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Abstract

Linearly polarized light has been used to view the solar corona for over 150 years. While the familiar Stokes
representation for polarimetry is complete, it is best matched to a laboratory setting and therefore is not the most
convenient representation either for coronal instrument design or for coronal data analysis. Over the last 100 years
of development of coronagraphs and heliospheric imagers, various representations have been used for both direct
measurement and analysis. These systems include famous representations such as the (B, pB) system, which is
analogous to the Stokes system in solar observing coordinates, and also internal representations such as in-
instrument Stokes parameters with fixed or variable “vertical” direction, and brightness values through a particular
polarizing optic or set thereof. Many polarimetric instruments currently use a symmetric three-polarizer
measurement and representation system (which we refer to as “(M, Z, P)”) to derive the (B, pB) or Stokes
parameters. We present a symmetric derivation of (B, pB) and Stokes parameters from (M, Z, P), analyze the noise
properties of (M, Z, P) in the context of instrument design, develop (M, Z, P) as a useful intermediate system for
data analysis including background subtraction, and draw a helpful analogy between linear polarimetric systems
and the large existing body of work on photometric colorimetry.

Unified Astronomy Thesaurus concepts: Polarimetry (1278); Solar K corona (2042); Color equation (269);
Polarimeters (1277); Solar instruments (1499)

1. Introduction

The solar corona is linearly polarized (Arago 1843). That
property has been exploited over nearly a century of coronal
observations: both for background removal in coronagraphs
(Lyot 1930) and for 3D analysis (Poland & Munro 1976; de
Koning & Pizzo 2011; DeForest et al. 2017).

The degree of coronal polarization is conventionally reported
via two parameters: a B (“unpolarized brightness”) parameter
and its counterpart pB (“polarized brightness”); and both
parameters may be mapped over an image plane to create
separate “B images” and “pB images.” Because the corona is a
distributed object, it is best tracked via its radiance (delivered
optical power per unit area, per unit solid angle), and therefore
“brightness” and “radiance” are synonyms. The K corona is
visible primarily via Thomson scattering and therefore it is
polarized perpendicular to the plane containing the observer,
the Sun, and the scattering point. At each point in a two-
dimensional image plane, the K corona is thus polarized
perpendicular to a line extending through the imaged center of
the Sun and the given point (Figure 1(a)); this direction is not
only predicted by theory (e.g., Billings 1966; Howard &
Tappin 2009) but also readily verified through direct measure-
ment (e.g., Filippov et al. 1994). pB may thus be calculated as

( )pB B B , 1T R= -

where BT is the radiance observed through a linear polarizer
oriented tangentially to a solar-concentric circle passing
through the image point of interest, and BR is the radiance
observed through a linear polarizer oriented radially to the Sun

through the same point (e.g., Minnaert 1930; Altschuler &
Perry 1972). Whether Equation (1) is accidental or fundamental
to the definition of pB is a matter of ongoing historical
confusion and even dispute. This is explored in an Appendix to
this article, which introduces a °pB and ⊥pB to distinguish
historical usage. In this work we treat Equation (1) as
fundamental; this treatment implies that pB is similar to the
Stokes Q parameter (e.g., Hecht & Zajac 1974), but in a
coordinate system that is rotated relative to the instrument.
The (B, pB) representation of coronal polarization is

convenient because it matches the observing geometry, and
in fact many coronagraphs have been constructed to measure
directly that element of linear polarization (e.g., Altschuler &
Perry 1972). However, because the direction of “radial” varies
in the image plane, this adds complexity to the instrument
itself. Recent spaceborne coronagraphs have instead measured
the full linear polarization state of incident light in the
instrument frame (e.g., Brueckner et al. 1995; Howard et al.
2008). This requires capturing the first three Stokes parameters
(I, Q, U) at each location of the image plane, either directly or
indirectly via a representative measurement.
The Stokes (I, Q, U) parameters are defined in terms of

exposures through individual crossed polarizers in a laboratory,
and the textbook approach to measurement involves four
exposures through crossed polarizers in the fixed instrument
reference frame: horizontal/vertical for Q and diagonal for U
(Figure 1(b); Hecht & Zajac 1974). However, only three
independent measurements are necessary to determine the
linear polarization states of a beam of light. This was the basis
of the triplet polarizing camera used by Öhman (1947) to
observe the 1945 eclipse, and Öhman attributed the technique
to an earlier analysis by Fesenkov (1935). The technique is
described briefly in Chapter 4 of Billings (1966) and by
Newkirk et al. (1970); these authors both used the Stokes
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parameters as an intermediary system, rather than treating the
triplet analysis as primary. Polarization triplet analysis has been
and is still used routinely with coronal images from Skylab
(Poland & Munro 1976), SOHO/LASCO (Brueckner et al.
1995), and STEREO/SECCHI (Howard et al. 2008), and is
planned for other instruments in development.

Despite its common use, full descriptions of the polarizer
triplet technique, including instrumental effects, are elusive in
the current literature; and those that exist are somewhat
unsatisfying because, in translating through the Stokes system,
the analytic work loses the symmetry of the polarizer triplet
system. In this article, we derive formulae to find directly the
(B pB pB, , ¢) or Stokes (I, Q, U) representations of linear
polarization from polarizer triplet data; present an analytic
noise analysis for the most likely sources of noise or systematic
error in a real instrument using a polarizer triplet; introduce the
use of an (M, Z, P) system of “virtual polarizer triplets”
(Figure 1(d)) to represent the linear polarization state of light in
frames other than the observing frame; and draw a surprising
but helpful analogy between the major systems of linear
polarimetry and corresponding systems for representing color.

2. Definitions

Table 1 defines several quantities, including radiances,
polarization parameters, and angles, that are relevant to a
polarizing coronagraph or heliospheric imager. These quan-
tities are used throughout Section 3, and are collected here for
reference. Figure 1 illustrates the angles and associated angles
of the principal quantities in Table 1.

