reactions. However, radicals must be produced continuously by large irradiation doses to sustain the balance between competing creation and termination of radicals. As a result, radical-initiated reactions characteristically halt quickly due to efficient radical termination when the external energy supply (light) is extinguished. Persistent or trapped radicals in dense polymer networks allow a limited degree of polymerization after lightcessation. ${ }^{248,254}$ Whereas in Controlled or 'Living' Polymerization, the termination process is altered through an equilibrium that favors radicals in a dormant state so active radical concentrations remain low and essentially constant. ${ }^{255-256}$ However, living radical photopolymerization is usually slow and still requires continued irradiation. ${ }^{255}$ Furthermore, no
scheme has yet been devised to sustain radical production after the energy supply is extinguished without altering the radical termination process. Here, we report the first use of organic photoredox catalysis to continue radical production for extended time intervals in the dark after a brief initial low-intensity light-exposure, opening new opportunities in photoactivated polymer and possibly organic synthesis. ${ }^{257}$

Conventionally, light-activated radical-based polymer synthesis entails radical production via photolytic bond-cleavage, e.g. phosphine oxides or acetophenones, ${ }^{258}$ or by light-mediated electron transfer or exchange between a chromophore, such as camphorquinone, and either a reductant or an oxidant. ${ }^{259}$ In principle, radical generation in both of these approaches is restricted to where the excited molecules reside, i.e. within the imprint and penetration depth of photons. Examples of applications that rely on spatiotemporal controlled processing include the creation of patterned materials for nano- and micro-scale devices, metamaterials, laser imaging and holography. ${ }^{260-263}$ However, in optically thick materials, light absorption, scattering and reflection limit light penetration and thus polymerization to mere millimeters, or often, to just tens to hundreds of micrometers from the irradiated surface while requiring high irradiation intensities or extended photocuring intervals. ${ }^{264-265}$ As a result, through-plane polymerization is severely limited, which is detrimental in applications such as dental and orthopedic composites, irregular surface coatings, photolithographic resists, and cell-encapsulation hydrogels, ${ }^{263,}$ 266-268 where unintentional property gradients and residual monomer beyond the light penetration depth limit is generally unacceptable. Ultimately, layer-by-layer polymerization is thus required if conventional free-radical photopolymer initiators are to be used for optically thick materials.

In contrast, radical generation through chemically-activated redox initiation, such as with peroxide/amine combinations, allows synthesis of thick polymeric materials under ambient conditions upon in-situ mixing of two-part formulations, as in bone cements. ${ }^{269}$ However, this redox approach lacks temporal control of the initiation reaction beyond the mixing process. In other instances 'dual-cure' systems require post-irradiation heating or moisture cure. ${ }^{270}$ 'Dual-cure' systems, in which photo- and redox-activated chemistries work more or less simultaneously, introduce some temporal control. However, the two initiation modes work relatively independently and mixing immediately prior to use is still required; thus, imposing similar temporal control limitations as redox systems. ${ }^{271}$

Frontal polymerization has been reported to allow deep shadow cure in free-radically and cationically initiated thick (centimeter scale) or opaque samples upon UV exposure. ${ }^{272}$ Despite its attractive simplicity, limited storage stability of the peroxides-containing formulations and its inherent dependence on the self-propagated (by polymerization exothermicity) temperature wave front (over $100{ }^{\circ} \mathrm{C}$) have precluded the use of this technique in most applications. ${ }^{273-275}$ No reports were found of free-radical photopolymerization of (meth)acrylates in which initiation extends beyond the irradiation space and time under ambient conditions without depending on the polymerization exotherm to sustain initiation in the dark.

In this contribution, we introduce the concept of organic photoredox catalysis as a novel approach to combine the temporal onset control of conventional photo-activation with the spatial reach of redox-activated radical production. We demonstrate that the combination of
these phenomena extends the capabilities of prevailing photoinitiated processes and enables the practical synthesis of initially optically thick, centimeter-scale vinyl photopolymers at ambient conditions.

In recent years, photoredox catalysis has gained attention as an alternative to achieve faster rates of radical-initiated polymerization upon low-intensity visible-light irradiation. ${ }^{276}$ Almost all of the reported mechanisms, including those for similar methylene blue $\left(\mathrm{MB}^{+}\right)$/amine/onium salt formulations, rely on sequential $1 \mathrm{e}^{-}$transfers to and from the photocatalyst, as is characteristic of ruthenium and iridium complexes. ${ }^{276-283}$ In these mechanisms, transfer of a single electron allows production of (open-shell) radicals from the photo-induced electron transfer (PET) step and essentially initiates the polymerization process immediately after the light-absorption event. Then, the consecutive $1 \mathrm{e}^{-}$transfer step(s), responsible for the regeneration of the photocatalyst, occur(s) so fast that light-energy 'stored' in the photocatalyst as chemical energy is used shortly (less than a few seconds) after the PET step; thus these radical production approaches are incapable of sustaining the polymer synthesis for prolonged periods (hours) following light cessation. ${ }^{255,281}$

To the best of our knowledge, we report the first energy-harvesting approach using organic photocatalysis for latent light-induced radical-initiated polymer synthesis that relies on a two-electron/one-proton $\left(2 e^{-} / 1 \mathrm{H}^{+}\right)$transfer mechanism. Using a sterically-hindered amine (N, N-diisopropylethylamine, DIPEA) as a sacrificial donor that induces a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer to the organic photocatalyst MB^{+}in a 1-to-1 fashion, we prevent immediate free-radical initiation of polymer synthesis of (meth)acrylate monomers upon light absorption, and enable visible-light
energy storage as chemical energy in a metastable closed-shell species: leuco-methylene blue (LMB). The stored energy is subsequently utilized to generate two initiating phenyl radicals per photocatalytic cycle from the ground-state redox reaction between the metastable LMB and the oxidizer (diphenyliodonium, DPI^{+}) for extended time intervals (hours) after short, lowintensity irradiation.

Using photocatalysis to store light-energy in a metastable species (via a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer mechanism) in order to sustain ground-state reactions (e.g. radical generation that initiates polymer synthesis) for extended periods (hours) after a brief light-activation is the basis of the approach presented herein. Similar PET-based mechanisms have been envisioned as the basis for 'molecular circuits' and 'molecular computing devices', ${ }^{284-285}$ but we present the first example of a PET-based scheme for light harvesting analogous to photosynthesis that allows photopolymerization be extended well beyond irradiation. In this paper, we: 1) describe coupled experimental and quantum chemical studies that support the photo-induced redox radical formation via the $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer mechanism and 2) demonstrate the capabilities of this new radical production approach within the scope of radical chain-growth polymer synthesis.

5.2 Results and discussion

5.2.1 Fast radical production in MB $^{+} /$DIPEA/DPI ${ }^{+}$formulations. Radical production was analyzed by monitoring the disappearance of the infrared absorption corresponding to the vinyl group ($=\mathrm{CH}_{2}$) of the monomer with Fourier transform near-infrared spectroscopy (FT-NIR). ${ }^{286}$ The extent of vinyl group consumption indicates monomer conversion due to polymerization, which correlates with radical production. Under continuous, low-intensity visible-light
irradiation, monomer solution (e.g. 2-hydroxyethyl methacrylate; HEMA) containing methylene blue ($\mathrm{MB}^{+}, \mathbf{1}$), N, N-diisopropylethylamine (DIPEA, 2), and diphenyliodonium cation ($\mathrm{DPI}^{+}, \mathbf{3}$) reaches a vitrification-limited 85% conversion in 500 s (Figure 5.1a). Under the same conditions, formulations where either or both DIPEA and DPI^{+}are absent (MB ${ }^{+} /$DIPEA; $\mathrm{MB}^{+} / \mathrm{DPI}^{+}$; or MB^{+}) exhibit less than 2 \% monomer consumption.

To further probe the initiation process, the concentration of MB^{+}was analyzed via realtime ultraviolet-visible (UV-Vis) spectroscopy. MB^{+}is consumed efficiently (Figure 5.1b) in the presence of DIPEA with or without DPI^{+}. However, the $\mathrm{MB}^{+} /$DIPEA formulation is ineffectual towards initiating polymerization, whereas the $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$formulation leads to a significant radical production rate, as demonstrated by HEMA conversion, that is comparable to the reaction kinetics and conversion achieved with a conventional visible-light initiator composed of camphorquinone (CQ) and ethyl 4-dimethylaminobenzoate (EDMAB), for which equivalent amounts of photons are absorbed (Figure 5.1a- see experimental section). Hence, direct radical production from MB^{+}consumption by DIPEA is negligible. This indicates that MB^{+} consumption and radical production involve separate reaction steps (described in detail in following sections); while MB^{+}consumption is primarily dependent on the presence of DIPEA; the oxidant (DPI^{+}) plays the main role in radical production.
5.2.2 PET reaction of $\mathrm{MB}^{+} /$DIPEA generates the colorless LMB. Now, we reevaluate the MB^{+}/DIPEA system to establish the connection between photoreduction of MB^{+}and the subsequent radical generation that necessitates the presence of DPI^{+}. In general, the reduction
of MB^{+}has been proposed to proceed via a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$process to produce the leuco product LMB in a reducing environment, ${ }^{287-288}$ as represented in reaction (1).

$$
\begin{equation*}
\mathrm{MB}^{+}+2 \mathrm{e}^{-}+1 \mathrm{H}^{+}=\mathrm{LMB} \tag{1}
\end{equation*}
$$

Figure 5.1: Evidence of radical production via photoredox catalysis of methylene blue (MB^{+}).
a, Conversion of vinyl group (polymerization) of 2-hydroxyethyl methacrylate (HEMA) during continuous irradiation of 1 mm thick samples. $\mathrm{MB}^{+}(1) / \mathrm{DIPEA}(2) / \mathrm{DPI}^{+}(3)$ are required for polymerization at a rate comparable to the conventional CQ/EDMAB formulation with the same amount of photons absorbed (~ 13 and $22 \mathrm{~mW} / \mathrm{cm}^{2}$, respectively). \mathbf{b}, Initial rates of polymerization (R_{po} from numerical differentiation of FT-IR data- see SI section 4) and initial rates of MB^{+}bleaching (with UV-Vis spectroscopy at $\sim 60 \mathrm{~mW} / \mathrm{cm}^{2}$). $\mathrm{MB}^{+} /$DIPEA leads to efficient consumption of $\mathrm{MB}^{+}\left(2.1^{*} 10^{-5} \mathrm{M} / \mathrm{s}\right)$ but no radical production (which correlates to the vinyl group conversion and $R_{p 0}$), whereas $\mathrm{MB}^{+} /$DIEPA/DPI ${ }^{+}$increases radical production rate dramatically ($\sim 100-$ fold based on $R_{p 0}$) with no significant improvement on MB^{+}consumption rate $\left(2.7^{*} 10^{-5} \mathrm{M} / \mathrm{s}\right)$. Rates of bleaching without DIPEA are negligible. This indicates that DIPEA does not produce radicals efficiently (shows negligible polymerization). Thus, DPI^{+}should play the main role in term of radical production. c, Photoredox cycle in methanol with DIPEA and $\mathrm{O}_{2} \mathrm{or} \mathrm{DPI}^{+}$. MB^{+}in methanol is bleached, photoreduced to colorless LMB, and regenerated by an oxidant. The process can be repeated as MB^{+}is regenerated after each cycle, i.e. photocatalysis cycle.

Under irradiation, the $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer process (1) is driven by light and is referred to as photo-induced electron transfer (PET). ${ }^{289-290}$ The PET of specific interest here is the reduction of MB^{+}to the colorless LMB in the presence of DIPEA (reductant). For example, in Figure 5.1b, we see that the rates of MB^{+}consumption for the $\mathrm{MB}^{+} /$DIPEA and $\mathrm{MB}^{+} /$DIPEA/DPI formulations are $2.1^{*} 10^{-5}$ and $2.7^{*} 10^{-5} \mathrm{M} / \mathrm{s}$, respectively. Reduction of MB^{+}to LMB is identified by the 112
decrease of the ${ }^{\sim} 650 \mathrm{~nm}$-centered peak and appearance of a $\sim 250 \mathrm{~nm}$-centered peak (Figure
5.1b- see SI section 7). This process is commonly known as 'photo-bleaching', where the signature blue color of $\mathrm{MB}^{+}\left(\lambda_{\max }=\sim 650 \mathrm{~nm}\right)$ disappears and the mixture turns colorless (Figure
5.1c).

Polymerization

Step 4- Radical Production
2

Diphenyliodonium salt (DPI^{+})

Energy Stored as $\mathrm{LMB} / \mathrm{DPI}^{+}$
Redox Potential Leuco Methylene Blue (LMB)

Amine decomposition products

Step 3- Dissociation into
Closed-Shell Molecules

Charge-transfer exciplex

Excited methylene blue (triplet)

Figure 5.2: Free radical initiated polymer synthesis with light energy harvesting cycle.
Step 1: Visible-light (hv) excitation of MB^{+}to the singlet state (not shown), which quickly decays to the longer-lived triplet state $\left(\mathrm{MB}_{t}{ }^{+*}\right)$ via intersystem crossing. Step 2: excess DIPEA quenches $\mathrm{MB}_{\mathrm{t}}{ }^{+*}$ to colorless LMB via transfer of two electrons and one proton (reaction 1) through formation of a charge-transfer excited state complex (exciplex). Step 3: after a $2 e^{-} / 1 \mathrm{H}^{+}$transfer, the exciplex separates into LMB and DIPEA-decomposition products. DIPEA decomposes to closed-shell molecules, and does not initiate polymerization. Step 4: LMB is oxidized back to MB^{+} by DPI^{+}to produce two phenyl radicals per LMB. Phenyl radicals are responsible for the fast initiation of chaingrowth polymerization of HEMA. Faster (thicker arrows) MB^{+}reduction and slower (thinner arrows) reoxidation steps allow LMB to accumulate, and also create a lag time between light absorption and radical generation. Thus, energy is stored as an electrochemical potential between LMB and DPI ${ }^{+}$, which produces radicals beyond light absorption. This is analogous to the NADP ${ }^{+} /$NADPH cycle (inset) known in photosynthesis in which the transfer of
$2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$in the photoredox cycle stores light-energy in the form of a chemical potential that is used to reduce carbon dioxide to higher molecular weight sugars and carbohydrates.

Next, we describe the PET process in greater detail, as illustrated in Figure 5.2. In step 1, absorption of photons excites MB^{+}, which undergoes intersystem crossing to ultimately produce the triplet excited-state $\mathrm{MB}_{t}{ }^{+*}$. Subsequently in step 2, an excited-state complex (exciplex) forms between DIPEA and $\mathrm{MB}_{\mathrm{t}}{ }^{+*}$ prior to the PET reaction. ${ }^{291}$ It is important to note that in conventional PET reactions involving amines and chromophores, the amine reductant typically provides one electron (e) and one proton $\left(\mathrm{H}^{+}\right)$to the photo-excited chromophore. ${ }^{278,}$ 280-281, 289-290, 292 For example, with the CQ chromophore and EDMAB reductant, transfer of $1 \mathrm{e}^{-}$ $/ 1 \mathrm{H}^{+}$results in the production of the alpha-aminoalkyl radical that is reactive towards vinyl monomers and thus initiates polymerization. ${ }^{279,293}$ If the analogous $1 e^{-} / 1 \mathrm{H}^{+}$transfers occur in $\mathrm{MB}^{+} /$DIPEA photoreduction, two DIPEA molecules would be required for each bleached MB^{+} (reaction 1). As a result, each amine would result in an alpha-aminoalkyl radical that would be expected to cause fast polymerization of the methacrylate monomer. Quantum chemical simulations predict that creation of a monomer-based radical with the alpha-aminoalkyl radical, i.e. initiation of the polymerization, is barrierless and thus confirm that polymerization would be fast and diffusion-limited in solution if DIPEA-based radicals were produced. In Figure 5.3, we show the equilibrium structures of (a) reactant, (b) transition state (TS) and (c) product for the C-C bond formation reaction between the alpha-aminoalkyl radical and HEMA monomer.

Figure 5.3: Reaction between alpha-aminoalkyl radical and HEMA monomer.
Equilibrium structures of (a) Reactant, (b) Transition state (TS) and (c) Product are determined using unrestricted M06/6-311G(d,p)/CPCM-methanol. The enthalpic barrier for this reaction is determined to be $\Delta H_{\text {act }}^{0}=-1.4$ $\mathrm{kcal} / \mathrm{mol}$, after zero-point-energy (ZPE) and thermal corrections to 298 K . Note that although $\Delta \mathrm{E}^{0}$ act is positive, thermal and zero-point corrections often produce a negative $\Delta \mathrm{H}_{\text {act }}^{0}$ for reactions that are essentially barrierless.

Despite the formation of LMB, we observed no significant polymerization with MB^{+}/DIPEA (Figure 5.1a). This contrasts with other tertiary aliphatic amines that photoreduce MB^{+}via $1 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfers to produce alpha-aminoalkyl radicals that initiate polymerization efficiently, as previously reported, ${ }^{277,294-295}$ and confirmed by our FT-NIR spectroscopy measurements with other tertiary amines (SI, Section 2). This observation compelled us to propose that the strong and sterically-hindered DIPEA base plays a unique role in the MB^{+}PET reaction examined here: it reacts rapidly with the photoexcited $\mathrm{MB}_{\mathrm{t}}^{+^{*}}$ in a 1-to-1 fashion, where DIPEA serves as a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$donor. Hence, closed-shell degradation products are produced from the PET reaction (Figure 5.2, Step 3), but not DIPEA-based (alpha-aminoalkyl) radicals. Using electrospray ionization-mass spectrometry $\left(\mathrm{ESI}^{+}\right)$, we identified both 2-ethyliminopropane and propene as the by-products of the entropy-driven DIPEA decomposition via carbonnitrogen σ-bond cleavage (SI, section 3).

To our knowledge, this is the first time a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer mechanism has been demonstrated for the photoreduction of a photocatalyst (MB^{+}) with an amine (DIPEA) in 1:1 ratio that produces no alpha-aminoalkyl radicals during the PET reaction.

Figure 5.4: Dearomatization of MB^{+}after a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer.
(a) MB^{+}is a planar aromatic molecule that absorbs strongly in the visible light spectrum ($\lambda_{\max }={ }^{\sim} 650 \mathrm{~nm}$). (b) LMB is a photoproduct of a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer in $\mathrm{MB}^{+} /$DIPEA PET reaction. After a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer, the thiazine ring in LMB is dearomatized and is significantly bent from the original planar structure. Time-dependent DFT (TD-DFT, Methods) using ω B97XD/LANL2dz/CPCM-methanol predicts that LMB absorbs at $\lambda_{\max }=\sim 300 \mathrm{~nm}$, which corroborates the observed blue-shift of $\lambda_{\max }$ to ${ }^{\sim} 250 \mathrm{~nm}$ and explains the bleaching of the solution to its colorless form.

Finally, the PET reaction in step 3 leads to the desired LMB product. Examination of the calculated LMB equilibrium structure (Figure 5.4) suggests that a dearomatization process occurs after $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer (1), where the thiazine ring distorts significantly from its original planar structure. Furthermore, excited state calculations using TD-DFT predict that the PET process significantly blue-shifts MB^{+}absorption, which is typical of a dearomatization process. LMB is predicted to absorb only in the near-UV region at $\sim 300 \mathrm{~nm}$ (compared to $\sim 650 \mathrm{~nm}$ for MB^{+}), which agrees with the appearance of the $\sim 250 \mathrm{~nm}$ peak during PET. Next, we examine how LMB, a meta-stable closed-shell product from PET, participates in a ground-state reaction with the DPI^{+}oxidant to generate the radicals responsible for polymerization.
5.2.3 Radical production from $\mathrm{LMB} / \mathrm{DPI}^{+}$reaction. If photoreduction of MB^{+}by DIPEA produces LMB by (1) but generates no radicals, then the radicals responsible for the fast polymerization of the monomer with $\mathrm{MB}^{+} / D I P E A /$ DPI $^{+}$must arise from the ground-state oxidation of LMB back to MB^{+}by DPI^{+}. This proposal is based on the fact that LMB has been observed to oxidize to MB^{+}with O_{2} as the oxidant, consistent with the observed gradual return of $\mathrm{MB}^{+ \text {'s }}$ blue color (Figure 5.1c). Furthermore, LMB is an efficient reducing agent. ${ }^{277,}$, 296-298 Herein we propose that radical production in $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$(Figure 5.2, Step 4) occurs as follows:

$$
\begin{equation*}
\mathrm{LMB}+2 \mathrm{DPI}^{+}=\mathrm{MB}^{+}+2 \mathrm{Ph}^{\bullet}+2 \mathrm{I}-\mathrm{Ph}+\mathrm{H}^{+} \tag{2}
\end{equation*}
$$

DFT calculations performed at the uM06/6-311G**//uwB97XD/LANL2dz level of theory in CPCM implicit methanol solvent (see Methods) support reaction (2) with a predicted $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}$ of $-5.2 \mathrm{kcal} / \mathrm{mol}$. Furthermore, production of two highly reactive phenyl radicals per LMB accounts for the fast polymerization rate observed with $\mathrm{MB}^{+} /$DIPEA $^{(D P I}{ }^{+}$(Figure 5.1a) under irradiation. ESI^{+}shows the production of iodobenzene-based products (SI, Section 3), which provides additional evidence for (2); the oxidation of LMB by DPI^{+}via (2) also explains the observed return of $\mathrm{MB}^{+ \text {+ }}$ s blue color.

To further investigate the radical generation process described by reaction (2), we performed an Arrhenius analysis to determine that the activation barrier for the free radical production step in the polymerization of HEMA with $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$is $\Delta \mathrm{E}_{\text {act }}=6.6 \pm 1.0$ $\mathrm{kcal} / \mathrm{mol}$ (Figure 5.5a and SI, Section 3). Next, we used real-time UV-Vis to quantify the regeneration rate of MB^{+}at various temperatures after a 10 s irradiation (Figure 5.5 b). We
observed that light-activated MB^{+}consumption is temperature independent (Figure 5.3b, Light), as expected for a PET reaction where diffusion restrictions are mitigated by excess reductant (DIPEA). In contrast, MB^{+}regeneration is strongly temperature sensitive (Figure 5.5 b , Shaded). From the UV-Vis results, we estimate that $\Delta \mathrm{E}_{\text {act }}$ for MB^{+}regeneration is 7.2 ± 1.3 kcal/mol (SI, Section 4).

Statistical agreement in $\Delta \mathrm{E}_{\text {act }}$ values from independent Arrhenius analyses of both monomer consumption and MB^{+}regeneration effectively confirms that the two observations are due to reoxidation of LMB by DPI^{+}. Notably, there is an alternative radical production pathway based on direct redox reaction between DIPEA and DPI $^{+}$; however, its $\Delta \mathrm{E}_{\text {act }}$ is $13.1 \pm$ $1.0 \mathrm{kcal} / \mathrm{mol}(\mathrm{SI}$, Section 4). From this we calculate that well over 90 \% (depending on $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$concentrations) of the phenyl radicals originate from the $\mathrm{LMB} / \mathrm{DPI}^{+}$reaction once $L M B$ is generated via MB^{+}photoreduction.

Figure 5.5: Activation energy for MB^{+}regeneration matches initiation of polymerization.
a, Vinyl conversion (red continuous line) and R_{p} (blue dashed line-obtained from numerical differentiation of FT-IR data) under illumination show Arrhenius (temperature) dependence. Activation energy for initiation of
polymerization $\left(\Delta \mathrm{E}_{\text {act }}=6.6 \pm 1 \mathrm{kcal} / \mathrm{mol}\right)$ is due to the redox reaction between LMB and DPI^{+}(arrows indicate temperature increase). b, Absorbance monitoring ($650 \mathrm{~nm}-\mathrm{MB}^{+}$peak) proves temperature-insensitive (lightdependent) photoreduction of MB^{+}by DIPEA, i.e. bleaching of the blue color. After 10 s of irradiation, MB^{+}is regenerated in the absence of light. Activation energy for MB^{+}regeneration ($\Delta \mathrm{E}_{\text {act }}=7.2 \pm 1.2 \mathrm{kcal} / \mathrm{mol}$) agrees with the estimated activation energy for the initiation of polymerization (from FT-NIR) because both are due to the $\mathrm{LMB} / \mathrm{DPI}^{+}$reaction.

5.2.4 Stored energy in LMB extends radical production after irradiation. Having

 demonstrated that this photocatalysis mechanism most likely proceeds via a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer, we now show that $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$can be tuned so that the polymerization reaction continues for hours after light cessation. In Figure 5.6a, we show that during a 1 min low-intensity lightexposure, the bulk polymerization of HEMA reached $\sim 8 \%$ conversion for $\mathrm{MB}^{+} /$DIPEA/DPI $^{+}$. Extinguishing the irradiation at this point led to the continued rise in conversion in the dark over the next 2 hours to reach 80%, with radical formation likely persisting over even longer timescales. This offers additional proof that the above-described radical production by LMB/DPI ${ }^{+}$occurs via a ground-state "dark" reaction. Similar studies with additional irradiation times are provided in SI section 5 to confirm this unique behavior. The initial PET reaction 'charges' the photocatalytic cycle by quickly converting MB^{+}into LMB via steps 1-3 of Figure 5.2, also demonstrated in Figure 5.3b. The sample bleaches as LMB accumulates because step 4 (or equivalently reaction 2) is rate limiting. Light-energy is subsequently harvested as the chemical potential between MB^{+}and LMB , and "dark" reaction with DPI^{+}drives radical production and polymerization after the brief PET reaction. In contrast, polymerization did not continue in the dark for $\mathrm{MB}^{+} / D I P E A$ or CQ/EDMAB in HEMA. It is noteworthy that the final 'dark' conversion achieved with $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$is nearly the same as that obtained with continuous light exposure (86 \%, Figure 5.1a), which indicates the final conversion is not significantly hampered by such a short initial light exposure period.5.2.5 Photocatalysis cycle mimics photosynthesis. The photoredox catalysis here mimics nature's photosynthesis where energy from visible-light is stored as the chemical potential in the $\mathrm{MB}^{+} / \mathrm{LMB}$ redox couple. This is analogous to photosynthesis, where visible-light absorbing proteins in Photosystem I and II undergo PET reactions to store energy in the NADP ${ }^{+}$/NADPH redox couple. Both redox couples store energy using a $2 \mathrm{e}^{-} / 1 \mathrm{H}^{+}$transfer reaction and participate in ground state (light-independent analogous to the Calvin cycle) reactions to release the stored energy. While the closed-shell NADPH energy carrier drives the synthesis of sugars and natural polymers in the absence of light; ${ }^{299-300}$ the system utilizes its stored energy, originally derived from light, in LMB to generate radicals (reaction 2) that initiate polymerization for the synthesis of macromolecules in the absence of light.

5.2.6 Spatial extension of radical production beyond the irradiation site. Next, we

 demonstrate that polymer synthesis with $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$not only extends temporally, but also spatially beyond the reach of photons (Figure 5.6b). HEMA was polymerized on a glass substrate by exposing the unmasked 2 mm fringe of an 8 mm long monomer sample to continuous irradiation for 10 min . The lateral extent of photo-activated polymerization into the shadow region was determined by washing away unreacted monomer with acetone after 30 min of storage in the absence of light. CO/EDMAB yielded a patterned polymer that extended only $170 \pm 190 \mu \mathrm{~m}$ into the masked region (Figure 5.6b, Islet). Notably, during this time, the $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$formulation shows $3.73 \pm 0.73 \mathrm{~mm}$ of lateral polymerization into the dark area. This is due to relatively stable LMB produced in the irradiated region (reaction 2) diffusing into the masked region and reacting with DPI^{+}; thus, generating radicals and initiating polymerization 'far' (millimeters) from the LMB-formation site. Using embedded 120thermocouples, we verified that there is no thermal front involved in the extension of polymerization beyond the direct light activation. ${ }^{301}$ While many photopolymer applications rely on the intrinsic spatial control associated with conventional photoinitiating systems, this approach uniquely decouples spatial restrictions from the photo-activation process. It is certainly advantageous in instances where radical generation around corners and into shadowed regions is desirable, such as in automotive and aerospace coatings of irregular surfaces and polymers for in-situ biomedical applications.

5.2.7 Photo-activated synthesis of thicker polymers. The aforementioned temporal and

 spatial extension of radical generation is utilized to achieve light-mediated synthesis of polymers at least an order of magnitude thicker than the millimeter-scale of conventional photoinitiated formulations under low-intensity and short exposure conditions. The full depth of $\sim 1.2 \mathrm{~cm}$ thick HEMA polymer specimens (Figure 5.6 c) was photocured with a 1 min exposure to $3.4 \mathrm{~mW} / \mathrm{cm}^{2}$ light. Under these very mild conditions, the photoreduction of MB^{+}to LMB initially occurs near the top surface, close to the irradiation source, where photon flux is highest. As MB^{+}is transformed into LMB , bleaching occurs in a gradient fashion allowing the light to penetrate deeper into the originally optically thick sample. Within one minute of illumination the sample is entirely colorless, but not yet polymerized. HEMA polymerization then continued in the dark using the radicals from the $\mathrm{LMB} / \mathrm{DPI}^{+}$reaction. After 30 min , the sample was gelled throughout with polymerization continuing to completion in the dark over several hours.

Figure 5.6: Radical generation in the dark from stored energy in LMB.
a, HEMA with $\mathrm{MB}^{+} /$DIPEA/DPI $^{+}$reaches 80% conversion with 60 s of illumination after having achieved only 8% conversion during active illumination. $\mathrm{MB}^{+} /$DIPEA and $\mathrm{CQ} / E D M A B$ show no energy-harvesting capability. \mathbf{b}, Stable LMB diffuses and extends radical production beyond the light absorption site. Polymerization is initiated into a masked region $3.7 \pm 0.7 \mathrm{~mm}$ (standard deviation, $n=3$) away from the illuminated region (2 mm in width) with $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$. Statistically negligible extension of polymerization was observed in the masked region with CQ/EDMAB at equivalent conditions. c, Polymerization of optically thick 1.2 cm (height) HEMA and GDMA. PolyHEMA discs were made with 1 min irradiation (from the top). An analogous sample with CQ/EDMAB was irradiated with an equivalent number of absorbed photons showing negligible polymerization and remained liquid (SI section 5). d, Vinyl conversion by FT-NIR (with standard deviation, $n=3$) is more uniform throughout the depth in a 10 times more optically opaque $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$sample than in a conventional CO/EDMAB sample. Dashed lines indicate the linear regression of the final conversion profile, and solid lines indicate the local light transmission profile at the start of irradiation (based on the respective active wavelengths and molar absorptivities of CQ and MB^{+}in GDMA).

Due to diffusion constraints in the polymer, the blue color in the polymer does not fully regenerate, as not all LMB is able to oxidize to MB^{+}. The multi-millimeter diffusion of the relatively stable high-energy close-shell LMB (Figure 5.4b) can aid in achieving centimeter plus-
scale polymerization even if MB^{+}photobleaching were not complete throughout the entire depth of the sample. For instance, CQ transmits more light through the 1.2 cm samples and can be bleached efficiently with EDMAB allowing for progressive light penetration in the same sample geometry; however, CO/EDMAB specimens show noticeably less polymerization at equivalent photon absorption, i.e. essentially no polymerization of HEMA at these mild conditions (SI section 6).

These capabilities can also be exploited with other monomers, such as the crosslinking photopolymerization of glycerol dimethacrylate (GDMA) or triethylene glycol di(meth)acrylate. The higher modulus GDMA polymer was used to prepare similarly thick samples, which were then sectioned ($\sim 1 \mathrm{~mm}$ slices) to reveal a much more uniform conversion profile to a depth of at least 1 cm , than what is achieved with the analogous CO/EDMAB sample, which has an initially 10-fold greater optical transparency (Figure 5.6d). The limiting GDMA conversion (~ 65 \%) is achieved in the top layer with either initiator system with an equivalent amount of photons absorbed. However, it is remarkable that conversion in the $\mathrm{MB}^{+} /$DIPEA/DPI $^{+}$system reduces only marginally ($\sim 5 \%$) at a depth of 1 cm under such mild irradiation conditions, while conversion in the CQ/EDMAB formulation drops precipitously to zero, as is typical for conventional radical-initiated photopolymerizations. In general, much higher intensities and/or longer exposures are needed to achieve this same outcome with conventional photoinitiators as demonstrated using CQ/EDMAB.

Such a small variation in monomer vinyl conversion with depth permits the design of photo-activated initiation systems for synthesis of optically thick polymers under milder, highly
energy-efficient irradiation regimes and within a timescale comparable to conventional redox initiators, ${ }^{302}$ but with unprecedented temporal activation control. We contend that this is the first photoredox catalysis employed to design a temporally-controlled redox initiation system where the active radicals are not generated directly by the light-dependent reaction, and in which the rates of photo-reduction and oxidation in the photoredox cycle can be tuned to achieve energy storage that extends polymerization well beyond the time and distance associated with the light absorption process.

5.3 Conclusion

The key to extend initiation beyond irradiation with photoredox catalysis concept is achieving a fast, efficient photochemical storage step (photobleaching), in which light-energy is converted into chemical energy and later released in a much longer time interval based on the chemical potential of the redox pair (e.g. $\mathrm{LMB} / \mathrm{DPI}^{+}$). The energy utilization on much longer timescales than that of light-absorption is tuned by the kinetics of the ground-state redox reaction. Thus, the primary reason for the use of DIPEA as the reductant in the presented system is its fast bleaching 'rate' with MB^{+}and the lack of alpha-aminoalkyl radical formation. This approach unlocks new opportunities for the application of other chemistries that enable energy storage in bulk and solution polymer and possibly organic synthesis. ${ }^{246}$

The concentration of MB^{+}, and the associated LMB, will affect the rate (kinetics) and duration (thermodynamics) of the polymerization after the short light-pulse. The experimental parameters used herein were not optimized and we expect that this concept can be improved to synthesize even thicker polymers. This work serves only as proof of concept for the novel
initiation scheme, and can be extended to a range of polymer applications and likely organic synthesis as well.

Ruthenium and iridium complexes produce photo-excited states that are a more powerful source of electrochemical potential, ${ }^{257}$ which may allow for greater potential, however different sacrificial reductants or oxidants would be required to allow analogous storage of energy derived from light and to avoid initiation shortly after the light-absorption event. Ultimately we propose that additional organic and organometallic photocatalysis schemes can be engineered to delay light-energy utilization to hours after light-absorption by appropriate formulation design. Photoredox organocatalysis is an attractive alternative for any synthetic applications in which expensive photocatalysts (i.e. organometallic) cannot be recovered, as would be the case in bulk polymerizations. Additionally, organic photocatalysts are more versatile, lower-cost and usually less toxic alternatives.

This concept could provide significant advantages, including photopolymerization of optically thick UV-absorbing monomer formulations, in wide ranging industrial and biomedical applications, such as: cell encapsulation, orthopedic and dental cements, tumor phototherapy, adhesives and high-throughput polymer films. The final blue tone of the polymer films and discs varied with irradiation dose and initial concentrations. However, if desired, the reformed MB^{+} and the blue color can be partially or completely removed from most polymers by swelling, as seen in SI section 7, depending on cross-linked density of the polymer network.

5.4 Experimental section

Materials. Methylene blue (MB^{+}), N, N-diisopropylethylamine (DIPEA), and diphenyliodonium chloride salt (DPI-CI) were used as received. 2-Hydroxyethyl methacrylate (HEMA) and glycerol dimethacrylate (GDMA) were selected as monomer because it readily dissolves $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$. Homogeneous samples were prepared by vortex mixing. Methanol (MeOH), acetonitrile (ACN) and DI-water were used as solvents (spectro grade). All materials were commercially obtained from Aldrich (Milwaukee, WI), and used as received.

Light source. A halogen dental curing light (Max, DENTSPLY/Caulk, Milford, DE) modified to deliver broadband 500-800 nm light was used in the $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$photopolymerization experiments. Incident irradiance was measured with a radiometer (6253, International Light Technologies, Peabody, MA) within the 400-700 nm range, i.e. not all of which is absorbed by MB^{+}. For all the CQ/EDMAB-initiated formulations, the $400-500 \mathrm{~nm}$ output of an unaltered halogen lamp was applied with the incident irradiance verified by radiometer.

Fourier transform-infrared spectroscopy (FT-IR). Bulk polymerizations of HEMA were monitored in real-time with a FT-near-IR spectrophotometer (Nicolet Magna-IR Series II, Thermo Scientific, West Palm Beach, FL) by following the peak area of the first overtone absorption band for the methacrylate $=\mathrm{CH}_{2}$ group ($6167 \mathrm{~cm}^{-1}$). The spectrophotometer was equipped with a KBr beam splitter, a MCT/A detector, and an in-house fabricated horizontal stage adapted for in-situ photopolymerization experiments. ${ }^{286}$ The distance between the light source and the sample was $\sim 7 \mathrm{~cm}$ to ensure uniform irradiation across the entire sample with controlled irradiance values. An 800 nm cut-off filter was used to eliminate the 633 nm HeNe reference beam within the NIR output signal. The sample holder for the in-situ polymerization,
both in the dark and in the light, consisted of a 1 mm height, 1.6 cm diameter disc fabricated by interjecting a perforated silicone rubber shim in between two 1 mm thick glass slides. Rate of polymerization was calculated by numerically differentiating the peak area as a function of time. Concentrations used were as follows: $\left[\mathrm{MB}^{+}\right]=4 \mathrm{mM},[$ DIPEA $]=0.2 \mathrm{M},\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M}$, $[C Q]=0.02 \mathrm{M}$ and $[E D M A B]=0.04 \mathrm{M}$. All FT-NIR-monitored polymerizations with MB^{+}/DIPEA/DPI ${ }^{+}$were performed with $12-13 \mathrm{~mW} / \mathrm{cm}^{2}$. For the CQ/EDMAB system the intensity used was 22-23 $\mathrm{mW} / \mathrm{cm}^{2}$. These intensities gave an approximate $3 * 10^{-8}$ Einsteins $/ \mathrm{s}^{*} \mathrm{~cm}^{2}$ of photons absorbed in both systems based on differences in molar absorptivities and concentrations of the MB^{+}and $C Q$ species.

Ultraviolet-visible (electronic) Spectroscopy (UV-Vis). A diode array spectrophotometer (Evolution 300, Thermo-Scientific, West Palm Beach, FL) was employed. Absorbance spectra were collected in quartz cuvettes with a 1 cm pathlength (I). FT-NIR samples were also employed to remotely monitor MB bleaching in real-time by UV-Vis in the same horizontal stage, but separately from the IR experiments. Concentrations used were as follows: $\left[\mathrm{MB}^{+}\right]=4$ $\mathrm{mM},[$ DIPEA $]=0.2 \mathrm{M}$ and $\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M} . \mathrm{UV}$-Vis experiments were performed with an intensity of $60 \mathrm{~mW} / \mathrm{cm}^{2}$ to accelerate the bleaching rate of MB^{+}and avoid significant polymer diffusion constraints to the reoxidation reaction between LMB and DPI^{+}.

Electrospray Ionization Mass Spectrometry (ESI-MS). Identification of the intermediates and final products of the reaction was performed in a LC/MS/MS mass spectrometer system (ABI 4000 Q TRAP ${ }^{\circledR}$, Life Technologies, Carlsbad, CA) equipped with a triple quadruple/linear ion trap analyzer, and electrospray ionization (ESI) detection.

Quantum chemical calculations. Excited state calculations were performed using timedependent density functional theory (TD-DFT) with the $u \omega B 97 X D^{303} / 6-311 G^{* *}$ level of theory where solvation in methanol was described using a polarizable continuum model (CPCM). ${ }^{68}$ The reaction between an alpha amino-alkyl radical (derived from DIPEA) and HEMA monomer was determined to be barrierless, where the calculations were performed using uM06 ${ }^{121} / 6$ -311G**/CPCM-methanol. In predicting the thermochemistry in reaction 2, we employed uM06/6-311G**//uwB97XD/LANL2dz in CPCM described methanol solvent. To estimate the entropy contribution to the free energy, a frequency calculation was performed using $u \omega B 97 X D / L A N L 2 d z$. All calculations were performed using the GAUSSIAN09 ${ }^{61}$ and GAMESS ${ }^{59}$ computational chemistry software packages.

Lateral polymerization experiments. Experiments were performed in a J500 Mask Aligner from Optical Associates. Exposed monomer borders a $500 \mu \mathrm{~m}$ thick opaque rubber spacer on all sides such that photo-generated molecules can diffuse only in one direction. The exposed fringes were $2 \times 18 \mathrm{~mm}$ and the total monomer samples were $8 \times 18 \mathrm{~mm}$. Light intensity was chosen so R_{p} is equal in the $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$and CQ/EDMAB initiating systems, hence achieving ~ 80 \% conversion during the 10 min irradiance in both cases, i.e., diffusion restrictions are roughly equivalent. The use of a collimated light-beam and a non-reflective surface prevented light from reflecting into the masked region from the exposed region of the sample. A black mask was used as a substrate at the bottom of the samples to eliminate any reflectance of photons into the masked region. A glass microscope slide was used as the top boundary to be able to obtain final polymer samples that adhered to the glass. Concentrations used were as follows: $\left[\mathrm{MB}^{+}\right]=0.4 \mathrm{mM},[$ DIPEA $]=0.2 \mathrm{M},\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M},[\mathrm{CQ}]=0.02 \mathrm{M}$ and $[E D M A B]=0.04 \mathrm{M}$. Light
intensity used was $12 \mathrm{~mW} / \mathrm{cm}^{2}$ for the $\mathrm{MB}^{+} /$DIPEA/DPI system and $23 \mathrm{~mW} / \mathrm{cm}^{2}$ for the CQ/EDMAB system to obtain approximately equivalent amounts of absorbed photons.

Thick disc polymerization experiments. $\mathrm{MB}^{+} / D I P E A / D I^{+}$and $C Q / E D M A B$ samples were prepared in HEMA. Monomer (1.5 ml) with each initiator in glass vials was irradiated for 1 min at $3.4 \mathrm{~mW} / \mathrm{cm}^{2}$ (>500 nm) for $\mathrm{MB}^{+} /$DIPEA/DPI , and $6.6 \mathrm{~mW} / \mathrm{cm}^{2}$ (400-500 nm) for CQ/EDMAB to achieve equivalent photon absorption. Samples were then stored in a closed container with no light access for over 30 min . The progression of the viscosity of the samples was periodically monitored in both cases qualitatively and photographed. Concentrations used in these experiments were as follows: $\left[\mathrm{MB}^{+}\right]=0.4 \mathrm{mM},[$ DIPEA $]=0.2 \mathrm{M},\left[\mathrm{DPI}{ }^{+}\right]=0.04 \mathrm{M},[\mathrm{CQ}]=0.02 \mathrm{M}$, $[E D M A B]=0.04 \mathrm{M}$. At these conditions the HEMA with CQ/EDMAB remains liquid and cannot be sectioned for FT-NIR analysis. Thus, additional experiments with GDMA were performed using 9-10 $\mathrm{mW} / \mathrm{cm}^{2}$ for $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$and $17-18 \mathrm{~mW} / \mathrm{cm}^{2}$ for CO/EDMAB. At these intensities, the $\sim 1.2 \mathrm{~cm}$ thick samples were sectioned to $\sim 1.5 \mathrm{~mm}$ slices, which were analyzed with FT-NIR after 60 s irradiation and $90-120 \mathrm{~min}$ in dark storage. To determine conversion means and standard deviations as a function of depth the experiments were repeated 3-4 times. All samples were purged with nitrogen for 5 minutes before irradiation at a pressure of 10-20 psi.

Methylene blue extraction from poly-HEMA gel. A $1.2 \times 1.1 \mathrm{~cm}$ poly-HEMA disc was polymerized from bulk HEMA (97 \%) with $\mathrm{MB}^{+} /$DIPEA/DPI $^{+}$using 5 min irradiation at 11 $\mathrm{mW} / \mathrm{cm}^{2}$ of a white LED lamp. The sample was left to react in the dark for 30 min . Then, the polymer gel was removed from the mold and introduced into 20 ml of water. UV-Vis
absorbance of the water solution was monitored with time to track the change in the peak at ~ 660 nm , indicative of the MB^{+}concentration in solution.

