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Abstract 

 

Stephanie Amber Wilson (B. S., Computer Science) 

Alignment and Detection of Syntenic Regions of Genes to Identify Horizontally  

Transferred Islands in Pathogenic Bacteria 

Thesis directed by Professor Rob Knight 

 

 

Alignment and detection of syntenic regions of genes can lead to a better 

understanding of evolution, both at the species level and at the level of individual 

genes. In particular, understanding the evolution of genomic features can lead to a 

better understanding of the genetic changes involved in pathogenicity. Knowing when 

genes were gained or lost, and whether they were gained or lost together, is important 

for understanding and predicting their association in functional pathways. In this 

thesis, I compared the compositional statistics of horizontally transferred islands to 

the species through codon usage biases and GC content. I also investigated the 

accuracy of algorithms to align circularly and randomly permuted simulated genomic 

islands. Detection of horizontally transferred genes will aid in phylogenetic research 

because these genes violate the mathematical models of sequence evolution typically 

used for phylogenetic reconstruction. Furthermore, since many of the genes 

horizontally transferred are involved in antibiotic resistance and pathogenesis, better 

methods of detection will also aid in medical research. 
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Introduction 

 

Bacterial pathogens are currently of increasing medical importance and 

interest because of antibiotic resistance and the threat of bioterrorism. Many of the 

genes involved in antibiotic resistance and pathogenesis, are horizontally transferred 

between different species. Because species vary widely in their GC content and codon 

usages, a transferred gene often differs from the rest of the genes in the species. 

However, sequences equilibrate to the background composition of the genome 

relatively quickly, limiting the utility of methods based on compositional differences. 

Alternative methods include alignment of syntenic regions (regions where 

homologous genes appear in the same order) through scored dynamic programming 

algorithms for permuted islands. Better detection of horizontally transferred genes 

would both aid in medical research and allow a more accurate estimation of the 

abundance and importance of horizontal gene transfer as an evolutionary process. 

 

Biological Background 

 

Figure 1: The central dogma of biology: DNA is transcribed to RNA and RNA is 

translated into protein. Some viruses, like HIV, can copy RNA back to DNA, but 

translation of protein back to nucleic acid has never been observed. 
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Hereditary information, passed on from one generation to the next, is 

composed of deoxyribonucleic acid (DNA). The flow of information involved in 

producing protein from DNA follows what is known as the Central Dogma of 

Molecular Biology. Specifically, the Central Dogma of Molecular Biology is: DNA is 

transcribed to ribonucleic acid (RNA), RNA is then translated into protein (Figure 1). 

Proteins made in this process function in many different ways in organisms including, 

but not limited to, cell structure, regulators of cell functions, and enzymes. Essentially 

all phenotypes are influenced by the proteins expressed from the transcription of 

DNA. 

Deoxyribonucleic acid has a simple, repeating structure, and can be 

considered analogous to a string with a character set of four letters. The letters 

(AGCT) symbolically represent the repeating nucleotides Adenine, Guanine, 

Cytosine, and Thymine. DNA in the cell is usually double-stranded, consisting of  

two antiparallel strands connected in a structure akin to a spiral staircase called a 

double helix. Each of the characters (nucleotides) is matched with another. Adenine 

and Thymine form base pairs using specific patterns of hydrogen bonds, as do 

Cytosine and Guanine. With this simple structure of repeating chemicals, cells can 

code for every protein needed for the functions of life. 

RNA is similar to DNA in that it can be symbolically represented as a string 

on an alphabet of four characters. However, instead of the nucleotide Thymine, RNA 

has Uracil, so RNA is represented with the characters A, G, C, and U. Using the chain 

of RNA, proteins can be translated. Three bases pair with an anticodon on a tRNA 

molecule (a special kind of RNA that acts as an adaptor), which carries one amino 
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acid, providing the basis for the specificity of the genetic code by linking the amino 

acid to the antocodon, and hence to the codon. Proteins are chains of amino acids. 

Each DNA sequence can be translated unambiguously into a protein sequence using 

the genetic code. 

 

 

Figure 2: This table shows the genetic code, the mapping between specific strings of 

three nucleotides and amino acids (Cuschieri, n.d.). 

 

Chemically, not all base changes are equal. Since some of the bases are 

structurally more similar to one another (Figure 3) they are more likely to change 

from one to another within the DNA sequence (Watson, 1953). Changing purine to 

pyrimidine and vice versa, known as transversions, are more difficult than changing 
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the bases within their purine and pyrimidine groups, known as transitions. Because 

transversions are chemically less likely (they cannot occur spontaneously by changing 

the structure of the base in situ, and require the polymerase to make a mistake during 

replication), they occur less than half as often as transitions do, even though twice as 

many kinds of transversions are possible. (Bos, 2004). 

 

 

Figure 3: The lewis structure of nucleotides (Weaver, 2005). 

 

Evolution, i.e. mutation of the bases followed by the fixation of the mutant 

form in the population, is a slow process. For example, the change from UAC to 

UAA  is a change from the amino acid tyrosine to a stop codon that terminates 

translation (Figure 2). If this happened halfway between the start codon and the 

original stop codon, the gene sequence (also known as an open reading frame) would 

now only code for half the protein. This change could lead to a non-functional 

protein, or to a protein missing parts of the sequence required for normal regulation. 

The change between UAC and UAA involves a transversion, and thus is less likely to 
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occur than the changes that involve transitions. On the other hand, we can change 

AGU to AGC and still code for the amino acid serine. In contrast to the previous 

example, this base change is a transition and therefore more likely to occur. 

Interestingly, the genetic code is arranged in a way that minimizes the average effects 

of the mutations, and transitions are less likely to lead to a radical change in amino 

acid properties than transversions (Freeland, 1998) . 

Taking a closer look at the amino acid table, whenever the last nucleotide in 

the sequence of three changes, the same amino often is coded, especially if the change 

is a transition. Correspondingly, when sequences in different species are compared, 

the rate of change is higher at the third codon position because the change at the DNA 

level often leaves the protein unchanged, and transitions are more likely to be 

observed (Sueoka, 2002). However, because mutation acts at the DNA level, it is 

independent of the translated reading frame. Here we see the effects of natural 

selection, because more changes at the first and second position are lethal and not 

passed on to the future generations. Different genes also change at different rates, 

known as substitution rate heterogeneity, which is also due to the combination of 

mutation and selection (Bos, 2005). These differences in substitution rates lead to 

codon biases, which can be used to derive a “fingerprint” of the processes operating 

in a given species (Sueoka, 2002). In other words, different species that share the 

same genetic code are more likely to use one codon or another for a given amino acid, 

in part because these codons are produced or destroyed at different rates in different 

species. Many different factors, including replication, reactive oxygen species, and 

deamination due to the DNA being single-stranded affect the mutation pattern and 
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hence the codon usage is characteristic for each species. Because of this species-

specificity, we can use patterns in codon usage to identify genes that have moved 

between different species. 

 

Horizontally Transferred Genes 

 

Many bacteria are free-living in the environment. In fact, only one percent of 

bacteria can be cultured in the laboratory (Pace, 1997). Some bacteria, however, can 

develop a symbiotic relationship with other hosts. Many bacteria have no effect on 

their hosts, and others benefit their hosts. For example, our gut bacteria outnumber 

our own cells by a factor of ten, and provide us with many metabolic capabilities we 

would otherwise lack. However, some bacteria harm their hosts. These bacteria are 

known as pathogenic bacteria. Examples of pathogenic bacteria include: Clostridium 

botulinum (responsible for botulism), Francisella tularenis (tularemia), Bacillus 

anthracis (anthrax), and Salmonella enterica (salmonellosis and typhoid fever, 

depending on strain). In each of these species we can see genes and, consequently, 

proteins, that allow the bacteria to escape the immune system or antibiotics, or to 

enter areas harmful to their hosts.  

Clostridium botulinum bacteria produce the botulinum neurotoxin (BoNT) 

that causes botulism (Binz et al.,1994). Some consider BoNT to be the most 

poisonous substance to humans, estimating BoNT to be 100,000 to 3 million times 

more poisonous than sarin (a chemical weapon produced, but not used, by Nazi 

Germany during WWII) (Zubay et al., 2005). BoNT will (irreversibly) bind to the 
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gangliosides and protein receptors on the presynaptic membrane then enters the cell 

through endocytosis (Hanson et al., 2000). Once in the cell, BoNT toxically cleaves 

SNARE proteins (Chen et al. 2007). Clostridium botulinum is found in the soil and 

the gastrointestinal tract of human and animals (FDA, 2006). They are classified into 

four groups based on the BoNT toxin (FDA., 2006). These groups are separated into 

two types: proteolytic types (i.e. types that can produce enzymes that cut proteins in 

specific ways that are required to convert the proteins into their active forms), which 

produce their own BoNT, and nonproteolytic types, which use a host protease, such 

as trypsin, to cleave the inactive holotoxin to make BoNT) (Simpson et al., 2001, 

Singh, 2000). With treatment, the mortality rate for food-borne botulism has dropped 

from 25% in the 1950s 1950-1959 to 6% in the 1990s (Zubay et al., 2005). 

Francisella tularensis is a bacterium that is potentially very dangerous (The 

US Centers for Disease Control say it has a “potential for a major public health 

impact”). Although seen infrequently in the environment, F. tularensis is passed 

through other infected hosts (bugs, animal bites, etc) and contaminated water (CDC, 

2003). Concern regarding the bacteria stem from its lethal characteristics. Francisella 

tularensis is able to infect macrophages (a type of white blood cell involved in the 

immune response) and parenchymal cells (cells that make up organ-specific 

structures, e.g. in the liver) through unknown mechanism (Fortier, et al., 1994). The 

availability of antibiotics reduced mortality from 50% to 2.5% (Zubay et al., 2005). 
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Figure 4: The complex of membrane binding proteins produced by Bacillus anthracis 

(Petosa, et al., 1997) 

 

One of the oldest recorded bacteria (symptoms are referred to in the 5th, 6th, 

and 10th Egyptian plague, and in the bible) is Bacillus anthracis, which causes the 

disease anthrax (Witkowski, et al., 2002). This species is among the most likely to be 

used in terrorist attacks due to its hardy spore, which is resilient to cold, heat, 

radiation, drought, and water (Zubay et al., 2005). Bacillus anthracis has a protein 

capsule for protection against phagocytosis (i.e. the cells in the immune system 

cannot engulf it for digestion as they do for other bacteria) (Kozel et al., 2007). Also, 

anthrax forms a transmembrane transporter called PA, and two toxins called LF, and 

EF. PA binds to the cell membrane (Varughese, et al., 1999). With the addition of LF 

and EF, PA forms a channel for LF and EF transportation to the cytosol (Petosa, et 

al., 1997). EF catalyzes the reaction from ATP to cAMP, raising the levels of cAMP 

in the body (Leppla, 1984). High levels of cAMP limit the inflammation response 

necessary for the immune system response, and also affect the water homeostasis of 

the body causing edema (water retention and swelling) (Leppla, 1984). LF toxins 
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cleave proteins in the cells, leading to cell lysis (Klimpel, et al., 1994, Vitale, et al., 

2000).  

Many diseases previously believed to be independent of bacteria are now 

being linked to bacterial causes. Once, it was believed that stomach ulcers were solely 

based on stress on the body. Despite the stomach’s low pH, often in the range 0-1 

(about the same as 1M hydrochloric acid), it was known that many bacteria could 

survive in the stomach, including Helicobacter pylori. However, bacteria were never 

linked to ulcers, which were assumed to be caused by stress. In 2005, Barry J 

Marshall and J. Robin Warren were awarded the Nobel prize for discovering 

Helicobacter pylori’s role in gastritis and peptic ulcer disease (Marshall, et al., 2005, 

Peterson, 1991). In addition to its role in ulcer formation, Helicobacter pylori has also 

been linked to gastric carcinoma (Parsonnet, 1991). 

As discussed earlier, many bacteria are free living, and many others live in 

symbiosis with their host. For a bacterium to become pathogenic, it must evolve 

genes that encode proteins that are harmful to the host. To obtain these genes, bacteria 

must either change their current genes or acquire these genes elsewhere. Mutations 

that alter a specific phenotype occur at a staggeringly slow rate (Hartwell, 2004). One 

study of millions of mice found the rate of mutation was 1 x 10-5  per nucelotide per 

generation (Hartwell, 2004), although bacteria are thought to mutate more rapidly and 

have much larger population sizes.  However, rates of horizontal gene transfer (the 

movement of genes between different genomes) are also thought to be high in 

bacteria. For example, of the genes in the first three strains of E. coli to be sequenced, 
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only 40% of the genes were in all three strains (Welch, et al., 2002). Thus, the 

motivation to study processes of horizontal gene transfer is strong. 

When bacteria acquire new genes from another species it is known as 

horizontal transfer. To study horizontally transferred genes (HTGs), an island, or 

contiguous group of genes is most often investigated. Mainly, this is because the 

larger sample size reduces the chance of seeing extreme composition through 

sampling error. Thus we can have higher confidence that the island came from 

another species. 

 

Compositional Statistics 

 

Homologous genes of Salmonella and Escherichia average 85 percent 

sequence identity (Bräumler 1997, Sharp 1991), suggesting that about 100-160 

million years ago their lineages diverged (Bräumler 1997, Ochman 1987). 10-20 

percent of the Salmonella genome is absent from E. coli, also suggesting horizontal 

transfer (Bräumler 1997, Ochman et al. 1996 (1), Lan et al. 1996). Some specific 

examples of transferred genes include type three secretion system (T3SS) proteins, 

which are often found in pathogenicity islands in the genome or in plasmids, and 

which are often similar in species whose genes are otherwise dissimilar (Collmer et 

al. 2002), suggesting that HGT explains their distribution (Gophna et al. 2002). Often 

the transferred genes differ from the rest of the genome in their GC content (Ochman  

1996 (2)) Codon fingerprints differences due to mutational pressures are specifie-
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specific species (Sueoka 2002), and might provide more power than GC content to 

distinguish among genes from different sources. 

 

GC Content 

 

Because DNA is base-paired in the cell, one simple measure of the 

composition of double-stranded DNA is the GC content (the fraction of all the base 

pairs in the genome that are GC or CG pairs, as opposed to AT or TA pairs). GC pairs 

are stronger than AT pairs because three hydrogen bonds hold them together rather 

than two. Thus, it is harder to separate the strands of DNA with more GC pairs, 

leading to a difference in melting temperature. The GC content of a nucleic acid 

could thus be measured biochemically in the 1960s, almost two decades before 

sequencing technologies became available. 

Different species vary widely in GC content. This variation (from about 25% 

to 75% GC) is probably driven by mutational processes, and is so consistent in 

different species that extremely accurate predictions about the usage of different 

amino acids and different codons in the genome can be made from the GC content 

along (Knight et al., 2001). Because of these differences in different organisms, the 

GC content has been widely used as a marker for genes that might have come from 

another genome. 

A paradigmatic example of horizontal transfer is that of the Type Three 

Secretion Systems (T3SS). The genes in SPI-1, one of the Salmonella Pathogenicity 

Islands, are distinctly different in GC content from the rest of the genome (Ochman 
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1996). Additionally, some transferred genes involved in the T3SS appear to have 

been horizontally transferred by bacteriophages that pick up genes from one species 

and integrate into another,  causing not only differences in GC content due to the viral 

replication mechanism but also allowing identification through the presence of 

specific flanking sequences that the virus uses for integration into the genome and for 

packaging (Ehrbar 2005). Similar T3SS components have been found in extremely 

different types of bacteria, e.g. proteobacteria and the chlamydia group, which further 

suggests that these genes have been horizontally transferred (Collmer 2002). 

 

 

CAI 

 

The Codon Adaptation Index (Sharp, 1986) is a measure of how closely a gene’s 

codon usage (i.e. the frequency with which each of the different codons is used in the 

genome, correcting for the fact that different amino acids are encoded by different 

numbers of codons) resembles the codon usage of highly expressed genes in the 

genome. The codon usage is compared to the codon usage of a set of reference genes 

that are known to be highly expressed, such as the ribosomal proteins. In a given 

species, there is usually a monotonic relationship between CAI and the GC content of 

each gene, so that outliers from this plot might indicate that genes came from 

elsewhere. 