3. Linear Polarization from Three Polarizers

We start by deriving a formula for pB and B at position angle α,
with coronal light polarized along the direction α+ π/2. This
further leads to expressions for extracting the direction of
polarization, and the full linear portion of the Stokes representa-
tion. Since α is the angle of a radial line, the polarization direction
β is just α+ π/2 (tangential) for Thomson-scattered light in the
corona.

Solving the definitional expressions for B and pB in Table 1,
for BT and BR we have

( )B
B pB

B
B pB

2
and

2
. 2T R=

+
=

-

Admitting the light through a polarizer at angle θ projects the
electric field to the new direction; intensity is the square of the

electric field amplitude, so

[ ( )] [ ( )] ( )B B Bsin cos . 3T R
2 2q a q a= - + -q

Substituting and applying the double-angle cosine formula,

{ [ ( )]} ( )B B pB
1

2
cos 2 , 4q a= - -q

Figure 1. Four panels describe linear polarization analysis in a coronal context. (a) An object near the Sun has position angle α and polarization angle β; BR and BT

describe brightnesses through radially and tangentially aligned polarizers. (b) Stokes Q and U describe polarization in the “+” and “×” directions relative to the
instrument (or solar north). (c) pB and pB′ are Stokes parameter analogs in the solar observing reference frame. (d) Observing polarization through three polarizers
mutually separated by π/3 radians is sufficient to capture the polarization state (I, Q, U) or, equivalently, (B pB pB, , ¢). Although Thomson-scattered light is polarized
in the BT direction, we show the polarization vector slightly misaligned, to emphasize the general case.

Table 1
Useful Quantities in a Linear Polarimetric Coronagraph

Quantity Expression Definition

B{T,R} L Radiance via an ideal polarizer oriented
tangentially or radially relative to the Sun

B BT + BR “Unpolarized brightness” (radiance)

pB BT − BR Coronal “polarized brightness”

α L Solar position angle of an image point

β L Direction of polarization

θ L Polarizer angle (also subscripted as θi)

θi θ + {–1, 0, 1}π/3 One of three angles in an (M, Z, P) triplet

f L Second polarizer angle

Bθ L Radiance through a polarizer at angle θ

Bi L Radiance through a polarizer at angle θi

B{|,−,/,⧹} L Radiance through an ideal polarizer
oriented at nπ/4 ( )n Î

I B| + B− Stokes I—synonym for B (sum of radiance
B⧹ + B/ through any two perpendicular polarizers)

Q B| − B− Stokes Q (in instrument frame)

U B⧹ − B/ Stokes U (in instrument frame)

p Q U I2 2+ Polarization fraction (note: for

Thomson scattering, pB = (p)(B))

Si [ ( )]sin 2 iq a- Convenient abbreviation for sine expression

Ci [ ( )]cos 2 iq a- Convenient abbreviation for cosine
expression

Note. In this context, Stokes I is a radiance, not an intensity. Lists in curly
braces enumerate options for the relevant expression.
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which is the projection equation for partially polarized light.
Solving for pB in terms of B and Bθ yields:

[ ( )]
( )pB

B B2

cos 2
, 5

q a
=

-
-

q

which resolves pB in terms of the radiance through a single
arbitrary polarizer and also the total radiance with no polarizers in
the beam. Equation (5) is problematic, because the denominator is
small when θ−α is near ±π/4. If multiple polarizers are
available at different angles, one can regularize Equation (5) by
taking an average and weighting each term by the square of the
offending cosine. Adopting the Ci abbreviation (Table 1),

{( ) }
( )pB

B B C

C

2
6i i i

i i
2

=
å -

å

which is numerically stable if the θi are not all separated by
intervals of nπ/2. Choosing the (M, Z, P)1 basis of polarizers at
θ− π/3, θ, and θ+ π/3, the denominator sum evaluates to 3/2
and the B terms sum to zero, so

( ) ( )
{ }

pB B C
4

3
7

i M Z P
i i

, ,
å= -

Î

Meanwhile, solving Equation (4) for B yields

( )B B C pB2 , 8= +q

where C is not subscripted because here it appears outside a
sum. Equation (8) is not particularly useful by itself—but
averaging over the three polarizer positions of the (M, Z, P)
system eliminates the cosine through a trigonometric identity,
yielding

( )
{ }

B B
2

3
. 9

i M Z P
i

, ,
å=

Î

Equations (7) and (9) give B and pB in closed and symmetrical
form, given radiance data through three polarizers with relative
angles of −π/3, 0, and +π/3 radians (60° separation) relative
to a baseline angle θ, with the assumption that the direction of
linear polarization is perpendicular to α.

Note that, although α is defined (in Table 1) as position
angle around the Sun, nothing in Equations (7) and (9) requires
any particular value of α—or, for that matter, any particular
orientation of the main polarization direction θ. In fact, in the
special case where α= π/2, B and pB are just the Stokes I and
Q parameters in the solar reference frame. Working by analogy
to the Stokes parameters, we can substitute α→ α+ π/4 into
Equation (7); this yields a similar quantity that reduces to
Stokes U in the same circumstance:

( ) ( )
{ }

pB B S
4

3
10

i M Z P
i i

, ,
å¢ = -

Î

where the new quantity pB′ bears the same relationship to pB as
Stokes U does to Stokes Q. In systems where pB′ is important,
we must generalize Equation (4) to include pB′:

{ } ( )B B C pB S pB
1

2
11= - - ¢q

where the difference between Equations (4) and (11) is that the
former assumes tangential polarization while the latter treats
arbitrary linear polarization. Repeating the derivation of
Equation (7) using Equation (11) instead of (4) yields the same
result, because the Ci-weighted summation in Equation (7)
eliminates the S pBi ¢ terms from Equation (11).
The B, pB, pB′ system is an analog of the Stokes I, Q, U

system, but rotates with α around the Sun rather than being
fixed in the instrument frame of reference; the familiar Stokes
parameters may be recovered by substituting α= π/2 into
Equations (7), (9), and (10). In the special case where the
polarizer triplet is aligned with the instrument, one may also set
θ= 0 and arrive, after many cancellations, at the simplified
expressions