Bibliography

1. Beckman, E. J. Green Chemical Processing Using CO2. Industrial \& Engineering Chemistry Research 2003, 42 (8), 1598-1602.
2. Darensbourg, D. J. Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorganic Chemistry 2010, 49 (23), 10765-10780.
3. Mikkelsen, M.; Jorgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy \& Environmental Science 2010, 3 (1), 43-81.
4. Choi, S.; Drese, J. H.; Jones, C. W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem 2009, 2 (9), 796-854.
5. Figueroa, J. D.; Fout, T.; Plasynski, S.; Mcllvried, H.; Srivastava, R. D. Advancesn in CO(2) capture technology - The US Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2008, 2 (1), 9-20.
6. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy \& Environmental Science 2009, 2 (2), 148-173.
7. Ma, S. Q.; Zhou, H. C. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications 2010, 46 (1), 44-53.
8. White, C. M.; Strazisar, B. R.; Granite, E. J.; Hoffman, J. S.; Pennline, H. W. Separation and capture of CO2 from large stationary sources and sequestration in geological formations Coalbeds and deep saline aquifers. Journal of the Air \& Waste Management Association 2003, 53 (6), 645-715.
9. Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chemical Reviews 2001, 101 (4), 953-996.
10. Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Chemical Recycling off Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. Journal of Organic Chemistry 2009, 74 (2), 487-498.
11. Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future. J Am Chem Soc 2011, 133 (33), 12881-12898.
12. Jiang, Z.; Xiao, T.; Kuznetsov, V. L.; Edwards, P. P. Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1923), 3343-3364.
13. Ganesh, I. Conversion of carbon dioxide to methanol using solar energy. Current Science 2011, 101 (6), 731-733.
14. Hoffmann, M. R.; Moss, J. A.; Baum, M. M. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. Dalton Trans. 2011, 40 (19), 5151-5158.
15. Ashley, A. E.; Thompson, A. L.; O'Hare, D. Non-Metal-Mediated Homogeneous Hydrogenation of CO2 to CH3OH. Angew Chem Int Edit 2009, 48 (52), 9839-9843.
16. Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. An Efficient Nickel Catalyst for the Reduction of Carbon Dioxide with a Borane. J Am Chem Soc 2010, 132 (26), 8872-8873.
17. Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Transformation of Carbon Dioxide with Homogeneous Transition-Metal Catalysts: A Molecular Solution to a Global Challenge? Angewandte Chemie International Edition 2011, 50 (37), 8510-8537.
18. Huang, F.; Lu, G.; Zhao, L. L.; Li, H. X.; Wang, Z. X. The Catalytic Role of N-Heterocyclic Carbene in a Metal-Free Conversion of Carbon Dioxide into Methanol: A Computational Mechanism Study. J Am Chem Soc 2010, 132 (35), 12388-12396.
19. Huang, F.; Zhang, C. G.; Jiang, J. L.; Wang, Z. X.; Guan, H. R. How Does the Nickel Pincer Complex Catalyze the Conversion of CO(2) to a Methanol Derivative? A Computational Mechanistic Study. Inorganic Chemistry 2011, 50 (8), 3816-3825.
20. Menard, G.; Stephan, D. W. Room Temperature Reduction of CO2 to Methanol by AlBased Frustrated Lewis Pairs and Ammonia Borane. J Am Chem Soc 2010, 132 (6), 1796-+.
21. Zimmerman, P. M.; Zhang, Z. Y.; Musgrave, C. B. Simultaneous Two-Hydrogen Transfer as a Mechanism for Efficient CO2 Reduction. Inorganic Chemistry 2010, 49 (19), 8724-8728.
22. Temkin, O. N.; Zeigarnik, A. V.; Kuz'min, A. E.; Bruk, L. G.; Slivinskii, E. V. Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions. Russian Chemical Bulletin 2002, 51 (1), 1-36.
23. Krylov, O. V.; Mamedov, A. K. HETEROGENEOUS CATALYTIC REACTIONS OF CARBONDIOXIDE. Uspekhi Khimii 1995, 64 (9), 935-959.
24. Dai, W. L.; Luo, S. L.; Yin, S. F.; Au, C. T. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Applied Catalysis a-General 2009, 366 (1), 212.
25. Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of $\mathrm{CO}(2)$ to liquid fuels. Chemical Society Reviews 2009, 38 (1), 89-99.
26. Rakowski Dubois, M.; Dubois, D. L. Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation. Accounts of Chemical Research 2009, 42 (12), 19741982.
27. Savéant, J.-M. Molecular Catalysis of Electrochemical Reactions. Mechanistic Aspects. Chemical Reviews 2008, 108 (7), 2348-2378.
28. Agarwal, J.; Johnson, R. P.; Li, G. Reduction of CO2 on a Tricarbonyl Rhenium(I) Complex: Modeling a Catalytic Cycle. The Journal of Physical Chemistry A 2011, 115 (13), 2877-2881.
29. Alstrum-Acevedo, J. H.; Brennaman, M. K.; Meyer, T. J. Chemical Approaches to Artificial Photosynthesis. 2. Inorganic Chemistry 2005, 44 (20), 6802-6827.
30. Huang, K.-W.; Han, J. H.; Musgrave, C. B.; Fujita, E. Carbon Dioxide Reduction by Pincer Rhodium $\eta 2$-Dihydrogen Complexes: Hydrogen-Binding Modes and Mechanistic Studies by Density Functional Theory Calculations. Organometallics 2006, 26 (3), 508-513.
31. Meyer, T. J. Chemical approaches to artificial photosynthesis. Accounts of Chemical Research 1989, 22 (5), 163-170.
32. Aurian-Blajeni, B.; Halmann, M.; Manassen, J. Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Solar Energy 1980, 25 (2), 165-170.
33. Halmann, M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275 (5676), 115-116.
34. Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and Photoelectrochemical Reduction of CO2. In Annual Review of Physical Chemistry, Vol 63, Johnson, M. A. M. T. J., Ed. 2012; Vol. 63, pp 541-+.
35. Morris, A. J.; Meyer, G. J.; Fujita, E. Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research 2009, 42 (12), 1983-1994.
36. Tran, P. D.; Wong, L. H.; Barber, J.; Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy \& Environmental Science 2012, 5 (3), 5902-5918.
37. Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hinogami, R.; Hashiba, H.; Yamada, Y.; Ohkawa, K. Photo-induced CO2 Reduction with GaN Electrode in Aqueous System. Applied Physics Express 2011, 4 (11).
38. Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2. Acs Applied Materials \& Interfaces 2011, 3 (7), 2594-2600.
39. Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell. J Am Chem Soc 2008, 130 (20), 6342-6344.
40. Cole, E. B.; Lakkaraju, P. S.; Rampulla, D. M.; Morris, A. J.; Abelev, E.; Bocarsly, A. B. Using a One-Electron Shuttle for the Multielectron Reduction of CO(2) to Methanol: Kinetic, Mechanistic, and Structural Insights. J Am Chem Soc 2010, 132 (33), 11539-11551.
41. Morris, A. J.; McGibbon, R. T.; Bocarsly, A. B. Electrocatalytic Carbon Dioxide Activation: The Rate-Determining Step of Pyridinium-Catalyzed CO(2) Reduction. ChemSusChem 2011, 4 (2), 191-196.
42. Seshadri, G.; Lin, C.; Bocarsly, A. B. A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential. Journal of Electroanalytical Chemistry 1994, 372 (1-2), 145-150.
43. Keith, J. A.; Carter, E. A. Theoretical Insights into Pyridinium-Based Photoelectrocatalytic Reduction of CO2. J Am Chem Soc 2012, 134 (18), 7580-7583.
44. Tossell, J. A. Calculation of the properties of molecules in the pyridine catalyst system for the photochemical conversion of $\mathrm{CO}(2)$ to methanol. Computational and Theoretical Chemistry 2011, 977 (1-3), 123-127.
45. Yasukouchi, K.; Taniguchi, I.; Yamaguchi, H.; Shiraishi, M. Cathodic reduction of pyridinium ion in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1979, 105 (2), 403-408.
46. Hickey, J. E.; Spritzer, M. S.; Elving, P. J. Polarographic reduction of pyridinium ion in pyridine tetraethylammonium perchlorate as background electrolyte. Analytica Chimica Acta 1966, 35 (0), 277-285.
47. Tompkins, P. C.; Schmidt, C. L. A. A polarographic characterization of nicotinic acid and related compounds I. Pyridine and nicotinic acid. Journal of Biological Chemistry 1942, 143 (3), 643-653.
48. Shikata, M.; Tachi, I. Study of the Electrolytic Reduction Potentials of Organic Compounds. Part II. The Reduction Potentials of Pyridine. J. Agri. Chem. Soc. Japan 1927, 3 (746).
49. Jenkins, S. J. Aromatic adsorption on metals via first-principles density functional theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 2009, 465 (2110), 2949-2976.
50. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications. Second ed.; Wiley: 2001.
51. Koppenol, W. H.; Rush, J. D. REDUCTION POTENTIAL OF THE CO2/CO2.- COUPLE - A COMPARISON WITH OTHER C1 RADICALS. Journal of Physical Chemistry 1987, 91 (16), 44294430.
52. Leuschner, R.; Krohn, H.; Dohrmann, J. K. TERMINATION RATES BY TIME-RESOLVED ELECTRON-SPIN-RESONANCE - THE N-HYDROPYRIDINYL RADICAL IN SOLUTION AND THE INFLUENCE OF NON-UNIFORM RADICAL CONCENTRATION ON THE APPARENT RATE-CONSTANT. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1984, 88 (5), 462-466.
53. Muñoz-García, A. B.; Carter, E. A. Non-innocent Dissociation of H2O on GaP(110): Implications for Electrochemical Reduction of CO2. J Am Chem Soc 2012, 134 (33), 1360013603.
54. Paldus, J. Coupled-cluster theory. Plenum, New York, 1992; Vol. 293, p 99-194.
55. Woon, D. E.; Dunning, T. H. GAUSSIAN-BASIS SETS FOR USE IN CORRELATED MOLECULAR CALCULATIONS .3. THE ATOMS ALUMINUM THROUGH ARGON. J Chem Phys 1993, 98 (2), 13581371.
56. Dunning, T. H. GAUSSIAN-BASIS SETS FOR USE IN CORRELATED MOLECULAR CALCULATIONS .1. THE ATOMS BORON THROUGH NEON AND HYDROGEN. J Chem Phys 1989, 90 (2), 1007-1023.
57. Harihara.Pc; Pople, J. A. INFLUENCE OF POLARIZATION FUNCTIONS ON MOLECULARORBITAL HYDROGENATION ENERGIES. Theoretica Chimica Acta 1973, 28 (3), 213-222.
58. Binkley, J. S.; Pople, J. A. MOLLER-PLESSET THEORY FOR ATOMIC GROUND-STATE ENERGIES. Int. J. Quantum Chem. 1975, 9 (2), 229-236.
59. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. GENERAL ATOMIC AND MOLECULAR ELECTRONIC-STRUCTURE SYSTEM. J. Comput. Chem. 1993, 14 (11), 1347-1363.
60. Gordon, M. S.; Schmidt, M. W. Chapter 41 - Advances in electronic structure theory: GAMESS a decade later. In Theory and Applications of Computational Chemistry, Clifford, E. D.; Gernot, F.; Kwang, S. K.; Gustavo E. ScuseriaA2 - Clifford E. Dykstra, G. F. K. S. K.; Gustavo, E. S., Eds. Elsevier: Amsterdam, 2005; pp 1167-1189.
61. Gaussian 09 Revision A.1; Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
62. B.O.Roos. The CASSCF Method and its Application in Electronic Structure Calculations. In Advances in Chemical Physics, K.P.Lawley, Ed. Wiley Interscience: New York, 1987; pp 339-445.
63. Johnson, E. R.; Mori-Sanchez, P.; Cohen, A. J.; Yang, W. Delocalization errors in density functionals and implications for main-group thermochemistry. The Journal of Chemical Physics 2008, 129 (20), 204112-6.
64. Kang, J. K.; Musgrave, C. B. Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation. The Journal of Chemical Physics 2001, 115 (24), 11040-11051.
65. Zhang, Y.; Yang, W. A challenge for density functionals: Self-interaction error increases for systems with a noninteger number of electrons. The Journal of Chemical Physics 1998, 109 (7), 2604-2608.
66. Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Insights into Current Limitations of Density Functional Theory. Science 2008, 321 (5890), 792-794.
67. Li, H.; Pomelli, C. S.; Jensen, J. H. Continuum solvation of large molecules described by QM/MM: a semi-iterative implementation of the PCM/EFP interface. Theoretical Chemistry Accounts 2003, 109 (2), 71-84.
68. Li, H.; Jensen, J. H. Improving the efficiency and convergence of geometry optimization with the polarizable continuum model: New energy gradients and molecular surface tessellation. J. Comput. Chem. 2004, 25 (12), 1449-1462.
69. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B 2009, 113 (18), 6378-6396.
70. Camaioni, D. M.; Dupuis, M.; Bentley, J. Theoretical Characterization of Oxoanion, XOmn-, Solvation. The Journal of Physical Chemistry A 2003, 107 (30), 5778-5788.
71. Chipman, D. M.; Chen, F. Cation electric field is related to hydration energy. The Journal of Chemical Physics 2006, 124 (14), 144507-5.
72. Chipman, D. M. Anion electric field is related to hydration energy. The Journal of Chemical Physics 2003, 118 (22), 9937-9942.
73. Kamerlin, S. C. L.; Haranczyk, M.; Warshel, A. Are Mixed Explicit/Implicit Solvation Models Reliable for Studying Phosphate Hydrolysis? A Comparative Study of Continuum, Explicit and Mixed Solvation Models. ChemPhysChem 2009, 10 (7), 1125-1134.
74. Ho, J.; Coote, M. L. pKa Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures. Journal of Chemical Theory and Computation 2009, 5 (2), 295-306.
75. Mulliken, R. S. Electronic Population Analysis on LCAO[Single Bond]MO Molecular Wave Functions. I. The Journal of Chemical Physics 1955, 23 (10), 1833-1840.
76. Spackman, M. A. Potential derived charges using a geodesic point selection scheme. J. Comput. Chem. 1996, 17 (1), 1-18.
77. Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys 1999, 110 (6), 2822-2827.
78. Winget, P.; Cramer, C. J.; Truhlar, D. G. Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 2004, 112 (4), 217-227.
79. Liptak, M. D.; Shields, G. C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. J Am Chem Soc 2001, 123 (30), 7314-7319.
80. Koch, D. M.; Toubin, C.; Peslherbe, G. H.; Hynes, J. T. A theoretical study of the formation of the aminoacetonitrile precursor of glycine on icy grain mantles in the interstellar medium. Journal of Physical Chemistry C 2008, 112 (8), 2972-2980.
81. Somani, S.; Mukhopadhyay, A.; Musgrave, C. Atomic Layer Deposition of Tantalum Nitride Using A Novel Precursor. The Journal of Physical Chemistry C 2011, 115 (23), 1150711513.
82. Mukhopadhyay, A. B.; Musgrave, C. B. The role of ammonia in atomic layer deposition of tungsten nitride. Applied Physics Letters 2007, 90 (17), 173120-3.
83. Kang, J. K.; Musgrave, C. B. The mechanism of HF/H2O chemical etching of SiO2. J Chem Phys 2002, 116 (1), 275-280.
84. Bianco, R.; Hay, P. J.; Hynes, J. T. Theoretical Study of O-O Single Bond Formation in the Oxidation of Water by the Ruthenium Blue Dimer. The Journal of Physical Chemistry A 2011, 115 (27), 8003-8016.
85. Mikulski, R. L.; Silverman, D. N. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Biochimica Et Biophysica Acta-Proteins and Proteomics 2010, 1804 (2), 422-426.
86. DuBois, D. L.; Bullock, R. M. Molecular Electrocatalysts for the Oxidation of Hydrogen and the Production of Hydrogen - The Role of Pendant Amines as Proton Relays. European Journal of Inorganic Chemistry 2011, (7), 1017-1027.
87. Bonin, J.; Costentin, C.; Robert, M.; Saveant, J. M.; Tard, C. Hydrogen-Bond Relays in Concerted Proton-Electron Transfers. Accounts of Chemical Research 2012, 45 (3), 372-381.
88. Haake, P.; Wallerberg, G.; Boger, J. Catalysis in dipolar aprotic solvents. Proton-relay mechanism resembling the mechanism of action of serine enzyme. J Am Chem Soc 1971, 93 (19), 4938-4939.
89. Fetter, J. R.; Qian, J.; Shapleigh, J.; Thomas, J. W.; García-Horsman, A.; Schmidt, E.; Hosler, J.; Babcock, G. T.; Gennis, R. B.; Ferguson-Miller, S. Possible proton relay pathways in cytochrome c oxidase. Proceedings of the National Academy of Sciences 1995, 92 (5), 16041608.
90. Nair, S. K.; Christianson, D. W. Unexpected pH-dependent conformation of His-64, the proton shuttle of carbonic anhydrase II. J Am Chem Soc 1991, 113 (25), 9455-9458.
91. Han, S. Y.; Chu, I.; Kim, J. H.; Song, J. K.; Kim, S. K. Photoelectron spectroscopy and ab initio study of mixed cluster anions of (CO2)(1-3)(Pyridine)(1-6) (-): Formation of a covalently bonded anion core of (C5H5N-CO2)(-). J Chem Phys 2000, 113 (2), 596-601.
92. Bryantsev, V. S.; Diallo, M. S.; Goddard Iii, W. A. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models. The Journal of Physical Chemistry B 2008, 112 (32), 9709-9719.
93. Borden, J.; Crans, D. C.; Florián, J. Transition State Analogues for Nucleotidyl Transfer Reactions: Structure and Stability of Pentavalent Vanadate and Phosphate Ester Dianions. The Journal of Physical Chemistry B 2006, 110 (30), 14988-14999.
94. Kamrath, M. Z.; Relph, R. A.; Johnson, M. A. Vibrational Predissociation Spectrum of the Carbamate Radical Anion, $\mathrm{C}(5) \mathrm{H}(5) \mathrm{N}-\mathrm{CO}(2)(-)$, Generated by Reaction of Pyridine with (CO(2))(m)(-). J Am Chem Soc 2010, 132 (44), 15508-15511.
95. Schleyer, P. V.; Puhlhofer, F. Recommendations for the evaluation of aromatic stabilization energies. Organic Letters 2002, 4 (17), 2873-2876.
96. Cyranski, M. K. Energetic aspects of cyclic Pi-electron delocalization: Evaluation of the methods of estimating aromatic stabilization energies. Chemical Reviews 2005, 105 (10), 37733811.
97. Evans, M. G.; Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society 1935, 31 (1), 0875-0893.
98. Hull, J. F.; Himeda, Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat Chem 2012, 4 (5), 383-388.
99. Doherty, M. D.; Grills, D. C.; Muckerman, J. T.; Polyansky, D. E.; Fujita, E. Toward more efficient photochemical CO2 reduction: Use of scCO2 or photogenerated hydrides. Coordination Chemistry Reviews 2010, 254 (21-22), 2472-2482.
100. Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and Photoelectrochemical Reduction of CO2. Annual Review of Physical Chemistry 2012, 63 (1), 541-569.
101. Chen, Z.; Glasson, C. R. K.; Holland, P. L.; Meyer, T. J. Electrogenerated polypyridyl ruthenium hydride and ligand activation for water reduction to hydrogen and acetone to isopropanol. Phys. Chem. Chem. Phys. 2013, 15 (24), 9503-9507.
102. Kang, P.; Meyer, T. J.; Brookhart, M. Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chemical Science 2013, 4 (9), 3497-3502.
103. Costentin, C.; Robert, M.; Saveant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chemical Society Reviews 2013, 42 (6), 2423-2436.
104. Gennaro, A.; Isse, A. A.; Saveant, J. M.; Severin, M. G.; Vianello, E. Homogeneous electron transfer catalysis of the electrochemical reduction of carbon dioxide. Do aromatic anion radicals react in an outer-sphere manner? J Am Chem Soc 1996, 118 (30), 7190-7196.
105. Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry 2011, 3 (8), 609-614.
106. Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. A Cobalt-Based Catalyst for the Hydrogenation of CO2 under Ambient Conditions. J Am Chem Soc 2013, 135 (31), 11533-11536. 107. Ohtsu, H.; Tanaka, K. An Organic Hydride Transfer Reaction of a Ruthenium NAD Model Complex Leading to Carbon Dioxide Reduction. Angewandte Chemie International Edition 2012, 51 (39), 9792-9795.
108. Riduan, S. N.; Zhang, Y. G.; Ying, J. Y. Conversion of Carbon Dioxide into Methanol with Silanes over N-Heterocyclic Carbene Catalysts. Angew Chem Int Edit 2009, 48 (18), 3322-3325.
109. Canfield, D.; Frese, K. W. Reduction of Carbon Dioxide to Methanol on n - and $\mathrm{p}-\mathrm{GaAs}$ and $p-\ln P$. Effect of Crystal Face, Electrolyte and Current Density. Journal of The Electrochemical Society 1983, 130 (8), 1772-1773.
110. Frese, K. W.; Canfield, D. Reduction of CO 2 on $\mathrm{n}-\mathrm{GaAs}$ Electrodes and Selective Methanol Synthesis. Journal of The Electrochemical Society 1984, 131 (11), 2518-2522.
111. Zimmerman, P. M.; Paul, A.; Zhang, Z. Y.; Musgrave, C. B. The Role of Free NHeterocyclic Carbene (NHC) in the Catalytic Dehydrogenation of Ammonia-Borane in the Nickel NHC System. Angew Chem Int Edit 2009, 48 (12), 2201-2205.
112. Lim, C.-H.; Holder, A. M.; Hynes, J. T.; Musgrave, C. B. Roles of the Lewis Acid and Base in the Chemical Reduction of CO2 Catalyzed by Frustrated Lewis Pairs. Inorganic Chemistry 2013, 52 (17), 10062-10066.
113. Eisner, U.; Kuthan, J. Chemistry of dihydropyridines. Chemical Reviews 1972, 72 (1), 142.
114. McSkimming, A.; Colbran, S. B. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chemical Society Reviews 2013, 42 (12), 5439-5488.
115. Connon, S. J. Asymmetric organocatalytic reductions mediated by dihydropyridines. Organic \& Biomolecular Chemistry 2007, 5 (21), 3407-3417.
116. Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.; Wang, D.-S.; Yang, Y.; Zhou, Y.-G. Biomimetic Asymmetric Hydrogenation: In Situ Regenerable Hantzsch Esters for Asymmetric Hydrogenation of Benzoxazinones. J Am Chem Soc 2011, 133 (41), 16432-16435.
117. Schmakel, C. O.; Santhanam, K. S. V.; Elving, P. J. Nicotinamide and N'-MethyInicotinamide: Electrochemical Redox Pattern: Behavior of Free Radical, Dimeric, and Dihydropyridine Species. Journal of The Electrochemical Society 1974, 121 (3), 345-353.
118. Kaye, R. C.; Stonehill, H. I. 7. A polarographic study of the electroreduction of acridine. Journal of the Chemical Society (Resumed) 1951, (0), 27-38.
119. Fujii, S.; Tatsumoto, N.; Yamaoka, K. Effect of poly(α-D-glutamic acid) on the polarographic reduction of 3,6-diaminoacridines. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1988, 244 (1-2), 235-248.
120. Lim, C.-H.; Holder, A. M.; Musgrave, C. B. Mechanism of Homogeneous Reduction of CO2 by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization. J Am Chem Soc 2012, 135 (1), 142-154.
121. Zhao, Y.; Truhlar, D. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts 2008, 120 (1-3), 215-241.
122. Bianco, R.; Hay, P. J.; Hynes, J. T. Proton relay and electron flow in the O-O single bond formation in water oxidation by the ruthenium blue dimer. Energy \& Environmental Science 2012, 5 (7), 7741-7746.
123. Stirling, A. s.; Pápai, I. H2CO3 Forms via HCO3- in Water. The Journal of Physical Chemistry B 2010, 114 (50), 16854-16859.
124. Wang, B.; Cao, Z. How water molecules modulate the hydration of CO2 in water solution: Insight from the cluster-continuum model calculations. J. Comput. Chem. 2013, 34 (5), 372-378.
125. Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B. Aza- and Oxadithiolates Are Probable Proton Relays in Functional Models for the [FeFe]-Hydrogenases. J Am Chem Soc 2008, 130 (50), 16834-16835.
126. Lutz, S.; Tubert-Brohman, I.; Yang, Y.; Meuwly, M. Water-assisted Proton Transfer in Ferredoxin I. Journal of Biological Chemistry 2011, 286 (27), 23679-23687.
127. Bonin, J.; Costentin, C.; Robert, M.; Savéant, J.-M.; Tard, C. Hydrogen-Bond Relays in Concerted Proton-Electron Transfers. Accounts of Chemical Research 2011, 45 (3), 372-381.
128. Bianco, R.; Hynes, J. T. A theoretical study of the reaction of CIONO2 with HCl on ice. J. Phys. Chem. A 1999, 103 (20), 3797-3801.
129. Huynh, M. H. V.; Meyer, T. J. Proton-Coupled Electron Transfer. Chemical Reviews 2007, 107 (11), 5004-5064.
130. Benson, S. W. The foundations of chemical kinetics. McGraw-Hill: New York, 1960.
131. Qu, S.; Dang, Y.; Song, C.; Wen, M.; Huang, K.-W.; Wang, Z.-X. Catalytic Mechanisms of Direct Pyrrole Synthesis via Dehydrogenative Coupling Mediated by PNP-Ir or PNN-Ru Pincer Complexes: Crucial Role of Proton-Transfer Shuttles in the PNP-Ir System. J Am Chem Soc 2014, 136 (13), 4974-4991.
132. Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Mechanism, Regioselectivity, and the Kinetics of Phosphine-Catalyzed [3+2] Cycloaddition Reactions of Allenoates and Electron-Deficient Alkenes. Chemistry - A European Journal 2008, 14 (14), 4361-4373.
133. Huang, D.; Makhlynets, O. V.; Tan, L. L.; Lee, S. C.; Rybak-Akimova, E. V.; Holm, R. H. Fast Carbon Dioxide Fixation by 2,6-Pyridinedicarboxamidato-nickel(II)-hydroxide Complexes: Influence of Changes in Reactive Site Environment on Reaction Rates. Inorganic Chemistry 2011, 50 (20), 10070-10081.
134. Huang, D.; Makhlynets, O. V.; Tan, L. L.; Lee, S. C.; Rybak-Akimova, E. V.; Holm, R. H. Kinetics and mechanistic analysis of an extremely rapid carbon dioxide fixation reaction. Proceedings of the National Academy of Sciences 2011, 108 (4), 1222-1227.
135. Martin, R. L.; Hay, P. J.; Pratt, L. R. Hydrolysis of Ferric Ion in Water and Conformational Equilibrium. The Journal of Physical Chemistry A 1998, 102 (20), 3565-3573.
136. Wen, M.; Huang, F.; Lu, G.; Wang, Z.-X. Density Functional Theory Mechanistic Study of the Reduction of CO 2 to CH 4 Catalyzed by an Ammonium Hydridoborate Ion Pair: CO2 Activation via Formation of a Formic Acid Entity. Inorganic Chemistry 2013, 52 (20), 1209812107.
137. Strajbl, M.; Sham, Y. Y.; Villà, J.; Chu, Z. T.; Warshel, A. Calculations of Activation Entropies of Chemical Reactions in Solution. The Journal of Physical Chemistry B 2000, 104 (18), 4578-4584.
138. Srinivasan, R.; Medary, R. T.; Fisher, H. F.; Norris, D. J.; Stewart, R. The pyridiniumdihydropyridine system. Reduction potentials and the mechanism of oxidation of 1,4dihydropyridines by a Schiff base. J Am Chem Soc 1982, 104 (3), 807-812.
139. Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Mechanistic Studies on the Reversible Hydrogenation of Carbon Dioxide Catalyzed by an Ir-PNP Complex. Organometallics 2011, 30 (24), 6742-6750.
140. This contrasts with a recent theoretical estimate (ref. 152) of the conduction band minimum ($\mathrm{E}_{\text {свм }}$) of p -GaP of -0.9 V vs. SCE, which is significantly below the observed $\mathrm{E}_{\text {Свм }}$ of -1.5 V vs. SCE. This estimate led the authors to conclude that homogeneous PyH^{0} species cannot be formed in the p-GaP electrode system.
141. Gratzel, M. Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
142. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chemical Reviews 2010, 110 (11), 6446-6473.
143. Beranek, R. (Photo)electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials. Advances in Physical Chemistry 2011, 2011.
144. The reported $\mathrm{p}-\mathrm{GaP}$ conduction band minimum, $\mathrm{E}_{\text {СВ }}$, is $\sim-1.0 \mathrm{~V}$ vs. NHE at $\mathrm{pH}=1$. Correcting for the SCE reference potential shifts the band edge by -0.24 V from NHE. At the same time the band edge shifts to more cathodic potentials with increasing pH by $-0.059 \mathrm{~V} / \mathrm{pH}$ at 298 K (ref. 143)
145. Lebègue, E.; Agullo, J.; Morin, M.; Bélanger, D. The Role of Surface Hydrogen Atoms in the Electrochemical Reduction of Pyridine and CO2 in Aqueous Electrolyte. ChemElectroChem 2014, 1, 1013.
146. An anonymous reviewer of an earlier version of this manuscript suggested the importance of examination of CO_{2} reduction with pyridine under acidic conditions with a carbon electrode. In connection with an experiment very recently reported (ref. 145), it was suggested that PyH^{0} was produced with a glassy carbon electrode, and a catalytic current was observed in the presence of CO_{2}. Further detailed results for this system will be of considerable interest in connection with the present work.
147. Xiang, D.; Magana, D.; Dyer, R. B. CO2 Reduction Catalyzed by Mercaptopteridine on Glassy Carbon. J Am Chem Soc 2014.
148. Boston, D. J.; Xu, C.; Armstrong, D. W.; MacDonnell, F. M. Photochemical Reduction of Carbon Dioxide to Methanol and Formate in a Homogeneous System with Pyridinium Catalysts. J Am Chem Soc 2013, 135 (44), 16252-16255.
149. In Ref. 148, after 6 hours of photochemical reduction of CO_{2} catalyzed by pyridine, formate was produced at relatively high yield (18 mM), but methanol was produced at low yield $(66 \mu \mathrm{M})$. The issue of formate formation is discussed in section 3.5.
150. Boston, D. J.; Pachón, Y. M. F.; Lezna, R. O.; de Tacconi, N. R.; MacDonnell, F. M. Electrocatalytic and Photocatalytic Conversion of CO2 to Methanol using Ruthenium Complexes with Internal Pyridyl Cocatalysts. Inorganic Chemistry 2014, 53 (13), 6544-6553.
151. Keith, J. A.; Carter, E. A. Electrochemical reactivities of pyridinium in solution: consequences for CO2 reduction mechanisms. Chemical Science 2013, 4 (4), 1490-1496.
152. Keith, J. A.; Carter, E. A. Theoretical Insights into Electrochemical CO2 Reduction Mechanisms Catalyzed by Surface-Bound Nitrogen Heterocycles. The Journal of Physical Chemistry Letters 2013, 4 (23), 4058-4063.
153. Costentin, C.; Canales, J. C.; Haddou, B.; Savéant, J.-M. Electrochemistry of Acids on Platinum. Application to the Reduction of Carbon Dioxide in the Presence of Pyridinium Ion in Water. J Am Chem Soc 2013, 135 (47), 17671-17674.
154. Ertem, M. Z.; Konezny, S. J.; Araujo, C. M.; Batista, V. S. Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO2 on Pt(111). The Journal of Physical Chemistry Letters 2013, 745-748.
155. Yan, Y.; Zeitler, E. L.; Gu, J.; Hu, Y.; Bocarsly, A. B. Electrochemistry of Aqueous Pyridinium: Exploration of a Key Aspect of Electrocatalytic Reduction of CO2 to Methanol. J Am Chem Soc 2013, 135 (38), 14020-14023.
156. Portenkirchner, E.; Enengl, C.; Enengl, S.; Hinterberger, G.; Schlager, S.; Apaydin, D.; Neugebauer, H.; Knör, G.; Sariciftci, N. S. A Comparison of Pyridazine and Pyridine as Electrocatalysts for the Reduction of Carbon Dioxide to Methanol. ChemElectroChem 2014, 1 (9), 1543-1548.
157. The loss of $\mathrm{PyH}^{0} \mathrm{~s}$ aromaticity is unfortunately not conveyed in the molecular structure of Scheme 2.
158. This result contrasts the proposal that PyH^{0} is not reactive due to its high pK_{a} of ~ 27 (ref. 43). We calculated a similarly high pK_{a} of ~ 31 (ref. 120). However, we argued that a pK_{a} analysis only applies to reactions occurring via the sequence of PT then ET, which is irrelevant for PyH^{0} s reaction with CO_{2} that occurs via the sequence of first ET followed by PT (ref. 120).
159. Raghavan, R.; Iwamoto, R. T. Characterization of the dimeric one-electron electrolytic reduction products of 1-alkylpyridinium ions in acetonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1978, 92 (1), 101-114.
160. Kikuchi, K.; Koizumi, M. Photoreduction of Proflavine in the Aqueous Solution. I. A Flash Photolysis Study. B Chem Soc Jpn 1967, 40 (4), 736-743.
161. A similar process has been observed (ref. 160) for the quenching of two 3,6diaminoacridinium radicals to form the corresponding dihydropyridine species (3,6diaminoacridane) and 3,6-diaminoacridine.
162. Rose, M. C.; Stuehr, J. Kinetics of proton transfer reactions in aqueous solution. III. Rates of internally hydrogen-bonded systems. J Am Chem Soc 1968, 90 (26), 7205-7209.
163. The rate constant for PyH^{0} quenching is $\sim 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. (ref. 52). On the other hand, the rate constant for protonation/deprotonation ranges from $10^{4}-10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (ref. 162) depending on pK_{a} differences between the donor and acceptor and other factors. Given that [HA] >> $\left.\mathrm{PyH}^{0}\right]$, it is likely that PyH_{2} production via PT-ET to PyH^{0} dominates over radical self quenching.
164. PyH^{0} is predominantly protonated at its C 2 carbon ($\mathrm{pK}_{\mathrm{a}}=4.1$) over its $\mathrm{C} 3\left(\mathrm{pK}_{\mathrm{a}}=0.2\right)$ and C4 ($\mathrm{pK} \mathrm{K}_{\mathrm{a}}=2.4$) positions; see SI, section 1 b for details.
165. Protonation of related pyridine neutral radical species has been observed, e.g. the pK_{a} to protonate the $\mathrm{C}-9$ position of $3,6-\mathrm{Bis}($ dimethylamino) acridinium radical was determined to be 5.1 in aqueous solution (ref. 166)
166. Vogelmann, E.; Rauscher, W.; Kramer, H. E. A. REACTIVITY OF ACRIDINE DYE TRIPLET STATES IN ELECTRON TRANSFER REACTIONS. Photochemistry and Photobiology 1979, 29 (4), 771-776.
167. Vlachy, V. IONIC EFFECTS BEYOND POISSON-BOLTZMANN THEORY. Annual Review of Physical Chemistry 1999, 50 (1), 145-165.
168. Bu, W.; Vaknin, D.; Travesset, A. How Accurate Is Poisson-Boltzmann Theory for Monovalent Ions near Highly Charged Interfaces? Langmuir 2006, 22 (13), 5673-5681.
169. Hunter, R. J. Zeta potential in colloid science: principles and applications. Academic press London: 1981; Vol. 8.
170. Angulo, M.; Montoya, M. R.; Galvin, R. M.; Mellado, J. M. R. Electroreduction of some pyridine carboxamides on carbon electrodes in aqueous solutions. Electroanalysis 1997, 9 (4), 345-349.
171. Hapiot, P.; Moiroux, J.; Saveant, J. M. Electrochemistry of NADH/NAD+ analogs. A detailed mechanistic kinetic and thermodynamic analysis of the 10-methylacridan/10methylacridinium couple in acetonitrile. J Am Chem Soc 1990, 112 (4), 1337-1343.
172. Johnston, C. C.; Gardner, J. L.; Suelter, C. H.; Metzler, D. E. Acid-Catalyzed Addition of Water to 1,4-Dihydronicotinamide Derivatives*. Biochemistry 1963, 2 (4), 689-696.
173. Shinkai, S.; Hamada, H.; Kusano, Y.; Manabe, O. Coenzyme models. Part 16. Studies of general-acid catalysis in the NADH model reduction. Journal of the Chemical Society, Perkin Transactions 2 1979, (5), 699-702.
174. Calvin, M. PATH OF CARBON IN PHOTOSYNTHESIS. Science 1962, 135 (3507), 879-\&.
175. Raines, C. The Calvin cycle revisited. Photosynthesis Research 2003, 75 (1), 1-10.
176. Koizumi, T.-a.; Tanaka, K. Reversible Hydride Generation and Release from the Ligand of [Ru(pbn)(bpy)2](PF6)2 Driven by a pbn-Localized Redox Reaction. Angewandte Chemie International Edition 2005, 44 (36), 5891-5894.
177. The proposed sequential PT-ET-PT-ET steps for $\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{pbnH}_{2}\right)^{2+}$ formation are consistent with the production of dihydropyridine species for the related nicotinamide and acridines (ref. 117-119). More importantly, this is analogous to PyH_{2} formation, thus corroborating the viability of Scheme 2 and 4's routes I, II, V and VI.
178. Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. Dihydrophenanthridine: A New and Easily Regenerable NAD(P)H Model for Biomimetic Asymmetric Hydrogenation. J Am Chem Soc 2012, 134 (4), 2442-2448.
179. Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Towards a Comprehensive Hydride Donor Ability Scale. Chemistry - A European Journal 2013, 19 (1), 249263.
180. Richter, D.; Mayr, H. Hydride-Donor Abilities of 1,4-Dihydropyridines: A Comparison with π Nucleophiles and Borohydride Anions. Angewandte Chemie International Edition 2009, 48 (11), 1958-1961.
181. DuBois, D. L.; Berning, D. E. Hydricity of transition-metal hydrides and its role in CO2 reduction. Applied Organometallic Chemistry 2000, 14 (12), 860-862.
182. Ellis, W. W.; Raebiger, J. W.; Curtis, C. J.; Bruno, J. W.; DuBois, D. L. Hydricities of BzNADH, C5H5Mo(PMe3)(CO)2H, and C5Me5Mo(PMe3)(CO)2H in Acetonitrile. J Am Chem Soc 2004, 126 (9), 2738-2743.
183. Muckerman, J. T.; Achord, P.; Creutz, C.; Polyansky, D. E.; Fujita, E. Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction. Proceedings of the National Academy of Sciences 2012, 109 (39), 15657-15662.
184. The N values of of 1,4-cyclohexadiene, 10-methyl-9,10-dihydroacridine, and the Hantzsch ester were tabulated for HT in dichloromethane solvent while DMSO being the solvent for NaBH_{4}. In contrast, our calculations on PhenH_{2} and PyH_{2} were performed with CPCM-modeled aqueous solvent. It has been experimentally observed (ref. 179) that the N value is slightly greater when a more polar solvent is used (e.g. water).
185. The linear dependence of $\Delta G^{\ddagger}{ }_{H T}$ on N is implied from Mayr et al.'s $\log k\left(20^{\circ} \mathrm{C}\right)=s(N+E)$ equation (defined in Figure 1), where the logarithm of the rate constant depends linearly on $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ that is linearly related to N .
186. Since aqueous solution is considered for the reduction reactions, the possibility that PyH_{2} is destroyed via HT to the water solvent $\left(\mathrm{PyH}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{PyH}^{+}+\mathrm{OH}^{-}+\mathrm{H}_{2}\right)$ requires consideration. In section 3.7, we discount the PyH_{2} destruction route via HT to PyH^{+}(the dominant cation acid in the solution) to form $\mathrm{H}_{2}\left(\mathrm{PyH}_{2}+\mathrm{PyH}^{+}=\mathrm{PyH}^{+}+\mathrm{Py}+\mathrm{H}_{2}\right)$, with a calculated free energy barrier $24.0 \mathrm{kcal} / \mathrm{mol}$. Since water ($\mathrm{pK} \mathrm{K}_{\mathrm{a}}=15.7$) is a very much weaker acid than $\mathrm{PyH}^{+}\left(\mathrm{pK}_{\mathrm{a}}=5.3\right), \mathrm{PyH}_{2} \mathrm{HT}$ to water will have a much higher barrier than does HT to PyH^{+}, and at the same time be even more thermodynamically unfavorable.
187. Although PyH^{+}is depicted as the sole proton donor in Scheme 6, any $\mathrm{H}_{3} \mathrm{O}^{+}$present can also certainly protonate HCOO^{-}to form HCOOH
188. As was the case for HT from ammonia borane (ref. 112), no pre-bending of CO_{2} is found to precede the TS.
189. Proust-De Martin, F.; Dumas, R.; Field, M. J. A Hybrid-Potential Free-Energy Study of the Isomerization Step of the Acetohydroxy Acid Isomeroreductase Reaction. J Am Chem Soc 2000, 122 (32), 7688-7697.
190. Yoshioka, Y.; Schaefer, H. F.; Jordan, K. D. Theoretical investigation of the electron affinity of CO2. The Journal of Chemical Physics 1981, 75 (2), 1040-1041.
191. Valadbeigi, Y.; Farrokhpour, H. DFT, CBS-Q, W1BD and G4MP2 calculation of the proton and electron affinities, gas phase basicities and ionization energies of saturated and unsaturated carboxylic acids (C1-C4). Int. J. Quantum Chem. 2013, 113 (12), 1717-1721.
192. Winkelman, J. G. M.; Ottens, M.; Beenackers, A. A. C. M. The kinetics of the dehydration of methylene glycol. Chemical Engineering Science 2000, 55 (11), 2065-2071.
193. Bell, R. P.; Evans, P. G. Kinetics of the Dehydration of Methylene Glycol in Aqueous Solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1966, 291 (1426), 297-323.
194. Beno, B. R.; Houk, K. N.; Singleton, D. A. Synchronous or Asynchronous? An "Experimental" Transition State from a Direct Comparison of Experimental and Theoretical Kinetic Isotope Effects for a Diels-Alder Reaction. J Am Chem Soc 1996, 118 (41), 9984-9985.
195. Labet, V.; Morell, C.; Toro-Labbe, A.; Grand, A. Is an elementary reaction step really elementary? Theoretical decomposition of asynchronous concerted mechanisms. Phys. Chem. Chem. Phys. 2010, 12 (16), 4142-4151.
196. Bekele, T.; Christian, C. F.; Lipton, M. A.; Singleton, D. A. "Concerted" Transition State, Stepwise Mechanism. Dynamics Effects in C2-C6 Enyne Allene Cyclizations. J Am Chem Soc 2005, 127 (25), 9216-9223.
197. Williams, A. Concerted Organic and Bio-Organic Mechanisms. CRC Press: 1999.
198. Black, K.; Liu, P.; Xu, L.; Doubleday, C.; Houk, K. N. Dynamics, transition states, and timing of bond formation in Diels-Alder reactions. Proceedings of the National Academy of Sciences 2012, 109 (32), 12860-12865.
199. This sentence defines what we mean by "coupled". In other language sometimes used (ref. 194-198), the HTPT process could be termed "concerted asynchronous". However, the definitions of the terms "concerted" and "asynchronous" are sometimes defined/interpreted differently (ref. 194-198), so we do not insist on this usage.
200. Barnes, D.; Zuman, P. Polarographic reduction of aldehydes and ketones: XV. Hydration and acid-base equilibria accompanying reduction of aliphatic aldehydes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 46 (2), 323-342.
201. Norkus, E.; Pauliukaite, R.; Vaskelis, A.; Butkus, E.; Jusys, Z.; Kreneviciene, M. Influence of Ionic Strength and Cation Nature on the Deprotonation of Methanediol in Alkaline Solution[dagger]. Journal of Chemical Research, Synopses 1998, (6), 320-321.
202. Russell, P. G.; Kovac, N.; Srinivasan, S.; Steinberg, M. The Electrochemical Reduction of Carbon Dioxide, Formic Acid, and Formaldehyde. Journal of The Electrochemical Society 1977, 124 (9), 1329-1338.
203. The possible destruction of the methanediol via HT from PyH_{2} to produce the diolate negative ion, H_{2} and PyH^{+}can be neglected due to the diol's high pK_{a} value of ~ 13 (ref. 200 and 201), along the lines of the argument for the unimportance of HT from PyH_{2} to $\mathrm{H}_{2} \mathrm{O}$ in ref. 186. We thank Prof. Matt Kanan (Stanford) for raising this issue.
204. Ballinger, P.; Long, F. A. Acid Ionization Constants of Alcohols. II. Acidities of Some Substituted Methanols and Related Compounds1,2. J Am Chem Soc 1960, 82 (4), 795-798.
205. Fukuzumi, S.; Ishikawa, M.; Tanaka, T. Mechanism of acid-catalysed reduction of aromatic aldehydes and p-benzoquinone derivatives by an nadh model compound. Tetrahedron 1986, 42 (4), 1021-1034.
206. Kellogg, R. M. 1.3 - Reduction of CX to CHXH by Hydride Delivery from Carbon. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds. Pergamon: Oxford, 1991; pp 79106.
207. Dumas, R.; Biou, V.; Halgand, F.; Douce, R.; Duggleby, R. G. Enzymology, Structure, and Dynamics of Acetohydroxy Acid Isomeroreductase. Accounts of Chemical Research 2001, 34 (5), 399-408.
208. It was suggested that (ref. 152) a surface hydride can be formed on a GaP surface, which is then transferred to the N of an adsorbed Py to form a surface-adsorbed dihydropyridine (assuming PT occurs from the solution phase). However, this proposal does not explain the observed catalytic role of Py : if GaP is capable of producing a hydride, this hydride can directly transfer to CO_{2}, thus eliminating the role of Py as a HT mediator.
209. In SI section 7, we calculate a $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}$ of $\sim 60 \mathrm{kcal} / \mathrm{mol}$ for the HT proposed in ref. 152 from the $\mathrm{N}-\mathrm{H}$ bond of 1,4 -dihydropyridine to CO_{2} to form HCOO^{-}. In addition, binding of 1,4dihydropyridine to a surface Lewis acid site through the N lone pair, as proposed in ref. 152,
causes the $\mathrm{N}-\mathrm{H}$ bond to be an even weaker hydride donor with a $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}$ larger than the already high $60 \mathrm{kcal} / \mathrm{mol}$ for free 1,4 -dihydropyridine. Thus HT from the N-H bond of either a solution phase or surface-adsorbed dihydropyridine is highly endergonic and is highly unlikely.
210. Gunanathan, C.; Milstein, D. Metal-Ligand Cooperation by AromatizationDearomatization: A New Paradigm in Bond Activation and "Green" Catalysis. Accounts of Chemical Research 2011, 44 (8), 588-602.
211. Milstein, D. Discovery of Environmentally Benign Catalytic Reactions of Alcohols Catalyzed by Pyridine-Based Pincer Ru Complexes, Based on Metal-Ligand Cooperation. Top Catal 2010, 53 (13-14), 915-923.
212. No surface reaction is invoked in our development, but we argue that the electrical double layer near the cathode plays the important role of assisting protonation in both the protonation of PyH^{0} (section 3.2) en route to PyH_{2} and of formate anion (section 3.4).
213. Shaffer, G. Long-term effectiveness and consequences of carbon dioxide sequestration. Nat. Geosci. 2010, 3 (7), 464-467.
214. Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. R. An Efficient Nickel Catalyst for the Reduction of Carbon Dioxide with a Borane. J Am Chem Soc 2010, 132 (26), 8872-+.
215. Momming, C. M.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs. Angew Chem Int Edit 2009, 48 (36), 6643-6646.
216. Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angew Chem Int Edit 2010, 49 (1), 46-76.
217. Jiang, C. F.; Stephan, D. W. Phosphinimine-borane combinations in frustrated Lewis pair chemistry. Dalton Trans. 2013, 42 (3), 630-637.
218. Reddy, J. S.; Xu, B. H.; Mahdi, T.; Frohlich, R.; Kehr, G.; Stephan, D. W.; Erker, G. Alkenylborane-Derived Frustrated Lewis Pairs: Metal-Free Catalytic Hydrogenation Reactions of Electron-Deficient Alkenes. Organometallics 2012, 31 (15), 5638-5649.
219. Peuser, I.; Neu, R. C.; Zhao, X. X.; Ulrich, M.; Schirmer, B.; Tannert, J. A.; Kehr, G.; Frohlich, R.; Grimme, S.; Erker, G.; Stephan, D. W. CO2 and Formate Complexes of Phosphine/Borane Frustrated Lewis Pairs. Chemistry-a European Journal 2011, 17 (35), 96409650.
220. Appelt, C.; Westenberg, H.; Bertini, F.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K.; Uhl, W. Geminal Phosphorus/Aluminum-Based Frustrated Lewis Pairs: C-H versus C equivalent to C Activation and CO(2) Fixation. Angew Chem Int Edit 2011, 50 (17), 3925-3928.
221. Roy, L.; Zimmerman, P. M.; Paul, A. Changing Lanes from Concerted to Stepwise Hydrogenation: The Reduction Mechanism of Frustrated Lewis Acid-Base Pair Trapped CO2 to Methanol by Ammonia-Borane. Chemistry - A European Journal 2011, 17 (2), 435-439.
222. Kwon, H. J.; Kim, H. W.; Rhee, Y. M. On the Mechanism of Irreversible Carbon Dioxide Binding with a Frustrated Lewis Pair: Solvent-Assisted Frustration and Transition-State Entropic Encouragement. Chemistry-a European Journal 2011, 17 (23), 6501-6507.
223. Although Rhee et al. [ref. 222] demonstrated that explicit solvent encourages $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ formation the role of the LA and LB in FLP-catalyzed CO_{2} reduction examined here is the same whether an implicit or explicit solvent model is employed.
224. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27 (15), 1787-1799.
225. Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. The Mechanism of Dihydrogen Activation by Frustrated Lewis Pairs Revisited. Angew Chem Int Edit 2010, 49 (8), 1402-1405.
226. Olah, G. A.; Torok, A.; Joschek, J. P.; Bucsi, I.; Esteves, P. M.; Rasul, G.; Prakash, G. K. S. Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon Dioxide-Al2Cl6/Al system. J Am Chem Soc 2002, 124 (38), 11379-11391.
227. Ren, J.; Cramer, C. J.; Squires, R. R. Superacidity and Superelectrophilicity of BF3-Carbonyl Complexes. J Am Chem Soc 1999, 121 (11), 2633-2634.
228. Menard, G.; Stephan, D. W. CO2 reduction via aluminum complexes of ammonia boranes. Dalton Trans. 2013, 42 (15), 5447-5453.
229. Mains, G. J.; Nantsis, E. A.; Carper, W. R. Ab Initio Bonding, Molecular Structure, and Quadrupole Coupling Constants of Aluminum Chlorides. The Journal of Physical Chemistry A 2001, 105 (17), 4371-4378.
230. Norris, J. F.; Rubinstein, D. The Formation of Intermediate Compounds in Hydrocarbon Syntheses by the Friedel and Crafts Reaction, and the Preparation of Certain Symmetrical Trialkylbenzenes. J Am Chem Soc 1939, 61 (5), 1163-1170.
231. Aarset, K.; Shen, Q.; Thomassen, H.; Richardson, A. D.; Hedberg, K. Molecular Structure of the Aluminum Halides, $\mathrm{Al} 2 \mathrm{Cl} 6, \mathrm{AlCl} 3, \mathrm{Al} 2 \mathrm{Br} 6, \mathrm{AlBr} 3$, and All 3 , Obtained by Gas-Phase Electron-Diffraction and ab Initio Molecular Orbital Calculations. The Journal of Physical Chemistry A 1999, 103 (11), 1644-1652.
232. Besides optimizing the concentration of 7 , the stability of 10 should also be considered. For example, for $\mathrm{LA}=\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and $\mathrm{AB}=\mathrm{NMe}_{3} \mathrm{BH}_{3}$, a side reaction occurs (ref. 228) where a ligand of $B\left(C_{6} F_{5}\right)_{3}$ displaces a hydrogen of $\mathrm{NMe}_{3} \mathrm{BH}_{3}$ to form $\mathrm{NMe}_{3} \mathrm{~B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{H}_{2}$, where the reduction of CO_{2} to formate was not observed.
233. Saito, S.; Yamamoto, H. Designer Lewis acid catalysts-bulky aluminium reagents for selective organic synthesis. Chemical Communications 1997, (17).
234. Adachi, T.; Sugimoto, H.; Aida, T.; Inoue, S. Aluminum thiolate complexes of porphyrin as excellent initiators for Lewis acid-assisted high-speed living polymerization of methyl methacrylate. Macromolecules 1993, 26 (6), 1238-1243.
235. Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation. Chemical Reviews 2013, 113 (8), 6621-6658.
236. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences 2006, 103 (43), 15729-15735.
237. Deno, N. C.; Peterson, H. J.; Saines, G. S. The Hydride-Transfer Reaction. Chemical Reviews 1960, 60 (1), 7-14.
238. Moret, S.; Dyson, P. J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 2014, 5.
239. Lim, C.-H.; Holder, A. M.; Hynes, J. T.; Musgrave, C. B. Reduction of CO2 to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine. J Am Chem Soc 2014, 136 (45), 16081-16095.
240. Matsubara, Y.; Fujita, E.; Doherty, M. D.; Muckerman, J. T.; Creutz, C. Thermodynamic and Kinetic Hydricity of Ruthenium(II) Hydride Complexes. J Am Chem Soc 2012, 134 (38), 15743-15757.
241. Ohtsu, H.; Tsuge, K.; Tanaka, K. Remarkable accelerating and decelerating effects of the bases on CO2 reduction using a ruthenium NADH model complex. Journal of Photochemistry and Photobiology A: Chemistry 2015.
242. Zhu, X.-Q.; Tan, Y.; Cao, C.-T. Thermodynamic Diagnosis of the Properties and Mechanism of Dihydropyridine-Type Compounds as Hydride Source in Acetonitrile with "Molecule ID Card". The Journal of Physical Chemistry B 2010, 114 (5), 2058-2075.
243. Zhu, X.-Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P. Hydride, Hydrogen Atom, Proton, and Electron Transfer Driving Forces of Various Five-Membered Heterocyclic Organic Hydrides and Their Reaction Intermediates in Acetonitrile. J Am Chem Soc 2008, 130 (8), 25012516.
244. O'Leary, M. H.; Jaworski, R. J.; Hartman, F. C. 13C nuclear magnetic resonance study of the CO2 activation of ribulosebisphosphate carboxylase from Rhodospirillum rubrum. Proceedings of the National Academy of Sciences 1979, 76 (2), 673-675.
245. Hecht, S. M.; Adams, B. L.; Kozarich, J. W. Chemical transformations of 7,9-disubstituted purines and related heterocycles. Selective reduction of imines and immonium salts. The Journal of Organic Chemistry 1976, 41 (13), 2303-2311.
246. Shih, H.-W.; Vander Wal, M. N.; Grange, R. L.; MacMillan, D. W. C. Enantioselective $\alpha-$ Benzylation of Aldehydes via Photoredox Organocatalysis. J Am Chem Soc 2010, 132 (39), 13600-13603.
247. Hawker, C. J.; Wooley, K. L. The Convergence of Synthetic Organic and Polymer Chemistries. Science 2005, 309 (5738), 1200-1205.
248. Kilambi, H.; Reddy, S. K.; Schneidewind, L.; Stansbury, J. W.; Bowman, C. N. Copolymerization and dark polymerization studies for photopolymerization of novel acrylic monomers. Polymer 2007, 48 (7), 2014-2021.
249. Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angewandte Chemie International Edition 2010, 49 (9), 1540-1573.
250. Adzima, B. J.; Tao, Y.; Kloxin, C. J.; DeForest, C. A.; Anseth, K. S.; Bowman, C. N. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated $\mathrm{Cu}(\mathrm{II})$ reduction. Nat Chem 2011, 3 (3), 256-259.
251. Narayanam, J. M. R.; Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chemical Society Reviews 2011, 40 (1), 102-113.
252. Xuan, J.; Xiao, W.-J. Visible-Light Photoredox Catalysis. Angewandte Chemie International Edition 2012, 51 (28), 6828-6838.
253. Dai, C.; Narayanam, J. M. R.; Stephenson, C. R. J. Visible-light-mediated conversion of alcohols to halides. Nat Chem 2011, 3 (2), 140-145.
254. Lee, T. Y.; Roper, T. M.; Jönsson, E. S.; Guymon, C. A.; Hoyle, C. E. Influence of Hydrogen Bonding on Photopolymerization Rate of Hydroxyalkyl Acrylates. Macromolecules 2004, 37 (10), 3659-3665.
255. Fors, B. P.; Hawker, C. J. Control of a Living Radical Polymerization of Methacrylates by Light. Angewandte Chemie International Edition 2012, 51 (35), 8850-8853.
256. Wang, J.-S.; Matyjaszewski, K. Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 1995, 117 (20), 5614-5615.
257. Yoon, T. P.; Ischay, M. A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2010, 2 (7), 527-532.
258. Allonas, X.; Lalevée, J.; Fouassier, J.-P. Investigation of cleavage processes in photoinitiators: from experiments to molecular modeling. Journal of Photochemistry and Photobiology A: Chemistry 2003, 159 (2), 127-133.
259. Fouassier, J. P. L., J. Photoinitiators for Polymer Synthesis: Scope, Reactivity, and Efficiency. 1st ed. ed.; Wiley-VCH: 2012.
260. Eaton, D. F. Nonlinear Optical Materials. Science 1991, 253 (5017), 281-287.
261. Fouassier, J. P.; Morlet-Savary, F. Photopolymers for laser imaging and holographic recording: design and reactivity of photosensitizers. OPTICE 1996, 35 (1), 304-312.
262. Liu, N.; Liu, H.; Zhu, S.; Giessen, H. Stereometamaterials. Nat Photon 2009, 3 (3), 157-
162.
263. Scott, T. F.; Kowalski, B. A.; Sullivan, A. C.; Bowman, C. N.; McLeod, R. R. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography. Science 2009, 324 (5929), 913-917.
264. Catilaz-Simonin, L.; Fouassier, J. P. Investigation of a system capable of photoinitiating radical polymerizations in thick pigmented media. Journal of Applied Polymer Science 2001, 79 (10), 1911-1923.
265. Goodner, M. D.; Bowman, C. N. Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chemical Engineering Science 2002, 57 (5), 887-900.
266. DeForest, C. A.; Polizzotti, B. D.; Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 2009, 8 (8), 659-664.
267. Fisher, J. P.; Dean, D.; Mikos, A. G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials 2002, 23 (22), 4333-4343.
268. Stansbury, J. W. Curing Dental Resins and Composites by Photopolymerization. Journal of Esthetic and Restorative Dentistry 2000, 12 (6), 300-308.
269. Hasenwinkel, J. M.; Lautenschlager, E. P.; Wixson, R. L.; Gilbert, J. L. A novel highviscosity, two-solution acrylic bone cement: Effect of chemical composition on properties. Journal of Biomedical Materials Research 1999, 47 (1), 36-45.
270. Nakos, e. a. Dual curing coating method for substrates with shadow areas. U.S. Patent 4,699,802, 1987.
271. Kwon, T.-Y.; Bagheri, R.; Kim, Y. K.; Kim, K.-H.; Burrow, M. F. Cure mechanisms in materials for use in esthetic dentistry. Journal of Investigative and Clinical Dentistry 2012, 3 (1), 3-16.
272. Nason, C.; Roper, T.; Hoyle, C.; Pojman, J. A. UV-Induced Frontal Polymerization of Multifunctional (Meth)acrylates. Macromolecules 2005, 38 (13), 5506-5512.
273. Crivello, J. V. Hybrid free radical/cationic frontal photopolymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (18), 4331-4340.
274. Gregory, S. Ultraviolet curable resin compositions having enhanced shadow cure properties. U.S. Patent 6,245,827, 2001.
275. Gugg, A.; Gorsche, C.; Moszner, N.; Liska, R. Frontal Polymerization: Polymerization Induced Destabilization of Peracrylates. Macromolecular Rapid Communications 2011, 32 (14), 1096-1100.
276. Lalevée, J.; Tehfe, M.-A.; Morlet-Savary, F.; Graff, B.; Dumur, F.; Gigmes, D.; Blanchard, N.; Fouassier, J.-P. Photoredox Catalysis for Polymerization Reactions. CHIMIA International Journal for Chemistry 2012, 66 (6), 439-441.
277. Kim, D.; Scranton, A. The role of diphenyl iodonium salt (DPI) in three-component photoinitiator systems containing methylene blue (MB) and an electron donor. Journal of Polymer Science Part A: Polymer Chemistry 2004, 42 (23), 5863-5871.
278. Padon, K. S.; Scranton, A. B. A mechanistic investigation of a three-component radical photoinitiator system comprising methylene blue, N -methyldiethanolamine, and diphenyliodonium chloride. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (11), 2057-2066.
279. Pierre Fouassier, J.; Lalevee, J. Three-component photoinitiating systems: towards innovative tailor made high performance combinations. RSC Advances 2012, 2 (7), 2621-2629.
280. Tehfe, M.-A.; Lalevée, J.; Morlet-Savary, F.; Graff, B.; Blanchard, N.; Fouassier, J.-P. Organic Photocatalyst for Polymerization Reactions: 9,10Bis[(triisopropylsilyl)ethynyl]anthracene. ACS Macro Letters 2012, 1 (1), 198-203.
281. Zhang, G.; Song, I. Y.; Ahn, K. H.; Park, T.; Choi, W. Free Radical Polymerization Initiated and Controlled by Visible Light Photocatalysis at Ambient Temperature. Macromolecules 2011, 44 (19), 7594-7599.
282. Kim, D.; Stansbury, J. W. A photo-oxidizable kinetic pathway of three-component photoinitiator systems containing porphrin dye (Zn-tpp), an electron donor and diphenyl iodonium salt. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (12), 3131-3141.
283. Kim, D.; Stansbury, J. W. Kinetic pathway investigations of three-component photoinitiator systems for visible-light activated free radical polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (3), 887-898.
284. Kavarnos, G. J. In Photoinduced Electron Transfer I. Springer: 1990.
285. Scholes, G. D.; Fleming, G. R.; Olaya-Castro, A.; van Grondelle, R. Lessons from nature about solar light harvesting. Nat Chem 2011, 3 (10), 763-774.
286. Stansbury, J. W.; Dickens, S. H. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dental Materials 2001, 17 (1), 71-79.
287. Galagan, Y.; Hsu, S.-H.; Su, W.-F. Monitoring time and temperature by methylene blue containing polyacrylate film. Sensors and Actuators B: Chemical 2010, 144 (1), 49-55.
288. Mills, A.; Lawrie, K.; McFarlane, M. Blue bottle light: lecture demonstrations of homogeneous and heterogeneous photo-induced electron transfer reactions. Photochemical \& Photobiological Sciences 2009, 8 (3), 421-425.
289. Goodspeed, F. C.; Scott, B. L.; Burr, J. G. Photooxidation of Tertiary Nitrogen Compounds by Methylene Blue. The Journal of Physical Chemistry 1965, 69 (4), 1149-1153.
290. Kavarnos, G. J.; Turro, N. J. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chemical Reviews 1986, 86 (2), 401-449.
291. Kim, D.; Scranton, A. B.; Stansbury, J. W. Analysis of association constant for groundstate dye-electron acceptor complex of photoinitiator systems and the association constant effect on the kinetics of visible-light-induced polymerizations. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (5), 1429-1439.
292. Sirovatka Padon, K.; Scranton, A. B. The effect of oxygen on the three-component radical photoinitiator system: Methylene blue, N-methyldiethanolamine, and diphenyliodonium chloride. Journal of Polymer Science Part A: Polymer Chemistry 2000, 38 (18), 3336-3346.
293. Asmusen, S.; Arenas, G.; Cook, W. D.; Vallo, C. Photobleaching of camphorquinone during polymerization of dimethacrylate-based resins. Dental Materials 2009, 25 (12), 16031611.
294. Eaton, D. F. Dye Sensitized Photopolymerization. In Advances in Photochemistry, John Wiley \& Sons, Inc.: 2007; pp 427-487.
295. Kim, D.; Scranton, A. B.; Stansbury, J. W. Effect of the electron donor structure on the shelf-lifetime of visible-light activated three-component initiator systems. Journal of Applied Polymer Science 2009, 114 (3), 1535-1542.
296. Dektar, J. L.; Hacker, N. P. Photochemistry of diaryliodonium salts. The Journal of Organic Chemistry 1990, 55 (2), 639-647.
297. Galagan, Y.; Su, W.-F. Reversible photoreduction of methylene blue in acrylate media containing benzyl dimethyl ketal. Journal of Photochemistry and Photobiology A: Chemistry 2008, 195 (2-3), 378-383.
298. Impert, O.; Katafias, A.; Kita, P.; Mills, A.; Pietkiewicz-Graczyk, A.; Wrzeszcz, G. Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(ii)-halide species in acidic aqueous media. Dalton Trans. 2003, (3), 348-353.
299. Hertle, Alexander P.; Blunder, T.; Wunder, T.; Pesaresi, P.; Pribil, M.; Armbruster, U.; Leister, D. PGRL1 Is the Elusive Ferredoxin-Plastoquinone Reductase in Photosynthetic Cyclic Electron Flow. Molecular Cell 2013, 49 (3), 511-523.
300. Munekage, Y.; Hashimoto, M.; Miyake, C.; Tomizawa, K.-I.; Endo, T.; Tasaka, M.; Shikanai, T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 2004, 429 (6991), 579-582.
301. Datta, P.; Efimenko, K.; Genzer, J. The effect of confinement on thermal frontal polymerization. Polymer Chemistry 2012, 3 (12), 3243-3246.
302. Mathew, J.; Mahadevan, V. Redox polymerization of 2-hydroxyethyl methacrylate, 2. Kinetics, mechanism and solvent effect using manganese triacetate/cyanoacetic acid as the redox system. Macromolecular Chemistry and Physics 1996, 197 (1), 367-374.
303. Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620.
304. Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169-11186.
305. Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 1550.
306. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 1996, 77 (18), 3865-3868.
307. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmentedwave method. Physical Review B 1999, 59 (3), 1758-1775.
308. Henkelman, G.; Arnaldsson, A.; Jonsson, H. A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science 2006, 36 (3), 354-360.
309. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28 (5), 899-908.
310. Becke, A. D. DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR. Physical Review A 1988, 38 (6), 3098-3100.
311. Lee, C. T.; Yang, W. T.; Parr, R. G. DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY. Physical Review B 1988, 37 (2), 785-789.
312. He, H.; Zapol, P.; Curtiss, L. A. A Theoretical Study of CO2 Anions on Anatase (101) Surface. The Journal of Physical Chemistry C 2010, 114 (49), 21474-21481.
313. da Silva, G.; Kennedy, E. M.; Dlugogorski, B. Z. Ab Initio Procedure for Aqueous-Phase pKa Calculation: The Acidity of Nitrous Acid. The Journal of Physical Chemistry A 2006, 110 (39), 11371-11376.
314. Hwang, S. G.; Jang, Y. H.; Chung, D. S. Gas phase proton affinity, basicity, and pK(a) values for nitrogen containing heterocyclic aromatic compounds. Bulletin of the Korean Chemical Society 2005, 26 (4), 585-588.
315. Jang, Y. H.; Goddard, W. A.; Noyes, K. T.; Sowers, L. C.; Hwang, S.; Chung, D. S. pKa Values of Guanine in Water: Density Functional Theory Calculations Combined with Poisson-Boltzmann Continuum-Solvation Model. The Journal of Physical Chemistry B 2002, 107 (1), 344-357.
316. Zhang, S. A reliable and efficient first principles-based method for predicting pKa values. III. Adding explicit water molecules: Can the theoretical slope be reproduced and pKa values predicted more accurately? J. Comput. Chem. 2012, 33 (5), 517-526.
317. Shapley, W. A.; Bacskay, G. B.; Warr, G. G. Ab initio quantum chemical studies of the $\mathrm{pK}(\mathrm{a})$'s of hydroxybenzoic acids in aqueous solution with special reference to the hydrophobicity of hydroxybenzoates and their binding to surfactants. J. Phys. Chem. B 1998, 102 (11), 1938-1944.
318. Kallies, B.; Mitzner, R. pK(a) values of amines in water from quantum mechanical calculations using a polarized dielectric continuum representation of the solvent. J. Phys. Chem. B 1997, 101 (15), 2959-2967.
319. Sastre, S.; Casasnovas, R.; Muñoz, F.; Frau, J. Isodesmic reaction for pK a calculations of common organic molecules. Theoretical Chemistry Accounts 2012, 132 (2), 1-8.
320. Klots, C. E.; Compton, R. N. Electron attachment to carbon dioxide clusters in a supersonic beam. The Journal of Chemical Physics 1977, 67 (4), 1779-1780.
321. ZIEMCZONEK, L.; WROBLEWSKI, T.; KARWASZ, G. P. Ab initio study of formic acid monomer, dimer and trimer. Optica Applicata 2006, 36 (4), 587-591.
322. Roberts, G. M.; Pierce, P. J.; Woo, L. K. Palladium Complexes with N-Heterocyclic Carbene Ligands As Catalysts for the Alkoxycarbonylation of Olefins. Organometallics 2013, 32 (6), 2033-2036.

