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Chapter 1

Introduction

In [2], Bulatov defined a higher commutator for general algebraic structures (Definition

2.9). Using this higher commutator we may define the descending central series of

higher commutators:

1A

[1A, 1A]

[1A, 1A, 1A]

[1A, 1A, 1A, 1A]

...

This series is a generalization of the descending central series for groups. This is not the

only generalization of descending central series for groups. For a general algebraic structure,

the descending central series:

1A

[1A, 1A]

[1A, [1A, 1A]]

[1A, [1A, [1A, 1A]]]

...
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is a generalization of the descending central series for groups which more closely captures the

iterative nature of the definition in groups. In particular, the descending central series uses

the binary commutator operation which it recursively applies to the previous congruence

in the series. The descending central series of higher commutators instead uses an n-ary

commutator operation to generate the nth congruence in the series.

These two generalizations of the descending central series for groups allow two gener-

alizations of nilpotence for groups. An algebra A is said to be nilpotent if the descending

central series is eventually 0A. A is said to be supernilpotent if the descending central

series of higher commutators is eventually 0A. While nilpotence in an algebra may seem a

more honest generalization of nilpotence in a group due to its iterative nature, it was shown

in [1] by Aichinger and Mudrinski that in a Mal’cev variety supernilpotence implies nilpo-

tence. In that paper, Aichinger and Mudrinski went on to show that in a Mal’cev variety

with a finite language, a finite nilpotent algebra is the product of prime power algebras if

and only if it is supernilpotent. This result shows that supernilpotence better generalizes the

property that a group is nilpotent if and only if it is the product of its Sylow subgroups. The

study of supernilpotence has driven much of the study of descending central series of higher

commutators. In [6] Kearnes and Szendrei showed that in any finite algebra, supernilpotence

inplies nilpotence. In [7] it was shown by Moore and Moorhead that supernilpotence does

not always imply nilpotence. A corollary of Theorem 5.7 in this thesis is that there exist

nonabelian simple algebras which are supernilpotent. Such algebras cannot be nilpotent.

The importance of supernilpotence leads us to desire more understanding of the de-

scending central series of higher commutators. The goal of this thesis is to determine the

order theoretic properties of the descending central series of higher commutators in the con-

gruence lattice of a simple algebra. In general, representation theorems are used to show that

a list of properties for some concept is comprehensive. This thesis will establish a representa-

tion theorem for descending central series of higher commutators. Higher commutators sat-

isfy [α0, α1, . . . , αn] ≤ [α1, . . . , αn] for congruences α0, α1, . . . , αn (see Proposition 2.10 (2)).
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So the descending central series of higher commutators is weakly descending. More precisely,

the descending central series of higher commutators forms a weakly descending chain in the

lattice of congruences of A. A simple algebra is an algebra whose congruence lattice is the

two element lattice. We separate all weakly descending chains θ1 ≥ θ2 ≥ θ3,≥ . . . in a

two element lattice, L = 〈{0, 1};≤L〉, with θ1 = 1 into three types. We can have a weakly

descending chain which never descends, so θm = 1 for all m. We can have a chain which

immediately descends, so θm = 0 for all m ≥ 2. And finally we can have the general case

where there is some n ≥ 2 with

θ1 = θ2 = · · · = θn = 1

and

θn+1 = θn+2 = · · · = 0.

This thesis will establish that any of these possibilities may be represented as the descending

central series of higher commutators in the congruence lattice of a simple algebra. Repre-

senting the first two possibilities is not difficult. Since the descending central series of higher

commutators is a generalization of the descending central series for groups, representing a

weakly descending chain in the two element lattice which never descends can be done by

finding a simple group which is not abelian. We may use, for example, the alternating group

on five elements. Representing a weakly descending chain in the two element lattice which

immediately descends will be done by finding a simple group which is abelian. The two ele-

ment group is one such group. Our main theorem will construct an algebra which represents

the general case.



Chapter 2

Preliminaries

This chapter is devoted to presenting the basic definitions and properties needed to

understand the rest of this thesis. The intent is to carefully define the basic notions to

agree with their use throughout this thesis. Though an example from groups is used to

make the definition of the commutator more accessible, this chapter does not attempt to

give a comprehensive introduction to the study of binary and higher commutators in general

algebra. For a more in depth exposition on the binary commutator see [3] and [4]. For more

on higher commutators see [1], [8], and [9].

Remark 2.1. It will be convenient to now state standardized notation for tuples in the rest

of this thesis. A tuple will be represented by a bold letter, e.g. p,x,x1. The components

of a tuple will be represented by non-bold letters which match the tuple name and are

subscripted by non-zero natural numbers. If a letter has two subscripts, we will separate

them by commas. So given tuples p,x,x1 of lengths k, l, and m, respectively, our convention

will be p = (p1, p2, . . . , pk), x = (x1, x2, . . . , xl), x1 = (x1,1, x1,2, . . . x1,m).

Definitions 2.2.

(1) A language for an algebra (or just a language in the rest of this thesis) is a set

of function symbols F together with an arity function Ar : F → ω. For a function

symbol f ∈ F we call the natural number Ar(f) the arity of f .



5

(2) A partial algebra A = 〈A;F 〉 in the language F is a nonempty set A together

with a set of functions

F = { fA : dmn(fA)→ A | f ∈ F , dmn(fA) ⊆ AAr(f), and dmn(fA) 6= ∅ }.

We call the functions in F the fundamental operations of A. We call the set A

the universe of A.

(3) For c ∈ F with Ar(c) = 0 we call c a constant symbol and cA a constant of A.

We identify constants with the one element of A which they output.

(4) An algebra in the language of F is a partial algebra A such that for all f ∈ F , fA

has domain dmn(fA) = AAr(f).

Definition 2.3. Let A = 〈A;F 〉 be a partial algebra. A congruence on A is an equivalence

relation α on A such that for any function symbol f ∈ F and tuples p,q ∈ dmn(fA),

if pi ≡α qi for all 1 ≤ i ≤ Ar(f), then fA(p) ≡α fA(q).

If A is an algebra, the congruences of A form a lattice ordered under ⊆. We call this

lattice Con(A) the congruence lattice of A.

Definition 2.4. Let F be a language and let X be a nonempty set. We define a term in

the language F with variables from X recursively as follows.

(1) Any x ∈ X is a term.

(2) Any constant symbol is a term.