( ) ( )Q B B B
2

3
2 12Z M P= - -

and

( ) ( )U B B
2

3
, 13P M= -

which (together with the identity B= I) define the Stokes I, Q,
U triplet relative to the reference Z polarizer in the M, Z, P
system, with a minimum of calculation. Equations (12) and
(13) reproduce the derivations presented by Öhman (1947) and
Billings (1966).
The remaining important system to represent linear polariza-

tion is (B, θ, p), which uses the overall brightness B, direction
of polarization θ, and normalized degree of polarization p.
The direction of polarization is available from pB and pB′
(or, equivalently, from Stokes Q and U). Differentiating
Equation (11) to find the maximum value of Bθ,

( )B
S pB C pB 0, 14

max
q

¶
¶

= - =q

q q=

¢

so

⎜ ⎟
⎛
⎝

⎞
⎠

( )pB

pB

1

2
arctan

2
, 15maxq

p
a=

¢
+ +

where the four-quadrant arctan is implied and selects maxima
rather than minima, and the π/2 arises from canceling negative
signs in the numerator and denominator of the arctan (adding π

to the result of the four-quadrant arctan). Making use of
Equation (15), substituting the arctan into Equation (11), and
recognizing two trigonometric cancellations yields the expected
formula for p:

( )p
B B

B

pB pB

B

2
. 16,max

2 2

º
-

=
+ ¢q

Equations (15) and (16) recover the textbook formulae for θ
and p from the Stokes formalism, in the context of the
( )B pB pB, , ¢ system instead of (I, Q, U).

3.1. Error Sources in Three-polarizer Polarimetry

Polarimetry is affected by multiple error and noise sources that
are specific to the measurement. Here we derive expressions for
calculating the error or noise associated with three-polarizer
measurements of B and pB, given important photometric or
mechanical tolerances of the instrument. The three major potential1 For “Minus, Zero, Plus”.
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sources of error are photometric noise, polarizer misalignment
errors, and finite polarizer effectiveness. We consider noise as an
approximately Gaussian-distributed random variable, with mean
value of zero, added to the true value of each quantity.

To keep track of which quantities represent physical truth
(with no noise nor measurement error) and which represent
inference from measurement (with noise and other error
sources included), we introduce an overbar to indicate directly
or indirectly measured parameters:

¯ ( )X X X, 17º + D

where X is an observable parameter such as B or pB, X̄ is the
observed value, and ΔX is a noise term.

Furthermore, we take the indices i and j to run over the (M,
Z, P) polarizer angles when mentioned in a summation, in
keeping with Equations (7), (9), and (10).

3.1.1. Photometric Errors

Propagating photometric error and noise through measure-
ments from multiple polarizers is straightforward. Photometry
is most frequently limited by Poisson-distributed photon shot
noise or similar uncorrelated noise sources. Systematic errors
can also contribute to total error; we neglect these terms, which
is equivalent to treating systematics in each channel as
randomly distributed across channels. To each value Bi we
add a noise term ΔBi that we treat as a sample of a random
variable. To propagate noise from the three samples, we take
the partial derivative of Equations (7), (9), and (10) with
respect to an arbitrary polarizer brightness, then sum the ΔBi

terms in quadrature. This approach works because
Equations (7), (9), and (10) are linear in Bi; and also the Bi

noise samples are taken to be uncorrelated. Equation (9) is
straightforward to differentiate:

( )B

B

2

3
. 18

i

¶
¶

=

In the most common case for image detectors, there is both a
signal-independent noise component and a Poisson-statistics
photon counting noise component, adding in quadrature. In that
case, we have

( ) ( )B B B B , 19i c i
2

0D = D +

where ΔcB is the signal-independent noise term (such as
detector dark noise or read noise), B0 is an instrument-specific
constant of proportionality relating radiance units to detection
quanta at an individual pixel or detector, and B Bi0 is the
Poisson noise term that arises from counting statistics. Merging
the noise terms explicitly using Equation (9) and quadrature
summation yields

[( ) ] ( )B B B B
2

3
, 20

i
c i

2
0åD = D +

or, substituting from Equation (11),

( ) ( ) ( )B B
B

B C pB S pB
2

3
3

2
. 21c

i
i i

2 0åD = D + - - ¢

The Ci terms and the Si terms sum to zero, leaving

( ) ( )B B B B
2

3
2 , 22c

2
0D = D +

which, in the special case of unpolarized light (so that Bi= B/2
for each i), would reduce, for each i, to

( )B B
2

3
, 23iD = D

which arises from Equation (22) by substituting Bi for B/2 and
noticing that the sum matches the right-hand side of
Equation (19).
Because Equation (22) is independent of pB and pB′ for

polarizer triplets, the photometric ΔB may be calculated for the
unpolarized case and remains valid in the polarized case, if the
primary noise sources scale independently of the signal and/or
with Poisson counting statistics. The form of Equation (23)
highlights that the photometric noise scales as expected from
individual samples being averaged together, shrinking by a
factor of 3 when the polarizer triplet exposures are merged.
Turning to pB, the derivative of Equation (7) is just

¯
¯ ( )pB

B
C

4

3
. 24

i
i

¶
¶

= -

The quadrature sum is

( ) ( )

( )

pB C B B B C B
4

3

4

3

3

2
.