 

Fingerprint 
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The codon fingerprint (Sueoka 2002) is a method of displaying synonymous codon 

usage graphically. If only mutational processes were at work, and if mutation at each 

position were independent of mutations at other positions, we would expect four-fold 

synonymous sites (i.e. sites of the form XYN where X and Y are each a specific 

nucleotide and N is any nucleotide, and where all codons XYN encode the same 

amino  acid) to have the same composition at the third position no matter what the 

first two bases are. The fingerprint plot graphs the relative usage of the purine and the 

pyrimidine in each type of pair against each other for each amino acid, i.e. plotting 

(G/(G+C )) against (A/(A+T)). Different species have characteristically different 

fingerprints, again suggesting that this feature might be useful for identifying 

horizontally transferred genes. 

 

Permuted Islands 

 

 

Figure : The top string represents a section of a gene sequence with each letter being a 

gene. The second strings shows an insertion of the gene ‘X’. The third string show the 
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second string undergoing a deletion of the ‘B’ gene. In the last string we see a 

reversal of the second string. 

 

Genomic islands that have been horizontally transferred do not always retain 

the same arrangement of genes that they had in their originating species. Mutations 

can occur at the level of whole genes as well as at the level of individual bases. 

Within sequences, mutations can cause events such as insertion, deletion, and 

reversals of the genes (Figure ). 

 

 

Figure : The top gene sequence is circularly permuted to the bottom moving the gene 

‘F’ from the end of the n-terminal to the beginning of the c-terminal. 

 

DNA sequences, and therefore protein sequences, can also be circularly permuted so 

the sequence at the end (N-terminus in proteins; 5’ end in DNA) can be moved to the 

beginning of the sequence (C-terminus in proteins’ 3’ end in DNA) (Figure). This 
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type of circular permutation is especially common in plamids, which usually exist in 

the cell as circular DNA but can integrate into the larger genomic sequence using 

several different sites. Interestingly, many proteins and RNAs can maintain their 3D 

structure and thus their function after undergoing circular permutation, and this 

process has accordingly been observed in  proteins from different species. (Uliel, et 

al., 1999). Circular permutation is observed both within a single protein sequence, 

and between groups of genes. Because circular permutation is important for gene 

transfers that are mediated by plasmids, detecting that one putative genomic island is 

an approximate circular permutation of another tells us something about the likely 

mechanism of transfer. 

 

 

Figure : Each of the lines show insertions or reversal that may have occurred during 

the evolution of Tobacco to Lobelia fervens (Knox, et al., 1993) 
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Permuted islands are also of interest because they offer a means of tracking 

the evolutionary history of a species: like sequence characters in an alignment, 

breakpoint characters can be used for phylogenetic reconstruction. The process of 

tracing the permutations that occur over time as one species evolves into another is 

known as breakpoint analysis. Through breakpoint analysis evolutionary paths can be 

seen in the chloroplast of the tobacco plant to Lobelia fervens (Figure) (Knox, et al., 

1993). 

 

Existing Methods for Detecting Permuted Syntenic Regions 

 

The Needleman-Wunsch algorithm is a dynamic programming algorithm that 

can be used to calculate the minimum edit distance between two sequences in terms 

of insertions, deletions and substitutions. This algorithm performs a global alignment 

on two sequences that spans the entire length of the sequence. A related algorithm 

called Smith-Waterman uses a similar technique to perform local alignments, the 

main difference between the two being the initialization conditions. Dynamic 

programming algorithms reducing the overall problem to overlapping subproblems 

for optimization, allowing reduction of the time complexity from exponential to 

quadratic (Korf, et al., 2003). 

The Smith-Waterman and Needleman-Wunsch algorithms are widely used for 

sequence alignment and are implemented in many bioinformatics software packages. 

Basically, the way the Smith-Waterman aligns genes is as follows: the matrix is 

initialized to all zeros. Each cell in the matrix corresponds to an alignment between 
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position i in the first sequence and position j in the second sequence. Starting at the 

cell one position down and one position to the right from the top-left corner of the 

matrix, the optimal score for each cell is calculated, working along to the right and 

downwards. For each cell, the score of aligning the two positions is given by the 

score for matching the base at position i against the base at position j according to a 

score matrix (the simplest score matrix consists of a constant match score, given if the 

two bases are identical, and a constant mismatch penalty, given if the two bases are 

different, but there are many different score matrices in use for different applications), 

and adding this score to the score of the cell immediately above and to the left of the 

current cell. The score of introducing a gap is given by calculating the gap penalty 

and adding this penalty to the cell above the current cell (for introducing a gap into 

the first sequence), or to the left of the current cell (for introducing a gap into the 

second sequence). The maximum of these three possible scores is recorded in the cell, 

along with a pointer to the cell that gave the best result (in the case of ties, one of the 

best cells is chosen arbitrarily). When the bottom-right corner of the matrix is 

reached, the highest cell in the entire matrix is found and used as the start of the 

alignment. The pointers are then followed and used to introduce gaps into one 

sequence or the other until the next score drops to 0, at which point the alignment is 

terminated (Korf, 2003). 

To analyze the effectiveness of the Smith-Waterman algorithm for recovering 

syntenic regions, sequence lengths were tested with one to twenty random insertions 

one thousand times without a circular permutation. When plotting the data as scatter 
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points (figure 2), a correlation can be seen between the accuracy and sequence length 

and number of insertions.  

 

 

Circular Permutation 

 

Although the Smith-Waterman algorithm is useful for alignment of sequences 

with insertions and deletions, it does not account for circular permutations. However, 

Uliel saw the potential application of this algorithm for sequences with circular 

permutations. Given the sequence ‘abc’, a circular permutation event could lead to the 

transformation to the sequence ‘cab’. Comparison of the two sequences through the 

Smith-Waterman algorithm would lead to the ‘ab’ alignment. However, appending a 

copy of the original sequence to itself leads to an instance of each possible circular 

permutation inside the new string (e.g. “abc” and “abc” lead to “abcabc”, which 

contains the ‘cab’ sequence we are looking for), and thus allows the alignment of a 

circularly permuted sequence (Uliel, et al., 1999). 

 

Sliding Window 

 

 The sliding window approach is also a useful approach to many problems that 

rely on underlying score matrices. In a sliding window approach, k consecutive 

elements within a longer sequence of length n are analyzed at a time, advancing one 

element at each step.  For example, the sequence composition analyzer computes the 
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GC content of each window of a DNA sequence in order to find regions that are of 

interest because their GC content differs from that of the rest of the genome 

(SeqComp, n.d.).  

  To analyse permuted windows, we treat each gene as a single character on a 

large alphabet, and calculate how many of these characters each window in the first 

sequence and each window in the second sequence have in common. Windows that 

contain many of the same genes are likely to represent permuted islands. If the 

sequences align exactly, the raw score matrix matching each gene against each other 

gene contains all matches (1s) on the diagonal, and non-matches (0s) elsewhere 

(Figure first matrix). If the sequence has been circularly permuted, there will be two 

disconnected diagonal matches (Figure third matrix).  if the sequence has been 

reversed (e.g. because the genes integrated on the opposite strand, or underwent an 

inversion after integration), a diagonal line in the opposite orientation to the main 

diagonal will be observed (Figure fourth matrix) 
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Figure : Alignment matrices of various sequences of genes, where each match is 

denoted as a 1 and each mismatch is denoted as a 0. The last two matrices show the 

steps involved in the sliding window approach; the first step shows the “or” of the 

columns at the bottom and the second step shows the ‘or of the columns at the right 

side. 

 

Ideally, we would want to detect all the alignments shown above, and there is one 

common theme that allows us to dectet these alignments. If the two sequences contain 

a common, but permuted island, the resulting score matrix (where each match is 

denoted by a one and mismatch with a zero) contains consecutive rows that are non-

empty. Combining the values in each rows using logical or produces a vector with 

many consecutive oens (Figure fifth matrix). The same is also true for the columns. 

This characteristic can lead to an efficient method for detecting seemingly random 

permutations, including insertions and deletions: using a sliding window to sum the 
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nonzero elements in the vector allows us to find regions in which many genes are 

shared between the two sequences.  

 

Materials and Methods 

 

Compositional Statistics 

 

Matplotlib 

 

The python library Matplotlib was used to graph the results of the statistical 

analysis of sequence composition. This package was integrated with the Cogent 

package, developed jointly between the Knight lab at CU Boulder and the Huttley lab 

at the Australian National University, Canberra. These object-oriented packages 

allow considerable flexibility for sequence analysis and graphical displays. Other 

features of the Matplotlib that were used include: LaTeX support, the ability to 

produce multiple plot types, including histograms, scatter plots, and contour plots, 

and the ability to programatically generate custom color schemes and legends. The 

Matplotlib library was written primarily by John Hunter and is an open source project 

(Hunter, 2007).  

 

Genome Data Sources 

 Genomic data necessary for calculating compositional statistics came from 

KEGG: The Kyoto Encyclopedia of Genes and Genomes. KEGG is maintained by the 
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Bioinformatics Center of Kyoto University and the Human Genome Center of the 

University of Tokyo(KEGG, 2007). The KEGG database includes the complete 

genome sequences of many microbial organisms, along with a wealth of additional 

information useful in interpreting the genome sequence data. Components of the 

KEGG database include pathways of molecular networks, and information about 

biochemical reactions and compounds (Kanehisa et al., 2004). KEGG, unlike 

GenBank, contains the nucleotide sequence of each individual gene paired with the 

amino acid sequence of the corresponding protein, making the analyses of 

compositional statistics significantly easier. 

 

Display Construction 

 

 One of the challenges of graphing biological data is simplifying it to a 

readable form. Noboru  Sueoka devised a very efficient method, called the fingerprint 

plot, of displaying the nucleotide biases in the sets of codons encoding amino acids.  . 

In this graph, a colored circle represents each of the eight four-codon amino acids. 

The radius of each circle is proportional to the ratio of that amino acid to all other 

amino acids  in the gene(s) being investigated. The placement of the circle in the x-

axis is dependent on the ratio of G in the third position normalized to the sum of  G 

and C . In the y-axis, the circle is placed depending on the ratio of  A in the third 

position normalized to the sum of A and T in the third position. This fingerprint is 

characteristic of each species. 
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Permuted Islands 

 

Circular Permutation Island Algorithm 

 

 For alignment of circularly permuted islands the Uliel method was 

implemented using the Smith-Waterman method from the Cogent library, developed 

by Jeremy Widmann. The query sequence was concatenated with itself as input, and 

the output was post-processed to ensure that multiple copies of the same gene were 

not counted in the result (i.e. that the alignment could use a given gene from the first 

copy of the sequence or from the second copy, but not from both). 

 

Sliding Window Algorithm 

  

This algorithm was implemented completely from scratch. First, the matrix of 

matches is created, and then the logical or operation is applied to the columns. Based 

on variable parameters relating to the number of insertions, deletions, and the desired 

match length, an ideal length and match ratio is calculated. For example, if the 

sequence of interest is 10 genes long and we want to account for 2 insertions, the 

sliding window will be 12 characters long. To account for 2 deletions, if there are 8 or 

more matches within the window then the index is stored. Each of the indices of 

interest is stored. However, at this point it is unknown whether the indices represent 

an alignment or represent a repeat of a single, matching character. The rows must also 

be examined in order to distinguish these two cases. Each of the indices of interest is 
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used to slice a sub-matrix based on the prior window size calculation. Then, a logical 

or is performed on the rows of the matrix. If there are enough matches to account for 

the sequence length minus deletions within the calculated window size, the index of 

column is stored along with the index of the row in the list of alignments. This list is 

then returned as a result. 

 

 

Results 

 

Compositional Statistics 

 

Type III Secretion System  

 

 The fingerprint graphs were all produced using the graphing code I created. 

The data for the graphs came from KEGG, which was tied to the CodonExplorer web 

interface created by Micah Hamady. CodonExplorer uses my graphing code as a front 

end for interactive analysis of genomes or user-specified gene sets from KEGG. For 

each of the islands described below, the location, length, and function were obtained 

from the review article “Lateral gene transfer in Salmonella” (Pollwollik and 

McClelland, 2003).  The T3SS is of particular interest because it is widely believed to 

have been horizontally transferred, and because it plays a direct role in Salmonella’s 

ability to act as a pathogen. The T3SS forms a needle complex that allows 

Salmonella, and certain other pathogens, to deliver proteins that they make across the 
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membrane of the host cell, allowing them to manipulate the host cell directly. 

Salmonella enterica serovar Typhimurium (S. Typhimurium), the causative agent of 

salmonellosis (food poisoning), also causes a disease in mice that is equivalent to 

typhoid fever in humans (the causative agent of typhoid fever is a closely related 

strain, Salmonella enterica serovar Typh). S. Typhimurium has two distinct T3SSs: 

one is used to invade the gut during enteric infections, and the other is used to aid 

survival inside cells in the body. The two T3SSs are encoded on pathogenicity islands 

called SPI-1 and SPI-2 respectively; several other pathogenicity islands encode other 

genes that are involved in pathogenicity for reasons unrelated to type III secretion. 

 

 

 

Figure : Fingerprint of the entire genome of S. Typhimurium. 
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Figure : Genomic island in S. Typhimurium starting at gene marker location: 

STM1379. The genes in this island are involved with SPI2: type III secretion system. 

Specific functions include: ttr, sse, ssa.  

 

 

Figure : Genomic island in S. Typhimurium starting at STM1087.  SPI5: virulence 

genes, effector protein primarily pip, sopB  
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Bacteriophage-derived Genomic Islands 

 

    

Figure : Genomic island in S. Typhimurium starting at STM0893. Prophage Fels-1: 

superooxide dismutase, neuraminidase primarily sodCIII and nanH. 

 

Figure : Genomic island in S. Typhimurium starting at STM1005\Prophase Gifsy-2: 

superoxide dismutase, virulence genes primarily sodCI, grvA, gtgE. 
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Figure : Genomic island in S. Typhimurium starting at STM2689 Prophage Fels-2: 

PTS system, phase 2 flagellin, H inversion, virulence genes, transporters, 

siderophores? primarily iro,fljAB,hin,tct 

  

 

Figure : Genomic island in S. Typhimurium starting at  STM2584 Prophase Gifsy-1 

primarily gipA, gogB            
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Figure : Genomic island in S. Typhimurium starting at STM4195 Prophage 

 

These graphs show a clear difference between the overall species fingerprint 

and the horizontally transferred genes. Island 1 and 3, and island 2 and 4 show the 

similarities of similar prophages (these two pairs of islands are associated with 

particular kinds of viruses that replicate in different ways; a prophage is a virus that 

has integrated into the genome).  Islands 1-4 also differ from island 5, which has a 

different prophage orgin. Islands 6 and 7 also deviate from the overall species 

fingerprint. The statistical significance of these results was verified by Jesse Zaneveld 

in the Knight lab using Monte Carlo techniques (J. Zaneveld, unpublished data). 

From these examples, we can see that fingerprint difference in genes may serve as an 

excellent method to detect horizontal transfer. 
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Permuted Islands 

 

Runtime of Algorithms 

 

 Given sequences m and n. the runtime for the Smith-Waterman algorithm is 

O(mn). From this it can be deduced that the Uliel algorithm is also O(mn), with an 

additional twofold constant factor. Also, because one of the sequences is repeated, 

postprocessing is required in cases in which the same gene from both copies of the 

sequence contributes to the alignments.. 

 Not including creation of the matrices and applying logical or to the matrices, 

the runtime for the sliding window algorithm is also O(nm) (the sliding window 

analysis contributes an O(n) step). Implementing the arrays using the Python Numeric 

libraries rather than using the built-in Python data types resulted in order-of-

magnitude improvements in speed. 
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Algorithm Accuracy 

 

Length and Insertion Effect
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Figure : This graph was generated using the code based on the Uliel method for 

aligning circularly permuted sequences. Each point represents the correct alignment 

of an entire island, taken as an average over 1000 randomly circularly permuted 

samples for a given length of sequence and set number of random insertions. 
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True Positives of Sequences
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Figure : This graph is based on the sliding window approach to aligning permuted 

sequence. It shows the true positives ratio of genes found in the aligned island to 

genes in the actual island. Each point represents an average taken over 1000 samples 

with a set number of insertions and deletions allowed, random insertions and 

deletions based up to the allotted number of insertions and deletions, and the set 

sequence length. 