Appendix

A. Supporting information - Mechanism of Homogeneous Reduction of CO_{2} by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization

A. 1 Solvated PyH^{+}Adsorption on the $\mathrm{Pt}(111)$ Surface

Simulations of $\mathrm{PyH}^{+}(\mathrm{aq})$ adsorbed on the (111) face of Pt modeled using a 180-atom Pt surface model, 102 water molecules and a Cl^{-}counterion were performed using plane wave periodic boundary condition DFT as implemented in the Vienna Ab initio Simulation Program (VASP). ${ }^{304-}$
${ }^{305}$ We employed the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) exchange and correlation functional ${ }^{306}$ along with projector augmented wave (PAW) pseudopotentials. ${ }^{307}$ PAW's were used to describe the hydrogen 1 s ; nitrogen and carbon 2 s and $2 p$; chlorine $3 s$ and $3 p$; and platinum $6 s$ and $5 d$ electrons explicitly. Optimization of the Pt unit cell was performed with a $4 \times 4 \times 4$ Monkhorst-Pack k-point mesh expansion. All calculations were spin polarized and utilized a 500 eV cut off energy, and all supercell calculations were conducted at the 「-point; as extensive Brillouin zone folding for large supercells enables the Γ point to span a larger fraction of k-space without the added computational expense of a k-point expansion. For the supercell calculations we used a 180-atom Pt (111) surface model of 5 layers thick with the bottom 3 layers of Pt atoms frozen. To model the solvation effects of PyH^{+} adsorption 102 waters and $8 \AA$ of vacuum space were placed in the 28 Å gap between the front and backsides of the Pt slab as illustrated in Figure S1a. Molecular dynamics simulations were performed to anneal the water structure to a bulk-like density for simulation of the aqueous layer. Bader charge analysis was conducted using software from the Henkelman group. ${ }^{308-309}$

The adsorption energy (no ZPE correction) of water solvated PyH^{+}on the Pt (111) surface is found to be 1.0 eV per molecule. The strong interaction of PyH^{+}with the Pt surface is indicated by the adsorbed PyH^{+}projected density of states (PDOS) which show a significant broadening and population of the adsorbate states as a result of mixing with the surface states (see Figure S1b). The strong absorption energy of aromatic heterocyclic PyH^{+}is consistent with the reported strong absorption energies on metal surfaces of other aromatics; such as benzene, which ranges from 1.21-2.88 eV on Pt, Pd, Rh, and Ir. ${ }^{49}$ Bader charge analysis predicts $0.56 \mathrm{e}^{-}$ transferred to PyH^{+}from the Pt surface. On the Pt surface, N gains $0.19 \mathrm{e}^{-}$while the remaining heterocyclic ring gains $0.37 \mathrm{e}^{-}$, suggesting significant charge is donated into the $\mathrm{PyH}^{+} \pi$-space when adsorbed on the surface, which further suggests the reduction potential of PyH^{+}on the Pt surface will be decreased (less negative) relative to its homogeneous phase value. The energy offset due to the decreased reduction potential on the surface must be accounted for by
thermal activation or an applied overpotential to facilitate PyH^{0} desorption into the homogenous phase.

PyH^{+}Solvated
PyH^{+}Adsorbed
Figure S1a: Solvated PyH^{+}adsorption on (111) Pt surface simulated using an 180 atom Pt surface with 102 solvating waters and a charge balancing Cl^{-}counterion (additional boundary atoms shown for clarity).

Figure S1b: Projected density of states (PDOS) of solvated PyH^{+}adsorption on (111) Pt surface decomposed by molecular species (top) and an enlarged view of the PDOS of PyH^{+}near the Fermi energy (bottom).

A. 2 Calculation of K_{eq} for the Zwitterionic Py $\cdot \mathrm{CO}_{2}$ Complex

Tossell determined that at least one explicit water must be used in order to describe the formation of the zwitterionic Py• CO_{2} complex by the reaction $\mathrm{Py}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Py} \cdot \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (eq. 1), depicted in Figure S 2 as the product. ${ }^{44}$ We determined that $\Delta H^{0}=-0.2 \mathrm{kcal} / \mathrm{mol}$ for eq. 1 at the CBS-QB3/CPCM- $\mathrm{H}_{2} \mathrm{O}$ level of theory. ${ }^{77}$ Meanwhile, $\mathrm{T} \triangle \mathrm{S}^{0}=-8.4 \mathrm{kcal} / \mathrm{mol}$ for eq. 1, but was calculated in the absence of the explicit water using B3LYP/6-31+G**/CPCM $-\mathrm{H}_{2} \mathrm{O} .{ }^{310-311}$ Including $T \Delta S^{0}$ from this one water molecule is not physically accurate because in aqueous solvent many water molecules are available to participate in $\mathrm{Py} \cdot \mathrm{CO}_{2}$ formation at only a minor entropic penalty. $\Delta G^{0}\left(\right.$ Py $\cdot \mathrm{CO}_{2}$ formation $)=\Delta H^{0}-T \Delta S^{0}=8.2 \mathrm{kcal} / \mathrm{mol}$. $\mathrm{K}_{\text {eq }}=\exp \left(-\Delta \mathrm{G}^{0} / \mathrm{RT}\right)={ }^{\sim} 1 \mathrm{E}-$ 06

Figure S 2 : The $\mathrm{Py} \cdot \mathrm{CO}_{2}$ zwitterionic complex in the presence of one explicit water.

A. 3 Determination of Multi-reference Character in the Reduction of $\mathbf{C O}_{2}$ by $\mathbf{P y H}^{\mathbf{0}}$

Single-point CASSCF $(15,14)$ calculations ${ }^{62}$ at roMP2 ${ }^{58} / 6-31+\mathrm{G}^{* *} /$ CPCM $-\mathrm{H}_{2} \mathrm{O}$ geometries for the reactant, TS and product of the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}$ reaction were used to determine the extent of multi-reference character in these structures. Calculations were performed using the GAMESS computational chemistry software package. ${ }^{59-60}$ All chemical bonds that form and break along the reaction coordinate are included in the active space of the CASSCF calculation; in particular we included 15 electrons and 14 orbitals chosen to be consistent along the reaction pathway in our calculations to fully describe the system. Cl (configuration interaction) coefficients from the CASSCF output were analyzed to determine the weight of the ground state electronic configuration contribution to the CASSCF wave function. As a general rule, a ground state CI coefficient >0.9 indicates a system with insignificant multi-reference character such that a single Slater determinant wave function is sufficient to describe the system correctly and accurately. The reactant, TS and product structures of the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}$ reaction have Cl coefficients of >0.9 for the ground state wave function. Thus, the high level couple-cluster $\operatorname{CCSD}(T)$ single reference method is a reliable benchmark for this system. Up to ten of the largest Cl coefficients from the CASSCF calculations are included below for reference with the ground state electronic configuration coefficient indicated by bold red text.

$\underline{\mathrm{PyH}}{ }^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \underline{O}$ (reactant)		
ALPHA	BETA \| CO	OEFFICIENT
11111111000000	11111110000000 \|	0.9256435
11111101100000	11111100100000 \|	0.1227180
11111110100000	11111101000000 \|	-0.1098035
11101111001000	11101110001000 \|	0.1079563
11111110010000	11111011000000 \|	-0.1057333
10111111000100	$10111110000100 \mid$	0.0898409
11111110010000	11111100100000 \|	0.0691305
11111111000000	11111100100000 \|	-0.0614998
111111111000000	11111001100000 \|	-0.0574147
11111111000000	11111010010000 \|	-0.0568963

$\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \underline{O}$ (TS)

ALPHA	BETA \| CO	EFFICIENT	
11111111000000 \|	\| 11111110000000		0.9138129
11111110100000 \|	\| 11111101000000		0.1493099
11111101100000	11111100100000 \|	0.1297380	
11111110010000	11111011000000 \|	0.1116958	
11111101100000	11111110000000 \|	0.0766102	
11111111000000 \|	\| 11111100100000		0.0726996
11111111000000 \|	11111011000000 \|	0.0634205	
11111011100000	\| 11111100010000		0.0616641
11111011010000	11111110000000 \|	0.0594992	
11111101010000	11111010100000 \|	0.0585255	
$\underline{\mathrm{PyH}}{ }^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \underline{\mathrm{O}}$ (Product)			
ALPHA \| BETA			COEFFICIENT
11111111000000	11111110000000 \|	0.9170002	
11111110100000	11111101000000 \|	0.1391589	
11111101100000	11111100100000 \|	0.1281615	
11111110010000	11111011000000 \|	-0.1060477	
11111111000000	11111011000000 \|	-0.0768217	
11111101100000	11111110000000 \|	0.0744552	
11111111000000	11111100100000 \|	0.0647038	
11111011010000 \| $11111110000000 \mid-0.0603841$			
11111110010000 \|	\| 11111100100000		-0.0585207

A. 4 Further Discussion on the use of CPCM to Treat Solvation

a. Derivation of enthalpic barrier in aqueous solutions

The free energy in solution is defined by ${ }^{74}$:
$G_{\text {soln }}=E_{\text {soln }}+G_{\text {nes }}+G_{g a s}-E_{\text {gas }}$
where $G_{\text {soln }}$ is the free energy of solute in solution, $E_{\text {soln }}$ is the solvated electronic energy described by the implicit solvent model, such as CPCM, $G_{n e s}$ is the non-electrostatic contribute to solvation free energy, $G_{g a s}$ is the free energy of the solute calculated in vacuum, and $E_{\text {gas }}$ is the electronic energy calculated in vacuum. Eq. (1) can be further simplified to eq. (2) using $G_{g a s}=E_{g a s}+P V_{g a s}-T S_{g a s}$.
$G_{\text {soln }}=E_{s o l n}+G_{n e s}+P V_{g a s}-T S_{g a s}$
(2)

Next, the activation free energy for PyCOOH^{0} product formation can be defined as:
$\Delta G_{a c, \text { soln }}=\left(E_{\text {soln }}^{T S}-E_{\text {soln }}^{R}\right)+\left(G_{\text {nes }}^{T S}-G_{\text {nes }}^{R}\right)-\left(T S_{\text {gas }}^{T S}-T S_{\text {gas }}^{R}\right)$
Where the $P V_{\text {gas }}$ term cancels out, the superscript "TS" denotes the solute at Transition State and " R " denotes the reactants. We will show in part (b) below that, ignoring the nonelectrostatic term results in an insignificant $\sim 1.5 \mathrm{kcal} / \mathrm{mol}$ of error in $\Delta G_{a c, s o l n}$. Thus, eq. 3 is simplifies to eq. 4.
$\Delta G_{a c, s o l n}=\left(E_{\text {soln }}^{T S}-E_{\text {soln }}^{R}\right)-\left(T S_{\text {gas }}^{T S}-T S_{\text {gas }}^{R}\right)$
(4)

Note that $\Delta G_{a c, \text { soln }}$ can also be expressed by:
$\Delta G_{a c, \text { soln }}=\Delta H_{a c, \text { soln }}-T \Delta S_{a c, \text { soln }}$
Thus by comparing eq. 4 to eq. $5,\left(E_{\text {soln }}^{T S}-E_{\text {soln }}^{R}\right) \approx \Delta H_{a c, \text { soln }}$ (the enthalpic barrier reported in Table 1) because strictly speaking, the second term on the right of eq. (4) is the entropic contribution calculated in gas phase rather than in solution phase as expressed in eq. (5). The $E_{\text {soln }}$ and $G_{n e s}$ both contain parameters to account for this difference.
b. Cancellation of non-electrostatic term $\mathrm{G}_{\text {nes }}$ between the TS and reactant

We used the SMD ${ }^{69}$ model at roMP2/6-31+G**level of theory on $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ to estimate contributions of the non-electrostatic term to solvation. We find that $\Delta G_{n e s}=G_{n e s}^{T S}-G_{n e s}^{R}=$ $9.72 \frac{\mathrm{kcal}}{\mathrm{mol}}-8.23 \frac{\mathrm{kcal}}{\mathrm{mol}}=1.5 \frac{\mathrm{kcal}}{\mathrm{mol}}$

c. Comparing gas phase to implicit solvent CPCM

Table S1: Comparing gas phase to implicit CPCM calculations for $\mathrm{PyH}^{0} \cdot \mathrm{CO}_{2}+\mathrm{mH}_{2} \mathrm{O}+\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$ to form PyCOOH^{0} where m is the number of active $\mathrm{H}_{2} \mathrm{Os}$ in the proton relay and n is the number of solvating $\mathrm{H}_{2} \mathrm{Os}$.

System $^{\text {(a) }}$	Gas phase		$C P C M$	
	$\Delta \mathrm{H}^{0}{ }_{\text {act }}$	$\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$	$\Delta \mathrm{H}^{0}{ }_{\text {act }}$	$\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}$
$\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$	22.1	-3.7	18.5	-3.2
$\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$	12.5	-8.2	14.6	-4.0

${ }^{\text {a }}$ Enthalpies in unit kcal/mol and calculations were performed at roMP2/6-31+G**
In $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$, the gas phase $\Delta \mathrm{H}_{\text {act }}^{0}$ is higher than the CPCM where CPCM stabilizes the more polar TS relative to the reactant. In contrast, in the case of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$, the gas phase calculation (reaction core plus explicit solvent, but not embedded in implicit solvent) predicts a lower barrier, which shows that without CPCM to interact with the first explicit solvation shell, the explicit solvent can over-stabilize the TS relative to the reactant resulting in a lower $\Delta \mathrm{H}^{0}$ act.

A. 5 Effect of Explicit Solvent

a. $\Delta \mathrm{H}^{0}$ act of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ in two different explicit solvent configurations

Figure S3: TS structures resulting from two different explicit solvent configurations for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}$ (S). (a) $\Delta \mathrm{H}^{0}{ }_{\text {act }}=15.3 \mathrm{kcal} / \mathrm{mol}$. (b) $\Delta \mathrm{H}_{\text {act }}^{0}=14.5 \mathrm{kcal} / \mathrm{mol}$
b. Product for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Figure S4: The cis PyCOOH^{0} product with partial proton transfer with $\mathrm{O}-\mathrm{H}$ bond of $1.44 \AA . \mathrm{A}$ different explicit solvent configuration will result in complete proton transfer to form the cis PyCOOH ${ }^{0}$ product.

c. Estimation of enthalpic barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Figure S5: An estimated TS structure for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}$ (S). Six explicit solvating waters are allowed to relax around the frozen $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}$ TS structure at the roMP2/6$31+\mathrm{G}^{* *}$ level of theory. The energy of this guessed TS structure is then compared to the IRC reactant of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$, where the enthalpic barrier is obtained after adding the ZPE and thermal corrections from the $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ case. The estimated enthalpic barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ is $22.8 \mathrm{kcal} / \mathrm{mol}$. We attempted to locate the TS for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$, but the calculations converged to the lower energy TS of $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$, thus we resort to this estimation.

d. Convergence of barrier for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$

Figure S6: Convergence of barrier calculated at roMP2/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$ for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3$ $\mathrm{H}_{2} \mathrm{O}+\mathrm{nH}_{2} \mathrm{O}(\mathrm{S})$ is examined, where n is number of explicit H 2 O molecules. Both the OK (before ZPE and thermal corrections) and 298K (after ZPE and thermal corrections) are shown for comparison. In both cases at the limit of 4,6 and $10 \mathrm{H} 2 \mathrm{O}(\mathrm{s})$, the barriers converge to approximately $16.5 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$ and $14.1 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$, which is well within the accuracy of roMP2 method.

A. 6 Standard Reduction Potential and pKa Calculations

Standard reduction potentials, E^{0} were calculated following the same procedure used by Winget et al. and Tossell. ${ }^{44,78}$ A value of $-100.5 \mathrm{kcal} / \mathrm{mol}$ was assumed for the reduction free energy of the standard hydrogen electrode (SHE) as described in Ref. ${ }^{312}$. Thus, $E^{0}=(-100.5$ $\left.\Delta G_{\text {red }}\right) / 23.05$ (vs. SHE), where $\Delta G_{\text {red }}$ is defined as the Gibbs free energy of reduction of $A\left(A+e^{-}\right.$ $=A^{-}$eq. 1), which was calculated at the CBS-QB3 level of theory ${ }^{77}$ in CPCM- $\mathrm{H}_{2} \mathrm{O}$ solvent. To reference to the Saturated Calomel Electrode (SCE), E^{0} (vs. SHE) is converted to E^{0} (vs. SCE) using E^{0} (vs. SCE) $=E^{0}$ (vs. SHE) - 0.24 V.

Various approaches have been used to calculate pKa's. ${ }^{313-316}$ We employed the method described by Liptak et al. (with slight modification) where the detailed instructions can be found in SI ref. [${ }^{79}$]. Here we summarize key equations and procedures to obtain pKa's in aqueous solution. pKa is defined as $\mathrm{pKa}=\Delta \mathrm{G}^{0}{ }_{\mathrm{aq}} / 2.303 \mathrm{RT}$, where $\Delta \mathrm{G}^{0}{ }_{\mathrm{aq}}$ is defined as the change in Gibbs free energy of the reaction $A H_{a q}=A_{a q}^{-}+H^{+}$aq (eq. 2) in aqueous solution at standard conditions and $1 \mathrm{M} A H . \Delta G^{0}{ }_{\text {aq }}$ can be calculated using a thermodynamic cycle with $\Delta G^{0}{ }_{\text {aq }}=\Delta G^{0}{ }_{\text {gas }}+\Delta G^{0}{ }_{s}\left(A^{-}\right)-$ $\Delta G^{0}(\mathrm{AH})+\Delta \mathrm{G}_{\mathrm{s}}\left(\mathrm{H}^{+}\right) . \Delta \mathrm{G}^{0}$ gas is the change in Gibbs free energy for eq. $\mathbf{2}$ in gas phase and was calculated at the CBS-QB3 level of theory. For ΔG^{0} gas calculations, an experimental value of $6.28 \mathrm{kcal} / \mathrm{mol}$ was used for $\mathrm{G}^{0}{ }_{\mathrm{gas}}\left(\mathrm{H}^{+}\right)$at a reference pressure of 1 atm. $\Delta \mathrm{G}^{0}$ uses a reference state of 1 M . Conversions can be calculated using $\Delta \mathrm{G}^{0}{ }_{\text {gas }}(1 \mathrm{M})=\Delta \mathrm{G}_{\text {gas }}^{0}$ (1atm.) + RTIn(24.46). $\Delta G^{0}{ }_{s}\left(A^{-}\right)$and $\Delta G^{0}{ }_{s}(A H)$ are changes in Gibbs free energy for solvating A^{-}and $A H$ from the gas phase, i.e. $\Delta G^{0}{ }_{s}\left(A^{-}\right)=G_{s}^{0}\left(A^{-}\right)-G^{0}{ }_{\text {gas }}\left(A^{-}\right)$. Instead of using Hartree-Fock (HF)/CPCM- $\mathrm{H}_{2} \mathrm{O}$ to approximate solvation free energies as done by Liptak et al., we used B3LYP/6-31+G**/CPCM$\mathrm{H}_{2} \mathrm{O}$. For example, $\Delta \mathrm{G}^{0}{ }_{S}\left(A^{-}\right)$was approximated by $E\left(A^{-}, O K\right)_{B 3 L Y P / C P C M-H 2 O}-E\left(A^{-}, O K\right)_{B 3 L Y P / g a s-p h a s e}$. Finally, an experimental value of $-259.5 \mathrm{kcal} / \mathrm{mol}$ was used for $\Delta \mathrm{G}^{0}{ }_{5}\left(\mathrm{H}^{+}\right),{ }^{317-318}$ which reproduces the experimental pKa of $\mathrm{PyH}^{+} / \mathrm{Py}$ of 5.3 (pKa calc. $=4.4$), instead of $-264.61 \mathrm{kcal} / \mathrm{mol}$ which was used by Liptak et al. to calculate the pKa for carboxylic acids. ${ }^{79}$

A. 7 Contribution of Strain Energies to the Activation Barrier of $\mathbf{P y H}^{\mathbf{0}}+\mathbf{C O}_{\mathbf{2}}$

To estimate the strain energy due to the $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angular strain in $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$, we used COOH^{0} as the model species. As shown in Figure 8 of the manuscript, -0.60 e charge was transferred to CO_{2} while an $\mathrm{O}-\mathrm{H}$ bond was partially formed at the TS (Figure 1b), thus COOH^{0} should be an appropriate model to estimate $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angular strain. As shown in Figure 6a, the strain energy was estimated to be $\Delta \mathrm{E}(0 \mathrm{~K})=\sim 15 \mathrm{kcal} / \mathrm{mol}$ (not including ZPE) to bend $\mathrm{C}-\mathrm{O}-\mathrm{H}$ from 109° (relaxed) to 79° calculated using roMP2/6-31+G**/CPCM $-\mathrm{H}_{2} \mathrm{O}$. On the other hand, PyCOO species was used as a model to estimate the strain due to dihedral rotation between the Py and CO_{2} planes. To rotate the dihedral of PyCOO^{-}from its equilibrium structure to the angle of the TS $\left(68^{\circ}\right)$, an energy of $\Delta \mathrm{E}(0 \mathrm{~K})=\sim 10 \mathrm{kcal} / \mathrm{mol}$ (not including ZPE) is required.

A. 8 Mulliken Population Analysis and CHELPG Charge Analysis

In Figure $\mathrm{S7}$ below, net charges on PyH^{0} and CO_{2} determined using the $\mathrm{CHELPG}{ }^{76}$ and Mulliken ${ }^{75}$ methods are plotted against the reaction coordinate $\mathrm{R}_{\mathrm{N}-\mathrm{c}}$ for $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$. The plot shows that these two methods agree with each other qualitatively, and that the magnitude of charges along the reaction coordinate predicted using the more reliable potential derived CHELPG method are larger than those predicted by a Mulliken population analysis.

Figure S7: Net charges on PyH^{0} and CO_{2} using the CHELPG and Mulliken population charge analysis methods along the reaction coordinate $\mathrm{R}_{\mathrm{N}-\mathrm{c}}$ for the reaction $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$.