25
i

i i c
i

i i
2 2 2

0
2å åD = D = D +

Substituting with Equation (11) to eliminate the Bi term yields

⎜ ⎟
⎛
⎝

⎞
⎠

( )

( )

pB

B
B B B

pB C pB C S
4

3

3

2

3

2 2 2

26

c
i

i
i

i i
2 0 0 3 2å å

D =

D + - + ¢

where the summation terms oscillate in θ− α, with individual
amplitude 3/4 and frequency 6 per full circle in θ. It is useful to
bound the right-hand-side of Equation (26). The maximum
value of the square root occurs when the oscillating term has its
minimum (most negative) possible value. That occurs at the
extremal value of pB and/or pB′, such that pB pB B2 2 2+ ¢ = .
Setting pB= B and pB 0¢ = , and selecting the minimum value
of the Ci

3 sum, yields

( ) ( )pB B B B
2 2

3

3

4
, 27c

2
0D D +

which can be simplified further. Adding ( )B 2c
2D to the

interior is allowed in the inequality, and yields a much simpler
expression at the cost of slightly expanding the bound:

( ) ( )pB B B B B2 2 3 . 28c
2

0D D + = D

Systems that have nonzero values of pB′ have the same upper
bound for ΔpB, because when the total relative polarization is
maximized, mixing pB and pB′ is equivalent to rotating the
polarizers (changing θ), which does not affect the minimization
of the summation terms across θ− α.
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The upper bound for pB′ clearly must be the same as for pB,
because the two quantities are related by a rotation—and
neither θ nor α appears in Equation (28). We therefore
immediately write

( )pB B3 . 29D ¢ D

In sum: although the photometric noise level in the derived
value of pB (and, by extension, other related quantities pB′, Q,
and U) from Equation (7) varies with overall polarizer angle θ,
a simple upper bound exists that is independent of θ and
(equivalently) position angle α. Photometry in polarized
brightness parameters is worse than the unpolarized overall
photometry, by a factor of up to 3 .

3.1.2. Polarizer Misalignments

Instrument polarizers are mechanical devices and subject to
alignment tolerance. The triplet (M, Z, P) system (introduced
between Equation (6) and Equations (7) and (9)) relies on a
trigonometric identity to simplify the weighted average in
Equation (6). Errors in polarizer angle for a particular exposure
translate directly to errors in B and pB independent of
photometric noise. Even assuming either perfect alignment or
proper angular calibration (using, e.g., Equation (6) or
perturbation analysis on Equation (7)), individual polarized
intensity images will be polarized at an angle that differs
slightly from nominal, due to noise in the alignment process.
Following the same methodology as in Section 3.1.1, we
characterize polarimetric response to this type of noise by
treating noise-associated error in polarizer angle as a random
variable. We then propagate the noise from the foundational
equations to Equations (7), (9), and (10) by partially
differentiating.

We start by characterizing Bθʼs θ-dependence. From
Equation (11),

( )B
S pB C pB 30i

i
i i

q
¶
¶

= - ¢

and, from Equation (9) (and making use of the same identity as
in Equation (7)),

{ } ( )B
S pB C pB

2

3
. 31

i
i i

q
¶
¶

= - ¢

Treating three Δθiʼs in quadrature (and making use of the same
identity as in Equation (26)),

( )B pB pB
2

3
. 322 2 qD = + ¢ D

Equation (32) describes a noise term in B whose magnitude is
dependent on the total degree of linear polarization regardless
of direction.

Applying the same process to pB, we have from
Equations (6) and (30)

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⎡⎣ ⎤⎦

( )( )

( )( )

( ( ) )

( ) {( ) } ( )

/

pB

C
B B S

C
S pB C pB C

C
S pB C pB C

C S

C
B B C

1
2 2

1
2 3

1
2

2 2
2 , 33

i k k j
j i ij

k k j
j j j

k k j
j j ij j

i i

k k j
j j

2

2

2

2 2

å

å

å

å

q
d

d

¶
¶

=
å

- -

+
å

-

+
å

- -

-
-

å
-

¢

¢

where δij is the Kronecker δ. Merging terms, and where
possible eliminating those terms which sum to zero, simplifies
Equation (33) considerably and yields

{ ( )

( ) }
( )

pB
B B S

S pB C pB C C S pB

2

3
2 2

2 4 .

34i
i i

i i i i i

q
¶
¶

= - -

- - +¢

Solving Equation (11) for the quantity B− 2Bθ, and substitut-
ing in to simplify Equation (34) further,

{ ( )

( ) }
( )

pB
C pB S pB S

S pB C pB C C S pB

2

3
2

2 4 ,

35
i i i

i i i i i

i

¶
¶

= - +

- - +
q

¢

¢

or, gathering terms and applying the double-angle identity,

[ ( )] ( )pB
pB

4

3
cos 4 . 36

i
i

q
q a

¶
¶

= - ¢

Equation (36) describes a noise coupling term in pB that is
proportional to pB′. Therefore, because pB′ is negligible in the
bright inner corona, small errors in polarizer angle have
negligible effect on the pB calculations in that field. This
surprising result helps explain why triplet polarization has
performed well in historical coronagraph data: in the inner few
apparent solar radii of the corona, such systems are insensitive
to small polarizer misalignments. The corresponding error term
is as curiously silent as a dog that does nothing in the night
(Doyle 1892).
Applying three Δθiʼs in quadrature yields

( )pB pB
2 2

3
. 37qD = ¢ D

Arguing from symmetry, we can also immediately write

( )pB pB
2 2

3
. 38qD ¢ = D

In sum: polarizer misalignment in principle produces
photometric error in derived polarization parameters. The
resulting error in unpolarized brightness B depends on total
polarization and not, to first approximation order, on its
direction. The corresponding error in pB calculation depends
only on the cross mode polarization pB′, and vice versa.
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3.1.3. Polarizer Effectiveness

The analysis leading to Equations (7), (9), and (10) assumed
perfect polarizers. In practice, real polarizers are not perfectly
effective and instead have a finite extinction coefficient. A real
instrument with physical polarizers will produce observed
polarizer brightnesses B̄q with

– ( )B B B, 39= +q q

where ò is a small leakage coefficient (and of course an overall
efficiency factor is removed via photometric calibration). If ò is
known, it can be calibrated out. Equation (39) propagates into
Equation (7) as

[( – ) ] ( )pB B B C
4

3
. 40

i
i i iå= - -

In the case where all the òi terms are equal, Equation (40)
reduces to Equation (7); i.e., finite polarizer extinction
effects do not affect pB measurement or, by symmetry, pB′
measurement, provided that they are constant across polarizers.