(3) If f is a function symbol and τ1, . . . , τAr(f) are terms, then f(τ1, . . . , τAr(f)) is a term.

If a term is generated by rule (3), we call the function symbol f in the definition the outer

function symbol of τ . “τ(x1, . . . , xm) is a term in the language F” is shorthand for

the statement, “τ is a term in the language F with variables from the set {x1, . . . , xm }”.
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Note that a term τ is syntactical object, i.e. τ is just a formal string of symbols. The

length of a term |τ | will just be the number of symbols in τ . Thus by the shortest term

satisfying some property P , we mean a term τ satisfying P such that if σ is any other term

satisfying P , we have |τ | ≤ |σ|. The next definition describes how an algebra may attribute

a semantical interpretation to a term.

Definition 2.5. Let A = 〈A;F 〉 be an algebra and let τ(x1, . . . , xm) be a term in the

language of A. We define the function

τA : Am → A

recursively as follows.

(1) If τ is the variable xi for some i ∈ { 1, . . . ,m }, τA is the function

τA : (p1, . . . , pm) 7→ pi.

(2) If τ is the constant symbol c, τA is the constant function

τA : (p1, . . . , pm) 7→ cA.

(3) If there exists a function symbol f and terms τ1, . . . , τAr(f) such that τ is the term

f(τ1, . . . , τAr(f)), then τA is the function

τA : (p1, . . . , pm) 7→ fA(τA1 (p1, . . . , pm), . . . , τAAr(f)(p1, . . . , pm))

Example 2.6.

• Any group G is an example of an algebra.

• The language of G is {·,−1 ; e}

• For each normal subgroup N of G the equivalence relation whose equivalence classes

are the cosets of N is a congruence of G. All congruences are of this form.
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• The lattice of normal subgroups of G is isomorphic to the lattice of congruences of

G.

∗ 1G corresponds to G.

∗ 0G correstponds to {eG}.

• τ(x, y) = (((x−1 · y−1) · x) · y) is a term in the language of G.

τG : G2 → G

(a, b) 7→ a−1b−1ab

Definitions 2.7. Let A be an algebra. Let α1, . . . , αn be congruences on A.

(1) Let τ(x1, . . . ,xn) be a term in the language of A. Let p0
1,p

1
1,p

0
2,p

1
2, . . . ,p

0
n,p

1
n be tu-

ples of elements from A with |p0
i | = |p1

i | = |xi| and p0
i ≡αi

p1
i for i ∈ { 1, . . . , n }. The

(α1, α2, α3, . . . , αn)-term cube generated by τA on tuples p0
1,p

1
1,p

0
2,p

1
2, . . . ,p

0
n,p

1
n

is the 2n tuple

(r1, r2, r3, . . . , r2n)

with

ri = τA(pi11 ,p
i2
2 , . . . ,p

in
n ) where i− 1 =

n−1∑
j=0

in−j2
j.

Note ij is the jth digit of the number i − 1 written in binary. We call ri the ith

vertex of the (α1, . . . , αn)-term cube.

(2) If

r = τA(pi11 ,p
i2
2 , . . . ,p

ik
k , . . . ,p

in
n )

is a vertex on the term cube above, we say we move in the kth dimension along

the term cube (r1, r2, r3, . . . , r2n) from r to s to indicate that s is the vertex

s = τA(pi11 ,p
i2
2 , . . . ,p

jk
k , . . . ,p

in
n )
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where jk ≡ ik + 1(mod 2). We will often say, “move in the kth dimension from r

to s” if the term cube is understood from context. Note that if we move in the kth

dimension from r to s we have that r ≡αk
s.

(3) Let δ be a congruence on A. We say C(α1, α2, α3, . . . , αn; δ) holds if every (α1, . . . , αn)-

term cube (r1, r2, r3, . . . , r2n) generated in A has the property that

r2i−1 ≡δ r2i for all 1 ≤ i ≤ 2n−1 − 1 implies r2n−1 ≡δ r2n .

Proposition 2.8. Let A be an algebra. Let α1, . . . , αn be congruences on A. For a collection

of congruences { δi | i ∈ I } such that C(α1, α2, α3, . . . , αn; δi) holds for each i ∈ I, we have

that C(α1, α2, α3, . . . , αn;
∧
i∈I δi) holds as well.

Proof. Suppose { δi | i ∈ I } is a collection of congruences such that C(α1, α2, α3, . . . , αn; δi)

holds for each i ∈ I. Set δ =
∧
i∈I δi. Let (r1, r2, r3, . . . , r2n) be an (α1, . . . , αn)-term cube.

Suppose r2j−1 ≡δ r2j for all 1 ≤ j ≤ 2n−1 − 1. For all i ∈ I, we have that δ ≤ δi. So

r2j−1 ≡δi r2j for all 1 ≤ j ≤ 2n−1 − 1. Since C(α1, α2, α3, . . . , αn; δi) holds, we get that

r2n−1 ≡δi r2n . This was true for all i ∈ I, so r2n−1 ≡δ r2n , as desired.

Proposition 2.8 allows us to make the following definition.

Definition 2.9. Let A be an algebra. Let α1, . . . , αn be congruences on A. The n-

commutator [α1, α2, α3, . . . , αn] is the smallest congruence δ such that C(α1, α2, α3, . . . , αn; δ)

holds.

Proposition 2.10. Let A be an algebra. Let α0, α1, . . . , αn be congruences on A. The

following inequalities hold in Con(A).

(1) [α1, . . . , αn] ≤
∧n
i=1 αi

(2) [α0, . . . , αn, αn] ≤ [α1, . . . , αn].



9

Proof. To prove (1) we will show that C(α1, . . . , αn;αi) holds for all i ∈ { 1, . . . , n }. Suppose

(r1, r2, r3, . . . , r2n) is an (α1, . . . , αn)-term cube with r2j−1 ≡αi
r2j for all 1 ≤ j ≤ 2n−1 − 1.

Move in the ith dimension from r2n−1 to s. Then r2n−1 ≡αi
s. Now move in the nth dimension

from s to t. We will have s ≡αi
t from our assumption. Finally, move in the ith dimension

from t to u. We will have t ≡αi
u. Further, we know u = r2n by the definition of moving in

the kth direction. We then have r2n−1 ≡αi
s ≡αi

t ≡αi
r2n . So r2n−1 ≡αi

r2n as desired.