A. 9 Coordinates of Molecular Structures

All coordinates are reported as XYZ Cartesian coordinates. 0 K energies (not ZPE and thermally corrected) reported are calculated at roMP2/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$ in unit Hartrees.
a) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}$

Reactant (-436.21021094)

C	2.03255	0.02140	0.89458
C	1.51679	1.18694	0.28969
C	0.69577	1.11731	-0.81711
N	0.27383	-0.13579	-1.28245
C	0.92178	-1.29042	-0.82734
C	1.74106	-1.21689	0.27767
H	2.68149	0.07841	1.75728
H	1.77825	2.16902	0.66470
H	0.27768	1.97902	-1.31552
H	-0.15762	-0.17223	-2.19663
H	0.67228	-2.21075	-1.33373
H	2.18286	-2.13609	0.64240
C	-2.08401	0.20194	0.52193
O	-1.52966	-0.40193	1.36996
O	-2.65903	0.80801	-0.31317

TS (-436.13149226)

C	2.52590	-0.00004	0.22235
C	1.82726	1.20204	0.05754
C	0.48235	1.21244	-0.25698
N	-0.23424	0.00031	-0.46296
C	0.48241	-1.21201	-0.25845
C	1.82733	-1.20193	0.05603
H	3.57785	-0.00016	0.47023
H	2.32318	2.15725	0.17441
H	-0.09216	2.11630	-0.40583
H	-1.18544	0.00081	-1.36623
H	-0.09207	-2.11570	-0.40837
H	2.32330	-2.15728	0.17162
C	-1.70846	-0.00017	0.19211
O	-1.93462	-0.00092	1.37923
O	-2.38495	0.00045	-0.91062

Product 1(cis PyCOOH ${ }^{0}$) (-436.19668471)

C	2.57803	0.01018	-0.19735
C	1.89397	1.07063	0.43581
C	0.53045	1.05038	0.60238
N	-0.22263	-0.02505	0.09190
C	0.45409	-1.14909	-0.41810
C	1.83117	-1.10861	-0.57216
H	3.64999	0.03691	-0.33028

H	2.42966	1.92896	0.81985
H	-0.04303	1.83189	1.07311
H	-1.70427	-1.23583	-1.33177
H	-0.11878	-2.05123	-0.56657
H	2.31060	-1.99324	-0.97167
C	-1.60784	0.09935	0.07378
O	-2.21522	0.96224	0.70140
O	-2.27867	-0.81613	-0.66983

Product 2(trans PyCOOH ${ }^{0}$)(-436.20606329$)$

C	2.57065	-0.04547	-0.08790
C	1.89677	1.05019	0.47405
C	0.52007	1.09896	0.53775
N	-0.24384	0.03182	0.02935
C	0.41341	-1.07788	-0.53586
C	1.79252	-1.10099	-0.58722
H	3.64984	-0.07418	-0.13544
H	2.44164	1.89368	0.87805
H	-0.04566	1.91456	0.95625
H	-3.18662	-0.81203	-0.34236
H	-0.21569	-1.86703	-0.90909
H	2.25560	-1.97275	-1.03151
C	-1.62067	0.13000	0.09652
O	-2.22037	1.09932	0.56659
O	-2.22904	-0.96801	-0.41572

b) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Reactant (-512.46090998)

C	2.57129	0.61251	-0.43121
C	1.83770	-0.24358	-1.28121
C	0.74091	-0.94246	-0.81913
N	0.28019	-0.72196	0.48229
C	1.08671	-0.02932	1.38708
C	2.18101	0.67017	0.92900
H	3.43995	1.14791	-0.78824
H	2.14137	-0.39819	-2.30968
H	0.14838	-1.60714	-1.43097
H	-0.46301	-1.31932	0.83773
H	0.75136	-0.01675	2.41401
H	2.75918	1.23731	1.64837
C	-1.66576	1.19920	-0.63902
O	-0.90760	2.09566	-0.52877
O	-2.44255	0.31687	-0.75767
O	-2.09062	-2.22258	1.30859
H	-2.83799	-1.97696	0.74558
H	-2.14198	-3.18555	1.38117

TS (-512.40875407)			
C	2.72923	-0.20147	-0.10781
C	1.89972	-0.69947	-1.11048
C	0.51998	-0.56912	-1.03736
N	-0.10111	-0.01643	0.13120
C	0.76753	0.66099	1.03662
C	2.13016	0.51469	0.95196
H	3.80372	-0.30188	-0.17045
H	2.30988	-1.18056	-1.98959
H	-0.16318	-0.93276	-1.79113
H	-0.72004	-1.17809	0.71663
H	0.27365	1.23057	1.80864
H	2.73654	0.99246	1.71113
C	-1.39556	0.76710	-0.23378
O	-1.31634	1.99601	-0.15353
O	-2.34214	-0.01034	-0.55885
O	-1.53740	-1.90972	0.89528
H	-2.17402	-1.43493	0.26519
H	-1.32668	-2.79380	0.54737

Product (-512.45169649)

C	2.72468	-0.39337	0.05446
C	1.78965	-1.07989	-0.73313
C	0.47361	-0.66819	-0.82091
N	0.03627	0.44552	-0.07932
C	0.98995	1.21874	0.60946
C	2.29396	0.78023	0.69761
H	3.74902	-0.72961	0.12790
H	2.07883	-1.94148	-1.32181
H	-0.24437	-1.12097	-1.48484
H	-0.87173	-2.88961	0.42741
H	0.61060	2.10941	1.08171
H	2.98411	1.38758	1.26941
C	-1.28891	0.88194	-0.09391
O	-1.61156	2.02506	0.22965
O	-2.19523	-0.02125	-0.52087
O	-1.70408	-2.41788	0.57433
H	-1.96108	-0.94080	-0.22947
H	-2.38955	-3.10109	0.52999

c) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

 Reactant (-588.71285063)| C | 2.93560 | -0.08644 | -0.73215 |
| :--- | :--- | ---: | ---: |
| C | 2.73667 | -0.51223 | 0.60166 |
| C | 1.58852 | -0.18667 | 1.29153 |
| N | 0.54633 | 0.47200 | 0.63140 |
| C | 0.81019 | 1.08637 | -0.59873 |

C	1.95575	0.76004	-1.29524
H	3.83716	-0.33823	-1.27296
H	3.50082	-1.07587	1.12314
H	1.39542	-0.49348	2.30914
H	-0.20412	0.87210	1.19451
H	0.03400	1.72921	-0.98790
H	2.10063	1.20322	-2.27314
C	-0.85946	-1.70915	-0.87821
O	-0.05758	-2.47274	-0.47688
O	-1.67766	-0.96726	-1.30057
O	-3.44208	1.30285	-0.24018
H	-3.09708	0.52119	-0.69576
H	-4.39174	1.13948	-0.15389
O	-1.71410	1.81791	1.90950
H	-2.07250	1.55274	2.76693
H	-2.43200	1.66161	1.26401

TS (-588.67401253)

C	2.92741	0.77227	-0.14546
C	2.59372	-0.18576	0.81706
C	1.33164	-0.74988	0.87077
N	0.27646	-0.24283	0.04520
C	0.69348	0.56076	-1.07076
C	1.96204	1.09479	-1.11467
H	3.91946	1.20003	-0.18446
H	3.33136	-0.54562	1.52331
H	1.03563	-1.51275	1.57220
H	-0.41244	0.61369	0.78707
H	-0.08290	0.76929	-1.78927
H	2.20247	1.74396	-1.94711
C	-0.85885	-1.26479	-0.30990
O	-0.76027	-2.36213	0.25446
O	-1.71203	-0.75714	-1.07590
O	-3.21114	1.31272	-0.03392
H	-2.92878	0.51980	-0.53729
H	-4.05703	1.08685	0.37968
O	-1.04318	1.44468	1.33921
H	-1.13577	1.28776	2.29366
H	-1.97286	1.47411	0.92302

Product (-588.70737271)

C	2.33463	1.01470	0.16794
C	2.23253	-0.18944	0.88863
C	1.21935	-1.09399	0.64727
N	0.20325	-0.77001	-0.27058
C	0.37773	0.34638	-1.10933
C	1.41312	1.22593	-0.87476

H	3.14241	1.70911	0.35120
H	2.96490	-0.44997	1.64211
H	1.09248	-2.02607	1.17306
H	0.37174	1.80097	1.48421
H	-0.32261	0.45633	-1.92087
H	1.50268	2.07774	-1.53693
C	-0.86403	-1.66299	-0.42905
O	-0.80476	-2.82577	-0.03252
O	-1.94102	-1.16520	-1.05865
O	-2.41440	1.30541	-0.29036
H	-2.08576	-0.19868	-0.82747
H	-3.29491	1.37136	0.10662
O	-0.54751	2.06991	1.63874
H	-0.72174	1.86997	2.56923
H	-1.78492	1.59155	0.40723

d) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

Reactant (-664.96489049)

C	-3.53086	-0.55935	0.32508
C	-3.03189	-0.40449	-0.99008
C	-1.84326	0.25015	-1.22799
N	-1.05053	0.67021	-0.15627
C	-1.60006	0.68329	1.13074
C	-2.78894	0.02452	1.37425
H	-4.46722	-1.06565	0.51424
H	-3.59607	-0.76153	-1.84319
H	-1.42556	0.39445	-2.21409
H	-0.28039	1.30813	-0.35991
H	-1.00320	1.14981	1.90104
H	-3.15956	0.00665	2.39232
C	0.29124	-1.82844	0.81106
O	-0.54639	-2.47677	0.29642
O	1.14210	-1.19757	1.33731
O	4.00894	-0.66750	0.51043
H	3.24578	-0.91927	1.04982
H	4.78224	-0.86025	1.05782
O	1.04985	2.56996	-0.81206
H	0.91464	3.08943	-1.61556
H	1.99816	2.31803	-0.81881
O	3.73257	1.81930	-0.74293
H	3.87344	0.97787	-0.26287
H	4.29390	2.46861	-0.29897

TS (-664.92998217)

C	-3.44847	0.52283	0.34278
C	-3.02485	0.01571	-0.88855
C	-1.71979	-0.39448	-1.09263

N	-0.72028	-0.18956	-0.08454
C	-1.21290	0.15887	1.21904
C	-2.51999	0.55319	1.39717
H	-4.47318	0.83144	0.49576
H	-3.71942	-0.10722	-1.71019
H	-1.35331	-0.82324	-2.01035
H	-0.04228	0.85163	-0.46432
H	-0.46412	0.15566	1.99395
H	-2.81852	0.85573	2.39296
C	0.43616	-1.25606	-0.07446
O	0.49935	-1.94066	-1.10438
O	1.13492	-1.17199	0.96067
O	3.79635	-0.57816	0.65288
H	2.90784	-0.94256	0.85762
H	4.30873	-0.64717	1.46964
O	0.54600	1.85389	-0.76659
H	0.38293	2.10862	-1.68985
H	1.55878	1.82272	-0.61547
O	3.06650	1.81212	-0.38882
H	3.42109	0.99557	0.04276
H	3.39100	2.55945	0.13292

Product (-664.97046392)

C	-3.61310	0.38779	0.29031
C	-3.16352	-0.27516	-0.86518
C	-1.86635	-0.72778	-0.98157
N	-0.96362	-0.55581	0.08058
C	-1.38302	0.13474	1.23115
C	-2.68858	0.57668	1.32870
H	-4.63156	0.73943	0.37480
H	-3.82462	-0.44038	-1.70636
H	-1.47322	-1.23822	-1.84475
H	0.12946	2.37063	-0.02494
H	-0.64914	0.25345	2.00924
H	-2.96912	1.09214	2.23864
C	0.35264	-0.96996	-0.09815
0	0.75416	-1.48346	-1.14645
0	1.09240	-0.77185	1.00089
0	3.67836	-0.85107	0.46787
H	2.05736	-0.92123	0.77597
H	4.25218	-0.96008	1.23868
O	0.74775	2.06171	-0.70214
H	0.45469	2.48936	-1.51888
H	2.56045	1.92897	-0.48062
O	3.51902	1.72986	-0.46320
H	3.77943	0.08447	0.18040
H	3.93274	2.46402	0.00951

e) $\mathrm{PyH}^{\mathbf{0}}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Reactant (-741.21714641)

C	-3.75935	-1.00132	0.42845
C	-3.14202	-1.17459	-0.83094
C	-2.13928	-0.32785	-1.25656
N	-1.63869	0.64168	-0.38240
C	-2.38034	0.97461	0.75356
C	-3.38182	0.13184	1.18605
H	-4.55153	-1.65862	0.75931
H	-3.47050	-1.95490	-1.50693
H	-1.63007	-0.42787	-2.20389
H	-0.99197	1.33965	-0.75192
H	-2.05073	1.84510	1.30189
H	-3.89828	0.38196	2.10485
C	0.62041	-0.99783	0.62246
O	0.33108	-0.75636	1.73997
O	0.91231	-1.26129	-0.49142
O	3.79775	-2.06941	-1.14568
H	3.00074	-2.03193	-1.69233
H	4.53469	-2.01832	-1.76974
O	0.27953	2.63132	-1.28155
H	0.43482	2.71854	-2.23126
H	1.16769	2.51773	-0.88011
O	2.72756	2.36367	0.01591
H	3.49727	2.75725	-0.41563
H	3.01457	1.46819	0.29850
O	3.41520	-0.17603	0.87522
H	4.11030	-0.22984	1.54466
H	3.65504	-0.83209	0.18885

TS (-741.18508841)

C	-3.86947	-0.21267	-0.13248
C	-3.06355	-0.59309	-1.20660
C	-1.68231	-0.54854	-1.12992
N	-1.02583	-0.01098	0.02719
C	-1.86970	0.26304	1.15987
C	-3.23969	0.19564	1.05682
H	-4.94717	-0.26388	-0.20001
H	-3.49938	-0.95809	-2.12810
H	-1.02104	-0.84756	-1.92669
H	-0.54331	1.14388	-0.29311
H	-1.33559	0.57185	2.04397
H	-3.81897	0.44986	1.93526
C	0.31294	-0.71728	0.41304
O	0.80328	-0.25813	1.46544
O	0.69948	-1.55966	-0.41864

O	3.43561	-2.13120	-0.50236
H	2.45930	-2.04302	-0.52661
H	3.70894	-2.25188	-1.42140
O	-0.09373	2.24309	-0.50344
H	-0.53153	2.69883	-1.23989
H	0.91878	2.26982	-0.64467
O	2.45036	2.30775	-0.72806
H	2.83242	2.31170	-1.61702
H	2.91107	1.59156	-0.21980
O	3.47172	0.34932	0.83327
H	2.62786	0.10828	1.26589
H	3.70348	-0.46148	0.33722

Product (-741.22080142)			
C	-3.91786	-0.01768	-0.12627
C	-3.23658	-0.88226	-1.00517
C	-1.90053	-1.17013	-0.84223
N	-1.17886	-0.58859	0.21435
C	-1.84701	0.25469	1.12271
C	-3.19417	0.52188	0.94287
H	-4.96640	0.20553	-0.26288
H	-3.74914	-1.34979	-1.83584
H	-1.33421	-1.82620	-1.48193
H	-0.62778	2.13857	-0.13814
H	-1.26990	0.60890	1.95969
H	-3.66880	1.17174	1.66723
C	0.19693	-0.77235	0.25873
O	0.75791	-0.13717	1.28791
O	0.79492	-1.46182	-0.58295
O	3.55635	-2.09155	-0.62117
H	2.59227	-2.01690	-0.75691
H	3.94519	-2.15930	-1.50336
O	-0.06285	2.34172	-0.89810
H	-0.48401	3.10646	-1.31584
H	1.77327	2.49764	-0.63569
O	2.73151	2.52715	-0.44160
H	3.16221	2.75618	-1.27574
H	3.25968	1.01075	0.39157
O	3.29001	0.19116	0.93195
H	1.76765	-0.10465	1.16504
H	3.61780	-0.52116	0.34517

f) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Reactant (-969.98251341)

C	-3.70937	1.15677	-0.70562
C	-3.60865	0.71624	0.63331
C	-2.76716	-0.31907	0.98510

N	-1.93158	-0.88616	0.01949
C	-2.16048	-0.61071	-1.33042
C	-3.00083	0.42524	-1.68527
H	-4.37287	1.96470	-0.98129
H	-4.21281	1.16636	1.41200
H	-2.66472	-0.69668	1.99221
H	-1.36818	-1.70414	0.25711
H	-1.63702	-1.23124	-2.04407
H	-3.12943	0.63726	-2.74022
C	-0.05171	1.23182	1.04463
O	-0.44196	1.92799	0.17733
O	0.33803	0.53168	1.91262
O	2.13943	3.08887	1.58806
H	2.64852	2.95711	2.40005
H	2.17217	4.04318	1.43117
O	-0.01362	-3.03708	0.39650
H	0.55070	-2.81933	1.15883
H	0.53237	-2.79489	-0.38174
O	1.61008	-2.10294	-1.69422
H	2.39335	-1.86112	-1.16582
H	1.25551	-1.24531	-2.00731
O	2.73235	1.39961	-0.60757
H	3.09770	0.57760	-0.22886
H	2.60590	2.01346	0.14064
O	0.76581	0.51328	-2.33843
H	-0.12445	0.71984	-2.01691
H	1.38275	0.97046	-1.72574
O	3.50580	-1.19566	0.25206
H	4.43753	-1.44889	0.31581
H	3.08248	-1.51383	1.07560
O	1.86142	-2.01528	2.39164
H	1.47612	-1.23533	2.81830
H	2.20227	-2.55749	3.11828

TS1 (formation of $\mathrm{PyCOO} \bullet \mathrm{H}_{3} \mathrm{O}^{+} \bullet 2 \mathrm{H}_{2} \mathrm{O} \bullet 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})(-969.95566275)$

C	-4.53352	-0.15130	-0.04205
C	-3.85735	-0.11331	1.15939
C	-2.46253	-0.01996	1.21458
N	-1.67531	-0.00040	0.00717
C	-2.41756	0.03106	-1.22763
C	-3.77750	-0.07354	-1.24416
H	-5.61181	-0.21909	-0.07437
H	-4.38566	-0.13891	2.10401
H	-1.89157	0.03000	2.12690
H	-1.02617	-1.04452	0.00180
H	-1.80647	0.10263	-2.11313
H	-4.26883	-0.08194	-2.20876

C	-0.49651	1.04449	0.06682
O	-0.30352	1.65989	-0.98930
O	0.08443	1.02930	1.17779
O	2.41276	2.57426	1.34739
H	1.53479	2.14518	1.27162
H	2.26199	3.51096	1.16298
O	-0.33929	-2.11775	0.03556
H	0.12228	-2.11724	0.90651
H	0.40062	-2.08472	-0.65076
O	1.70421	-1.93599	-1.59141
H	2.45939	-1.98583	-0.97370
H	1.77335	-1.04103	-1.99858
O	3.92283	1.04389	-0.45424
H	3.91525	0.16454	-0.03297
H	3.48425	1.63733	0.18990
O	1.99593	0.68451	-2.43125
H	1.22917	1.16379	-2.07088
H	2.73398	0.90919	-1.82220
O	3.47741	-1.59156	0.61215
H	4.19540	-2.12893	0.97614
H	2.79628	-1.54865	1.31249
O	1.14482	-1.35816	2.20538
H	0.80653	-0.44235	2.15666
H	1.10298	-1.62106	3.13614

Product 1 (-969.98612686)

C	-4.23311	-0.72827	0.31084
C	-3.52011	-0.25513	1.42535
C	-2.33071	0.43254	1.28546
N	-1.78938	0.64661	0.00692
C	-2.53193	0.26085	-1.12233
C	-3.71806	-0.43093	-0.96237
H	-5.15836	-1.27478	0.42674
H	-3.89363	-0.40370	2.43083
H	-1.76286	0.83575	2.10735
H	-1.39957	-1.96411	-0.68012
H	-2.09719	0.51560	-2.07413
H	-4.24531	-0.72824	-1.86034
C	-0.47977	1.14741	-0.13692
O	-0.11585	1.43148	-1.33241
O	0.22058	1.25224	0.91819
O	2.45079	2.75517	1.36522
H	1.58089	2.33975	1.16666
H	2.38047	3.67543	1.07853
O	-0.58493	-2.41469	-0.41206
H	-0.34811	-2.05332	0.46532
H	0.93935	-2.15497	-1.38419

O	1.83930	-1.93320	-1.70995
H	2.42622	-2.09216	-0.94424
H	1.98575	-0.38581	-1.96754
O	3.86896	0.97419	-0.15749
H	3.83394	0.11980	0.31851
H	3.51392	1.65428	0.46000
O	2.10999	0.62331	-1.97935
H	1.18051	1.04680	-1.66813
H	2.83467	0.82509	-1.28374
O	3.24298	-1.63324	0.73637
H	3.86140	-2.22823	1.18373
H	2.44310	-1.59146	1.30341
O	0.70313	-1.27466	1.83403
H	0.52515	-0.31410	1.71353
H	0.48605	-1.48125	2.75462

TS2 (proton transfer from $\mathrm{H}_{3} \mathrm{O}^{+}$to PyCOO to form $\left.\mathrm{PyCOOH}^{0}\right)(-969.98585859)$

C	-4.39052	0.28978	-0.37079
C	-3.63943	-0.50249	-1.25683
C	-2.37160	-0.94224	-0.93621
N	-1.79434	-0.58872	0.29516
C	-2.54948	0.15802	1.21651
C	-3.81628	0.59422	0.87320
H	-5.37972	0.63821	-0.63198
H	-4.04257	-0.80115	-2.21623
H	-1.76791	-1.57225	-1.56757
H	-1.36044	2.14895	0.03337
H	-2.07289	0.35143	2.16294
H	-4.35547	1.17782	1.60896
C	-0.45555	-0.91491	0.56396
O	-0.05723	-0.67989	1.76581
O	0.24062	-1.38601	-0.38502
O	2.42587	-3.02461	-0.48775
H	1.57436	-2.55281	-0.35743
H	2.39715	-3.79801	0.09138
O	-0.56360	2.47757	-0.40842
H	-0.36282	1.84049	-1.12334
H	1.02530	2.58890	0.51655
O	1.94395	2.49792	0.84939
H	2.48495	2.35772	0.04751
H	2.10606	1.10224	1.63760
O	3.89251	-0.83372	0.29099
H	3.82240	-0.18659	-0.43886
H	3.51884	-1.67812	-0.04713
O	2.19880	0.15722	1.98134
H	1.19327	-0.31024	1.86433
H	2.87471	-0.29149	1.37180

O	3.20798	1.33018	-1.40907
H	3.79864	1.73513	-2.05943
H	2.38125	1.10780	-1.88781
O	0.62281	0.63009	-2.19462
H	0.47526	-0.22512	-1.73265
H	0.36295	0.49238	-3.11693

Product 2 (-969.98896203)

C	-4.51199	0.13036	-0.35012
C	-3.70559	-0.60427	-1.23186
C	-2.40169	-0.93305	-0.91857
N	-1.85155	-0.52321	0.30993
C	-2.65341	0.19299	1.21894
C	-3.95456	0.50957	0.88050
H	-5.53029	0.38704	-0.60525
H	-4.08689	-0.94353	-2.18637
H	-1.75250	-1.51974	-1.54611
H	-1.34353	2.35990	-0.12816
H	-2.18659	0.46327	2.15053
H	-4.53134	1.06814	1.60664
C	-0.52086	-0.79215	0.57232
O	-0.16349	-0.51078	1.81528
O	0.23276	-1.25844	-0.31228
O	2.37635	-3.03468	-0.55487
H	1.54829	-2.55486	-0.36179
H	2.36412	-3.82099	0.00717
O	-0.44455	2.53914	-0.43516
H	-0.27320	1.92227	-1.17233
H	1.15996	2.61792	0.56325
O	2.08124	2.53628	0.87734
H	2.58887	2.31317	0.07426
H	2.24961	1.00378	1.80305
O	4.02868	-0.89967	0.20202
H	3.88370	-0.20934	-0.47222
H	3.58062	-1.70204	-0.13364
O	2.28764	0.06856	2.11093
H	0.85715	-0.40162	1.88796
H	2.94378	-0.35426	1.50839
O	3.25904	1.32473	-1.43277
H	3.84961	1.73613	-2.07896
H	2.42890	1.12241	-1.91221
O	0.65889	0.67449	-2.25422
H	0.49741	-0.17325	-1.79303
H	0.41319	0.53393	-3.17999

g) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Reactant (-1122.48934424)

C	-4.63901	1.44869	-0.15021
C	-4.53796	0.99238	1.18294
C	-3.72560	-0.07211	1.51555
N	-2.91806	-0.65482	0.53476
C	-3.15316	-0.35986	-0.81018
C	-3.96703	0.70302	-1.14529
H	-5.28356	2.27619	-0.41215
H	-5.11874	1.45404	1.97261
H	-3.62378	-0.46317	2.51749
H	-2.39016	-1.49807	0.75774
H	-2.65837	-0.98984	-1.53601
H	-4.10190	0.92881	-2.19662
C	-0.89391	1.29966	1.53381
O	-1.31302	2.07467	0.75026
O	-0.47380	0.51894	2.31438
O	1.33451	3.11218	2.11873
H	1.87871	2.97570	2.90699
H	1.34847	4.06923	1.97565
O	-1.02965	-2.85653	0.79884
H	-0.45547	-2.71490	1.57422
H	-0.50485	-2.50324	0.04745
O	0.49475	-1.85923	-1.31074
H	1.33266	-1.68795	-0.83592
H	0.18519	-0.97302	-1.60495
O	1.81480	1.50035	-0.15835
H	2.15827	0.64943	0.17279
H	1.73230	2.08269	0.62096
O	-0.21896	0.76175	-1.87220
H	-1.09438	1.00072	-1.53262
H	0.42863	1.18327	-1.26458
O	2.51120	-1.17468	0.53491
H	3.43870	-1.45068	0.52630
H	2.13156	-1.52601	1.36632
O	0.98229	-2.09987	2.72517
H	0.70766	-1.36614	3.29545
H	1.34995	-2.76221	3.32834
O	-1.30006	-5.46138	-0.38351
H	-1.27338	-4.65922	0.16911
H	-0.86498	-5.17851	-1.20882
O	0.08612	-4.29992	-2.62856
H	0.26530	-3.39599	-2.30053
H	-0.37663	-4.18261	-3.46838

TS (config1, enthalpic barrier of $15.3 \mathrm{kcal} / \mathrm{mol})(-1122.45969726$)

C	-4.37259	0.92077	-0.13599
C	-3.66749	1.44847	0.92978
C	-2.27377	1.51992	0.92263

N	-1.52157	0.92220	-0.15269
C	-2.28074	0.56746	-1.32515
C	-3.64557	0.51105	-1.28407
H	-5.45231	0.87341	-0.12198
H	-4.17707	1.85677	1.79375
H	-1.67905	1.92977	1.72216
H	-1.08327	-0.15358	0.31560
H	-1.68556	0.29735	-2.18194
H	-4.16077	0.17360	-2.17417
C	-0.17147	1.64605	-0.44230
O	0.13803	1.70959	-1.64053
O	0.41290	1.99031	0.61430
O	2.97375	3.08774	0.44870
H	2.03280	2.81307	0.43057
H	3.01941	3.89611	-0.07952
O	-0.62118	-1.19660	0.83004
H	-0.20542	-0.89602	1.67636
H	0.15921	-1.53003	0.27429
O	1.45865	-2.01910	-0.50362
H	2.18569	-1.94835	0.15178
H	1.71559	-1.39476	-1.23160
O	4.18756	0.73192	-0.46381
H	4.01925	0.11207	0.26909
H	3.87043	1.60138	-0.14225
O	2.26313	-0.12110	-2.26622
H	1.59065	0.58326	-2.23834
H	3.01646	0.23327	-1.74124
O	3.22130	-1.17192	1.48207
H	3.81420	-1.67484	2.05832
H	2.57386	-0.73823	2.07225
O	0.94722	0.10529	2.62036
H	0.82255	0.96534	2.17204
H	0.85578	0.27141	3.57007
O	-2.10040	-3.84675	0.63342
H	-1.85866	-2.94621	0.89334
H	-1.35746	-4.13679	0.07056
O	0.20149	-4.51152	-0.92379
H	0.74943	-3.70346	-0.92399
H	0.11272	-4.76452	-1.85224

TS (config2, enthalpic barrier of $14.5 \mathrm{kcal} / \mathrm{mol})(-1122.46412085)$

C	-5.33235	0.21378	-0.06207
C	-4.58118	0.56932	-1.16289
C	-3.18535	0.48144	-1.15713
N	-2.47473	0.03116	0.01285
C	-3.29302	-0.36911	1.12942

C	-4.65239	-0.25668	1.09441
H	-6.41118	0.27973	-0.07490
H	-5.04865	0.92025	-2.07416
H	-2.56070	0.73335	-1.99791
H	-1.79166	0.98864	0.38846
H	-2.73964	-0.73282	1.98067
H	-5.20316	-0.54610	1.98000
C	-1.32519	-0.99142	-0.32888
O	-1.20784	-1.92010	0.48134
O	-0.68299	-0.65049	-1.35055
O	1.55730	-2.19254	-1.99200
H	0.69211	-1.77618	-1.79422
H	1.37980	-3.13513	-2.11189
O	-1.07087	1.97992	0.72058
H	-0.58180	2.24257	-0.09424
H	-0.35948	1.69974	1.38097
O	0.90208	1.20124	2.25773
H	1.66828	1.40187	1.68227
H	0.92308	0.22269	2.35970
O	3.05438	-1.29607	0.16932
H	2.88528	-0.33139	0.09108
H	2.61174	-1.69465	-0.61223
O	1.08566	-1.58318	2.17773
H	0.31578	-1.87700	1.65851
H	1.83784	-1.64357	1.55328
O	2.68279	1.46433	0.11246
H	3.58993	1.79217	-0.07809
H	2.09589	1.76903	-0.60441
O	0.42844	1.93243	-1.56471
H	0.09211	1.04308	-1.78930
H	0.40361	2.45356	-2.38008
O	5.77779	-0.85160	-0.25011
H	4.87699	-1.18188	-0.04730
H	6.37219	-1.29205	0.37100
O	5.36451	1.90391	-0.35928
H	5.88064	2.41301	0.27935
H	5.65939	0.97306	-0.26506

Product1 (config1, enthalpic barrier of $15.3 \mathrm{kcal} / \mathrm{mol})(-1122.49485115)$

C	-5.68991	1.50943	1.33019
C	-4.66124	1.42289	2.27993
C	-3.33862	1.29689	1.90555
N	-2.99708	1.25435	0.54168
C	-4.01467	1.34743	-0.42576
C	-5.32999	1.47061	-0.02527
H	-6.72309	1.60796	1.63149

H	-4.87416	1.45605	3.34063
H	-2.51098	1.24196	2.59231
H	-1.95123	-3.09973	-0.34007
H	-3.69622	1.30258	-1.45261
H	-6.07986	1.53422	-0.80331
C	-1.66925	1.12507	0.19077
O	-1.45600	1.19929	-1.11444
O	-0.77641	0.96440	1.05742
O	1.40255	2.60055	1.73989
H	0.56077	2.16182	1.51104
H	1.26693	3.53747	1.54297
O	-1.00869	-3.15044	-0.12946
H	-0.88487	-2.66038	0.70982
H	0.31116	-2.48781	-1.22530
O	1.16066	-2.19275	-1.61467
H	1.75691	-2.12595	-0.84035
H	0.95851	-0.39248	-1.94017
O	2.90050	1.03299	-0.04359
H	2.90166	0.15019	0.37187
H	2.51125	1.63569	0.62151
O	0.89470	0.58507	-1.88174
H	-0.47981	0.97399	-1.34053
H	1.62829	0.83780	-1.27248
O	2.46510	-1.65332	0.82840
H	3.14031	-2.19905	1.25518
H	1.67807	-1.68595	1.41064
O	-0.09870	-1.55901	1.97700
H	-0.38150	-0.63633	1.80749
H	-0.28879	-1.73566	2.90971
O	0.26760	-5.72642	-0.66425
H	-0.21365	-4.92223	-0.40673
H	0.76882	-5.46652	-1.45850
O	1.77485	-4.62904	-2.86462
H	1.63672	-3.69995	-2.59074
H	1.47094	-4.68111	-3.78026

Product2 (config2, enthalpic barrier of $14.5 \mathrm{kcal} / \mathrm{mol})(-1122.49698904)$

C	-5.66592	1.49401	1.32139
C	-4.64422	1.41899	2.27971
C	-3.31830	1.29454	1.91667
N	-2.96605	1.23979	0.55600
C	-3.97616	1.32410	-0.42009
C	-5.29503	1.44577	-0.03090
H	-6.70180	1.59100	1.61380
H	-4.86549	1.46077	3.33839
H	-2.49592	1.24811	2.61042

H	-2.01611	-3.03344	-0.45509
H	-3.64967	1.27196	-1.44408
H	-6.03886	1.50158	-0.81530
C	-1.63467	1.10739	0.21714
O	-1.41220	1.16886	-1.08735
O	-0.74941	0.95455	1.09221
O	1.44077	2.58903	1.72665
H	0.58777	2.16332	1.51406
H	1.33324	3.52082	1.49211
O	-1.08657	-3.13382	-0.21224
H	-0.96934	-2.64209	0.62429
H	0.32941	-2.57544	-1.28020
O	1.17621	-2.20225	-1.59729
H	1.73537	-2.19016	-0.79622
H	0.99161	-0.45099	-1.86881
O	2.92856	0.89200	0.10030
H	2.69032	0.01390	0.47566
H	2.52928	1.55627	0.70205
O	0.93665	0.53398	-1.84727
H	-0.43599	0.93816	-1.30627
H	1.67024	0.80102	-1.25235
O	2.39515	-1.68849	0.90080
H	3.21401	-1.97847	1.35629
H	1.64044	-1.79053	1.51133
O	-0.20707	-1.62580	2.00920
H	-0.43034	-0.68488	1.86024
H	-0.46685	-1.82609	2.91965
O	5.63063	0.38636	0.57040
H	4.73612	0.69305	0.30980
H	6.15534	0.39121	-0.24105
O	4.96932	-2.01412	1.86678
H	5.52011	-2.76563	1.61029
H	5.34366	-1.23771	1.39946

h) $\mathrm{PyH}^{0}+\mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$

Reactant (-1427.50181327)

C	-5.31792	1.30409	1.08443
C	-4.69545	0.49871	2.06430
C	-3.69683	-0.39046	1.72520
N	-3.20673	-0.41401	0.41543
C	-3.94923	0.20035	-0.59709
C	-4.94879	1.08972	-0.26398
H	-6.11023	1.99153	1.34596
H	-5.01548	0.53598	3.09865
H	-3.19194	-1.02716	2.43696
H	-2.58009	-1.18071	0.17163

H	-3.62867	0.00860	-1.61066
H	-5.46834	1.59624	-1.06822
C	-0.77822	1.17505	0.73237
O	-0.97710	1.72884	-0.29161
O	-0.54359	0.63406	1.75550
O	1.68287	3.61507	1.04678
H	1.05909	3.95025	1.70368
H	1.46096	4.06179	0.20041
O	-1.18699	-2.50272	0.19746
H	-0.82463	-2.47171	1.10316
H	-0.43433	-2.25606	-0.38011
O	1.14916	-1.95700	-1.26913
H	1.69964	-1.82144	-0.46755
H	1.21444	-1.12591	-1.77873
O	2.41058	1.14039	0.19338
H	2.25641	0.35799	0.76493
H	2.14448	1.95273	0.67910
O	1.28143	0.74881	-2.24284
H	0.35306	1.02485	-2.24264
H	1.62695	0.97407	-1.34567
O	2.26742	-1.40482	1.20213
H	3.18927	-1.64651	1.44222
H	1.66755	-1.75213	1.88915
O	0.06194	-2.23018	2.77645
H	-0.24496	-1.51133	3.34837
H	0.09369	-3.00933	3.35120
O	-1.41499	-5.15276	-0.92193
H	-1.46683	-4.30120	-0.45147
H	-0.62212	-5.05220	-1.48036
O	0.96329	-4.50845	-2.41656
H	1.11803	-3.59232	-2.10938
H	0.87779	-4.44453	-3.37705
O	2.34584	3.06941	-3.46363
H	2.11072	2.16304	-3.18449
H	3.30213	3.06881	-3.60150
O	1.29781	4.73340	-1.46018
H	1.67457	4.18723	-2.18166
H	0.41414	4.98408	-1.75920
O	5.19163	0.73216	0.09367
H	4.24851	0.98901	0.03147
H	5.52374	0.73623	-0.81394
O	4.98471	-1.63412	1.55726
H	5.47806	-2.38106	1.19300
H	5.20763	-0.86299	0.99332

TS (formation of $\mathrm{PyCOO}^{\bullet} \bullet \mathrm{H}_{3} \underline{\mathrm{O}}^{+} \cdot 2 \mathrm{H}_{2} \underline{\mathrm{O}}^{-10} \mathrm{H}_{2} \mathrm{O}(\mathrm{S})(-1427.47593239)$
$\begin{array}{llll}\text { C } & 5.29156 & 0.42843 & -0.33121\end{array}$

C	4.61485	0.44395	-1.53297
C	3.21959	0.52685	-1.59066
N	2.43759	0.48232	-0.37777
C	3.17648	0.63587	0.85314
C	4.53768	0.55463	0.86857
H	6.37034	0.37032	-0.29859
H	5.14406	0.42380	-2.47715
H	2.64580	0.56141	-2.50156
H	1.94287	-0.65426	-0.33841
H	2.56233	0.74809	1.73152
H	5.03242	0.62117	1.82893
C	1.13199	1.31737	-0.45705
O	0.81721	1.87847	0.61211
O	0.56216	1.23157	-1.56605
O	-1.86282	2.78559	-1.41331
H	-1.02176	2.31568	-1.57739
H	-1.65289	3.39087	-0.67279
O	1.40357	-1.79766	-0.34539
H	1.00977	-1.88878	-1.25000
H	0.61495	-1.80608	0.28332
O	-0.75033	-1.83993	1.15808
H	-1.44755	-1.96873	0.47527
H	-0.97413	-0.98076	1.58353
O	-3.27536	0.72814	-0.24444
H	-2.91266	-0.08691	-0.65508
H	-2.89931	1.48200	-0.75634
O	-1.46423	0.77053	1.85376
H	-0.70250	1.21127	1.42749
H	-2.18587	0.81313	1.18434
O	-2.35128	-1.75098	-1.07388
H	-3.18695	-2.19241	-1.35023
H	-1.72448	-1.77525	-1.81985
O	0.01581	-1.36267	-2.62296
H	0.14966	-0.39580	-2.62160
H	0.14911	-1.65829	-3.53591
O	2.71207	-4.12898	1.10873
H	2.52162	-3.43013	0.46635
H	1.91176	-4.16099	1.66675
O	0.25649	-4.06547	2.57418
H	-0.22182	-3.29652	2.20994
H	0.26227	-3.93394	3.53168
O	-1.94206	3.17499	3.27659
H	-1.92155	2.24398	2.98106
H	-2.83780	3.32621	3.60649
O	-0.89406	4.23213	0.83812
H	-1.33242	4.01683	1.68512
H	-0.11163	3.65501	0.82447
H			

O	-5.89480	-0.12104	-0.71136
H	-5.05978	0.32774	-0.46312
H	-6.48205	-0.03529	0.05088
O	-4.89949	-2.56523	-1.63844
H	-5.26545	-3.35163	-1.21248
H	-5.39193	-1.80164	-1.26885

Product (-1427.51101847)

C	-5.63153	1.41995	1.35200
C	-4.61774	1.33790	2.31752
C	-3.28754	1.23188	1.96361
N	-2.92412	1.20422	0.60494
C	-3.92634	1.29876	-0.37850
C	-5.24939	1.40061	0.00225
H	-6.67071	1.50181	1.63717
H	-4.84786	1.36055	3.37488
H	-2.47009	1.18521	2.66329
H	-2.05165	-3.03704	-0.39336
H	-3.59133	1.26894	-1.40064
H	-5.98741	1.46509	-0.78689
C	-1.59083	1.08778	0.27880
O	-1.35757	1.18554	-1.02727
O	-0.70666	0.92096	1.15059
O	1.38608	2.85564	1.29982
H	0.60521	2.27599	1.36093
H	1.18506	3.47622	0.56684
O	-1.10646	-3.07525	-0.19289
H	-0.98959	-2.64622	0.68037
H	0.24242	-2.38307	-1.27176
O	1.12527	-2.11341	-1.59900
H	1.66539	-2.07461	-0.77912
H	1.07882	-0.32620	-1.94779
O	2.96397	0.91619	0.16076
H	2.67794	0.06329	0.55783
H	2.51883	1.63097	0.67309
O	1.06897	0.65071	-1.82719
H	-0.38616	0.99307	-1.22644
H	1.79869	0.81997	-1.18454
O	2.31099	-1.66514	0.87324
H	3.13562	-2.02904	1.26506
H	1.57683	-1.79993	1.50288
O	-0.24418	-1.67429	2.06012
H	-0.45189	-0.72540	1.94159
H	-0.47320	-1.89384	2.97465
O	0.16934	-5.64469	-0.73906
H	-0.30872	-4.83543	-0.49020
H	0.71669	-5.38009	-1.50058

O	1.79605	-4.53116	-2.84392
H	1.64183	-3.60794	-2.55782
H	1.53857	-4.56392	-3.77459
O	0.92173	3.04725	-3.25528
H	1.05359	2.11793	-2.98652
H	1.60998	3.23562	-3.90722
O	0.88200	4.52099	-0.87857
H	0.87439	4.06038	-1.74415
H	0.08465	5.06637	-0.86381
O	5.60772	0.35228	0.85506
H	4.75546	0.69515	0.51330
H	6.25921	0.51129	0.15973
O	4.86966	-2.20417	1.72887
H	5.38223	-2.92536	1.34079
H	5.27612	-1.37637	1.39598

B. Supporting information - Reduction of CO_{2} to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine

B.1: Computational Methods

a) Benchmarking of Electronic Structure Calculations

In Table S1, we demonstrate that the MP2 method we employ reproduces CCSD(T) activation energies for hydride transfer, $\Delta \mathrm{E}^{\ddagger}{ }_{\mathrm{HT}}$, within $\sim 3 \mathrm{kcal} / \mathrm{mol}$ and thus is accurate for describing hydride transfer reactions. $\Delta \mathrm{E}^{\ddagger}{ }_{H T}$ is defined by E (transition state) - E (separated reactants), where E is computed energy at 0 K and does not include zero-point corrections. Details of the computational methods are described in the manuscript.

In Figure S1, we show that the MP2/aug-cc-PVTZ/CPCM- $\mathrm{H}_{2} \mathrm{O}$ and M06/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$ predicted geometries for the $\mathrm{PyH}_{2}+\mathrm{CO}_{2}$'s TS are similar (mean absolute error $=0.057$ angströms), demonstrating that the use of M06 geometries is reliable.

Table S1: Benchmarking Computational Methods.

System $^{\text {(a) }}$	rM06/	rMP2/	rMP2/	rCCSD(T)/	rCCSD(T)/
	$6-31+G^{* *}$	aug-ccPVDZ ${ }^{(\mathrm{b})}$	aug-ccPVTZ ${ }^{(\mathrm{c})}$	aug-ccPVDZ ${ }^{(\mathrm{d})}$	aug-ccPVTZ ${ }^{(\mathrm{e})}$
$\mathrm{PyH}_{2}+\mathrm{CO}_{2}$	20.1	20.5	22.2	23.1	25.0
$\mathrm{NABH}_{4}+\mathrm{CO}_{2}$	7.5	10.6	10.7	10.5	10.7

(a) Reported hydride transfer activation energies ($\Delta \mathrm{E}^{\ddagger}{ }_{\mathrm{HT}}$) at 0 K are in kcal/mol (referenced to separated reactants), and do not include zero-point energy (ZPE) corrections. For (b)-(e), single point energy calculations were performed at the stationary geometries obtained from rM06/6$31+\mathrm{G}^{* *}$ calculations. In all calculations, electrostatic solute-solvent interactions were treated using a CPCM description of aqueous solvent.

Figure S1: Comparison of TS geometries $\left(\mathrm{PyH}_{2}+\mathrm{CO}_{2}\right)$ between MP2/aug-cc-PVTZ and M06/6$31+\mathrm{G}^{* *}$, both solvated with CPCM- $\mathrm{H}_{2} \mathrm{O}$. Lengths reported in Å and angles in degrees.
b) pK_{a} and $\mathrm{E}^{\mathbf{0}}$

We computed pK_{a} values using an approach similar to the method described by Liptak et al.; the details of this method are described in the SI of ref. [${ }^{79}$]. Here we summarize the key equations and procedures used to obtain pK_{a} 's in aqueous solution. pK_{a} is defined as $p K_{a}=\Delta G^{0}{ }_{a q} / 2.303 R T$, where $\Delta G^{0}{ }_{a q}$ is defined as the change in Gibbs free energy of the reaction $A H_{a q}=A^{-}{ }_{\text {aq }}+H^{+}{ }_{\text {aq }}$ (eq. 1) in aqueous solution at standard conditions and $1 \mathrm{MAH} . \Delta \mathrm{G}^{0}{ }_{\text {aq }}$ can be calculated using a thermodynamic cycle with $\Delta G^{0}{ }_{a q}=\Delta G^{0}{ }_{\text {gas }}+\Delta G^{0}{ }_{s}\left(A^{-}\right)-\Delta G^{0}{ }_{s}(A H)+\Delta G^{0}{ }_{s}\left(H^{+}\right)$. ΔG^{0} gas is the change in Gibbs free energy for eq. $\mathbf{1}$ in the gas phase. For the calculation of ΔG^{0} gas, an experimental value of $-6.28 \mathrm{kcal} / \mathrm{mol}$ was used for $\mathrm{G}_{\text {gas }}^{0}\left(\mathrm{H}^{+}\right)$at a reference pressure of 1 atm . $\Delta G^{0}{ }_{s}$ uses a reference state of 1 M . Conversions can be calculated using $\Delta G^{0}{ }_{\text {gas }}(1 M)=\Delta G^{0}$ gas $(1$ atm.) + RTln(24.46). $\Delta G^{0}{ }_{s}\left(A^{-}\right)$and $\Delta G^{0}{ }_{S}(A H)$ are changes in Gibbs free energy for solvating A^{-}and AH from the gas phase, i.e. $\Delta G^{0}{ }_{s}\left(A^{-}\right)=G_{s}^{0}\left(A^{-}\right)-G^{0}{ }_{\text {gas }}\left(A^{-}\right)$. Rather than using the Hartree-Fock $(\mathrm{HF}) / \mathrm{CPCM}-\mathrm{H}_{2} \mathrm{O}$ level of theory to approximate solvation free energies as done by Liptak et al., we used the more accurate $\mathrm{rM} 06 / 6-31+\mathrm{G}^{* *}$ method in $\mathrm{CPCM}-\mathrm{H}_{2} \mathrm{O}$ solvent to evaluate these energies, e.g. $\mathrm{G}\left(\mathrm{AH}_{\mathrm{aq}}\right)$ and $\mathrm{G}\left(\mathrm{A}_{\mathrm{aq}}\right)$ are calculated at this level of theory. CPCM here refers to conductor-like polarized continuum model, which is an implicit solvent model used to approximate solvation free energies. Finally, an experimental value of $-259.5 \mathrm{kcal} / \mathrm{mol}$ was used for $\Delta \mathrm{G}^{0}{ }_{s}\left(\mathrm{H}^{+}\right),{ }^{317-318}$ which reproduces the experimental pK_{a} of $\mathrm{PyH}^{+} / \mathrm{Py}$ of $5.3\left(\mathrm{pK}_{\mathrm{a}}\right.$, calc. $\left.=4.3\right)$, instead of $-264.61 \mathrm{kcal} / \mathrm{mol}$ which was used by Liptak et al. to calculate the pK_{a} for carboxylic acids. ${ }^{79}$

Using the approach described here, we obtained the following $\mathrm{pK}_{\mathrm{a}}{ }^{\prime} \mathrm{s}$: $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}^{+} / \mathrm{Py}\right)=4.3 ; \mathrm{pK}_{\mathrm{a}}$ $\left(\mathrm{PyH}_{2, \mathrm{c}^{+}} / \mathrm{PyH}^{0}\right)=3.1, \mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}_{2, \mathrm{cz}}{ }^{+} / \mathrm{PyH}^{0}\right)=-0.8 ; \mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}_{2, \mathrm{ca}^{+}} / \mathrm{PyH}^{0}\right)=1.4$. The experimental value $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}^{+} / \mathrm{Py}\right)$ value is 5.3 , whereas our calculation underestimates this value by $1 \mathrm{pK}_{\mathrm{a}}$ unit.