Likewise, substituting – B B Bi i= - into Equation (9), we
obtain

( )
–

( )


B
B2

3 1
, 41i i

i i
2

3

=
å

+ å

so that, if all òi terms are equal, then the calculated Bi value
must be scaled by a factor of 1− 2ò, to first approximation
order, relative to the naïve perfect-polarizer formula in
Equation (9).

In sum: the polarizer extinction coefficient ò−1 does not
affect inferred values of pB or pB′, provided that it is constant
across polarizer positions. The extinction coefficient does affect
the inferred value of B, which can be corrected provided that ò
is known. As an example, polarizers with ò−1= 200 would
incur a 1% error in the ratio pB/B from this source alone, if not
corrected using Equation (41).

4. Virtual Polarizer Triplets

So far we have established the theory of measuring the
(B, pB, pB′) coronal polarization parameters or, equivalently,
the (I,Q,U) Stokes parameters, using polarizer triplets. But the
triplet formulation is useful not only as a means of
measurement but also as a means to represent the linear
polarization state of light. A “virtual polarizer triplet”
formulation represents light as three brightness parameters
through three ideal polarizers separated by π/3 radians (60°)
each: the (M, Z, P) representation.

In the context of coronal imaging, virtual polarizer triplets
have two distinct advantages over the Stokes representation.
First, the virtual triplet is a symmetric representation: the three
brightness channels all have similar properties and none is
treated preferentially, unlike the Stokes and pB systems in
which Stokes I (or B) is treated differently from the other
parameters. Second, each parameter in the virtual triplet
representation is positive-definite; this is important in the
context of coronal measurements, because it improves back-
ground subtraction when the background itself is polarized.

Background subtraction for both coronagraphs and helio-
spheric imagers requires accumulating and modeling a
“minimum background” with varying degrees of sophistication

depending on field of view (e.g., Brueckner et al. 1995;
Howard et al. 2008). For measurements close to the Sun, the
pB′ component is negligible and the background is nearly
unpolarized (e.g., Wlérick & Axtell 1957). At solar elongations
of a few degrees, the polarization of the F corona becomes
significant (Weinberg & Hahn 1980) and its polarization must
be treated differently. At solar elongations of 10° or more, the
starfield itself is an important source of background light and
must be eliminated independently (DeForest et al. 2011).
Adding insult to injury, the starfield is itself slightly linearly
polarized by as much as a few percent by the interstellar
medium (e.g., Mignani et al. 2019). The positive-definite nature
of virtual polarizer images allows existing background
estimation methods, which apply to unpolarized radiance, to
be used on each of the three polarizer channels independently.
This allows the use of existing techniques for removal of these
background sources and instrument stray light independently in
each polarizer channel, to preserve the polarization as well as
the overall brightness of the background signal (DeForest et al.
2017). Each virtual polarizer channel is itself “just” a radiance
channel containing a fixed subset of the overall brightness
observed by the instrument, and existing techniques for finding
a running-minimum brightness apply.
Because the starfield and the F corona are fixed in different

coordinate systems, removing them requires operating not only
in different pixel coordinates (DeForest et al. 2011) but also in
different polarization coordinates. In particular, a linear
polarization signal from a particular star will maintain a fixed
direction in celestial coordinates but have variable direction of
polarization in solar observing coordinates. Therefore, coronal
polarization values accumulated in an instrument coordinate
system must be transformed into solar coordinates to identify
and remove the F corona, then into celestial coordinates to
identify and remove the starfield; then back into solar
coordinates for further analysis. This echoes the pixel
resampling that is also necessary to eliminate those background
sources.
In Section 3 we derived how to convert brightness values

measured through a triplet of polarizers into either Stokes
parameters (Equations (9), (12) and (13)) or (B, pB, pB′)
(Equations (9), (7), and (10), respectively). The inverse
transform from either the Stokes or (B pB pB, , ¢) system to a
virtual polarizer triplet at angle θ is given in Equation (11).
Here, we derive how to convert directly betweenM, Z, P virtual
triplet representations with different values of θ.
Consider a polarizer at angle f. Substituting Equations (7),

(9), and (10) into Equation (11) gives

⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

[ ( )]

( ) [ ( )] ( ) } ( )

B B

B C B S

cos 2

sin 2 . 42

i
i

i
i i

i
i i

1

2

2

3

4

3

4

3

å

å å

f a

f a

= + -

´ + -

f

Gathering terms across the finite sums gives

{ ( [ ( )]

[ ( )] )}
( )

B B B C

S

1

3
2 cos 2

sin 2 ,

43i
i i i

i

å f a

f a

= + -

+ -

f
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which simplifies to

{ ( [ ( )])} ( )B B
1

3
1 2 cos 2 , 44

i
i iå f q= + -f

and thus to

[ ( [ ]) ] ( )
{ }

B B
1

3
4 cos 1 . 45

i M Z P
i i

, ,

2å f q= - -f
Î

Equation (45) yields the predicted brightness through a
polarizer at angle f, given the brightness through an (M, Z, P)
triplet of three linear polarizers at angle θ, i.e., a set of three
linear polarizers at θ− π/3, θ, and θ+ π/3.

Important properties of Equation (45) include: (a) Bf is by
construction nonnegative for physical values of the Biʼs; (b)
setting f= θi for any of the iʼs recovers the relation Bf= Bi ;
and (c) the equation is numerically stable, with no potential
poles or singularities.

Applying Equation (45) to create predicted brightnesses for
an (M, Z, P) triplet of polarizers at f− π/3, f, and f+ π/3
constitutes a change of basis, fully describing the polarization
state not via direct brightnesses transmitted through a triplet of
physical polarizers but via predicted brightnesses through a
triplet of ideal “virtual polarizers” at an arbitrary angle f.
Provided only that both θ and f are known, the transformation
via Equation (45) preserves the full polarization state recorded
by the original triplet.

