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1 | INTRODUCTION

Sustaining natural levels of genetic diversity within wildlife popula-
tions is a key concern for conservation biologists (Frankham, 1995,
2003, 2005). Pressures from climate change, anthropogenic hab-
itat modification, overexploitation, and the introduction of novel
competitors and infectious diseases are producing rapidly and ev-
er-changing environments, forcing species to adapt and evolve or go
extinct (Di Marco, Venter, Possingham, & Watson, 2018; Frankham,
Ballou, & Briscoe, 2010). Genetic diversity, the variation of alleles
and genotypes present within a population, is the foundation on
which natural selection acts and is therefore necessary for adap-
tive evolutionary change to occur (Frankham, 1995, 2003, 2005;
Frankham et al., 2010). Populations with low levels of genetic di-
versity struggle to evolve in modified environments. For instance,
the Tasmanian devil (Sarcophilus harrisii) has become vulnerable to
the spread of devil facial tumor disease due to the lack of diversity
across immune genes following human-induced population crashes
from introduced diseases (Guiler, 1970; Morris, Wright, Grueber,
Hogg, & Belov, 2015).

Habitats modified by human activity hold less genetic diversity
than pristine environments, thus putting their inhabitants at high
risk (Miraldo et al., 2016). That is because deforestation, fragmen-
tation, and habitat degradation—all critical threats to biodiversity—
interact to restrict the amount of viable habitat available to species,
reduce carrying capacity and consequently maximum population
size, and create isolated patches separated by matrix (i.e., inhospita-
ble habitat) that impedes gene flow among remaining species' popu-
lations (Baden et al., 2019; Holmes et al., 2013; Stangel, Lennartz, &
Smith, 1992). Combined, these processes lead to greater inbreeding,
reduced genetic diversity, and ultimately an increased extinction risk
(Frankham et al., 2010; Lino, Fonseca, Rojas, Fischer, & Pereira, 2019;
Struebig et al., 2011).

Though not alone inits vulnerability to habitat loss, Madagascar's
biodiversity is considered to be a top concern, in part because of its

incredible concentration of species endemism (Myers, Mittermeier,
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geographically representative localities. Population structure and F¢; analyses re-
vealed moderate genetic differentiation with localities being geographically parti-
tioned into northern, southern, western and also potentially central clusters. Overall
genetic diversity, in terms of allelic richness and observed heterozygosity, was high
in the species (AR = 4.74, Hy = 0.811). In fact, it is the highest among all published
lemur estimates to date. While these results are encouraging, ring-tailed lemurs are
currently affected by ongoing habitat fragmentation and occur at lower densities in
poorer quality habitats. The effects of continued isolation and fragmentation, cou-
pled with climate-driven environmental instability, will therefore likely impede the

long-term viability of the species.

conservation genetics, Madagascar, microsatellites, strepsirrhines

Mittermeier, da Fonseca, & Kent, 2000). Since its colonization by
humans as recently as 4,000 years ago, the island has undergone
extensive forest cover loss and with it more than 17 species of
large-bodied lemurs (Dewar et al.,, 2013; Godfrey & Irwin, 2007,
Kistler et al., 2015; Myers et al., 2000). Unfortunately, deforesta-
tion in Madagascar continues unabated (Vieilledent et al., 2018) and
scientists anticipate that remaining rainforest habitat will be lost be-
fore the end of this century (Morelli et al., 2020). When considered
alongside the impacts of climate change, this threat poses significant
risk to the persistence of remaining extant lemur species (Brown
& Yoder, 2015; Morelli et al., 2020). It is therefore an urgent con-
servation priority to quantify the genetic variability present within
Madagascar's only endemic primate radiation to assess whether and
to what extent lemur species can cope with intensifying environ-
mental pressures.

Of particular concern is Madagascar's most charismatic spe-
cies, the ring-tailed lemur (Lemur catta, Figure 1). Ring-tailed le-
murs are medium-sized (average 2.2 kg) terrestrial strepsirrhines
that can be found throughout southern Madagascar (Cameron &
Gould, 2013; Fardi, Sauther, Cuozzo, Youssouf, & Bernstein, 2018;
Gould, Sussman, & Sauther, 2003; Sauther, Gould, Cuozzo,
O'Mara, 2015; Sussman, 1991). They are considered a gener-
alist taxon, maintaining a diverse frugivorous-folivorous diet
(Cameron & Gould, 2013; Sauther, 1998; Sauther, Sussman, &
Gould, 1999) and exhibiting considerable ecological flexibility
(Cameron & Gould, 2013; Fardi et al., 2018; Gould et al., 2003;
Sussman, 1991). The species occupies diverse habitat types rang-
ing from rainforests to subalpine, deciduous, gallery, and spiny
bush forests to anthropogenic savannah (Cameron & Gould, 2013;
Gabriel, 2013; Goodman & Langrand, 1996; Goodman et al., 2002;
Goodman, Rakotoarisoa, & Wilme, 2006; LaFleur & Gould, 2009;
Sauther et al., 2006); however, much of their habitat has been
altered by human activities, including clearing for agriculture,
burning for charcoal production, and deforesting areas to create
settlements (Sussman, Green, Porton, Andrianasolondraibe, &