 

 

 

 

 

 



 33 

Discussion 

 

Compositional Statistics 

 

Significance of findings 

The striking similarities between the  fingerprint plots for genes derived from 

the Gifsy-1 and Gifsy-2 phages, and the Fels-1 and Fels-2 phages, indicate that the 

mechanism of transfer affects codon usage in a way that can be detected with the 

fingerprint plots. Furthermore, the similarity of the Prophage islands to each other and 

the Gifsy to each other suggest that the codon biases are specific to the mechanism of  

horizontal transfer. The contrast between the T3SS-encoding islands and the genome 

as a whole also suggests that these techniques may be broadly useful for detecting 

foreign genes. These results are interesting because the paradigm for most research 

into horizontal gene transfer to date has been to assume that all the transferred genes 

will fit the same statistical model that differs from the model for the whole genome. If 

genes that were transferred by different mechanisms have substantially different 

compositional signatures, we may be able to detect horizontal gene transfer in a much 

more sensitive and specific manner by using models that apply to particular 

mechanisms rather than by treating all transferred genes the same way.  
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Permuted Islands 

 

Correlation of Variation and Detection 

 

 In the case of the Uliel method of alignment, fewer insertions equated to a 

better chance of finding the alignment of the island. Because the Smith-Waterman 

algorithm is score-based, longer sequences improved the accuracy of island detection. 

The score increases with the length of the sequence, so the impact on the overall score 

of a single insertion is lower in longer sequneces. This behavior is similar to that of 

the Smith-Waterman algorithm, so the only real cost of the Uliel method is additional 

factor of two in the runtime. 

 As far as the sliding window approach, the more versatile it becomes the more 

occurring false positive. As the number of insertions and deletions allotted increase 

accuracy decrease. This makes sense because by allowing insertions and deletions to 

occur you’re diverging from the sequence itself. Similar to the Uliel method, longer 

sequences lead to better accuracy. In the longer sequences an insertions or deletion 

has a lower ratio of change to sequence length. 

 

Importance of Parameters 

 

 Several parameters affect the sensitivity and specificity of the sliding window 

approach. The window size was especially important in cases where the matches were 

relatively short. For example, if the matching sequence were 3 characters long and the 
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window size was 10, the 3 character match would not be not be detected. Similarly, 

adding the ability to look for additional insertions and deletions increases the 

sensitivity at the expense of specificity. However, if there are more insertions or 

deletions than allowed in the search, part or all of the matching island will be 

descarded. One possible solution to this problem is to fit the parameters based on 

genomic data, and to adjust the thresholds according to well-established cases where 

the evolutionary histories of the genomic islands are known. Another possible 

solution would be to use a smaller window size and to post-process the results. 
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Conclusions 

 Horizontal gene transfer is an important process that shapes microbial 

genomes, and improved techniques for detecting its operation will be useful in many 

different contexts. In this work, I was able to show that the fingerprint plots are 

effective for identifying horizontally transferred genes, and to compare several 

approaches for identifying syntenic regions. This work thus fills in some of the pieces 

of the large and complex puzzle that is horizontal gene transfer. 
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Appendix 

 

1. Code implementing the graphs of various compositional statistics 

#/usr/lib/python2.4/ 
#AminoGraphPlots.py 
 
from matplotlib import use, rc 
use('Agg')  #suppress graphical rendering 
rc('text', usetex=True) 
rc('font', family='serif')  #required to match latex text and 
equations 
import Image 
import ImageFilter 
from Numeric import array, shape, fromstring 
from cogent.base.usage import UnsafeCodonUsage as CodonUsage 
from cogent.maths.stats.test import regress, correlation 
from pylab import * 
from math import pi 
 
"""Provides different kinds of codon usage plots. 
 
See individual docstrings for more info. 
""" 
#module-level constants 
 
#historical doublet order for fingerprint plot; not currently used, 
but 
#same order that the colors were entered in. Matches Sueoka 2002. 
doublet_order = 
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\ 
                 'AA','AG','GA','UA','UG'] 
color_order = ["#000000","#FF0000","#00FF00","#FFFF00", 
          "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0", 
          "#6D6D6D","#2353FF","#00FFFF","#FF8800", 
          "#238853","#882353","#EC008C","#000099"] 
#map doublets to colors so we can make sure the same doublet always 
#gets the same colors 
doublets_to_colors = dict(zip(doublet_order, color_order)) 
#creates a dictionary for the amino acid labels, less to input 
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN', 
          'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN', 
          'THREONINE':'ACN', 'VALINE':'GTN'} 
standard_series_colors=['k','r','g','b', 'm','c'] 
 
#Helper functions 
 
def hist(x, bins=10, normed='height', bottom=0, \ 
    orientation='vertical', width=None, axes=None, **kwargs): 
    """Just like the matplotlib hist, but normalizes bar heights to 
1. 
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    axes uses gca() by default (built-in hist is a method of Axes). 
     
    Original docs from matplotlib: 
  
    HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical', 
**kwargs) 
 
    Compute the histogram of x.  bins is either an integer number of 
    bins or a sequence giving the bins.  x are the data to be 
binned. 
 
    The return values is (n, bins, patches) 
 
    If normed is true, the first element of the return tuple will 
    be the counts normalized to form a probability density, ie, 
    n/(len(x)*dbin) 
 
 
    orientation = 'horizontal' | 'vertical'.  If horizontal, barh 
    will be used and the "bottom" kwarg will be the left. 
 
    width: the width of the bars.  If None, automatically compute 
    the width. 
 
    kwargs are used to update the properties of the 
    hist bars 
    """ 
    if axes is None: 
        axes = gca() 
    if not axes._hold: axes.cla() 
    n,bins = norm_hist_bins(x, bins, normed) 
    if width is None: width = 0.9*(bins[1]-bins[0]) 
    if orientation=='horizontal': 
        patches = axes.barh(n, bins, height=width, left=bottom) 
    else: 
        patches = axes.bar(bins, n, width=width, bottom=bottom) 
    for p in patches: 
        p.update(kwargs) 
    return n, bins, silent_list('Patch', patches) 
 
def norm_hist_bins(y, bins=10, normed='height'): 
    """Just like the matplotlib mlab.hist, but can normalize by 
height. 
 
    normed can be 'area' (produces matplotlib behavior, area is 1),  
    any False value (no normalization), or any True value 
(normalization). 
 
    Original docs from matplotlib: 
 
    Return the histogram of y with bins equally sized bins.  If bins 
    is an array, use the bins.  Return value is 
    (n,x) where n is the count for each bin in x 
 
    If normed is False, return the counts in the first element of 
the 
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    return tuple.  If normed is True, return the probability density 
    n/(len(y)*dbin) 
     
    If y has rank>1, it will be raveled 
    Credits: the Numeric 22 documentation 
        
     
 
    """ 
    y = asarray(y) 
    if len(y.shape)>1: y = ravel(y) 
 
    if not iterable(bins): 
        ymin, ymax = min(y), max(y) 
        if ymin==ymax: 
            ymin -= 0.5 
            ymax += 0.5 
 
        if bins==1: bins=ymax 
        dy = (ymax-ymin)/bins 
        bins = ymin + dy*arange(bins) 
    n = searchsorted(sort(y), bins) 
    n = diff(concatenate([n, [len(y)]])) 
    if normed: 
        if normed == 'area': 
            db = bins[1]-bins[0] 
        else: 
            db = 1.0 
        return 1/(len(y)*db)*n, bins 
    else: 
        return n, bins 
 
def as_species(name): 
    """Cleans up a filename into a species name, italicizing it in 
latex.""" 
    #trim extension if present 
    dot_location = name.rfind('.') 
    if dot_location > -1: 
        name = name[:dot_location] 
    #get rid of _small if present -- used for debugging 
    if name.endswith('_small'): 
        name = name[:-len('_small')] 
    #replace underscores with spaces 
    name = name.replace('_', ' ') 
    #make sure the first letter of the genus is caps, and not the 
first letter 
    #of the species 
    fields = name.split() 
    fields[0] = fields[0].title() 
    #assume second field is species name 
    if len(fields) > 1: 
        fields[1] = fields[1].lower() 
    return '\emph{'+' '.join(fields)+'}' 
 
def frac_to_psq(frac, graph_size): 
    """Converts diameter as fraction of graph to points squared for 
scatter. 
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    frac: fraction of graph (e.g. .01 is 1% of graph size) 
    graph_size: graph size in inches 
    """ 
    points = frac * graph_size * 72 
    return pi * (points/2.0)**2 
     
 
def init_graph_display(title=None, aux_title=None, size=4.0, \ 
    graph_shape='sqr', graph_grid=None, x_label='', y_label='', \ 
    dark=False, with_parens=True, prob_axes=True, axes=None, 
num_genes=None): 
    """Initializes a range of graph settings for standard plots. 
 
    These settings include: 
        - font sizes based on the size of the graph 
        - graph shape 
        - grid, including lines for x=y or at x and y = 0.5 
        - title, auxillary title, and x and y axis labels 
                 
    Parameters: 
        title: displayed on left of graph, at the top, latex-format 
string 
         
        aux_title: displayed on top right of graph, latex-format 
string. 
        typically used for number of genes. 
 
        size:   size of graph, in inches 
 
        graph_shape: 'sqr' for square graphs, 'rect' for graphs that 
include 
        a colorbar, 3to1: width 3 to height 1. 
 
        graph_grid: background grid for the graph. Currently 
recognized grids 
        are '/' (line at x=y) and 't' (cross at x=.5 and y=.5). 
 
        x_label: label for x axis, latex-format string. 
 
        y_label: label for y axis, latex-format string. 
 
        dark: set to True if dark background, reverses text and tick 
colors. 
         
        with_parens: if True (default), puts parens around auxillary 
title 
         
    returns font, label_font_size (for use in producing additional 
labels in  
    calling function). 
    """ 
    if dark: 
        color='w' 
    else: 
        color='k' 
    min_offset = 0.05           #minimum offset, e.g. for text 
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    max_offset = 1-min_offset   #center offsets 
    rect_scale_factor = 1.28    #need to allow for legend while 
keeping graph 
                                #square; empirically determined at 
1.28 
    font_size = int(size*3-1)   #want 11pt font w/ default graph 
size 4" sqr 
    label_scale_factor = 0.8 
    label_font_size = font_size * label_scale_factor 
    label_offset = label_font_size * 0.5 
    axis_label_font={'fontsize':font_size} 
    font={'fontsize':font_size, 'color':color} 
     
 
    if graph_shape == 'sqr': 
        gcf().set_figsize_inches(size,size) 
    elif graph_shape == 'rect': 
        #scaling for sqr graphs with colorbar 
        gcf().set_figsize_inches(size*rect_scale_factor,size) 
    elif graph_shape == '3to1': 
        gcf().set_figsize_inches(3*size, size) 
    elif graph_shape == '2to1': 
        gcf().set_figsize_inches(2*size, size) 
    else: 
        raise ValueError, "Got unknown graph shape %s" % graph_shape 
     
    #set or create axes 
    if axes is None: 
        axes = gca() 
 
    #draw grid manually: these are in data coordinates.  
    if graph_grid == 't': 
        #grid lines at 0.5 on each axis, horiz & vertic 
        axes.axvline(x=.5, ymin=0, ymax=1, color=color, 
linestyle=':') 
        axes.axhline(y=.5, xmin=0, xmax=1, color=color, 
linestyle=':') 
    elif graph_grid == '/': 
        #diagonal gridlines from 0,0 to 1,1. 
        axes.plot([0,1], color=color, linestyle=':') 
    else: 
        pass    #ignore other choices 
         
    #remove default grid 
    axes.grid(False) 
 
    #set x and y labels 
    axes.set_ylabel(y_label, axis_label_font) 
    axes.set_xlabel(x_label, axis_label_font) 
 
    #add title/aux_title to graph directly. Note that we want  
    #the tops of these to be fixed, and we want the label to be  
    #left-justified and the number of genes to be right justified,  
    #so that it still works when we resize the graph. 
    if title is not None: 
        axes.text(min_offset, max_offset, str(title), font, \ 
            verticalalignment='top', horizontalalignment='left') 
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    #use num_genes as aux_title by default 
    aux_title = num_genes or aux_title 
    if aux_title is not None: 
        if with_parens: 
            aux_title='('+str(aux_title)+')' 
        axes.text(max_offset, max_offset, str(aux_title), font, 
             verticalalignment='top', horizontalalignment='right') 
    if prob_axes: 
        init_ticks(axes, label_font_size, dark) 
    #set x and y label offsets -- currently though rcParams, but 
should be 
    #able to do at instance level? 
    #rc('xtick.major', pad=label_offset) 
    #rc('ytick.major', pad=label_offset) 
    return font, label_font_size 
 
def init_ticks(a, label_font_size, dark=False): 
    """takes a from (a = gca) 
    sets the ticks to span from 0 to 1 with .1 intervals 
    changes the size of the ticks and the corresponding number 
labels 
    """ 
    a.set_xticks(arange(0,1.01,.1),) 
    a.set_yticks(arange(0,1.01,.1)) 
 
    #reset sizes for x and y labels 
    x = a.get_xticklabels() 
    y = a.get_yticklabels() 
    for l in a.get_xticklabels() + a.get_yticklabels(): 
        l.set_fontsize(label_font_size) 
    #if dark, need to reset color of internal ticks to white 
    if dark: 
        for l in a.get_xticklines() + a.get_yticklines(): 
            l.set_markeredgecolor('white') 
 
def set_axis_to_probs(axes=None): 
    """sets the axes to span from 0 to 1 
    necessary because order in program changes graph 
    """ 
    #set axis for probabilities (range 0 to 1) 
    if axes is None: 
        axes = gca() 
    axes.set_xlim([0,1]) 
    axes.set_ylim([0,1]) 
 
def plot_regression_line(x_data,y_data,line_color='r', axes=None): 
    """Plots the regression line, and returns the equation.""" 
    if axes is None: 
        axes = gca() 
    m, b = regress(x_data, y_data) 
    r, significance = correlation(x_data,y_data) 
    #set the a,b,r values 
    r_str = '%0.3g'% (r**2) 
    m_str ='%0.3g' % m 
    b_str = '%0.3g' % b 
    x1=0.0 
    y1=b 
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    x2=1.0 
    y2=(m+b) 
     
    #constrain so that y is always in the range (0,1) for plotting 
    if(y1<0): 
        y1=0.0 
        x1=(0-b)/m 
    if(y2>=1): 
        y2=1.0 
        x2=(1-b)/m 
 
    axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2) 
 
    if b >= 0: 
        sign_str = ' + ' 
    else: 
        sign_str = ' ' 
     
    equation=''.join(['y= 
',m_str,'x',sign_str,b_str,'\n\nr$^2$=',r_str]) 
    return equation, line_color 
 
def print_regression_equations(equations, axes=None): 
    """Writes list of regression equations to graph. 
 
    equations: list of regression equations 
 
    size: size of the graph in inches 
    """ 
    if axes is None: 
        axes = gca() 
    for i, (eq_text, eq_color) in enumerate(equations): 
        axes.text((0.98), (0.02+(.06*i)), str(eq_text), \ 
            horizontalalignment='right', verticalalignment='bottom', 
\ 
            color=eq_color) 
 
 
def broadcast(i, n): 
    """Broadcasts i to a vector of length n.""" 
    try: 
        i = list(i) 
    except: 
        i = [i] 
    reps, leftovers = divmod(n, len(i)) 
    return (i * reps) + i[:leftovers] 
     
     
#scatterplot functions and helpers 
 
def plot_scatter(data, series_names=None, \ 
    series_color=standard_series_colors, 
line_color=standard_series_colors,\ 
    alpha=0.25, marker_size=.015, scale_markers=True, 
    show_legend=True,legend_loc='center right', 
    show_regression=True, show_equation=True, 
    prob_axes=False, size=8.0, axes=None, 
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    **kwargs): 
    """helper plots one or more series of scatter data of specified 
color, 
    calls the initializing functions, doesn't print graph 
     
    takes: plotted_pairs, series_names, show_legend, legend_loc, and 
        **kwargs passed on to init_graph_display (these include 
title, 
        aux_title, size, graph_shape, graph_grid, x_label, y_label, 
        dark, with_parens). 
                  