We consequently correct all calculated pK_{a} 's by $1 \mathrm{pK}_{\mathrm{a}}$ unit to give: $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}_{2, \mathrm{c}^{+}} / \mathrm{PyH}^{0}\right)=4.1 ; \mathrm{pK}_{\mathrm{a}}$ $\left(\mathrm{PyH}_{2, \mathrm{Cz}^{+}} / \mathrm{PyH}^{0}\right)=0.2$; and $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{PyH}_{2, \mathrm{C4}}{ }^{+} / \mathrm{PyH}^{0}\right)=2.4$. Using the isodesmic approach ${ }^{319}$, which references to the experimental pK_{a} of $\mathrm{PyH}^{+}=5.3$, the pK_{a} of $\left(\mathrm{PyH}_{2, \mathrm{c}_{2}}{ }^{+} / \mathrm{PyH}^{0}\right)$ was calculated to be 3.4.

Standard reduction potentials (E^{0}) were calculated following the same procedure used by Winget et al. and Tossell. ${ }^{44,78}$ A value of $-100.5 \mathrm{kcal} / \mathrm{mol}$ was assumed for the reduction free energy of the standard hydrogen electrode (SHE) as described in Ref. [${ }^{312}$]. Thus, $E^{0}=(-100.5-$ $\left.\Delta G_{\text {red }}\right) / 23.05$ (vs. SHE), where $\Delta G_{\text {red }}$ is defined as the Gibbs free energy of reduction of $A\left(A+e^{-}=\right.$ A^{-}, eq. 2), which was calculated at the rM06/6-31+G** level of theory ${ }^{121}$ in CPCM- $\mathrm{H}_{2} \mathrm{O}$ solvent. To reference to the Saturated Calomel Electrode (SCE), E^{0} (vs. SHE) is converted to E^{0} (vs. SCE) using E^{0} (vs. SCE) $=E^{0}$ (vs. SHE) - 0.24 V .

c) Electron Affinities

We calculate the gas phase adiabatic electron affinities of CO_{2} and formic acid using the compound CBS-QB3 method, ${ }^{77}$ which was designed to give accurate thermochemical predictions. Electron affinity is defined as the negative of energy change associated with transferring an electron from vacuum to a species, e.g. a species with a negative electron affinity corresponds to requirement of energy input during energy transfer process.
CO_{2} is known to have a negative electron affinity, and the experimental (gas phase) value is -0.6 $\pm 0.2 \mathrm{eV} ;{ }^{190,320}$ our calculations predict a similar value of -0.60 eV . To the best of our knowledge, there is no published experimental electron affinity for formic acid. Our calculation predicts that formic acid has an electron affinity of -1.22 eV ; this value coincides with other theoretical results. ${ }^{191,321}$

d) Note on Explicit Water Treatment

The absolute free energy of an explicit water is $\mathrm{G}^{*}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{liq)}}\right)=\mathrm{G}^{0}\left(\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right)+\Delta \mathrm{G}^{0} \rightarrow^{*}+\Delta \mathrm{G}^{*}$ self $\left(\mathrm{H}_{2} \mathrm{O}\right)$. When comparing the free energies of the TS relative to R (similarly for comparing free energies of P to R), the correction from ideal gas to solution phase standard state, $\Delta G^{\circ} \rightarrow^{*}$, cancels. Specifically, the constant value of $\Delta G^{0} \rightarrow^{*}$ of $1.894 \mathrm{kcal} / \mathrm{mol}$ is added to correct for the free energy of explicit water in R, TS and P; thus for relative free energies, e.g. $G(T S)-G(R)$, the $\Delta G^{\circ} \rightarrow^{*}$ correction cancels. We note that the sum of the gas phase free energy of a water molecule $G^{0}(\mathrm{H} 2 \mathrm{O}(\mathrm{g}))$ and the water self-interaction $\Delta G^{*}{ }_{\text {self }}\left(\mathrm{H}_{2} \mathrm{O}\right)$ represents the absolute free energy of an explicit water whose nearest neighbors are only other water molecules. However, in the reacting system the explicit water that mediates proton transfer also interacts with the solvated reacting complex where the interactions change as the reaction proceeds from R, to the TS and finally to P; the figure below shows the varying polarization of the explicit water
along the reaction path as indicated by changes in H -bond and $\mathrm{O}-\mathrm{H}$ bond lengths of the water molecule). Thus, the averaged self-interaction energy of $-6.325 \mathrm{kcal} / \mathrm{mol}$ does not describe the polarization of the explicit water. Instead, the polarization of the explicit water throughout the reaction is captured quantum mechanically in the computed free energies of $R, T S$ and P. The figure below shows charges and structures of $\mathrm{PyH}_{2}, \mathrm{OCH}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ species in the reactant complex (R), transition state (TS) and product complex (P) determined from IRC calculations.

B. 2 Overestimation of Activation Entropies Using Ideal Gas Partition Functions

1-benzyl-1,4-dihydronicotinamide

Separated reactant

Figure S2: Activation entropy for the hydride transfer reaction between Δ^{1}-pyrroline-2carboxylic acid and 1-benzyl-1,4-dihydronicotinamide.

When referenced to the separated reactants, the HT between Δ^{1}-pyrroline-2-carboxylic acid and 1-benzyl-1,4-dihydronicotinamide is predicted to have an activation entropy (-TDS ${ }_{\text {calc }}^{\ddagger}$) of $14.5 \mathrm{kcal} / \mathrm{mol}$ (Figure S2) using the ideal gas partition function which treats the hindered translation, rotation and vibration of the species in solution as unhindered gas phase motions. As a result, the ideal gas partition function overestimates $-T \Delta S^{\ddagger}$ by $\sim 12 \mathrm{kcal} / \mathrm{mol}$ for this reaction
relative to the experimental value of $-T \Delta S^{\ddagger}{ }_{\text {exp }}=2.3 \mathrm{kcal} / \mathrm{mol} .{ }^{138}$ Thus, ideal gas-based calculated $T \Delta S^{\ddagger}{ }_{\text {calc }}$ values can have significant errors for solution phase reactions, including the HT reactions in aqueous solvent we investigate here.

Table S2 summarizes the computed gas-phase activation entropies (DHT-1 $\mathrm{H}_{2} \mathrm{O}$ model) of CO_{2}, formic acid and formaldehyde. The reported -T $\Delta \mathrm{S}^{\ddagger}$ values omit the translational and rotational components that make up the total entropy, in accordance with Morokuma's approach. ${ }^{139}$ Note that the VR approach ($-T \Delta S^{\ddagger}$ (vib. + rot.)), which estimates $-T \Delta S^{\ddagger}$ from the only the vibrational and rotational contributions produces values in close agreement with the $T \Delta S^{\ddagger}{ }^{\text {exp }}=2.3 \mathrm{kcal} / \mathrm{mol}$ for the analogous HT between Δ^{1}-pyrroline-2-carboxylic acid and 1-benzyl-1,4dihydronicotinamide

Table S2: Gas Phase Entropy for DHT-1 $\mathbf{H}_{2} \mathrm{O}$ Model

	CO_{2}	HCOOH	OCH_{2}
$-{\mathrm{T} \Delta \mathrm{S}^{\ddagger}}$ (trans.+ vib. + rot.)	13.9	13.1	13.5
$-\mathrm{T} \Delta \mathrm{S}^{\ddagger}$ (vib. + rot.)	3.0	2.2	2.7
$-{\mathrm{T} \Delta \mathrm{S}^{\ddagger} \text { (vib.) }}$	-3.1	-4.0	-3.2

B. 3 Thermodynamic Quantities Referenced to Reactant Complex

Separated reactant

Reactant complex

Figure S3: Separated Reactant vs Reactant Complex for CO_{2} Reduction via the DHT Model.

Figure S3 shows that approach of the separated reactants $\left(\mathrm{PyH}_{\mathbf{2}}+\mathrm{CO}_{2}\right)$ to each other to form the reactant complex prior to forming the transition state complex. In the manuscript, we report the activation enthalpies $\left(\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}\right)$ referenced to the separated reactants, as is appropriate for bimolecular reactions. ${ }^{130}$ For example, for the reaction between PyH_{2} and CO_{2} described using the direct hydride transfer (DHT) model, $\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}$ (separated reactant) $=20.9 \mathrm{kcal} / \mathrm{mol}$. For comparison purposes, here we also report activation enthalpies referenced to the reactant complex, which for this case $\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}$ (reactant complex) $=22.1 \mathrm{kcal} / \mathrm{mol}$. Thus, a weak complexation enthalpy ($-1.2 \mathrm{kcal} / \mathrm{mol}$) is involved in forming the reactant complex from the separated reactants. Below, we report similar enthalpy quantities for formic acid (HCOOH) and formaldehyde $\left(\mathrm{OCH}_{2}\right)$ reduction.

$\mathrm{PyH}_{2}+\mathrm{HCOOH}$ (DHT model)

$\Delta \mathrm{H}^{\ddagger}{ }_{\text {нT }}($ separated reactant $)=23.3 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}($ reactant complex $)=24.9 \mathrm{kcal} / \mathrm{mol}$

$\mathrm{PyH}_{2}+\mathrm{OCH}_{2}$ (DHT model)

$\Delta \mathrm{H}^{\ddagger}{ }_{\text {HT }}($ separated reactant $)=12.2 \mathrm{kcal} / \mathrm{mol}$
$\Delta \mathrm{H}^{\ddagger}{ }_{\mathrm{HT}}($ reactant complex $)=13.2 \mathrm{kcal} / \mathrm{mol}$

B. 4 Recovery of the Pyridine Catalyst from the 4,4' Coupled Dimer

Figure S4: Reactant complex (a), transition state (b), and product complex (c) of the 4,4' coupled dimer reacting with PyH^{+}to produce 1,2-dihydropyridine, Py and PyH^{+}.

Figure S4 shows the reactant complex, TS and product complex of the reaction between PyH^{+} and the $4,4^{\prime}$ coupled dimer (formed by the carbon-carbon coupling of two $\mathrm{PyH}^{0} \mathrm{~s}$). In this reaction, 1,2-dihydropyridine is produced along with Py and PyH^{+}. The enthalpic barrier ($\Delta \mathrm{H}^{\ddagger} \mathrm{HT}$) of this reaction is $31.0 \mathrm{kcal} / \mathrm{mol}$ and the enthalpy of reaction $\left(\Delta \mathrm{H}^{0}{ }_{\mathrm{rxn}}\right)$ is $-4.6 \mathrm{kcal} / \mathrm{mol}$ (referenced to separated reactants). PyH^{+}, with a $\mathrm{pK}_{\mathrm{a}}=5.3$, acts as a proton donor in this reaction. The high barrier indicates that the recovery of the pyridine catalyst by decoupling the $4,4^{\prime}$ dimer is not an active pathway at 298 K . It should be noted that if $\mathrm{H}_{3} \mathrm{O}^{+}$, a much stronger proton donor with a $\mathrm{pK}_{\mathrm{a}}=-1.7$, is used as a proton donor to the $4,4^{\prime}$ coupled dimer, the decoupling barrier is expected to decrease. All structures and energies were calculated using the rM06/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$ level of theory.

B. 5 Linearized Poisson-Boltzmann Model of Cation Concentration Near a Negatively Biased Cathode

$\psi_{0}=200 \mathrm{mV}$
$p H=5.2 \rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-6} \mathrm{M}$

$$
\left[\mathrm{PyH}^{+}\right]=4 \times 10^{-3} M
$$

$$
\left[K^{+}\right]=0.5 M
$$

$\nabla^{2} \psi=\kappa^{2} \psi$
$\psi(x)=\psi_{0} e^{-\kappa x}$
$n_{+}(x)=n_{\infty} e^{-z e \psi(x) / k T}$

Figure S5: The distribution of cation (e.g. $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{PyH}^{+}$and K^{+}(without anion Cl^{-}) used as an electrolyte) concentration near a negatively biased cathode ($\boldsymbol{\psi}_{0}=\mathbf{2 0 0} \mathbf{m V}$) according to a linearized Poisson-Boltzmann model. ψ_{0} is the negative potential applied at the cathode, $\boldsymbol{\psi}(\mathbf{x})$ is electrostatic potential as a function of x (distance from the electrode), z is the charge on the cation, e is the elementary charge, n_{∞} is bulk concentration of the cation, D is dielectric constant of the medium (78.5 for aqueous solution), ε_{0} is the vacuum permittivity, k is the Boltzmann constant and T is temperature (298 K). Note that the Debye length $1 / \kappa$ is proportional to (ionic strength) ${ }^{-1 / 2}$; which in this case for monovalent cation and anion, ionic strength $=\boldsymbol{n}_{\infty}$.

Figure S 5 shows the distribution of cations near a negatively biased cathode. The linearized Poisson-Boltzmann model ${ }^{167}$ is used to describe the electrostatic attraction between the negatively biased cathode and cations in dielectric media. In an aqueous solution ($D=78.5$) with a negatively biased cathode at 200 mV , cation concentration increases exponentially towards the cathode. For example, at $2 \AA$ away from the cathode, the concentration of the cations increases by ~ 2 order of magnitude. Thus, the pH in the vicinity of the cathode is expected to be much lower than in the bulk. We note that this model likely does not accurately describe cation concentrations at a distance < $2 \AA$ Á away from the cathode where the continuum model begins to break down.
B. 6 Reactivity of 1,2-dihydropyridine and 1,4-dihydropyridine Towards CO_{2}

Figure S6: Transition state structures for (a) 1,2-dihydropyridine $+\mathrm{CO}_{2}$ and (b) 1,4dihydropyridine $+\mathrm{CO}_{2}$. Calculations performed at rMP2/aug-ccPVTZ//rM06/6-31+G** with solvent described using CPCM for aqueous solvent.

Figure S 6 shows the transition state structures, standard activation free energies ($\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$) and reaction free energies $\left(\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}\right)$ for (a) 1,2-dihydropyridine $+\mathrm{CO}_{2}$ and (b) 1,4-dihydropyridine + CO_{2}. The comparison between these two species shows that 1,2-dihydropyridine is more reactive than 1,4-dihydropyridine, exhibiting both a lower $\Delta \mathrm{G}^{\ddagger}{ }_{\mathrm{HT}}$ and a more negative $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}$.

B. 7 Hydride Transfer from N-H Bond of 1,4-dihydropyridine

(a)

(b)

Figure S7: (a) Hydride transfer from the $\mathrm{N}-\mathrm{H}$ bond of 1,4-dihydropyridine to the C atom of $\mathrm{CO}_{\mathbf{2}}$ to form formate and pyridinum protonated in the $\mathrm{C}-4$ position, (b) analogous to reaction in (a) except that a BF_{3} Lewis acid, which is used to model a Lewis acidic surface site, is bound to the \mathbf{N} of $\mathbf{1 , 4}$-dihydropyridine during the reaction. All calculations were performed using rM06/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$.

From Figure S7a, we show that hydride transfer from the $\mathrm{N}-\mathrm{H}$ bond of 1,4-dihydropyridine to CO_{2}, as proposed in ref. [${ }^{152}$] , is highly endergonic with $\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}=59.6 \mathrm{kcal} / \mathrm{mol}$. This result clearly demonstrates that hydridic character of the $\mathrm{N}-\mathrm{H}$ hydrogen is highly unfavorable under standard conditions.

In Figure S 7 b , we use BF_{3} Lewis acid to model a Lewis acidic surface site. It was also proposed in ref. [${ }^{152}$] that 1,4-dihydropyridine performs a hydride transfer while adsorbed to the Lewis acidic site on a surface (e.g. Pt or p-GaP). Our result predicts that the surface actually hinders hydride transfer in that it makes the $\mathrm{N}-\mathrm{H}$ bond an even weaker hydride donor ($\Delta \mathrm{G}^{0}{ }_{\mathrm{rxn}}=66.5$ $\mathrm{kcal} / \mathrm{mol}$) than free DHP.

B. 8 Coordinates of Molecular Structures

All coordinates are reported as XYZ Cartesian coordinates. In "red" are rM06/6-31+G**/CPCM$\mathrm{H}_{2} \mathrm{O}$ energies. In "black", we report rMP2/aug-ccPVTZ/CPCM $-\mathrm{H}_{2} \mathrm{O}$ single point energies computed at rM06/6-31+G**/CPCM- $\mathrm{H}_{2} \mathrm{O}$ geometries. Energies reported here are computed at 0 K (not ZPE and thermally corrected) and are stated in Hartrees units. In "blue", the imaginary frequencies (in unit cm^{-1}) of transition state structures are also reported. Unless otherwise noted, all energies reported were calculated using the GAUSSIAN 09 computational chemistry package. ${ }^{61}$
$\mathrm{CO}_{2}(-188.51263107,-188.32329603)$

C	2.18926	0.01112	0.30294
O	1.79513	0.03673	1.39377
O	2.58406	-0.01448	-0.78759

1,4-Cyclohexadiene (-233.24433548, -232.90378431)

H	0.74904	1.87385	-1.96853
C	-0.18776	1.13475	1.30625
C	0.76573	0.24524	1.59579
H	2.46751	0.27133	-1.44663
H	-1.29457	1.64109	-0.45593
H	-0.93345	1.38521	2.06078
H	0.78500	-0.21732	2.58267
C	-0.30028	1.82638	-0.01767
C	1.72191	0.52192	-0.69207
H	-0.27215	2.91890	0.12599
C	0.76841	1.41142	-0.98159
C	1.83451	-0.16958	0.63192
H	2.82878	0.01567	1.07020
H	1.80645	-1.26214	0.48827

Reactant complex (-421.76051246, -421.23289602)

H	0.72190	1.84063	-1.98314
C	-0.19775	1.12303	1.29995
C	0.75374	0.23009	1.58836
H	2.43697	0.23298	-1.46306
H	-1.28964	1.70560	-0.44435
H	-0.96003	1.35228	2.04469
H	0.75385	-0.25615	2.56406
C	-0.28617	1.84434	-0.00981
C	1.70937	0.50630	-0.69893
C	-1.46984	-1.65892	-0.27016
O	-0.73301	-2.47623	0.10987
O	-2.21544	-0.85266	-0.65741
H	-0.20994	2.93199	0.15303
C	0.75777	1.39885	-0.98727
C	1.84693	-0.15348	0.63905

H	2.82839	0.08891	1.07899
H	1.87373	-1.24866	0.51787

TS (-421.69168248, -421.1442666, 378.43i)

H	1.89776	0.88243	-2.16549
C	1.62343	0.15940	1.20167
C	2.84842	-0.37564	1.41805
H	4.13907	-0.06652	-1.79498
H	0.27242	-0.75148	-0.50706
H	0.91078	0.27462	2.01276
H	3.13968	-0.68864	2.41784
C	1.24052	0.54975	-0.11784
C	3.41764	-0.02185	-0.98281
C	-0.01359	-1.89742	-0.68496
O	-1.10451	-2.02961	-1.24471
O	0.86420	-2.65321	-0.26470
H	0.34243	1.15159	-0.24440
C	2.18874	0.50512	-1.18978
C	3.83771	-0.53171	0.33617
H	4.79241	-0.06438	0.63263
H	4.12086	-1.59629	0.24795

10-methyl-9,10-dihydroacridine $+\mathrm{CO}_{2}$

10-methyl-9,10-dihydroacridine (-595.66353648, -594.85216855)

C	0.22032	0.62179	1.45229
C	1.35343	-0.20008	1.59671
H	-1.16435	-0.25225	0.08909
C	-0.48207	0.61555	0.12643
C	1.63524	-0.31925	-0.79074
H	-1.11082	1.50652	0.00833
N	1.81303	-0.90944	0.47298
C	0.50931	0.50052	-0.99389
C	2.54262	-0.51330	-1.83948
C	0.32927	1.12341	-2.22346
C	2.32963	0.10093	-3.07219
H	3.04558	-0.06141	-3.87477
C	1.99184	-0.27892	2.84077
C	1.50488	0.44961	3.92451
H	2.01225	0.37476	4.88377
C	0.39531	1.27683	3.78203
H	0.02161	1.85111	4.62596
C	-0.23370	1.35914	2.53976
H	-1.10906	1.99486	2.41052
C	1.22822	0.92726	-3.27191
H	2.87889	-0.89298	2.96883

H	3.42673	-1.12886	-1.69863
H	1.06755	1.41206	-4.23157
H	-0.54406	1.75967	-2.36341
C	2.85713	-1.89714	0.64680
H	3.86003	-1.45306	0.74878
H	2.64662	-2.49380	1.53793
H	2.86111	-2.57608	-0.20948

Reactant complex (-784.18144416, -783.1838096), MP2 calculation performed with GAMESS

C	0.21543	0.61607	1.45333
C	1.34533	-0.20926	1.59814
H	-1.18614	-0.22892	0.08230
C	-0.48382	0.62331	0.12585
C	1.62970	-0.32472	-0.79047
C	-0.17807	-3.23458	0.28979
O	-0.42959	-3.15292	1.42387
O	0.06084	-3.33513	-0.84564
H	-1.09756	1.52495	0.00968
N	1.79624	-0.92873	0.47248
C	0.50713	0.49830	-0.99377
C	2.53795	-0.52027	-1.83733
C	0.33047	1.12342	-2.22298
C	2.32896	0.09648	-3.06959
H	3.04534	-0.06765	-3.87132
C	1.98474	-0.28793	2.84101
C	1.50154	0.44414	3.92420
H	2.01062	0.36988	4.88249
C	0.39401	1.27369	3.78191
H	0.02364	1.85117	4.62506
C	-0.23550	1.35643	2.54033
H	-1.10733	1.99662	2.41001
C	1.22999	0.92551	-3.27013
H	2.87093	-0.90248	2.97093
H	3.41907	-1.14021	-1.69853
H	1.07212	1.41169	-4.22951
H	-0.53997	1.76355	-2.36266
C	2.86824	-1.88948	0.64418
H	3.86146	-1.41985	0.71896
H	2.69226	-2.47343	1.55138
H	2.87167	-2.58486	-0.20000

TS (-784.12248563, -783.11289645, 648.01i)

C	1.53413	0.32881	1.14540
C	2.79274	-0.25663	1.42896
H	0.48378	-0.84512	-0.46662
C	1.14838	0.48285	-0.22182
C	3.42976	-0.09211	-0.89230

C	0.31100	-2.06717	-0.50950
O	0.26439	-2.53220	0.62376
O	0.26432	-2.46157	-1.67037
H	0.23233	1.03707	-0.43634
N	3.63549	-0.59718	0.38347
C	2.17792	0.48502	-1.21721
C	3.14719	-0.47417	2.77354
C	2.26965	-0.12846	3.78472
H	2.56881	-0.29417	4.81652
C	1.01582	0.43918	3.50757
H	0.34181	0.70114	4.31760
C	0.65816	0.65953	2.19582
H	-0.30817	1.09224	1.94446
C	4.43378	-0.12650	-1.87726
C	1.94906	0.98578	-2.51161
H	4.11667	-0.88260	3.03630
H	5.41799	-0.52465	-1.65516
H	0.97272	1.41115	-2.73535
C	4.18456	0.38716	-3.13718
C	2.94023	0.94476	-3.46872
H	4.97884	0.36303	-3.87882
H	2.76572	1.34202	-4.46418
C	4.83412	-1.38508	0.65533
H	5.68533	-0.75151	0.93069
H	4.62939	-2.08913	1.46205
H	5.08847	-1.97235	-0.22723

Dihydrophenanthridine $+\mathrm{CO}_{2}$

Dihydrophenanthridine (-556.38699729, -555.63233510)

H	0.94556	2.14250	-1.69762
C	0.14324	1.60034	1.48421
C	0.98416	0.49540	1.70815
H	-1.00502	1.40049	-0.31375
C	-0.15038	1.99408	0.06582
C	1.59150	-0.17172	0.54560
N	1.03610	1.78625	-0.75344
C	1.61575	0.52532	-0.68435
H	-0.43922	3.04880	0.01262
C	-0.43522	2.27024	2.55855
C	-0.19481	1.85542	3.86631
H	-0.65273	2.38325	4.69930
C	0.64543	0.76759	4.09777
H	0.85281	0.44405	5.11512
C	1.23556	0.10157	3.02911
H	1.91140	-0.72720	3.22948

C	2.19037	-1.43442	0.61102
C	2.82718	-1.99606	-0.48992
H	3.28080	-2.98090	-0.41462
C	2.87312	-1.28339	-1.68931
H	3.36934	-1.70817	-2.55912
C	2.26948	-0.03628	-1.78826
H	-1.08301	3.12456	2.36569
H	2.29325	0.51510	-2.72719
H	2.15254	-1.99348	1.54407

Reactant complex (-744.90418834, -743.96286463)

	0.94714	2.14066	-1.70085
H	0.14748	1.60202	1.48414
C	0.99522	0.50282	1.70993
H	-1.00495	1.42035	-0.31429
C	-0.14274	2.00209	0.06657
C	1.60678	-0.16359	0.54883
N	1.04013	1.78676	-0.75600
C	1.62076	0.52713	-0.68487
C	-0.98969	-2.23534	0.21717
O	-0.94113	-2.69328	1.28690
O	-1.04688	-1.78186	-0.85337
H	-0.42114	3.05992	0.01757
C	-0.44174	2.26414	2.55786
C	-0.20572	1.84707	3.86541
H	-0.67200	2.36914	4.69737
C	0.64091	0.76437	4.09847
H	0.84462	0.43893	5.11592
C	1.24088	0.10551	3.03117
H	1.92033	-0.72005	3.23267
C	2.20522	-1.42676	0.61582
C	2.82599	-1.99784	-0.48964
H	3.27730	-2.98365	-0.41376
C	2.86232	-1.29082	-1.69280
H	3.34750	-1.72197	-2.56565
C	2.26430	-0.04086	-1.79129
H	-1.09473	3.11428	2.36412
H	2.28124	0.50588	-2.73306
H	2.17206	-1.98221	1.55160

TS $(-744.85472427,-743.90595079,798.70 \mathrm{i})$			
H	2.03008	0.79363	-1.98881
C	1.58541	0.28441	1.26225
C	2.83582	-0.29016	1.57185
H	0.48952	-0.68606	-0.42115
C	1.23608	0.50694	-0.13150
C	3.75547	-0.59979	0.47966

N	2.24544	0.51724	-1.03766
C	3.43850	-0.16162	-0.82240
C	0.31740	-1.86013	-0.87440
O	-0.26457	-2.54379	-0.04716
O	0.81268	-1.93237	-1.98723
H	0.40484	1.17588	-0.35475
C	3.13704	-0.51857	2.92341
C	2.22141	-0.20721	3.91608
H	2.47720	-0.39384	4.95591
C	0.97637	0.34573	3.59482
H	0.26476	0.58538	4.37979
C	0.66137	0.58862	2.26963
H	-0.30034	1.01897	1.99651
C	4.96499	-1.29127	0.65634
C	5.82363	-1.52276	-0.40452
H	6.75163	-2.06337	-0.24051
C	4.30719	-0.38612	-1.89555
H	4.03315	-0.03283	-2.88755
H	5.23354	-1.65934	1.64286
H	4.09862	-0.93716	3.20719
C	5.49533	-1.06309	-1.68524
H	6.16740	-1.24367	-2.51969

Hantzsch's ester $+\mathrm{CO}_{2}$

Hantzsch's ester $(-862.01667438,-860.93400653)$			
C	0.06173	1.60753	1.59883
C	1.04869	0.69388	1.80927
H	2.43371	-0.51633	0.89842
H	-1.41152	1.68621	0.03071
C	-0.36749	1.99749	0.20561
C	1.50060	0.53387	-0.59739
H	-0.40174	3.09367	0.12486
C	0.52560	1.44117	-0.87650
N	1.69754	0.15196	0.71620
C	0.21988	1.94191	-2.21237
C	-0.68607	2.27289	2.66052
O	-0.71333	2.70341	-2.44046
O	-1.60229	3.05715	2.44101
O	1.04197	1.51442	-3.18451
O	-0.29395	1.96823	3.90813
C	0.76864	1.96734	-4.52014
H	0.81457	3.06270	-4.54014
H	-0.25101	1.67162	-4.79437
C	1.80177	1.33841	-5.41668

H	1.63674	1.64603	-6.45392
H	2.81213	1.64433	-5.12393
H	1.74473	0.24528	-5.36923
C	-0.99722	2.59346	4.99284
H	-0.89245	3.68152	4.90455
H	-2.06388	2.35251	4.91300
C	-0.39068	2.06736	6.26678
H	0.67662	2.30909	6.31911
H	-0.88709	2.51523	7.13323
H	-0.50142	0.97923	6.33103
C	1.55345	0.17089	3.11813
H	2.00313	0.96954	3.71533
H	0.74259	-0.25091	3.71728
H	2.30647	-0.60658	2.95951
C	2.43681	-0.13383	-1.55602
H	1.89718	-0.60603	-2.38023
H	3.12273	0.59178	-2.00425
H	3.03121	-0.89775	-1.04621

Reactant complex (-1050.53405796, -1049.26523689)

C	0.18348	1.74113	1.61417
C	1.15835	0.81422	1.81941
H	2.56313	-0.37314	0.90671
H	-1.24796	2.00115	0.03374
C	-0.18225	2.21194	0.22801
C	1.63089	0.68118	-0.58520
C	-1.26224	-0.94000	-1.39905
O	-1.18666	-1.25010	-0.27944
O	-1.34179	-0.63587	-2.52057
H	-0.11766	3.30959	0.17574
C	0.66328	1.59916	-0.86200
N	1.83976	0.30971	0.72718
C	0.32822	2.06896	-2.20306
C	-0.61285	2.35153	2.67391
O	-0.55710	2.88892	-2.41801
O	-1.48940	3.17952	2.45392
O	1.04583	1.51819	-3.19346
O	-0.32083	1.93656	3.91672
C	0.67739	1.86067	-4.53831
H	0.79743	2.94160	-4.67828
H	-0.38325	1.61895	-4.68244
C	1.57209	1.06423	-5.45027
H	1.34119	1.28827	-6.49627
H	2.62545	1.30623	-5.27062
H	1.43293	-0.01076	-5.28901
C	-1.09393	2.48867	4.99427
H	-0.96237	3.57716	5.00494

H	-2.15517	2.28199	4.81116
C	-0.59878	1.84273	6.26096
H	0.46426	2.05621	6.41826
H	-1.15685	2.22349	7.12188
H	-0.72955	0.75570	6.21963
C	1.61966	0.23861	3.12211
H	2.01148	1.01642	3.78355
H	0.79585	-0.24240	3.65621
H	2.40636	-0.50389	2.95981
C	2.53838	-0.01371	-1.55251
H	1.96986	-0.59361	-2.28614
H	3.13345	0.70529	-2.12206
H	3.21895	-0.69012	-1.02764

TS (-1050.48619705, -1049.21109993, 917.62i)

C	1.38636	0.23480	1.18046
C	2.61804	-0.29951	1.47751
H	4.39836	-0.87776	0.67077
H	0.25594	-0.61880	-0.60357
C	1.04555	0.48635	-0.19864
C	3.31498	-0.06662	-0.85157
C	-0.05253	-1.72637	-1.18186
0	-1.07027	-2.18587	-0.69050
O	0.78631	-1.97349	-2.03134
H	0.21677	1.17203	-0.37517
C	2.09624	0.48390	-1.18062
N	3.49685	-0.47247	0.44104
C	0.31096	0.48478	2.15898
C	1.70580	0.95656	-2.52178
C	3.13302	-0.71686	2.81259
H	3.31236	0.15797	3.44584
H	2.40699	-1.34286	3.33579
H	4.07105	-1.26899	2.71202
C	4.48476	-0.28095	-1.74870
H	4.21436	-0.94308	-2.57721
H	4.81238	0.66145	-2.19593
H	5.32270	-0.72244	-1.20348
0	0.59714	1.40460	-2.76220
0	-0.83867	0.71436	1.82336
0	0.71644	0.44527	3.42576
0	2.66437	0.83587	-3.43670
C	-0.28422	0.64652	4.44653
H	-0.73159	1.63669	4.30331
H	-1.07112	-0.10411	4.31234
C	0.41204	0.51589	5.77348
H	-0.30798	0.65429	6.58564
H	0.86476	-0.47594	5.88094

H	1.19842	1.27061	5.87946
C	2.34820	1.23774	-4.78554
H	2.07828	2.29986	-4.77911
H	1.47413	0.66757	-5.11999
C	3.56966	0.95940	-5.61845
H	3.82471	-0.10559	-5.59219
H	3.38496	1.24273	-6.65901
H	4.42983	1.53109	-5.25368

$\mathrm{NaBH}_{4}+\mathrm{CO}_{2}$

$\mathrm{BH}_{4}{ }^{-}(-27.33111504,-27.25783179)$			
H	-0.46475	1.61335	1.09007
H	0.42003	2.98568	-0.09947
H	1.43921	1.33805	0.47165
H	1.01374	2.78017	1.82157
B	0.60217	2.17970	0.82142

Reactant complex (-215.84674858, -215.58422919)

H	-0.46490	1.61381	1.08950
C	-0.22660	-0.71103	-0.33439
O	0.01568	-1.30008	0.64098
O	-0.48636	-0.17713	-1.33621
H	0.41954	2.98452	-0.10016
H	1.43914	1.33875	0.47150
H	1.01427	2.77963	1.82243
B	0.60235	2.18024	0.82197

TS (-215.83186656, -215.56399968, 402.19i)

H	0.14591	-0.51509	-0.30999
C	0.33296	-1.85368	-0.93092
O	0.62375	-2.59736	-0.03562
O	0.05300	-1.72280	-2.09015
H	0.59386	1.32806	-0.78708
H	2.10730	-0.02304	-0.64931
H	1.11271	0.52080	1.03918
B	1.06503	0.38729	-0.17158

$4-\mathrm{CN}-\mathrm{PyH}_{2}+\mathrm{CO}_{2}$

4-CN-PyH ${ }_{2}(-341.48489265,-341.04129720)$

H	0.61393	1.08308	-1.75451
C	0.30576	0.72033	1.53350
C	1.34630	-0.12808	1.70120
H	2.77226	-1.50335	0.69781
H	2.29642	-0.50566	-1.54613

H	-1.04653	0.11617	-0.01892
H	-0.15206	1.23373	2.37409
C	-0.26678	0.88489	0.15818
C	2.00403	-0.75172	0.56168
N	0.81340	0.77144	-0.81485
C	1.73829	-0.22029	-0.65830
H	-0.74714	1.86072	0.04305
C	1.86246	-0.36323	3.01516
N	2.28864	-0.57460	4.07802

Reactant complex (-530.00020482, -529.36941183)

H	0.60495	1.06670	-1.76114
C	0.30376	0.71456	1.53304
C	1.34841	-0.12814	1.70150
H	2.79188	-1.48781	0.69925
H	2.29821	-0.50858	-1.54675
H	-1.06209	0.13713	-0.01619
H	-0.15937	1.22059	2.37528
C	-0.26822	0.89043	0.15892
C	2.01202	-0.74780	0.56262
N	0.80561	0.75790	-0.82080
C	1.73929	-0.22248	-0.65921
C	-0.02415	-3.14375	-0.37868
O	-0.88407	-2.62519	0.21115
O	0.82324	-3.67562	-0.97432
H	-0.72981	1.87586	0.04690
C	1.86055	-0.36568	3.01649
N	2.28379	-0.57925	4.08006

TS (-529.95532787, -529.32198295, 1007.13i)

H	1.96661	0.61608	-2.01559
C	1.58826	0.29017	1.25139
C	2.81892	-0.24059	1.52347
H	4.68295	-1.03817	0.67563
H	4.04832	-0.35256	-1.64834
H	0.44030	-0.76658	-0.36046
H	0.88978	0.55238	2.03823
C	1.17823	0.41629	-0.12155
C	3.72401	-0.57905	0.46837
N	2.19292	0.38014	-1.05655
C	3.38557	-0.22047	-0.80109
C	0.14454	-1.87757	-0.98231
O	-0.58653	-2.55268	-0.28256
O	0.71150	-1.86762	-2.05910
H	0.35893	1.09038	-0.36398
C	3.22161	-0.43685	2.88499
N	3.55709	-0.60185	3.98550

```
4-CONH
```

4-CONH ${ }_{2}-$ PyH $_{2}(-417.93073099,-417.40240767)$

H	0.63122	1.10844	-1.84384

C	0.34383	0.82949	1.45895

C $\quad 1.37298 \quad-0.02221 \quad 1.65871$

H	2.78633	-1.40899	0.67204

H 2.31553 -0.46977 -1.59265
H $\quad-1.00771 \quad 0.20142$-0.09084

H	-0.10110	1.40246	2.26923

C	-0.22981	0.97505	0.07891

C	2.01895	-0.65839	0.52242

N $0.85001 \quad 0.84869 \quad-0.89264$
C $\quad 1.76204 \quad-0.15676 \quad-0.71065$

H	-0.71207	1.94828	-0.05238

C	1.96741	-0.24788	3.00897

O	3.15567	-0.54673	3.15038

H	1.50985	-0.26549	4.99561

H	0.13739	-0.03293	3.96480

N	1.13802	-0.10366	4.07008

Reactant complex (-606.4462619, -605.73045608)

H	0.61822	1.08214	-1.85240
C	0.34240	0.82391	1.45779
C	1.37644	-0.02140	1.65864
H	2.81082	-1.39085	0.67574
H	2.31467	-0.47857	-1.59325
H	-1.03341	0.23677	-0.08733
H	-0.10871	1.38812	2.27090
C	-0.23143	0.98467	0.07932
C	2.03097	-0.65334	0.52444
N	0.83943	0.82904	-0.90005
C	1.76225	-0.16331	-0.71118
C	-0.15181	-3.13193	-0.00094
O	-1.07676	-2.44987	0.18820
O	0.75964	-3.83012	-0.19332
H	-0.68423	1.97297	-0.04786
C	1.96814	-0.24494	3.01057
O	3.15862	-0.53348	3.15437
H	1.50567	-0.27166	4.99573
H	0.13382	-0.04915	3.96190
N	1.13485	-0.10990	4.06978

TS (-606.40687771, -605.68748231, 1049.25i)

$\begin{array}{llll}\mathrm{H} & 2.01715 & 0.87536 & -1.98029\end{array}$

C	1.43160	0.22524	1.20886
C	2.64819	-0.30815	1.52227
H	4.54555	-1.04549	0.72504
H	4.08131	-0.12741	-1.56590
H	0.46585	-0.74466	-0.53145
H	0.65865	0.39207	1.95292
C	1.09982	0.43783	-0.17843
C	3.60351	-0.56230	0.49252
N	2.17745	0.53231	-1.04103
C	3.35756	-0.08509	-0.75972
C	0.33309	-1.98682	-0.94127
O	-0.02451	-2.66850	-0.00036
O	0.63494	-2.03847	-2.11794
H	0.26654	1.09350	-0.42591
C	3.02027	-0.68490	2.92465
O	3.74715	-1.65349	3.13531
N	2.50223	0.07799	3.90846
H	2.74285	-0.14209	4.86551
H	2.03053	0.95221	3.72800

$4-\mathrm{OH}-\mathrm{PyH}_{2}+\mathrm{CO}_{2}$

4-OH-PyH ${ }_{2}$ (-324.49298059, -324.08061095)

	0.55146	0.99795	-1.77585
H	0.30172	0.75072	1.54580
C	1.32465	-0.11080	1.71797
H	2.74261	-1.48964	0.73795
H	2.25579	-0.54669	-1.52926
H	-1.07039	0.15680	-0.02871
H	-0.16617	1.26163	2.38476
C	-0.27569	0.90788	0.16579
C	1.97611	-0.73761	0.58562
N	0.79414	0.77044	-0.82172
C	1.70887	-0.23154	-0.64399
H	-0.73660	1.89349	0.04203
O	1.88115	-0.42103	2.92599
H	1.38188	0.00853	3.63345

Reactant complex (-513.00832451, -512.4085234)

H	0.53909	0.97475	-1.78291
C	0.29843	0.74203	1.54488
C	1.32700	-0.11218	1.71772
H	2.77083	-1.46810	0.74116
H	2.25917	-0.54929	-1.52953
H	-1.09472	0.18970	-0.02621

H	-0.17499	1.24387	2.38637
C	-0.27864	0.91575	0.16629
C	1.98860	-0.73242	0.58723
N	0.78211	0.74969	-0.82840
C	1.71007	-0.23610	-0.64442
C	0.00080	-3.13481	-0.43513
O	-0.92055	-2.56213	-0.01204
O	0.90770	-3.72488	-0.86573
H	-0.71035	1.91540	0.04611
O	1.87860	-0.42413	2.92751
H	1.37434	0.00115	3.63404

TS (-512.97546746, -512.3698872, 1149.50i)

H	2.05813	0.76580	-2.04602
C	1.52931	0.29471	1.19400
C	2.72705	-0.29630	1.49069
H	4.58966	-1.11260	0.68862
H	4.09859	-0.28146	-1.62503
H	0.48197	-0.64023	-0.51921
H	0.80040	0.53346	1.96274
C	1.16998	0.46028	-0.19150
C	3.65750	-0.61193	0.45315
N	2.23821	0.48420	-1.09100
C	3.39407	-0.17247	-0.80763
C	0.20872	-1.92041	-0.87324
O	-0.06988	-2.52589	0.13909
O	0.36125	-2.02207	-2.07200
H	0.38479	1.17810	-0.42936
O	3.13401	-0.58923	2.73975
H	2.44714	-0.36918	3.38506

4- $\mathrm{NH}_{2}-\mathrm{PyH}_{2}+\mathrm{CO}_{2}$

$4-\mathrm{NH}_{2}-$ PyH $_{2}$	$(-304.62449870$,	$-304.21946693)$	
H	0.58384	1.00853	-1.73245
C	0.32635	0.71161	1.58331
C	1.33413	-0.17569	1.76477
H	2.71289	-1.56801	0.72872
H	2.26903	-0.55900	-1.50303
H	-1.03824	0.13986	-0.01113
H	-0.14086	1.21935	2.42523
C	-0.24737	0.89068	0.20573
C	1.96740	-0.78766	0.60468
N	0.82687	0.77376	-0.77997
C	1.72189	-0.25022	-0.61527
H	-0.71174	1.87659	0.09564

H	2.81643	-0.73317	3.04919
H	1.52503	0.03398	3.78321
N	1.81892	-0.55933	3.01661

Reactant complex (-493.13986095, -492.54740023)

H	0.57017	0.98484	-1.74028
C	0.32345	0.70299	1.58210
C	1.33646	-0.17780	1.76380
H	2.74163	-1.54780	0.73147
H	2.27196	-0.56207	-1.50428
H	-1.06210	0.17313	-0.00674
H	-0.14930	1.20149	2.42659
C	-0.25000	0.89891	0.20637
C	1.98040	-0.78274	0.60554
N	0.81512	0.75414	-0.78741
C	1.72318	-0.25475	-0.61652
C	-0.03509	-3.13481	-0.47858
O	-0.96360	-2.56105	-0.07286
O	0.87758	-3.72761	-0.89311
H	-0.68549	1.89880	0.10041
H	2.81565	-0.73069	3.05356
H	1.51634	0.02611	3.78384
N	1.81712	-0.56325	3.01680

TS (-493.11116931, -492.51207271, 1120.79i)

H	2.06065	0.77856	-2.01350
C	1.55098	0.27800	1.22863
C	2.73889	-0.35205	1.52789
H	4.57281	-1.19610	0.65500
H	4.09112	-0.29643	-1.61150
H	0.51015	-0.61568	-0.49886
H	0.82868	0.51748	2.00396
C	1.17705	0.45157	-0.15235
C	3.64743	-0.66460	0.45637
N	2.24879	0.50128	-1.05936
C	3.38957	-0.18863	-0.79071
C	0.23472	-1.92776	-0.87787
O	-0.00204	-2.53728	0.13899
O	0.35384	-1.99725	-2.07984
H	0.40233	1.18859	-0.36923
H	4.06397	-0.86574	3.00743
H	2.54433	-0.33816	3.56768
N	3.08789	-0.70823	2.80058

$\mathrm{PyH}_{2}+\mathrm{PyH}^{+}=\mathrm{Py}+\mathrm{PyH}^{+}+\mathrm{H}_{2}$

PyH^{+}			$(-248.55901788,-248.22434238)$
C	-2.20210	0.03517	0.61558
C	-1.83122	-1.22300	0.14644
C	-0.83616	-1.31593	-0.80411
N	-0.24833	-0.19142	-1.25413
C	-0.58240	1.03973	-0.82384
C	-1.57276	1.17753	0.12617
H	-2.98242	0.12645	1.36491
H	-2.30516	-2.12649	0.51233
H	-0.48427	-2.25113	-1.22283
H	0.48463	-0.27555	-1.95435
H	-0.04095	1.87093	-1.25922
H	-1.84298	2.16767	0.47472