5. Representations of Polarization and of Color

There is a strong analogy between representations of color
and representations of linear polarization.

The normal human visual system has three separate color
channels at long, medium, and short wavelengths, convention-
ally labeled “red,” “green,” and “blue,” comprising a 3D space
(e.g., Young 1802; Maxwell 1857; Feynman et al. 1963). The
components are conventionally labeled (r, g, b), with each
representing radiance of light with a particular spectral
characteristic (a “primary color” of the system, which forms
a basis vector for the 3-space). In practice, a large number of
slightly different (r, g, b) systems exist, using slightly different
primary colors. All such spaces share the property of being
positive-definite, like the radiance values discussed in
Section 3; this forms a positive-definite “gamut” that

encompasses a subset of all possible colors (Figure 2(a)).
Representing colors outside the gamut would require negative
brightnesses of the primary colors, which is not physically
possible. Because of peculiarities of the human eye, no three
primary color vectors can both have positive-definite spectra
(which may be reproduced in the laboratory) and also
encompass all humanly perceptible colors. The CIE 1931
(X, Y, Z) color space (Smith & Guild 1931) is a standard (r, g,
b) system that uses nonphysical primary colors with negative
spectral intensities at some wavelengths to provide a positive-
definite gamut that encompasses all of human vision, at the cost
of requiring conversion to a physical (r, g, b) system before the
color can be rendered for viewing. (Note that the Z in (X, Y, Z)
is distinct from the Z in (M, Z, P): the former represents a blue-
like fictional primary color, while the latter represents zero
polarizer offset from a reference angle θ.)
The (r, g, b) systems are far from the only representations of

color space. Two other large classes are equally important.
Hue systems are based on the Munsell (1912) color wheel,

which parameterizes the space as hue, “chroma,” and
“luminance” (H, C, L). These systems are based around a
cylindrical projection of (r, g, b) space. Luminance is a
radiance of white light (distance from the origin along a defined
“white line” in colorimetric space, so that r, g, and b have a
given fixed ratio); chroma is a radial distance in the plane
perpendicular to the white line at particular radiance (the
“chroma plane”); and hue gives the angle at which the radius is
to be drawn in that plane (Figure 2(b)). A more common
variant of the (H, C, L) system is (H, S, L); this system replaces
C (chroma) with a relative value S (“saturation”) defined via
S≡C/L, and also replaces L (luminance) with a closely related
quantity “lightness”.
“Opponent” color systems work similarly to (H, C, L)

systems: they represent color with luminance (usually Y from
the (X, Y, Z) system) and 2D signed chroma values in the
chroma plane. The (Y,Cb,Cr) system (International Telecom-
munications Union 2017) has an unsigned luminance signal
indicating distance from the origin along the white line, and
two signed “chrominance” signals (with units of radiance) that
describe location in the perpendicular plane (Figure 2(c)). Here,
Y represents luminance and is normally a linear combination of
the (r, g, b) signals: Y≡ Krr+ Kgg+Kbb, with K 1i i

2å = . For
convenience in this cursory treatment, we ignore this scaling,
effectively setting Y= L and K 1 3i = for each Ki. The

Figure 2. Systems for representing color parameterize a 3-space that is analogous to the 3-space needed to represent linear polarization. (a) (r, g, b) uses conventional
Cartesian coordinates to represent three separate radiances in different primary colors. (b) (H, S, L) and (H, C, L) use conical and cylindrical coordinates, respectively,
around a “white line” balancing r, g, and b, with L and C having units of radiance and S ≡ C/L. (c) (Y, Cb, Cr) uses Cartesian coordinates rotated to align with the
white line.
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(Y, Cb, Cr) and related color-opponent systems are important
both for video coding and because they describe well the
perceptual aspects of the human visual system, as can be
verified by direct visual experiment (Churchland 2005).

Converting from (r, g, b) to (Y,Cb,Cr) is a simple linear
transformation. With ˆ · ˆ ˆ · ˆ ˆ · ˆY r Y g Y b= = by construction,
the realization that the chroma-plane-projected (ˆ ˆ ˆr g b, ,¢ ¢ ¢)
vectors are separated by π/3, and direct evaluation of ( )cos 3p
and ( )sin 3p , the coefficients may be written down by simple
inspection:

[ ] ( )Y r g b
2

3
, 46= + +

[ ] ( )Cb b r g
1

3
2 , and 47= - -

( ) ( )Cr r g
2

3
. 48= -

The Cb and Cr formulae describe perpendicular vectors in the
chroma plane. The Cb formula arises because of the symmetry
of the triangle formed by the projected (ˆ ˆ ˆr g b, ,¢ ¢ ¢) directions in
the chroma plane and the fact that Ĉb is parallel to b̂¢. The Cr
formula is simpler because Ĉr is parallel to the ˆ ˆg r¢ - ¢ line and
perpendicular to b̂¢.

Equations (46), (47), and (48) echo Equations (9), (12), and
(13) respectively, establishing the analogy between (r, g, b)
colors and polarizer triplet brightnesses—and, similarly,
between (Y, Cb, Cr) colors and the linear Stokes parameters.

Moving to the (H, S, L) system, measuring the hue angle
relative to b̂¢ immediately gives

[ ] ( )H Cr Cbarctan , 49=

where the four-quadrant arctan is implied, and

( )S
Cr Cb

Y
. 50

2 2
=

+

Again, this echoes directly the structure of Equations (15) and
(16), converting from the Stokes formulation to the (B, θ, p)
system, with Y, H, and S corresponding to B, 2θ′, and p
respectively (where q¢ has the appropriate reference angle
subtracted for either the (I,Q,U) or ( )B pB pB, , ¢ system).