    plotted_pairs = (first_pos, second_pos, dot_color, line_color, 
    alpha, show_regression, show_equation) 
 
    returns the regression str equation (list) if regression is set 
true 
 
    suppresses legend if series not named, even if show_legend is 
True. 
    """ 
    if not axes: 
        axes = gca() 
    #initialize fonts, shape and labels 
    font,label_font_size=init_graph_display(prob_axes=prob_axes, \ 
        size=size, axes=axes, **kwargs) 
    equations = [] 
    #figure out how many series there are, and scale vals 
accordingly 
    num_series = len(data)/2 
    series_color = broadcast(series_color, num_series) 
    line_color = broadcast(line_color, num_series) 
    alpha = broadcast(alpha, num_series) 
    marker_size = broadcast(marker_size, num_series) 
    if scale_markers: 
        marker_size = [frac_to_psq(m, size) for m in marker_size] 
     
    series = [] 
    for i in range(num_series): 
        x, y = data[2*i], data[2*i+1] 
        
series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\ 
        alpha=alpha[i])) 
        #find the equation and plots the regression line if True 
        if show_regression: 
            equation = plot_regression_line(x,y,line_color[i], 
axes=axes) 
        if show_equation: 
            equations.append(equation)  #will be (str, color) tuple 
    #print all the regression equations at once -- need to know how 
many 
    if show_regression: 
        print_regression_equations(equations, axes=axes) 
    #clean up axes if necessary 
    if show_legend and series_names: #suppress legend if series not 
named 
        axes.legend(series, series_names, legend_loc) 
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    if prob_axes: 
        set_axis_to_probs(axes) 
    return equations, font 
                     
def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png', 
**kwargs): 
    """Outputs a CAI vs P3 scatter plot. 
 
    expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...]) 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid=None,\ 
        x_label="$P_3$",y_label="CAI", prob_axes=True,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs): 
    """Outputs a P12 versus P3 scatter graph, optionally including 
regression. 
 
    expects data as [P3_1, P12_1, P3_2, P12_2, ...n ]. 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid='/',\ 
        x_label="$P_3$",y_label="$P_{12}$", prob_axes=True, 
**kwargs) 
    savefig(graph_name) 
 
def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False, 
**kwargs): 
    """Output a scatter plot of p1,p2,p3 vs gc content 
     
    Expects data as array with rows as GC, P1, P2, P3 
    p1=blue, p2=green, p3=red 
 
    """ 
    #unpack common x axis, and decide on series names 
    if use_p3_as_x: 
        series_names = ['$P_1$', '$P_2$'] 
        colors=['b','g'] 
        x_label='$P_3$' 
        y_label='$P_{12}$' 
        xy_pairs = [data[3], data[1], data[3], data[2]] 
    else: 
        series_names = ['$P_1$', '$P_2$', '$P_3$'] 
        colors=['b','g','r'] 
        x_label='GC' 
        y_label='$P_{123}$' 
        xy_pairs = [data[0], data[1], data[0], data[2], data[0], 
data[3]] 
     
    #plot points and write graph 
    plot_scatter(xy_pairs, 
graph_grid='/',x_label=x_label,y_label=y_label, 
        series_names=series_names, prob_axes=True, **kwargs) 
    savefig(graph_name) 
 
def plot_fingerprint(data, alpha=0.7, \ 
    show_legend=True, graph_name='fingerprint.png', has_mean=True, 
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    which_blocks='quartets', multiple=False, graph_grid='t', 
prob_axes=True, \ 
    **kwargs): 
    """Outputs a bubble plot of four-codon amino acid blocks 
    labeled with the colors from Sueoka 2002. 
 
    takes: data:  array-elements in the col order x, y, r of 
           each of the four codon Amino Acids in the row order: 
           ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL 
           (for traditional fingerprint), or: 
           UU -> GG (for 16-block fingerprint). 
           last row is the mean (if has_mean is set True) 
 
        **kwargs passed on to init_graph_display (these include  
        graph_shape, graph_grid, x_label, y_label, dark, 
with_parens). 
                  
           title: will be printed on graph (default: 'Unknown 
Species') 
            
           num_genes (number of genes contributing to graph: default 
None) 
           NOTE: will not print if None.) 
         
           size: of graph in inches (default = 8.0) 
 
           alpha: transparency of bubbles 
           (ranges from 0, transparent, to 1, opaque; default 0.7) 
            
           show_legend: bool, default True, whether to print legend 
 
           graph_name: name of file to write (default 
'fingerprint.png') 
 
           has_mean: whether the data contain the mean (default: 
True) 
 
           which_blocks: which codon blocks to print (default is 
'quartets' 
           for the 4-codon amino acid blocks, but can also use 'all' 
for all  
           quartets or 'split' for just the split quartets.) 
 
           multiple: if False (the default), assumes it got a single 
block 
           of data. Otherwise, assumes multiple blocks of data in a 
list or 
           array. 
 
    note: that the data are always expected to be in the range (0,1) 
    since we're plotting frequencies. axes, gid, etc. are hard-coded 
    to these values.  
    """ 
    #figure out which type of fingerprint plot we're doing, and get 
the 
    #right colors 
    if which_blocks == 'quartets': 
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        blocks = CodonUsage.SingleAABlocks 
    elif which_blocks == 'split': 
        blocks = CodonUsage.SplitBlocks 
    else: 
        blocks = CodonUsage.Blocks 
 
    colors = [doublets_to_colors[i] for i in blocks] 
       
    #formatting the labels in latex 
    x_label="$G_3/(G_3+C_3)$" 
    y_label="$A_3/(A_3+T_3)$" 
 
    #initializing components of the graph 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid=graph_grid, x_label=x_label, \ 
        y_label=y_label, prob_axes=prob_axes, **kwargs) 
 
    if not multiple: 
        data = [data] 
  
    alpha = broadcast(alpha, len(data)) 
   
    for al, d in zip(alpha, data): 
        #skip this series if no data 
        if not d: 
            continue 
        for i, color in enumerate(colors): 
            j = i+1 
            #note: doing these as slices because scatter_classic 
needs the 
            #extra level of nesting 
            patches = scatter_classic(d[i:j,0], d[i:j,1], 
                        s=(d[i:j,2]/2), c=color) 
            #set alpha for the patches manually 
            for p in patches: 
                p.set_alpha(al) 
         
        #plot mean as its own point -- can't do cross with scatter 
        if has_mean: 
            mean_index = len(blocks)    #next index after the blocks 
            plot([d[mean_index,0]], [d[mean_index,1]], 
                 '-k+',markersize=label_font_size, alpha=al) 
                
 
    abbrev = CodonUsage.BlockAbbreviations 
 
    a = gca() 
    #if show_legend is True prints a legend in the right center area 
    if show_legend: 
        legend_key = [abbrev[b] for b in blocks] 
        #copy legend font properties from the x axis tick labels 
        legend_font_props = \ 
            a.xaxis.get_label().get_font_properties().copy() 
        legend_font_scale_factor = 0.7 
        curr_size = legend_font_props.get_size() 
        
legend_font_props.set_size(curr_size*legend_font_scale_factor) 
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        l = figlegend(a.patches, 
                  legend_key, 
                  prop=legend_font_props, 
                  loc='center right',pad=0.1,labelsep=0.0025, 
                  handlelen=0.02,handletextsep=0.007, axespad=0.0) 
        #fix transparency of patches 
        for p in l.get_patches(): 
            p.set_alpha(1) 
 
    #initialize the ticks 
    set_axis_to_probs() 
    init_ticks(a, label_font_size) 
    a.set_xticks([0, 0.5, 1]) 
    a.set_yticks([0,0.5,1]) 
     
    #output the figure 
    savefig(graph_name) 
 
#Contour plots and related functions 
 
def plot_filled_contour(plot_data, xy_data=None, 
show_regression=False, \ 
    show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \ 
    num_contour_lines=10, **kwargs): 
    """helper plots one or more series of contour data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
fill_cmap,  
    and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
    """ 
    if show_regression: 
        equation = plot_regression_line(xy_data[:,0],xy_data[:,1]) 
        if show_equation: 
            print_regression_equations([equation]) 
    #init graph display, rectangular due to needed colorbar space 
    init_graph_display(graph_shape=graph_shape, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data_matrix in plot_data: 
        contourf(x_bin,y_bin,data_matrix, num_contour_lines, 
cmap=fill_cmap) 
    #add the colorbar legend to the side 
    colorbar() 
 
def plot_contour_lines(plot_data, xy_data=None, 
show_regression=False, \ 
        show_equation=False, smooth_steps=0, num_contour_lines=10, \ 
        label_contours=False, line_cmap=cm.hot, 
fill_cmap=cm.gray,dark=True, 
        graph_shape='rect', **kwargs): 
    """helper plots one or more series of contour line data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
smooth, 
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        num_contour_lines, label_contours, line_cmap, fill_cmap, 
graph_shape, 
        and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
    """ 
    #init graph display, rectangular due to needed colorbar space 
    init_graph_display(graph_shape=graph_shape, 
        dark=dark, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data in plot_data: 
        orig_max = max(ravel(data)) 
        scaled_data = (data/orig_max*255).astype('b') 
        if smooth_steps: 
            orig_shape = data.shape 
            im = Image.fromstring('L', data.shape, scaled_data) 
            for i in range(smooth_steps): 
                im = im.filter(ImageFilter.BLUR) 
            new_data = fromstring(im.tostring(), 'b') 
            data = reshape(new_data.astype('i')/255.0 * orig_max, 
orig_shape) 
         
        if fill_cmap is not None: 
            im = imshow(data, interpolation='bicubic', 
extent=(0,1,0,1), \ 
                origin='lower', cmap=fill_cmap) 
        result=contour(x_bin,y_bin,data, num_contour_lines, 
                              origin='lower',linewidth=2, 
                              extent=(0,1,0,1), cmap=line_cmap) 
        if label_contours: 
            clabel(result, fmt='%1.1g') 
 
    #add the colorbar legend to the side 
    cb = colorbar() 
    cb.set_axis_bgcolor('black') 
 
    if show_regression: 
        equation=plot_regression_line(xy_data[0],xy_data[1]) 
        if show_equation: 
            print_regression_equations([equation]) 
 
def plot_cai_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='cai_contour.png', 
                        prob_axes=True, **kwargs): 
    """Output a contour plot of cai vs p3 with colorbar on side 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contour.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
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    plot_filled_contour(plot_data, graph_grid='/',x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data, 
                             graph_name='cai_contourlines.png', 
                             prob_axes=True, **kwargs): 
    """Output a contour plot of cai 
     
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='p12_p3_contour.png', 
                        prob_axes=True, **kwargs): 
    """Outputs a P12 versus P3 contour graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'p12_p3_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_filled_contour(plot_data, graph_grid='/', x_label="$P_3$", 
\ 
        y_label="$P_{12}$", prob_axes=prob_axes,**kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data, 
prob_axes=True,\ 
    graph_name='p12_p3_contourlines.png', **kwargs): 
    """Outputs a P12 versus P3 contourline graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
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           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'p12_p3_contourlines.png 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$",\ 
        y_label="$P_{12}$", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
#Other graphs 
 
def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png', 
\ 
    num_genes='ignored', **kwargs): 
    """Outputs a PR2-Bias plot of: 
    -isotypic transversions (base swapping) 
    with G3/(G3+C3) and A3/(A3+T3) 
    -Transitions (deaminations) 
    with G3/(G3+A3) and C3/(C3+T3) 
    -Allotypic transversions (G- oxidations) 
    with G3/(G3+T3) and C3/(C3+A3) 
 
    takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3), 
    G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3) 
 
    label: default 'ALANINE' 
    one amino acid written out in caps: 
    ALANINE, ARGININE4, GLYCINE, LEUCINE4, 
    PROLINE, SERINE4, THREONINE, VALINE 
       from one of the amino acids program will add acronym 
       C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
       G2 type: arg4 (CGN), an gly(GGN) 
       T2 type: leu4(CTN), val (GTN) 
 
    size: of graph in inches (default = 8.0) 
 
    graph_name: default 'pr2_bias.png' 
     
    num_genes: number of genes contributing to graph, currently 
ignored. 
    """ 
    #we can't put anything in the top right, so print num_genes 
after the title 
    #if it was supplied 
    #initializes the graph display and font 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid='/', x_label="$P_3$", y_label="Y axis", 
prob_axes=True, \ 
        title=title, **kwargs) 
    #sets the marker_size relative to the font and thus the graph 
size 
    marker_size = (label_font_size-1) 
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    #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3), 
    #                           G3/(G3/A3),C3/(C3+T3), 
    #                           G3/(G3+T3),C3/(C3+A3) 
    #colors and symbols coded from Sueoka 2002 
    plot([data[:,0]], [data[:,1]], '-ko', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,2]], '-kv', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,3]], '-ro', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,4]], '-rv', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,5]], '-wo', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,6]], '-wv', c='k', 
         markersize=marker_size) 
 
    set_axis_to_probs() 
 
    #aaLabel based on the amino acid that is graphed 
    #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
    #G2 type: arg4 (CGN), an gly(GGN) 
    #T2 type: leu4(CTN), val (GTN) (Sueoka 2002) 
    text(.95, .05, aaLabels[title], font, 
verticalalignment='bottom', 
         horizontalalignment='right') 
 
    #output the figure 
    set_axis_to_probs() 
    savefig(graph_name) 
 
 
def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\ 
        normal_fit=True, normed=True, colors=None, linecolors=None, 
\ 
        alpha=0.75, prob_axes=True, series_names=None, 
show_legend=False,\ 
        y_label=None, **kwargs): 
    """Outputs a histogram with multiple series (must provide a list 
of series). 
     
    takes:  data: list of arrays of values to plot (needs to be list 
of arrays 
            so you can pass in arrays with different numbers of 
elements) 
 
            graph_name: filename to write graph to 
            bins: number of bins to use 
            normal_fit: whether to show the normal curve best 
fitting the data 
            normed: whether to normalize the histogram (e.g. so bars 
sum to 1) 
            colors: list of colors to use for bars 
            linecolors: list of colors to use for fit lines 
 
            **kwargs are pssed on to init_graph_display. 
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    """ 
    if y_label is None: 
        if normed: 
            y_label='Frequency' 
        else: 
            y_label='Count' 
    num_series = len(data) 
    if colors is None: 
        if num_series == 1: 
            colors = ['white'] 
        else: 
            colors = standard_series_colors 
    if linecolors is None: 
        if num_series == 1: 
            linecolors = ['red'] 
        else: 
            linecolors = standard_series_colors 
     
    init_graph_display(prob_axes=prob_axes, y_label=y_label, 
**kwargs) 
    for i, d in enumerate(data): 
        fc = colors[i % len(colors)] 
        lc = linecolors[i % len(linecolors)] 
         
        counts, x_bins, patches = hist(d, bins=bins, normed=normed, 
\ 
            alpha=alpha, facecolor=fc) 
 
        if normal_fit: 
            mu = mean(d) 
            sigma = std(d) 
            bin_width = x_bins[-1] - x_bins[-2] 
            #want normpdf to extend over the bins, so needs to be 
one extra 
            #normpdf_bins = x_bins + bin_width/2.0 
            normpdf_bins = arange(0,1,0.01) 
            y = normpdf(normpdf_bins, mu, sigma) 
            orig_area = sum(counts) * bin_width 
            y = y * orig_area   #normpdf area is 1 by default 
            plot(normpdf_bins, y, linestyle='--', color=lc, 
linewidth=1) 
 
    if show_legend and series_names: 
        legend(series_names) 
     
    #output figure 
    savefig(graph_name) 
 
def plot_scatter_with_histograms(data, 
graph_name='histo_scatter.png', \ 
    graph_grid='/', prob_axes=False, bins=20, frac=0.9, 
scatter_alpha=0.5, \ 
    hist_alpha=0.8, colors=standard_series_colors, normed=True, 
**kwargs): 
    """Plots a scatter plot with histograms showing distribution of 
x and y. 
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    Data should be list of [x1, y1, x2, y2, ...]. 
    """ 
 
    #set up subplot coords 
    tl=subplot(2,2,1) 
    br=subplot(2,2,4) 
    bl=subplot(2,2,3, sharex=tl, sharey=br) 
 
    #get_position returns left, bottom, width, height relative to 
figure 
    tl_coords = tl.get_position() 
    bl_coords = bl.get_position() 
    br_coords = br.get_position() 
 
    left = tl_coords[0] 
    bottom = bl_coords[1] 
 
    width = br_coords[0] + br_coords[2] - left 
    height = tl_coords[1] + tl_coords[3] - bottom 
 
    bl.set_position([left, bottom, frac*width, frac*height]) 
    tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height]) 
    br.set_position([left+(frac*width), bottom, (1-frac)*width, 
frac*height]) 
 
    #suppress frame and axis for histograms 
    for i in [tl,br]: 
        i.set_frame_on(False) 
        i.xaxis.set_visible(False) 
        i.yaxis.set_visible(False) 
     
    plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs) 
     
    biggest_x = 0 
    biggest_y = 0 
    for i in range(0, len(data), 2): 
        x, y = data[i], data[i+1] 
        color = colors[(i/2)%len(colors)] 
        n, bins, patches = hist(x, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=tl, normed=True) 
        biggest_x = max([biggest_x, max(x)]) 
        n, bins, patches = hist(y, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=br, normed=normed, 
orientation='horizontal') 
        biggest_y=max([biggest_y,max(y)]) 
    bl.set_xlim(0,1) 
    bl.set_ylim(0,1) 
    savefig(graph_name) 
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2. Code implementing the Smith-Waterman, and Uliel algorithms for island 

detection 

#/usr/lib/python2.4/ 
#AminoGraphPlots.py 
 
from matplotlib import use, rc 
use('Agg')  #suppress graphical rendering 
rc('text', usetex=True) 
rc('font', family='serif')  #required to match latex text and 
equations 
import Image 
import ImageFilter 
from Numeric import array, shape, fromstring 
from cogent.base.usage import UnsafeCodonUsage as CodonUsage 
from cogent.maths.stats.test import regress, correlation 
from pylab import * 
from math import pi 
 
"""Provides different kinds of codon usage plots. 
 