To prove (2) we will show that C(α0, α1, . . . , αn; [α1, . . . , αn]) holds. To show this we’ll

prove that if C(α1, . . . , αn; δ) holds, then C(α0, α1, . . . , αn; δ) holds. In fact, we’ll prove

the contrapositive of this statement. If C(α0, α1, . . . , αn; δ) does not hold then there exists

an (α0, α1, . . . , αn)-term cube (r1, r2, r3, . . . , r2n+1) such that r2j−1 ≡δ r2j for all 1 ≤ j ≤

2n − 1 and r2n+1−1 6≡δ r2n+1 . Observe that the hyperface (r2n+1, r2n+2, r2n+3 . . . , r2n+1) is an

(α1, . . . , αn)-term cube with r2n+1−1 6≡δ r2n+1 . Thus C(α1, . . . , αn; δ) does not hold.



Chapter 3

Notation in Simple Algebras

In this thesis the algebra that we analyze, A, will be simple, i.e. our algebra will only

have two congruences, 1A and 0A. We will take advantage of this fact to allow ourselves to

simplify our arguments in two ways. First, we recall that in the congruence lattice of A,

Con(A), from Proposition 2.10 (1) we have [α1, α2, . . . , αn] ≤ αi for all 1 ≤ i ≤ n. So in a

simple algebra, we have:

If there exists an i with αi = 0A then [α1, α2, . . . , αn] = 0A.

Thus we will only be concerned with higher commutators of all 1A’s. Second, we will simplify

notation from what is normally needed to discuss higher commutators in a general algebra.

This chapter is devoted to describing our simplified notation.

Definition 3.1. Let τ(x1, . . . ,xn) be a term in the language of A. The n-term cube for

τA on tuples p0
1,p

1
1,p

0
2,p

1
2, . . . ,p

0
n,p

1
n is the 2n tuple

Cn
τA(p0

1,p
1
1; p

0
2,p

1
2; . . . ; p

0
n,p

1
n) = (r1, r2, r3, . . . , r2n)

with

ri = τA(pi11 ,p
i2
2 , . . . ,p

in
n ) where i− 1 =

n−1∑
j=0

in−j2
j.

Note ij is the jth digit of the number i − 1 written in binary. We call ri the ith vertex of

the n-term cube. We will write Cn
τA(pi,qi) for the term cube where p0

i = pi and p1
i = qi for

1 ≤ i ≤ n. I.e.

Cn
τA(pi,qi) = Cn

τA(p1,q1; p2,q2; . . . ; pn,qn).
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We will sometimes write Cn
τA as the n-term cube for τA if the tuples are understood from con-

text. We will call C2
τA(pi,qi) the term square for τA on p1,q1,p2,q2 and write SτA(pi,qi).

We will display

SτA(pi,qi) = (r1, r2, r3, r4)

pictorially as in Figure 3.1.

τA(p1,p2) = r1

τA(p1,q2) = r2

r3 = τA(q1,p2)

r4 = τA(q1,q2)

Figure 3.1: A pictorial representation of SτA(pi,qi).

We will call C3
τA(pi,qi) the term cube for τA on p1,q1,p2,q2,p3,q3 and write

CτA(pi,qi). We will display

CτA(pi,qi) = (r1, r2, r3, r4, r5, r6, r7, r8)

pictorially as in Figure 3.2.

τA(p1,p2,p3) = r1

τA(p1,p2,q3) = r2

r3 = τA(p1,q2,p3)

r4 = τA(p1,q2,q3)

τA(q1,p2,p3) = r5

τA(q1,p2,q3) = r6

r7 = τA(q1,q2,p3)

r8 = τA(q1,q2,q3)

Figure 3.2: A pictorial representation of CτA(pi,qi).

Definition 3.2. We say that an algebra A fails the n-dimensional term condition if

there exists a term in the language of A, τ(x1, . . . ,xn), and tuples p1, . . . ,pn and q1, . . . ,qn

such that

Cn
τA(pi,qi) = (r1, r2, r3, . . . , r2n)
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has

r2i−1 = r2i for all 1 ≤ i ≤ 2n−1 − 1

and

r2n−1 6= r2n .

We say the term τ above witnesses the failure of the n-dimensional term condition. An

algebra satisfies the n-dimensional term condition if it does not fail the n-dimensional term

condition. The 2-dimensional and 3-dimensional term condition may be displayed pictorially

as in Figure 3.3. If there is a term whose n-term cube has equality along the bold vertical

lines and inequality along the dashed vertical lines, then the algebra fails the n-dimensional

term condition for n = 2 or 3, respectively. We call the dashed vertical edge the critical

edge for this reason.

r1

r2

r3

r4

r1

r2

r3

r4

r5

r6

r7

r8

Figure 3.3: Pictorial representations of the 2-dimensional and 3-dimensional term conditions.

Remark 3.3. The n commutator [1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] equals 0A if and only if A satisfies the

n-dimensional term condition.

Definition 3.4. An algebra A is abelian if [1A, 1A] = 0A.

Example 3.5. As in Example 2.6, let G be a group. τ(x, y) = (((x−1 · y−1) ·x) · y) is a term

in the language of G. If a, b ∈ G and eG = e, one term square for τ is:

τG(e, e) = e

τG(e, b) = e

e = τG(a, e)

a−1b−1ab = τG(a, b)
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Note that if [1G, 1G] = 0G, the equality along the left vertical edge implies equality along the

right vertical edge. So we get

a−1b−1ab = e.

Therefore, if G is abelian in the sense of the general commutator, [1G, 1G] = 0G, then for all

a, b ∈ G we have ab = ba. So G will be commutative, as we would hope.

Conversely, if G is commutative, then every group term operation reduces to a sum

of unary functions, and this representation for term operations can be used to verify that

[1G, 1G] = 0G for any commutative group.

Definition 3.6. Let τ(x1, . . . , xn) be a term in the language of A. For xi ∈ {x1, . . . , xn },

we say τA depends on xi if there exist tuples p,q ∈ An with pj = qj for j ∈ { 1, . . . , i −

1, i + 1, . . . , n } and pi 6= qi such that τA(p) 6= τA(q). τA is essentially unary if τA is

constant or τA depends on only one of its variables.

Lemma 3.7. Let τ be a term in the language of A. If τA is essentially unary, then any

term cube derived from τA has two parallel, constant hyperfaces.

