
 I

Alignment and Detection of

Syntenic Regions of Genes to Identify

Horizontally Transferred Islands in

Pathogenic Bacteria

by

Stephanie Amber Wilson

A thesis submitted to the Faculty of the Undergraduate School of the University of

Colorado in partial fulfillment for the degree of Bachelor of Science

Department of Computer Science

2007

 II

This thesis entitled:

Alignment and Detection of Syntenic Regions of Genes to Identify

Horizontally Transferred Islands in Pathogenic Bacteria

written by Stephanie Amber Wilson

has been approved for the Department of Computer Science.

Rob Knight

Clayton Lewis

Michael Main

Date ___________

The final copy of this thesis has been examined by the signatories, and we

find that both the content and the form meet the acceptable presentation

standards of scholarly work in the above mentioned discipline.

 III

Abstract

Stephanie Amber Wilson (B. S., Computer Science)

Alignment and Detection of Syntenic Regions of Genes to Identify Horizontally

Transferred Islands in Pathogenic Bacteria

Thesis directed by Professor Rob Knight

Alignment and detection of syntenic regions of genes can lead to a better

understanding of evolution, both at the species level and at the level of individual

genes. In particular, understanding the evolution of genomic features can lead to a

better understanding of the genetic changes involved in pathogenicity. Knowing when

genes were gained or lost, and whether they were gained or lost together, is important

for understanding and predicting their association in functional pathways. In this

thesis, I compared the compositional statistics of horizontally transferred islands to

the species through codon usage biases and GC content. I also investigated the

accuracy of algorithms to align circularly and randomly permuted simulated genomic

islands. Detection of horizontally transferred genes will aid in phylogenetic research

because these genes violate the mathematical models of sequence evolution typically

used for phylogenetic reconstruction. Furthermore, since many of the genes

horizontally transferred are involved in antibiotic resistance and pathogenesis, better

methods of detection will also aid in medical research.

 IV

I dedicate this thesis to my grandmother.

 V

Acknowledgements

I would like to thank my advisor Rob Knight for suggesting I look into

algorithmic problems such as circular permutations, and for all his help with my

thesis. Furthermore, I would like to thank him for helping with me with my UROP,

and HHMI grant work. Each one of the fingerprints was possible due tothe

groundbreaking research of Nuboru Sueoka and coworkers., I would like to thank

Noboru for taking the time to explain his research. Also I would like to thank my

other thesis committee members, Clayton Lewis and Michael Main, for their

continuous support and time. Additionally, I would like to thank Jesse Zaneveld,

Jeremy Widmann, Micah Hamady, Sandra Smit, Mike Robeson, Catherine Lozupone,

and the Knight Lab for all their help.

 VI

Table of Contents

Introduction
Biological Background

Horizontally Transferred Genes
Compositional Statistics

GC Content
CAI

Fingerprint
Permuted Islands
Existing Solutions

Circular Permutation
Sliding Window

Materials and Methods
Compositional Statistics

Matplotlib
Genome Data Sources
Display Construction

Permuted Islands
Circular Permutation Island Algorithm

Sliding Window Algorithm

Results
Compositional Statistics

Salmonella Islands
Bacteriophage Islands

Permuted Islands
Runtime Algorithms
Algorithm Accuracy

Discussion

Compositional Statistics
Data Significance
Permuted Islands

Correlation of Variation and Detection
Importance of Variables

Parameters and Genomes

Appendix

 1

Introduction

Bacterial pathogens are currently of increasing medical importance and

interest because of antibiotic resistance and the threat of bioterrorism. Many of the

genes involved in antibiotic resistance and pathogenesis, are horizontally transferred

between different species. Because species vary widely in their GC content and codon

usages, a transferred gene often differs from the rest of the genes in the species.

However, sequences equilibrate to the background composition of the genome

relatively quickly, limiting the utility of methods based on compositional differences.

Alternative methods include alignment of syntenic regions (regions where

homologous genes appear in the same order) through scored dynamic programming

algorithms for permuted islands. Better detection of horizontally transferred genes

would both aid in medical research and allow a more accurate estimation of the

abundance and importance of horizontal gene transfer as an evolutionary process.

Biological Background

Figure 1: The central dogma of biology: DNA is transcribed to RNA and RNA is

translated into protein. Some viruses, like HIV, can copy RNA back to DNA, but

translation of protein back to nucleic acid has never been observed.

 2

Hereditary information, passed on from one generation to the next, is

composed of deoxyribonucleic acid (DNA). The flow of information involved in

producing protein from DNA follows what is known as the Central Dogma of

Molecular Biology. Specifically, the Central Dogma of Molecular Biology is: DNA is

transcribed to ribonucleic acid (RNA), RNA is then translated into protein (Figure 1).

Proteins made in this process function in many different ways in organisms including,

but not limited to, cell structure, regulators of cell functions, and enzymes. Essentially

all phenotypes are influenced by the proteins expressed from the transcription of

DNA.

Deoxyribonucleic acid has a simple, repeating structure, and can be

considered analogous to a string with a character set of four letters. The letters

(AGCT) symbolically represent the repeating nucleotides Adenine, Guanine,

Cytosine, and Thymine. DNA in the cell is usually double-stranded, consisting of

two antiparallel strands connected in a structure akin to a spiral staircase called a

double helix. Each of the characters (nucleotides) is matched with another. Adenine

and Thymine form base pairs using specific patterns of hydrogen bonds, as do

Cytosine and Guanine. With this simple structure of repeating chemicals, cells can

code for every protein needed for the functions of life.

RNA is similar to DNA in that it can be symbolically represented as a string

on an alphabet of four characters. However, instead of the nucleotide Thymine, RNA

has Uracil, so RNA is represented with the characters A, G, C, and U. Using the chain

of RNA, proteins can be translated. Three bases pair with an anticodon on a tRNA

molecule (a special kind of RNA that acts as an adaptor), which carries one amino

 3

acid, providing the basis for the specificity of the genetic code by linking the amino

acid to the antocodon, and hence to the codon. Proteins are chains of amino acids.

Each DNA sequence can be translated unambiguously into a protein sequence using

the genetic code.

Figure 2: This table shows the genetic code, the mapping between specific strings of

three nucleotides and amino acids (Cuschieri, n.d.).

Chemically, not all base changes are equal. Since some of the bases are

structurally more similar to one another (Figure 3) they are more likely to change

from one to another within the DNA sequence (Watson, 1953). Changing purine to

pyrimidine and vice versa, known as transversions, are more difficult than changing

 4

the bases within their purine and pyrimidine groups, known as transitions. Because

transversions are chemically less likely (they cannot occur spontaneously by changing

the structure of the base in situ, and require the polymerase to make a mistake during

replication), they occur less than half as often as transitions do, even though twice as

many kinds of transversions are possible. (Bos, 2004).

Figure 3: The lewis structure of nucleotides (Weaver, 2005).

Evolution, i.e. mutation of the bases followed by the fixation of the mutant

form in the population, is a slow process. For example, the change from UAC to

UAA is a change from the amino acid tyrosine to a stop codon that terminates

translation (Figure 2). If this happened halfway between the start codon and the

original stop codon, the gene sequence (also known as an open reading frame) would

now only code for half the protein. This change could lead to a non-functional

protein, or to a protein missing parts of the sequence required for normal regulation.

The change between UAC and UAA involves a transversion, and thus is less likely to

 5

occur than the changes that involve transitions. On the other hand, we can change

AGU to AGC and still code for the amino acid serine. In contrast to the previous

example, this base change is a transition and therefore more likely to occur.

Interestingly, the genetic code is arranged in a way that minimizes the average effects

of the mutations, and transitions are less likely to lead to a radical change in amino

acid properties than transversions (Freeland, 1998) .

Taking a closer look at the amino acid table, whenever the last nucleotide in

the sequence of three changes, the same amino often is coded, especially if the change

is a transition. Correspondingly, when sequences in different species are compared,

the rate of change is higher at the third codon position because the change at the DNA

level often leaves the protein unchanged, and transitions are more likely to be

observed (Sueoka, 2002). However, because mutation acts at the DNA level, it is

independent of the translated reading frame. Here we see the effects of natural

selection, because more changes at the first and second position are lethal and not

passed on to the future generations. Different genes also change at different rates,

known as substitution rate heterogeneity, which is also due to the combination of

mutation and selection (Bos, 2005). These differences in substitution rates lead to

codon biases, which can be used to derive a “fingerprint” of the processes operating

in a given species (Sueoka, 2002). In other words, different species that share the

same genetic code are more likely to use one codon or another for a given amino acid,

in part because these codons are produced or destroyed at different rates in different

species. Many different factors, including replication, reactive oxygen species, and

deamination due to the DNA being single-stranded affect the mutation pattern and

 6

hence the codon usage is characteristic for each species. Because of this species-

specificity, we can use patterns in codon usage to identify genes that have moved

between different species.

Horizontally Transferred Genes

Many bacteria are free-living in the environment. In fact, only one percent of

bacteria can be cultured in the laboratory (Pace, 1997). Some bacteria, however, can

develop a symbiotic relationship with other hosts. Many bacteria have no effect on

their hosts, and others benefit their hosts. For example, our gut bacteria outnumber

our own cells by a factor of ten, and provide us with many metabolic capabilities we

would otherwise lack. However, some bacteria harm their hosts. These bacteria are

known as pathogenic bacteria. Examples of pathogenic bacteria include: Clostridium

botulinum (responsible for botulism), Francisella tularenis (tularemia), Bacillus

anthracis (anthrax), and Salmonella enterica (salmonellosis and typhoid fever,

depending on strain). In each of these species we can see genes and, consequently,

proteins, that allow the bacteria to escape the immune system or antibiotics, or to

enter areas harmful to their hosts.

Clostridium botulinum bacteria produce the botulinum neurotoxin (BoNT)

that causes botulism (Binz et al.,1994). Some consider BoNT to be the most

poisonous substance to humans, estimating BoNT to be 100,000 to 3 million times

more poisonous than sarin (a chemical weapon produced, but not used, by Nazi

Germany during WWII) (Zubay et al., 2005). BoNT will (irreversibly) bind to the

 7

gangliosides and protein receptors on the presynaptic membrane then enters the cell

through endocytosis (Hanson et al., 2000). Once in the cell, BoNT toxically cleaves

SNARE proteins (Chen et al. 2007). Clostridium botulinum is found in the soil and

the gastrointestinal tract of human and animals (FDA, 2006). They are classified into

four groups based on the BoNT toxin (FDA., 2006). These groups are separated into

two types: proteolytic types (i.e. types that can produce enzymes that cut proteins in

specific ways that are required to convert the proteins into their active forms), which

produce their own BoNT, and nonproteolytic types, which use a host protease, such

as trypsin, to cleave the inactive holotoxin to make BoNT) (Simpson et al., 2001,

Singh, 2000). With treatment, the mortality rate for food-borne botulism has dropped

from 25% in the 1950s 1950-1959 to 6% in the 1990s (Zubay et al., 2005).

Francisella tularensis is a bacterium that is potentially very dangerous (The

US Centers for Disease Control say it has a “potential for a major public health

impact”). Although seen infrequently in the environment, F. tularensis is passed

through other infected hosts (bugs, animal bites, etc) and contaminated water (CDC,

2003). Concern regarding the bacteria stem from its lethal characteristics. Francisella

tularensis is able to infect macrophages (a type of white blood cell involved in the

immune response) and parenchymal cells (cells that make up organ-specific

structures, e.g. in the liver) through unknown mechanism (Fortier, et al., 1994). The

availability of antibiotics reduced mortality from 50% to 2.5% (Zubay et al., 2005).

 8

Figure 4: The complex of membrane binding proteins produced by Bacillus anthracis

(Petosa, et al., 1997)

One of the oldest recorded bacteria (symptoms are referred to in the 5th, 6th,

and 10th Egyptian plague, and in the bible) is Bacillus anthracis, which causes the

disease anthrax (Witkowski, et al., 2002). This species is among the most likely to be

used in terrorist attacks due to its hardy spore, which is resilient to cold, heat,

radiation, drought, and water (Zubay et al., 2005). Bacillus anthracis has a protein

capsule for protection against phagocytosis (i.e. the cells in the immune system

cannot engulf it for digestion as they do for other bacteria) (Kozel et al., 2007). Also,

anthrax forms a transmembrane transporter called PA, and two toxins called LF, and

EF. PA binds to the cell membrane (Varughese, et al., 1999). With the addition of LF

and EF, PA forms a channel for LF and EF transportation to the cytosol (Petosa, et

al., 1997). EF catalyzes the reaction from ATP to cAMP, raising the levels of cAMP

in the body (Leppla, 1984). High levels of cAMP limit the inflammation response

necessary for the immune system response, and also affect the water homeostasis of

the body causing edema (water retention and swelling) (Leppla, 1984). LF toxins

 9

cleave proteins in the cells, leading to cell lysis (Klimpel, et al., 1994, Vitale, et al.,

2000).

Many diseases previously believed to be independent of bacteria are now

being linked to bacterial causes. Once, it was believed that stomach ulcers were solely

based on stress on the body. Despite the stomach’s low pH, often in the range 0-1

(about the same as 1M hydrochloric acid), it was known that many bacteria could

survive in the stomach, including Helicobacter pylori. However, bacteria were never

linked to ulcers, which were assumed to be caused by stress. In 2005, Barry J

Marshall and J. Robin Warren were awarded the Nobel prize for discovering

Helicobacter pylori’s role in gastritis and peptic ulcer disease (Marshall, et al., 2005,

Peterson, 1991). In addition to its role in ulcer formation, Helicobacter pylori has also

been linked to gastric carcinoma (Parsonnet, 1991).

As discussed earlier, many bacteria are free living, and many others live in

symbiosis with their host. For a bacterium to become pathogenic, it must evolve

genes that encode proteins that are harmful to the host. To obtain these genes, bacteria

must either change their current genes or acquire these genes elsewhere. Mutations

that alter a specific phenotype occur at a staggeringly slow rate (Hartwell, 2004). One

study of millions of mice found the rate of mutation was 1 x 10-5 per nucelotide per

generation (Hartwell, 2004), although bacteria are thought to mutate more rapidly and

have much larger population sizes. However, rates of horizontal gene transfer (the

movement of genes between different genomes) are also thought to be high in

bacteria. For example, of the genes in the first three strains of E. coli to be sequenced,

 10

only 40% of the genes were in all three strains (Welch, et al., 2002). Thus, the

motivation to study processes of horizontal gene transfer is strong.

When bacteria acquire new genes from another species it is known as

horizontal transfer. To study horizontally transferred genes (HTGs), an island, or

contiguous group of genes is most often investigated. Mainly, this is because the

larger sample size reduces the chance of seeing extreme composition through

sampling error. Thus we can have higher confidence that the island came from

another species.

Compositional Statistics

Homologous genes of Salmonella and Escherichia average 85 percent

sequence identity (Bräumler 1997, Sharp 1991), suggesting that about 100-160

million years ago their lineages diverged (Bräumler 1997, Ochman 1987). 10-20

percent of the Salmonella genome is absent from E. coli, also suggesting horizontal

transfer (Bräumler 1997, Ochman et al. 1996 (1), Lan et al. 1996). Some specific

examples of transferred genes include type three secretion system (T3SS) proteins,

which are often found in pathogenicity islands in the genome or in plasmids, and

which are often similar in species whose genes are otherwise dissimilar (Collmer et

al. 2002), suggesting that HGT explains their distribution (Gophna et al. 2002). Often

the transferred genes differ from the rest of the genome in their GC content (Ochman

1996 (2)) Codon fingerprints differences due to mutational pressures are specifie-

 11

specific species (Sueoka 2002), and might provide more power than GC content to

distinguish among genes from different sources.

GC Content

Because DNA is base-paired in the cell, one simple measure of the

composition of double-stranded DNA is the GC content (the fraction of all the base

pairs in the genome that are GC or CG pairs, as opposed to AT or TA pairs). GC pairs

are stronger than AT pairs because three hydrogen bonds hold them together rather

than two. Thus, it is harder to separate the strands of DNA with more GC pairs,

leading to a difference in melting temperature. The GC content of a nucleic acid

could thus be measured biochemically in the 1960s, almost two decades before

sequencing technologies became available.

Different species vary widely in GC content. This variation (from about 25%

to 75% GC) is probably driven by mutational processes, and is so consistent in

different species that extremely accurate predictions about the usage of different

amino acids and different codons in the genome can be made from the GC content

along (Knight et al., 2001). Because of these differences in different organisms, the

GC content has been widely used as a marker for genes that might have come from

another genome.