See individual docstrings for more info. 
""" 
#module-level constants 
 
#historical doublet order for fingerprint plot; not currently used, 
but 
#same order that the colors were entered in. Matches Sueoka 2002. 
doublet_order = 
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\ 
                 'AA','AG','GA','UA','UG'] 
color_order = ["#000000","#FF0000","#00FF00","#FFFF00", 
          "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0", 
          "#6D6D6D","#2353FF","#00FFFF","#FF8800", 
          "#238853","#882353","#EC008C","#000099"] 
#map doublets to colors so we can make sure the same doublet always 
#gets the same colors 
doublets_to_colors = dict(zip(doublet_order, color_order)) 
#creates a dictionary for the amino acid labels, less to input 
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN', 
          'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN', 
          'THREONINE':'ACN', 'VALINE':'GTN'} 
standard_series_colors=['k','r','g','b', 'm','c'] 
 
#Helper functions 
 
def hist(x, bins=10, normed='height', bottom=0, \ 
    orientation='vertical', width=None, axes=None, **kwargs): 
    """Just like the matplotlib hist, but normalizes bar heights to 
1. 
     
    axes uses gca() by default (built-in hist is a method of Axes). 
     
    Original docs from matplotlib: 
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    HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical', 
**kwargs) 
 
    Compute the histogram of x.  bins is either an integer number of 
    bins or a sequence giving the bins.  x are the data to be 
binned. 
 
    The return values is (n, bins, patches) 
 
    If normed is true, the first element of the return tuple will 
    be the counts normalized to form a probability density, ie, 
    n/(len(x)*dbin) 
 
 
    orientation = 'horizontal' | 'vertical'.  If horizontal, barh 
    will be used and the "bottom" kwarg will be the left. 
 
    width: the width of the bars.  If None, automatically compute 
    the width. 
 
    kwargs are used to update the properties of the 
    hist bars 
    """ 
    if axes is None: 
        axes = gca() 
    if not axes._hold: axes.cla() 
    n,bins = norm_hist_bins(x, bins, normed) 
    if width is None: width = 0.9*(bins[1]-bins[0]) 
    if orientation=='horizontal': 
        patches = axes.barh(n, bins, height=width, left=bottom) 
    else: 
        patches = axes.bar(bins, n, width=width, bottom=bottom) 
    for p in patches: 
        p.update(kwargs) 
    return n, bins, silent_list('Patch', patches) 
 
def norm_hist_bins(y, bins=10, normed='height'): 
    """Just like the matplotlib mlab.hist, but can normalize by 
height. 
 
    normed can be 'area' (produces matplotlib behavior, area is 1),  
    any False value (no normalization), or any True value 
(normalization). 
 
    Original docs from matplotlib: 
 
    Return the histogram of y with bins equally sized bins.  If bins 
    is an array, use the bins.  Return value is 
    (n,x) where n is the count for each bin in x 
 
    If normed is False, return the counts in the first element of 
the 
    return tuple.  If normed is True, return the probability density 
    n/(len(y)*dbin) 
     
    If y has rank>1, it will be raveled 
    Credits: the Numeric 22 documentation 
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    """ 
    y = asarray(y) 
    if len(y.shape)>1: y = ravel(y) 
 
    if not iterable(bins): 
        ymin, ymax = min(y), max(y) 
        if ymin==ymax: 
            ymin -= 0.5 
            ymax += 0.5 
 
        if bins==1: bins=ymax 
        dy = (ymax-ymin)/bins 
        bins = ymin + dy*arange(bins) 
    n = searchsorted(sort(y), bins) 
    n = diff(concatenate([n, [len(y)]])) 
    if normed: 
        if normed == 'area': 
            db = bins[1]-bins[0] 
        else: 
            db = 1.0 
        return 1/(len(y)*db)*n, bins 
    else: 
        return n, bins 
 
def as_species(name): 
    """Cleans up a filename into a species name, italicizing it in 
latex.""" 
    #trim extension if present 
    dot_location = name.rfind('.') 
    if dot_location > -1: 
        name = name[:dot_location] 
    #get rid of _small if present -- used for debugging 
    if name.endswith('_small'): 
        name = name[:-len('_small')] 
    #replace underscores with spaces 
    name = name.replace('_', ' ') 
    #make sure the first letter of the genus is caps, and not the 
first letter 
    #of the species 
    fields = name.split() 
    fields[0] = fields[0].title() 
    #assume second field is species name 
    if len(fields) > 1: 
        fields[1] = fields[1].lower() 
    return '\emph{'+' '.join(fields)+'}' 
 
def frac_to_psq(frac, graph_size): 
    """Converts diameter as fraction of graph to points squared for 
scatter. 
     
    frac: fraction of graph (e.g. .01 is 1% of graph size) 
    graph_size: graph size in inches 
    """ 
    points = frac * graph_size * 72 
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    return pi * (points/2.0)**2 
     
 
def init_graph_display(title=None, aux_title=None, size=4.0, \ 
    graph_shape='sqr', graph_grid=None, x_label='', y_label='', \ 
    dark=False, with_parens=True, prob_axes=True, axes=None, 
num_genes=None): 
    """Initializes a range of graph settings for standard plots. 
 
    These settings include: 
        - font sizes based on the size of the graph 
        - graph shape 
        - grid, including lines for x=y or at x and y = 0.5 
        - title, auxillary title, and x and y axis labels 
                 
    Parameters: 
        title: displayed on left of graph, at the top, latex-format 
string 
         
        aux_title: displayed on top right of graph, latex-format 
string. 
        typically used for number of genes. 
 
        size:   size of graph, in inches 
 
        graph_shape: 'sqr' for square graphs, 'rect' for graphs that 
include 
        a colorbar, 3to1: width 3 to height 1. 
 
        graph_grid: background grid for the graph. Currently 
recognized grids 
        are '/' (line at x=y) and 't' (cross at x=.5 and y=.5). 
 
        x_label: label for x axis, latex-format string. 
 
        y_label: label for y axis, latex-format string. 
 
        dark: set to True if dark background, reverses text and tick 
colors. 
         
        with_parens: if True (default), puts parens around auxillary 
title 
         
    returns font, label_font_size (for use in producing additional 
labels in  
    calling function). 
    """ 
    if dark: 
        color='w' 
    else: 
        color='k' 
    min_offset = 0.05           #minimum offset, e.g. for text 
    max_offset = 1-min_offset   #center offsets 
    rect_scale_factor = 1.28    #need to allow for legend while 
keeping graph 
                                #square; empirically determined at 
1.28 
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    font_size = int(size*3-1)   #want 11pt font w/ default graph 
size 4" sqr 
    label_scale_factor = 0.8 
    label_font_size = font_size * label_scale_factor 
    label_offset = label_font_size * 0.5 
    axis_label_font={'fontsize':font_size} 
    font={'fontsize':font_size, 'color':color} 
     
 
    if graph_shape == 'sqr': 
        gcf().set_figsize_inches(size,size) 
    elif graph_shape == 'rect': 
        #scaling for sqr graphs with colorbar 
        gcf().set_figsize_inches(size*rect_scale_factor,size) 
    elif graph_shape == '3to1': 
        gcf().set_figsize_inches(3*size, size) 
    elif graph_shape == '2to1': 
        gcf().set_figsize_inches(2*size, size) 
    else: 
        raise ValueError, "Got unknown graph shape %s" % graph_shape 
     
    #set or create axes 
    if axes is None: 
        axes = gca() 
 
    #draw grid manually: these are in data coordinates.  
    if graph_grid == 't': 
        #grid lines at 0.5 on each axis, horiz & vertic 
        axes.axvline(x=.5, ymin=0, ymax=1, color=color, 
linestyle=':') 
        axes.axhline(y=.5, xmin=0, xmax=1, color=color, 
linestyle=':') 
    elif graph_grid == '/': 
        #diagonal gridlines from 0,0 to 1,1. 
        axes.plot([0,1], color=color, linestyle=':') 
    else: 
        pass    #ignore other choices 
         
    #remove default grid 
    axes.grid(False) 
 
    #set x and y labels 
    axes.set_ylabel(y_label, axis_label_font) 
    axes.set_xlabel(x_label, axis_label_font) 
 
    #add title/aux_title to graph directly. Note that we want  
    #the tops of these to be fixed, and we want the label to be  
    #left-justified and the number of genes to be right justified,  
    #so that it still works when we resize the graph. 
    if title is not None: 
        axes.text(min_offset, max_offset, str(title), font, \ 
            verticalalignment='top', horizontalalignment='left') 
    #use num_genes as aux_title by default 
    aux_title = num_genes or aux_title 
    if aux_title is not None: 
        if with_parens: 
            aux_title='('+str(aux_title)+')' 
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        axes.text(max_offset, max_offset, str(aux_title), font, 
             verticalalignment='top', horizontalalignment='right') 
    if prob_axes: 
        init_ticks(axes, label_font_size, dark) 
    #set x and y label offsets -- currently though rcParams, but 
should be 
    #able to do at instance level? 
    #rc('xtick.major', pad=label_offset) 
    #rc('ytick.major', pad=label_offset) 
    return font, label_font_size 
 
def init_ticks(a, label_font_size, dark=False): 
    """takes a from (a = gca) 
    sets the ticks to span from 0 to 1 with .1 intervals 
    changes the size of the ticks and the corresponding number 
labels 
    """ 
    a.set_xticks(arange(0,1.01,.1),) 
    a.set_yticks(arange(0,1.01,.1)) 
 
    #reset sizes for x and y labels 
    x = a.get_xticklabels() 
    y = a.get_yticklabels() 
    for l in a.get_xticklabels() + a.get_yticklabels(): 
        l.set_fontsize(label_font_size) 
    #if dark, need to reset color of internal ticks to white 
    if dark: 
        for l in a.get_xticklines() + a.get_yticklines(): 
            l.set_markeredgecolor('white') 
 
def set_axis_to_probs(axes=None): 
    """sets the axes to span from 0 to 1 
    necessary because order in program changes graph 
    """ 
    #set axis for probabilities (range 0 to 1) 
    if axes is None: 
        axes = gca() 
    axes.set_xlim([0,1]) 
    axes.set_ylim([0,1]) 
 
def plot_regression_line(x_data,y_data,line_color='r', axes=None): 
    """Plots the regression line, and returns the equation.""" 
    if axes is None: 
        axes = gca() 
    m, b = regress(x_data, y_data) 
    r, significance = correlation(x_data,y_data) 
    #set the a,b,r values 
    r_str = '%0.3g'% (r**2) 
    m_str ='%0.3g' % m 
    b_str = '%0.3g' % b 
    x1=0.0 
    y1=b 
    x2=1.0 
    y2=(m+b) 
     
    #constrain so that y is always in the range (0,1) for plotting 
    if(y1<0): 
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        y1=0.0 
        x1=(0-b)/m 
    if(y2>=1): 
        y2=1.0 
        x2=(1-b)/m 
 
    axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2) 
 
    if b >= 0: 
        sign_str = ' + ' 
    else: 
        sign_str = ' ' 
     
    equation=''.join(['y= 
',m_str,'x',sign_str,b_str,'\n\nr$^2$=',r_str]) 
    return equation, line_color 
 
def print_regression_equations(equations, axes=None): 
    """Writes list of regression equations to graph. 
 
    equations: list of regression equations 
 
    size: size of the graph in inches 
    """ 
    if axes is None: 
        axes = gca() 
    for i, (eq_text, eq_color) in enumerate(equations): 
        axes.text((0.98), (0.02+(.06*i)), str(eq_text), \ 
            horizontalalignment='right', verticalalignment='bottom', 
\ 
            color=eq_color) 
 
 
def broadcast(i, n): 
    """Broadcasts i to a vector of length n.""" 
    try: 
        i = list(i) 
    except: 
        i = [i] 
    reps, leftovers = divmod(n, len(i)) 
    return (i * reps) + i[:leftovers] 
     
     
#scatterplot functions and helpers 
 
def plot_scatter(data, series_names=None, \ 
    series_color=standard_series_colors, 
line_color=standard_series_colors,\ 
    alpha=0.25, marker_size=.015, scale_markers=True, 
    show_legend=True,legend_loc='center right', 
    show_regression=True, show_equation=True, 
    prob_axes=False, size=8.0, axes=None, 
    **kwargs): 
    """helper plots one or more series of scatter data of specified 
color, 
    calls the initializing functions, doesn't print graph 
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    takes: plotted_pairs, series_names, show_legend, legend_loc, and 
        **kwargs passed on to init_graph_display (these include 
title, 
        aux_title, size, graph_shape, graph_grid, x_label, y_label, 
        dark, with_parens). 
                  
    plotted_pairs = (first_pos, second_pos, dot_color, line_color, 
    alpha, show_regression, show_equation) 
 
    returns the regression str equation (list) if regression is set 
true 
 
    suppresses legend if series not named, even if show_legend is 
True. 
    """ 
    if not axes: 
        axes = gca() 
    #initialize fonts, shape and labels 
    font,label_font_size=init_graph_display(prob_axes=prob_axes, \ 
        size=size, axes=axes, **kwargs) 
    equations = [] 
    #figure out how many series there are, and scale vals 
accordingly 
    num_series = len(data)/2 
    series_color = broadcast(series_color, num_series) 
    line_color = broadcast(line_color, num_series) 
    alpha = broadcast(alpha, num_series) 
    marker_size = broadcast(marker_size, num_series) 
    if scale_markers: 
        marker_size = [frac_to_psq(m, size) for m in marker_size] 
     
    series = [] 
    for i in range(num_series): 
        x, y = data[2*i], data[2*i+1] 
        
series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\ 
        alpha=alpha[i])) 
        #find the equation and plots the regression line if True 
        if show_regression: 
            equation = plot_regression_line(x,y,line_color[i], 
axes=axes) 
        if show_equation: 
            equations.append(equation)  #will be (str, color) tuple 
    #print all the regression equations at once -- need to know how 
many 
    if show_regression: 
        print_regression_equations(equations, axes=axes) 
    #clean up axes if necessary 
    if show_legend and series_names: #suppress legend if series not 
named 
        axes.legend(series, series_names, legend_loc) 
 
    if prob_axes: 
        set_axis_to_probs(axes) 
    return equations, font 
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def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png', 
**kwargs): 
    """Outputs a CAI vs P3 scatter plot. 
 
    expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...]) 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid=None,\ 
        x_label="$P_3$",y_label="CAI", prob_axes=True,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs): 
    """Outputs a P12 versus P3 scatter graph, optionally including 
regression. 
 
    expects data as [P3_1, P12_1, P3_2, P12_2, ...n ]. 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid='/',\ 
        x_label="$P_3$",y_label="$P_{12}$", prob_axes=True, 
**kwargs) 
    savefig(graph_name) 
 
def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False, 
**kwargs): 
    """Output a scatter plot of p1,p2,p3 vs gc content 
     
    Expects data as array with rows as GC, P1, P2, P3 
    p1=blue, p2=green, p3=red 
 
    """ 
    #unpack common x axis, and decide on series names 
    if use_p3_as_x: 
        series_names = ['$P_1$', '$P_2$'] 
        colors=['b','g'] 
        x_label='$P_3$' 
        y_label='$P_{12}$' 
        xy_pairs = [data[3], data[1], data[3], data[2]] 
    else: 
        series_names = ['$P_1$', '$P_2$', '$P_3$'] 
        colors=['b','g','r'] 
        x_label='GC' 
        y_label='$P_{123}$' 
        xy_pairs = [data[0], data[1], data[0], data[2], data[0], 
data[3]] 
     
    #plot points and write graph 
    plot_scatter(xy_pairs, 
graph_grid='/',x_label=x_label,y_label=y_label, 
        series_names=series_names, prob_axes=True, **kwargs) 
    savefig(graph_name) 
 
def plot_fingerprint(data, alpha=0.7, \ 
    show_legend=True, graph_name='fingerprint.png', has_mean=True, 
    which_blocks='quartets', multiple=False, graph_grid='t', 
prob_axes=True, \ 
    **kwargs): 
    """Outputs a bubble plot of four-codon amino acid blocks 
    labeled with the colors from Sueoka 2002. 
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    takes: data:  array-elements in the col order x, y, r of 
           each of the four codon Amino Acids in the row order: 
           ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL 
           (for traditional fingerprint), or: 
           UU -> GG (for 16-block fingerprint). 
           last row is the mean (if has_mean is set True) 
 
        **kwargs passed on to init_graph_display (these include  
        graph_shape, graph_grid, x_label, y_label, dark, 
with_parens). 
                  
           title: will be printed on graph (default: 'Unknown 
Species') 
            
           num_genes (number of genes contributing to graph: default 
None) 
           NOTE: will not print if None.) 
         
           size: of graph in inches (default = 8.0) 
 
           alpha: transparency of bubbles 
           (ranges from 0, transparent, to 1, opaque; default 0.7) 
            
           show_legend: bool, default True, whether to print legend 
 
           graph_name: name of file to write (default 
'fingerprint.png') 
 
           has_mean: whether the data contain the mean (default: 
True) 
 
           which_blocks: which codon blocks to print (default is 
'quartets' 
           for the 4-codon amino acid blocks, but can also use 'all' 
for all  
           quartets or 'split' for just the split quartets.) 
 
           multiple: if False (the default), assumes it got a single 
block 
           of data. Otherwise, assumes multiple blocks of data in a 
list or 
           array. 
 
    note: that the data are always expected to be in the range (0,1) 
    since we're plotting frequencies. axes, gid, etc. are hard-coded 
    to these values.  
    """ 
    #figure out which type of fingerprint plot we're doing, and get 
the 
    #right colors 
    if which_blocks == 'quartets': 
        blocks = CodonUsage.SingleAABlocks 
    elif which_blocks == 'split': 
        blocks = CodonUsage.SplitBlocks 
    else: 
        blocks = CodonUsage.Blocks 
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    colors = [doublets_to_colors[i] for i in blocks] 
       
    #formatting the labels in latex 
    x_label="$G_3/(G_3+C_3)$" 
    y_label="$A_3/(A_3+T_3)$" 
 
    #initializing components of the graph 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid=graph_grid, x_label=x_label, \ 
        y_label=y_label, prob_axes=prob_axes, **kwargs) 
 
    if not multiple: 
        data = [data] 
  
    alpha = broadcast(alpha, len(data)) 
   
    for al, d in zip(alpha, data): 
        #skip this series if no data 
        if not d: 
            continue 
        for i, color in enumerate(colors): 
            j = i+1 
            #note: doing these as slices because scatter_classic 
needs the 
            #extra level of nesting 
            patches = scatter_classic(d[i:j,0], d[i:j,1], 
                        s=(d[i:j,2]/2), c=color) 
            #set alpha for the patches manually 
            for p in patches: 
                p.set_alpha(al) 
         
        #plot mean as its own point -- can't do cross with scatter 
        if has_mean: 
            mean_index = len(blocks)    #next index after the blocks 
            plot([d[mean_index,0]], [d[mean_index,1]], 
                 '-k+',markersize=label_font_size, alpha=al) 
                
 
    abbrev = CodonUsage.BlockAbbreviations 
 
    a = gca() 
    #if show_legend is True prints a legend in the right center area 
    if show_legend: 
        legend_key = [abbrev[b] for b in blocks] 
        #copy legend font properties from the x axis tick labels 
        legend_font_props = \ 
            a.xaxis.get_label().get_font_properties().copy() 
        legend_font_scale_factor = 0.7 
        curr_size = legend_font_props.get_size() 
        
legend_font_props.set_size(curr_size*legend_font_scale_factor) 
        l = figlegend(a.patches, 
                  legend_key, 
                  prop=legend_font_props, 
                  loc='center right',pad=0.1,labelsep=0.0025, 
                  handlelen=0.02,handletextsep=0.007, axespad=0.0) 
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        #fix transparency of patches 
        for p in l.get_patches(): 
            p.set_alpha(1) 
 
    #initialize the ticks 
    set_axis_to_probs() 
    init_ticks(a, label_font_size) 
    a.set_xticks([0, 0.5, 1]) 
    a.set_yticks([0,0.5,1]) 
     
    #output the figure 
    savefig(graph_name) 
 
#Contour plots and related functions 
 
def plot_filled_contour(plot_data, xy_data=None, 
show_regression=False, \ 
    show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \ 
    num_contour_lines=10, **kwargs): 
    """helper plots one or more series of contour data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
fill_cmap,  
    and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
    """ 
    if show_regression: 
        equation = plot_regression_line(xy_data[:,0],xy_data[:,1]) 
        if show_equation: 
            print_regression_equations([equation]) 
    #init graph display, rectangular due to needed colorbar space 
    init_graph_display(graph_shape=graph_shape, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data_matrix in plot_data: 
        contourf(x_bin,y_bin,data_matrix, num_contour_lines, 
cmap=fill_cmap) 
    #add the colorbar legend to the side 
    colorbar() 
 
def plot_contour_lines(plot_data, xy_data=None, 
show_regression=False, \ 
        show_equation=False, smooth_steps=0, num_contour_lines=10, \ 
        label_contours=False, line_cmap=cm.hot, 
fill_cmap=cm.gray,dark=True, 
        graph_shape='rect', **kwargs): 
    """helper plots one or more series of contour line data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
smooth, 
        num_contour_lines, label_contours, line_cmap, fill_cmap, 
graph_shape, 
        and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
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    """ 
    #init graph display, rectangular due to needed colorbar space 
    init_graph_display(graph_shape=graph_shape, 
        dark=dark, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data in plot_data: 
        orig_max = max(ravel(data)) 
        scaled_data = (data/orig_max*255).astype('b') 
        if smooth_steps: 
            orig_shape = data.shape 
            im = Image.fromstring('L', data.shape, scaled_data) 
            for i in range(smooth_steps): 
                im = im.filter(ImageFilter.BLUR) 
            new_data = fromstring(im.tostring(), 'b') 
            data = reshape(new_data.astype('i')/255.0 * orig_max, 
orig_shape) 
         
        if fill_cmap is not None: 
            im = imshow(data, interpolation='bicubic', 
extent=(0,1,0,1), \ 
                origin='lower', cmap=fill_cmap) 
        result=contour(x_bin,y_bin,data, num_contour_lines, 
                              origin='lower',linewidth=2, 
                              extent=(0,1,0,1), cmap=line_cmap) 
        if label_contours: 
            clabel(result, fmt='%1.1g') 
 
    #add the colorbar legend to the side 
    cb = colorbar() 
    cb.set_axis_bgcolor('black') 
 
    if show_regression: 
        equation=plot_regression_line(xy_data[0],xy_data[1]) 
        if show_equation: 
            print_regression_equations([equation]) 
 
def plot_cai_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='cai_contour.png', 
                        prob_axes=True, **kwargs): 
    """Output a contour plot of cai vs p3 with colorbar on side 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contour.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_filled_contour(plot_data, graph_grid='/',x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
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def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data, 
                             graph_name='cai_contourlines.png', 
                             prob_axes=True, **kwargs): 
    """Output a contour plot of cai 
     
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='p12_p3_contour.png', 
                        prob_axes=True, **kwargs): 
    """Outputs a P12 versus P3 contour graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'p12_p3_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_filled_contour(plot_data, graph_grid='/', x_label="$P_3$", 
\ 
        y_label="$P_{12}$", prob_axes=prob_axes,**kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data, 
prob_axes=True,\ 
    graph_name='p12_p3_contourlines.png', **kwargs): 
    """Outputs a P12 versus P3 contourline graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
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           graph_name: default 'p12_p3_contourlines.png 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$",\ 
        y_label="$P_{12}$", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
#Other graphs 
 
def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png', 
\ 
    num_genes='ignored', **kwargs): 
    """Outputs a PR2-Bias plot of: 
    -isotypic transversions (base swapping) 
    with G3/(G3+C3) and A3/(A3+T3) 
    -Transitions (deaminations) 
    with G3/(G3+A3) and C3/(C3+T3) 
    -Allotypic transversions (G- oxidations) 
    with G3/(G3+T3) and C3/(C3+A3) 
 
    takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3), 
    G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3) 
 
    label: default 'ALANINE' 
    one amino acid written out in caps: 
    ALANINE, ARGININE4, GLYCINE, LEUCINE4, 
    PROLINE, SERINE4, THREONINE, VALINE 
       from one of the amino acids program will add acronym 
       C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
       G2 type: arg4 (CGN), an gly(GGN) 
       T2 type: leu4(CTN), val (GTN) 
 
    size: of graph in inches (default = 8.0) 
 
    graph_name: default 'pr2_bias.png' 
     
    num_genes: number of genes contributing to graph, currently 
ignored. 
    """ 
    #we can't put anything in the top right, so print num_genes 
after the title 
    #if it was supplied 
    #initializes the graph display and font 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid='/', x_label="$P_3$", y_label="Y axis", 
prob_axes=True, \ 
        title=title, **kwargs) 
    #sets the marker_size relative to the font and thus the graph 
size 
    marker_size = (label_font_size-1) 
     
    #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3), 
    #                           G3/(G3/A3),C3/(C3+T3), 
    #                           G3/(G3+T3),C3/(C3+A3) 
    #colors and symbols coded from Sueoka 2002 
    plot([data[:,0]], [data[:,1]], '-ko', c='k', 
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         markersize=marker_size) 
    plot([data[:,0]], [data[:,2]], '-kv', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,3]], '-ro', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,4]], '-rv', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,5]], '-wo', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,6]], '-wv', c='k', 
         markersize=marker_size) 
 
    set_axis_to_probs() 
 
    #aaLabel based on the amino acid that is graphed 
    #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
    #G2 type: arg4 (CGN), an gly(GGN) 
    #T2 type: leu4(CTN), val (GTN) (Sueoka 2002) 
    text(.95, .05, aaLabels[title], font, 
verticalalignment='bottom', 
         horizontalalignment='right') 
 
    #output the figure 
    set_axis_to_probs() 
    savefig(graph_name) 
 
 
def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\ 
        normal_fit=True, normed=True, colors=None, linecolors=None, 
\ 
        alpha=0.75, prob_axes=True, series_names=None, 
show_legend=False,\ 
        y_label=None, **kwargs): 
    """Outputs a histogram with multiple series (must provide a list 
of series). 
     
    takes:  data: list of arrays of values to plot (needs to be list 
of arrays 
            so you can pass in arrays with different numbers of 
elements) 
 
            graph_name: filename to write graph to 
            bins: number of bins to use 
            normal_fit: whether to show the normal curve best 
fitting the data 
            normed: whether to normalize the histogram (e.g. so bars 
sum to 1) 
            colors: list of colors to use for bars 
            linecolors: list of colors to use for fit lines 
 
            **kwargs are pssed on to init_graph_display. 
 
    """ 
    if y_label is None: 
        if normed: 
            y_label='Frequency' 
        else: 
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            y_label='Count' 
    num_series = len(data) 
    if colors is None: 
        if num_series == 1: 
            colors = ['white'] 
        else: 
            colors = standard_series_colors 
    if linecolors is None: 
        if num_series == 1: 
            linecolors = ['red'] 
        else: 
            linecolors = standard_series_colors 
     
    init_graph_display(prob_axes=prob_axes, y_label=y_label, 
**kwargs) 
    for i, d in enumerate(data): 
        fc = colors[i % len(colors)] 
        lc = linecolors[i % len(linecolors)] 
         
        counts, x_bins, patches = hist(d, bins=bins, normed=normed, 
\ 
            alpha=alpha, facecolor=fc) 
 
        if normal_fit: 
            mu = mean(d) 
            sigma = std(d) 
            bin_width = x_bins[-1] - x_bins[-2] 
            #want normpdf to extend over the bins, so needs to be 
one extra 
            #normpdf_bins = x_bins + bin_width/2.0 
            normpdf_bins = arange(0,1,0.01) 
            y = normpdf(normpdf_bins, mu, sigma) 
            orig_area = sum(counts) * bin_width 
            y = y * orig_area   #normpdf area is 1 by default 
            plot(normpdf_bins, y, linestyle='--', color=lc, 
linewidth=1) 
 
    if show_legend and series_names: 
        legend(series_names) 
     
    #output figure 
    savefig(graph_name) 
 
def plot_scatter_with_histograms(data, 
graph_name='histo_scatter.png', \ 
    graph_grid='/', prob_axes=False, bins=20, frac=0.9, 
scatter_alpha=0.5, \ 
    hist_alpha=0.8, colors=standard_series_colors, normed=True, 
**kwargs): 
    """Plots a scatter plot with histograms showing distribution of 
x and y. 
 
    Data should be list of [x1, y1, x2, y2, ...]. 
    """ 
 
    #set up subplot coords 
    tl=subplot(2,2,1) 
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    br=subplot(2,2,4) 
    bl=subplot(2,2,3, sharex=tl, sharey=br) 
 
    #get_position returns left, bottom, width, height relative to 
figure 
    tl_coords = tl.get_position() 
    bl_coords = bl.get_position() 
    br_coords = br.get_position() 
 
    left = tl_coords[0] 
    bottom = bl_coords[1] 
 
    width = br_coords[0] + br_coords[2] - left 
    height = tl_coords[1] + tl_coords[3] - bottom 
 
    bl.set_position([left, bottom, frac*width, frac*height]) 
    tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height]) 
    br.set_position([left+(frac*width), bottom, (1-frac)*width, 
frac*height]) 
 
    #suppress frame and axis for histograms 
    for i in [tl,br]: 
        i.set_frame_on(False) 
        i.xaxis.set_visible(False) 
        i.yaxis.set_visible(False) 
     
    plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs) 
     
    biggest_x = 0 
    biggest_y = 0 
    for i in range(0, len(data), 2): 
        x, y = data[i], data[i+1] 
        color = colors[(i/2)%len(colors)] 
        n, bins, patches = hist(x, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=tl, normed=True) 
        biggest_x = max([biggest_x, max(x)]) 
        n, bins, patches = hist(y, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=br, normed=normed, 
orientation='horizontal') 
        biggest_y=max([biggest_y,max(y)]) 
    bl.set_xlim(0,1) 
    bl.set_ylim(0,1) 
    savefig(graph_name) 
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3. Sliding window code 

#/usr/lib/python2.4/ 
#AminoGraphPlots.py 
 
from matplotlib import use, rc 
use('Agg')  #suppress graphical rendering 
rc('text', usetex=True) 
rc('font', family='serif')  #required to match latex text and 
equations 
import Image 
import ImageFilter 
from Numeric import array, shape, fromstring 
from cogent.base.usage import UnsafeCodonUsage as CodonUsage 
from cogent.maths.stats.test import regress, correlation 
from pylab import * 
from math import pi 
 
"""Provides different kinds of codon usage plots. 
 