Proof. Suppose that τA depends on at most xi. Since τA is then independent of all other

variables, the vertices cannot change when moving in a dimension perpendicular to the ith

dimension. Thus any hyperface perpendicular to the ith direction is constant.



Chapter 4

The Construction

Fix n ≥ 2 for the remainder of this thesis. In this chapter we will define the algebra

A which represents the general case of a weakly descending chain in a two element lattice

as the descending central series of higher commutators. In particular, A will be a simple

algebra satisfying [1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A and [1A, 1A, . . . , 1A, 1A︸ ︷︷ ︸
n+1 many

] = 1A. Though not explicit

in our notation, the constructed algebra A will depend on the fixed number n.

To define the algebra A we will first need to recursively define an ω-sequence of partial

algebras. Each algebra in the sequence will extend the previous one. We will then take

the union of the universes of these algebras to get the universe for our algebra A and

we will union the fundamental operations of these algebras to form the only non-unary

fundamental operation of our algebra A. The first partial algebra in the sequence A0 will

have a fundamental operation fA0
0 which ensures that A will ultimately fail the n-dimensional

term condition. The following partial algebras, Ai+1 for i ∈ ω, will be defined to freely extend

fA0
0 to a fundamental operation f

Ai+1

i+1 which will be defined on all n-tuples of elements from

the previous universe Ai. This will ensure that the union of the operations fA =
⋃
fAi
i will

be defined on all n-tuples of elements from the universe A =
⋃
Ai and fA will witness the

failure of the n-dimensional term condition.

Definition 4.1. To define the universe A0 of our first algebra A0 we will first need to define

the set

B = { ai,j | 1 ≤ i ≤ n and j ∈ ω } ∪ { bi,j | 1 ≤ i ≤ n and j ∈ ω }.
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For convenience we set ai = ai,0 and bi = bi,0 for 1 ≤ i ≤ n and

C = { a1, . . . , an, b1, . . . , bn}.

We now define the first partial algebra A0. A0 will be constructed to ensure that A will fail

the n-dimensional term condition. The universe of A0 will be

A0 = B ∪ { di | 1 ≤ i ≤ 2n−1 + 1 } ∪ { c }.

The language of A0 will have one n-ary function symbol f0. A0 will interpret this function

symbol as the fundamental operation fA0
0 with domain

dmn(fA0
0 ) = { (x1, x2, . . . , xn) | xi ∈ { ai, bi } }

so that the term f0(x1, . . . , xn) has n-term cube

Cn

f
A0
0

(ai, bi) = (d1, d1, d2, d2, . . . , d2n−1−1, d2n−1−1, d2n−1 , d2n−1+1).

More precisely, fA0
0 is defined as follows.

fA0
0 (a1, a2, a3, . . . , an−2, an−1, an) = d1

f0(
A0a1, a2, a3, . . . , an−2, an−1, bn) = d1

fA0
0 (a1, a2, a3, . . . , an−2, bn−1, an) = d2

fA0
0 (a1, a2, a3, . . . , an−2, bn−1, bn) = d2

fA0
0 (a1, a2, a3, . . . , bn−2, an−1, an) = d3

fA0
0 (a1, a2, a3, . . . , bn−2, an−1, bn) = d3

...

fA0
0 (b1, b2, b3, . . . , bn−2, an−1, an) = d2n−1−1

fA0
0 (b1, b2, b3, . . . , bn−2, an−1, bn) = d2n−1−1

fA0
0 (b1, b2, b3, . . . , bn−2, bn−1, an) = d2n−1

fA0
0 (b1, b2, b3, . . . , bn−2, bn−1, bn) = d2n−1+1.
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Next we define Ai+1 for i ∈ ω. Each Ai+1 is constructed to extend the previous Ai as freely

as possible, ensuring f
Ai+1

i+1 extends fAi
i while not introducing any new failures of injectivity.

I.e. f
Ai+1

i+1 will be injective as a function restricted to the domain dmn(f
Ai+1

i+1 ) \ dmn(fAi
i ).

This is what ultimately allows A to satisfy the (n + 1)-dimensional term condition. The

universe of Ai+1 will be

Ai+1 = Ai ∪ ((Ani \ dmn(fi))× { i }).

The language of Ai+1 will have one n-ary function symbol fi+1. Ai+1 will interpret this

function symbol as the fundamental operation with domain

dmn(f
Ai+1

i+1 ) = Ani

and

f
Ai+1

i+1 (x) =


fAi
i (x) for x ∈ dmn(fAi

i )

(x, i) otherwise.

We are now ready to define our desired algebra A. The universe of A will be A =⋃
i∈ω Ai. The language of A will have the following set of function symbols:

Fcn = { f, u } ∪ {upqr | (p, q, r) ∈ (A \B)3 and p, q, r are pairwise distinct }.

f will have arity n and the rest of the function symbols will be unary. We will set fA =⋃
i∈ω f

Ai
i . For any triple (p, q, r) ∈ (A \B)3 with p, q, r pairwise distinct we will set

uApqr(x) =



q if x = p

r if x = q

p if x = r

ai,j+1 if x = ai,j

bi,j+1 if x = bi,j

x otherwise.
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Finally, A will interpret u as a permutation, written in cycle notation as

uA = ( a1 b1 a2 b2 . . . an bn c ).

Note that fA is well defined since each f
Ai+1

i+1 is an extension of fAi
i . Further note that fA

has domain dmn(fA) = An and each unary function symbol υ has dmn(υA) = A, so that A

is in fact an algebra, not just a partial algebra.

Remark 4.2. We list some useful observations about A here.

(1) All of the unary fundamental operations of A are injective. This is because uApqr is

defined only on pairwise distinct p, q, and r to ensure uApqr is injective and uA is a

permutation.

(2) The range of fA does not intersect B. In fact, for any p ∈ An either p ∈ dmn(fA0
0 )

in which case there is some i ∈ { 1, 2, . . . , 2n−1+1 } with fA(p) = di or p /∈ dmn(fA
0 )

and f(p) = (p, j) where j ∈ ω is the smallest natural number with p ∈ dmn(f
Aj+1

j+1 ).

(3) uA is the only fundamental operation with any element of C in its range. Indeed,

for (p, q, r) ∈ (A\B)3 with p, q, r pairwise distinct, uApqr has range rng(uApqr) = A\C.