Reactant complex (-497.85381785, -497.18013887)

H	0.04163	1.64011	-3.43578
C	-0.30768	2.49257	-0.23114
C	0.95784	2.21865	0.15169
H	2.84034	1.17191	-0.39213
H	2.16338	0.96938	-2.78373
H	-1.31468	0.94150	-1.36767
H	-0.97266	3.09302	0.38454
H	1.33556	2.59637	1.10073
C	-0.82920	1.92830	-1.52649
C	1.85154	1.47532	-0.71863
N	0.27975	1.80798	-2.46872
C	1.48698	1.35517	-2.02466
H	0.10724	0.28689	0.66968
H	-1.59327	2.57921	-1.96270
C	-1.70609	-2.13930	1.92727
C	-0.93068	-3.21447	1.49783
H	0.84772	-3.81026	0.41349
H	1.47136	-1.41571	-0.10787
H	-2.61338	-2.28881	2.50088
H	-1.23145	-4.22968	1.73843
C	-1.30297	-0.85827	1.61021
C	0.22934	-2.99025	0.75960
N	-0.17766	-0.67707	0.89631
C	0.59191	-1.69162	0.46449
H	-1.84336	0.03660	1.89912

TS (-497.80172698, -497.12593704, 1170.29i)

H	1.44192	0.00520	-2.26738
C	1.75342	0.49128	0.97646
C	3.03127	0.03455	1.11521
H	4.70186	-0.98407	0.12445
H	3.57949	-0.89375	-2.11653

H	0.22755	-1.00408	-0.03685
H	1.21166	0.94258	1.80095
H	3.54700	0.14440	2.06541
C	1.06770	0.28238	-0.26384
C	3.70385	-0.57429	0.01948
N	1.86172	-0.00721	-1.34544
C	3.10440	-0.54654	-1.20599
H	0.31790	-1.76164	0.51247
H	0.16937	0.84807	-0.49354
C	-0.08464	-4.27081	3.10345
C	1.13746	-4.93119	3.00877
H	3.04443	-4.98986	1.98178
H	2.46378	-3.01958	0.53273
H	-0.84229	-4.58297	3.81471
H	1.35285	-5.77882	3.65313
C	-0.32328	-3.19420	2.26259
C	2.08193	-4.49869	2.08162
N	0.59400	-2.79020	1.37893
C	1.76870	-3.41442	1.27622
H	-1.25577	-2.63520	2.28457

Product complex (-497.85157828, -497.18407379)

	-0.63176	1.61952	-2.70772
H	0.07695	2.22334	0.42378
C	1.29677	1.55208	0.48651
H	2.73386	0.36218	-0.61555
H	1.36767	0.44882	-2.72809
H	-2.96199	0.32110	-2.58985
H	-0.33587	2.73130	1.28781
H	1.85798	1.53210	1.41592
C	-0.61608	2.24152	-0.76869
C	1.79311	0.90030	-0.63996
N	-0.10387	1.60494	-1.83835
C	1.06179	0.93534	-1.80958
H	-2.51859	-0.10971	-2.16986
H	-1.56949	2.73772	-0.90750
C	-1.33917	-1.23856	1.88971
C	-0.20919	-2.01603	2.12134
H	1.42741	-3.05942	1.16042
H	0.69634	-2.39310	-1.11865
H	-1.95760	-0.88155	2.70828
H	0.08114	-2.28357	3.13418
C	-1.66755	-0.92252	0.57393
C	0.53932	-2.44755	1.03070
N	-0.95381	-1.32200	-0.48472
C	0.12567	-2.07636	-0.24503
H	-2.55046	-0.31710	0.36190

$\mathrm{PyH}_{2}+\mathrm{CO}_{2}$ (DHT model)

C			
	2.68767	-0.96049	0.73390
C	0.78167	1.00960	1.18288
C	1.99987	1.10478	1.74824
H	3.88705	0.01891	2.18724
H	3.40802	-1.73569	0.48309
H	1.34966	-1.75761	-0.57971
H	0.07242	1.83347	1.20433
H	2.30795	2.02638	2.23982
N	1.53003	-0.94679	-0.00474
C	2.94457	0.00717	1.65014
C	0.35748	-0.30203	0.58008
H	-0.10296	-0.95345	1.35341
H	-0.39336	-0.16230	-0.20

Reactant complex ($-437.80217478,-437.27141471$)

H	0.55278	1.00727	-1.77259
C	0.31858	0.72522	1.54133
C	1.35649	-0.11465	1.71352
H	2.76652	-1.49735	0.69453
H	2.24950	-0.55329	-1.55280
H	-1.07333	0.15445	-0.00811
H	-0.14630	1.23953	2.37913
H	1.76150	-0.29019	2.70903
C	-0.27149	0.90082	0.16810
C	1.99353	-0.74585	0.57139
N	0.79302	0.75977	-0.82312
C	1.71125	-0.24590	-0.65864
C	-0.01442	-3.14082	-0.45552
O	-0.93544	-2.58615	-0.00821
O	0.89062	-3.71536	-0.91046
H	-0.72686	1.89002	0.05086

TS (-437.76732668, -437.23152599, 1134.86i)

	2.06111	0.79939	-2.04196
H	1.55359	0.28150	1.18758
C	2.75295	-0.29501	1.47568
H	4.60701	-1.11977	0.63700
H	4.09456	-0.27104	-1.65871
H	0.48231	-0.66041	-0.49663
H	0.83305	0.53177	1.95917
H	3.02831	-0.49398	2.50804
C	1.17916	0.46335	-0.19669

C	3.66967	-0.61603	0.43097
N	2.23807	0.48385	-1.09649
C	3.39974	-0.17508	-0.83150
C	0.20325	-1.92141	-0.86115
O	-0.10884	-2.53960	0.13542
O	0.37943	-2.01932	-2.05836
H	0.38482	1.17001	-0.43552

Product complex (-437.8142724, -437.28747857)

H	-0.10348	-0.05701	-1.12843
C	0.30075	1.88859	1.56881
C	1.49928	1.36228	2.04397
H	3.05039	-0.11074	1.70933
H	1.93519	-0.98576	-0.37077
H	-2.14245	-1.24316	-0.97442
H	-0.20345	2.70099	2.08004
H	1.95005	1.76570	2.94597
C	-0.24885	1.35435	0.41850
C	2.11734	0.31793	1.36115
N	0.36468	0.34909	-0.22387
C	1.51846	-0.17454	0.21656
C	-1.86973	-1.21845	-2.06115
O	-2.62835	-1.78459	-2.85940
O	-0.79306	-0.59710	-2.33463
H	-1.17884	1.70711	-0.01674

Py (-248.11500199, -247.78284294)

C	-2.21814	0.03699	0.62584
C	-1.83236	-1.21190	0.15021
C	-0.81984	-1.27459	-0.80285
N	-0.19287	-0.19752	-1.28987
C	-0.57513	0.99641	-0.82231
C	-1.57619	1.16694	0.12985
H	-3.00453	0.12869	1.37081
H	-2.30346	-2.12318	0.50807
H	-0.49542	-2.23879	-1.19350
H	-0.05436	1.86272	-1.22955
H	-1.84196	2.16369	0.47084

$\underline{\mathrm{HCOOH}(-189.69049521,-189.49342926)}$

C	-0.78308	0.27980	-0.00659
O	-1.31889	0.21685	-1.08689
O	-1.42188	0.35599	1.15902
H	-2.38084	0.35076	0.99244
H	0.30383	0.28234	0.15582

$\mathrm{PyH}_{2}+\mathrm{HCOOH}$ (DHT model)

Reactant complex (-438.98062054, -438.44189429)

H	0.33165	0.12471	-1.17980
C	0.52733	1.36167	1.90587
C	1.84760	1.16993	2.08859
H	3.65396	0.12707	1.32549
H	2.58825	-0.34870	-0.87677
H	-0.52150	-0.36918	1.14461
H	-0.06056	1.98556	2.57492
H	2.36325	1.65099	2.91860
C	-0.17136	0.62707	0.79449
C	2.61429	0.37827	1.14407
N	0.74928	0.48406	-0.32924
C	2.03861	0.10550	-0.05515
O	-1.37568	-0.70016	-2.13295
O	-3.30968	-1.26627	-1.13078
H	-3.32536	-0.32178	-0.89335
C	-2.21480	-1.52000	-1.83912
H	-2.17900	-2.58062	-2.12280
H	-1.05959	1.17010	0.45276

TS (-438.93744912, -438.39748315, 1087.83i)

H	2.03988	0.06725	-1.77544
C	1.89109	0.40041	1.49973
C	3.20140	0.14472	1.78274
H	5.16217	-0.36818	0.94562
H	4.32274	-0.26219	-1.40881
H	0.74377	-0.95328	-0.02430
H	1.17083	0.61676	2.28204
H	3.54966	0.17595	2.81176
C	1.42247	0.31724	0.14662
C	4.12209	-0.14491	0.73684
N	2.39315	0.25516	-0.83481
C	3.68137	-0.08789	-0.55171
O	0.88506	-1.61492	-1.98652
O	-1.11970	-1.15278	-0.96134
H	-1.14998	-0.59779	-1.75488
C	0.18687	-1.68935	-0.92493
H	0.13429	-2.63849	-0.35267
H	0.51833	0.85846	-0.14397

Product complex (-439.00226827, -438.47127528)

H	-0.56092	-0.18481	-1.56328
C	0.55976	1.71973	1.91865
C	1.81660	1.17406	2.16008

H	3.30986	-0.20150	1.40653
H	1.94015	-0.80497	-0.58624
H	-0.86786	-2.25330	-0.84027
H	0.11720	2.44089	2.59929
H	2.38440	1.46198	3.04110
C	-0.12802	1.32069	0.77782
C	2.33437	0.25161	1.25654
N	0.36348	0.43783	-0.09852
C	1.57093	-0.08500	0.14411
O	-1.04723	-0.73219	-2.22636
O	-2.68577	-1.42918	-0.72140
H	-3.39046	-1.10417	-1.29666
C	-1.59475	-1.80404	-1.53256
H	-1.90130	-2.54966	-2.27778
H	-1.11561	1.72324	0.55583

$\mathrm{CH}_{2}(\mathrm{OH})_{2}$	$(-190.87620389,-190.67546094)$		
H	-0.60316	-0.14931	-1.58058
H	-0.87851	-2.28796	-0.83671
O	-1.01106	-0.74914	-2.21888
O	-2.67060	-1.41315	-0.72050
H	-3.38523	-1.10825	-1.29484
C	-1.59370	-1.81514	-1.52024
H	-1.90605	-2.53441	-2.28656

$\mathrm{PyH}_{2}+\mathrm{OCH}_{2}$ (DHT model)

$\mathrm{OCH}_{2}(-114.45023845,-114.32131256)$

O	-1.18653	-1.24954	-2.25865
C	-1.59014	-1.81014	-1.26671
H	-0.91264	-2.37168	-0.59420
H	-2.65917	-1.79293	-0.97767

Reactant complex (-363.73997022, -363.26853873)

	-0.05970	0.89952	-1.59668
H	-0.23470	1.15247	1.71756
C	0.92019	0.51962	1.99788
H	2.50930	-0.79588	1.17691
H	1.86405	-0.30160	-1.18058
H	-1.46995	0.07013	0.32204
H	-0.77901	1.71887	2.46891
H	1.35068	0.57206	2.99655
C	-0.83347	0.99015	0.34936
C	1.63940	-0.18721	0.95389
N	0.23984	0.90215	-0.63018

C	1.29194	0.06823	-0.33253
O	-1.18590	-1.24889	-2.26047
C	-1.59028	-1.80924	-1.26612
H	-1.48759	1.82652	0.08394
H	-0.91224	-2.37271	-0.59337
H	-2.66007	-1.79344	-0.97726

TS (-363.71586281, -363.24358942, 1069.54i)

H	2.08464	0.00776	-1.82839
C	1.70665	0.38378	1.42713
C	2.97175	0.05720	1.81011
H	4.95543	-0.58343	1.11908
H	4.31669	-0.41291	-1.28767
H	0.68495	-0.91882	-0.16796
H	0.93910	0.63958	2.15054
H	3.24488	0.07433	2.86197
C	1.33811	0.30826	0.03596
C	3.95021	-0.29472	0.83300
N	2.38350	0.23391	-0.87308
C	3.61790	-0.20399	-0.48424
O	1.00525	-1.59006	-2.15686
C	0.34613	-1.81664	-1.07714
H	0.48934	0.89854	-0.31432
H	0.59483	-2.71804	-0.47565
H	-0.74203	-1.59166	-1.05454

Product complex (-363.79261962, -363.32829116)

H	-0.77069	-0.52025	-1.75334
C	-0.14487	1.32863	1.80627
C	1.18975	1.12486	2.14227
H	3.04786	0.22537	1.48970
H	2.04677	-0.63772	-0.61898
H	-1.34683	-2.72474	-1.29008
H	-0.81438	1.88150	2.45848
H	1.59117	1.51736	3.07309
C	-0.61186	0.80571	0.60533
C	2.00088	0.40945	1.26739
N	0.16004	0.11706	-0.24364
C	1.44174	-0.07326	0.08881
O	-1.41596	-0.93414	-2.36659
C	-2.05686	-1.96404	-1.64741
H	-1.65173	0.94282	0.30730
H	-2.77222	-2.45415	-2.31484
H	-2.61155	-1.57992	-0.77738

$\mathrm{CH}_{3} \mathrm{OH}(-115.66785816,-115.53401711)$
$\begin{array}{llll}\mathrm{H} & -0.77198 & -0.50805 & -1.77342\end{array}$

H	-1.35130	-2.73420	-1.28767
O	-1.40982	-0.93583	-2.35529
C	-2.05818	-1.97053	-1.63734
H	-2.76655	-2.44387	-2.32178
H	-2.61627	-1.58477	-0.77414

$\mathrm{PyH}_{2}+\mathrm{CO}_{2}+1 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{DHT}-1 \mathrm{H}_{2} \mathrm{O}\right.$ model)

$\mathrm{CO}_{2}+1 \mathrm{H}_{2} \underline{\mathrm{O}}(-264.92026264,-264.66137293)$

C	-1.01819	-1.91362	-0.27921
O	-1.62922	-2.56329	0.46585
O	-0.40152	-1.26286	-1.02340
O	-0.30388	0.29842	-3.69163
H	-0.87338	1.07401	-3.65063
H	-0.41254	-0.13756	-2.83717

Reactant complex (-514.21403428, -513.61295031)

H	0.78202	1.09495	-1.45257
C	-0.09448	1.51631	1.73525
C	0.83651	0.71053	2.28009
H	2.35146	-0.85959	1.86172
H	2.36274	-0.36057	-0.58028
H	-1.15428	0.68014	0.04487
H	-0.70259	2.18180	2.34329
H	1.00828	0.71857	3.35544
C	-0.36263	1.43542	0.25814
C	1.66542	-0.13350	1.43854
N	0.87266	1.09778	-0.44020
C	1.67355	0.12768	0.10594
C	-0.94155	-1.99840	-0.26958
O	-1.35021	-2.25651	0.78849
O	-0.54213	-1.75286	-1.33665
O	-0.43234	0.78483	-3.06355
H	-0.28085	0.95251	-4.00024
H	-0.65570	-0.15227	-3.00233
H	-0.74101	2.38436	-0.13804

TS (-514.18526226, -513.57929739, 1083.86i)

H	2.51421	0.35472	-1.94044
C	1.48604	0.49785	1.20876
C	2.57972	-0.05804	1.79746
H	4.48891	-1.08936	1.45492
H	4.42629	-0.65092	-1.00547
H	0.66966	-0.65721	-0.45621
H	0.66791	0.91398	1.78763
H	2.66766	-0.07169	2.88087

C	1.35844	0.43054	-0.23513
C	3.63508	-0.59842	1.00219
N	2.56316	0.26804	-0.92303
C	3.60867	-0.37978	-0.34545
C	0.33926	-1.99048	-0.69515
O	-0.03057	-2.45938	0.35132
O	0.56226	-2.21527	-1.86716
O	1.31368	0.04676	-3.45160
H	1.58798	-0.06704	-4.36769
H	0.99481	-0.82308	-3.15206
H	0.67936	1.13037	-0.72556

Product complex (-514.2266485, -513.62741842)

H	0.03200	0.88329	-1.00742
C	0.56613	2.25586	1.96509
C	1.43800	1.29784	2.47624
H	2.46454	-0.56749	2.07754
H	1.47704	-0.75211	-0.23374
H	-1.45645	-1.64852	-0.69683
H	0.27777	3.12509	2.54507
H	1.84522	1.41225	3.47637
C	0.06242	2.08639	0.69029
C	1.78814	0.19269	1.70400
N	0.41745	1.01228	-0.03322
C	1.25656	0.07358	0.43503
C	-1.56103	-2.41128	-1.51571
O	-1.95893	-3.54230	-1.18528
O	-1.25664	-2.00487	-2.67445
O	-0.54515	0.52466	-2.50960
H	0.03366	0.75670	-3.24342
H	-0.80354	-0.43784	-2.63504
H	-0.62143	2.78380	0.22045

$\underline{\mathrm{HCOOH}+1 \mathrm{H}_{2}} \underline{\mathrm{O}}(-266.10831756,-265.83982978)$

O	-0.72149	-2.14189	-1.25745
O	-0.57979	0.33960	-2.74239
H	-0.69635	0.53354	-3.67988
H	-0.09264	-0.49723	-2.69397
O	-2.46504	-0.72223	-1.12918
H	-1.90819	-0.18818	-1.75913
C	-1.81764	-1.83473	-0.83318
H	-2.40156	-2.46254	-0.14415

$\mathrm{PyH}_{2}+\mathrm{HCOOH}+\mathbf{1 H}_{2} \mathrm{O}$ (DHT-1 $\mathrm{H}_{2} \mathrm{O}$ model)
Reactant complex (-515.40011118, -514.7899501)

H	0.05751	1.06801	-0.88996
C	0.51113	1.19935	2.41391
C	1.77914	0.74454	2.42708
H	3.34307	-0.30221	1.24721
H	2.16502	0.13571	-0.90962
H	-0.80606	-0.05719	1.25747
H	0.06240	1.68228	3.27862
H	2.39656	0.85818	3.31698
C	-0.33076	0.94855	1.19290
C	2.36348	0.16371	1.23227
N	0.52004	1.03945	0.01290
C	1.72442	0.38708	0.05402
O	-0.73259	-2.13666	-1.27946
O	-0.57590	0.30629	-2.72937
H	-0.57350	0.66663	-3.62416
H	-0.14961	-0.56423	-2.77135
O	-2.50540	-0.75260	-1.14380
H	-1.99334	-0.23954	-1.82131
C	-1.81194	-1.83021	-0.81524
H	-2.34042	-2.42334	-0.05466
H	-1.14328	1.67625	1.09834

TS $(-515.35878397$			$-514.74791559,1058.74)$
H	2.13351	0.48104	-1.76855
C	1.89323	0.35338	1.53443
C	3.19163	0.04429	1.81260
H	5.15149	-0.46586	0.96614
H	4.36298	-0.10622	-1.38270
H	0.75724	-0.87795	-0.01717
H	1.17165	0.54855	2.32120
H	3.52955	0.00748	2.84504
C	1.43440	0.35361	0.16986
C	4.12152	-0.19803	0.76045
N	2.42332	0.34892	-0.79621
C	3.70601	-0.01451	-0.52447
O	1.08121	-2.10392	-1.66238
O	0.91349	0.03445	-3.21990
H	1.03170	0.08157	-4.17418
H	1.08874	-0.89496	-2.93190
O	-0.94983	-1.10226	-1.20870
H	-0.72405	-0.60538	-2.01521
C	0.21561	-1.76576	-0.78746
H	-0.08579	-2.48645	-0.00188
H	0.54885	0.93466	-0.09967

[^0]| H | 0.01765 | 0.56420 | -1.54065 |
| :--- | :---: | :---: | :---: |
| C | 0.59420 | 1.16340 | 2.35352 |
| C | 1.94399 | 0.93620 | 2.60313 |
| H | 3.83705 | 0.41879 | 1.68926 |
| H | 2.84603 | 0.25187 | -0.58907 |
| H | -1.27882 | -1.45536 | -0.22243 |
| H | -0.09287 | 1.42456 | 3.15273 |
| H | 2.34119 | 1.01690 | 3.61158 |
| C | 0.13538 | 1.04881 | 1.04657 |
| C | 2.77758 | 0.60438 | 1.53990 |
| N | 0.92933 | 0.72887 | 0.01746 |
| C | 2.22578 | 0.51164 | 0.26707 |
| O | -1.61478 | -2.28470 | -2.07614 |
| O | -0.66385 | 0.37560 | -2.23439 |
| H | -0.52015 | 1.00342 | -2.94986 |
| H | -1.05861 | -1.58108 | -2.45559 |
| O | -3.00060 | -0.70111 | -1.06614 |
| H | -2.46763 | 0.02088 | -1.44558 |
| C | -2.11394 | -1.76887 | -0.87292 |
| H | -2.67256 | -2.57057 | -0.38175 |
| H | -0.91502 | 1.22093 | 0.80982 |

$\mathrm{CH}_{2}(\mathrm{OH})_{2}+1 \mathrm{H}_{2} \mathrm{O}$	$-267.29190769,-267.01911$		
H	0.12583	0.72681	-1.65441
H	-1.33187	-1.52060	-0.18837
O	-1.61332	-2.28516	-2.07842
O	-0.61539	0.40943	-2.18437
H	-0.59650	0.93781	-2.99134
H	-1.00229	-1.60448	-2.40619
O	-3.00500	-0.70392	-1.06730
H	-2.44773	0.03751	-1.35808
C	-2.14611	-1.79490	-0.87834
H	-2.74091	-2.60009	-0.43864

$\mathrm{PyH}_{2}+\mathrm{OCH}_{2}+1 \mathrm{H}_{2} \mathrm{O}$ (DHT-1 $\mathrm{H}_{2} \mathrm{O}$ model)

$\mathrm{OCH}_{2}+1 \mathrm{H}_{2} \mathrm{O}(-190.86169752,-190.66300134)$

O	-0.67178	-1.60790	-1.33899
O	-1.18052	0.77498	-2.88151
H	-1.41827	0.50387	-3.77388
H	-1.01961	-0.05303	-2.39547
C	-1.46778	-2.04570	-0.53756
H	-1.23830	-2.93625	0.07541
H	-2.45770	-1.57745	-0.38166

Reactant complex (-440.15498866, -439.6128502)

H	0.20954	0.88799	-1.26028
C	-0.05690	1.16300	2.04685
C	1.08906	0.53450	2.37372
H	2.71647	-0.77687	1.62562
H	2.14943	-0.31364	-0.75780
H	-1.25198	0.04799	0.63904
H	-0.61964	1.75072	2.76774
H	1.49041	0.60932	3.38334
C	-0.61357	0.96854	0.66511
C	1.84403	-0.18629	1.36665
N	0.48260	0.85314	-0.28145
C	1.53769	0.05292	0.06389
O	-0.75536	-1.85585	-1.54112
O	-1.24456	0.65162	-2.69172
H	-1.21821	0.83199	-3.63706
H	-1.18409	-0.31549	-2.59726
C	-1.45776	-2.02652	-0.56618
H	-1.10973	-2.61212	0.30558
H	-1.26171	1.79606	0.35813
H	-2.48426	-1.61512	-0.50591

TS (-440.13735004, -439.59418928, 1083.76i)

	2.18181	0.50662	-1.83051
H	2.82630	0.44973	1.46927
C	3.06929	0.00397	1.79414
H	4.97865	-0.75859	1.01413
H	4.32798	-0.31633	-1.35834
H	0.71530	-0.70660	-0.09876
H	1.10804	0.74799	2.22643
H	3.37567	-0.04088	2.83625
C	1.40642	0.44639	0.08197
C	3.99592	-0.37007	0.77208
N	2.43587	0.37407	-0.84840
C	3.65345	-0.14193	-0.52643
O	1.15961	-1.97866	-1.75334
O	0.84705	0.22765	-3.22660
H	1.02401	0.17502	-4.17087
H	0.87506	-0.69824	-2.87476
C	0.42930	-1.86319	-0.70762
H	0.64884	-2.50265	0.17340
H	0.59628	1.11481	-0.21552
H	-0.65602	-1.65554	-0.82137

Product complex (-440.20757707, -439.67281457)

H	-0.34382	0.48397	-1.77200
C	0.03843	1.12111	2.16395

C	1.35882	0.83095	2.49343
H	3.26881	0.19463	1.69772
H	2.39749	0.03067	-0.62916
H	-1.04807	-1.91279	-0.31139
H	-0.67673	1.43690	2.91762
H	1.70327	0.91438	3.52089
C	-0.35403	0.99838	0.83597
C	2.23042	0.43146	1.48555
N	0.47739	0.61588	-0.14058
C	1.74470	0.33928	0.18571
O	-2.02098	-2.16708	-2.14502
O	-0.96128	0.36919	-2.53492
H	-0.47929	0.64997	-3.31945
H	-1.65082	-1.32597	-2.47878
C	-2.05254	-2.05816	-0.73896
H	-2.46462	-2.98700	-0.33296
H	-1.38053	1.21288	0.53746
H	-2.68906	-1.22499	-0.40328

	$\mathrm{CH}_{3} \mathrm{OH}+1 \mathrm{H} 2 \mathrm{O}$	$(-192.08149121,-191.87651528)$	
H	0.25827	0.41892	-2.63271
H	-1.32632	-1.82881	-0.05715
O	-1.76807	-2.24015	-2.05769
O	-0.66707	0.32739	-2.37780
H	-1.14007	0.99026	-2.89404
H	-1.36657	-1.39603	-2.33350
C	-2.17000	-2.08770	-0.71320
H	-2.58569	-3.04091	-0.37300
H	-2.94496	-1.31583	-0.59768

$\mathrm{PyH}_{2}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (DHT-2 $\mathrm{H}_{2} \mathrm{O}$ model)

$\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}(-341.33366124,-341.00398495)$

C	-0.98689	-2.35520	0.32045
O	-1.06805	-2.75754	1.40731
O	-0.90261	-1.95605	-0.77124
O	0.41722	2.33767	-2.78744
H	0.70655	2.33858	-3.70509
H	-0.28372	1.65988	-2.73710
O	-1.61453	0.37705	-2.61647
H	-2.48662	0.69432	-2.35619
H	-1.42934	-0.37335	-2.03591

Reactant complex (-590.62903929, -589.95820447)

H	1.19694	1.30825	-1.12003
C	-0.00955	1.31470	1.98794

C	0.79716	0.36314	2.49648
H	2.21949	-1.27084	2.00576
H	2.53541	-0.44393	-0.32659
H	-0.96456	0.74460	0.13382
H	-0.60228	1.96725	2.62454
H	0.87619	0.22854	3.57449
C	-0.15429	1.41913	0.49409
C	1.62972	-0.44411	1.62374
N	1.11543	1.07317	-0.13233
C	1.80047	-0.00669	0.34659
C	-0.93173	-2.22380	0.32816
O	-1.05462	-2.62225	1.41255
O	-0.82158	-1.83799	-0.76699
O	0.64191	1.84998	-2.94027
H	0.45723	2.77325	-3.14029
H	-0.22375	1.39467	-2.94072
O	-1.69186	0.31400	-2.72053
H	-2.49382	0.74096	-2.39770
H	-1.52976	-0.42347	-2.11591
H	-0.43491	2.43062	0.17890

TS (-590.60143999, -589.92683545, 1032.33i)

H	2.47116	0.71915	-1.96571

C	1.45784	0.45654	1.18335

C	2.55774	-0.16100	1.69340

H	4.43939	-1.18770	1.21222

H	4.34596	-0.48949	-1.18738

H	0.61033	-0.56775	-0.53632

H	0.66334	0.83849	1.81627

H	2.67628	-0.26346	2.76929

C	1.29183	0.49949	-0.25986

C	3.58205	-0.64778	0.82669

N	2.48101	0.40291	-0.98708

C	3.53504	-0.29323	-0.49299

C	0.27698	-1.93039	-0.68298

O	0.00324	-2.34568	0.41178

0	0.40569	-2.20881	-1.85771

0	2.05045	1.36570	-3.63409

H	1.81528	2.29798	-3.68639

H	1.23420	0.86179	-3.84310

O	-0.08334	-0.34483	-3.93320

H $\quad-0.97973$-0.01151 -3.81651

H	0.04588	-1.01275	-3.23358

H	0.60327	1.23975	-0.67361

Product complex (-590.64281914, -589.97369813) $\begin{array}{llll}\mathrm{H} & 0.88891 & 1.02464 & -1.03931\end{array}$

C	0.03776	1.20640	2.13210
C	1.06088	0.43543	2.67918
H	2.82148	-0.75036	2.24796
H	2.64472	-0.33340	-0.22800
H	-1.88432	-0.72792	0.02114
H	-0.72514	1.65996	2.75425
H	1.10926	0.28059	3.75277
C	0.00685	1.39314	0.76421
C	2.01936	-0.14042	1.84867
N	0.95225	0.83640	-0.01089
C	1.93983	0.07571	0.48657
C	-1.17523	-1.56796	-0.22083
O	-0.77628	-2.25765	0.73435
O	-0.87498	-1.68670	-1.44304
O	0.48649	1.49017	-2.61985
H	0.52781	2.42570	-2.84477
H	-0.42950	1.18211	-2.82329
O	-1.90166	0.26359	-2.92566
H	-2.67636	0.62978	-2.48668
H	-1.60322	-0.51571	-2.37727
H	-0.74864	1.97957	0.25075

$\mathrm{HCOOH}+2 \mathrm{H}_{2} \mathrm{O}(-342.52003611,-342.18089250)$

O	-0.15475	-2.08148	-1.57167
O	-0.52214	1.73570	-2.59811
H	-0.93105	2.09949	-1.80619
H	-1.09413	0.99462	-2.86362
O	-2.00015	-0.66042	-3.11632
H	-2.63699	-0.83251	-3.82017
H	-1.30434	-1.33623	-3.18079
O	-1.88632	-1.19368	-0.43535
H	-2.18953	-0.94082	-1.34316
C	-0.73538	-1.83723	-0.53286
H	-0.36089	-2.13113	0.45780

$\mathrm{PyH}_{2}+\mathrm{HCOOH}+2 \mathrm{H}_{2} \mathrm{O}$ (DHT-2 $\mathrm{H}_{2} \mathrm{O}$ model $)$
Reactant complex (-591.81488784, -591.13379675)

H	0.62661	0.96034	-0.63259
C	0.65522	1.42166	2.66898
C	1.69996	0.62168	2.95750
H	3.03349	-0.98099	2.19282
H	2.36439	-0.56545	-0.17016
H	-0.85777	0.48324	1.44617
H	0.27398	2.14913	3.38181
H	2.19302	0.69114	3.92636
C	-0.05400	1.24570	1.35350
C	2.24129	-0.27859	1.95635

N	0.91497	0.84779	0.33760
C	1.87164	-0.06861	0.66396
O	-0.13848	-2.05640	-1.59744
O	-0.45865	1.47523	-2.21302
H	-0.95600	2.29141	-2.09426
H	-1.07615	0.84654	-2.62900
O	-2.04053	-0.68910	-3.14299
H	-2.67737	-0.73474	-3.86610
H	-1.37538	-1.37952	-3.29420
O	-1.89252	-1.20097	-0.46991
H	-2.22730	-1.01644	-1.38205
C	-0.70097	-1.76908	-0.56005
H	-0.27234	-1.95062	0.43857
H	-0.54097	2.17090	1.02467

TS $(-591.77646278,-591.0962208,1074.11 \mathrm{i})$			
H	2.10045	0.65995	-1.81376
C	1.87623	0.38044	1.48613
C	3.15756	-0.00855	1.73945
H	5.07590	-0.60420	0.85275
H	4.29305	-0.10259	-1.47058
H	0.70937	-0.76415	-0.07008
H	1.17498	0.59569	2.28606
H	3.50655	-0.09047	2.76577
C	1.40486	0.43124	0.12418
C	4.06028	-0.27303	0.66824
N	2.38260	0.42259	-0.85290
C	3.64484	-0.01538	-0.60482
O	1.03061	-1.99188	-1.70897
O	1.37641	1.22569	-3.39305
H	0.86900	2.04390	-3.37874
H	0.77091	0.52849	-3.72321
O	-0.14410	-0.99877	-3.85738
H	-0.32198	-1.51794	-4.64837
H	0.40541	-1.54576	-3.23874
O	-1.06248	-1.24063	-1.08633
H	-1.03953	-0.93955	-2.01288
C	0.21092	-1.73362	-0.76574
H	0.09034	-2.45132	0.07152
H	0.53898	1.05163	-0.12204

Product complex (-591.83309921, -591.16040984)

H	-0.32004	1.53218	-0.98899
C	1.36001	2.23583	2.61935
C	1.84396	1.00371	3.04749
H	2.03445	-1.08703	2.52340
H	0.85703	-0.78520	0.33558

H	-0.40254	-3.24004	-0.09305
H	1.47140	3.12977	3.22570
H	2.34756	0.91045	4.00633
C	0.72178	2.30281	1.38615
C	1.67153	-0.10692	2.22780
N	0.54936	1.23924	0.59184
C	1.01874	0.05622	1.01028
O	0.25238	-2.03051	-1.56596
O	-0.77345	1.73735	-1.84558
H	-1.42389	2.41808	-1.64237
H	-1.44240	0.32888	-2.65572
O	-1.71538	-0.57561	-2.93622
H	-2.14554	-0.49131	-3.79326
H	-0.12361	-1.56776	-2.33640
O	-1.74446	-1.76335	-0.37782
H	-2.16917	-1.31627	-1.13041
C	-0.82151	-2.66517	-0.92472
H	-1.32834	-3.34906	-1.62476
H	0.33017	3.25017	1.01627

$\mathrm{CH}_{2}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}(-343.70587519,-343.36237928)$

H	-0.35691	1.55188	-1.01918
H	-0.43138	-3.31239	-0.13196
O	0.26914	-2.03926	-1.52888
O	-0.77952	1.78596	-1.85444
H	-1.38216	2.50827	-1.64234
H	-1.47481	0.33363	-2.69033
O	-1.71177	-0.58897	-2.92057
H	-2.15152	-0.56249	-3.77680
H	-0.08334	-1.55733	-2.29774
O	-1.73587	-1.79132	-0.35259
H	-2.15600	-1.31224	-1.08731
C	-0.82478	-2.68344	-0.93537
H	-1.33904	-3.31487	-1.67774

$\mathrm{PyH}_{2}+\mathrm{OCH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ (DHT-2 $\mathrm{H}_{2} \mathrm{O}$ model)

$\mathrm{OCH}_{2}+2 \mathrm{H}_{2} \underline{\mathrm{O}(-267.27571965,-267.00628975)}$

O	-0.32911	-2.20762	-0.93571
O	-0.37532	1.99234	-3.12045
H	-0.65753	2.76348	-2.61914
H	-0.90729	1.24840	-2.77434
O	-1.89915	-0.15038	-2.12351
H	-2.50383	-0.55807	-2.75251
H	-1.39323	-0.88453	-1.72643

C	-0.40049	-2.54042	0.22723
H	0.27912	-3.30217	0.65006
H	-1.14374	-2.10017	0.91728

Reactant complex (-516.57383851, -515.96093412)

H	0.74233	1.25807	-0.98994
C	-0.27771	1.01427	2.18629
C	0.62130	0.09891	2.59454
H	2.17385	-1.34992	1.94296
H	2.27316	-0.39431	-0.35224
H	-1.31317	0.60935	0.32840
H	-0.90014	1.55732	2.89346
H	0.74585	-0.11073	3.65581
C	-0.49073	1.24895	0.71567
C	1.48372	-0.57023	1.63813
N	0.74983	0.98088	-0.00983
C	1.54670	-0.04942	0.38112
O	-0.44739	-2.23386	-1.04903
O	-0.19770	1.79634	-2.67320
H	-0.61626	2.66319	-2.68299
H	-0.92484	1.14462	-2.58079
O	-2.04411	-0.21399	-2.17340
H	-2.55812	-0.56831	-2.90699
H	-1.54253	-0.97090	-1.80763
C	-0.35328	-2.38937	0.15508
H	-0.79335	2.28328	0.51290
H	0.36618	-3.10503	0.59118
H	-1.01252	-1.86181	0.87021

TS (-516.55546645, -515.94247406, 962.01i)

H	2.21061	0.62180	-1.90276
C	1.65198	0.36195	1.36175
C	2.87135	-0.10856	1.73665
H	4.81567	-0.85757	1.03378
H	4.31165	-0.29348	-1.34771
H	0.64597	-0.72667	-0.29206
H	0.89521	0.64019	2.08851
H	3.12127	-0.19361	2.79141
C	1.31062	0.40558	-0.04819
C	3.84999	-0.45266	0.75279
N	2.39086	0.37245	-0.92258
C	3.58492	-0.16166	-0.55233
O	1.14208	-1.96947	-1.96130
O	1.48771	1.24703	-3.49157
H	1.09831	2.12721	-3.46432
H	0.75995	0.62756	-3.72484
O	-0.34349	-0.75648	-3.78731

H	-0.43950	-1.23649	-4.61582
H	0.21070	-1.32416	-3.18246
C	0.44938	-1.91829	-0.88636
H	0.51923	1.08718	-0.36871
H	0.77120	-2.51619	-0.00815
H	-0.65462	-1.81786	-0.95681

Product complex (-516.62378003, -516.01829799)

H	-1.11555	1.32433	-0.78347
C	1.01434	1.89369	2.67389
C	1.82739	0.76507	2.69994
H	2.30385	-1.08028	1.67370
H	0.60359	-0.69435	-0.10542
H	-1.75509	-1.24187	-0.55840
H	1.08723	2.66034	3.43954
H	2.55742	0.62758	3.49344
C	0.09749	2.02624	1.63722
C	1.69065	-0.18412	1.69221
N	-0.04108	1.11856	0.66397
C	0.74432	0.03404	0.69636
O	-0.30908	-2.56717	-1.27615
O	-1.60555	1.36030	-1.64354
H	-2.54120	1.29595	-1.42466
H	-0.98641	0.10940	-2.73005
O	-0.63197	-0.64860	-3.24793
H	0.10173	-0.30025	-3.76477
H	-0.27101	-2.00611	-2.07588
C	-1.56149	-2.32061	-0.67334
H	-0.55393	2.89715	1.58368
H	-1.55780	-2.77327	0.32322
H	-2.39127	-2.75793	-1.24765

$\mathrm{CH}_{3} \mathrm{OH}+2 \mathrm{H}_{2} \mathrm{O}(-268.49573111,-268.21998055)$			
H	-1.11143	1.60033	-0.83420
H	-1.78709	-1.37292	-0.40766
O	-0.25672	-2.56270	-1.18867
O	-1.57119	1.47685	-1.67279
H	-2.50925	1.45958	-1.45031
H	-0.96547	0.11873	-2.72736
O	-0.67205	-0.68177	-3.20814
H	-0.03145	-0.38201	-3.86118
H	-0.20355	-1.97263	-1.96424
C	-1.55970	-2.41836	-0.66618
H	-1.62861	-3.01732	0.24678
H	-2.32818	-2.77363	-1.36864

C. Supporting information - Roles of the Lewis Acid and Base in the Chemical Reduction of CO_{2} Catalyzed by Frustrated Lewis Pairs

C. 1 Computational Details

All ab initio calculations were conducted using GAMESS ${ }^{59}$ and GAUSSIAN 09^{61} computational chemistry software. All geometries and the relevant transition state (TS) structures, unless otherwise noted, were obtained using the B97-D density functional. ${ }^{224}$ The B97-D functional was developed to correctly describe dispersion effects. Grimme et al. previously used the B97-D functional to describe the heterolytic cleavage of dihydrogen by a bulky Frustrated Lewis Pair (FLP) catalyst and demonstrated the erroneous results of the B3LYP functional in describing this system due to the incorrect description of dispersion effects. ${ }^{225}$ The bulky ligands in the trichloroaluminum (AlCl_{3}) and trimesitylenephosphine (PMes_{3}, Mes $=2,4,6-\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$) FLP system ${ }^{20}$ of the present study also suggest significant dispersion effects and the B97-D functional was thus selected for describing this system. For accurate energies, we performed single point MP2 ${ }^{58}$ energy calculations at the optimized geometries of B97-D. A benchmarking study (Section 2) validated the MP2//B97-D method for describing the FLP system. The energy difference between MP2//B97-D and the high level CCSD(T)//MP2 was within $1 \mathrm{kcal} \mathrm{mol}^{-1}$ for both hydride transfer (HT) and complexation energy calculations. A moderate size 6-311G (d,p) Pople basis set was used for geometry optimizations with B97-D while the more extensive 6$311++G(d, p)$ Pople basis set was used for single point energy calculations with MP2, denoted as MP2/6-311++G(d,p)// B97-D/6-311G(d,p).

Solvation effects were described using the Polarizable Continuum Model (PCM). ${ }^{67-68}$ Also, the use of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ as the solvent instead of the experimentally used $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ solvent ${ }^{20}$ should give quantitatively similar TS structures and reaction energies because the main parameters in the PCM model of cavity size and dielectric constant are similar between $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$. Hessian calculations on all TS structures verified that only one imaginary frequency was obtained and corresponded to the normal mode of the reaction pathway. The TS structures were further verified by Intrinsic Reaction Coordinate (IRC) calculations to confirm the correct corresponding reactants and products were connected by the TS identified. The reaction activation barrier was referenced to reactants determined from converged IRC calculations. Hessian calculations were also performed on the reactants to verify that those reactants correspond to stationary points along the reaction pathway.

Thermochemistry properties for a number of $L A$ or/and $L B$ catalyzed complexes were computed referencing to dimeric $\mathrm{LA}\left(\mathrm{AlCl}_{3}\right)_{2}$, free CO_{2} and free $\mathrm{LB}\left(\mathrm{PMes}_{3}\right)$ at $\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{~atm}$. AlCl_{3} has been known to form dimers ${ }^{226}$ at moderate temperatures in both non-coordinating solvent ${ }^{229-230}$ and in gas phase. ${ }^{231}$ The AlCl_{3} dimer was thus chosen as the thermodynamic
reference. The reported enthalpies, H , are zero point energy (ZPE) and thermally corrected ($\mathrm{T}=298.15 \mathrm{~K}$) at each stationary point. Solvation energy is implicitly included in the energy of converged geometries. The reported entropies, S , are determined using the ideal gas approximation ($\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=298.15 \mathrm{~K}$) for the associated partition functions. The calculated gas phase values for S provide an upper estimate due to the reduction in translational degrees of freedom from the gas phase system as compared to the experimental condensed phase system. The approximations imposed on entropy calculations do not affect the conclusions drawn on the role of LB, which is justified by the dominating enthalpic driving force leading to the formation of a high concentration of the activated $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ complex.

C. 2 Benchmarking Studies

A HT benchmarking study was performed using a model system of $2 \mathrm{AlCl}_{3} \cdot \mathrm{PH}_{3} \cdot \mathrm{CO}_{2}+\mathrm{AB}$, where the TS structure is shown in Figure S1a. In this structure, we replace the bulky trimesitylenephosphine base $\left(\mathrm{PMes}_{3}\right)$, with a phosphine base $\left(\mathrm{PH}_{3}\right)$. The HT barrier at MP2/6$311++G(d, p) / / B 97-D / 6-311 G(d, p)$ was compared to CCSD(T)/6-311++G(d,p)// MP2/6-311G(d,p). Both calculations were done in gas phase at $\mathrm{T}=0 \mathrm{~K}$ and not ZPE corrected. Table S1 (system a) shows that MP2//B97-D differs by $-0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ as compared to the high level CCSD(T)//MP2 calculation. Thus, the chosen MP2//B97-D method should describe HT reactions correctly. The $\mathrm{AlCl}_{3} \cdot \mathrm{PH}_{3}$ model system was chosen to benchmark the complexation energy (Figure S1b). The complexation energy was calculated based on the difference in energy of the $\mathrm{AlCl}_{3} \bullet \mathrm{PH}_{3}$ complex and the infinitely separated reactants of AlCl_{3} and PH_{3}. Results from Table S 1 (system
 calculation. Table S1 (system c) shows strong evidence that B3LYP functional significantly underestimates the complexation energy due to an insufficient description of the dispersion interaction in the bulky $\mathrm{AlCl}_{3} \bullet \mathrm{PMes}_{3}$ complex. B3LYP predicts a complexation energy of -15.8 kcal mol^{-1} while MP2//B97-D yields $-40.0 \mathrm{kcal} \mathrm{mol}^{-1}$. Not shown in Table S1, B97-D results in a complexation energy of $-32.5 \mathrm{kcal} \mathrm{mol}^{-1}$ and is in agreement with the MP2//B97-D results. Based on the results of this benchmarking study, the MP2//B97-D level of theory was selected to describe the FLP systems of this investigation.

Figure S1. a) TS structure for hydride transfer for $2 \mathrm{AICl}_{3} \bullet \mathrm{PH}_{3} \bullet \mathrm{CO}_{2}+\mathrm{AB}$ b) $\mathrm{AlCl}_{3} \bullet \mathrm{PH}_{3}$ complex c) $\mathrm{AlCl}_{3} \cdot \mathrm{PMes}_{3}$ complex. H atoms in (c) omitted for clarity. Al, light gray; B, pink; C, gray; Cl , green; H, white; N, blue; O, red; P, orange.