A paradigmatic example of horizontal transfer is that of the Type Three

Secretion Systems (T3SS). The genes in SPI-1, one of the Salmonella Pathogenicity

Islands, are distinctly different in GC content from the rest of the genome (Ochman

 12

1996). Additionally, some transferred genes involved in the T3SS appear to have

been horizontally transferred by bacteriophages that pick up genes from one species

and integrate into another, causing not only differences in GC content due to the viral

replication mechanism but also allowing identification through the presence of

specific flanking sequences that the virus uses for integration into the genome and for

packaging (Ehrbar 2005). Similar T3SS components have been found in extremely

different types of bacteria, e.g. proteobacteria and the chlamydia group, which further

suggests that these genes have been horizontally transferred (Collmer 2002).

CAI

The Codon Adaptation Index (Sharp, 1986) is a measure of how closely a gene’s

codon usage (i.e. the frequency with which each of the different codons is used in the

genome, correcting for the fact that different amino acids are encoded by different

numbers of codons) resembles the codon usage of highly expressed genes in the

genome. The codon usage is compared to the codon usage of a set of reference genes

that are known to be highly expressed, such as the ribosomal proteins. In a given

species, there is usually a monotonic relationship between CAI and the GC content of

each gene, so that outliers from this plot might indicate that genes came from

elsewhere.

Fingerprint

 13

The codon fingerprint (Sueoka 2002) is a method of displaying synonymous codon

usage graphically. If only mutational processes were at work, and if mutation at each

position were independent of mutations at other positions, we would expect four-fold

synonymous sites (i.e. sites of the form XYN where X and Y are each a specific

nucleotide and N is any nucleotide, and where all codons XYN encode the same

amino acid) to have the same composition at the third position no matter what the

first two bases are. The fingerprint plot graphs the relative usage of the purine and the

pyrimidine in each type of pair against each other for each amino acid, i.e. plotting

(G/(G+C)) against (A/(A+T)). Different species have characteristically different

fingerprints, again suggesting that this feature might be useful for identifying

horizontally transferred genes.

Permuted Islands

Figure : The top string represents a section of a gene sequence with each letter being a

gene. The second strings shows an insertion of the gene ‘X’. The third string show the

 14

second string undergoing a deletion of the ‘B’ gene. In the last string we see a

reversal of the second string.

Genomic islands that have been horizontally transferred do not always retain

the same arrangement of genes that they had in their originating species. Mutations

can occur at the level of whole genes as well as at the level of individual bases.

Within sequences, mutations can cause events such as insertion, deletion, and

reversals of the genes (Figure).

Figure : The top gene sequence is circularly permuted to the bottom moving the gene

‘F’ from the end of the n-terminal to the beginning of the c-terminal.

DNA sequences, and therefore protein sequences, can also be circularly permuted so

the sequence at the end (N-terminus in proteins; 5’ end in DNA) can be moved to the

beginning of the sequence (C-terminus in proteins’ 3’ end in DNA) (Figure). This

 15

type of circular permutation is especially common in plamids, which usually exist in

the cell as circular DNA but can integrate into the larger genomic sequence using

several different sites. Interestingly, many proteins and RNAs can maintain their 3D

structure and thus their function after undergoing circular permutation, and this

process has accordingly been observed in proteins from different species. (Uliel, et

al., 1999). Circular permutation is observed both within a single protein sequence,

and between groups of genes. Because circular permutation is important for gene

transfers that are mediated by plasmids, detecting that one putative genomic island is

an approximate circular permutation of another tells us something about the likely

mechanism of transfer.

Figure : Each of the lines show insertions or reversal that may have occurred during

the evolution of Tobacco to Lobelia fervens (Knox, et al., 1993)

 16

Permuted islands are also of interest because they offer a means of tracking

the evolutionary history of a species: like sequence characters in an alignment,

breakpoint characters can be used for phylogenetic reconstruction. The process of

tracing the permutations that occur over time as one species evolves into another is

known as breakpoint analysis. Through breakpoint analysis evolutionary paths can be

seen in the chloroplast of the tobacco plant to Lobelia fervens (Figure) (Knox, et al.,

1993).

Existing Methods for Detecting Permuted Syntenic Regions

The Needleman-Wunsch algorithm is a dynamic programming algorithm that

can be used to calculate the minimum edit distance between two sequences in terms

of insertions, deletions and substitutions. This algorithm performs a global alignment

on two sequences that spans the entire length of the sequence. A related algorithm

called Smith-Waterman uses a similar technique to perform local alignments, the

main difference between the two being the initialization conditions. Dynamic

programming algorithms reducing the overall problem to overlapping subproblems

for optimization, allowing reduction of the time complexity from exponential to

quadratic (Korf, et al., 2003).

The Smith-Waterman and Needleman-Wunsch algorithms are widely used for

sequence alignment and are implemented in many bioinformatics software packages.

Basically, the way the Smith-Waterman aligns genes is as follows: the matrix is

initialized to all zeros. Each cell in the matrix corresponds to an alignment between

 17

position i in the first sequence and position j in the second sequence. Starting at the

cell one position down and one position to the right from the top-left corner of the

matrix, the optimal score for each cell is calculated, working along to the right and

downwards. For each cell, the score of aligning the two positions is given by the

score for matching the base at position i against the base at position j according to a

score matrix (the simplest score matrix consists of a constant match score, given if the

two bases are identical, and a constant mismatch penalty, given if the two bases are

different, but there are many different score matrices in use for different applications),

and adding this score to the score of the cell immediately above and to the left of the

current cell. The score of introducing a gap is given by calculating the gap penalty

and adding this penalty to the cell above the current cell (for introducing a gap into

the first sequence), or to the left of the current cell (for introducing a gap into the

second sequence). The maximum of these three possible scores is recorded in the cell,

along with a pointer to the cell that gave the best result (in the case of ties, one of the

best cells is chosen arbitrarily). When the bottom-right corner of the matrix is

reached, the highest cell in the entire matrix is found and used as the start of the

alignment. The pointers are then followed and used to introduce gaps into one

sequence or the other until the next score drops to 0, at which point the alignment is

terminated (Korf, 2003).

To analyze the effectiveness of the Smith-Waterman algorithm for recovering

syntenic regions, sequence lengths were tested with one to twenty random insertions

one thousand times without a circular permutation. When plotting the data as scatter

 18

points (figure 2), a correlation can be seen between the accuracy and sequence length

and number of insertions.

Circular Permutation

Although the Smith-Waterman algorithm is useful for alignment of sequences

with insertions and deletions, it does not account for circular permutations. However,

Uliel saw the potential application of this algorithm for sequences with circular

permutations. Given the sequence ‘abc’, a circular permutation event could lead to the

transformation to the sequence ‘cab’. Comparison of the two sequences through the

Smith-Waterman algorithm would lead to the ‘ab’ alignment. However, appending a

copy of the original sequence to itself leads to an instance of each possible circular

permutation inside the new string (e.g. “abc” and “abc” lead to “abcabc”, which

contains the ‘cab’ sequence we are looking for), and thus allows the alignment of a

circularly permuted sequence (Uliel, et al., 1999).

Sliding Window

 The sliding window approach is also a useful approach to many problems that

rely on underlying score matrices. In a sliding window approach, k consecutive

elements within a longer sequence of length n are analyzed at a time, advancing one

element at each step. For example, the sequence composition analyzer computes the

 19

GC content of each window of a DNA sequence in order to find regions that are of

interest because their GC content differs from that of the rest of the genome

(SeqComp, n.d.).

 To analyse permuted windows, we treat each gene as a single character on a

large alphabet, and calculate how many of these characters each window in the first

sequence and each window in the second sequence have in common. Windows that

contain many of the same genes are likely to represent permuted islands. If the

sequences align exactly, the raw score matrix matching each gene against each other

gene contains all matches (1s) on the diagonal, and non-matches (0s) elsewhere

(Figure first matrix). If the sequence has been circularly permuted, there will be two

disconnected diagonal matches (Figure third matrix). if the sequence has been

reversed (e.g. because the genes integrated on the opposite strand, or underwent an

inversion after integration), a diagonal line in the opposite orientation to the main

diagonal will be observed (Figure fourth matrix)

 20

Figure : Alignment matrices of various sequences of genes, where each match is

denoted as a 1 and each mismatch is denoted as a 0. The last two matrices show the

steps involved in the sliding window approach; the first step shows the “or” of the

columns at the bottom and the second step shows the ‘or of the columns at the right

side.

Ideally, we would want to detect all the alignments shown above, and there is one

common theme that allows us to dectet these alignments. If the two sequences contain

a common, but permuted island, the resulting score matrix (where each match is

denoted by a one and mismatch with a zero) contains consecutive rows that are non-

empty. Combining the values in each rows using logical or produces a vector with

many consecutive oens (Figure fifth matrix). The same is also true for the columns.

This characteristic can lead to an efficient method for detecting seemingly random

permutations, including insertions and deletions: using a sliding window to sum the

 21

nonzero elements in the vector allows us to find regions in which many genes are

shared between the two sequences.

Materials and Methods

Compositional Statistics

Matplotlib

The python library Matplotlib was used to graph the results of the statistical

analysis of sequence composition. This package was integrated with the Cogent

package, developed jointly between the Knight lab at CU Boulder and the Huttley lab

at the Australian National University, Canberra. These object-oriented packages

allow considerable flexibility for sequence analysis and graphical displays. Other

features of the Matplotlib that were used include: LaTeX support, the ability to

produce multiple plot types, including histograms, scatter plots, and contour plots,

and the ability to programatically generate custom color schemes and legends. The

Matplotlib library was written primarily by John Hunter and is an open source project

(Hunter, 2007).

Genome Data Sources

 Genomic data necessary for calculating compositional statistics came from

KEGG: The Kyoto Encyclopedia of Genes and Genomes. KEGG is maintained by the

 22

Bioinformatics Center of Kyoto University and the Human Genome Center of the

University of Tokyo(KEGG, 2007). The KEGG database includes the complete

genome sequences of many microbial organisms, along with a wealth of additional

information useful in interpreting the genome sequence data. Components of the

KEGG database include pathways of molecular networks, and information about

biochemical reactions and compounds (Kanehisa et al., 2004). KEGG, unlike

GenBank, contains the nucleotide sequence of each individual gene paired with the

amino acid sequence of the corresponding protein, making the analyses of

compositional statistics significantly easier.

Display Construction

 One of the challenges of graphing biological data is simplifying it to a

readable form. Noboru Sueoka devised a very efficient method, called the fingerprint

plot, of displaying the nucleotide biases in the sets of codons encoding amino acids. .

In this graph, a colored circle represents each of the eight four-codon amino acids.

The radius of each circle is proportional to the ratio of that amino acid to all other

amino acids in the gene(s) being investigated. The placement of the circle in the x-

axis is dependent on the ratio of G in the third position normalized to the sum of G

and C . In the y-axis, the circle is placed depending on the ratio of A in the third

position normalized to the sum of A and T in the third position. This fingerprint is

characteristic of each species.

 23

Permuted Islands

Circular Permutation Island Algorithm

 For alignment of circularly permuted islands the Uliel method was

implemented using the Smith-Waterman method from the Cogent library, developed

by Jeremy Widmann. The query sequence was concatenated with itself as input, and

the output was post-processed to ensure that multiple copies of the same gene were

not counted in the result (i.e. that the alignment could use a given gene from the first

copy of the sequence or from the second copy, but not from both).

Sliding Window Algorithm

This algorithm was implemented completely from scratch. First, the matrix of

matches is created, and then the logical or operation is applied to the columns. Based

on variable parameters relating to the number of insertions, deletions, and the desired

match length, an ideal length and match ratio is calculated. For example, if the

sequence of interest is 10 genes long and we want to account for 2 insertions, the

sliding window will be 12 characters long. To account for 2 deletions, if there are 8 or

more matches within the window then the index is stored. Each of the indices of

interest is stored. However, at this point it is unknown whether the indices represent

an alignment or represent a repeat of a single, matching character. The rows must also

be examined in order to distinguish these two cases. Each of the indices of interest is

 24

used to slice a sub-matrix based on the prior window size calculation. Then, a logical

or is performed on the rows of the matrix. If there are enough matches to account for

the sequence length minus deletions within the calculated window size, the index of

column is stored along with the index of the row in the list of alignments. This list is

then returned as a result.

Results

Compositional Statistics

Type III Secretion System

 The fingerprint graphs were all produced using the graphing code I created.

The data for the graphs came from KEGG, which was tied to the CodonExplorer web

interface created by Micah Hamady. CodonExplorer uses my graphing code as a front

end for interactive analysis of genomes or user-specified gene sets from KEGG. For

each of the islands described below, the location, length, and function were obtained

from the review article “Lateral gene transfer in Salmonella” (Pollwollik and

McClelland, 2003). The T3SS is of particular interest because it is widely believed to

have been horizontally transferred, and because it plays a direct role in Salmonella’s

ability to act as a pathogen. The T3SS forms a needle complex that allows

Salmonella, and certain other pathogens, to deliver proteins that they make across the

 25

membrane of the host cell, allowing them to manipulate the host cell directly.

Salmonella enterica serovar Typhimurium (S. Typhimurium), the causative agent of

salmonellosis (food poisoning), also causes a disease in mice that is equivalent to

typhoid fever in humans (the causative agent of typhoid fever is a closely related

strain, Salmonella enterica serovar Typh). S. Typhimurium has two distinct T3SSs:

one is used to invade the gut during enteric infections, and the other is used to aid

survival inside cells in the body. The two T3SSs are encoded on pathogenicity islands

called SPI-1 and SPI-2 respectively; several other pathogenicity islands encode other

genes that are involved in pathogenicity for reasons unrelated to type III secretion.

Figure : Fingerprint of the entire genome of S. Typhimurium.

 26

Figure : Genomic island in S. Typhimurium starting at gene marker location:

STM1379. The genes in this island are involved with SPI2: type III secretion system.

Specific functions include: ttr, sse, ssa.

Figure : Genomic island in S. Typhimurium starting at STM1087. SPI5: virulence

genes, effector protein primarily pip, sopB

 27

Bacteriophage-derived Genomic Islands

Figure : Genomic island in S. Typhimurium starting at STM0893. Prophage Fels-1:

superooxide dismutase, neuraminidase primarily sodCIII and nanH.

Figure : Genomic island in S. Typhimurium starting at STM1005\Prophase Gifsy-2:

superoxide dismutase, virulence genes primarily sodCI, grvA, gtgE.

 28

Figure : Genomic island in S. Typhimurium starting at STM2689 Prophage Fels-2:

PTS system, phase 2 flagellin, H inversion, virulence genes, transporters,

siderophores? primarily iro,fljAB,hin,tct

Figure : Genomic island in S. Typhimurium starting at STM2584 Prophase Gifsy-1

primarily gipA, gogB

 29

Figure : Genomic island in S. Typhimurium starting at STM4195 Prophage

These graphs show a clear difference between the overall species fingerprint

and the horizontally transferred genes. Island 1 and 3, and island 2 and 4 show the

similarities of similar prophages (these two pairs of islands are associated with

particular kinds of viruses that replicate in different ways; a prophage is a virus that

has integrated into the genome). Islands 1-4 also differ from island 5, which has a

different prophage orgin. Islands 6 and 7 also deviate from the overall species

fingerprint. The statistical significance of these results was verified by Jesse Zaneveld

in the Knight lab using Monte Carlo techniques (J. Zaneveld, unpublished data).

From these examples, we can see that fingerprint difference in genes may serve as an

excellent method to detect horizontal transfer.

 30

Permuted Islands

Runtime of Algorithms

 Given sequences m and n. the runtime for the Smith-Waterman algorithm is

O(mn). From this it can be deduced that the Uliel algorithm is also O(mn), with an

additional twofold constant factor. Also, because one of the sequences is repeated,

postprocessing is required in cases in which the same gene from both copies of the

sequence contributes to the alignments..

 Not including creation of the matrices and applying logical or to the matrices,

the runtime for the sliding window algorithm is also O(nm) (the sliding window

analysis contributes an O(n) step). Implementing the arrays using the Python Numeric

libraries rather than using the built-in Python data types resulted in order-of-

magnitude improvements in speed.

 31

Algorithm Accuracy

Length and Insertion Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45

Length

C
o

rr
e

c
tl

y
 A

li
g

n
e

d

1 Insertion

3 Insertions

5 Insertions

7 Insertions

9 Insertions

11 Insertions

13 Insertions

15 Insertions

17 Insertions

19 Insertions

Figure : This graph was generated using the code based on the Uliel method for

aligning circularly permuted sequences. Each point represents the correct alignment

of an entire island, taken as an average over 1000 randomly circularly permuted

samples for a given length of sequence and set number of random insertions.