By (2) above, fA does not have any element of B in its range and C ⊆ B so fA

does not have any element of C in its range.

Lemma 4.3. If fA(p) = fA(q) and p 6= q, then p,q ∈ dmn(fA0
0 ).

Proof. Assume p,q ∈ An are tuples such that fA(p) = fA(q) and p 6= q. Let k be the

smallest index such that p ∈ dmn(fAk
k ). Suppose for contradiction k 6= 0. Then

fA(p) = fAk
k (p) = (p, k − 1).

Now as in Remark 4.2 (2) above, either there exists some i ∈ { 1, 2, . . . , 2n−1 + 1 } with

fA(q) = di or there exists some j ∈ ω with fA(q) = (q, j). But in any of these cases

(p, k − 1) 6= di and (p, k − 1) 6= (q, j).
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Thus fA(p) 6= fA(q), a contradiction. So k = 0. Thus p ∈ dmn(fA0
0 ). Switching the roles

of p and q above, we get q ∈ dmn(fA0
0 ) as well.



Chapter 5

The Theorem

In this chapter we prove that the algebra A constructed in Chapter 4 has the properties

(1) A is simple

(2) [1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A

(3) [1A, 1A, . . . , 1A, 1A︸ ︷︷ ︸
n+1 many

] = 1A

as desired in the beginning of Chapter 4. At the end of this chapter we summarize our main

results in a theorem.

Proposition 5.1. A is simple.

Proof. Suppose θ ∈ Con(A) has (p, q) ∈ θ with p 6= q. We will show that θ = 1A. It will

suffice to show that for all r ∈ A we have (q, r) ∈ θ.

It will be advantageous to have that p and q are not elements of B and that q 6= c.

Observe that since θ is a congruence,

(fA(p, p, . . . , p), fA(q, q, . . . , q)) ∈ θ.

By Lemma 4.3, since dmn(fA0
0 ) contains no tuples with all entries equal,

fA(p, p, . . . , p) 6= fA(q, q, . . . , q).
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Finally, by Remark 4.2 (2),

fA(p, p, . . . , p), fA(q, q, . . . , q) ∈ A \B

and further f(q, q, . . . , q) 6= c. If either p or q is in B, or if q = c, replace p by fA(p, p, . . . , p)

and replace q by fA(q, q, . . . , q). We may assume from now on that p and q are both elements

of A \B and q 6= c.

Let r ∈ A \ B. If r ∈ { p, q } then since θ is an equivalence relation, (q, r) ∈ θ. If

r /∈ { p, q }, then A has a fundamental operation uApqr. Since (p, q) ∈ θ, we have (q, r) =

(uApqr(p), u
A
pqr(q)) ∈ θ.

To show that all elements of B are θ related to q, first note that c ∈ A \B, so we have

that (q, c) ∈ θ by the previous paragraph. Thus for all k ∈ ω we have ((uA)k(q), (uA)k(c)) ∈

θ. This gives us that (q, ai) and (q, bi) are in θ for all 1 ≤ i ≤ n. We are left to show that

(q, ai,j) and (q, bi,j) are in θ for all 1 ≤ i ≤ n and all j ≥ 1. Let p1, p2, p3 be pairwise distinct

elements of A \ (B ∪ { q }). Then for all j ≥ 1, (q, ai,j) = ((uAp1p2p3)
j(q), (uAp1p2p3)

j(ai)) ∈ θ.

Similarly for all j ≥ 1, (q, bi,j) is in θ.

We have thus shown for all r ∈ A that (q, r) ∈ θ, as desired.

Proposition 5.2. [1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A.

We prove this proposition first for the case when n = 2. We do this so that the reader

may more easily understand the core of the argument and have pictures for reference. The

proof for arbitrary n follows a very similar structure to the n = 2 proof, and in fact works

when n = 2.

Proof for n = 2. Consider the term f(x, y). Observe in Figure 5.1 that the term square

SfA(ai, bi) has an inequality on its critical edge. So [1A, 1A] 6= 0A. Since A is simple,

[1A, 1A] = 1A as desired.
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fA(a1, a2) = d1

fA(a1, b2) = d1

d2 = fA(b1, a2)

d3 = fA(b1, b2)

Figure 5.1: SfA(ai, bi).

Proof. For the term f(x1, . . . , xn) we have

Cn
fA(ai, bi) = (d1, d1, d2, d2, . . . , d2n−1−1, d2n−1−1, d2n−1 , d2n−1+1).

Note that

d2n−1 6= d2n−1+1.

So f fails the n-dimensional term condition. Thus

[1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] 6= 0A.

Since A is simple, we must have

[1A, 1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A.

Definition 5.3. Let τ(x1, . . . , xk) be a term in the language of A. We will say τA is

essentially a power of uA to indicate that there exists some i ∈ { 1, . . . , k } and some

m ∈ ω such that τA(x1, . . . , xk) = (uA)m(xi). Note that we consider (uA)0(x) = x.

Lemma 5.4. Let τ(x) be a term in the language of A. If τA(p) 6= τA(q) and τA(p), τA(q) ∈

C, then τA is essentially a power of uA.

Proof. Suppose there is a counterexample to the claim. Let τ be the shortest such coun-

terexample. I.e. let τ be a k-ary term such that τA is not essentially a power of uA and

there are fixed p and q with τA(p) 6= τA(q) and τA(p), τA(q) ∈ C.
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Note that we know τA(x) 6= xi for 1 ≤ i ≤ k by assumption. We consider the

outer function symbol of τ . By Remark 4.2 (3) we must have some term σ1 such that

τ(x) = u(σ1(x)).

Recall that uA is the permutation

uA = ( a1 b1 a2 b2 . . . an bn c ).

So uA(σA
1 (p)) 6= uA(σA

2 (q)) gives σA
1 (p) 6= σA

1 (q) and τA(p), τA(q) ∈ C gives σA
1 (p), σA

1 (q) ∈

C ∪ { c }. Since τA is not essentially a power of uA, neither is σA
1 . Since τ is the shortest

counterexample, we cannot have both σA
1 (p) and σA

1 (q) in C. Thus we must have one of

σA
1 (p) or σA

1 (q) equal to c. Relabel p and q so that σA
1 (p) = c. Then σA

1 (q) ∈ C. By

Remark 4.2 (3) again we must have some term σ2 such that σ1(x) = u(σ2(x)).