Table S1. Benchmarking studies comparing different quantum chemical methods

System $^{[\mathrm{a}]}$	$\mathrm{CCSD}(\mathrm{T}) / / \mathrm{MP2}^{[b]}$	$\mathrm{MP2//B97-D}^{[b]}$	$\mathrm{B} 3 \mathrm{LYP}^{[\mathrm{c}]}$
a) $2 \mathrm{AlCl}_{3} \cdot \mathrm{PH}_{3} \bullet \mathrm{CO}_{2}+\mathrm{AB}, \Delta \mathrm{E}_{\text {hydride }}$	9.0	8.9	8.9
b) $\mathrm{AlCl}_{3} \cdot \mathrm{PH}_{3}, \Delta \mathrm{E}_{\text {complex }}$	-21.2	-22.0	-16.5
c) $\mathrm{AlCl}_{3} \bullet \mathrm{PMes}_{3}, \Delta \mathrm{E}_{\text {complex }}$	N / A	-40.0	-15.8

[a] Calculations performed in gas phase at T=OK, not ZPE and thermally corrected. [b] Basis sets: Single point energy at $6-311++G(d, p)$ and geometry optimizations at $6-311 G(d, p)$, unit in kcal mol^{-1}. [c] Energy and geometry optimizations 6-311G(d,p), unit in $\mathrm{kcal} \mathrm{mol}^{-1}$.

C. 3 Results

a. Hydride transfer reactants and TS energies

Table S2 below supplements the information reported in Table 1 of the paper with additional structural information of the C-H bond distance and imaginary frequency corresponding to the TS structures. In Table S3, we report energies of TS structures and reactants determined from IRC calculations, which were used to calculate the HT activation barriers.

Table S2. Hydride transfer TS properties and activation barriers at T=298K, P=1atm.

System $^{[a]}$	$\Delta \mathrm{H}_{\text {hydride }}{ }^{[b]}$	$\mathrm{C}-\mathrm{H}$ bond ${ }^{[\mathrm{c}]}$	Freq. $^{[\mathrm{d}]}$
a) $\mathrm{CO}_{2}+\mathrm{AB}$	25.3	1.21	$947.4 i$
b) $\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$	7.9	1.48	$227.6 i$
c) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}+\mathrm{AB}$	-0.2	1.89	$182.3 i$
d) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{AB}$	4.1	1.83	$210.2 i$
e) $\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{AB}$	3.8	1.84	$314.5 i$

[a] All but case c were calculated at MP2/6-311++G(d,p)//B97-D/6-311G(d,p). Case c was calculated using $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{MP2} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ because B97-D does not identify a HT TS. Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ was treated with the CPCM model. $\mathrm{LA}=\mathrm{AlCl} l_{3}, \mathrm{AB}=\mathrm{NH}_{3} \mathrm{BH}_{3}$. [b] HT activation barriers referenced to reactants from IRC calculations, unit in $\mathrm{kcal} \mathrm{mol}^{-1}$. All calculations were zero-point energy (ZPE) and thermally corrected (298K). [c] Carbon-hydride bond distance at TS in Å. [d] Imaginary frequency at TS in cm^{-1}.

Table S3. Hydride transfer reactants and TS energies

System ${ }^{[a]}$	$\mathrm{E}(\mathrm{OK})^{[b]}$	$\mathrm{H}(298 \mathrm{~K})^{[\mathrm{cc}}$
a) $\mathrm{CO}_{2}+\mathrm{AB}(\mathrm{TS})$	-271.15296	-271.06874
$\mathrm{CO}_{2}+\mathrm{AB}$ (reactants)	-271.19964	-271.10910
b) $\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}(\mathrm{TS})$	-4900.32847	-4899.67039
$\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$ (reactants)	-4900.34234	-4899.68293
c) $\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}+\mathrm{AB}$ (TS)	-3513.65340	-3513.53432
$\mathrm{LA}^{2}=\mathrm{O}=\mathrm{O}-\mathrm{LA}+\mathrm{AB}$ (reactants)	-3513.65502	-3513.53400
d) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{AB}$ (TS)	-3513.53745	-3513.42267
$\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{AB}$ (reactants)	-3513.54550	-3513.42923
e) $\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{AB}$ (TS)	-1892.36069	-1892.25694
$\mathrm{CO}_{2} \bullet(\mathrm{LA})+\mathrm{AB}$ (reactants)	-1892.36727	-1892.26298

[a] All but case c were calculated at MP2/6-311++G(d,p)//B97-D/6-311G(d,p). Case c was calculated using $\operatorname{CCSD}(\mathrm{T}) / 6-311++\mathrm{G}(\mathrm{d}, \mathrm{p}) / / \mathrm{MP2} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ because B97-D does not identify a

HT TS. Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ was treated with the CPCM model. $\mathrm{LA}=\mathrm{AlCl}_{3}, \mathrm{LB}=\mathrm{PMes}_{3}, \mathrm{AB}=\mathrm{NH}_{3} \mathrm{BH}_{3}$. [b] Energy at T=0K, in Hartrees. [c] ZPE and thermally ($\mathrm{T}=298 \mathrm{~K}$) corrected energy, in Hartrees.

b. Formation of $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ from free CO_{2} and LA dimer

$\mathrm{CO}_{2} \cdot(\mathrm{LA})_{2}$ is an active complex for catalyzing HT to CO_{2} (Table S2, case d). The activation barrier for the formation of $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ from free CO_{2} and LA dimer is $10.6 \mathrm{kcal} \mathrm{mol}^{-1}$. The change of enthalpy for the formation of $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ is $+0.7 \mathrm{kcal} \mathrm{mol}^{-1}$. Figure S 2 shows the reactants, TS and product for the formation of $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ complex. Table S 4 below reports the energies used in determination of the activation barrier and complex formation energy.

Figure S2. a) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ reactants b) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2} \mathrm{TS}$ structure c) $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ product. Al, light gray; C , gray; Cl , green; and O , red.

Table S4. Energies for the formation of $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ from free CO_{2} and LA dimer

System $^{[\mathrm{a}]}$	$\mathrm{E}(\mathrm{OK})^{[b]}$	$\mathrm{H}(298 \mathrm{~K})^{[\mathrm{c}]}$
$\mathrm{CO}_{2}+(\mathrm{LA})_{2}(\mathrm{TS})$	-3430.54107	-3430.50192
$\mathrm{CO}_{2}+(\mathrm{LA})_{2}$ (reactants)	-3430.55871	-3430.51878
$\mathrm{CO}_{2}+(\mathrm{LA})_{2}$ (product)	-3430.55404	-3430.51765

[a] Calculations performed at MP2/6-311++G(d,p)//B97-D/6-311G(d,p). Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ was treated with the CPCM model. $\mathrm{LA}=\mathrm{AlCl}_{3}$ [b] Energy at $\mathrm{T}=0 \mathrm{~K}$, in Hartrees. [c] ZPE and thermally ($\mathrm{T}=298 \mathrm{~K}$) corrected energy, in Hartrees.

c. Thermochemistry energies

Table S5 reports the energies used to calculate the thermochemical properties of LA or/and LB catalyzed complexes.

Table S5. Energies used to calculate thermochemical properties of LA or/and LB catalyzed complexes

Species $^{[\mathrm{a}]}$	$\mathrm{E}(\mathrm{OK})^{[\mathrm{b}]}$	$\mathrm{H}(298 \mathrm{~K})^{[\mathrm{c}]}$	$\mathrm{G}(298 \mathrm{~K})^{[\mathrm{d}]}$
$(\mathrm{LA})_{2}$ dimer	$-3,242.33636$	$-3,242.31275$	$-3,242.36891$
CO_{2}	-188.21739	-188.20248	-188.22745
LB	$-1,386.70731$	$-1,386.16815$	$-1,386.26220$
LA	$-1,621.14507$	$-1,621.13418$	$-1,621.17185$
$\mathrm{LA}-\mathrm{O}=\mathrm{C}=\mathrm{O}-\mathrm{LA}$	$-3,430.53481$	$-3,430.49471$	$-3,430.56779$
$\mathrm{CO}_{2} \bullet(\mathrm{LA})$	$-1,809.38226$	$-1,809.35494$	$-1,809.40355$
$\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$	$-3,430.55404$	$-3,430.51394$	$-3,430.58056$
$\mathrm{FLP}_{2} \cdot \mathrm{CO}_{2}$	$-4,817.34610$	$-4,816.76139$	$-4,816.89432$
$\mathrm{AlCl} \mathrm{H}^{-}$	-1621.88331	-1621.86553	-1621.90398
$\mathrm{NH}{ }_{3} \mathrm{BH}{ }_{2}{ }^{+} \cdot \mathrm{CO}_{2}$	-270.42207	-270.34031	-270.37956
$\mathrm{LA} \bullet \mathrm{AB}$	-1704.16852	-1704.08114	-1704.12923
AB	-82.97829	-82.90524	-82.93357
$\mathrm{LA} \bullet \mathrm{LB}$	-3007.91636	-3007.36170	-3007.46822

[a] Calculations performed at MP2/6-311++G(d,p)//B97-D/6-311G(d,p). Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ was treated with the CPCM model. $\mathrm{LA}=\mathrm{AlCl}_{3}, \mathrm{LB}_{2}=\mathrm{PMes}_{3}$. [b] Enthalpic energy at $\mathrm{T}=0 \mathrm{~K}$, in hartrees. [c] ZPE and thermally ($\mathrm{T}=298 \mathrm{~K}$) corrected energy, in hartrees. [d] Gibbs free energy, ZPE and thermally (298K) corrected, in hartrees.

C. 4 FLP• CO_{2} + AB Hydride Transfer (B3LYP)

Employing the B3LYP functional with a $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set, we located a TS corresponding to HT for the FLP•CO +AB system at a C-H distance of $1.50 \AA$ and with an imaginary frequency of $371 \mathrm{~cm}^{-1}$ (Figure S3a), consistent with our MP2//B97-D TS structure of $1.48 \AA$ and $228 i \mathrm{~cm}^{-1}$. Also using the B3LYP functional, but with a $6-31+G(d, p)$ basis set (as used by Roy et al. ${ }^{221}$), we located a similar HT TS with a 1.50 Å C-H bond distance and a $428 \mathrm{~cm}^{-1}$ imaginary frequency, showing minimal difference between the $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ and $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets in describing this reaction. A second TS (TS-B2) was identified, occurring after the initial HT along the reaction path, and corresponds to the dissociation of oxidized $\mathrm{NH}_{3} \mathrm{BH}_{2}^{+}$from the reduced $\mathrm{FLP} \cdot \mathrm{HCO}_{2}{ }^{-}$complex with a $1.12 \AA \mathrm{C}-\mathrm{H}$ distance and a $39 \mathrm{~cm}^{-1}$ imaginary frequency(Figure S 3 b), consistent with Roy et al.'s reported result of $1.12 \AA$ and $41 i \mathrm{~cm}^{-1} .{ }^{221}$ We believe the TS reported by Roy et al. was actually TS-B2, instead of the HT TS.

Figure S3. a) Hydride transfer TS structure for $\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$ system with $1.50 \AA \mathrm{C}-\mathrm{H}$ distance and $371 \mathrm{~cm}^{-1}$ imaginary frequency. Arrows indicate normal mode for HT reaction. b) TS-B2 structure with $1.12 \AA \mathrm{C}-\mathrm{H}$ distance and $39 \mathrm{~cm}^{-1}$ imaginary frequency. Arrows indicate normal mode for dissociation of oxidized $\mathrm{NH}_{3} \mathrm{BH}_{2}{ }^{+}$from the reduced $\mathrm{FLP} \cdot \mathrm{HCO}_{2}{ }^{-}$complex after the initial HT. Calculations were performed using B3LYP/6-311G(d,p)/CPCM- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. Al, gray; B, pink; C , gray; Cl , green; H , white; O , red; N , blue; P , orange.

Figure S4 demonstrates the effect of dispersion on HT barriers for the FLP•CO ${ }_{2}+\mathrm{AB}$ system. Our B3LYP results show that the HT TS enthalpy is $14.9 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the separated reactants R; Meanwhile MP2//B97-D predicts the HT TS enthalpy to be $-2.3 \mathrm{kcal} \mathrm{mol}^{-1}$. This demonstrates that B3LYP, which neglects the effect of dispersion, produces qualitatively different results than the more accurate MP2//B97-D method.

Figure S4. Comparison of various methods in determining hydride transfer barriers for $\mathrm{FLP} \cdot \mathrm{CO}_{2}$ $+A B$ system . \mathbf{R} is infinitely separated reactants ($\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$); \mathbf{C} is the reactant complex; $\mathbf{T S}$ is hydride transfer TS. TS-B2 is the transition state corresponding to the dissociation of oxidized $\mathrm{NH}_{3} \mathrm{BH}_{2}{ }^{+}$from the reduced $\mathrm{FLP} \bullet \mathrm{HCO}_{2}{ }^{-}$complex after the initial HT.

C. 5 Thermodynamics of Complex Formation Reported in Table 2

Table 2 of the manuscript reports the changes in enthalpy and entropy for reactions that form several complexes. The reference energy is that of the starting reactants, which are shown as case 1 and consist of two free CO_{2} molecules, a free LA dimer (LA_{2}), two free Lewis bases and two free ammonia borane molecules. Equation 1 of the manuscript describes these reactions as $2 \mathrm{CO}_{2}+(\mathrm{LA})_{2}+2 \mathrm{LB}+2 \mathrm{AB} \stackrel{\Delta H ; T \Delta S ; \mathrm{Keq}}{\longleftrightarrow}$ Complexes 1 to 11 and conserves the number of molecular species, namely, we have two CO_{2}, two LA , two LB and two AB on both sides of the equation. The following examples explain how the thermodynamics of complexes 4 and 11 are determined:

Example 1

In complex 4 of Table 2, we have $2 \mathrm{CO}_{2}+(\mathrm{LA})_{2}+2 \mathrm{LB}+2 \mathrm{AB}=\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}+\mathrm{CO}_{2}+2 \mathrm{LB}+2 \mathrm{AB}$. This equation is equivalent to $\mathrm{CO}_{2}+(\mathrm{LA})_{2}=\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ when the spectator species are omitted. Thus, for complex 4 as written in Table 2, we are evaluating the thermodynamics ($\Delta \mathrm{H}, \mathrm{T} \Delta \mathrm{S}$ and $\mathrm{K}_{\text {eq }}$) of forming $\mathrm{CO}_{2} \bullet(\mathrm{LA})_{2}$ from $\mathrm{CO}_{2}+(\mathrm{LA})_{2}$.

Example 2

In complex 11 of Table 2 , we have $2 \mathrm{CO}_{2}+(\mathrm{LA})_{2}+2 \mathrm{LB}+2 \mathrm{AB}=2 \mathrm{CO}_{2}+\mathrm{LA} \cdot \mathrm{LB}+\mathrm{LA} \cdot \mathrm{AB}+\mathrm{LB}+\mathrm{AB}$. This equation is equivalent to $(L A)_{2}+L B+A B=L A \bullet L B+L A \bullet A B$ when the spectator species are omitted. Thus, for complex 11 as written in Table 2, we are evaluating the thermodynamics $\left(\Delta H, T \Delta S\right.$ and $\left.K_{\text {eq }}\right)$ of forming $L A \bullet L B+L A \bullet A B$ from $(L A)_{2}+L B+A B$.

C. 6 Coordinates

All coordinates are reported in XYZ format. AI, gray; B, pink; C, gray; Cl, green; H, white; O, red; N , blue; P , orange. $\mathrm{LA}=\mathrm{AlCl}_{3}, \mathrm{LB}=\mathrm{PMes}_{3}, \mathrm{AB}=\mathrm{NH}_{3} \mathrm{BH}_{3}$. . 0 K energies (not $Z P E$ corrected) reported are calculated using MP2/6-311++G(d,p)//B97-D/6-311G(d,p). Except in the case of LA-O=C=O$L A+A B$, energies were calculated at CCSD(T)/6-311++G(d,p)//MP2/6-311G(d,p). Solvation in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ is modeled using CPCM. Reported energies in hartrees.

$$
\mathrm{CO}_{2}+\mathrm{AB}(\mathrm{TS})(-271.15296)
$$

C	0.95836	-0.03588	-0.00590
O	2.09690	-0.45502	-0.00457
O	0.44519	1.12648	-0.01594
N	-1.91750	0.31998	0.00657
H	-2.42817	0.61533	-0.82506
H	-0.82811	0.88606	-0.00836
H	-2.41214	0.64229	0.83896
H	-1.53213	-1.72115	-1.02585
H	0.10804	-0.89932	0.00510
H	-1.51507	-1.70263	1.07755
B	-1.51341	-1.14179	0.02104

$\mathrm{CO}_{2}+\mathrm{AB}$ (reactants) (-271.19964)

P	-0.00697	0.00478	0.00129
C	-0.01574	0.00735	2.02978
O	1.17254	0.00409	2.52390
Al	2.55353	0.11531	3.68747
Cl	1.86058	1.38058	5.30819
O	-0.96385	-0.72920	2.51486
Al	-1.62894	-1.92000	3.70737
Cl	-3.63994	-1.18412	4.08865
Cl	4.22418	1.02110	2.66395
Cl	3.11746	-1.85614	4.34217
Cl	-1.66898	-3.87987	2.83863
Cl	-0.46713	-1.76489	5.51004
H	-0.49915	1.39154	2.21320
B	-1.03677	2.38935	2.93642
N	-1.50400	1.68666	4.29634
H	-0.12622	3.13997	3.15231
H	-1.98055	2.76269	2.29395
H	-1.95266	2.38193	4.89959
H	-2.19414	0.93920	4.16120
H	-0.71720	1.30511	4.83472
C	-1.36160	-1.13059	-0.45746
C	-2.64720	-0.90820	0.11342
C	-1.14188	-2.26187	-1.29886
C	-3.62723	-1.89727	-0.02890
C	-2.16962	-3.20799	-1.40954

C	-3.39823	-3.07434	-0.74955
H	-4.60196	-1.72912	0.42816
C	-0.00413	-4.07510	-2.04841
C	-1.27644	1.71912	-0.54610
C	0.44625	2.76873	-1.53424
C	-1.61290	3.36642	-1.73535
C	0.06237	4.09233	-0.17998
C	-0.99444	4.41416	-1.03841
H	-2.36234	3.60279	-2.49035
H	0.62982	4.89225	0.29493
C	1.65370	-0.64365	-0.38789
C	2.50732	0.00227	-1.33012
C	2.11190	-1.79005	0.32323
C	3.83460	-0.43581	-1.42435
C	3.45066	-2.17426	0.18323
C	4.34064	-1.48940	-0.65111
H	4.48949	0.05528	-2.14365
H	3.79722	-3.04820	0.73415
C	1.69072	2.55986	0.90443
H	1.47071	2.59425	1.97538
H	2.19447	1.61428	0.70061
H	2.40205	3.36768	0.69332
C	-1.91346	1.01041	-2.47019
H	-1.21804	0.21048	-2.74595
H	-2.80166	0.53412	-2.03883
H	-2.22160	1.52433	-3.38869
C	0.08960	-2.49846	-2.15254
H	0.50754	-1.56815	-2.55028
H	0.88963	-3.00395	-1.59811
H	-0.18506	-3.13852	-2.99957
C	-3.09061	0.38736	0.75453
H	-3.68386	0.95778	0.02404
H	-3.73052	0.18492	1.61956
H	-2.27994	1.03891	1.07448
C	1.23719	-2.68860	1.17292
H	1.45153	-2.55496	2.23897
H	0.16749	-2.54338	1.01670
H	1.45863	-3.73535	0.92927
C	2.07644	1.09052	-2.29488
H	1.06921	0.92074	-2.69108
H	2.07878	2.08321	-1.82818
	2.77447	1.11601	-3.14008

C	5.79513	-1.88293	-0.72765
H	6.36541	-1.35752	0.05412
H	5.92418	-2.96034	-0.56244
H	6.23061	-1.61214	-1.69793
C	-1.42858	5.84569	-1.23926
H	-1.83989	5.99928	-2.24518
H	-2.21608	6.10589	-0.51483
H	-0.59266	6.53946	-1.08279
C	-4.44513	-4.15789	-0.82508
H	-4.34839	-4.74134	-1.74952
H	-4.32628	-4.85102	0.02226
H	-5.45738	-3.73722	-0.76884

$\mathrm{FLP} \cdot \mathrm{CO}_{2}+\mathrm{AB}$ (reactants) (-4900.34234)

P	-0.05518	0.07217	-0.01144
C	-0.16923	0.08188	1.95094
O	0.90763	0.06039	2.58450
Al	2.31696	-0.10162	3.78125
Cl	2.20248	1.64452	5.03028
O	-1.32043	-0.03254	2.43460
Al	-2.34059	-0.43424	3.94621
Cl	-3.96042	0.97970	3.88791
Cl	4.11522	-0.12576	2.60537
Cl	2.03705	-1.97556	4.78580
Cl	-2.92480	-2.46715	3.61004

Cl	-1.13810	-0.12176	5.69257
H	-0.66018	2.62554	2.42375
B	-0.75799	3.68426	3.01751
N	-1.06392	3.29573	4.59323
H	0.29327	4.30455	3.01059
H	-1.70880	4.34445	2.62590
H	-1.10038	4.12333	5.19022
H	-1.95816	2.81166	4.70294
H	-0.34159	2.68030	4.97690
C	-1.67038	-0.62374	-0.48822
C	-2.83854	0.08502	-0.07321
C	-1.78617	-1.84368	-1.21504
C	-4.08236	-0.53302	-0.25256
C	-3.06496	-2.39520	-1.37261
C	-4.21846	-1.78516	-0.86419
H	-4.97319	-0.00257	0.08220
H	-3.15898	-3.32859	-1.92673
C	0.11648	1.77004	-0.65794
C	-0.61826	2.15128	-1.82256
C	0.94415	2.71667	0.00652
C	-0.63063	3.50710	-2.17138
C	0.88114	4.05692	-0.39363
C	0.06628	4.48431	-1.44672
H	-1.18358	3.80343	-3.06241
H	1.51129	4.77802	0.12511
C	1.38860	-1.01538	-0.23560
C	2.46205	-0.66425	-1.10540
C	1.44950	-2.21164	0.54070
C	3.60345	-1.47746	-1.09831
C	2.61891	-2.97685	0.49545
C	3.71890	-2.61517	-0.29062
H	4.42642	-1.21359	-1.76158
H	2.66256	-3.88962	1.08891
C	1.95414	2.35827	1.06698
H	1.52058	2.47924	2.06684
H	2.32904	1.33735	0.95303
H	2.81113	3.03846	0.99452
C	-1.31177	1.20142	-2.78355
H	-0.79002	0.24250	-2.87685
H	-2.34491	0.98336	-2.48576
H	-1.33879	1.66497	-3.77698
H	-0.64533	-2.56614	-1.90632
	0.08593	-1.87748	-2.34264

H	-0.09855	-3.23086	-1.22668
H	-1.05534	-3.18286	-2.71471
C	-2.86777	1.51625	0.42576
H	-2.98199	2.18818	-0.43783
H	-3.73086	1.65894	1.08376
H	-1.98133	1.84732	0.96919
C	0.32080	-2.76001	1.39627
H	0.49829	-2.55479	2.45956
H	-0.67175	-2.38418	1.13020
H	0.28754	-3.85074	1.28781
C	2.45694	0.49823	-2.07946
H	1.50613	0.59086	-2.61457
H	2.64210	1.45559	-1.57717
H	3.25045	0.34933	-2.82073
C	4.98976	-3.42710	-0.26760
H	5.64910	-3.06296	0.53557
H	4.78065	-4.48617	-0.06976
H	5.53662	-3.33780	-1.21475
C	-0.03145	5.94413	-1.81450
H	-0.26224	6.07198	-2.87981
H	-0.83847	6.42226	-1.23776
H	0.90031	6.47519	-1.58151
C	-5.56943	-2.44602	-0.98701
H	-5.58630	-3.16655	-1.81431
H	-5.80507	-2.99201	-0.06033
H	-6.36201	-1.70226	-1.14112

Al	3.09732	-0.17899	0.05690
Cl	2.68262	1.13950	-1.52129
Cl	3.63807	0.61511	1.91076
Cl	3.94861	-2.01579	-0.47308
Al	-3.10611	-0.21610	0.09243
Cl	-2.72058	1.10458	-1.49068
Cl	-3.88003	-2.08710	-0.43853
Cl	-3.70421	0.56793	1.93253
C	0.00296	-0.70038	0.48999
O	1.16231	-0.87474	0.50577
O	-1.15549	-0.86740	0.55643
N	0.00487	3.28891	-0.55018
H	-0.78464	3.19731	-1.18908
H	0.85854	3.21329	-1.10287
H	-0.03023	4.22967	-0.16020
H	-1.07891	2.26675	1.19003
H	0.00208	1.11914	-0.03224
H	0.94255	2.29163	1.28466
B	-0.03666	2.16914	0.59664

Al	3.11583	-0.21149	-0.02715
Cl	2.54272	1.00055	-1.63561
Cl	3.59433	0.66770	1.79816
Cl	4.01052	-2.03633	-0.50877
Al	-3.14497	-0.19679	0.05449
Cl	-2.63595	1.12947	-1.48636
Cl	-3.80955	-2.08958	-0.52791
Cl	-3.83108	0.56650	1.86549
C	0.00753	-0.85484	0.55593
O	1.15917	-1.03080	0.50344
O	-1.15333	-0.80246	0.63073
N	-0.06967	3.30975	-0.51362
H	-0.81228	2.95947	-1.11705
H	0.80100	3.23095	-1.03699
H	-0.25027	4.29990	-0.35988
H	-1.10768	2.44848	1.33672
H	0.38530	1.37125	0.54052
H	0.81777	3.02300	1.57321
B	0.00507	2.47284	0.86867

Al	-1.73413	0.97877	-0.26580
Cl	-1.36074	2.74242	0.82333
Cl	0.12258	0.29016	-1.34683
Cl	-3.35783	0.86212	-1.60414
Al	2.02551	0.12773	0.09931
Cl	2.95273	-1.63310	-0.70181
Cl	1.17630	-0.14453	2.04170
Cl	3.09048	1.94158	-0.20436
C	-1.87309	-1.47593	1.52500
O	-1.98195	-0.37831	1.03524
O	-1.98619	-2.30494	2.32543
N	0.12036	-3.49587	-1.46723
H	0.04877	-4.32591	-2.06200
H	0.91448	-3.64526	-0.83963
H	0.37848	-2.72090	-2.08234
H	-2.11327	-2.85163	-1.46105
H	-1.55554	-4.23088	-0.04171
H	-1.01073	-2.30873	0.14850
B	-1.27886	-3.23346	-0.66985

Al	-1.75134	1.00035	-0.31622
Cl	-1.47345	2.73134	0.84749
Cl	0.12842	0.38833	-1.35895
Cl	-3.37328	0.83127	-1.64451
Al	1.99840	0.07579	0.10708
Cl	2.87984	-1.70147	-0.69720
Cl	1.13701	-0.11802	2.05717
Cl	3.14842	1.84759	-0.17283
C	-1.88749	-1.33615	1.72385
O	-2.01492	-0.41190	0.99436
O	-1.84182	-2.19544	2.48418
N	0.18452	-3.64843	-1.70033
H	-0.20410	-4.37504	-2.30554
H	0.98587	-4.05905	-1.21717
H	0.55861	-2.91880	-2.31000
H	-1.78949	-2.50129	-1.28197
H	-1.36086	-4.04876	-0.03084
H	-0.31700	-2.32397	0.10667
B	-0.93184	-3.08041	-0.63382

C	1.56482	1.35372	0.23468
O	0.44716	1.18255	-0.17686
O	2.51898	1.95621	0.52323
Al	-1.08258	-0.07014	-0.18758
Cl	-2.67647	1.27613	-0.64968
Cl	-0.59607	-1.45128	-1.73545
Cl	-1.10638	-0.84585	1.80131
N	4.18977	-0.65676	0.92191
H	4.17951	-0.86475	1.92313
H	4.39035	0.34048	0.81815
H	4.97841	-1.16319	0.51484
H	2.54013	-2.22929	0.42730
H	1.92377	-0.37179	0.76990
H	2.88746	-0.78829	-0.98695
B	2.78957	-1.06944	0.18743

```
CO
```


C	1.51086	1.55184	0.22557
O	0.43201	1.18549	-0.08299
O	2.52058	2.03446	0.50823
Al	-1.13520	-0.11220	-0.25631
Cl	-2.66226	1.28097	-0.77862
Cl	-0.49690	-1.40046	-1.81895
Cl	-1.25697	-0.92143	1.70509
N	4.35384	-0.75549	0.84276
H	4.54420	-1.00102	1.81592
H	4.53429	0.24520	0.74103
H	5.05200	-1.24019	0.27686
H	2.76711	-2.37482	0.32556
H	2.07342	-0.71418	1.24756
H	2.64720	-0.63263	-0.70674
B	2.81313	-1.15859	0.38148

$\mathrm{NH}_{3} \mathrm{BH}_{2}{ }^{+} \cdot \mathrm{CO}_{2}+\mathrm{AlCl}_{3} \mathrm{H}^{-}(\mathrm{TS})(-1892.33428)$

Al	3.72681	-0.59973	-0.17319
Cl	3.16352	-0.66469	-2.27366
Cl	2.04175	-1.04875	1.12012
Cl	5.32888	-2.09211	0.17302
N	7.67900	-0.03723	-0.92580
H	8.52449	-0.07026	-0.34999
H	7.95405	-0.32971	-1.86895
H	7.02189	-0.75736	-0.57451
H	4.36099	0.82898	0.18149
H	7.82624	2.25747	-1.23710
H	5.96440	1.38394	-1.55532
B	7.02403	1.40153	-1.01065
C	5.68013	1.94898	1.29066
O	6.66383	1.67926	0.66407
O	4.93942	2.35791	2.07923

$\mathrm{NH}_{3} \mathrm{BH}_{2}{ }^{+} \cdot \mathrm{CO}_{2}+\mathrm{AlCl}_{3} \mathrm{H}^{-}$(reactant) (-1892.33969)

Al	-1.16271	-0.37288	-0.26992
Cl	-0.26704	-0.69965	-2.26681
Cl	-2.66532	-1.91033	0.09000
Cl	0.51788	-0.72953	1.17206
N	2.75007	0.15569	-1.03524
H	3.72281	-0.13397	-0.90759
H	2.42291	-0.21922	-1.93595
H	2.16101	-0.31549	-0.32074
H	-1.69211	1.11002	-0.10621
H	3.44623	2.35766	-1.38942
H	1.38847	2.02821	-1.10236
B	2.52774	1.70069	-1.02041
C	2.00267	2.29962	1.75077
O	2.77316	1.96811	0.91758
O	1.28432	2.63957	2.58826

$$
\mathrm{CO}_{2}+(\mathrm{LA})_{2}(\mathrm{TS})(-3430.54107)
$$

Al	-1.37226	-0.51542	0.20597
Cl	-1.79353	-1.39419	-1.66360
Cl	0.58137	-1.43637	1.04722
Cl	-2.63401	-0.86639	1.88256
Al	2.15175	-0.02886	0.09367
Cl	3.19405	0.92906	1.67657
Cl	0.64356	1.25151	-0.86070
Cl	3.30486	-1.14722	-1.29219
C	-2.61716	2.46008	-0.36802
O	-2.27540	1.36653	-0.09592
O	-2.96696	3.52795	-0.62669

```
CO2+(LA)2 (reactants) (-3430.55871)
```


Al	-1.02849	-0.76847	0.22995
Cl	-1.80944	-1.65495	-1.51034
Cl	0.86900	-1.94825	0.88006
Cl	-2.19829	-0.39283	1.93741
Al	2.18870	-0.18601	0.22748
Cl	3.19625	0.64310	1.88050
Cl	0.30442	1.03761	-0.29685
Cl	3.23402	-0.69212	-1.53006
C	-3.04747	2.92852	-0.86770
O	-2.87406	1.77138	-0.86171
O	-3.22143	4.08180	-0.87506

$$
\mathrm{CO}_{2}+(\mathrm{LA})_{2} \text { (product) }(-3430.55404)
$$

Al	-1.62802	-0.80121	0.36278
Cl	-1.54070	-1.33688	-1.66373
Cl	0.35128	-0.70799	1.37586
Cl	-3.05934	-1.58813	1.68411
Al	2.07011	0.22569	-0.04265
Cl	3.39785	1.04812	1.40463
Cl	0.97167	1.67292	-1.18730
Cl	2.78465	-1.44124	-1.15279
C	-2.08375	2.23429	-0.11903
O	-2.01614	1.15129	0.35560
O	-2.17421	3.29686	-0.54476

$(\mathrm{LA})_{2}$ dimer ($-3,242.33636$)

Al	0.09687	0.45942	0.24789
Cl	-0.10913	1.88272	1.78332
Cl	2.32144	-0.11537	0.02153
Cl	-0.78036	0.74273	-1.64347
Al	1.84678	-2.23623	0.80304
Cl	-0.37782	-1.66147	1.02932
Cl	2.72380	-2.51956	2.69450
Cl	2.05259	-3.65972	-0.73222

$\mathrm{CO}_{2}(-188.21739)$

C	-0.78763	0.11991	-1.91756
O	-1.90224	0.13162	-2.26827
O	0.32696	0.10820	-1.56681

LB (-1,386.70731)

P	0.01596	0.00442	0.86400
C	1.58823	-0.74875	0.24239
C	1.99254	-1.92505	0.94329
C	3.21971	-2.52900	0.64140
C	4.08346	-2.00653	-0.33187
C	3.67167	-0.85857	-1.01678
C	2.44064	-0.22379	-0.76569
C	1.11069	-2.58758	1.98430
H	3.50268	-3.43392	1.18138
C	5.40901	-2.67209	-0.63304
H	4.31669	-0.45107	-1.79684
C	2.08245	0.95668	-1.64541
H	1.60748	-3.47576	2.39469
H	0.14902	-2.89906	1.55087
H	0.87454	-1.89896	2.80919
H	5.93942	-2.14997	-1.43964
H	5.26434	-3.71967	-0.93652
H	6.05625	-2.67840	0.25664
H	1.05664	0.87545	-2.02378
H	2.76823	1.00418	-2.50077
H	2.13926	1.91062	-1.10465
C	-0.12618	1.74417	0.24837
C	0.64705	2.69610	0.97496
C	0.51075	4.06285	0.69319
C	-0.37666	4.53365	-0.28354
C	-1.10702	3.58605	-1.01117
C	-0.99572	2.20495	-0.77905
C	1.66577	2.27737	2.01758

	1.11808	4.77692	1.25115
C	-0.54567	6.01537	-0.53729
H	-1.77271	3.92808	-1.80532
C	-1.77020	1.28321	-1.69782
H	2.45467	1.65534	1.56922
H	1.20114	1.67274	2.81044
H	2.13717	3.15755	2.47229
H	-0.72147	6.21945	-1.60253
H	0.34141	6.57645	-0.21417
H	-1.41021	6.41034	0.01947
H	-2.09157	1.83188	-2.59264
H	-2.66189	0.86391	-1.21223
H	-1.15797	0.43032	-2.01106
C	-1.42418	-0.97725	0.24329
C	-2.64979	-0.72937	0.93227
C	-3.77967	-1.50486	0.64090
C	-3.74726	-2.53841	-0.30578
C	-2.54760	-2.75179	-0.99252
C	-1.39013	-1.98882	-0.75392
C	-2.79457	0.39100	1.94384
H	-4.71002	-1.29144	1.16968
C	-4.97009	-3.38940	-0.56978
H	-2.51050	-3.52247	-1.76432
C	-0.19267	-2.26330	-1.64022
H	-2.59411	1.36995	1.48469
H	-2.07850	0.28174	2.77187
H	-3.81093	0.40424	2.35718
H	-5.87033	-2.76750	-0.67644
H	-5.15103	-4.08192	0.26698
H	-4.84785	-3.98804	-1.48180
H	-0.50249	-2.86185	-2.50661
H	0.60056	-2.80953	-1.11287
H	0.25965	-1.33263	-2.00280

```
LA (-1,621.14507)
```


Al	0.43945	0.70786	0.01032
Cl	-0.57872	1.12612	1.79840
Cl	2.37702	-0.09896	0.06637
Cl	-0.45416	1.15186	-1.83687

LA-O=C=O-LA $(-1,621.14507)$

Al	3.27110	-0.46334	-0.04245
Cl	2.74885	0.56620	-1.81373
Cl	3.90493	0.66973	1.62479
Cl	3.87147	-2.48367	-0.17148
Al	-3.30171	-0.28698	-0.00091
Cl	-2.92888	1.33150	-1.30274
Cl	-3.42893	-2.23231	-0.81183
Cl	-4.17860	0.09435	1.87912

C	0.02003	-0.66243	0.70095
O	1.17059	-0.84081	0.66798
O	-1.12906	-0.49734	0.76285

$\mathrm{CO}_{2} \bullet(\mathrm{LA})(-1,809.38226)$

C	-0.56765	-2.61180	-0.13716
O	-0.63917	-1.43333	-0.10964
O	-0.52626	-3.76262	-0.16630
Al	0.28444	0.42269	-0.03144
Cl	-0.51849	1.16343	1.78777
Cl	2.31597	-0.20533	-0.01109
Cl	-0.43934	1.27491	-1.83488

$\begin{array}{llll}\text { Al } & -1.62802 & -0.80121 & 0.36278\end{array}$

	-1.54070	-1.33688	-1.66373
Cl	-1.35128	-0.70799	1.37586
Cl	0.351 .68411		
Cl	-3.05934	-1.58813	1.0426
Al	2.07011	0.22569	-0.04265
Cl	3.39785	1.04812	1.40463
Cl	0.97167	1.67292	-1.18730
Cl	2.78465	-1.44124	-1.15279
C	-2.08375	2.23429	-0.11903
O	-2.01614	1.15129	0.35560
O	-2.17421	3.29686	-0.54476

P	-0.00499	0.18287	-1.37669
C	-0.09451	0.21102	0.57242
O	0.97123	0.03291	1.19918
Al	2.45960	0.00951	2.31201
Cl	2.29388	1.76253	3.53675
O	-1.24283	0.28918	1.06898
Al	-2.30959	-0.22705	2.53218
Cl	-3.91625	1.19909	2.52715
Cl	4.15305	0.10428	0.98141
Cl	2.35693	-1.87618	3.33186
Cl	-2.90820	-2.21374	1.96732
Cl	-1.09968	-0.15116	4.29594
C	-1.64608	-0.48527	-1.81374
C	-2.78752	0.27136	-1.40073
C	-1.81445	-1.74367	-2.46037
C	-4.04353	-0.34156	-1.47529
C	-3.10510	-2.28675	-2.51718

C	-4.22234	-1.63422	-1.98236
H	-4.91094	0.22054	-1.13143
C	-3.23571	-3.25170	-3.00652
C	-0.48730	1.87630	-2.05108
C	0.74030	2.13908	-3.31067
C	-0.56264	3.46939	-1.31839
C	0.62216	4.23652	-1.802727
C	-0.05397	4.53699	-2.99190
H	-1.02716	3.67201	-4.70670
H	1.09140	5.04033	-1.23661
C	1.42455	-0.91152	-1.63733
C	2.50472	-0.55750	-2.50212
C	1.45549	-2.13684	-0.90627
C	3.58787	-1.44127	-2.58930
C	2.57779	-2.96175	-1.03339
C	3.65631	-2.63508	-1.86098
H	4.41116	-1.18029	-3.25302
H	2.59704	-3.89627	-0.47344
C	1.55940	2.71755	-0.06693
H	0.93161	2.61324	0.82771
H	2.20533	1.83636	-0.14720
H	2.20466	3.58618	0.10286
C	-1.02307	1.08444	-4.26074
H	-0.44674	0.15254	-4.23088
H	-2.06685	0.82905	-4.03803
H	-0.97728	1.46943	-5.28628
C	-0.72516	-2.52061	-3.17634
H	0.05425	-1.87803	-3.59536
H	-0.23015	-3.24645	-2.52019
H	-1.18245	-3.08247	-3.99968
C	-2.78788	1.73875	-1.00538
H	-2.86118	2.34953	-1.91723
H	-3.65970	1.95145	-0.37787
H	-1.90124	2.08100	-0.47062
C	0.35823	-2.66367	0.00338
H	0.66838	-2.59026	1.05380
H	-0.61561	-2.17674	-0.10353
H	0.19690	-3.72780	-0.20898
C	2.58574	0.70013	-3.34587
H	1.70867	0.83307	-3.98767
H	2.67622	1.60112	-2.72703
	0.46899	0.64535	-3.99186

C	4.86602	-3.53114	-1.95442
H	5.62317	-3.21755	-1.21936
H	4.60442	-4.57476	-1.73920
H	5.32565	-3.47471	-2.94967
C	-0.21696	5.96418	-3.45369
H	-0.35278	6.01678	-4.54088
H	-1.10572	6.41092	-2.98173
H	0.64976	6.57368	-3.16764
C	-5.57819	-2.29459	-1.96500
H	-5.70781	-2.96372	-2.82532
H	-5.68418	-2.90141	-1.05238
H	-6.38303	-1.54874	-1.96394

D. Supporting information - A Benzimidazole-Based Organo-Hydride for the Reduction of CO_{2}

D. 1 Experimental details

a) Materials

Reagents were purchased from Sigma-Aldrich: Benzimidazole (98\%), 5,6Dimethylbenzimidazole ($\geq 99 \%$), 2-Methylbenzimidazole (98\%), lodomethane (99\%), 1,3,5trimethoxybenzene ($\geq 99 \%$), Sodium borohydride (99\%), ${ }^{13} \mathrm{CO}_{2}$ (99 atom $\%{ }^{13} \mathrm{C},<3$ atom ${ }^{18}{ }^{18} \mathrm{O}$), Potassium lodide ($\geq 99 \%$), Potassium Bromide ($\geq 99 \%$), Sodium lodide ($\geq 99 \%$), and Lithium Bromide ($\geq 99 \%$). ${ }^{12} \mathrm{CO}_{2}$ gas cylinder was purchased from Air Products (Bone Dry, 99.9\%). Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc.: DMSO-D ${ }^{6}$ (D, 99.9%), MeCN-D ${ }^{3}$ ($D, 99.8 \%$), Methanol- ${ }^{4}$ ($D, 99.8 \%$). All reagents were used as received. Glass tube reactors were purchased from Ace Glass Incorporated: Tube, $9 \mathrm{ml}, 150 \mathrm{psig}, 19 \mathrm{~mm}$ O.D., 10.2 cm long (part \# 8648-62).
b) Analytical Techniques
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy were performed in a Bruker Ascend 400 MHz spectrometer. Chemical shifts are referenced to the internal solvent resonance and reported as parts-per-million relative to tetramethylsilane. ESI-MS analysis was performed at the University of Colorado Boulder mass spectrometry facility.

c) General Experimental Procedure

A 9ml glass tube reactor (purchased from Ace Glass Incorporated), shown in Fig. S1, was charged with a small stir bar and $29.8 \mathrm{mg}(0.50 \mathrm{M})$ of KBr .0 .50 ml of DMSO-D ${ }^{6}$ solvent containing $8.1 \mathrm{mg}(0.10 \mathrm{M})$ of species 2 c and $4.2 \mathrm{mg}(0.05 \mathrm{M})$ of $1,3,5$-trimethoxybenzene was transferred to the tube via a pipette. The tube was then sealed and degassed under vacuum while vigorous stirring (3 min) and sonication (2 min) for a total of 5 min . After degassing, the valve connecting to the vacuum was closed and ${ }^{12} \mathrm{CO}_{2}$ at 30 psig (or ${ }^{13} \mathrm{CO}_{2}$ at ${ }^{\sim} 20 \mathrm{psig}$) was then introduced to the tube reactor. The tube reactor was kept at $50^{\circ} \mathrm{C}$ in an oil bath. After 11 hr , the reaction was completed, 0.20 ml of methanol- D^{4} was introduced to the tube; the reaction solution was then analyzed by ${ }^{1} \mathrm{H}$ NMR (and in some cases ${ }^{13} \mathrm{C}$ NMR).

Fig. S1. Photograph of the general reaction setup for chemical reduction of CO_{2} by species 2c.

d) Synthesis

Synthetic procedure highlighted in Fig. S2 applies to transforming benzimidazole derivatives to their corresponding cations (species $\mathbf{1}$) and neutral organo-hydrides (species $\mathbf{2}$); this procedure was modified from those reported in the literature. ${ }^{243,322}$ We illustrate the procedure using 2-methylbenzimidazole as an example. A 250 mL round bottom flask was charged with 60 ml of MeOH and a stir bar. The following reagents were then added to the flask: 2-methylbenzimidazole ($6.61 \mathrm{~g}, 0.05 \mathrm{~mol}, 1 \mathrm{eq}$.), lodomethane ($12.5 \mathrm{ml}, 0.20 \mathrm{~mol}, 4 \mathrm{eq}$.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.91 \mathrm{~g}, 0.05 \mathrm{~mol}, 1$ eq.). This mixture was subsequently heated at reflux for 18 h , and was allowed to cool to RT. The solution was reduced in volume to $\sim 30 \mathrm{ml}$ via rotary evaporation, which was subsequently filtered. The solids contained residual $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the desired product 1,2,3-trimethyl-1H-benzimidazol-3-ium (species 1c). Crystallization was employed to isolate species 1 c from $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solids were added to a 250 mL round bottom flask containing 150 ml of MeOH . The solution was heated to near boiling to dissolve all species $\mathbf{1 c}$ but $\mathrm{K}_{2} \mathrm{CO}_{3}$. The hot solution was then filtered and the filtrate was collected. The filtrate was allowed to cool to RT and then was allowed to further cool in the freezer for 4 hours, at which point crystals were formed. The crystals were isolated via filtration, and was subsequently washed with acetone and dried under vacuum. The desired product 1,2,3-trimethyl-1H-benzimidazol-3-ium (species 1c) was isolated with 76% yield.