Ratsirarson, 2003). In the past 40 years alone, ring-tailed lemurs
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FIGURE 1 Photograph of ring-tailed lemur (Lemur catta) by M
LaFleur

have lost over 45% of their habitat (Brinkmann, Noromiarilanto,
Ratovonamana, & Buerkert, 2014; LaFleur, Clarke, Ratzimbazafy,
& Reuter, 2017a); and by 2080, it is estimated that 63% of their
remaining range will shift due to climate change alone (Brown
& Yoder, 2015). Furthermore, there has been a recent uptick
in exploitation for the illegal pet trade, causing severe popu-
lation declines, and in some cases local extinctions, through-
out their remaining geographic range (Gardner & Davies, 2014;
Gould & Sauther, 2016; LaFleur, Clarke, Reuter, Schaefer, & ter-
Horst, 2019; LaFleur, Clarke, Reuter, & Schaeffer, 2017b; LaFleur
& Gould, 2009; Reuter et al., 2019; Reuter & Schaefer, 2016). At
present, there are estimated to be fewer than 2,400 individuals
within sampled locations (Gould & Sauther, 2016; LaFleur et al.,
2017b), though population estimates are still lacking throughout
much of their range (e.g., Murphy, Ferguson, & Gardner, 2017).
Despite being one of the most-studied lemur species, there
is relatively little known about the genetic diversity and popu-
lation structure of remaining wild ring-tailed lemur individuals.
Existing studies suggest that northern (Anja Community Reserve,
Sakaviro, and Tsaranoro Valley Fragments; Clarke, Gray, Gould,
& Burrell, 2015) and western localities (Beza Mahafaly Special
Reserve and Tsimanampetsotsa National Park; Parga, Sauther,
Cuozzo, Jacky, & Lawler, 2012) maintain moderate levels of ge-
netic diversity, with the smallest fragments (e.g., Sakaviro), iso-
lated by roads and anthropogenic savannah, containing relatively
lower levels of allelic richness and “mean number of alleles” than
the larger western localities (Clarke et al., 2015; Parga et al., 2012).

Moreover, low F¢; values among sites in the north (Clarke

et al., 2015) and among those in the west (Parga et al., 2015) in-
dicate minimal genetic differentiation, suggesting the presence
of historical gene flow. While encouraging, there is also evidence
that genetic erosion within the species has already begun to neg-
atively impact their health and fitness (e.g., Charpentier, Williams,
& Drea, 2008; Grogan, Sauther, Cuozzo, & Drea, 2017). It is there-
fore likely that at least some of Madagascar's remaining ring-tailed
lemur populations are already experiencing a time-delayed re-
sponse (i.e., extinction debt), as extinctions do not typically occur
until several generations after a fragmentation event (Jackson &
Sax, 2010; Tilman, May, Lehman, & Nowak, 1994).

In an effort to characterize the remaining genetic diversity pres-
ent within the species and identify how this diversity is apportioned
among remnant populations, we provide a preliminary population
genetic assessment of ring-tailed lemurs across their remaining geo-
graphic range. We evaluate within- and across-site levels of genetic
diversity and infer population genetic structure to better understand
this species' adaptive potential and diagnose possible conservation
priorities.

2 | METHODS
2.1 | Sample collection

Our sample included 106 adult ring-tailed lemurs from nine geo-
graphically representative localities from across their existing
range (Table 1, Figure 2). This dataset includes previously pub-
lished genetic data from 75 adult ring-tailed lemurs from five lo-
calities (Clarke et al., 2015; Parga et al., 2012), as well as 31 new
individuals from an additional four sites (Table 1). Published ge-
netic data were collected in May through August 2006 (Parga
et al., 2012) and August to October 2012 (Clarke et al., 2015). Data
for new individuals were generated from fecal samples collected
from Isalo in July 2016 and from Ambirary (AMB), Beoloke (BLK),
and Berenty (BER) in June and July 2017. Multiple individuals and
groups were sampled at each locality (Table 1). Fecal samples were
immediately stored in RNAlater (Ambion) to prevent DNA degra-
dation and were banked within 1 month of collection at -80°C for
long-term storage. Sample collection and export/import protocols
adhered to Malagasy and International laws and were approved by
Malagasy wildlife authorities and the US Fish and Wildlife Service.