Since σA
1 (p) = c we have σA

2 (p) = bn. Since σA
1 (q) ∈ C we have σA

2 (q) ∈ C ∪ { c }.

Note that σA
2 is not essentially a power of uA since σA

1 is not. Again, since τ is the shortest

counterexample we must have σA
2 (q) = c. By Remark 4.2 (3) once more, since σA

2 (p) ∈ C,

there must be some term σ3 such that σ2(x) = u(σ3(x)).

Noting the definition of uA again, we observe that σA
3 (p) = an and σA

3 (q) = bn.

These are both elements of C, but σA
3 is not essentially a power of uA since σA

2 isn’t, so

we have a shorter counterexample to the statement than τ . This is a contradiction, so no

counterexample exists.

Lemma 5.5. Suppose Cn
τA(pi,qi) = (r1, r2, . . . , r2n) has its first vertex r1 equal to all of its

adjacent vertices. I.e. suppose that

r1 = r20+1 = r21+1 = r22+1 = · · · = r2n−1+1.

Then the n-term cube is constant, that is

Cn
τA(pi,qi) = (r1, r1, . . . , r1).

Proof. We will prove this lemma by contradiction. To that end, suppose τ is the shortest

term in the language of A such that there exist tuples pi,qi for 1 ≤ i ≤ n such that
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Cn
τA(pi,qi) = (r1, r2, . . . , r2n) has its first vertex equal to all adjacent vertices but Cn

τA(pi,qi)

is not constant.

Suppose that τA is essentially unary. Then since Cn
τA(pi,qi) is not constant, there is

an inequality along an edge. Since τA is essentially unary, all parallel edges must then also

have an inequality. This would mean that one of the vertices adjacent to r1 could not be

equal to r1, a contradiction. Thus τA is not essentially unary. From this we conclude that

τ is not a variable.

Suppose τ has one of the unary function symbols as its outer function symbol, that is

suppose τ = υ(σ) for some fundamental unary function symbol υ and some term σ. Then as

in Remark 4.2 (1), υA is injective. Thus we must have that σ is a term which is shorter than

τ such that CσA(pi,qi) = (r1, r2, . . . , r2n) has its first vertex equal to all adjacent vertices but

Cn
σA(pi,qi) is not constant, contradicting the assumption that τ is the shortest such term.

Suppose τ has outer function symbol f , that is suppose τ = f(σ1, σ2, . . . , σn) for terms

σ1, σ2, . . . , σn. Label

Cn
σA
i

(pi,qi) = (si,1, si,2, . . . , si,2n).

Since Cn
τA is not constant, we know that there exists j ∈ { 1, . . . , n } such that Cn

σA
j

is not

constant. Fix j such that Cn
σA
j

is not constant. Since σj is shorter than τ , we know that Cn
σA
j

cannot have its first vertex equal to all adjacent vertices. Thus we may fix k such that sj,k

is adjacent to sj,1 and sj,k 6= sj,1. Note that rk is adjacent to r1 so r1 = rk. The reader may

want to refer to Figure 5.2 to see a potential configuration at this point in the proof.

We then have

fA(s1,1, s2,1, . . . , sn,1) = r1 = rk = fA(s1,k, s2,k, . . . , sn,k)

but

(s1,1, s2,1, . . . , sn,1) 6= (s1,k, s2,k, . . . , sn,k).

By Lemma 4.3 we see that we must have

(s1,1, s2,1, . . . , sn,1), (s1,k, s2,k, . . . , sn,k) ∈ dmn(fA0
0 ).
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fA

CσA
1

s1,1

s1,2

s1,3

s1,4

s1,5

s1,6

s1,7

s1,8

CσA
2

s2,1

s2,2

s2,3

s2,4

s2,5

s2,6

s2,7

s2,8

CσA
3

s3,1

s3,2

s3,3

s3,4

s3,5

s3,6

s3,7

s3,8
=

CτA

r1

r2

r3

r4

r5

r6

r7

r8

Figure 5.2: One possible configuration near the beginning of the proof of Lemma 5.5. In
this picture we have n = 3, j = 2, k = 3. The inequality r4 6= r8 in CτA is representing
the assumption that CτA is not constant. The inequality r4 6= r8 forces an inequality in one
of the cubes. The cube that turned out to have this inequality was CσA

2
. We may further

observe that the forced inequality had to be along the same edge in CσA
2

as in CτA , thus

the inequality s2,4 6= s2,8. Since σA
2 cannot be a shorter counterexample to the assumptions

than τ , we had to have an inequality between s2,1 and one of its adjacent vertices. In this
configuration that inequality is s2,1 6= s2,3.

Note that fA0
0 (x) = fA0

0 (y) only when the tuples x and y agree on their first n− 1 entries.

So we must have si,1 = si,k for all 1 ≤ i ≤ n − 1. So the fact that sj,k 6= sj,1 tells us that

j = n. Observe that since (s1,1, s2,1, . . . , sn,1) ∈ dmn(fA0
0 ) there must be some l such that

r1 = dl. We then know that all vertices adjacent to r1 in Cn
τA are also equal to dl. Figure

5.3 gives an updated potential configuration at this point in the proof.

Again using that fA0
0 (x) = fA0

0 (y) only when the tuples x and y agree on their first

n−1 entries, the fact that all vertices adjacent to r1 are dl gives that for all 1 ≤ i ≤ n−1 any

vertex adjacent to si,1 in Cn
σA
i

is in fact equal to si,1. Since each σi is shorter than τ , we have

that Cn
σA
i

is constant for all 1 ≤ i ≤ n− 1. We consider Cn
σA
n

. We know that sn,1 6= sn,k and

since (s1,1, s2,1, . . . , sn,1), (s1,k, s2,k, . . . , sn,k) ∈ dmn(fA0
0 ) we further have that sn,1, sn,k ∈ C.

From this Lemma 5.4 gives us that σA
n is essentially a power of (uA)m. Important in this

fact is that σA
n is essentially unary and thus all vertices of Cn

σA
n

are either sn,1 or sn,k. See

Figure 5.4 for the configuration just before reaching our contradiction.