 32

True Positives of Sequences

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10

Number of ins and del allowed

tr
u

e
 p

o
s

/g
e

n
e

s
 i

n
 m

a
tc

h
e

d
 i

s
la

n
d

10

15

20

25

30

35

40

45

50

Sequence

Length

Figure : This graph is based on the sliding window approach to aligning permuted

sequence. It shows the true positives ratio of genes found in the aligned island to

genes in the actual island. Each point represents an average taken over 1000 samples

with a set number of insertions and deletions allowed, random insertions and

deletions based up to the allotted number of insertions and deletions, and the set

sequence length.

 33

Discussion

Compositional Statistics

Significance of findings

The striking similarities between the fingerprint plots for genes derived from

the Gifsy-1 and Gifsy-2 phages, and the Fels-1 and Fels-2 phages, indicate that the

mechanism of transfer affects codon usage in a way that can be detected with the

fingerprint plots. Furthermore, the similarity of the Prophage islands to each other and

the Gifsy to each other suggest that the codon biases are specific to the mechanism of

horizontal transfer. The contrast between the T3SS-encoding islands and the genome

as a whole also suggests that these techniques may be broadly useful for detecting

foreign genes. These results are interesting because the paradigm for most research

into horizontal gene transfer to date has been to assume that all the transferred genes

will fit the same statistical model that differs from the model for the whole genome. If

genes that were transferred by different mechanisms have substantially different

compositional signatures, we may be able to detect horizontal gene transfer in a much

more sensitive and specific manner by using models that apply to particular

mechanisms rather than by treating all transferred genes the same way.

 34

Permuted Islands

Correlation of Variation and Detection

 In the case of the Uliel method of alignment, fewer insertions equated to a

better chance of finding the alignment of the island. Because the Smith-Waterman

algorithm is score-based, longer sequences improved the accuracy of island detection.

The score increases with the length of the sequence, so the impact on the overall score

of a single insertion is lower in longer sequneces. This behavior is similar to that of

the Smith-Waterman algorithm, so the only real cost of the Uliel method is additional

factor of two in the runtime.

 As far as the sliding window approach, the more versatile it becomes the more

occurring false positive. As the number of insertions and deletions allotted increase

accuracy decrease. This makes sense because by allowing insertions and deletions to

occur you’re diverging from the sequence itself. Similar to the Uliel method, longer

sequences lead to better accuracy. In the longer sequences an insertions or deletion

has a lower ratio of change to sequence length.

Importance of Parameters

 Several parameters affect the sensitivity and specificity of the sliding window

approach. The window size was especially important in cases where the matches were

relatively short. For example, if the matching sequence were 3 characters long and the

 35

window size was 10, the 3 character match would not be not be detected. Similarly,

adding the ability to look for additional insertions and deletions increases the

sensitivity at the expense of specificity. However, if there are more insertions or

deletions than allowed in the search, part or all of the matching island will be

descarded. One possible solution to this problem is to fit the parameters based on

genomic data, and to adjust the thresholds according to well-established cases where

the evolutionary histories of the genomic islands are known. Another possible

solution would be to use a smaller window size and to post-process the results.

Length and Insertion Effect

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45

Sequence Length

C
o

rr
e

c
tl

y
 A

li
g

n
e

d

1 Insertion

2 Insertions

3 Insertions

4 Insertions

5 Insertions

6 Insertions

7 Insertions

8 Insertions

9 Insertions

10 Insertions

11 Insertions

12 Insertions

13 Insertions

14 Insertions

15 Insertions

16 Insertions

17 Insertions

18 Insertions

19 Insertions

20 Insertions

 36

Conclusions

 Horizontal gene transfer is an important process that shapes microbial

genomes, and improved techniques for detecting its operation will be useful in many

different contexts. In this work, I was able to show that the fingerprint plots are

effective for identifying horizontally transferred genes, and to compare several

approaches for identifying syntenic regions. This work thus fills in some of the pieces

of the large and complex puzzle that is horizontal gene transfer.

 37

Appendix

1. Code implementing the graphs of various compositional statistics

#/usr/lib/python2.4/
#AminoGraphPlots.py

from matplotlib import use, rc
use('Agg') #suppress graphical rendering
rc('text', usetex=True)
rc('font', family='serif') #required to match latex text and
equations
import Image
import ImageFilter
from Numeric import array, shape, fromstring
from cogent.base.usage import UnsafeCodonUsage as CodonUsage
from cogent.maths.stats.test import regress, correlation
from pylab import *
from math import pi

"""Provides different kinds of codon usage plots.

See individual docstrings for more info.
"""
#module-level constants

#historical doublet order for fingerprint plot; not currently used,
but
#same order that the colors were entered in. Matches Sueoka 2002.
doublet_order =
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\
 'AA','AG','GA','UA','UG']
color_order = ["#000000","#FF0000","#00FF00","#FFFF00",
 "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0",
 "#6D6D6D","#2353FF","#00FFFF","#FF8800",
 "#238853","#882353","#EC008C","#000099"]
#map doublets to colors so we can make sure the same doublet always
#gets the same colors
doublets_to_colors = dict(zip(doublet_order, color_order))
#creates a dictionary for the amino acid labels, less to input
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN',
 'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN',
 'THREONINE':'ACN', 'VALINE':'GTN'}
standard_series_colors=['k','r','g','b', 'm','c']

#Helper functions

def hist(x, bins=10, normed='height', bottom=0, \
 orientation='vertical', width=None, axes=None, **kwargs):
 """Just like the matplotlib hist, but normalizes bar heights to
1.

 38

 axes uses gca() by default (built-in hist is a method of Axes).

 Original docs from matplotlib:

 HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical',
**kwargs)

 Compute the histogram of x. bins is either an integer number of
 bins or a sequence giving the bins. x are the data to be
binned.

 The return values is (n, bins, patches)

 If normed is true, the first element of the return tuple will
 be the counts normalized to form a probability density, ie,
 n/(len(x)*dbin)

 orientation = 'horizontal' | 'vertical'. If horizontal, barh
 will be used and the "bottom" kwarg will be the left.

 width: the width of the bars. If None, automatically compute
 the width.

 kwargs are used to update the properties of the
 hist bars
 """
 if axes is None:
 axes = gca()
 if not axes._hold: axes.cla()
 n,bins = norm_hist_bins(x, bins, normed)
 if width is None: width = 0.9*(bins[1]-bins[0])
 if orientation=='horizontal':
 patches = axes.barh(n, bins, height=width, left=bottom)
 else:
 patches = axes.bar(bins, n, width=width, bottom=bottom)
 for p in patches:
 p.update(kwargs)
 return n, bins, silent_list('Patch', patches)

def norm_hist_bins(y, bins=10, normed='height'):
 """Just like the matplotlib mlab.hist, but can normalize by
height.

 normed can be 'area' (produces matplotlib behavior, area is 1),
 any False value (no normalization), or any True value
(normalization).

 Original docs from matplotlib:

 Return the histogram of y with bins equally sized bins. If bins
 is an array, use the bins. Return value is
 (n,x) where n is the count for each bin in x

 If normed is False, return the counts in the first element of
the

 39

 return tuple. If normed is True, return the probability density
 n/(len(y)*dbin)

 If y has rank>1, it will be raveled
 Credits: the Numeric 22 documentation

 """
 y = asarray(y)
 if len(y.shape)>1: y = ravel(y)

 if not iterable(bins):
 ymin, ymax = min(y), max(y)
 if ymin==ymax:
 ymin -= 0.5
 ymax += 0.5

 if bins==1: bins=ymax
 dy = (ymax-ymin)/bins
 bins = ymin + dy*arange(bins)
 n = searchsorted(sort(y), bins)
 n = diff(concatenate([n, [len(y)]]))
 if normed:
 if normed == 'area':
 db = bins[1]-bins[0]
 else:
 db = 1.0
 return 1/(len(y)*db)*n, bins
 else:
 return n, bins

def as_species(name):
 """Cleans up a filename into a species name, italicizing it in
latex."""
 #trim extension if present
 dot_location = name.rfind('.')
 if dot_location > -1:
 name = name[:dot_location]
 #get rid of _small if present -- used for debugging
 if name.endswith('_small'):
 name = name[:-len('_small')]
 #replace underscores with spaces
 name = name.replace('_', ' ')
 #make sure the first letter of the genus is caps, and not the
first letter
 #of the species
 fields = name.split()
 fields[0] = fields[0].title()
 #assume second field is species name
 if len(fields) > 1:
 fields[1] = fields[1].lower()
 return '\emph{'+' '.join(fields)+'}'

def frac_to_psq(frac, graph_size):
 """Converts diameter as fraction of graph to points squared for
scatter.

 40

 frac: fraction of graph (e.g. .01 is 1% of graph size)
 graph_size: graph size in inches
 """
 points = frac * graph_size * 72
 return pi * (points/2.0)**2

def init_graph_display(title=None, aux_title=None, size=4.0, \
 graph_shape='sqr', graph_grid=None, x_label='', y_label='', \
 dark=False, with_parens=True, prob_axes=True, axes=None,
num_genes=None):
 """Initializes a range of graph settings for standard plots.

 These settings include:
 - font sizes based on the size of the graph
 - graph shape
 - grid, including lines for x=y or at x and y = 0.5
 - title, auxillary title, and x and y axis labels

 Parameters:
 title: displayed on left of graph, at the top, latex-format
string

 aux_title: displayed on top right of graph, latex-format
string.
 typically used for number of genes.

 size: size of graph, in inches

 graph_shape: 'sqr' for square graphs, 'rect' for graphs that
include
 a colorbar, 3to1: width 3 to height 1.

 graph_grid: background grid for the graph. Currently
recognized grids
 are '/' (line at x=y) and 't' (cross at x=.5 and y=.5).

 x_label: label for x axis, latex-format string.

 y_label: label for y axis, latex-format string.

 dark: set to True if dark background, reverses text and tick
colors.

 with_parens: if True (default), puts parens around auxillary
title

 returns font, label_font_size (for use in producing additional
labels in
 calling function).
 """
 if dark:
 color='w'
 else:
 color='k'
 min_offset = 0.05 #minimum offset, e.g. for text

 41

 max_offset = 1-min_offset #center offsets
 rect_scale_factor = 1.28 #need to allow for legend while
keeping graph
 #square; empirically determined at
1.28
 font_size = int(size*3-1) #want 11pt font w/ default graph
size 4" sqr
 label_scale_factor = 0.8
 label_font_size = font_size * label_scale_factor
 label_offset = label_font_size * 0.5
 axis_label_font={'fontsize':font_size}
 font={'fontsize':font_size, 'color':color}

 if graph_shape == 'sqr':
 gcf().set_figsize_inches(size,size)
 elif graph_shape == 'rect':
 #scaling for sqr graphs with colorbar
 gcf().set_figsize_inches(size*rect_scale_factor,size)
 elif graph_shape == '3to1':
 gcf().set_figsize_inches(3*size, size)
 elif graph_shape == '2to1':
 gcf().set_figsize_inches(2*size, size)
 else:
 raise ValueError, "Got unknown graph shape %s" % graph_shape

 #set or create axes
 if axes is None:
 axes = gca()

 #draw grid manually: these are in data coordinates.
 if graph_grid == 't':
 #grid lines at 0.5 on each axis, horiz & vertic
 axes.axvline(x=.5, ymin=0, ymax=1, color=color,
linestyle=':')
 axes.axhline(y=.5, xmin=0, xmax=1, color=color,
linestyle=':')
 elif graph_grid == '/':
 #diagonal gridlines from 0,0 to 1,1.
 axes.plot([0,1], color=color, linestyle=':')
 else:
 pass #ignore other choices

 #remove default grid
 axes.grid(False)

 #set x and y labels
 axes.set_ylabel(y_label, axis_label_font)
 axes.set_xlabel(x_label, axis_label_font)

 #add title/aux_title to graph directly. Note that we want
 #the tops of these to be fixed, and we want the label to be
 #left-justified and the number of genes to be right justified,
 #so that it still works when we resize the graph.
 if title is not None:
 axes.text(min_offset, max_offset, str(title), font, \
 verticalalignment='top', horizontalalignment='left')

 42

 #use num_genes as aux_title by default
 aux_title = num_genes or aux_title
 if aux_title is not None:
 if with_parens:
 aux_title='('+str(aux_title)+')'
 axes.text(max_offset, max_offset, str(aux_title), font,
 verticalalignment='top', horizontalalignment='right')
 if prob_axes:
 init_ticks(axes, label_font_size, dark)
 #set x and y label offsets -- currently though rcParams, but
should be
 #able to do at instance level?
 #rc('xtick.major', pad=label_offset)
 #rc('ytick.major', pad=label_offset)
 return font, label_font_size

def init_ticks(a, label_font_size, dark=False):
 """takes a from (a = gca)
 sets the ticks to span from 0 to 1 with .1 intervals
 changes the size of the ticks and the corresponding number
labels
 """
 a.set_xticks(arange(0,1.01,.1),)
 a.set_yticks(arange(0,1.01,.1))

 #reset sizes for x and y labels
 x = a.get_xticklabels()
 y = a.get_yticklabels()
 for l in a.get_xticklabels() + a.get_yticklabels():
 l.set_fontsize(label_font_size)
 #if dark, need to reset color of internal ticks to white
 if dark:
 for l in a.get_xticklines() + a.get_yticklines():
 l.set_markeredgecolor('white')

def set_axis_to_probs(axes=None):
 """sets the axes to span from 0 to 1
 necessary because order in program changes graph
 """
 #set axis for probabilities (range 0 to 1)
 if axes is None:
 axes = gca()
 axes.set_xlim([0,1])
 axes.set_ylim([0,1])

def plot_regression_line(x_data,y_data,line_color='r', axes=None):
 """Plots the regression line, and returns the equation."""
 if axes is None:
 axes = gca()
 m, b = regress(x_data, y_data)
 r, significance = correlation(x_data,y_data)
 #set the a,b,r values
 r_str = '%0.3g'% (r**2)
 m_str ='%0.3g' % m
 b_str = '%0.3g' % b
 x1=0.0
 y1=b

 43

 x2=1.0
 y2=(m+b)

 #constrain so that y is always in the range (0,1) for plotting
 if(y1<0):
 y1=0.0
 x1=(0-b)/m
 if(y2>=1):
 y2=1.0
 x2=(1-b)/m

 axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2)

 if b >= 0:
 sign_str = ' + '
 else:
 sign_str = ' '

 equation=''.join(['y=
',m_str,'x',sign_str,b_str,'\n\nr2=',r_str])
 return equation, line_color

def print_regression_equations(equations, axes=None):
 """Writes list of regression equations to graph.

 equations: list of regression equations

 size: size of the graph in inches
 """
 if axes is None:
 axes = gca()
 for i, (eq_text, eq_color) in enumerate(equations):
 axes.text((0.98), (0.02+(.06*i)), str(eq_text), \
 horizontalalignment='right', verticalalignment='bottom',
\
 color=eq_color)

def broadcast(i, n):
 """Broadcasts i to a vector of length n."""
 try:
 i = list(i)
 except:
 i = [i]
 reps, leftovers = divmod(n, len(i))
 return (i * reps) + i[:leftovers]

#scatterplot functions and helpers

def plot_scatter(data, series_names=None, \
 series_color=standard_series_colors,
line_color=standard_series_colors,\
 alpha=0.25, marker_size=.015, scale_markers=True,
 show_legend=True,legend_loc='center right',
 show_regression=True, show_equation=True,
 prob_axes=False, size=8.0, axes=None,

 44

 **kwargs):
 """helper plots one or more series of scatter data of specified
color,
 calls the initializing functions, doesn't print graph

 takes: plotted_pairs, series_names, show_legend, legend_loc, and
 **kwargs passed on to init_graph_display (these include
title,
 aux_title, size, graph_shape, graph_grid, x_label, y_label,
 dark, with_parens).

 plotted_pairs = (first_pos, second_pos, dot_color, line_color,
 alpha, show_regression, show_equation)

 returns the regression str equation (list) if regression is set
true

 suppresses legend if series not named, even if show_legend is
True.
 """
 if not axes:
 axes = gca()
 #initialize fonts, shape and labels
 font,label_font_size=init_graph_display(prob_axes=prob_axes, \
 size=size, axes=axes, **kwargs)
 equations = []
 #figure out how many series there are, and scale vals
accordingly
 num_series = len(data)/2
 series_color = broadcast(series_color, num_series)
 line_color = broadcast(line_color, num_series)
 alpha = broadcast(alpha, num_series)
 marker_size = broadcast(marker_size, num_series)
 if scale_markers:
 marker_size = [frac_to_psq(m, size) for m in marker_size]

 series = []
 for i in range(num_series):
 x, y = data[2*i], data[2*i+1]

series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\
 alpha=alpha[i]))
 #find the equation and plots the regression line if True
 if show_regression:
 equation = plot_regression_line(x,y,line_color[i],
axes=axes)
 if show_equation:
 equations.append(equation) #will be (str, color) tuple
 #print all the regression equations at once -- need to know how
many
 if show_regression:
 print_regression_equations(equations, axes=axes)
 #clean up axes if necessary
 if show_legend and series_names: #suppress legend if series not
named
 axes.legend(series, series_names, legend_loc)