Fig. S2. Synthesis of benzimidazolium cations (species 1) and their corresponding benzimidazole-based organo-hydrides (species 2) from benzimidazoles.

In the second step of the synthesis, 1,2,3-trimethyl-1H-benzimidazol-3-ium (species 1c) was reacted with NaBH_{4} to form the organo-hydride 1,2,3-trimethyl-2,3-dihydro-1Hbenzimidazole (species $\mathbf{2 c}$). A 250 mL round bottom flask was charged with 40 ml of $\mathrm{H}_{2} \mathrm{O}, 60 \mathrm{ml}$ of diethyl ether and a stir bar. The following reagents were added to the flask: species $\mathbf{1 c}$ ($2.88 \mathrm{~g}, 0.01 \mathrm{~mol}, 1$ eq.) and NaBH_{4} ($1.13 \mathrm{~g}, 0.03 \mathrm{~mol}, 3$ eq.). This mixture was allowed to react under vigorous stirring for 1 hr in RT. The diethyl ether organic phase was then isolated via a separatory funnel, washed twice with DI water to remove any trace of NaBH_{4}, and washed for the third time with saturated brine water. The organic layer was dried with MgSO_{4}, filtered, and
the volatiles were removed under reduced pressure to reveal a white solid. Species 2c was isolated with 65% yield. The product was stored under Ar in the freezer until further use.
${ }^{1} \mathrm{H}$-NMR, ${ }^{13} \mathrm{C}$-NMR, and ESI-MS results were reported in the following figures: Species 1a-c (Fig. S3-F5) and Species 2a-c (Fig. S6-S8).

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectrum of species 1a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.63(\mathrm{~s}, 1 \mathrm{H}), 8.07-7.95$ ($\mathrm{m}, 2 \mathrm{H}$), $7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 143.10,131.64$, $126.40,113.41,33.23$. HRMS (ESI): calc'd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}, 147.0922$; found 147.0925.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectrum of species $\mathbf{1 b}$. 1 H NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~s}$, $2 \mathrm{H}), 4.02(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 141.81,136.04,130.12,112.91$, $33.06,19.96$. HRMS (ESI): calc'd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}, 175.1235$; found 175.1233.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectrum of species 1 c . ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.03-7.94(\mathrm{~m}, 2 \mathrm{H})$, $7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 6 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 152.25,131.29$, $125.81,112.69,31.72,10.62$. HRMS (ESI): calc'd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}, 161.1079$; found 161.1078.

Fig. S6. ${ }^{1} \mathrm{H}$ NMR spectrum of species 2a. 1H NMR (400 MHz , DMSO- d_{6}) $\delta 6.60-6.50(\mathrm{~m}, 2 \mathrm{H})$, $6.45-6.34(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 143.21,118.63$, $105.90,79.68,34.13$. HRMS (ESI): calc'd for $\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2}\right) \mathrm{Li}^{+}, 155.1161$; found 155.1163.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR spectrum of species $\mathbf{2 b}$. 1 H NMR (400 MHz , DMSO- d_{6}) $\delta 6.24(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}$, 2H), $2.59(\mathrm{~s}, 6 \mathrm{H}), 2.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 141.39,125.25,108.37,80.28$, $34.68,19.23$. HRMS (ESI): calc'd for $\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2}\right) \mathrm{Li}^{+}, 183.1474$; found 183.1478.

Fig. S8. ${ }^{1} \mathrm{H}$ NMR spectrum of species 2c. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 6.59-6.50(\mathrm{~m}, 2 \mathrm{H})$, $6.42-6.33(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{q}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 142.59,118.68$, $105.65,86.13,33.52$, 18.13. HRMS (ESI): calc'd for $\left(\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}\right) \mathrm{Li}^{+}, 169.1317$; found 169.1319.

D. 2 Computational methods

We compute stationary geometries (reactants, transition states and products) for the systems studied using density functional theory based on the M06 density functional ${ }^{121}$ and 6$31+G^{* *}$ basis set. ${ }^{57}$ An adequate treatment of solvent is crucial to correctly describe reactions involving a polar TS, such as those involving hydride transfers which are of particular interest here. Therefore, we employed the implicit polarized continuum solvation model (CPCM) in all calculations to treat the solute-solvent electrostatic interactions in dimethyl sulfoxide (DMSO) solvent. ${ }^{67-68}$ We calculate vibrational force constants at the M06/6-31+G** level of theory to: 1) verify that the reactant and product structures have only positive vibrational modes, 2) confirm that each TS has only one imaginary mode and that it connects the desired reactant and product structures via Intrinsic Reaction Coordinate (IRC) calculations, and 3) compute entropies, zero-point energies (ZPE) and thermal corrections included in the reported free energies at 298 K .

For the activation and reaction enthalpies, entropies and free energies for each of the various reactions examined within, we define the reference state as the separated reactants in solution, as is appropriate for solution phase bimolecular reactions. ${ }^{130}$ It is important to recognize that commonly employed entropy evaluations within the rigid rotor, harmonic oscillator and ideal gas approximations normally overestimate the entropic cost for reactions occurring in solution phase, because ideal gas partition functions do not explicitly take into account hindered translation, rotation and vibration of the solute surrounded by solvent molecules. ${ }^{18,131-136}$ While various empirical correction factors for $-T \Delta S^{\ddagger}$ calc values have been proposed, ${ }^{18,131,136-137}$ all of which significantly lower -T ΔS^{\ddagger} calc, our approach to better estimate $T \Delta S^{\ddagger}$ is to employ the experimentally obtained $-T \Delta S^{\ddagger} \exp =2.3 \mathrm{kcal} / \mathrm{mol}$ value for an analogous HT reaction. ${ }^{138}$ This -T ΔS^{\ddagger} exp value is then added to our calculated $\Delta H^{\ddagger}{ }_{H T}$ in order to obtain more accurate estimates to the activation free energy $\Delta \mathrm{G}^{\ddagger}{ }_{\text {нт }}$. Details of this approach is discussed in ref. ${ }^{239}$. Finally, reaction free energies $\left(\Delta G^{0}{ }_{r x n}\right)$ are reported by adding $\Delta H^{0}{ }_{r x n}$ to $-T \Delta S^{0}{ }_{r x n}$ in Table 1 of the manuscript. Because the number of species remains constant on going from reactants to products in the reactions described here, the overestimation issue for the calculated $-\mathrm{T} \Delta \mathrm{S}^{0}{ }_{\mathrm{rxn}}$ is less severe. All reported energies were referenced to separated reactants in solution (as noted above) and calculations were performed using the GAUSSIAN 09^{61} computational software packages.

D. $3^{1} \mathbf{H}$ NMR for formate detection

Fig. S9. (a) At $t=0 h r$, the reaction solution contained: 0.10 M species $2 \mathrm{c}, 30 \mathrm{psig} \mathrm{CO}_{2}, 0.50 \mathrm{M} \mathrm{KBr}$, $0.05 \mathrm{M} 1,3,5$-trimethoxybenzene; $\mathrm{T}=50^{\circ} \mathrm{C}$. (b) At $\mathrm{t}=11 \mathrm{hr}$, species 2 c was close to be fully consumed while species 1 c and formate ion ($\delta=8.46 \mathrm{ppm}$) were formed.

D. 4 ESI-MS for formate detection

Electrospray ionization mass spectroscopy (ESI-MS, negative mode) was used to detect the presence of HCOO^{-}anion in the reaction solution. In Fig. S10, in the presence of low 0.05 M KI salt concentration, HCOO^{-}was detected at +4.4 ppm error. In Fig. S11, in the presence of high 0.20 M KBr salt concentration, (a) $\mathrm{HCOO}^{-} \bullet \mathrm{KBr}$ cluster was detected at +1.8 ppm error while (b) $\mathrm{HCOO}^{\bullet} \cdot 2 \mathrm{KBr}$ cluster was detected at +2.8 ppm error.

Fig. S10. (a) Theoretical mass of HCOO^{-}anion at 44.9977 Da. (b) Observed mass of HCOO^{-}anion at 44.9979 Da; error $=+4.4 \mathrm{ppm}$. (c) Blank sample. Reaction condition: 0.10 M species $2 \mathrm{c}, 30 \mathrm{psig}$ $\mathrm{CO}_{2}, 0.05 \mathrm{M} \mathrm{KI}, 0.05 \mathrm{M} 1,3,5$-trimethoxybenzene, $\mathrm{T}=50^{\circ} \mathrm{C}, \mathrm{t}=11 \mathrm{hr}$.

Fig. S11. (a) $\mathrm{HCOO}^{\circ} \bullet \mathrm{KBr}$ cluster. i) Theoretical masses of $\mathrm{HCOO}^{\bullet} \bullet \mathrm{KBr}$ cluster at 162.8797 Da , 164.8777 Da and 166.8761 Da . ii) Observed masses of $\mathrm{HCOO}^{\circ} \bullet \mathrm{KBr}$ cluster at 162.8800 Da , 164.8780 Da and 166.8761 Da ; error $=+1.8 \mathrm{ppm}$. iii) Blank sample. (b) $\mathrm{HCOO} \bullet 2 \mathrm{KBr}$ cluster. i) Theoretical masses of $\mathrm{HCOO}^{\circ} \bullet \mathrm{KBr}$ cluster at 280.7617 Da 282.7597 Da, 284.7577 Da and 286.7560 Da. ii) Observed masses of $\mathrm{HCOO}^{\bullet} \bullet 2 \mathrm{KBr}$ cluster at 280.7625 Da , 282.7599 Da, 284.7583 Da and 286.7555 Da; error $=+2.8 p p m$. iii) Blank sample. Reaction conditions: 0.10 M species $2 \mathrm{c}, 30 \mathrm{psig} \mathrm{CO}_{2}, 0.20 \mathrm{M} \mathrm{KBr}, 0.05 \mathrm{M} 1,3,5$-trimethoxybenzene, $\mathrm{T}=50^{\circ} \mathrm{C}, \mathrm{t}=11 \mathrm{hr}$.

D. $5{ }^{1} \mathrm{H}$ NMR for ${ }^{13} \mathrm{CO}_{2}$ experiment

Fig. S12. ${ }^{13} \mathrm{CO}_{2}$ experiment was performed in the following conditions: 0.10 M species 2 c , ${ }^{\sim} 20$ psig ${ }^{13} \mathrm{CO}_{2}, 0.20 \mathrm{M} \mathrm{KBr}, 0.05 \mathrm{M} 1,3,5$-trimethoxybenzene, $\mathrm{T}=50^{\circ} \mathrm{C}$. (a) $\mathrm{t}=0 \mathrm{hr}$. (b) $\mathrm{t}=16 \mathrm{hr}$. After the reaction, ${ }^{1} \mathrm{H}$ NMR showed the appearance of doublet peaks at $\delta=8.27$ and 8.72 ppm ; this indicated the dominant presence of ${ }^{13} \mathrm{C}$ nucleus in the produced formate due to the introduced ${ }^{13} \mathrm{CO}_{2}$ (99 atom $\%{ }^{13} \mathrm{C}$). A small singlet formate peak at 8.50 ppm was also observed, which was due to the remaining 1 atom $\%{ }^{12} \mathrm{CO}_{2}$.

D. 6 Coordinates of Molecular Structures

All coordinates are reported as XYZ Cartesian coordinates. In parenthesis's are rM06/6$31+\mathrm{G}^{* *} / \mathrm{CPCM}$-DMSO energies. Energies reported here are computed at 0 K (not ZPE and thermally corrected) and are stated in Hartrees units. All energies reported were calculated using the GAUSSIAN 09 computational chemistry package
$\mathrm{CO}_{2}(-188.51260258)$

C	2.18926	0.01112	0.30294
O	1.79513	0.03673	1.39377
O	2.58406	-0.01448	-0.78759

HCOO^{-}	(-189.23196244)		
H	0.38144	-0.51638	-0.38765
C	0.06843	-1.54184	-0.72830
O	-0.39175	-2.29598	0.16197
O	0.22460	-1.78265	-1.94930

Species 1a (-458.62929816)

C	-2.99120	-0.26682	-0.02841
C	-1.59297	-0.26689	-0.02851
C	-0.85695	0.91383	0.00601
C	-1.58843	2.09239	0.04010
C	-2.99548	2.09246	0.04022
C	-3.72710	0.91398	0.00624
H	0.22902	0.91166	0.00595
H	-1.06113	3.04171	0.06797
H	-3.52268	3.04184	0.06816
H	-4.81306	0.91193	0.00630
N	-1.19630	-1.59905	-0.06939
N	-3.38802	-1.59893	-0.06946
C	0.18119	-2.07219	-0.08448
H	0.69055	-1.68234	-0.96873
H	0.69292	-1.73295	0.81910
H	0.18043	-3.16163	-0.11547
C	-4.76556	-2.07191	-0.08468
H	-5.27731	-1.73267	0.81889
H	-5.27482	-1.68194	-0.96894
H	-4.76492	-3.16135	-0.11574
C	-2.29220	-2.35517	-0.09286
H	-2.29226	-3.43676	-0.12601

Species 1b (-537.20681911)
$\begin{array}{llll}\text { C } & -2.98783 & -0.27095 & -0.03449\end{array}$

C	-1.59410	-0.27209	-0.02371
C	-0.86613	0.91254	0.02790
C	-1.57688	2.10647	0.06831
C	-3.00261	2.10764	0.05740
C	-3.71456	0.91486	0.00608
H	0.22137	0.90950	0.03570
H	-4.80206	0.91365	-0.00267
N	-1.19615	-1.60348	-0.07529
N	-3.38720	-1.60162	-0.09223
C	0.18098	-2.07551	-0.08455
H	0.69808	-1.67456	-0.95948
H	0.68569	-1.74656	0.82693
H	0.18208	-3.16459	-0.12881
C	-4.76486	-2.07108	-0.12469
H	-5.28550	-1.73769	0.77614
H	-5.26520	-1.67253	-1.01044
H	-4.76738	-3.16031	-0.16446
C	-2.29207	-2.36028	-0.11508
H	-2.29264	-3.44130	-0.15941
C	-0.83650	3.40738	0.12351
H	-1.09345	3.97749	1.02518
H	0.24514	3.24661	0.12289
H	-1.08484	4.04618	-0.73332
C	-3.74153	3.40979	0.10065
H	-3.48964	3.98458	1.00071
H	-3.48666	4.04354	-0.75811
H	-4.82338	3.25059	0.09339

Species 1c (-497.92511018)

C	-2.98536	-0.32265	-0.02142
C	-1.59073	-0.32244	-0.01167
C	-0.85631	0.85729	0.04741
C	-1.58813	2.03713	0.09584
C	-2.99326	2.03634	0.08660
C	-3.72256	0.85549	0.02823
H	0.22972	0.85987	0.05659
H	-3.52275	2.98406	0.12749
H	-4.80865	0.85385	0.02301
N	-1.19103	-1.65440	-0.07276
N	-3.37951	-1.65345	-0.08833
C	0.20707	-2.06103	-0.08658
H	0.71289	-1.56983	-0.92129
H	0.68046	-1.77119	0.85482

H	0.28699	-3.13879	-0.21266
C	-4.76734	-2.09034	-0.12382
H	-5.26373	-1.81294	0.80966
H	-5.27288	-1.61289	-0.96674
H	-4.81247	-3.17134	-0.24963
C	-2.28543	-2.43147	-0.11408
H	-1.06031	2.98545	0.14348
C	-2.31953	-3.90447	-0.18166
H	-1.32714	-4.33677	-0.05944
H	-2.96123	-4.30598	0.60837
H	-2.71963	-4.23355	-1.14682

Species 2a (-459.36028412)			
C	-2.98650	-0.27017	-0.24335
C	-1.57992	-0.28817	-0.18476
C	-0.85705	0.88297	-0.03937
C	-1.56836	2.09382	0.03380
C	-2.95675	2.11125	-0.02365
C	-3.68955	0.91869	-0.15674
H	0.22880	0.87133	0.02342
H	-1.02019	3.02567	0.15173
H	-3.48919	3.05669	0.05001
H	-4.77684	0.93426	-0.18396
N	-1.15229	-1.61349	-0.32161
N	-3.43597	-1.58399	-0.41644
C	0.08995	-2.02573	0.29296
H	0.91993	-1.43151	-0.10024
H	0.06317	-1.91467	1.39164
H	0.28521	-3.07518	0.05164
C	-4.73448	-1.96199	0.09576
H	-4.79703	-1.83954	1.19178
H	-5.51559	-1.35451	-0.37053
H	-4.93268	-3.00944	-0.15155
C	-2.31995	-2.42605	-0.00423
H	-2.31022	-3.38433	-0.53795
H	-2.36822	-2.63126	1.09550

Species 2b (-537.93421799)

C	-2.97715	-0.27358	-0.27326
C	-1.57813	-0.29324	-0.19043
C	-0.86581	0.88077	-0.02322
C	-1.55866	2.10445	0.05286
C	-2.95930	2.12402	-0.03051

C	-3.67175	0.91995	-0.19009
H	0.22076	0.87040	0.05615
H	-4.76002	0.93966	-0.23912
N	-1.14318	-1.61987	-0.33528
N	-3.42959	-1.58772	-0.46998
C	0.07661	-2.03070	0.32427
H	0.91893	-1.43192	-0.03454
H	0.00783	-1.92311	1.42210
H	0.28498	-3.07888	0.08768
C	-4.72846	-1.96228	0.04497
H	-4.78777	-1.84013	1.14180
H	-5.50896	-1.35166	-0.41837
H	-4.93117	-3.00912	-0.20195
C	-2.31960	-2.42715	-0.03421
H	-2.30231	-3.39059	-0.55821
H	-2.38740	-2.62088	1.06765
C	-3.71032	3.42009	0.07001
H	-4.78631	3.26377	-0.05944
H	-3.56187	3.90650	1.04403
H	-3.38493	4.14226	-0.69066
C	-0.78836	3.37899	0.24307
H	-0.98012	4.09854	-0.56421
H	-1.05728	3.88491	1.18046
H	0.28955	3.18829	0.26784

Species 2c (-498.64997096)			
C	-2.98989	-0.25883	-0.18534
C	-1.58040	-0.27713	-0.12769
C	-0.85630	0.89558	-0.01368
C	-1.56785	2.11210	0.02393
C	-2.95424	2.12968	-0.03164
C	-3.69098	0.93185	-0.12759
H	0.22976	0.88487	0.04810
H	-1.01726	3.04602	0.11220
H	-4.77846	0.94850	-0.15287
N	-1.16544	-1.60202	-0.22720
N	-3.43027	-1.57216	-0.32045
C	0.14702	-1.99582	0.22605
H	0.91211	-1.46755	-0.35281
H	0.31554	-1.78195	1.29529
H	0.28391	-3.06862	0.05690
C	-4.78584	-1.93068	0.02147
H	-5.03782	-1.70903	1.07266

H	-5.48520	-1.38497	-0.62084
H	-4.93572	-3.00016	-0.15734
C	-2.32501	-2.43954	0.10917
H	-2.31230	-3.35613	-0.50143
H	-3.48613	3.07741	0.01368
C	-2.38980	-2.80520	1.58675
H	-3.28830	-3.39324	1.80212
H	-1.52404	-3.41180	1.87327
H	-2.40547	-1.89973	2.20822

Species $2 \mathrm{a}+\mathrm{CO}_{2}$, TS (-647.83805305, 1174.23 imaginary mode at TS)

C	-3.01301	-0.41022	0.17369
C	-1.61049	-0.40419	0.25437
C	-0.87532	0.73486	-0.03493
C	-1.59032	1.88138	-0.39695
C	-2.98489	1.87582	-0.47086
C	-3.72442	0.72245	-0.18930
H	0.21043	0.73986	0.01344
H	-1.04571	2.79215	-0.63198
H	-3.50886	2.78289	-0.76073
H	-4.80908	0.71482	-0.25902
N	-1.21646	-1.67415	0.66658
N	-3.43688	-1.68748	0.51518
C	0.13235	-2.18293	0.55877
H	0.43242	-2.28627	-0.49418
H	0.82579	-1.50563	1.06339
H	0.18753	-3.16021	1.04414
C	-4.79244	-2.17498	0.39087
H	-5.47324	-1.51377	0.93442
H	-5.09501	-2.22458	-0.66269
H	-4.85471	-3.17325	0.82968
C	-2.25486	-3.47550	-1.93478
O	-1.55396	-4.44744	-2.11265
O	-2.96411	-2.65909	-2.48287
C	-2.32592	-2.50929	0.58889
H	-2.36179	-3.38907	1.23704
H	-2.24606	-3.16175	-0.59625

Species $2 \mathrm{~b}+\mathrm{CO}_{2}$, TS (-726.41335406, 1171.73i imaginary mode at TS)

C	-3.00474	-0.40734	0.21145
C	-1.60615	-0.40478	0.26587
C	-0.88244	0.73654	-0.04044
C	-1.58188	1.89745	-0.39651

C	-2.99282	1.89512	-0.44535
C	-3.71111	0.73092	-0.14175
H	0.20573	0.74090	-0.01226
H	-4.79858	0.72764	-0.19190
N	-1.20392	-1.67589	0.67495
N	-3.42869	-1.68379	0.56312
C	0.13792	-2.18778	0.51486
H	0.39809	-2.29127	-0.54923
H	0.85211	-1.51177	0.99170
H	0.21115	-3.16559	0.99722
C	-4.78528	-2.16869	0.44793
H	-5.46157	-1.50536	0.99479
H	-5.09685	-2.21961	-0.60333
H	-4.84760	-3.16622	0.88890
C	-2.29971	-3.46333	-1.93216
O	-1.60599	-4.43765	-2.11896
O	-3.02070	-2.64648	-2.46179
C	-2.31722	-2.51052	0.60409
H	-2.34384	-3.39276	1.24979
H	-2.25868	-3.14205	-0.58101
C	-3.73245	3.13929	-0.83851
H	-3.47648	3.45746	-1.85783
H	-4.81505	2.98464	-0.79925
H	-3.48889	3.98196	-0.17849
C	-0.82114	3.14443	-0.73731
H	-1.03035	3.47937	-1.76179
H	-1.09125	3.97794	-0.07567
H	0.25812	2.98546	-0.65099

Species $2 \mathrm{c}+\mathrm{CO}_{2}$, TS (-687.13186582, $1091.53 i$ imaginary mode at TS)

C	-3.02710	-0.39747	0.24410
C	-1.62423	-0.38758	0.27817
C	-0.90327	0.75823	-0.01966
C	-1.62984	1.90620	-0.35154
C	-3.02498	1.89570	-0.38813
C	-3.74944	0.73655	-0.09242
H	0.18323	0.76901	-0.00544
H	-4.83540	0.72980	-0.13205
N	-1.21294	-1.66322	0.65479
N	-3.44209	-1.67743	0.60667
C	0.13726	-2.16063	0.51703
H	0.29396	-2.60270	-0.47861
H	0.84068	-1.33756	0.65356

H	0.34619	-2.91215	1.28202
C	-4.76875	-2.18810	0.34424
H	-5.50085	-1.39625	0.51342
H	-4.85633	-2.53933	-0.69589
H	-5.00176	-3.01081	1.02366
C	-2.25417	-3.52454	-1.92019
O	-2.43948	-4.72021	-1.89474
O	-2.05184	-2.56844	-2.63609
C	-2.32032	-2.51422	0.60748
H	-2.28832	-3.05537	-0.62580
H	-3.56194	2.80131	-0.65806
H	-1.09348	2.82005	-0.59363
C	-2.32738	-3.77244	1.42263
H	-2.33839	-3.52810	2.49079
H	-3.20454	-4.37936	1.18221
H	-1.44351	-4.37617	1.19835

E. Supporting information - Visible-light organic photocatalysis for latent radical-initiated polymerization via $2 e^{-} / 1 \mathrm{H}^{+}$transfers: Initiation with parallels to photosynthesis

E. 1 Reaction of alpha-amino radical (derived from DIPEA) and a HEMA monomer

In Figure S1, we calculate the enthalpic barrier ($\left.\Delta \mathrm{H}^{0}{ }_{\text {act }}\right)$ for the reaction between an amino-alkyl radical (product of one electron and one proton transfer of DIPEA) and a HEMA monomer. Stationary geometries (transition state and minima) were obtained at uWB97XD/LANL2dz/CPCM-methanol level of theory. $\Delta \mathrm{H}^{0}{ }_{\text {act }}$ calculated at this level of theory was $0.1 \mathrm{kcal} / \mathrm{mol}$. Single point energy calculations were then performed at uM06/6-311G(d,p) level of theory, where we obtained $\Delta \mathrm{H}^{0}{ }_{\text {act }}=-1.4 \mathrm{kcal} / \mathrm{mol}$ (barrierless). The M06 functional was designed to yield accurate thermochemical predictions; and when combined with 6-311G(d,p) basis sets, should yield reasonable predictions to the enthalpic barrier.

Figure S1 | Reaction between amino-alkyl radical and HEMA monomer, calculated at uM06/6-311G(d,p)//uWB97XD/LANL2dz/CPCM-methanol. (a) Reactant, (b) TS structure and (c) Product Coordinates of Molecular Structures

All coordinates are reported as XYZ Cartesian coordinates. 0 K energies (not ZPE corrected) reported are calculated using uM06/6-311G(d,p)//uWB97XD/LANL2dz/CPCM-methanol in Hartrees.

E. 2 Coordinates of structures

LMB (-1183.1852140093)

S	1.38084	0.00392	1.14593
N	-0.23269	4.95441	0.61194
N	-0.23107	-4.94657	0.60705

C	0.75678	1.39691	0.12754
C	0.75723	-1.38828	0.12617
C	0.66865	1.24177	-1.26554
C	0.66904	-1.23179	-1.26676
C	0.05714	3.74027	-0.00242
C	0.05834	-3.73173	-0.00613
C	0.43851	2.60392	0.75741
C	0.43935	-2.59602	0.75484
C	0.26737	2.35837	-2.01910
C	0.26812	-2.34776	-2.02143
C	-0.01464	3.58585	-1.41223
C	-0.01351	-3.57593	-1.41579
C	-0.64309	6.09831	-0.19834
C	-0.18303	5.06489	2.06709
C	-0.64079	-6.08990	-0.20439
C	-0.18136	-5.05848	2.06208
H	0.50609	2.66117	1.83725
H	0.50698	-2.65433	1.83461
H	0.17776	2.26725	-3.09760
H	0.17847	-2.25560	-3.09984
H	-0.30620	4.41653	-2.04273
H	-0.30484	-4.40607	-2.04710
H	-0.81903	6.95765	0.45013
H	-1.57171	5.89750	-0.75101
H	0.13091	6.37994	-0.92498
H	-0.44767	6.08077	2.36346
H	-0.88883	4.37717	2.55418
H	0.82184	4.85360	2.45790
H	-0.81608	-6.95005	0.44318
H	-1.56961	-5.88915	-0.75677
H	0.13332	-6.37024	-0.93140
H	-0.44573	-6.07473	2.35743
H	-0.88735	-4.37144	2.54985
H	0.82345	-4.84729	2.45309
N	0.97519	0.00535	-1.88365
H	0.98131	0.00585	-2.89448

$\mathrm{MB}^{+}(-1182.4175828153)$

S	0.00000	0.00000	1.42134
N	0.00000	5.07128	0.53149
N	0.00000	-5.07128	0.53149
N	0.00000	0.00000	-1.75698

C	0.00000	1.39897	0.29303
C	0.00000	-1.39897	0.29303
C	0.00000	1.19352	-1.13345
C	0.00000	-1.19352	-1.13345
C	0.00000	3.82498	0.00284
C	0.00000	-3.82498	0.00284
C	0.00000	2.66694	0.84297
C	0.00000	-2.66694	0.84297
C	0.00000	2.36833	-1.96001
C	0.00000	-2.36833	-1.96001
C	0.00000	3.62907	-1.42969
C	0.00000	-3.62907	-1.42969
C	0.00000	6.25956	-0.33974
C	0.00000	5.26487	1.99040
C	0.00000	-6.25956	-0.33974
C	0.00000	-5.26487	1.99040
H	0.00000	2.77932	1.91918
H	0.00000	-2.77932	1.91918
H	0.00000	2.21465	-3.03265
H	0.00000	-2.21465	-3.03265
H	0.00000	4.48139	-2.09438
H	0.00000	-4.48139	-2.09438
H	0.00000	7.15477	0.27927
H	-0.89205	6.28325	-0.97338
H	0.89205	6.28325	-0.97338
H	0.00000	6.33052	2.21088
H	-0.89193	4.82186	2.44522
H	0.89193	4.82186	2.44522
H	0.00000	-7.15477	0.27927
H	-0.89205	-6.28325	-0.97338
H	0.89205	-6.28325	-0.97338
H	0.00000	-6.33052	2.21088
H	-0.89193	-4.82186	2.44522
H	0.89193	-4.82186	2.44522

DPI $^{+}(-7382.0962246181)$

I	-0.00001	-1.44433	-0.00001
C	1.60172	-0.02727	-0.00001
C	2.09335	0.41606	1.23306
C	2.09320	0.41620	-1.23310
C	3.13139	1.36151	1.21884
H	1.69597	0.05257	2.17264
C	3.13122	1.36167	-1.21890

H	1.69571	0.05282	-2.17268
C	3.64553	1.83160	-0.00003
H	3.53095	1.72413	2.15806
H	3.53065	1.72442	-2.15812
H	4.44597	2.56206	-0.00004
C	-1.60174	-0.02729	0.00002
C	-2.09322	0.41618	1.23310
C	-2.09335	0.41606	-1.23305
C	-3.13121	1.36167	1.21890
H	-1.69575	0.05276	2.17268
C	-3.13136	1.36154	-1.21883
H	-1.69597	0.05257	-2.17264
C	-3.64549	1.83163	0.00004
H	-3.53064	1.72442	2.15813
H	-3.53090	1.72419	-2.15805
H	-4.44591	2.56213	0.00005

Phenyl radical (-231.4319744629)

C	0.64415	-3.03630	0.00271
C	2.05118	-3.04578	0.00316
C	2.77024	-1.82983	0.00250
C	2.01607	-0.66040	0.00153
C	0.62626	-0.59196	0.00112
C	-0.06749	-1.82261	0.00166
H	0.10222	-3.97572	0.00318
H	2.58997	-3.98766	0.00397
H	3.85466	-1.82159	0.00284
H	0.09138	0.35138	0.00030
H	-1.15260	-1.82648	0.00132

Iodobenzene (-7150.8087915277)

I	-1.52282	2.77274	0.53421
C	-2.37412	0.82403	0.72516
C	-2.27342	-0.07724	-0.34551
C	-3.02515	0.46939	1.91627
C	-2.83774	-1.35751	-0.21546
H	-1.76961	0.20110	-1.26368
C	-3.58499	-0.81434	2.03226
H	-3.10057	1.16936	2.74013
C	-3.49286	-1.72762	0.96993
H	-2.76275	-2.05760	-1.03992

H	-4.08929	-1.09296	2.95070
H	-3.92752	-2.71635	1.06476

DIPEA (-370.8458178021)

N	0.00413	0.26562	0.17904
C	1.03138	-0.80346	0.20464
C	2.13949	-0.45481	1.21684
C	1.65594	-1.15095	-1.17085
H	0.52985	-1.70717	0.56892
H	1.71213	-0.32724	2.21651
H	2.89713	-1.24665	1.25433
H	2.64187	0.47975	0.93751
H	0.88785	-1.36017	-1.92067
H	2.28385	-0.33244	-1.54155
H	2.29156	-2.03879	-1.07359
C	-1.40961	-0.16450	0.06773
C	-1.89053	-0.85967	1.35478
C	-1.72827	-1.03429	-1.17343
H	-1.99158	0.75957	-0.02985
H	-1.70196	-0.22116	2.22361
H	-2.96572	-1.06461	1.29495
H	-1.37945	-1.81687	1.51293
H	-1.38290	-0.55090	-2.09444
H	-1.25075	-2.01829	-1.09729
H	-2.81008	-1.19019	-1.25599
C	-0.18379	2.76356	0.02615
C	0.34174	1.46517	-0.60702
H	0.09683	3.62761	-0.58794
H	-1.27534	2.76035	0.11862
H	0.24273	2.89166	1.02667
H	-0.02499	1.38972	-1.64730
H	1.43192	1.54017	-0.67178

DIPEA-H ${ }^{+}$(-371.3005826892)

N	0.04215	0.30794	0.30429
C	1.06395	-0.85398	0.22025
C	2.17525	-0.59749	1.24688
C	1.62765	-1.06803	-1.19015
H	0.50754	-1.74351	0.51888
H	1.77728	-0.52889	2.26441
H	2.88043	-1.43157	1.21938

H	2.73245	0.31730	1.01933
H	0.85098	-1.17061	-1.94968
H	2.30999	-0.26723	-1.48603
H	2.19954	-1.99977	-1.17461
C	-1.43132	-0.13184	0.16773
C	-1.85277	-0.91829	1.41619
C	-1.70204	-0.89781	-1.12898
H	-1.99178	0.80449	0.15182
H	-1.63913	-0.36463	2.33625
H	-2.93260	-1.07965	1.36973
H	-1.37534	-1.90029	1.47496
H	-1.40232	-0.33802	-2.01878
H	-1.21429	-1.87620	-1.13650
H	-2.77996	-1.06588	-1.19697
C	-0.34065	2.76705	-0.21877
C	0.40657	1.48528	-0.59155
H	0.09808	3.59111	-0.78683
H	-1.40314	2.72696	-0.46781
H	-0.23338	3.00199	0.84499
H	0.20797	1.19481	-1.62249
H	1.48053	1.63913	-0.47693
H	0.11790	0.66083	1.26546

	-0.19714	-2.33973	-0.37374
N	1.22021	-1.98936	-0.13169
C	1.46717	-1.43660	1.28887
C	1.73178	-1.01367	-1.20880
H	1.79514	-2.91559	-0.22509
H	1.08063	-2.12780	2.04460
H	2.54265	-1.30470	1.45574
H	0.97625	-0.46662	1.42537
H	1.62258	-1.45430	-2.20484
H	1.15982	-0.07928	-1.18311
H	2.78904	-0.77585	-1.04410
C	-0.56128	-3.76871	-0.45254
C	-0.33810	-4.50310	0.88780
C	0.15821	-4.47950	-1.61473
H	-1.63123	-3.80167	-0.67418
H	-0.87397	-3.99266	1.69544
H	-0.70390	-5.53389	0.82197
H	0.72717	-4.53790	1.14539

	-0.00702	-3.94027	-2.55295
H	1.23789	-4.55606	-1.44431
H	-0.23242	-5.49720	-1.72353
C	-2.62216	-1.57448	-0.42283
C	-1.16915	-1.36955	-0.08659
H	-3.16648	-0.65043	-0.20344
H	-2.79252	-1.81699	-1.48625
H	-3.09272	-2.37540	0.16551
H	-0.79492	-0.35339	-0.02011
O	0.36384	2.21959	0.38884
O	4.01266	2.54635	-0.01002
O	-0.89676	3.12593	-1.28694
C	1.59065	2.66748	-0.28115
C	2.74346	2.21078	0.61021
C	-2.02531	2.08990	0.58502
C	-0.83448	2.52803	-0.19694
C	-3.35919	2.33792	-0.07781
C	-1.87884	1.51290	1.79478
H	4.18581	3.50304	0.04437
H	1.56472	3.75623	-0.38871
H	1.65583	2.21297	-1.27337
H	2.65385	2.65911	1.60582
H	2.73492	1.12531	0.70827
H	-3.51320	3.40641	-0.26084
H	-3.41215	1.83202	-1.04792
H	-4.17359	1.97090	0.55145
H	-2.74516	1.18962	2.36328
H	-0.90104	1.35113	2.23421

$\left.\underline{\mathrm{N}\left(\mathrm{C}_{3}\right.} \underline{H}_{7}\right]_{2} \underline{2}_{2} \underline{\mathrm{H}}_{4} \underline{H}^{\text {radical }}+\mathrm{HEMA}(\mathrm{TS})(-830.34938384)$

N	-4.32431	-2.98054	1.98016
C	-2.88477	-2.77699	2.26135
C	-2.63259	-1.89745	3.50416
C	-2.15564	-2.21385	1.02606
H	-2.46449	-3.76542	2.46822
H	-3.15129	-2.30265	4.37905
H	-1.55886	-1.85915	3.72075
H	-2.98306	-0.87462	3.33500
H	-2.28912	-2.87912	0.16698
H	-2.54258	-1.22382	0.75796
H	-1.08381	-2.11450	1.23058
C	-4.91829	-4.29902	2.28614
C	-4.93544	-4.58569	3.80295

C	-4.23782	-5.43542	1.50003
H	-5.95540	-4.25486	1.94481
H	-5.43916	-3.77255	4.33713
H	-5.46735	-5.52156	4.00693
H	-3.91708	-4.68251	4.19756
H	-4.21883	-5.20305	0.43050
H	-3.20993	-5.61123	1.83567
H	-4.79542	-6.36699	1.64505
C	-6.55526	-1.97157	1.32643
C	-5.13653	-1.85669	1.82099
H	-6.96228	-0.96585	1.18912
H	-6.62948	-2.49982	0.36104
H	-7.21520	-2.49357	2.03247
H	-4.60384	-0.93223	1.62088
O	-3.88636	1.49733	2.99276
O	-0.35418	2.37009	2.38982
O	-5.40142	3.02657	2.21517
C	-2.79245	2.35479	2.52901
C	-1.50233	1.58200	2.80210
C	-6.21672	1.01456	3.27406
C	-5.17518	1.93787	2.78642
C	-7.63939	1.39429	2.93163
C	-5.88183	-0.11664	3.94562
H	-0.19650	3.10604	3.00780
H	-2.81768	3.30155	3.07827
H	-2.91215	2.55888	1.46189
H	-1.44033	1.31035	3.86213
H	-1.46951	0.67159	2.20293
H	-7.90851	2.35908	3.37555
H	-7.77471	1.48932	1.84807
H	-8.33557	0.63666	3.30118
H	-6.64774	-0.80428	4.29044
H	-4.85822	-0.33997	4.21323

$\left.\mathrm{N}^{\left(\mathrm{C}_{3}\right.} \underline{H}_{7}\right)_{2} \underline{\mathrm{C}}_{2} \underline{H}_{4}$ _radical + HEMA (Product) (-830.38246071)

N	-0.12611	-2.09632	-0.40924
C	1.33638	-2.14454	-0.22588
C	1.86262	-1.26325	0.93261
C	2.07663	-1.80493	-1.53624
H	1.58067	-3.18521	0.01744
H	1.40088	-1.54697	1.88386
H	2.94914	-1.37382	1.02937
H	1.64305	-0.20646	0.74484

H	1.74217	-2.46714	-2.34130
H	1.88836	-0.76861	-1.84242
H	3.15900	-1.92354	-1.40812
C	-0.93864	-3.19531	0.14221
C	-0.71503	-3.45651	1.65215
C	-0.74446	-4.49689	-0.66280
H	-1.98674	-2.89896	0.01718
H	-0.87663	-2.54564	2.23738
H	-1.41041	-4.22522	2.00881
H	0.30459	-3.81164	1.84348
H	-0.96879	-4.32338	-1.72012
H	0.28759	-4.86027	-0.58572
H	-1.40624	-5.28595	-0.28633
C	-1.81273	-0.83887	-1.74125
C	-0.75623	-0.79398	-0.62054
H	-2.17109	0.16994	-1.97899
H	-1.36979	-1.27148	-2.64331
H	-2.68185	-1.44529	-1.45857
H	0.03154	-0.10465	-0.93971
O	0.27727	2.02215	0.35059
O	3.64330	3.44416	-0.11434
O	-1.45134	3.51937	0.09411
C	1.23518	3.10393	0.12414
C	2.61804	2.45515	0.16764
C	-1.93555	1.19455	0.49906
C	-1.06997	2.33685	0.29763
C	-3.42006	1.39939	0.49005
C	-1.36794	-0.17669	0.69781
H	3.76200	4.04770	0.64057
H	1.12070	3.86325	0.90459
H	1.05017	3.56463	-0.85023
H	2.78356	1.97761	1.14007
H	2.70465	1.70083	-0.61564
H	-3.83962	1.16098	1.47700
H	-3.69242	2.42490	0.23436
H	-3.89487	0.71305	-0.22261
H	-2.16079	-0.84089	1.06006
H	-0.56799	-0.15364	1.44422

E. 3 Supplemental figures

Figure S2 | Vinyl conversion of HEMA with $\mathrm{MB}^{+} /$DIPEA, $\mathrm{MB}^{+} /$MDEA and $\mathrm{MB}^{+} /$TEA. Vinyl conversion of HEMA in solution with MB+/DIPEA (green squares), MB+/MDEA (red crosses), and $\mathrm{MB}+/ \mathrm{TEA}$ (blue dots) at equivalent irradiation conditions and stoichiometric amount of amine.

Figure S3 | ESI ${ }^{+}$- MS monitoring of the photoreaction with MB^{+}/DIPEA and $\mathrm{MB}^{+} /$DIPEA/DPI ${ }^{+}$.
a, Photoreduction of MB^{+}by DIPEA in the presence of DPI^{+}in methanol. Evidence of iodobenzene is the formation of the molecules with masses 285.1, 295.3, 362.2 and $438.2 \mathrm{~m} / \mathrm{z}$ as iodobenzene is not very stable. \mathbf{b}, Photoreduction of MB^{+}with DIPEA in the absence of DPI ${ }^{+}$. Peaks at 89.1, 104.1, 147.2 and $292.3 \mathrm{~m} / \mathrm{z}$ are different decomposition products based on 2-
ethyliminopropane. Evidence of the formation of DIPEA-H due to extensive photoredox cycling is the formation of a higher abundance at $131.2 \mathrm{~m} / \mathrm{z}$ than in Figure S 2 a . $[\mathrm{MB}]=0.004 \mathrm{M}$, [DIPEA] $=0.2 \mathrm{M},\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M}$. Irradiation intensity equal to $37 \mathrm{~mW} / \mathrm{cm}^{2}$. DIPEA-H (131.2 $\mathrm{m} / \mathrm{z}), \mathrm{MB}^{+}$and DPI^{+}abundances are less than 1% abundance, thus not giving reliable signals. This peaks were assigned based on mass balances on the original reagents used and correlated to abundances detected to find iodine-containing molecules.

C

$$
R_{p}=[M]_{0} \frac{\left(A_{6165}\right)_{t_{1}}-\left(A_{6165}\right)_{t_{2}}}{\left(A_{6165}\right)_{t_{0}} *\left(t_{2}-t_{1}\right)}
$$

where A_{6165} is the FT-NIR peak area centered at $6165 \mathrm{~cm}^{-1}$ correlated to (meth)acrylates

$$
\ln R_{p}=\ln \left[A_{p}\left(\frac{A_{d}}{A_{t}}\right)^{1 / 2}\right]+\ln \left[(f[I])^{1 / 2}\right]-\frac{E_{R}}{R T}
$$

first two terms on the right treated as constant for linearization

$$
\begin{gathered}
E_{R}=E_{p}+\frac{E_{d}}{2}+\frac{E_{t}}{2} \\
E_{p}=5.2342 \mathrm{kcal} / \mathrm{mol} \\
E_{t}=7.4906 \mathrm{kcal} / \mathrm{mol}
\end{gathered}
$$

Figure S4 | Activation energy ($\Delta \mathrm{E}_{\text {act }}$) for reaction between LMB and DPI+, which generates both radicals and MB^{+}. a, Activation energy for consumption of HEMA. If we subtract the activation energies for propagation and termination, calculated to be $1.5 \mathrm{kcal} / \mathrm{mol}$ with DMPA, we obtain an $\Delta \mathrm{E}_{\text {act }}$ for initiation of $6.6 \mathrm{kcal} / \mathrm{mol}$. Intensity equal to $13 \mathrm{~mW} / \mathrm{cm}^{2}$. b, Activation energy for the production of MB^{+}after 10 s irradiation. Intensity equal to $60 \mathrm{~mW} / \mathrm{cm}^{2}$. [MB] = $0.004 \mathrm{M},[\mathrm{DIPEA}]=0.2 \mathrm{M},\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M}$. Irradiation intensity equal to $12 \mathrm{~mW} / \mathrm{cm}^{2}$. c, Activation energy for the radical initiation of HEMA with DIPEA and $\mathrm{DPI}^{+} \mathrm{Cl}^{-}$without light exposure. The same procedure was used to calculate the activation of initiation after adjusting for propagation and termination. E_{p} from Goodner et al. (in references), and E_{t} from the photopolymerization of HEMA with DMPA.

Figure S5 | Polymerization with increasing irradiation times. This shows the final plateau conversion is nearly the same in all cases, and as compared to the result with continuous irradiation. $[\mathrm{MB}]=0.004 \mathrm{M},[$ DIPEA $]=0.2 \mathrm{M},\left[\mathrm{DPI}^{+}\right]=0.04 \mathrm{M}$. Irradiation intensity equal to 12 $\mathrm{mW} / \mathrm{cm}^{2}$.

Figure S6 \| CQ/EDMAB in HEMA after exposure to 60 s irradiation at equivalent amount of photons absorbed as MB $^{+}$/DIPEA/DPI ${ }^{+}$in Fig. 4c. Picture shows low degree of monomer
conversion resulting in a liquid-like material after irradiation. Concentrations and exposure were as described in the methods section.

Figure S7 | Methylene blue extraction from poly-HEMA gel into a water solution by swelling of the loosely cross-linked network. $\left[\mathrm{MB}^{+}\right]$was monitored in time by observing the increase in light absorption around 660 nm . As the material swelled at room temperature, MB^{+}diffuses into the solvent. Thus, some of the final blue color of the polymer films can be washed out of the polymer network.

[^0]: Product complex (-515.4187148, -514.8160729)