We are at a point where for 1 ≤ i ≤ n − 1, Cn
σi

is the constant cube (si,1, si,1, . . . si,1)

and each corner of Cn
σn is either sn,1 or sn,k. So each corner of Cn

τA is either computed by

f(s1,1, . . . , sn−1,1, sn,1) = dl or f(s1,1, . . . , sn−1,1, sn,k) = f(s1,k, . . . , sn−1,k, sn,k) = dl. Thus
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fA

CσA
1

s1,1

s1,2

s1,3

s1,4

s1,5

s1,6

s1,7

s1,8

CσA
2

s2,1

s2,2

s2,3

s2,4

s2,5

s2,6

s2,7

s2,8

CσA
3

s3,1

s3,2

s3,3

s3,4

s3,5

s3,6

s3,7

s3,8
=

CτA

dl

dl

dl

r4

dl

r6

r7

r8

Figure 5.3: Further on in the proof of Lemma 5.5, we see that for n = 3, we must have j = 3.
This picture still has k = 3.

Cn
τA must be the constant cube with all vertices dl, a contradiction.

We have thus found that τ may not be a variable, and τ may not have any symbol in

the language of A as its outer function symbol. Thus no such τ may exist, as desired.

Proposition 5.6. [1A, 1A, . . . , 1A︸ ︷︷ ︸
n+1 many

] = 0A.

For similar reasons to those in Proposition 5.2, we first prove this proposition when

n = 2, then follow with the proof for the general case.

Proof for n = 2. We will prove this proposition by contradiction. To that end, suppose

[1A, 1A, 1A] 6= 0A.

Let τ(x1,x2,x3) be the shortest term witnessing the failure of the 3-dimensional term con-

dition.

If τA were essentially unary, then the inequality along the critical edge of CτA would

imply inequality along the three bold vertical edges (see Figure 5.5) contradicting τ being

a witness to the failure of the 3-dimensional term condition. Thus τA cannot be essentially

unary. So τ is not a variable.

Suppose there is a unary function symbol υ and term σ such that

τ(x1,x2,x3) = υ(σ(x1,x2,x3)).

Noting that υA is injective, as in Remark 4.2 (1), we see that σ will be a shorter term

witnessing the failure of the 3-dimensional term condition, a contradiction.
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fA

CσA
1

s1,1

s1,2

s1,3

s1,4

s1,5

s1,6

s1,7

s1,8

CσA
2

s2,1

s2,2

s2,3

s2,4

s2,5

s2,6

s2,7

s2,8

CσA
3

s3,1

s3,2

s3,3

s3,4

s3,5

s3,6

s3,7

s3,8
=

CτA

dl

dl

dl

r4

dl

r6

r7

r8

Figure 5.4: One possible configuration near the end of the proof of Lemma 5.5. We have
j = 3 as required when n = 3. This picture still has k = 3. We’ve seen that the first two
cubes had to be constant and the two inequalities in CσA

3
had to be parallel because σA

3 is
essentially unary. This meant the direction of the inequality in CτA had to be switched as
well.

Suppose there are terms σ1, σ2 such that

τ(x1,x2,x3) = f(σ1(x1,x2,x3), σ2(x1,x2,x3)).

Let CτA(pi,qi) = (r1, r2, . . . , r8) witness the failure of the 3-dimensional term condition, as

in Figure 5.5.

Label the term cubes CσA
1

(pi,qi) = (s1, s2, . . . , s8) and CσA
2

(pi,qi) = (t1, t2, . . . , t8) as

in Figure 5.6. Since

f(s7, t7) = r7 6= r8 = f(s8, t8)

we know that

(s7, t7) 6= (s8, t8).

So s7 6= s8 or t7 6= t8. Since σ1 and σ2 are both shorter terms than τ , we know that neither

witnesses the failure of the 3-dimensional term condition. Thus there must be a failure in

equality along a non-critical vertical edge in CσA
1

(pi,qi) or CσA
2

(pi,qi), respectively. I.e.

there is some j with 1 ≤ j ≤ 3 such that

s2j−1 6= s2j or t2j−1 6= t2j.

In either case

(s2j−1, t2j−1) 6= (s2j, t2j).
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r1

r2

r3

r4

r5

r6

r7

r8

Figure 5.5: CτA(pi,qi)

Observe that

fA(s2j−1, t2j−1) = r2j−1 = r2j = fA(s2j, t2j).

By Lemma 4.3 we get that

(s2j−1, t2j−1), (s2j, t2j) ∈ dmn(fA0
0 ).

Thus

s2j−1, s2j, t2j−1, t2j ∈ C.

and, in fact, s2j−1 = s2j, while t2j−1 6= t2j. So t2j−1 and t2j are distinct elements of C in the

range of σA
2 . By Lemma 5.4, σA

2 is essentially a power of uA. So σA
2 is essentially unary.

From this we may conclude that

CσA
2

(pi,qi) = (t1, t2, t1, t2, t1, t2, t1, t2)

with t1, t2 distinct elements in {a2, b2}. We now have

f(s1, t1) = r1 = r2 = f(s2, t2)

f(s3, t1) = r3 = r4 = f(s4, t2)

f(s5, t1) = r5 = r6 = f(s6, t2)

So Lemma 4.3 gives

s1 = s2 = s3 = s4 = s5 = s6 = a1.

Note that both (s1, s3, s5, s7) and (s2, s4, s6, s8) are term squares for σ1. By Lemma 5.5 we

get that both term squares are constant. So s7 = s8 = a1 as well. We may now explicitly
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CσA
1

:

s1

s2

s3

s4

s5

s6

s7

s8

CσA
2

:

t1

t2

t3

t4

t5

t6

t7

t8

Figure 5.6: CσA
1

(pi,qi) on the left. CσA
2

(pi,qi) on the right.

compute that CτA(pi,qi) is a constant cube:

r1 = f(a1, a2) = d1 or r1 = f(a1, b2) = d1,

r2 = f(a1, a2) = d1 or r2 = f(a1, b2) = d1,

r3 = f(a1, a2) = d1 or r3 = f(a1, b2) = d1,

r4 = f(a1, a2) = d1 or r4 = f(a1, b2) = d1,

r5 = f(a1, a2) = d1 or r5 = f(a1, b2) = d1,

r6 = f(a1, a2) = d1 or r6 = f(a1, b2) = d1,

r7 = f(a1, a2) = d1 or r7 = f(a1, b2) = d1,

r8 = f(a1, a2) = d1 or r8 = f(a1, b2) = d1.

This contradicts our assumptions and we have completed the proof.