 45

 if prob_axes:
 set_axis_to_probs(axes)
 return equations, font

def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png',
**kwargs):
 """Outputs a CAI vs P3 scatter plot.

 expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...])
 """
 plot_scatter(data, graph_shape='sqr', graph_grid=None,\
 x_label="P_3",y_label="CAI", prob_axes=True,**kwargs)
 savefig(graph_name)

def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs):
 """Outputs a P12 versus P3 scatter graph, optionally including
regression.

 expects data as [P3_1, P12_1, P3_2, P12_2, ...n].
 """
 plot_scatter(data, graph_shape='sqr', graph_grid='/',\
 x_label="P_3",y_label="P_{12}", prob_axes=True,
**kwargs)
 savefig(graph_name)

def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False,
**kwargs):
 """Output a scatter plot of p1,p2,p3 vs gc content

 Expects data as array with rows as GC, P1, P2, P3
 p1=blue, p2=green, p3=red

 """
 #unpack common x axis, and decide on series names
 if use_p3_as_x:
 series_names = ['P_1', 'P_2']
 colors=['b','g']
 x_label='P_3'
 y_label='P_{12}'
 xy_pairs = [data[3], data[1], data[3], data[2]]
 else:
 series_names = ['P_1', 'P_2', 'P_3']
 colors=['b','g','r']
 x_label='GC'
 y_label='P_{123}'
 xy_pairs = [data[0], data[1], data[0], data[2], data[0],
data[3]]

 #plot points and write graph
 plot_scatter(xy_pairs,
graph_grid='/',x_label=x_label,y_label=y_label,
 series_names=series_names, prob_axes=True, **kwargs)
 savefig(graph_name)

def plot_fingerprint(data, alpha=0.7, \
 show_legend=True, graph_name='fingerprint.png', has_mean=True,

 46

 which_blocks='quartets', multiple=False, graph_grid='t',
prob_axes=True, \
 **kwargs):
 """Outputs a bubble plot of four-codon amino acid blocks
 labeled with the colors from Sueoka 2002.

 takes: data: array-elements in the col order x, y, r of
 each of the four codon Amino Acids in the row order:
 ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL
 (for traditional fingerprint), or:
 UU -> GG (for 16-block fingerprint).
 last row is the mean (if has_mean is set True)

 **kwargs passed on to init_graph_display (these include
 graph_shape, graph_grid, x_label, y_label, dark,
with_parens).

 title: will be printed on graph (default: 'Unknown
Species')

 num_genes (number of genes contributing to graph: default
None)
 NOTE: will not print if None.)

 size: of graph in inches (default = 8.0)

 alpha: transparency of bubbles
 (ranges from 0, transparent, to 1, opaque; default 0.7)

 show_legend: bool, default True, whether to print legend

 graph_name: name of file to write (default
'fingerprint.png')

 has_mean: whether the data contain the mean (default:
True)

 which_blocks: which codon blocks to print (default is
'quartets'
 for the 4-codon amino acid blocks, but can also use 'all'
for all
 quartets or 'split' for just the split quartets.)

 multiple: if False (the default), assumes it got a single
block
 of data. Otherwise, assumes multiple blocks of data in a
list or
 array.

 note: that the data are always expected to be in the range (0,1)
 since we're plotting frequencies. axes, gid, etc. are hard-coded
 to these values.
 """
 #figure out which type of fingerprint plot we're doing, and get
the
 #right colors
 if which_blocks == 'quartets':

 47

 blocks = CodonUsage.SingleAABlocks
 elif which_blocks == 'split':
 blocks = CodonUsage.SplitBlocks
 else:
 blocks = CodonUsage.Blocks

 colors = [doublets_to_colors[i] for i in blocks]

 #formatting the labels in latex
 x_label="$G_3/(G_3+C_3)$"
 y_label="$A_3/(A_3+T_3)$"

 #initializing components of the graph
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid=graph_grid, x_label=x_label, \
 y_label=y_label, prob_axes=prob_axes, **kwargs)

 if not multiple:
 data = [data]

 alpha = broadcast(alpha, len(data))

 for al, d in zip(alpha, data):
 #skip this series if no data
 if not d:
 continue
 for i, color in enumerate(colors):
 j = i+1
 #note: doing these as slices because scatter_classic
needs the
 #extra level of nesting
 patches = scatter_classic(d[i:j,0], d[i:j,1],
 s=(d[i:j,2]/2), c=color)
 #set alpha for the patches manually
 for p in patches:
 p.set_alpha(al)

 #plot mean as its own point -- can't do cross with scatter
 if has_mean:
 mean_index = len(blocks) #next index after the blocks
 plot([d[mean_index,0]], [d[mean_index,1]],
 '-k+',markersize=label_font_size, alpha=al)

 abbrev = CodonUsage.BlockAbbreviations

 a = gca()
 #if show_legend is True prints a legend in the right center area
 if show_legend:
 legend_key = [abbrev[b] for b in blocks]
 #copy legend font properties from the x axis tick labels
 legend_font_props = \
 a.xaxis.get_label().get_font_properties().copy()
 legend_font_scale_factor = 0.7
 curr_size = legend_font_props.get_size()

legend_font_props.set_size(curr_size*legend_font_scale_factor)

 48

 l = figlegend(a.patches,
 legend_key,
 prop=legend_font_props,
 loc='center right',pad=0.1,labelsep=0.0025,
 handlelen=0.02,handletextsep=0.007, axespad=0.0)
 #fix transparency of patches
 for p in l.get_patches():
 p.set_alpha(1)

 #initialize the ticks
 set_axis_to_probs()
 init_ticks(a, label_font_size)
 a.set_xticks([0, 0.5, 1])
 a.set_yticks([0,0.5,1])

 #output the figure
 savefig(graph_name)

#Contour plots and related functions

def plot_filled_contour(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \
 num_contour_lines=10, **kwargs):
 """helper plots one or more series of contour data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
fill_cmap,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)
 """
 if show_regression:
 equation = plot_regression_line(xy_data[:,0],xy_data[:,1])
 if show_equation:
 print_regression_equations([equation])
 #init graph display, rectangular due to needed colorbar space
 init_graph_display(graph_shape=graph_shape, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data_matrix in plot_data:
 contourf(x_bin,y_bin,data_matrix, num_contour_lines,
cmap=fill_cmap)
 #add the colorbar legend to the side
 colorbar()

def plot_contour_lines(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, smooth_steps=0, num_contour_lines=10, \
 label_contours=False, line_cmap=cm.hot,
fill_cmap=cm.gray,dark=True,
 graph_shape='rect', **kwargs):
 """helper plots one or more series of contour line data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
smooth,

 49

 num_contour_lines, label_contours, line_cmap, fill_cmap,
graph_shape,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)
 """
 #init graph display, rectangular due to needed colorbar space
 init_graph_display(graph_shape=graph_shape,
 dark=dark, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data in plot_data:
 orig_max = max(ravel(data))
 scaled_data = (data/orig_max*255).astype('b')
 if smooth_steps:
 orig_shape = data.shape
 im = Image.fromstring('L', data.shape, scaled_data)
 for i in range(smooth_steps):
 im = im.filter(ImageFilter.BLUR)
 new_data = fromstring(im.tostring(), 'b')
 data = reshape(new_data.astype('i')/255.0 * orig_max,
orig_shape)

 if fill_cmap is not None:
 im = imshow(data, interpolation='bicubic',
extent=(0,1,0,1), \
 origin='lower', cmap=fill_cmap)
 result=contour(x_bin,y_bin,data, num_contour_lines,
 origin='lower',linewidth=2,
 extent=(0,1,0,1), cmap=line_cmap)
 if label_contours:
 clabel(result, fmt='%1.1g')

 #add the colorbar legend to the side
 cb = colorbar()
 cb.set_axis_bgcolor('black')

 if show_regression:
 equation=plot_regression_line(xy_data[0],xy_data[1])
 if show_equation:
 print_regression_equations([equation])

def plot_cai_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='cai_contour.png',
 prob_axes=True, **kwargs):
 """Output a contour plot of cai vs p3 with colorbar on side

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contour.png'
 """
 plot_data =[(x_bin,y_bin,data)]

 50

 plot_filled_contour(plot_data, graph_grid='/',x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data,
 graph_name='cai_contourlines.png',
 prob_axes=True, **kwargs):
 """Output a contour plot of cai

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes,**kwargs)
 savefig(graph_name)

def plot_p12_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='p12_p3_contour.png',
 prob_axes=True, **kwargs):
 """Outputs a P12 versus P3 contour graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'p12_p3_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_filled_contour(plot_data, graph_grid='/', x_label="P_3",
\
 y_label="P_{12}", prob_axes=prob_axes,**kwargs)
 set_axis_to_probs()
 savefig(graph_name)

def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data,
prob_axes=True,\
 graph_name='p12_p3_contourlines.png', **kwargs):
 """Outputs a P12 versus P3 contourline graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 51

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'p12_p3_contourlines.png
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3",\
 y_label="P_{12}", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

#Other graphs

def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png',
\
 num_genes='ignored', **kwargs):
 """Outputs a PR2-Bias plot of:
 -isotypic transversions (base swapping)
 with G3/(G3+C3) and A3/(A3+T3)
 -Transitions (deaminations)
 with G3/(G3+A3) and C3/(C3+T3)
 -Allotypic transversions (G- oxidations)
 with G3/(G3+T3) and C3/(C3+A3)

 takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3),
 G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3)

 label: default 'ALANINE'
 one amino acid written out in caps:
 ALANINE, ARGININE4, GLYCINE, LEUCINE4,
 PROLINE, SERINE4, THREONINE, VALINE
 from one of the amino acids program will add acronym
 C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 G2 type: arg4 (CGN), an gly(GGN)
 T2 type: leu4(CTN), val (GTN)

 size: of graph in inches (default = 8.0)

 graph_name: default 'pr2_bias.png'

 num_genes: number of genes contributing to graph, currently
ignored.
 """
 #we can't put anything in the top right, so print num_genes
after the title
 #if it was supplied
 #initializes the graph display and font
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid='/', x_label="P_3", y_label="Y axis",
prob_axes=True, \
 title=title, **kwargs)
 #sets the marker_size relative to the font and thus the graph
size
 marker_size = (label_font_size-1)

 52

 #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3),
 # G3/(G3/A3),C3/(C3+T3),
 # G3/(G3+T3),C3/(C3+A3)
 #colors and symbols coded from Sueoka 2002
 plot([data[:,0]], [data[:,1]], '-ko', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,2]], '-kv', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,3]], '-ro', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,4]], '-rv', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,5]], '-wo', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,6]], '-wv', c='k',
 markersize=marker_size)

 set_axis_to_probs()

 #aaLabel based on the amino acid that is graphed
 #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 #G2 type: arg4 (CGN), an gly(GGN)
 #T2 type: leu4(CTN), val (GTN) (Sueoka 2002)
 text(.95, .05, aaLabels[title], font,
verticalalignment='bottom',
 horizontalalignment='right')

 #output the figure
 set_axis_to_probs()
 savefig(graph_name)

def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\
 normal_fit=True, normed=True, colors=None, linecolors=None,
\
 alpha=0.75, prob_axes=True, series_names=None,
show_legend=False,\
 y_label=None, **kwargs):
 """Outputs a histogram with multiple series (must provide a list
of series).

 takes: data: list of arrays of values to plot (needs to be list
of arrays
 so you can pass in arrays with different numbers of
elements)

 graph_name: filename to write graph to
 bins: number of bins to use
 normal_fit: whether to show the normal curve best
fitting the data
 normed: whether to normalize the histogram (e.g. so bars
sum to 1)
 colors: list of colors to use for bars
 linecolors: list of colors to use for fit lines

 **kwargs are pssed on to init_graph_display.

 53

 """
 if y_label is None:
 if normed:
 y_label='Frequency'
 else:
 y_label='Count'
 num_series = len(data)
 if colors is None:
 if num_series == 1:
 colors = ['white']
 else:
 colors = standard_series_colors
 if linecolors is None:
 if num_series == 1:
 linecolors = ['red']
 else:
 linecolors = standard_series_colors

 init_graph_display(prob_axes=prob_axes, y_label=y_label,
**kwargs)
 for i, d in enumerate(data):
 fc = colors[i % len(colors)]
 lc = linecolors[i % len(linecolors)]

 counts, x_bins, patches = hist(d, bins=bins, normed=normed,
\
 alpha=alpha, facecolor=fc)

 if normal_fit:
 mu = mean(d)
 sigma = std(d)
 bin_width = x_bins[-1] - x_bins[-2]
 #want normpdf to extend over the bins, so needs to be
one extra
 #normpdf_bins = x_bins + bin_width/2.0
 normpdf_bins = arange(0,1,0.01)
 y = normpdf(normpdf_bins, mu, sigma)
 orig_area = sum(counts) * bin_width
 y = y * orig_area #normpdf area is 1 by default
 plot(normpdf_bins, y, linestyle='--', color=lc,
linewidth=1)

 if show_legend and series_names:
 legend(series_names)

 #output figure
 savefig(graph_name)

def plot_scatter_with_histograms(data,
graph_name='histo_scatter.png', \
 graph_grid='/', prob_axes=False, bins=20, frac=0.9,
scatter_alpha=0.5, \
 hist_alpha=0.8, colors=standard_series_colors, normed=True,
**kwargs):
 """Plots a scatter plot with histograms showing distribution of
x and y.

 54

 Data should be list of [x1, y1, x2, y2, ...].
 """

 #set up subplot coords
 tl=subplot(2,2,1)
 br=subplot(2,2,4)
 bl=subplot(2,2,3, sharex=tl, sharey=br)

 #get_position returns left, bottom, width, height relative to
figure
 tl_coords = tl.get_position()
 bl_coords = bl.get_position()
 br_coords = br.get_position()

 left = tl_coords[0]
 bottom = bl_coords[1]

 width = br_coords[0] + br_coords[2] - left
 height = tl_coords[1] + tl_coords[3] - bottom

 bl.set_position([left, bottom, frac*width, frac*height])
 tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height])
 br.set_position([left+(frac*width), bottom, (1-frac)*width,
frac*height])

 #suppress frame and axis for histograms
 for i in [tl,br]:
 i.set_frame_on(False)
 i.xaxis.set_visible(False)
 i.yaxis.set_visible(False)

 plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs)

 biggest_x = 0
 biggest_y = 0
 for i in range(0, len(data), 2):
 x, y = data[i], data[i+1]
 color = colors[(i/2)%len(colors)]
 n, bins, patches = hist(x, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=tl, normed=True)
 biggest_x = max([biggest_x, max(x)])
 n, bins, patches = hist(y, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=br, normed=normed,
orientation='horizontal')
 biggest_y=max([biggest_y,max(y)])
 bl.set_xlim(0,1)
 bl.set_ylim(0,1)
 savefig(graph_name)

 55

2. Code implementing the Smith-Waterman, and Uliel algorithms for island

detection

#/usr/lib/python2.4/
#AminoGraphPlots.py

from matplotlib import use, rc
use('Agg') #suppress graphical rendering
rc('text', usetex=True)
rc('font', family='serif') #required to match latex text and
equations
import Image
import ImageFilter
from Numeric import array, shape, fromstring
from cogent.base.usage import UnsafeCodonUsage as CodonUsage
from cogent.maths.stats.test import regress, correlation
from pylab import *
from math import pi

"""Provides different kinds of codon usage plots.

See individual docstrings for more info.
"""
#module-level constants

#historical doublet order for fingerprint plot; not currently used,
but
#same order that the colors were entered in. Matches Sueoka 2002.
doublet_order =
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\
 'AA','AG','GA','UA','UG']
color_order = ["#000000","#FF0000","#00FF00","#FFFF00",
 "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0",
 "#6D6D6D","#2353FF","#00FFFF","#FF8800",
 "#238853","#882353","#EC008C","#000099"]
#map doublets to colors so we can make sure the same doublet always
#gets the same colors
doublets_to_colors = dict(zip(doublet_order, color_order))
#creates a dictionary for the amino acid labels, less to input
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN',
 'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN',
 'THREONINE':'ACN', 'VALINE':'GTN'}
standard_series_colors=['k','r','g','b', 'm','c']

#Helper functions

def hist(x, bins=10, normed='height', bottom=0, \
 orientation='vertical', width=None, axes=None, **kwargs):
 """Just like the matplotlib hist, but normalizes bar heights to
1.

 axes uses gca() by default (built-in hist is a method of Axes).