Two useful insights come immediately from the connection
between polarization and color spaces. The first is an under-
standing of why polarizer triplets are convenient and
numerically stable representations of polarization space: they
are simply 3-vectors in the space, forming an orthonormal
basis. Polarizer triplet (or virtual polarizer triplet) brightness
parameters have a higher degree of mutual symmetry than do
Stokes parameters (which are themselves a different orthonor-
mal basis of the same space), but as orthornormal bases they
are easily analyzed, manipulated, and interconverted.

The second useful insight is the notion of a “physical
gamut”—the range of values that are both representable and not
physically impossible, within a given representation space.
Because radiances of light cannot be negative, and the spectra
of the human eye’s photosensitive pigments (treated as very-
high-dimensional vectors) are not perpendicular, no physically
realizable primary colors can represent all of human color in a
tricolor system. The specific (X, Y, Z) system of (r, g, b)
primary colors (Smith & Guild 1931) uses impossible
(nonphysical) spectra to achieve a gamut that can represent

any possible color of light, at a cost of requiring conversion to a
specific physical colorimetric system before color can be
rendered in the physical world.
A peculiarity of (X, Y, Z) is that it can also represent

physically impossible colors that cannot exist at all, even in
principle, because they cannot be rendered with any positive-
definite spectrum of light. This is also the case for (M, Z, P)
systems for representing polarization: some of the possible
vectors yield values of pB and pB′ (or, equivalently, Stokes Q
and U) that are outside the Stokes inequality B pB pB2 2 2+ ¢ ,
which determines physically possible polarization states. In the
(X, Y, Z) system, the physically realizable colors occupy an
irregularly shaped locus in the chroma plane, driven by the
specific absorption spectra in the human eye. In an (M, Z, P)
system, the physically realizable polarizations (that satisfy the
Stokes inequality) form a circle in the “polarization plane”
described by (pB pB, ¢) or (Q,U); the circle is a cross section
of the Poincaré sphere (Born & Wolf 1999), neglecting the
third Stokes perturbation parameter V.
Happily, the circle is inscribed in the triangle formed by the

(M, Z, P) gamut on the polarization plane in polarimetric space,
as can be verified by direct substitution into Equation (11). This
triangle is exactly analogous to the triangle in the chroma
plane formed by the (r, g, b) gamut, which may be seen in
Figures 2(b) and (c).
The presence of the “Poincaré circle” physical gamut inside

the triangular (M, Z, P) gamut ensures that all valid polarization
states may be represented by any suitable (M, Z, P) triplet of
polarizers (as in Equation (45)), because the circle maps to
itself under rotations about the central point.
Many impossible polarizations (which do not satisfy the

Stokes inequality and are therefore outside the Poincaré circle)
may be represented with a particular polarizer triplet.
Substituting such triplet values into Equation (45) may yield
negative polarizer radiances in the new system. As a trivial
example, a point with Bθ,M= Bθ,P= 0 and Bθ,Z= 1 yields
negative values of Bf for nearly all values of f− θ, because no
physically realizable polarization state can produce that
combination of radiances through an ideal linear polarizer
triplet. Contrariwise, all physically realizable states exist within
the Poincaré circle, which is inscribed in all possible polarizer
triplet gamuts on the polarization plane, and therefore those
states all yield positive values from Equation (45) regardless of
the value of f− θ.
In sum: the principal systems of representing linear

polarization are mathematically analogous to the principal
systems of representing color. This yields both intuition, via the
connection to (r, g, b) color systems, and insights into why the
polarizer triplet system works well for representing linear
polarization of light.

6. Conclusions

Linear polarization is an important measurement of the solar
corona and heliosphere. In the solar case, the Stokes parameters
(I, Q, U), which are defined in the instrument frame of
reference, are not the most convenient measure of polarization;
instead, because of the peculiarities of polarization in the
visible solar corona, a large body of past and current literature
treats the polarized brightness as a sort of “virtual Stokes
parameter” oriented relative to the image-plane solar radial
direction rather than in a particular instrument direction, with
its Stokes complement pB′ generally ignored. Building on that
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practical and implicit treatment, we have presented the
derivation of the Stokes-equivalent B, pB, and pB′ parameters
directly from a triplet of brightness values in three polarizers.
While the three-polarizer approach to measuring coronal
polarization was described (in Russian) by Fesenkov (1935)
and more briefly (in English) by Öhman (1947) and Billings
(1966), and is now commonly used in many instruments, the
derivation has generally used an asymmetric transition through
the Stokes parameters and/or been given cursory treatment.

Instruments making use of a polarizer triplet are subject to
particular uncertainties in measurement that are peculiar to the
polarizer triplet system. A literature search found no complete
analytic treatment of these in-principle knowable noise sources.
Accordingly, we have presented the effects of three major error
or noise sources in three-polarizer instruments on polarimetry
derived using the formulae presented here. These error sources
are: per-channel photometric error; polarizer orientation error;
and finite polarizer extinction coefficient. The most surprising
result is that polarizer orientation error does not affect the pB
measurement to first approximation order, in the inner few solar
radii of the solar corona where total polarization is in the
tangential (pB) direction. Our noise results supply first-order
derivations of the contributions from these major noise sources
to uncertainty in the calculated quantities B, pB, and pB′, for
uncorrelated, approximately Gaussian noise in the measured
radiances. Readers are cautioned that specific definitions of
derived parameters can affect noise terms in subtle ways, if
those quantities are not linearly related to the source
measurements. For example, even “well behaved” zero-mean,
Gaussian-distributed photometric noise (such as we considered
here) produces a net offset (nonzero mean) perturbation in
derived values for the total polarized brightness, °pB ≡
(Q2+U2)1/2 = (p)(B), due to geometrical effects in parameter
space (Inhester et al. 2021).