Proof. We will prove this proposition by contradiction. To that end, suppose

[1A, 1A, . . . , 1A︸ ︷︷ ︸
n+1 many

] 6= 0A.

Let τ(x1, . . . ,xn+1) be the shortest term witnessing the failure of the (n + 1)-dimensional

term condition.

If τA were essentially unary, then the inequality along the critical edge of Cn+1
τA

would

imply inequality along all other vertical edges, contradicting τ being a witness to the failure
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of the (n+ 1)-dimensional term condition. Thus τA cannot be essentially unary. So τ is not

a variable.

Suppose there is a unary function symbol υ and term σ such that

τ(x1, . . . ,xn+1) = υ(σ(x1, . . . ,xn+1)).

Noting that υA is injective, as in Remark 4.2 (1), we see that σ will be a shorter term

witnessing the failure of the (n+ 1)-dimensional term condition, a contradiction.

Suppose there are terms σ1, . . . , σn such that

τ(x1, . . . ,xn+1) = f(σ1(x1, . . . ,xn+1), . . . , σn(x1, . . . ,xn+1)).

Let

Cn+1
τA

(pi,qi) = (r1, r2, . . . , r2n+1)

witness the failure of the (n+ 1)-dimensional term condition, so that

r2j−1 = r2j for all 1 ≤ j ≤ 2n − 1

and

r2n+1−1 6= r2n+1 .

For each 1 ≤ i ≤ n, label the (n+ 1)-term cubes as

Cn+1
σA
i

(pi,qi) = (si,1, si,2, . . . , si,2n+1).

Since r2n+1−1 6= r2n+1 , there exists k with 1 ≤ k ≤ n such that sk,2n+1−1 6= sk,2n+1 . Let

k ∈ { 1, . . . , n } be such that sk,2n+1−1 6= sk,2n+1 . Since σk is a shorter term than τ , we know

that σk does not witness the failure of the (n + 1)-dimensional term condition. So there

exists l with 1 ≤ l ≤ 2n − 1 such that sk,2l−1 6= sk,2l. Fix l ∈ {1, . . . , 2n − 1 such that

sk,2l−1 6= sk,2l.

Thus

(s1,2l−1, s2,2l−1, . . . , sn,2l−1) 6= (s1,2l, s2,2l, . . . , sn,2l).
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Observe that

fA(s1,2l−1, s2,2l−1, . . . , sn,2l−1) = r2l−1 = r2l = fA(s1,2l, s2,2l, . . . , sn,2l).

By Lemma 4.3 we get that

(s1,2l−1, s2,2l−1, . . . , sn,2l−1), (s1,2l, s2,2l, . . . , sn,2l) ∈ dmn(fA0
0 ).

Thus for each 1 ≤ i ≤ n we have

si,2l−1, si,2l ∈ C

and, in fact, for each 1 ≤ i ≤ n − 1, we have si,2l−1 = si,2l, while sn,2l−1 6= sn,2l. So sn,2l−1

and sn,2l are distinct elements of C in the range of σA
n . Recall that sn,2l−1 and sn,2l are in

the range of σA
n . Lemma 5.4 then tells us that σA

n is essentially a power of uA. So σA
n is

essentially unary. Noting that we move in the nth dimension from sn,2l−1 to sn,2l, we may

follow the reasoning in the proof of Lemma 3.7 to conclude that

Cn+1
σA
n

(pi,qi) = (sn,1, sn,2, sn,1, sn,2, . . . , sn,1, sn,2)

with sn,1, sn,2. Since sn,1 = sn,2l−1 6= sn,2l = sn,2, we further have that sn,1, sn,2 are distinct

elements in {an, bn}. For all 1 ≤ j ≤ 2n − 1, since we know r2j−1 = r2j, we now have

f(s1,2j−1, s2,2j−1, . . . , sn−1,2j−1, sn,1) = r2j−1 = r2j = f(s1,2j, s2,2j, . . . , sn−1,2j, sn,2).

So Lemma 4.3 gives

si,2j−1 = si,2j ∈ {ai, bi} for all 1 ≤ j ≤ 2n − 1 and all 1 ≤ i ≤ n− 1.

For each cube Cn+1
σA
i

we have two possible cases.

Case 1. For all j1 and j2 with 1 ≤ j1 ≤ j2 ≤ 2n+1 − 2 we have si,j1 = si,j2 .

In this case we see that Lemma 5.5 applies and yields that Cn+1
σA
i

is the constant cube

with vertices all ai or all bi.
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Case 2. There are j1 and j2 with 1 ≤ j1 ≤ j2 ≤ 2n+1 − 2 such that si,j1 6= si,j2 .

In this case we have that σA
i outputs two distinct elements of C, so Lemma 5.4 tells

us that σA
i is essentially a power of uA, so is essentially unary. From this and the fact that

si,2j−1 = si,2j ∈ {ai, bi} for all 1 ≤ j ≤ 2n − 1, Lemma 3.7 yields that si,2n+1−1 = si,2n+1 ∈

{ai, bi}.

Note that in either case,

si,2n+1−1 = si,2n+1 ∈ {ai, bi}.

Recall we already have

si,2j−1 = si,2j ∈ {ai, bi} for all 1 ≤ j ≤ 2n − 1 and all 1 ≤ i ≤ n− 1.

We may now explicitly compute that for all 1 ≤ l ≤ 2n+1,

rl = f(s1,1, s2,1, . . . , sn−1,1, an) or rl = f(s1,1, s2,1, . . . , sn−1,1, bn).

with si,1 ∈ { ai, bi } for all 1 ≤ i ≤ n− 1. From this we see that it does not matter if the last

entry in the input tuple is an or bn since

f(s1,1, s2,1, . . . , sn−1,1, an) = f(s1,1, s2,1, . . . , sn−1,1, bn).

So Cn+1
τA

(pi,qi) is a constant cube. This contradicts the assumption that we chose Cn+1
τA

(pi,qi)

to be a witness of the failure of the (n+ 1)-dimensional term condition.

The Propositions 5.1, 5.2, and 5.6 of this section immediately entail the following:

Theorem 5.7. For any natural number n ≥ 2 there is a simple algebra A such that

[1A, . . . , 1A︸ ︷︷ ︸
n many

] = 1A and [1A, . . . , 1A, 1A︸ ︷︷ ︸
(n+1) many

] = 0A.
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