 Original docs from matplotlib:

 56

 HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical',
**kwargs)

 Compute the histogram of x. bins is either an integer number of
 bins or a sequence giving the bins. x are the data to be
binned.

 The return values is (n, bins, patches)

 If normed is true, the first element of the return tuple will
 be the counts normalized to form a probability density, ie,
 n/(len(x)*dbin)

 orientation = 'horizontal' | 'vertical'. If horizontal, barh
 will be used and the "bottom" kwarg will be the left.

 width: the width of the bars. If None, automatically compute
 the width.

 kwargs are used to update the properties of the
 hist bars
 """
 if axes is None:
 axes = gca()
 if not axes._hold: axes.cla()
 n,bins = norm_hist_bins(x, bins, normed)
 if width is None: width = 0.9*(bins[1]-bins[0])
 if orientation=='horizontal':
 patches = axes.barh(n, bins, height=width, left=bottom)
 else:
 patches = axes.bar(bins, n, width=width, bottom=bottom)
 for p in patches:
 p.update(kwargs)
 return n, bins, silent_list('Patch', patches)

def norm_hist_bins(y, bins=10, normed='height'):
 """Just like the matplotlib mlab.hist, but can normalize by
height.

 normed can be 'area' (produces matplotlib behavior, area is 1),
 any False value (no normalization), or any True value
(normalization).

 Original docs from matplotlib:

 Return the histogram of y with bins equally sized bins. If bins
 is an array, use the bins. Return value is
 (n,x) where n is the count for each bin in x

 If normed is False, return the counts in the first element of
the
 return tuple. If normed is True, return the probability density
 n/(len(y)*dbin)

 If y has rank>1, it will be raveled
 Credits: the Numeric 22 documentation

 57

 """
 y = asarray(y)
 if len(y.shape)>1: y = ravel(y)

 if not iterable(bins):
 ymin, ymax = min(y), max(y)
 if ymin==ymax:
 ymin -= 0.5
 ymax += 0.5

 if bins==1: bins=ymax
 dy = (ymax-ymin)/bins
 bins = ymin + dy*arange(bins)
 n = searchsorted(sort(y), bins)
 n = diff(concatenate([n, [len(y)]]))
 if normed:
 if normed == 'area':
 db = bins[1]-bins[0]
 else:
 db = 1.0
 return 1/(len(y)*db)*n, bins
 else:
 return n, bins

def as_species(name):
 """Cleans up a filename into a species name, italicizing it in
latex."""
 #trim extension if present
 dot_location = name.rfind('.')
 if dot_location > -1:
 name = name[:dot_location]
 #get rid of _small if present -- used for debugging
 if name.endswith('_small'):
 name = name[:-len('_small')]
 #replace underscores with spaces
 name = name.replace('_', ' ')
 #make sure the first letter of the genus is caps, and not the
first letter
 #of the species
 fields = name.split()
 fields[0] = fields[0].title()
 #assume second field is species name
 if len(fields) > 1:
 fields[1] = fields[1].lower()
 return '\emph{'+' '.join(fields)+'}'

def frac_to_psq(frac, graph_size):
 """Converts diameter as fraction of graph to points squared for
scatter.

 frac: fraction of graph (e.g. .01 is 1% of graph size)
 graph_size: graph size in inches
 """
 points = frac * graph_size * 72

 58

 return pi * (points/2.0)**2

def init_graph_display(title=None, aux_title=None, size=4.0, \
 graph_shape='sqr', graph_grid=None, x_label='', y_label='', \
 dark=False, with_parens=True, prob_axes=True, axes=None,
num_genes=None):
 """Initializes a range of graph settings for standard plots.

 These settings include:
 - font sizes based on the size of the graph
 - graph shape
 - grid, including lines for x=y or at x and y = 0.5
 - title, auxillary title, and x and y axis labels

 Parameters:
 title: displayed on left of graph, at the top, latex-format
string

 aux_title: displayed on top right of graph, latex-format
string.
 typically used for number of genes.

 size: size of graph, in inches

 graph_shape: 'sqr' for square graphs, 'rect' for graphs that
include
 a colorbar, 3to1: width 3 to height 1.

 graph_grid: background grid for the graph. Currently
recognized grids
 are '/' (line at x=y) and 't' (cross at x=.5 and y=.5).

 x_label: label for x axis, latex-format string.

 y_label: label for y axis, latex-format string.

 dark: set to True if dark background, reverses text and tick
colors.

 with_parens: if True (default), puts parens around auxillary
title

 returns font, label_font_size (for use in producing additional
labels in
 calling function).
 """
 if dark:
 color='w'
 else:
 color='k'
 min_offset = 0.05 #minimum offset, e.g. for text
 max_offset = 1-min_offset #center offsets
 rect_scale_factor = 1.28 #need to allow for legend while
keeping graph
 #square; empirically determined at
1.28

 59

 font_size = int(size*3-1) #want 11pt font w/ default graph
size 4" sqr
 label_scale_factor = 0.8
 label_font_size = font_size * label_scale_factor
 label_offset = label_font_size * 0.5
 axis_label_font={'fontsize':font_size}
 font={'fontsize':font_size, 'color':color}

 if graph_shape == 'sqr':
 gcf().set_figsize_inches(size,size)
 elif graph_shape == 'rect':
 #scaling for sqr graphs with colorbar
 gcf().set_figsize_inches(size*rect_scale_factor,size)
 elif graph_shape == '3to1':
 gcf().set_figsize_inches(3*size, size)
 elif graph_shape == '2to1':
 gcf().set_figsize_inches(2*size, size)
 else:
 raise ValueError, "Got unknown graph shape %s" % graph_shape

 #set or create axes
 if axes is None:
 axes = gca()

 #draw grid manually: these are in data coordinates.
 if graph_grid == 't':
 #grid lines at 0.5 on each axis, horiz & vertic
 axes.axvline(x=.5, ymin=0, ymax=1, color=color,
linestyle=':')
 axes.axhline(y=.5, xmin=0, xmax=1, color=color,
linestyle=':')
 elif graph_grid == '/':
 #diagonal gridlines from 0,0 to 1,1.
 axes.plot([0,1], color=color, linestyle=':')
 else:
 pass #ignore other choices

 #remove default grid
 axes.grid(False)

 #set x and y labels
 axes.set_ylabel(y_label, axis_label_font)
 axes.set_xlabel(x_label, axis_label_font)

 #add title/aux_title to graph directly. Note that we want
 #the tops of these to be fixed, and we want the label to be
 #left-justified and the number of genes to be right justified,
 #so that it still works when we resize the graph.
 if title is not None:
 axes.text(min_offset, max_offset, str(title), font, \
 verticalalignment='top', horizontalalignment='left')
 #use num_genes as aux_title by default
 aux_title = num_genes or aux_title
 if aux_title is not None:
 if with_parens:
 aux_title='('+str(aux_title)+')'

 60

 axes.text(max_offset, max_offset, str(aux_title), font,
 verticalalignment='top', horizontalalignment='right')
 if prob_axes:
 init_ticks(axes, label_font_size, dark)
 #set x and y label offsets -- currently though rcParams, but
should be
 #able to do at instance level?
 #rc('xtick.major', pad=label_offset)
 #rc('ytick.major', pad=label_offset)
 return font, label_font_size

def init_ticks(a, label_font_size, dark=False):
 """takes a from (a = gca)
 sets the ticks to span from 0 to 1 with .1 intervals
 changes the size of the ticks and the corresponding number
labels
 """
 a.set_xticks(arange(0,1.01,.1),)
 a.set_yticks(arange(0,1.01,.1))

 #reset sizes for x and y labels
 x = a.get_xticklabels()
 y = a.get_yticklabels()
 for l in a.get_xticklabels() + a.get_yticklabels():
 l.set_fontsize(label_font_size)
 #if dark, need to reset color of internal ticks to white
 if dark:
 for l in a.get_xticklines() + a.get_yticklines():
 l.set_markeredgecolor('white')

def set_axis_to_probs(axes=None):
 """sets the axes to span from 0 to 1
 necessary because order in program changes graph
 """
 #set axis for probabilities (range 0 to 1)
 if axes is None:
 axes = gca()
 axes.set_xlim([0,1])
 axes.set_ylim([0,1])

def plot_regression_line(x_data,y_data,line_color='r', axes=None):
 """Plots the regression line, and returns the equation."""
 if axes is None:
 axes = gca()
 m, b = regress(x_data, y_data)
 r, significance = correlation(x_data,y_data)
 #set the a,b,r values
 r_str = '%0.3g'% (r**2)
 m_str ='%0.3g' % m
 b_str = '%0.3g' % b
 x1=0.0
 y1=b
 x2=1.0
 y2=(m+b)

 #constrain so that y is always in the range (0,1) for plotting
 if(y1<0):

 61

 y1=0.0
 x1=(0-b)/m
 if(y2>=1):
 y2=1.0
 x2=(1-b)/m

 axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2)

 if b >= 0:
 sign_str = ' + '
 else:
 sign_str = ' '

 equation=''.join(['y=
',m_str,'x',sign_str,b_str,'\n\nr2=',r_str])
 return equation, line_color

def print_regression_equations(equations, axes=None):
 """Writes list of regression equations to graph.

 equations: list of regression equations

 size: size of the graph in inches
 """
 if axes is None:
 axes = gca()
 for i, (eq_text, eq_color) in enumerate(equations):
 axes.text((0.98), (0.02+(.06*i)), str(eq_text), \
 horizontalalignment='right', verticalalignment='bottom',
\
 color=eq_color)

def broadcast(i, n):
 """Broadcasts i to a vector of length n."""
 try:
 i = list(i)
 except:
 i = [i]
 reps, leftovers = divmod(n, len(i))
 return (i * reps) + i[:leftovers]

#scatterplot functions and helpers

def plot_scatter(data, series_names=None, \
 series_color=standard_series_colors,
line_color=standard_series_colors,\
 alpha=0.25, marker_size=.015, scale_markers=True,
 show_legend=True,legend_loc='center right',
 show_regression=True, show_equation=True,
 prob_axes=False, size=8.0, axes=None,
 **kwargs):
 """helper plots one or more series of scatter data of specified
color,
 calls the initializing functions, doesn't print graph

 62

 takes: plotted_pairs, series_names, show_legend, legend_loc, and
 **kwargs passed on to init_graph_display (these include
title,
 aux_title, size, graph_shape, graph_grid, x_label, y_label,
 dark, with_parens).

 plotted_pairs = (first_pos, second_pos, dot_color, line_color,
 alpha, show_regression, show_equation)

 returns the regression str equation (list) if regression is set
true

 suppresses legend if series not named, even if show_legend is
True.
 """
 if not axes:
 axes = gca()
 #initialize fonts, shape and labels
 font,label_font_size=init_graph_display(prob_axes=prob_axes, \
 size=size, axes=axes, **kwargs)
 equations = []
 #figure out how many series there are, and scale vals
accordingly
 num_series = len(data)/2
 series_color = broadcast(series_color, num_series)
 line_color = broadcast(line_color, num_series)
 alpha = broadcast(alpha, num_series)
 marker_size = broadcast(marker_size, num_series)
 if scale_markers:
 marker_size = [frac_to_psq(m, size) for m in marker_size]

 series = []
 for i in range(num_series):
 x, y = data[2*i], data[2*i+1]

series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\
 alpha=alpha[i]))
 #find the equation and plots the regression line if True
 if show_regression:
 equation = plot_regression_line(x,y,line_color[i],
axes=axes)
 if show_equation:
 equations.append(equation) #will be (str, color) tuple
 #print all the regression equations at once -- need to know how
many
 if show_regression:
 print_regression_equations(equations, axes=axes)
 #clean up axes if necessary
 if show_legend and series_names: #suppress legend if series not
named
 axes.legend(series, series_names, legend_loc)

 if prob_axes:
 set_axis_to_probs(axes)
 return equations, font

 63

def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png',
**kwargs):
 """Outputs a CAI vs P3 scatter plot.

 expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...])
 """
 plot_scatter(data, graph_shape='sqr', graph_grid=None,\
 x_label="P_3",y_label="CAI", prob_axes=True,**kwargs)
 savefig(graph_name)

def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs):
 """Outputs a P12 versus P3 scatter graph, optionally including
regression.

 expects data as [P3_1, P12_1, P3_2, P12_2, ...n].
 """
 plot_scatter(data, graph_shape='sqr', graph_grid='/',\
 x_label="P_3",y_label="P_{12}", prob_axes=True,
**kwargs)
 savefig(graph_name)

def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False,
**kwargs):
 """Output a scatter plot of p1,p2,p3 vs gc content

 Expects data as array with rows as GC, P1, P2, P3
 p1=blue, p2=green, p3=red

 """
 #unpack common x axis, and decide on series names
 if use_p3_as_x:
 series_names = ['P_1', 'P_2']
 colors=['b','g']
 x_label='P_3'
 y_label='P_{12}'
 xy_pairs = [data[3], data[1], data[3], data[2]]
 else:
 series_names = ['P_1', 'P_2', 'P_3']
 colors=['b','g','r']
 x_label='GC'
 y_label='P_{123}'
 xy_pairs = [data[0], data[1], data[0], data[2], data[0],
data[3]]

 #plot points and write graph
 plot_scatter(xy_pairs,
graph_grid='/',x_label=x_label,y_label=y_label,
 series_names=series_names, prob_axes=True, **kwargs)
 savefig(graph_name)

def plot_fingerprint(data, alpha=0.7, \
 show_legend=True, graph_name='fingerprint.png', has_mean=True,
 which_blocks='quartets', multiple=False, graph_grid='t',
prob_axes=True, \
 **kwargs):
 """Outputs a bubble plot of four-codon amino acid blocks
 labeled with the colors from Sueoka 2002.

 64

 takes: data: array-elements in the col order x, y, r of
 each of the four codon Amino Acids in the row order:
 ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL
 (for traditional fingerprint), or:
 UU -> GG (for 16-block fingerprint).
 last row is the mean (if has_mean is set True)

 **kwargs passed on to init_graph_display (these include
 graph_shape, graph_grid, x_label, y_label, dark,
with_parens).

 title: will be printed on graph (default: 'Unknown
Species')

 num_genes (number of genes contributing to graph: default
None)
 NOTE: will not print if None.)

 size: of graph in inches (default = 8.0)

 alpha: transparency of bubbles
 (ranges from 0, transparent, to 1, opaque; default 0.7)

 show_legend: bool, default True, whether to print legend

 graph_name: name of file to write (default
'fingerprint.png')

 has_mean: whether the data contain the mean (default:
True)

 which_blocks: which codon blocks to print (default is
'quartets'
 for the 4-codon amino acid blocks, but can also use 'all'
for all
 quartets or 'split' for just the split quartets.)

 multiple: if False (the default), assumes it got a single
block
 of data. Otherwise, assumes multiple blocks of data in a
list or
 array.

 note: that the data are always expected to be in the range (0,1)
 since we're plotting frequencies. axes, gid, etc. are hard-coded
 to these values.
 """
 #figure out which type of fingerprint plot we're doing, and get
the
 #right colors
 if which_blocks == 'quartets':
 blocks = CodonUsage.SingleAABlocks
 elif which_blocks == 'split':
 blocks = CodonUsage.SplitBlocks
 else:
 blocks = CodonUsage.Blocks

 65

 colors = [doublets_to_colors[i] for i in blocks]

 #formatting the labels in latex
 x_label="$G_3/(G_3+C_3)$"
 y_label="$A_3/(A_3+T_3)$"

 #initializing components of the graph
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid=graph_grid, x_label=x_label, \
 y_label=y_label, prob_axes=prob_axes, **kwargs)

 if not multiple:
 data = [data]

 alpha = broadcast(alpha, len(data))

 for al, d in zip(alpha, data):
 #skip this series if no data
 if not d:
 continue
 for i, color in enumerate(colors):
 j = i+1
 #note: doing these as slices because scatter_classic
needs the
 #extra level of nesting
 patches = scatter_classic(d[i:j,0], d[i:j,1],
 s=(d[i:j,2]/2), c=color)
 #set alpha for the patches manually
 for p in patches:
 p.set_alpha(al)

