DETECTING LEFTMOST PERIODICITIES
Michael G. Main
CU-CS-357-87 January 1987

DETECTING LEFTMOST PERIODICITIES
(January 1987)

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

1. Introduction

Periodicities are nonempty strings of the form p”g with n 22 and ¢ a substring of p. This note
presents a new algorithm to find all leftmost occurrences of periodicities within a string. For a fixed

alphabet, the worst-case time is linear in the length of the string.

The study of periodicities dates from the pioneering work of Axel Thue at the beginning of this
century [11,12,5]. More recently, there has been a surge of interest in periodicities amon g research-
ers in formal language theory [2]. In 1978, an O (n log n) algorithm was presented to determine
whether a string contains a periodicity of the form pp (a "square") [6]. Later, this algorithm was

improved to find all squares in the same asymptotic time bound. (In fact, this was done in at least
three independent and simple ways [1,3,7].)

An algorithm was also presented by A.O. Slisenko [10], finding all periodicities in linear time.
But, Slisenko’s algorithm was a difficult 100-page presentation, so research continued to either sim-
plify Slisenko’s algorithm or find alternative methods of detecting periodicities. Most recently,
there were two linear algorithms to determine whether a string contains a square [3,8]. Both of these

papers left several open problems, which are addressed by the new algorithm presented here.

The principal open problem solved here is this: Let x be a string. A periodiciry (within x) is a
substring of the form p”g, with n 22 and g a prefix of p. The length of p is called the period-
length of the periodicity. If a periodicity p"q occurs several times within a string x, then the first
time it occurs is called the leftmost occurrence. This note presents an algorithm to find all leftmost
periodicities within a string x, in time proportional to the length of x, provided that the alphabet is a

constant size.

Nortation: The length of a string x is denoted by Ix |, and the i™ character of x is denoted by

x[i]. The substring starting at character i and ending at character j is written x [/] .. x [/l

2. Main Theorem

The algorithm uses a decomposition of a string called the s-factorization, also used by Cro-

chemore in his most recent algorithm [3]. This is a decomposition of a string x into the concatena-

tion

of several strings x =uy - - u, defined recursively as follows: Suppose u; - - - iy have

already been defined, so that uq - - - uy_; is a proper prefix of x. Now we want to define uy,. Here

are the rules:

€]

@

If the next character of x (after u;,_;) has not yet appeared in x, then u;, consists of this sin-

gle character.

Otherwise, u, is the longest string such that u1 - - - uy, is a prefix of x and Uy 1s a non-suffix

substring of uq - - - uy.

The following theorem gives two properties of leftmost periodicities, in terms of the s-factorization
of a string:

Theorem 1: Let x be a string with s-factorization x =u, - - - u and let r be a periodicity of x,

with the lefimost occurrence of r at x[i] .. x[j1, and with x [j] occurring within un. Then
(1) x[i] occurs before uy, and

() |r| <2|up-qun|.

Proof: (1) Suppose condition 1 does not hold, so that r is entirely within u,. Then iy has at
least two characters, and by the definition of the s-factorization, 1, must occur as a non-suffix

substring of uy - - - u,. But this means that x[i].. x[/] is not the leftmost occurrence of r. By

this contradiction, condition 1 must hold.

(2) Let r=p"g, and suppose condition 2 does not hold. Then at least half of x[i].x[j]is
before u;-;. This means that at least one entire occurrence of p has occurred at the beginning
of x[i].. x[j] before the start of u,_;. Moreover, when we start Up-1, we are in the middle of
some later occurrence of p. This means that the substring beginning at the first character of
up-1 and continuing until x [/] also occurs earlier in x. But, since u,_; ends before x [/], this
violates the maximality condition in the definition of an s-factorization. Therefore, condition 2

must hold.

3. The Algorithm

Here is the algorithm to find all leftmost periodicities within a string x :

(1) Compute the s-factorization x =u1 - - - g of the input string x .

(2) Foreach h (2<h <k), let t;, be the substring of length 2|u,_;| + |u, | which immediately

precedes uy in x (or to the beginning of x if there are not enough characters before Up).

3) forh:=2tokdo
begin
(3.1) Find all periodicities which start in #; and end in .

end.

From the theorem of the previous section, any leftmost occurrence of a periodicity r (within x)

which ends within u;, will be found by step 3.1 of the algorithm.

For a finite alphabet, it is possible to compute the s-factorization of a string x in O (|x]) time,
by adapting McCreight’s suffix tree construction [9]. (This same adaptation is used by Crochemore
[3].) Therefore, the first two steps of the algorithm require linear time (for a fixed alphabet). If the
alphabet is infinite, then the s-factorization requires O (|x | log|x |) time, and the first two steps also

require O (|x | log|x |) time.
Step 3.1 may be computed in time O (|z, uy, |), using a modification of an algorithm which finds
all new squares that appear when two strings are concatenated. (This modification is given in the

k
next section.) Since ¥’ [ty u| < 4|x|, the total time spent in Step 3 is O (|x |).
h=2

Therefore, the worst-case time of the entire algorithm is linear in the length of x (for a fixed

alphabet) or O (|x | log|x |) for an arbitrary alphabet.

4. Finding New Periodicities

Let 7 and u be two strings, with |¢|=m and |u|=n. This section shows how to find all new
periodicities that are formed in the concatenation fu. (These are periodicities with the first character
in ¢ and the last character in u.) The algorithm requires O (m+n) time, and is a modification of an

earlier algorithm which finds new squares [7].