See individual docstrings for more info. 
""" 
#module-level constants 
 
#historical doublet order for fingerprint plot; not currently used, 
but 
#same order that the colors were entered in. Matches Sueoka 2002. 
doublet_order = 
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\ 
                 'AA','AG','GA','UA','UG'] 
color_order = ["#000000","#FF0000","#00FF00","#FFFF00", 
          "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0", 
          "#6D6D6D","#2353FF","#00FFFF","#FF8800", 
          "#238853","#882353","#EC008C","#000099"] 
#map doublets to colors so we can make sure the same doublet always 
#gets the same colors 
doublets_to_colors = dict(zip(doublet_order, color_order)) 
#creates a dictionary for the amino acid labels, less to input 
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN', 
          'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN', 
          'THREONINE':'ACN', 'VALINE':'GTN'} 
standard_series_colors=['k','r','g','b', 'm','c'] 
 
#Helper functions 
 
def hist(x, bins=10, normed='height', bottom=0, \ 
    orientation='vertical', width=None, axes=None, **kwargs): 
    """Just like the matplotlib hist, but normalizes bar heights to 
1. 
     
    axes uses gca() by default (built-in hist is a method of Axes). 
     
    Original docs from matplotlib: 
  
    HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical', 
**kwargs) 
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    Compute the histogram of x.  bins is either an integer number of 
    bins or a sequence giving the bins.  x are the data to be 
binned. 
 
    The return values is (n, bins, patches) 
 
    If normed is true, the first element of the return tuple will 
    be the counts normalized to form a probability density, ie, 
    n/(len(x)*dbin) 
 
 
    orientation = 'horizontal' | 'vertical'.  If horizontal, barh 
    will be used and the "bottom" kwarg will be the left. 
 
    width: the width of the bars.  If None, automatically compute 
    the width. 
 
    kwargs are used to update the properties of the 
    hist bars 
    """ 
    if axes is None: 
        axes = gca() 
    if not axes._hold: axes.cla() 
    n,bins = norm_hist_bins(x, bins, normed) 
    if width is None: width = 0.9*(bins[1]-bins[0]) 
    if orientation=='horizontal': 
        patches = axes.barh(n, bins, height=width, left=bottom) 
    else: 
        patches = axes.bar(bins, n, width=width, bottom=bottom) 
    for p in patches: 
        p.update(kwargs) 
    return n, bins, silent_list('Patch', patches) 
 
def norm_hist_bins(y, bins=10, normed='height'): 
    """Just like the matplotlib mlab.hist, but can normalize by 
height. 
 
    normed can be 'area' (produces matplotlib behavior, area is 1),  
    any False value (no normalization), or any True value 
(normalization). 
 
    Original docs from matplotlib: 
 
    Return the histogram of y with bins equally sized bins.  If bins 
    is an array, use the bins.  Return value is 
    (n,x) where n is the count for each bin in x 
 
    If normed is False, return the counts in the first element of 
the 
    return tuple.  If normed is True, return the probability density 
    n/(len(y)*dbin) 
     
    If y has rank>1, it will be raveled 
    Credits: the Numeric 22 documentation 
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    """ 
    y = asarray(y) 
    if len(y.shape)>1: y = ravel(y) 
 
    if not iterable(bins): 
        ymin, ymax = min(y), max(y) 
        if ymin==ymax: 
            ymin -= 0.5 
            ymax += 0.5 
 
        if bins==1: bins=ymax 
        dy = (ymax-ymin)/bins 
        bins = ymin + dy*arange(bins) 
    n = searchsorted(sort(y), bins) 
    n = diff(concatenate([n, [len(y)]])) 
    if normed: 
        if normed == 'area': 
            db = bins[1]-bins[0] 
        else: 
            db = 1.0 
        return 1/(len(y)*db)*n, bins 
    else: 
        return n, bins 
 
def as_species(name): 
    """Cleans up a filename into a species name, italicizing it in 
latex.""" 
    #trim extension if present 
    dot_location = name.rfind('.') 
    if dot_location > -1: 
        name = name[:dot_location] 
    #get rid of _small if present -- used for debugging 
    if name.endswith('_small'): 
        name = name[:-len('_small')] 
    #replace underscores with spaces 
    name = name.replace('_', ' ') 
    #make sure the first letter of the genus is caps, and not the 
first letter 
    #of the species 
    fields = name.split() 
    fields[0] = fields[0].title() 
    #assume second field is species name 
    if len(fields) > 1: 
        fields[1] = fields[1].lower() 
    return '\emph{'+' '.join(fields)+'}' 
 
def frac_to_psq(frac, graph_size): 
    """Converts diameter as fraction of graph to points squared for 
scatter. 
     
    frac: fraction of graph (e.g. .01 is 1% of graph size) 
    graph_size: graph size in inches 
    """ 
    points = frac * graph_size * 72 
    return pi * (points/2.0)**2 
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def init_graph_display(title=None, aux_title=None, size=4.0, \ 
    graph_shape='sqr', graph_grid=None, x_label='', y_label='', \ 
    dark=False, with_parens=True, prob_axes=True, axes=None, 
num_genes=None): 
    """Initializes a range of graph settings for standard plots. 
 
    These settings include: 
        - font sizes based on the size of the graph 
        - graph shape 
        - grid, including lines for x=y or at x and y = 0.5 
        - title, auxillary title, and x and y axis labels 
                 
    Parameters: 
        title: displayed on left of graph, at the top, latex-format 
string 
         
        aux_title: displayed on top right of graph, latex-format 
string. 
        typically used for number of genes. 
 
        size:   size of graph, in inches 
 
        graph_shape: 'sqr' for square graphs, 'rect' for graphs that 
include 
        a colorbar, 3to1: width 3 to height 1. 
 
        graph_grid: background grid for the graph. Currently 
recognized grids 
        are '/' (line at x=y) and 't' (cross at x=.5 and y=.5). 
 
        x_label: label for x axis, latex-format string. 
 
        y_label: label for y axis, latex-format string. 
 
        dark: set to True if dark background, reverses text and tick 
colors. 
         
        with_parens: if True (default), puts parens around auxillary 
title 
         
    returns font, label_font_size (for use in producing additional 
labels in  
    calling function). 
    """ 
    if dark: 
        color='w' 
    else: 
        color='k' 
    min_offset = 0.05           #minimum offset, e.g. for text 
    max_offset = 1-min_offset   #center offsets 
    rect_scale_factor = 1.28    #need to allow for legend while 
keeping graph 
                                #square; empirically determined at 
1.28 
    font_size = int(size*3-1)   #want 11pt font w/ default graph 
size 4" sqr 
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    label_scale_factor = 0.8 
    label_font_size = font_size * label_scale_factor 
    label_offset = label_font_size * 0.5 
    axis_label_font={'fontsize':font_size} 
    font={'fontsize':font_size, 'color':color} 
     
 
    if graph_shape == 'sqr': 
        gcf().set_figsize_inches(size,size) 
    elif graph_shape == 'rect': 
        #scaling for sqr graphs with colorbar 
        gcf().set_figsize_inches(size*rect_scale_factor,size) 
    elif graph_shape == '3to1': 
        gcf().set_figsize_inches(3*size, size) 
    elif graph_shape == '2to1': 
        gcf().set_figsize_inches(2*size, size) 
    else: 
        raise ValueError, "Got unknown graph shape %s" % graph_shape 
     
    #set or create axes 
    if axes is None: 
        axes = gca() 
 
    #draw grid manually: these are in data coordinates.  
    if graph_grid == 't': 
        #grid lines at 0.5 on each axis, horiz & vertic 
        axes.axvline(x=.5, ymin=0, ymax=1, color=color, 
linestyle=':') 
        axes.axhline(y=.5, xmin=0, xmax=1, color=color, 
linestyle=':') 
    elif graph_grid == '/': 
        #diagonal gridlines from 0,0 to 1,1. 
        axes.plot([0,1], color=color, linestyle=':') 
    else: 
        pass    #ignore other choices 
         
    #remove default grid 
    axes.grid(False) 
 
    #set x and y labels 
    axes.set_ylabel(y_label, axis_label_font) 
    axes.set_xlabel(x_label, axis_label_font) 
 
    #add title/aux_title to graph directly. Note that we want  
    #the tops of these to be fixed, and we want the label to be  
    #left-justified and the number of genes to be right justified,  
    #so that it still works when we resize the graph. 
    if title is not None: 
        axes.text(min_offset, max_offset, str(title), font, \ 
            verticalalignment='top', horizontalalignment='left') 
    #use num_genes as aux_title by default 
    aux_title = num_genes or aux_title 
    if aux_title is not None: 
        if with_parens: 
            aux_title='('+str(aux_title)+')' 
        axes.text(max_offset, max_offset, str(aux_title), font, 
             verticalalignment='top', horizontalalignment='right') 
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    if prob_axes: 
        init_ticks(axes, label_font_size, dark) 
    #set x and y label offsets -- currently though rcParams, but 
should be 
    #able to do at instance level? 
    #rc('xtick.major', pad=label_offset) 
    #rc('ytick.major', pad=label_offset) 
    return font, label_font_size 
 
def init_ticks(a, label_font_size, dark=False): 
    """takes a from (a = gca) 
    sets the ticks to span from 0 to 1 with .1 intervals 
    changes the size of the ticks and the corresponding number 
labels 
    """ 
    a.set_xticks(arange(0,1.01,.1),) 
    a.set_yticks(arange(0,1.01,.1)) 
 
    #reset sizes for x and y labels 
    x = a.get_xticklabels() 
    y = a.get_yticklabels() 
    for l in a.get_xticklabels() + a.get_yticklabels(): 
        l.set_fontsize(label_font_size) 
    #if dark, need to reset color of internal ticks to white 
    if dark: 
        for l in a.get_xticklines() + a.get_yticklines(): 
            l.set_markeredgecolor('white') 
 
def set_axis_to_probs(axes=None): 
    """sets the axes to span from 0 to 1 
    necessary because order in program changes graph 
    """ 
    #set axis for probabilities (range 0 to 1) 
    if axes is None: 
        axes = gca() 
    axes.set_xlim([0,1]) 
    axes.set_ylim([0,1]) 
 
def plot_regression_line(x_data,y_data,line_color='r', axes=None): 
    """Plots the regression line, and returns the equation.""" 
    if axes is None: 
        axes = gca() 
    m, b = regress(x_data, y_data) 
    r, significance = correlation(x_data,y_data) 
    #set the a,b,r values 
    r_str = '%0.3g'% (r**2) 
    m_str ='%0.3g' % m 
    b_str = '%0.3g' % b 
    x1=0.0 
    y1=b 
    x2=1.0 
    y2=(m+b) 
     
    #constrain so that y is always in the range (0,1) for plotting 
    if(y1<0): 
        y1=0.0 
        x1=(0-b)/m 
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    if(y2>=1): 
        y2=1.0 
        x2=(1-b)/m 
 
    axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2) 
 
    if b >= 0: 
        sign_str = ' + ' 
    else: 
        sign_str = ' ' 
     
    equation=''.join(['y= 
',m_str,'x',sign_str,b_str,'\n\nr$^2$=',r_str]) 
    return equation, line_color 
 
def print_regression_equations(equations, axes=None): 
    """Writes list of regression equations to graph. 
 
    equations: list of regression equations 
 
    size: size of the graph in inches 
    """ 
    if axes is None: 
        axes = gca() 
    for i, (eq_text, eq_color) in enumerate(equations): 
        axes.text((0.98), (0.02+(.06*i)), str(eq_text), \ 
            horizontalalignment='right', verticalalignment='bottom', 
\ 
            color=eq_color) 
 
 
def broadcast(i, n): 
    """Broadcasts i to a vector of length n.""" 
    try: 
        i = list(i) 
    except: 
        i = [i] 
    reps, leftovers = divmod(n, len(i)) 
    return (i * reps) + i[:leftovers] 
     
     
#scatterplot functions and helpers 
 
def plot_scatter(data, series_names=None, \ 
    series_color=standard_series_colors, 
line_color=standard_series_colors,\ 
    alpha=0.25, marker_size=.015, scale_markers=True, 
    show_legend=True,legend_loc='center right', 
    show_regression=True, show_equation=True, 
    prob_axes=False, size=8.0, axes=None, 
    **kwargs): 
    """helper plots one or more series of scatter data of specified 
color, 
    calls the initializing functions, doesn't print graph 
     
    takes: plotted_pairs, series_names, show_legend, legend_loc, and 
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        **kwargs passed on to init_graph_display (these include 
title, 
        aux_title, size, graph_shape, graph_grid, x_label, y_label, 
        dark, with_parens). 
                  
    plotted_pairs = (first_pos, second_pos, dot_color, line_color, 
    alpha, show_regression, show_equation) 
 
    returns the regression str equation (list) if regression is set 
true 
 
    suppresses legend if series not named, even if show_legend is 
True. 
    """ 
    if not axes: 
        axes = gca() 
    #initialize fonts, shape and labels 
    font,label_font_size=init_graph_display(prob_axes=prob_axes, \ 
        size=size, axes=axes, **kwargs) 
    equations = [] 
    #figure out how many series there are, and scale vals 
accordingly 
    num_series = len(data)/2 
    series_color = broadcast(series_color, num_series) 
    line_color = broadcast(line_color, num_series) 
    alpha = broadcast(alpha, num_series) 
    marker_size = broadcast(marker_size, num_series) 
    if scale_markers: 
        marker_size = [frac_to_psq(m, size) for m in marker_size] 
     
    series = [] 
    for i in range(num_series): 
        x, y = data[2*i], data[2*i+1] 
        
series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\ 
        alpha=alpha[i])) 
        #find the equation and plots the regression line if True 
        if show_regression: 
            equation = plot_regression_line(x,y,line_color[i], 
axes=axes) 
        if show_equation: 
            equations.append(equation)  #will be (str, color) tuple 
    #print all the regression equations at once -- need to know how 
many 
    if show_regression: 
        print_regression_equations(equations, axes=axes) 
    #clean up axes if necessary 
    if show_legend and series_names: #suppress legend if series not 
named 
        axes.legend(series, series_names, legend_loc) 
 
    if prob_axes: 
        set_axis_to_probs(axes) 
    return equations, font 
                     
def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png', 
**kwargs): 
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    """Outputs a CAI vs P3 scatter plot. 
 
    expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...]) 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid=None,\ 
        x_label="$P_3$",y_label="CAI", prob_axes=True,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs): 
    """Outputs a P12 versus P3 scatter graph, optionally including 
regression. 
 
    expects data as [P3_1, P12_1, P3_2, P12_2, ...n ]. 
    """ 
    plot_scatter(data, graph_shape='sqr', graph_grid='/',\ 
        x_label="$P_3$",y_label="$P_{12}$", prob_axes=True, 
**kwargs) 
    savefig(graph_name) 
 
def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False, 
**kwargs): 
    """Output a scatter plot of p1,p2,p3 vs gc content 
     
    Expects data as array with rows as GC, P1, P2, P3 
    p1=blue, p2=green, p3=red 
 
    """ 
    #unpack common x axis, and decide on series names 
    if use_p3_as_x: 
        series_names = ['$P_1$', '$P_2$'] 
        colors=['b','g'] 
        x_label='$P_3$' 
        y_label='$P_{12}$' 
        xy_pairs = [data[3], data[1], data[3], data[2]] 
    else: 
        series_names = ['$P_1$', '$P_2$', '$P_3$'] 
        colors=['b','g','r'] 
        x_label='GC' 
        y_label='$P_{123}$' 
        xy_pairs = [data[0], data[1], data[0], data[2], data[0], 
data[3]] 
     