 #plot mean as its own point -- can't do cross with scatter
 if has_mean:
 mean_index = len(blocks) #next index after the blocks
 plot([d[mean_index,0]], [d[mean_index,1]],
 '-k+',markersize=label_font_size, alpha=al)

 abbrev = CodonUsage.BlockAbbreviations

 a = gca()
 #if show_legend is True prints a legend in the right center area
 if show_legend:
 legend_key = [abbrev[b] for b in blocks]
 #copy legend font properties from the x axis tick labels
 legend_font_props = \
 a.xaxis.get_label().get_font_properties().copy()
 legend_font_scale_factor = 0.7
 curr_size = legend_font_props.get_size()

legend_font_props.set_size(curr_size*legend_font_scale_factor)
 l = figlegend(a.patches,
 legend_key,
 prop=legend_font_props,
 loc='center right',pad=0.1,labelsep=0.0025,
 handlelen=0.02,handletextsep=0.007, axespad=0.0)

 66

 #fix transparency of patches
 for p in l.get_patches():
 p.set_alpha(1)

 #initialize the ticks
 set_axis_to_probs()
 init_ticks(a, label_font_size)
 a.set_xticks([0, 0.5, 1])
 a.set_yticks([0,0.5,1])

 #output the figure
 savefig(graph_name)

#Contour plots and related functions

def plot_filled_contour(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \
 num_contour_lines=10, **kwargs):
 """helper plots one or more series of contour data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
fill_cmap,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)
 """
 if show_regression:
 equation = plot_regression_line(xy_data[:,0],xy_data[:,1])
 if show_equation:
 print_regression_equations([equation])
 #init graph display, rectangular due to needed colorbar space
 init_graph_display(graph_shape=graph_shape, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data_matrix in plot_data:
 contourf(x_bin,y_bin,data_matrix, num_contour_lines,
cmap=fill_cmap)
 #add the colorbar legend to the side
 colorbar()

def plot_contour_lines(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, smooth_steps=0, num_contour_lines=10, \
 label_contours=False, line_cmap=cm.hot,
fill_cmap=cm.gray,dark=True,
 graph_shape='rect', **kwargs):
 """helper plots one or more series of contour line data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
smooth,
 num_contour_lines, label_contours, line_cmap, fill_cmap,
graph_shape,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)

 67

 """
 #init graph display, rectangular due to needed colorbar space
 init_graph_display(graph_shape=graph_shape,
 dark=dark, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data in plot_data:
 orig_max = max(ravel(data))
 scaled_data = (data/orig_max*255).astype('b')
 if smooth_steps:
 orig_shape = data.shape
 im = Image.fromstring('L', data.shape, scaled_data)
 for i in range(smooth_steps):
 im = im.filter(ImageFilter.BLUR)
 new_data = fromstring(im.tostring(), 'b')
 data = reshape(new_data.astype('i')/255.0 * orig_max,
orig_shape)

 if fill_cmap is not None:
 im = imshow(data, interpolation='bicubic',
extent=(0,1,0,1), \
 origin='lower', cmap=fill_cmap)
 result=contour(x_bin,y_bin,data, num_contour_lines,
 origin='lower',linewidth=2,
 extent=(0,1,0,1), cmap=line_cmap)
 if label_contours:
 clabel(result, fmt='%1.1g')

 #add the colorbar legend to the side
 cb = colorbar()
 cb.set_axis_bgcolor('black')

 if show_regression:
 equation=plot_regression_line(xy_data[0],xy_data[1])
 if show_equation:
 print_regression_equations([equation])

def plot_cai_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='cai_contour.png',
 prob_axes=True, **kwargs):
 """Output a contour plot of cai vs p3 with colorbar on side

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contour.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_filled_contour(plot_data, graph_grid='/',x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

 68

def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data,
 graph_name='cai_contourlines.png',
 prob_axes=True, **kwargs):
 """Output a contour plot of cai

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes,**kwargs)
 savefig(graph_name)

def plot_p12_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='p12_p3_contour.png',
 prob_axes=True, **kwargs):
 """Outputs a P12 versus P3 contour graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'p12_p3_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_filled_contour(plot_data, graph_grid='/', x_label="P_3",
\
 y_label="P_{12}", prob_axes=prob_axes,**kwargs)
 set_axis_to_probs()
 savefig(graph_name)

def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data,
prob_axes=True,\
 graph_name='p12_p3_contourlines.png', **kwargs):
 """Outputs a P12 versus P3 contourline graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 69

 graph_name: default 'p12_p3_contourlines.png
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3",\
 y_label="P_{12}", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

#Other graphs

def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png',
\
 num_genes='ignored', **kwargs):
 """Outputs a PR2-Bias plot of:
 -isotypic transversions (base swapping)
 with G3/(G3+C3) and A3/(A3+T3)
 -Transitions (deaminations)
 with G3/(G3+A3) and C3/(C3+T3)
 -Allotypic transversions (G- oxidations)
 with G3/(G3+T3) and C3/(C3+A3)

 takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3),
 G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3)

 label: default 'ALANINE'
 one amino acid written out in caps:
 ALANINE, ARGININE4, GLYCINE, LEUCINE4,
 PROLINE, SERINE4, THREONINE, VALINE
 from one of the amino acids program will add acronym
 C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 G2 type: arg4 (CGN), an gly(GGN)
 T2 type: leu4(CTN), val (GTN)

 size: of graph in inches (default = 8.0)

 graph_name: default 'pr2_bias.png'

 num_genes: number of genes contributing to graph, currently
ignored.
 """
 #we can't put anything in the top right, so print num_genes
after the title
 #if it was supplied
 #initializes the graph display and font
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid='/', x_label="P_3", y_label="Y axis",
prob_axes=True, \
 title=title, **kwargs)
 #sets the marker_size relative to the font and thus the graph
size
 marker_size = (label_font_size-1)

 #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3),
 # G3/(G3/A3),C3/(C3+T3),
 # G3/(G3+T3),C3/(C3+A3)
 #colors and symbols coded from Sueoka 2002
 plot([data[:,0]], [data[:,1]], '-ko', c='k',

 70

 markersize=marker_size)
 plot([data[:,0]], [data[:,2]], '-kv', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,3]], '-ro', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,4]], '-rv', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,5]], '-wo', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,6]], '-wv', c='k',
 markersize=marker_size)

 set_axis_to_probs()

 #aaLabel based on the amino acid that is graphed
 #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 #G2 type: arg4 (CGN), an gly(GGN)
 #T2 type: leu4(CTN), val (GTN) (Sueoka 2002)
 text(.95, .05, aaLabels[title], font,
verticalalignment='bottom',
 horizontalalignment='right')

 #output the figure
 set_axis_to_probs()
 savefig(graph_name)

def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\
 normal_fit=True, normed=True, colors=None, linecolors=None,
\
 alpha=0.75, prob_axes=True, series_names=None,
show_legend=False,\
 y_label=None, **kwargs):
 """Outputs a histogram with multiple series (must provide a list
of series).

 takes: data: list of arrays of values to plot (needs to be list
of arrays
 so you can pass in arrays with different numbers of
elements)

 graph_name: filename to write graph to
 bins: number of bins to use
 normal_fit: whether to show the normal curve best
fitting the data
 normed: whether to normalize the histogram (e.g. so bars
sum to 1)
 colors: list of colors to use for bars
 linecolors: list of colors to use for fit lines

 **kwargs are pssed on to init_graph_display.

 """
 if y_label is None:
 if normed:
 y_label='Frequency'
 else:

 71

 y_label='Count'
 num_series = len(data)
 if colors is None:
 if num_series == 1:
 colors = ['white']
 else:
 colors = standard_series_colors
 if linecolors is None:
 if num_series == 1:
 linecolors = ['red']
 else:
 linecolors = standard_series_colors

 init_graph_display(prob_axes=prob_axes, y_label=y_label,
**kwargs)
 for i, d in enumerate(data):
 fc = colors[i % len(colors)]
 lc = linecolors[i % len(linecolors)]

 counts, x_bins, patches = hist(d, bins=bins, normed=normed,
\
 alpha=alpha, facecolor=fc)

 if normal_fit:
 mu = mean(d)
 sigma = std(d)
 bin_width = x_bins[-1] - x_bins[-2]
 #want normpdf to extend over the bins, so needs to be
one extra
 #normpdf_bins = x_bins + bin_width/2.0
 normpdf_bins = arange(0,1,0.01)
 y = normpdf(normpdf_bins, mu, sigma)
 orig_area = sum(counts) * bin_width
 y = y * orig_area #normpdf area is 1 by default
 plot(normpdf_bins, y, linestyle='--', color=lc,
linewidth=1)

 if show_legend and series_names:
 legend(series_names)

 #output figure
 savefig(graph_name)

def plot_scatter_with_histograms(data,
graph_name='histo_scatter.png', \
 graph_grid='/', prob_axes=False, bins=20, frac=0.9,
scatter_alpha=0.5, \
 hist_alpha=0.8, colors=standard_series_colors, normed=True,
**kwargs):
 """Plots a scatter plot with histograms showing distribution of
x and y.

 Data should be list of [x1, y1, x2, y2, ...].
 """

 #set up subplot coords
 tl=subplot(2,2,1)

 72

 br=subplot(2,2,4)
 bl=subplot(2,2,3, sharex=tl, sharey=br)

 #get_position returns left, bottom, width, height relative to
figure
 tl_coords = tl.get_position()
 bl_coords = bl.get_position()
 br_coords = br.get_position()

 left = tl_coords[0]
 bottom = bl_coords[1]

 width = br_coords[0] + br_coords[2] - left
 height = tl_coords[1] + tl_coords[3] - bottom

 bl.set_position([left, bottom, frac*width, frac*height])
 tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height])
 br.set_position([left+(frac*width), bottom, (1-frac)*width,
frac*height])

 #suppress frame and axis for histograms
 for i in [tl,br]:
 i.set_frame_on(False)
 i.xaxis.set_visible(False)
 i.yaxis.set_visible(False)

 plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs)

 biggest_x = 0
 biggest_y = 0
 for i in range(0, len(data), 2):
 x, y = data[i], data[i+1]
 color = colors[(i/2)%len(colors)]
 n, bins, patches = hist(x, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=tl, normed=True)
 biggest_x = max([biggest_x, max(x)])
 n, bins, patches = hist(y, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=br, normed=normed,
orientation='horizontal')
 biggest_y=max([biggest_y,max(y)])
 bl.set_xlim(0,1)
 bl.set_ylim(0,1)
 savefig(graph_name)

 73

3. Sliding window code

#/usr/lib/python2.4/
#AminoGraphPlots.py

from matplotlib import use, rc
use('Agg') #suppress graphical rendering
rc('text', usetex=True)
rc('font', family='serif') #required to match latex text and
equations
import Image
import ImageFilter
from Numeric import array, shape, fromstring
from cogent.base.usage import UnsafeCodonUsage as CodonUsage
from cogent.maths.stats.test import regress, correlation
from pylab import *
from math import pi

"""Provides different kinds of codon usage plots.

See individual docstrings for more info.
"""
#module-level constants

#historical doublet order for fingerprint plot; not currently used,
but
#same order that the colors were entered in. Matches Sueoka 2002.
doublet_order =
['GC','CG','GG','CU','CC','UC','AC','GU','UU','CA','AU',\
 'AA','AG','GA','UA','UG']
color_order = ["#000000","#FF0000","#00FF00","#FFFF00",
 "#CC99FF","#FFCC99","#CCFFFF","#C0C0C0",
 "#6D6D6D","#2353FF","#00FFFF","#FF8800",
 "#238853","#882353","#EC008C","#000099"]
#map doublets to colors so we can make sure the same doublet always
#gets the same colors
doublets_to_colors = dict(zip(doublet_order, color_order))
#creates a dictionary for the amino acid labels, less to input
aaLabels={'ALANINE':'GCN', 'ARGININE4':'CGN', 'GLYCINE':'GGN',
 'LEUCINE4':'CTN', 'PROLINE':'CCN', 'SERINE4':'TCN',
 'THREONINE':'ACN', 'VALINE':'GTN'}
standard_series_colors=['k','r','g','b', 'm','c']

#Helper functions

def hist(x, bins=10, normed='height', bottom=0, \
 orientation='vertical', width=None, axes=None, **kwargs):
 """Just like the matplotlib hist, but normalizes bar heights to
1.

 axes uses gca() by default (built-in hist is a method of Axes).

 Original docs from matplotlib:

 HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical',
**kwargs)

 74

 Compute the histogram of x. bins is either an integer number of
 bins or a sequence giving the bins. x are the data to be
binned.

 The return values is (n, bins, patches)

 If normed is true, the first element of the return tuple will
 be the counts normalized to form a probability density, ie,
 n/(len(x)*dbin)

 orientation = 'horizontal' | 'vertical'. If horizontal, barh
 will be used and the "bottom" kwarg will be the left.

 width: the width of the bars. If None, automatically compute
 the width.

 kwargs are used to update the properties of the
 hist bars
 """
 if axes is None:
 axes = gca()
 if not axes._hold: axes.cla()
 n,bins = norm_hist_bins(x, bins, normed)
 if width is None: width = 0.9*(bins[1]-bins[0])
 if orientation=='horizontal':
 patches = axes.barh(n, bins, height=width, left=bottom)
 else:
 patches = axes.bar(bins, n, width=width, bottom=bottom)
 for p in patches:
 p.update(kwargs)
 return n, bins, silent_list('Patch', patches)

def norm_hist_bins(y, bins=10, normed='height'):
 """Just like the matplotlib mlab.hist, but can normalize by
height.

 normed can be 'area' (produces matplotlib behavior, area is 1),
 any False value (no normalization), or any True value
(normalization).

 Original docs from matplotlib:

 Return the histogram of y with bins equally sized bins. If bins
 is an array, use the bins. Return value is
 (n,x) where n is the count for each bin in x

 If normed is False, return the counts in the first element of
the
 return tuple. If normed is True, return the probability density
 n/(len(y)*dbin)

 If y has rank>1, it will be raveled
 Credits: the Numeric 22 documentation

 75

 """
 y = asarray(y)
 if len(y.shape)>1: y = ravel(y)

 if not iterable(bins):
 ymin, ymax = min(y), max(y)
 if ymin==ymax:
 ymin -= 0.5
 ymax += 0.5

 if bins==1: bins=ymax
 dy = (ymax-ymin)/bins
 bins = ymin + dy*arange(bins)
 n = searchsorted(sort(y), bins)
 n = diff(concatenate([n, [len(y)]]))
 if normed:
 if normed == 'area':
 db = bins[1]-bins[0]
 else:
 db = 1.0
 return 1/(len(y)*db)*n, bins
 else:
 return n, bins

def as_species(name):
 """Cleans up a filename into a species name, italicizing it in
latex."""
 #trim extension if present
 dot_location = name.rfind('.')
 if dot_location > -1:
 name = name[:dot_location]
 #get rid of _small if present -- used for debugging
 if name.endswith('_small'):
 name = name[:-len('_small')]
 #replace underscores with spaces
 name = name.replace('_', ' ')
 #make sure the first letter of the genus is caps, and not the
first letter
 #of the species
 fields = name.split()
 fields[0] = fields[0].title()
 #assume second field is species name
 if len(fields) > 1:
 fields[1] = fields[1].lower()
 return '\emph{'+' '.join(fields)+'}'

def frac_to_psq(frac, graph_size):
 """Converts diameter as fraction of graph to points squared for
scatter.

 frac: fraction of graph (e.g. .01 is 1% of graph size)
 graph_size: graph size in inches
 """
 points = frac * graph_size * 72
 return pi * (points/2.0)**2

 76

def init_graph_display(title=None, aux_title=None, size=4.0, \
 graph_shape='sqr', graph_grid=None, x_label='', y_label='', \
 dark=False, with_parens=True, prob_axes=True, axes=None,
num_genes=None):
 """Initializes a range of graph settings for standard plots.