The algorithm has two parts. The first part finds all new periodicities which have at least one
full period in the string u. These are called right periodicities. The second part finds all new
periodicities which have at least one full period in the string ¢ (left periodicities). Here we present
only the first part, since the second part is symmetric. This first part makes use of two functions LP
and LS, defined as follows:

For (2<i <n+1): LP (i) is the length of the longest prefix of u which is also a prefix of
ulil..ul[n]. (LP[n+1]1is defined as zero.)

For (1<i <n): LS (i) is the length of the longest suffix of ¢ which is also a suffix of v , Where
visuf[l].. u[i].

The following theorem characterizes new right periodicities which are formed in the concatenation

of tu:

Theorem 2: Ler j (1<j <n) be an integer. The new right periodicities (in tu) with period-

length j are precisely those substrings of tu which:
(1) Have length 2j or more, and
(2) Begin at or before t[m] and end at or after u L1, and
(3) Begin at or after t[m~LS (j ¥+1] and end at or before u[j+LP (G+D].

Proof: The first two conditions are clearly necessary, so let 7 be a substring of ru, which meets
these two conditions, and let i=|r|. We will show that the remaining condition is necessary

and sufficient for r to be a periodicity with period-length j.

Let a be the number of characters of r in ¢, and let b be the number of characters of r in
ulj+1]..u[n]. (Sothati =a+b+j.)Forr tobea periodicity with period-length j, it is neces-
sary and sufficient for the first i —; characters of r to match the last ;j — J characters of r.

Equivalently,
(A) r(1]..r[a] matches r[1+/].. r[a+j], and

(B) rla+1]..rla+b] matches r[a+j+1] .. r[i].

Condition (A) is equivalent to requiring r[1+/].. r[a+j] to be a suffix of ¢. Since r[a %j]
occurs at position u[j], this is equivalent to requiring r to begin at or after ¢ [m —LS (j)+1].

Similarly, Condition (B) is equivalent to requiring r to end at or before u [j+LP (j+1)]. Thus,
the Conditions (A) and (B) together are equivalent to (3) in the statement of the theorem.

Theorem 2 is the basis of the following algorithm to find all new right periodicities in ru:
(1) Calculate the values of LP (2) through LP (n+1), and the values of LS (1) throu gh LS (n).
@ forj:=1tondo '
begin
The new right periodicities (with period j) are all substrings of length 2j or
more beginning in the range t[m—LS (j)+1] through z[m], and ending in the
range u [j] through u [+LP (j+1)].

end.

The calculations of LP and LS in Step 1 require O (m+n) time, using a variation of the Knuth-
Morris-Pratt pattern matching algorithm [7, section 2]. The body of the loop in Step 2 requires con-

stant time for each j, so the entire loop is O (n). Therefore, the entire algorithm takes time propor-

tional to |uv |.

6. Notes

The algorithm of Section 4 finds the leftmost occurrence of every periodicity within a string in
linear time (for a fixed alphabet). The algorithm may also find some non-leftmost occurrences of
periodicities (those that span boundaries in the s-factorization). This information can be used to
solve the problem of determining whether a string has a periodicity of the form p” for different

values of n 22, solving a problem of Crochemore [3,4].

A further modification may allow the algorithm to find all periodicities in a simple manner.
This seems likely since the periodicities that are not found are entirely within some u; in the s-

factorization, and each such uy, occurs previously in the string.

&)

@

©)

“

)

©

M

®

&)

(10)

amn

(12)

References

A. Apostolico and F.P. Preparata, Optimal off-line detection of repetitions in a string, TCS 22 (1983) 297-315.

J. Berstel and C. Reutenauer, Square-free words and Idempotent semigroups, in Combinatorics on Words
(Lothaire, Ed.), Addison-Wesley, Reading, MA., Chapter 2.

M. Crochemore. Linear searching for a square in a word, in: Proceedings of the N.A.T.O. Advanced Research
Workshop on Combinatorial Algorithms on Words, NATO ASI Series, volume F12 (Springer-Verlag, 1984).
Also appears in the Bulletin of the EATCS 24 (1984), 66-72.

M. Crochemore. Problem 135, Bulletin of the EATCH 30 (1986), page 262.

G.A. Hedlund, Remarks on the work of Axel Thue on sequences, Nord. Mat. Tidskr. 16 (1967), 148-150. MR
37 (1959), #4454,

M.G. Main and R.J. Lorentz, An O(n logn) algorithm for recognizing repetition, Washington State University
Technical Report CS-79-056, Pullman, WA 99164 (1979).

M.G. Main and R.J. Lorentz, An O(n logn) algorithm for finding all repetitions in a string, J. of Algorithms, 10
appear (1984).

M.G. Main and RJ. Lorentz, Linear time recognition of square-free strings, in: Proceedings of the N.A.T.O.
Advanced Research Workshop on Combinatorial Algorithms on Words, NATO ASI Series, volume F12
(Springer-Verlag, 1984).

E.M. McCreight. A space-economical suffix tree construction algorithm, JACM 23 (1976), 262-272.

A.O. Slisenko. Detection of periodicities and string-matching in real time, Zapiski Nauchnykh Seminarov Len-
ingradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklova AN SSSR 105 (1981), 62 - 173.

A. Thue, Uber unendliche Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania)
(1906), Nr. 7, 1-22.

A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Videnskabers Selskabs
Skrifter Mat.-Nat. K. (Kristiania) (1912), Nr. 1, 1-67.