The three-polarizer representation of polarization is sym-
metric and readily transformed to different orientations. Using
“virtual polarizer triplets,” to represent polarization data
symmetrically in multiple frames, conveniently maintains the
positive-definite and symmetric properties of polarizer triplet
measurements without corresponding physical polarizers. The
mathematical transformation between different three-polarizer
systems is readily evaluated and numerically stable, making
virtual polarizer triplet analysis a useful approach for convert-
ing polarization data between different coordinate systems.

Possible applications for a virtual polarizer triplet represen-
tation include regularizing polarimetry from a coronagraph or
heliospheric imager that orbits the Sun or Earth, and
subtracting multiple types of data background that are polarized
in different coordinate systems relative to the instrument. Three
such overlapping backgrounds are potentially polarized instru-
ment stray light (fixed in the instrument frame), wide-field F
corona (fixed in the solar frame), and the starfield (fixed in the
celestial frame).

There is a direct mathematical analogy between representa-
tions of linear polarization and representations of visual color;
this analogy may help guide intuition for the analytic
derivations presented here and potentially other applications
of polarization space. The (M, Z, P), (B pB pB, , ¢) and Stokes,
and (B, θ, p) systems of representing linear polarization are seen
to be direct analogs of the (r, g, b), (Y,Cb,Cr), and (H, S, L)
systems for representing color. With this understanding, it
becomes clear why the polarizer triplet system works well for

representing and manipulating polarization values. The triplet
brightness values are immediately seen to form an orthonormal
basis of the polarization space; and physically allowable
polarization states are seen to be representable independent of
reference angle, because of the circular geometry of the
Poincaré sphere.

The authors thank A. Caspi, M. Beasley, and C. Lowder for
useful discussion and review of the article. The analysis and
discussion were improved by insights from the anonymous
referee. This work was funded through PUNCH, a NASA
Small Explorer mission, via NASA Contract No.
80GSFC18C0014.

Appendix
Definitions of pB

Historically, the fact that the corona is tangentially polarized
has led to ambiguity in the term pB, which depending on
context is used to refer either to total polarization or to only a
certain component of polarization. In the former case, authors
define and use a quantity like ( )pB Q U2 2 1 2 º + (where Q
and U are the relevant Stokes parameters and Stokes V is
neglected). °pB is thus the total polarized brightness regardless
of direction, and is analogous to C in the (H, C, L) color system
in Section 5. In the latter case, authors define and use a quantity
like ⊥pB≡ BT− BR, i.e., the difference between the radiance
observed through a tangentially aligned linear polarizer and a
radially aligned one. ⊥pB is effectively a variant on the Stokes
parameter Q, oriented radially in a solar image plane
(Figures 1(a) and (c)).
The distinction between °pB and ⊥pB is nearly moot in lower

coronal studies, where observed light happens to be polarized
perpendicular to the focal-plane solar radial direction, though °
pB responds counterintuitively to photometric noise (Inhester
et al. 2021). But the two quantities generalize differently in
cases where the overall polarization does not happen to be
tangential—for example, in wide-field coronagraphs or polar-
izing heliospheric imagers, where noncoronal polarized light
sources are significant sources of background radiance. In
addition to instrumental stray light, two such sources are the
zodiacal light (Leinert et al. 1981) and the starfield itself
(Heiles 2000).
Use of the °pB formalism is widespread in the coronal

literature. Examples include Öhman (1947) and Billings
(1966), who define Ip similarly to our °pB. Munro & Jackson
(1977) used °pB in their analysis of the corona, apparently to
avoid having to deal with angle explicitly (based on their
Equation (3), which treats Thomson scattering). More recently,
the SOHO/UVCS (Kohl et al. 1995), SOHO/LASCO
(Brueckner et al. 1995), and STEREO/SECCHI (Howard
et al. 2008) analysis pipelines calculated °pB explicitly (e.g.,
Ofman et al. 2000; Dere et al. 2005); and sources as recent as
Vorobiev & Ninkov (2014) and Reginald et al. (2017) use the
formalism in describing new polarimetric techniques using
multiplexed single-frame polarimetric detectors.
The ⊥pB formalism is equally widespread through the

coronal literature, and seems to extend even earlier than °pB.
Minnaert (1930), in his seminal work on coronal polarimetry,
follows Young (1911) in defining the quantity p≡ (Jt− Jr)/
(Jt+ Jr+2A), in which p is relative polarization, Jt and Jr are
tangentially and radially polarized elements of the visual
corona, and A is an unpolarized background brightness. We can
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immediately recognize that the quantity Jt+ Jr+ 2A is more
commonly abbreviated B, and that Minnaert’s p(Jt+ Jr+ 2A)
is an expression for ⊥pB. The HAO K coronameter (Altschuler
& Perry 1972) was specifically built to exploit the tangential
direction of coronal polarization, and ⊥pB appears explicitly (as
pB) in their analysis. Additional important references using ⊥pB
span six decades and include Saito (1965), Koomen et al.
(1975), Crifo et al. (1983), Hayes et al. (2001), Moran &
Davila (2004), Howard & Tappin (2009), de Koning & Pizzo
(2011), DeForest et al. (2013, 2017), and Dai et al. (2014). All
of these sources define a ⊥pB and refer to it as “polarized
brightness”; most refer to the quantity as pB although some
use Ip instead (note that Ip is used in these sources as a
synonym for ⊥pB and in other sources, mentioned above, as a
synonym for °pB).

The distinction between °pB and ⊥pB has been so blurred
that some authors might even use both in the same paper,
without acknowledgement of the distinction. For example, both
Guhathakurta et al. (1999) and Frazin et al. (2012) compare pB
values across different instruments, some of which generate
°pB data products and some of which generate ⊥pB data
products.

The polarized brightness parameter pB is well entrenched in
the literature, and the two meanings °pB and ⊥pB are close
enough to not differ greatly in the inner corona. However, in
wide-field coronagraphs and polarizing heliospheric imagers,
other polarized light sources come into play. In these contexts
the two parameters differ greatly in meaning; past muddiness
requires more clarity from present and future authors, who
ought to define pB explicitly (as many do already) wherever it
is used.
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