 These settings include:
 - font sizes based on the size of the graph
 - graph shape
 - grid, including lines for x=y or at x and y = 0.5
 - title, auxillary title, and x and y axis labels

 Parameters:
 title: displayed on left of graph, at the top, latex-format
string

 aux_title: displayed on top right of graph, latex-format
string.
 typically used for number of genes.

 size: size of graph, in inches

 graph_shape: 'sqr' for square graphs, 'rect' for graphs that
include
 a colorbar, 3to1: width 3 to height 1.

 graph_grid: background grid for the graph. Currently
recognized grids
 are '/' (line at x=y) and 't' (cross at x=.5 and y=.5).

 x_label: label for x axis, latex-format string.

 y_label: label for y axis, latex-format string.

 dark: set to True if dark background, reverses text and tick
colors.

 with_parens: if True (default), puts parens around auxillary
title

 returns font, label_font_size (for use in producing additional
labels in
 calling function).
 """
 if dark:
 color='w'
 else:
 color='k'
 min_offset = 0.05 #minimum offset, e.g. for text
 max_offset = 1-min_offset #center offsets
 rect_scale_factor = 1.28 #need to allow for legend while
keeping graph
 #square; empirically determined at
1.28
 font_size = int(size*3-1) #want 11pt font w/ default graph
size 4" sqr

 77

 label_scale_factor = 0.8
 label_font_size = font_size * label_scale_factor
 label_offset = label_font_size * 0.5
 axis_label_font={'fontsize':font_size}
 font={'fontsize':font_size, 'color':color}

 if graph_shape == 'sqr':
 gcf().set_figsize_inches(size,size)
 elif graph_shape == 'rect':
 #scaling for sqr graphs with colorbar
 gcf().set_figsize_inches(size*rect_scale_factor,size)
 elif graph_shape == '3to1':
 gcf().set_figsize_inches(3*size, size)
 elif graph_shape == '2to1':
 gcf().set_figsize_inches(2*size, size)
 else:
 raise ValueError, "Got unknown graph shape %s" % graph_shape

 #set or create axes
 if axes is None:
 axes = gca()

 #draw grid manually: these are in data coordinates.
 if graph_grid == 't':
 #grid lines at 0.5 on each axis, horiz & vertic
 axes.axvline(x=.5, ymin=0, ymax=1, color=color,
linestyle=':')
 axes.axhline(y=.5, xmin=0, xmax=1, color=color,
linestyle=':')
 elif graph_grid == '/':
 #diagonal gridlines from 0,0 to 1,1.
 axes.plot([0,1], color=color, linestyle=':')
 else:
 pass #ignore other choices

 #remove default grid
 axes.grid(False)

 #set x and y labels
 axes.set_ylabel(y_label, axis_label_font)
 axes.set_xlabel(x_label, axis_label_font)

 #add title/aux_title to graph directly. Note that we want
 #the tops of these to be fixed, and we want the label to be
 #left-justified and the number of genes to be right justified,
 #so that it still works when we resize the graph.
 if title is not None:
 axes.text(min_offset, max_offset, str(title), font, \
 verticalalignment='top', horizontalalignment='left')
 #use num_genes as aux_title by default
 aux_title = num_genes or aux_title
 if aux_title is not None:
 if with_parens:
 aux_title='('+str(aux_title)+')'
 axes.text(max_offset, max_offset, str(aux_title), font,
 verticalalignment='top', horizontalalignment='right')

 78

 if prob_axes:
 init_ticks(axes, label_font_size, dark)
 #set x and y label offsets -- currently though rcParams, but
should be
 #able to do at instance level?
 #rc('xtick.major', pad=label_offset)
 #rc('ytick.major', pad=label_offset)
 return font, label_font_size

def init_ticks(a, label_font_size, dark=False):
 """takes a from (a = gca)
 sets the ticks to span from 0 to 1 with .1 intervals
 changes the size of the ticks and the corresponding number
labels
 """
 a.set_xticks(arange(0,1.01,.1),)
 a.set_yticks(arange(0,1.01,.1))

 #reset sizes for x and y labels
 x = a.get_xticklabels()
 y = a.get_yticklabels()
 for l in a.get_xticklabels() + a.get_yticklabels():
 l.set_fontsize(label_font_size)
 #if dark, need to reset color of internal ticks to white
 if dark:
 for l in a.get_xticklines() + a.get_yticklines():
 l.set_markeredgecolor('white')

def set_axis_to_probs(axes=None):
 """sets the axes to span from 0 to 1
 necessary because order in program changes graph
 """
 #set axis for probabilities (range 0 to 1)
 if axes is None:
 axes = gca()
 axes.set_xlim([0,1])
 axes.set_ylim([0,1])

def plot_regression_line(x_data,y_data,line_color='r', axes=None):
 """Plots the regression line, and returns the equation."""
 if axes is None:
 axes = gca()
 m, b = regress(x_data, y_data)
 r, significance = correlation(x_data,y_data)
 #set the a,b,r values
 r_str = '%0.3g'% (r**2)
 m_str ='%0.3g' % m
 b_str = '%0.3g' % b
 x1=0.0
 y1=b
 x2=1.0
 y2=(m+b)

 #constrain so that y is always in the range (0,1) for plotting
 if(y1<0):
 y1=0.0
 x1=(0-b)/m

 79

 if(y2>=1):
 y2=1.0
 x2=(1-b)/m

 axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=2)

 if b >= 0:
 sign_str = ' + '
 else:
 sign_str = ' '

 equation=''.join(['y=
',m_str,'x',sign_str,b_str,'\n\nr2=',r_str])
 return equation, line_color

def print_regression_equations(equations, axes=None):
 """Writes list of regression equations to graph.

 equations: list of regression equations

 size: size of the graph in inches
 """
 if axes is None:
 axes = gca()
 for i, (eq_text, eq_color) in enumerate(equations):
 axes.text((0.98), (0.02+(.06*i)), str(eq_text), \
 horizontalalignment='right', verticalalignment='bottom',
\
 color=eq_color)

def broadcast(i, n):
 """Broadcasts i to a vector of length n."""
 try:
 i = list(i)
 except:
 i = [i]
 reps, leftovers = divmod(n, len(i))
 return (i * reps) + i[:leftovers]

#scatterplot functions and helpers

def plot_scatter(data, series_names=None, \
 series_color=standard_series_colors,
line_color=standard_series_colors,\
 alpha=0.25, marker_size=.015, scale_markers=True,
 show_legend=True,legend_loc='center right',
 show_regression=True, show_equation=True,
 prob_axes=False, size=8.0, axes=None,
 **kwargs):
 """helper plots one or more series of scatter data of specified
color,
 calls the initializing functions, doesn't print graph

 takes: plotted_pairs, series_names, show_legend, legend_loc, and

 80

 **kwargs passed on to init_graph_display (these include
title,
 aux_title, size, graph_shape, graph_grid, x_label, y_label,
 dark, with_parens).

 plotted_pairs = (first_pos, second_pos, dot_color, line_color,
 alpha, show_regression, show_equation)

 returns the regression str equation (list) if regression is set
true

 suppresses legend if series not named, even if show_legend is
True.
 """
 if not axes:
 axes = gca()
 #initialize fonts, shape and labels
 font,label_font_size=init_graph_display(prob_axes=prob_axes, \
 size=size, axes=axes, **kwargs)
 equations = []
 #figure out how many series there are, and scale vals
accordingly
 num_series = len(data)/2
 series_color = broadcast(series_color, num_series)
 line_color = broadcast(line_color, num_series)
 alpha = broadcast(alpha, num_series)
 marker_size = broadcast(marker_size, num_series)
 if scale_markers:
 marker_size = [frac_to_psq(m, size) for m in marker_size]

 series = []
 for i in range(num_series):
 x, y = data[2*i], data[2*i+1]

series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\
 alpha=alpha[i]))
 #find the equation and plots the regression line if True
 if show_regression:
 equation = plot_regression_line(x,y,line_color[i],
axes=axes)
 if show_equation:
 equations.append(equation) #will be (str, color) tuple
 #print all the regression equations at once -- need to know how
many
 if show_regression:
 print_regression_equations(equations, axes=axes)
 #clean up axes if necessary
 if show_legend and series_names: #suppress legend if series not
named
 axes.legend(series, series_names, legend_loc)

 if prob_axes:
 set_axis_to_probs(axes)
 return equations, font

def plot_cai_p3_scatter(data, graph_name='cai_p3_scat.png',
**kwargs):

 81

 """Outputs a CAI vs P3 scatter plot.

 expects data as ([P3s_1, CAIs_1, P3s_2, CAIs_2, ...])
 """
 plot_scatter(data, graph_shape='sqr', graph_grid=None,\
 x_label="P_3",y_label="CAI", prob_axes=True,**kwargs)
 savefig(graph_name)

def plot_p12_p3(data, graph_name='p12_p3.png', **kwargs):
 """Outputs a P12 versus P3 scatter graph, optionally including
regression.

 expects data as [P3_1, P12_1, P3_2, P12_2, ...n].
 """
 plot_scatter(data, graph_shape='sqr', graph_grid='/',\
 x_label="P_3",y_label="P_{12}", prob_axes=True,
**kwargs)
 savefig(graph_name)

def plot_p123_gc(data, graph_name='p123_gc.png', use_p3_as_x=False,
**kwargs):
 """Output a scatter plot of p1,p2,p3 vs gc content

 Expects data as array with rows as GC, P1, P2, P3
 p1=blue, p2=green, p3=red

 """
 #unpack common x axis, and decide on series names
 if use_p3_as_x:
 series_names = ['P_1', 'P_2']
 colors=['b','g']
 x_label='P_3'
 y_label='P_{12}'
 xy_pairs = [data[3], data[1], data[3], data[2]]
 else:
 series_names = ['P_1', 'P_2', 'P_3']
 colors=['b','g','r']
 x_label='GC'
 y_label='P_{123}'
 xy_pairs = [data[0], data[1], data[0], data[2], data[0],
data[3]]

 #plot points and write graph
 plot_scatter(xy_pairs,
graph_grid='/',x_label=x_label,y_label=y_label,
 series_names=series_names, prob_axes=True, **kwargs)
 savefig(graph_name)

def plot_fingerprint(data, alpha=0.7, \
 show_legend=True, graph_name='fingerprint.png', has_mean=True,
 which_blocks='quartets', multiple=False, graph_grid='t',
prob_axes=True, \
 **kwargs):
 """Outputs a bubble plot of four-codon amino acid blocks
 labeled with the colors from Sueoka 2002.

 takes: data: array-elements in the col order x, y, r of

 82

 each of the four codon Amino Acids in the row order:
 ALA, ARG4, GLY, LEU4, PRO, SER, THR, VAL
 (for traditional fingerprint), or:
 UU -> GG (for 16-block fingerprint).
 last row is the mean (if has_mean is set True)

 **kwargs passed on to init_graph_display (these include
 graph_shape, graph_grid, x_label, y_label, dark,
with_parens).

 title: will be printed on graph (default: 'Unknown
Species')

 num_genes (number of genes contributing to graph: default
None)
 NOTE: will not print if None.)

 size: of graph in inches (default = 8.0)

 alpha: transparency of bubbles
 (ranges from 0, transparent, to 1, opaque; default 0.7)

 show_legend: bool, default True, whether to print legend

 graph_name: name of file to write (default
'fingerprint.png')

 has_mean: whether the data contain the mean (default:
True)

 which_blocks: which codon blocks to print (default is
'quartets'
 for the 4-codon amino acid blocks, but can also use 'all'
for all
 quartets or 'split' for just the split quartets.)

 multiple: if False (the default), assumes it got a single
block
 of data. Otherwise, assumes multiple blocks of data in a
list or
 array.

 note: that the data are always expected to be in the range (0,1)
 since we're plotting frequencies. axes, gid, etc. are hard-coded
 to these values.
 """
 #figure out which type of fingerprint plot we're doing, and get
the
 #right colors
 if which_blocks == 'quartets':
 blocks = CodonUsage.SingleAABlocks
 elif which_blocks == 'split':
 blocks = CodonUsage.SplitBlocks
 else:
 blocks = CodonUsage.Blocks

 colors = [doublets_to_colors[i] for i in blocks]

 83

 #formatting the labels in latex
 x_label="$G_3/(G_3+C_3)$"
 y_label="$A_3/(A_3+T_3)$"

 #initializing components of the graph
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid=graph_grid, x_label=x_label, \
 y_label=y_label, prob_axes=prob_axes, **kwargs)

 if not multiple:
 data = [data]

 alpha = broadcast(alpha, len(data))

 for al, d in zip(alpha, data):
 #skip this series if no data
 if not d:
 continue
 for i, color in enumerate(colors):
 j = i+1
 #note: doing these as slices because scatter_classic
needs the
 #extra level of nesting
 patches = scatter_classic(d[i:j,0], d[i:j,1],
 s=(d[i:j,2]/2), c=color)
 #set alpha for the patches manually
 for p in patches:
 p.set_alpha(al)

 #plot mean as its own point -- can't do cross with scatter
 if has_mean:
 mean_index = len(blocks) #next index after the blocks
 plot([d[mean_index,0]], [d[mean_index,1]],
 '-k+',markersize=label_font_size, alpha=al)

 abbrev = CodonUsage.BlockAbbreviations

 a = gca()
 #if show_legend is True prints a legend in the right center area
 if show_legend:
 legend_key = [abbrev[b] for b in blocks]
 #copy legend font properties from the x axis tick labels
 legend_font_props = \
 a.xaxis.get_label().get_font_properties().copy()
 legend_font_scale_factor = 0.7
 curr_size = legend_font_props.get_size()

legend_font_props.set_size(curr_size*legend_font_scale_factor)
 l = figlegend(a.patches,
 legend_key,
 prop=legend_font_props,
 loc='center right',pad=0.1,labelsep=0.0025,
 handlelen=0.02,handletextsep=0.007, axespad=0.0)
 #fix transparency of patches
 for p in l.get_patches():

 84

 p.set_alpha(1)

 #initialize the ticks
 set_axis_to_probs()
 init_ticks(a, label_font_size)
 a.set_xticks([0, 0.5, 1])
 a.set_yticks([0,0.5,1])

 #output the figure
 savefig(graph_name)

#Contour plots and related functions

def plot_filled_contour(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \
 num_contour_lines=10, **kwargs):
 """helper plots one or more series of contour data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
fill_cmap,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)
 """
 if show_regression:
 equation = plot_regression_line(xy_data[:,0],xy_data[:,1])
 if show_equation:
 print_regression_equations([equation])
 #init graph display, rectangular due to needed colorbar space
 init_graph_display(graph_shape=graph_shape, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data_matrix in plot_data:
 contourf(x_bin,y_bin,data_matrix, num_contour_lines,
cmap=fill_cmap)
 #add the colorbar legend to the side
 colorbar()

def plot_contour_lines(plot_data, xy_data=None,
show_regression=False, \
 show_equation=False, smooth_steps=0, num_contour_lines=10, \
 label_contours=False, line_cmap=cm.hot,
fill_cmap=cm.gray,dark=True,
 graph_shape='rect', **kwargs):
 """helper plots one or more series of contour line data
 calls the initializing functions, doesn't output figure

 takes: plot_data, xy_data, show_regression, show_equation,
smooth,
 num_contour_lines, label_contours, line_cmap, fill_cmap,
graph_shape,
 and **kwargs passed on to init_graph_display.

 plot_data = (x_bin, y_bin, data_matrix dot_colors)
 """
 #init graph display, rectangular due to needed colorbar space

 85

 init_graph_display(graph_shape=graph_shape,
 dark=dark, **kwargs)
 #plots the contour data
 for x_bin,y_bin,data in plot_data:
 orig_max = max(ravel(data))
 scaled_data = (data/orig_max*255).astype('b')
 if smooth_steps:
 orig_shape = data.shape
 im = Image.fromstring('L', data.shape, scaled_data)
 for i in range(smooth_steps):
 im = im.filter(ImageFilter.BLUR)
 new_data = fromstring(im.tostring(), 'b')
 data = reshape(new_data.astype('i')/255.0 * orig_max,
orig_shape)

 if fill_cmap is not None:
 im = imshow(data, interpolation='bicubic',
extent=(0,1,0,1), \
 origin='lower', cmap=fill_cmap)
 result=contour(x_bin,y_bin,data, num_contour_lines,
 origin='lower',linewidth=2,
 extent=(0,1,0,1), cmap=line_cmap)
 if label_contours:
 clabel(result, fmt='%1.1g')

 #add the colorbar legend to the side
 cb = colorbar()
 cb.set_axis_bgcolor('black')

 if show_regression:
 equation=plot_regression_line(xy_data[0],xy_data[1])
 if show_equation:
 print_regression_equations([equation])

def plot_cai_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='cai_contour.png',
 prob_axes=True, **kwargs):
 """Output a contour plot of cai vs p3 with colorbar on side

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contour.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_filled_contour(plot_data, graph_grid='/',x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

def plot_cai_p3_contourlines(x_bin,y_bin,data,xy_data,
 graph_name='cai_contourlines.png',