    #plot points and write graph 
    plot_scatter(xy_pairs, 
graph_grid='/',x_label=x_label,y_label=y_label, 
        series_names=series_names, prob_axes=True, **kwargs) 
    savefig(graph_name) 
 
def plot_fingerprint(data, alpha=0.7, \ 
    show_legend=True, graph_name='fingerprint.png', has_mean=True, 
    which_blocks='quartets', multiple=False, graph_grid='t', 
prob_axes=True, \ 
    **kwargs): 
    """Outputs a bubble plot of four-codon amino acid blocks 
    labeled with the colors from Sueoka 2002. 
 
    takes: data:  array-elements in the col order x, y, r of 
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           each of the four codon Amino Acids in the row order: 
           ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL 
           (for traditional fingerprint), or: 
           UU -> GG (for 16-block fingerprint). 
           last row is the mean (if has_mean is set True) 
 
        **kwargs passed on to init_graph_display (these include  
        graph_shape, graph_grid, x_label, y_label, dark, 
with_parens). 
                  
           title: will be printed on graph (default: 'Unknown 
Species') 
            
           num_genes (number of genes contributing to graph: default 
None) 
           NOTE: will not print if None.) 
         
           size: of graph in inches (default = 8.0) 
 
           alpha: transparency of bubbles 
           (ranges from 0, transparent, to 1, opaque; default 0.7) 
            
           show_legend: bool, default True, whether to print legend 
 
           graph_name: name of file to write (default 
'fingerprint.png') 
 
           has_mean: whether the data contain the mean (default: 
True) 
 
           which_blocks: which codon blocks to print (default is 
'quartets' 
           for the 4-codon amino acid blocks, but can also use 'all' 
for all  
           quartets or 'split' for just the split quartets.) 
 
           multiple: if False (the default), assumes it got a single 
block 
           of data. Otherwise, assumes multiple blocks of data in a 
list or 
           array. 
 
    note: that the data are always expected to be in the range (0,1) 
    since we're plotting frequencies. axes, gid, etc. are hard-coded 
    to these values.  
    """ 
    #figure out which type of fingerprint plot we're doing, and get 
the 
    #right colors 
    if which_blocks == 'quartets': 
        blocks = CodonUsage.SingleAABlocks 
    elif which_blocks == 'split': 
        blocks = CodonUsage.SplitBlocks 
    else: 
        blocks = CodonUsage.Blocks 
 
    colors = [doublets_to_colors[i] for i in blocks] 



 83 

       
    #formatting the labels in latex 
    x_label="$G_3/(G_3+C_3)$" 
    y_label="$A_3/(A_3+T_3)$" 
 
    #initializing components of the graph 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid=graph_grid, x_label=x_label, \ 
        y_label=y_label, prob_axes=prob_axes, **kwargs) 
 
    if not multiple: 
        data = [data] 
  
    alpha = broadcast(alpha, len(data)) 
   
    for al, d in zip(alpha, data): 
        #skip this series if no data 
        if not d: 
            continue 
        for i, color in enumerate(colors): 
            j = i+1 
            #note: doing these as slices because scatter_classic 
needs the 
            #extra level of nesting 
            patches = scatter_classic(d[i:j,0], d[i:j,1], 
                        s=(d[i:j,2]/2), c=color) 
            #set alpha for the patches manually 
            for p in patches: 
                p.set_alpha(al) 
         
        #plot mean as its own point -- can't do cross with scatter 
        if has_mean: 
            mean_index = len(blocks)    #next index after the blocks 
            plot([d[mean_index,0]], [d[mean_index,1]], 
                 '-k+',markersize=label_font_size, alpha=al) 
                
 
    abbrev = CodonUsage.BlockAbbreviations 
 
    a = gca() 
    #if show_legend is True prints a legend in the right center area 
    if show_legend: 
        legend_key = [abbrev[b] for b in blocks] 
        #copy legend font properties from the x axis tick labels 
        legend_font_props = \ 
            a.xaxis.get_label().get_font_properties().copy() 
        legend_font_scale_factor = 0.7 
        curr_size = legend_font_props.get_size() 
        
legend_font_props.set_size(curr_size*legend_font_scale_factor) 
        l = figlegend(a.patches, 
                  legend_key, 
                  prop=legend_font_props, 
                  loc='center right',pad=0.1,labelsep=0.0025, 
                  handlelen=0.02,handletextsep=0.007, axespad=0.0) 
        #fix transparency of patches 
        for p in l.get_patches(): 
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            p.set_alpha(1) 
 
    #initialize the ticks 
    set_axis_to_probs() 
    init_ticks(a, label_font_size) 
    a.set_xticks([0, 0.5, 1]) 
    a.set_yticks([0,0.5,1]) 
     
    #output the figure 
    savefig(graph_name) 
 
#Contour plots and related functions 
 
def plot_filled_contour(plot_data, xy_data=None, 
show_regression=False, \ 
    show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \ 
    num_contour_lines=10, **kwargs): 
    """helper plots one or more series of contour data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
fill_cmap,  
    and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
    """ 
    if show_regression: 
        equation = plot_regression_line(xy_data[:,0],xy_data[:,1]) 
        if show_equation: 
            print_regression_equations([equation]) 
    #init graph display, rectangular due to needed colorbar space 
    init_graph_display(graph_shape=graph_shape, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data_matrix in plot_data: 
        contourf(x_bin,y_bin,data_matrix, num_contour_lines, 
cmap=fill_cmap) 
    #add the colorbar legend to the side 
    colorbar() 
 
def plot_contour_lines(plot_data, xy_data=None, 
show_regression=False, \ 
        show_equation=False, smooth_steps=0, num_contour_lines=10, \ 
        label_contours=False, line_cmap=cm.hot, 
fill_cmap=cm.gray,dark=True, 
        graph_shape='rect', **kwargs): 
    """helper plots one or more series of contour line data 
    calls the initializing functions, doesn't output figure 
     
    takes: plot_data, xy_data, show_regression, show_equation, 
smooth, 
        num_contour_lines, label_contours, line_cmap, fill_cmap, 
graph_shape, 
        and **kwargs passed on to init_graph_display. 
                  
           plot_data = (x_bin, y_bin, data_matrix dot_colors) 
    """ 
    #init graph display, rectangular due to needed colorbar space 
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    init_graph_display(graph_shape=graph_shape, 
        dark=dark, **kwargs) 
    #plots the contour data 
    for x_bin,y_bin,data in plot_data: 
        orig_max = max(ravel(data)) 
        scaled_data = (data/orig_max*255).astype('b') 
        if smooth_steps: 
            orig_shape = data.shape 
            im = Image.fromstring('L', data.shape, scaled_data) 
            for i in range(smooth_steps): 
                im = im.filter(ImageFilter.BLUR) 
            new_data = fromstring(im.tostring(), 'b') 
            data = reshape(new_data.astype('i')/255.0 * orig_max, 
orig_shape) 
         
        if fill_cmap is not None: 
            im = imshow(data, interpolation='bicubic', 
extent=(0,1,0,1), \ 
                origin='lower', cmap=fill_cmap) 
        result=contour(x_bin,y_bin,data, num_contour_lines, 
                              origin='lower',linewidth=2, 
                              extent=(0,1,0,1), cmap=line_cmap) 
        if label_contours: 
            clabel(result, fmt='%1.1g') 
 
    #add the colorbar legend to the side 
    cb = colorbar() 
    cb.set_axis_bgcolor('black') 
 
    if show_regression: 
        equation=plot_regression_line(xy_data[0],xy_data[1]) 
        if show_equation: 
            print_regression_equations([equation]) 
 
def plot_cai_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='cai_contour.png', 
                        prob_axes=True, **kwargs): 
    """Output a contour plot of cai vs p3 with colorbar on side 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contour.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_filled_contour(plot_data, graph_grid='/',x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data, 
                             graph_name='cai_contourlines.png', 
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                             prob_axes=True, **kwargs): 
    """Output a contour plot of cai 
     
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'cai_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$", \ 
        y_label="CAI", prob_axes=prob_axes,**kwargs) 
    savefig(graph_name) 
 
def plot_p12_p3_contour(x_bin,y_bin,data,xy_data, 
                        graph_name='p12_p3_contour.png', 
                        prob_axes=True, **kwargs): 
    """Outputs a P12 versus P3 contour graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'p12_p3_contourlines.png' 
    """ 
    plot_data =[(x_bin,y_bin,data)] 
    plot_filled_contour(plot_data, graph_grid='/', x_label="$P_3$", 
\ 
        y_label="$P_{12}$", prob_axes=prob_axes,**kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data, 
prob_axes=True,\ 
    graph_name='p12_p3_contourlines.png', **kwargs): 
    """Outputs a P12 versus P3 contourline graph 
    and the mean equation of the plot 
 
    takes: x_bin, y_bin, data (data matrix) 
     
           label (default 'Unknown Species') 
 
           num_genes (default 0 will not print, other numbers will) 
 
           size: of graph in inches (default = 8.0) 
 
           graph_name: default 'p12_p3_contourlines.png 
    """ 
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    plot_data =[(x_bin,y_bin,data)] 
    plot_contour_lines(plot_data, graph_grid='/', x_label="$P_3$",\ 
        y_label="$P_{12}$", prob_axes=prob_axes, **kwargs) 
    set_axis_to_probs() 
    savefig(graph_name) 
 
#Other graphs 
 
def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png', 
\ 
    num_genes='ignored', **kwargs): 
    """Outputs a PR2-Bias plot of: 
    -isotypic transversions (base swapping) 
    with G3/(G3+C3) and A3/(A3+T3) 
    -Transitions (deaminations) 
    with G3/(G3+A3) and C3/(C3+T3) 
    -Allotypic transversions (G- oxidations) 
    with G3/(G3+T3) and C3/(C3+A3) 
 
    takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3), 
    G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3) 
 
    label: default 'ALANINE' 
    one amino acid written out in caps: 
    ALANINE, ARGININE4, GLYCINE, LEUCINE4, 
    PROLINE, SERINE4, THREONINE, VALINE 
       from one of the amino acids program will add acronym 
       C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
       G2 type: arg4 (CGN), an gly(GGN) 
       T2 type: leu4(CTN), val (GTN) 
 
    size: of graph in inches (default = 8.0) 
 
    graph_name: default 'pr2_bias.png' 
     
    num_genes: number of genes contributing to graph, currently 
ignored. 
    """ 
    #we can't put anything in the top right, so print num_genes 
after the title 
    #if it was supplied 
    #initializes the graph display and font 
    font,label_font_size=init_graph_display(graph_shape='sqr', \ 
        graph_grid='/', x_label="$P_3$", y_label="Y axis", 
prob_axes=True, \ 
        title=title, **kwargs) 
    #sets the marker_size relative to the font and thus the graph 
size 
    marker_size = (label_font_size-1) 
     
    #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3), 
    #                           G3/(G3/A3),C3/(C3+T3), 
    #                           G3/(G3+T3),C3/(C3+A3) 
    #colors and symbols coded from Sueoka 2002 
    plot([data[:,0]], [data[:,1]], '-ko', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,2]], '-kv', c='k', 
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         markersize=marker_size) 
    plot([data[:,0]], [data[:,3]], '-ro', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,4]], '-rv', c='r', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,5]], '-wo', c='k', 
         markersize=marker_size) 
    plot([data[:,0]], [data[:,6]], '-wv', c='k', 
         markersize=marker_size) 
 
    set_axis_to_probs() 
 
    #aaLabel based on the amino acid that is graphed 
    #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN) 
    #G2 type: arg4 (CGN), an gly(GGN) 
    #T2 type: leu4(CTN), val (GTN) (Sueoka 2002) 
    text(.95, .05, aaLabels[title], font, 
verticalalignment='bottom', 
         horizontalalignment='right') 
 
    #output the figure 
    set_axis_to_probs() 
    savefig(graph_name) 
 
 
def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\ 
        normal_fit=True, normed=True, colors=None, linecolors=None, 
\ 
        alpha=0.75, prob_axes=True, series_names=None, 
show_legend=False,\ 
        y_label=None, **kwargs): 
    """Outputs a histogram with multiple series (must provide a list 
of series). 
     
    takes:  data: list of arrays of values to plot (needs to be list 
of arrays 
            so you can pass in arrays with different numbers of 
elements) 
 
            graph_name: filename to write graph to 
            bins: number of bins to use 
            normal_fit: whether to show the normal curve best 
fitting the data 
            normed: whether to normalize the histogram (e.g. so bars 
sum to 1) 
            colors: list of colors to use for bars 
            linecolors: list of colors to use for fit lines 
 
            **kwargs are pssed on to init_graph_display. 
 
    """ 
    if y_label is None: 
        if normed: 
            y_label='Frequency' 
        else: 
            y_label='Count' 
    num_series = len(data) 
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    if colors is None: 
        if num_series == 1: 
            colors = ['white'] 
        else: 
            colors = standard_series_colors 
    if linecolors is None: 
        if num_series == 1: 
            linecolors = ['red'] 
        else: 
            linecolors = standard_series_colors 
     
    init_graph_display(prob_axes=prob_axes, y_label=y_label, 
**kwargs) 
    for i, d in enumerate(data): 
        fc = colors[i % len(colors)] 
        lc = linecolors[i % len(linecolors)] 
         
        counts, x_bins, patches = hist(d, bins=bins, normed=normed, 
\ 
            alpha=alpha, facecolor=fc) 
 
        if normal_fit: 
            mu = mean(d) 
            sigma = std(d) 
            bin_width = x_bins[-1] - x_bins[-2] 
            #want normpdf to extend over the bins, so needs to be 
one extra 
            #normpdf_bins = x_bins + bin_width/2.0 
            normpdf_bins = arange(0,1,0.01) 
            y = normpdf(normpdf_bins, mu, sigma) 
            orig_area = sum(counts) * bin_width 
            y = y * orig_area   #normpdf area is 1 by default 
            plot(normpdf_bins, y, linestyle='--', color=lc, 
linewidth=1) 
 
    if show_legend and series_names: 
        legend(series_names) 
     
    #output figure 
    savefig(graph_name) 
 
def plot_scatter_with_histograms(data, 
graph_name='histo_scatter.png', \ 
    graph_grid='/', prob_axes=False, bins=20, frac=0.9, 
scatter_alpha=0.5, \ 
    hist_alpha=0.8, colors=standard_series_colors, normed=True, 
**kwargs): 
    """Plots a scatter plot with histograms showing distribution of 
x and y. 
 
    Data should be list of [x1, y1, x2, y2, ...]. 
    """ 
 
    #set up subplot coords 
    tl=subplot(2,2,1) 
    br=subplot(2,2,4) 
    bl=subplot(2,2,3, sharex=tl, sharey=br) 
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    #get_position returns left, bottom, width, height relative to 
figure 
    tl_coords = tl.get_position() 
    bl_coords = bl.get_position() 
    br_coords = br.get_position() 
 
    left = tl_coords[0] 
    bottom = bl_coords[1] 
 
    width = br_coords[0] + br_coords[2] - left 
    height = tl_coords[1] + tl_coords[3] - bottom 
 
    bl.set_position([left, bottom, frac*width, frac*height]) 
    tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height]) 
    br.set_position([left+(frac*width), bottom, (1-frac)*width, 
frac*height]) 
 
    #suppress frame and axis for histograms 
    for i in [tl,br]: 
        i.set_frame_on(False) 
        i.xaxis.set_visible(False) 
        i.yaxis.set_visible(False) 
     
    plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs) 
     
    biggest_x = 0 
    biggest_y = 0 
    for i in range(0, len(data), 2): 
        x, y = data[i], data[i+1] 
        color = colors[(i/2)%len(colors)] 
        n, bins, patches = hist(x, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=tl, normed=True) 
        biggest_x = max([biggest_x, max(x)]) 
        n, bins, patches = hist(y, facecolor=color, bins=bins, \ 
            alpha=hist_alpha, axes=br, normed=normed, 
orientation='horizontal') 
        biggest_y=max([biggest_y,max(y)]) 
    bl.set_xlim(0,1) 
    bl.set_ylim(0,1) 
    savefig(graph_name) 
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