 86

 prob_axes=True, **kwargs):
 """Output a contour plot of cai

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'cai_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3", \
 y_label="CAI", prob_axes=prob_axes,**kwargs)
 savefig(graph_name)

def plot_p12_p3_contour(x_bin,y_bin,data,xy_data,
 graph_name='p12_p3_contour.png',
 prob_axes=True, **kwargs):
 """Outputs a P12 versus P3 contour graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'p12_p3_contourlines.png'
 """
 plot_data =[(x_bin,y_bin,data)]
 plot_filled_contour(plot_data, graph_grid='/', x_label="P_3",
\
 y_label="P_{12}", prob_axes=prob_axes,**kwargs)
 set_axis_to_probs()
 savefig(graph_name)

def plot_p12_p3_contourlines(x_bin,y_bin,data,xy_data,
prob_axes=True,\
 graph_name='p12_p3_contourlines.png', **kwargs):
 """Outputs a P12 versus P3 contourline graph
 and the mean equation of the plot

 takes: x_bin, y_bin, data (data matrix)

 label (default 'Unknown Species')

 num_genes (default 0 will not print, other numbers will)

 size: of graph in inches (default = 8.0)

 graph_name: default 'p12_p3_contourlines.png
 """

 87

 plot_data =[(x_bin,y_bin,data)]
 plot_contour_lines(plot_data, graph_grid='/', x_label="P_3",\
 y_label="P_{12}", prob_axes=prob_axes, **kwargs)
 set_axis_to_probs()
 savefig(graph_name)

#Other graphs

def plot_pr2_bias(data, title='ALANINE', graph_name='pr2_bias.png',
\
 num_genes='ignored', **kwargs):
 """Outputs a PR2-Bias plot of:
 -isotypic transversions (base swapping)
 with G3/(G3+C3) and A3/(A3+T3)
 -Transitions (deaminations)
 with G3/(G3+A3) and C3/(C3+T3)
 -Allotypic transversions (G- oxidations)
 with G3/(G3+T3) and C3/(C3+A3)

 takes: an array in the order: x,G3/(G3+C3),A3/(A3+T3),
 G3/(G3/A3),C3/(C3+T3),G3/(G3+T3),C3/(C3+A3)

 label: default 'ALANINE'
 one amino acid written out in caps:
 ALANINE, ARGININE4, GLYCINE, LEUCINE4,
 PROLINE, SERINE4, THREONINE, VALINE
 from one of the amino acids program will add acronym
 C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 G2 type: arg4 (CGN), an gly(GGN)
 T2 type: leu4(CTN), val (GTN)

 size: of graph in inches (default = 8.0)

 graph_name: default 'pr2_bias.png'

 num_genes: number of genes contributing to graph, currently
ignored.
 """
 #we can't put anything in the top right, so print num_genes
after the title
 #if it was supplied
 #initializes the graph display and font
 font,label_font_size=init_graph_display(graph_shape='sqr', \
 graph_grid='/', x_label="P_3", y_label="Y axis",
prob_axes=True, \
 title=title, **kwargs)
 #sets the marker_size relative to the font and thus the graph
size
 marker_size = (label_font_size-1)

 #plots the pr2bias in order G3/(G3+C3),A3/(A3+T3),
 # G3/(G3/A3),C3/(C3+T3),
 # G3/(G3+T3),C3/(C3+A3)
 #colors and symbols coded from Sueoka 2002
 plot([data[:,0]], [data[:,1]], '-ko', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,2]], '-kv', c='k',

 88

 markersize=marker_size)
 plot([data[:,0]], [data[:,3]], '-ro', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,4]], '-rv', c='r',
 markersize=marker_size)
 plot([data[:,0]], [data[:,5]], '-wo', c='k',
 markersize=marker_size)
 plot([data[:,0]], [data[:,6]], '-wv', c='k',
 markersize=marker_size)

 set_axis_to_probs()

 #aaLabel based on the amino acid that is graphed
 #C2 type: ala(GCN), pro(CCN), ser4(TCN), thr(ACN)
 #G2 type: arg4 (CGN), an gly(GGN)
 #T2 type: leu4(CTN), val (GTN) (Sueoka 2002)
 text(.95, .05, aaLabels[title], font,
verticalalignment='bottom',
 horizontalalignment='right')

 #output the figure
 set_axis_to_probs()
 savefig(graph_name)

def plot_histograms(data, graph_name='gene_histogram.png', bins=20,\
 normal_fit=True, normed=True, colors=None, linecolors=None,
\
 alpha=0.75, prob_axes=True, series_names=None,
show_legend=False,\
 y_label=None, **kwargs):
 """Outputs a histogram with multiple series (must provide a list
of series).

 takes: data: list of arrays of values to plot (needs to be list
of arrays
 so you can pass in arrays with different numbers of
elements)

 graph_name: filename to write graph to
 bins: number of bins to use
 normal_fit: whether to show the normal curve best
fitting the data
 normed: whether to normalize the histogram (e.g. so bars
sum to 1)
 colors: list of colors to use for bars
 linecolors: list of colors to use for fit lines

 **kwargs are pssed on to init_graph_display.

 """
 if y_label is None:
 if normed:
 y_label='Frequency'
 else:
 y_label='Count'
 num_series = len(data)

 89

 if colors is None:
 if num_series == 1:
 colors = ['white']
 else:
 colors = standard_series_colors
 if linecolors is None:
 if num_series == 1:
 linecolors = ['red']
 else:
 linecolors = standard_series_colors

 init_graph_display(prob_axes=prob_axes, y_label=y_label,
**kwargs)
 for i, d in enumerate(data):
 fc = colors[i % len(colors)]
 lc = linecolors[i % len(linecolors)]

 counts, x_bins, patches = hist(d, bins=bins, normed=normed,
\
 alpha=alpha, facecolor=fc)

 if normal_fit:
 mu = mean(d)
 sigma = std(d)
 bin_width = x_bins[-1] - x_bins[-2]
 #want normpdf to extend over the bins, so needs to be
one extra
 #normpdf_bins = x_bins + bin_width/2.0
 normpdf_bins = arange(0,1,0.01)
 y = normpdf(normpdf_bins, mu, sigma)
 orig_area = sum(counts) * bin_width
 y = y * orig_area #normpdf area is 1 by default
 plot(normpdf_bins, y, linestyle='--', color=lc,
linewidth=1)

 if show_legend and series_names:
 legend(series_names)

 #output figure
 savefig(graph_name)

def plot_scatter_with_histograms(data,
graph_name='histo_scatter.png', \
 graph_grid='/', prob_axes=False, bins=20, frac=0.9,
scatter_alpha=0.5, \
 hist_alpha=0.8, colors=standard_series_colors, normed=True,
**kwargs):
 """Plots a scatter plot with histograms showing distribution of
x and y.

 Data should be list of [x1, y1, x2, y2, ...].
 """

 #set up subplot coords
 tl=subplot(2,2,1)
 br=subplot(2,2,4)
 bl=subplot(2,2,3, sharex=tl, sharey=br)

 90

 #get_position returns left, bottom, width, height relative to
figure
 tl_coords = tl.get_position()
 bl_coords = bl.get_position()
 br_coords = br.get_position()

 left = tl_coords[0]
 bottom = bl_coords[1]

 width = br_coords[0] + br_coords[2] - left
 height = tl_coords[1] + tl_coords[3] - bottom

 bl.set_position([left, bottom, frac*width, frac*height])
 tl.set_position([left, bottom+(frac*height), frac*width, (1-
frac)*height])
 br.set_position([left+(frac*width), bottom, (1-frac)*width,
frac*height])

 #suppress frame and axis for histograms
 for i in [tl,br]:
 i.set_frame_on(False)
 i.xaxis.set_visible(False)
 i.yaxis.set_visible(False)

 plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs)

 biggest_x = 0
 biggest_y = 0
 for i in range(0, len(data), 2):
 x, y = data[i], data[i+1]
 color = colors[(i/2)%len(colors)]
 n, bins, patches = hist(x, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=tl, normed=True)
 biggest_x = max([biggest_x, max(x)])
 n, bins, patches = hist(y, facecolor=color, bins=bins, \
 alpha=hist_alpha, axes=br, normed=normed,
orientation='horizontal')
 biggest_y=max([biggest_y,max(y)])
 bl.set_xlim(0,1)
 bl.set_ylim(0,1)
 savefig(graph_name)

 91

References

Bafna, V., and Pevner, P. 1996. Genome rearrangement and sorting by reversals.
SIAM J Comput. Vol. 25, No. 2, 272-89

Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Sudhof, TC. Jahn, R.,

and Niemann, H. 1994. Proteolysis of SNAP-25 by types E and A botulinal
neurotoxins. J Biol Chem. 269(3):1617-20.

Bos, D, and Posada, D. 2004. Using Models of Nucleotide Evolution to

Build Phylogenetic Trees. Development and Comparative Immunology.
PubMed.

Bräumler, A. 1997. The record of horizontal gene transfer in Salmonella. Trends in

Microbiology. Vol. 5. No. 8. August.

Canchaya, C. Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L., and

Brussow, H. 2003. Phage as agents of lateral gene transfer. Curr Opin
Microbiol. 6(4):417-24.

Center for Disease Control and Prevention. 2003. Frequently asked questions

(FAQ) about Tularemia. http://www.bt.cdc.gov/agent/tularemia/faq.asp.
Accessed 1 May 2007

Chen, S., Kim, J. J., and Barbieri, J. T. 2007. Mechanisms of the substrate

recognition by botulinum neurotoxin serotype A. J Biol Chem. 282(13):
9621-7.

Collmer, A., Lindeberg, M., et al. 2002. Genomic Mining Type II Secretion

System Effectors in Pseudomonas Syringae Yields New Picks for all TTSS
Prospectors. Trends Microbiology 10(10): 462-9

Cuschieri, Alfred. Cell Biology, Genetics and Embryology. University of Malta.
http://staff.um.edu.mt/acus1/4genfunction_files/image005.gif. Accessed
30 April 2007.

Ehrbar, K. and Hardt, W. D. (2005) Bacteriophage-encoded Type III Effectors in

Salmonella Enterica Subspecies1 Serovar Typhimurium. Infect Genet Evol
5(1):1-9

Fortier, A. H., Green, S. J., Polsinella, T., Jones, T. R., Crawford, R. M., Leiby,
D. A., Elkins, K. L., Meltzer, M. S., and Nacy, C. A. 1994. Life and death
of an intracellular pathogen: Francisella tularansis and the macrophage.
Immunol Ser. 60:349-61.

Freeland, S. J., and Hurst, L. D. 1998. The genetic code is one in a million. J Mol

 92

Evol. 47(3):238-48.

Gophna, U., Ron, E., and Graur, D. 2002. Bacterial type III secretion systems are

ancient ad evolved by multiple horizontal-transfer events. Gene 312 pp 151-
163.

Hanson, M. A., and Stevens, R. C. 2000. Cocrystal structure of synaptobrevin-II
bound to botulinum neurotoxin type B at 2.0 A resolution. Nat Struct Biol.
7(8):697-92.

Hunter, John. 2007. Matplotlib. Wath Works. http://matplotlib.sourceforge.net/.

Accessed 26 April 2007.

Kanehisa, M., Goto, S., Kawashima, S., Okono, Y., and Hattori, M. 2004. The

KEGG resource for deciphering the genome. Nucleic Acids Res. 32(Database
issue):D277-80.

KEGG: Kyoto Encyclopedia of Genes and Genomes. 2007. Kanehisa Laboratories.

http://www.genome.jp/kegg/. Accessed 27 April 2007.

Klimpel, K. R., Arora, N., and Leppla, S. H. 1994. Anthrax toxin lethal factor

contains a zinc metalloprotease consensus sequence which is required for
lethal toxin activity. Mol Microbiol. 13(6):1093-100.

Korf, I., Yandell, M., and Bedell, J. 2003. BLAST. O’Reilly. Sebastopol, CA.

Kozel, T. R., Thorkildson, P., Brandt, S., Welch, W. H., Lovchik, J. A., AuCoin,

D. P., Vilai, J., and Lyons, C. R. 2007. Protective and immunochemical
activities of monoclonal antibodies reactive with the Bacillus anthracis
polypeptide capsule. Infect Immun. 75(1):152-63.

Lan, R.T. and Reeves, P.R. 1996. Gene Transfer is a major factor in bacterial

evolution. Mol. Microbiol. 15, 749-759.

Leppla, S. H. 1984. Bacillus anthracis calmodulin-dependent adenylate cyclase:

chemical and enzymatic properties and interactions with eucaryotic cells. Adv
Cyclic Nucleotide Protein Phosphorulation Res. 17:189-98

Lobry, J., and Sueoka, Noboru. 2002. Asymmetric directional mutation pressures in

Bacteria. Genome Biology. 3:58(1-0058.14)

Marshall B. and Warren J.R. 2005. The Bacterium Helicobacter pylori and its role

in Gastric and Peptic Ulcer Disease. Press Release (Nobel Prize).
http://nobelprize.org/nobel_prizes/medicine/laureates/2005/press.html
Accessed July 2006.

 93

Ochman, H. and Wilson, A.C. 1987. Evolution in bacteria: evidence for a
universal substitution rate in cellular genomes. J. Mol. Evol. 26, 74-86.

Ochman, H. and Lawrence, J.G. 1996 (1). Escherichia Coli and Salmonella:

Cellular and Molecular Biology. Vol 2. pp. 2627-2637, ASM Press.1111

Ochman, H. et al. 1996 (2). Identification of a Pathogenicity Island Required for

Salmonella Survival in Host Cells. Proc Natl Acad Sci USA 93(15): p 7800-4

Pace. 1997. Microbial Diversity and the Biosphere. Science.

Parsonnet, Friedman, et al. (1991 Helicobacter pylori infection and the risk of

gastric carconoma. N Eng J of Med. Volume 325: 1127-1131.

Peterson WL. (1991) Helicobacter pylori and peptic ulcer disease. N Eng J of Med.

324:1043-1048.

Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H., and Liddington, R. C.

1997. Crystal structure of the anthrax toxin protective antigen. Nature.
385(6619):833-8

Porwollik, S, and McClelland, M. 2003. Lateral gene transfer in Salmonella.

Microbes and Infections.

Sequence Composition Analyzer (SeqComp). City of Hope. Dept of Molecular

Genetics and Div of Molecular Medicine.
http://cityofhope.org/molgen/seqcomp.asp. Accessed 1 May 2007.

Sharp, P.M. 1991. Determinants of DNA sequence divergence between Escherichia

coli and Salmonella typhimurium: codon usage, map position, and concerted
evolution. J. Mol. Evol. 33, 23-33

Simpson, L. L., Maksymowych, A. B., and Hao, S. 2001. The role of zinc binding

in the biological activity of botulinum toxin. J Biol Chem. 276(29):27034-41.

Singh, B. R. 2000. Intimate details of the most poisonous poison. Nat Struct Biol.

7(8)617-9.

Sueoka, Noboru. 2002. Wide intra-genomic G+C heterogeneity in human and

chicken is mainly due to strand-symmetric directional mutation pressures:
dGTP-oxidation and symmetric cytosine-deamination hypotheses. Gene.

U.S. Food and Drug Administration: Foodborne Pathogenic Microorganisms

and Natural Toxins Handbook. 2006. Clostridium botulinum.
http://www.cfsan.fda.gov/~mow/chap2.html. Accessed 1 May 2007.

 94

Uliel, S., Fliess, A., Amir, A., and Unger, R. 1999. A simple algorithm for detecting
circular permutations in proteins. Bioinformatics. Vol. 15 no. 11

Varughese, M., Teixeira, A. V., Lui, S., and Leppla, S. H. 1999. Identification of a

receptor-binding region within domain 4 of the protective antigen component
of anthrax toxin. Infect Immun. 67(4):1860-5

Vitale, G., Bernardi, L., Napolitani, G., Mock, M., and Montecucco, C. 2000.

Susceptibility of mitogen-activated protein kinase kinase family mambers to
proteolysis by anthrax lethal factor. Biochem J. Pt 3:739-45.

Watson, J. D., and Crick, F. H. 2003. Molecular structure of nucleic acids. A

structure for deoxyribose nucleic acid. Rev Invest Clin. 55(2):108-9.

Weaver, Robert. 2005. Molecular Biology. McGraw Hill. Boston.

Welch, R. A., Burland V., Plunkett, G., Redford, P., Roesch, P., Rasko, D.,

Buckles, E. L., Liou, S. R., Boutin, A., Hackett, J., Stroud, D., Mayhew,
G. F., Rose, D. J., Zhou, S., Schwartz, D. C., Perna, N. T., Mobley, H. L.,
Donnenberg, M. S., Blattner, F.R. 2002. Extensive mosaic structure
revealed by the complete genome sequence of uropathogenic Escherichia coli.
Proc Natl Acad Sci U S A. 99(26):17020-4.

Witkowski, J. A., and Parish, L. C. 2002. The story of anthrax from antiquity to the

present: a biological weapon of nature and humans. Clin Dermatol. 20(4):
336-42.

Zubay, et al. (2005) Agents of Bioterrorism: Pathogens and their Weaponization.

Columbia Press. NY