2.2 | DNA extraction

Total genomic DNA (gDNA) was extracted from new samples
(n = 31) using QlAamp DNA Stool Mini Kits (QIAGEN) following
Clarke et al. (2015). Samples were amplified at six microsatellite
markers that have been shown to reliably amplify fecal DNA: -2
(Merenlender, 1993), Lc5, Lcé, Lc7 (Pastorini, Fernando, Forstner,
& Melnick, 2005), 69HDZ267, and 69HDZ299 (Zaonarivelo
et al., 2007) (Appendix S1).
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FIGURE 2 Map illustrating the nine ring-tailed lemur localities sampled and population genetic structure results from DAPC (a) and
StrucTuRE (b) analyses. Each bar illustrates the proportional membership (Q) of each individual lemur belonging to the clusters identified.
DAPC (a) identified four genetic clusters (orange: west; beige: central; blue: north; brown: south). StrucTure (b) identified three genetic
clusters. The horizontal bar (b) illustrates results from primary StrucTure analysis (n = 9 sites), showing that localities partitioned into eastern
and western genetic clusters, as indicated by red and green point outlines, respectively. Vertical bar (b) illustrates results from secondary
STruCTURE analysis of eastern sites (n = 7 sites), indicating further subdivision into northern and southern clusters as indicated by blue and
orange point fills, respectively. For full site names see Table 1. Gray shading illustrates historic ring-tailed lemur distribution across southern

Madagascar retrieved from IUCN website

2.3 | Microsatellite genotyping

Extraction products were amplified via PCR in a 13 pl reaction vol-
ume using 6.25 pl HotStarTag DNA polymerase Master Mix, 20 mg/
ml BSA, 10 uM primer pairs, and 3 pl (0.25-1 ng) gDNA using anneal-
ing temperatures outlined in the Appendix S1. The 5’ end of the for-
ward primer was fluorescently labeled. PCR products were separated
by capillary electrophoresis (ABI 3730x| Genetic Analyzer), and alleles
were sized to an internal size standard (Rox-500) using GeneMarker
software v.2.6.7 (SoftGenetics). Genotype assignment was based on
multiple independent reactions, where heterozygotes were confirmed
with at least two independent reactions and homozygotes were con-
firmed with five independent reactions (Morin, Chambers, Boesch,
&amp; Vigilant, 2001; Taberlet et al., 1996). Individuals from earlier
studies (n = 45, Parga et al., 2012; n = 30, Clarke et al., 2015) were
regenotyped and scaled to ensure datasets were comparable. CERVUS
v.3.0 (Kalinowski, Taper, & Marshall, 2007) was used to calculate prob-
ability of identity (P,p), that is, the probability that two randomly drawn

individuals from a population will show identical multilocus genotypes.

2.4 | Population genetic analysis
2.4.1 | Genetic diversity

Using Micro-CHecker (van Oosterhout, Hutchinson, Wills, &

Shipley, 2004), loci were checked for the presence of null alleles

and were tested for deviations from Hardy-Weinberg equilib-
rium and linkage disequilibrium using the program Genepor v.4.2
(Raymond & Rousset, 1995). They were evaluated using a 10,000
iteration dememorization phase, followed by 100 batches of
10,000 iterations. Measures of genetic diversity, including number
of alleles per locus (nA), mean number of alleles per locus (MNA),
allelic richness (AR), observed (H,), and expected (H¢) heterozygo-
sities, and Wright's F ¢ for each sampling location were calculated
using GeNoDive (Meirmans & Van Tienderen, 2004). We standard-
ized allelic richness (AR) to the smallest sample size in the dataset
to account for uneven sampling between populations using HP-
RaRE 1.1 (Kalinowski, 2005).

2.4.2 | Population genetic structure

To assess the genetic distances between sampling localities, Wright's
Fsr (Weir & Cockerham, 1984) was calculated for all pairs of popu-
lations using GeNoDIVE (Meirmans & Van Tienderen, 2004). Feris
a measure of genetic differentiation among subpopulations and il-
lustrates whether and to what extent populations are considered
genetically distinct (Frankham et al., 2010). Significance was calcu-
lated using 10,000 permutations corrected for multiple comparisons
(Bonferroni adjusted p = 0.001).

The presence of isolation-by-distance (IBD) was evaluated using
the program GeNALEx v.6.5 (Peakall & Smouse, 2012) and signif-

icance estimated with Mantel's test using 10,000 permutations
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TABLE 2 Characteristics of 6 microsatellite markers amplified in 106 ring-tailed lemur samples, including the number of alleles per locus

(n,), observed (H,) and expected (H,) heterozygosity, deviations from Hardy-Weinberg equilibrium (HWE), and polymorphic information

content (PIC)

Size range Annealing temp

Marker (bp) (°C) n, H,

L-2 179-203 48 15 0.812
Lc5 127-151 60 12 0.680
Lcé 248-270 60 12 0.788
Lc7 172-198 60 14 0.805
69HDZ267 156-178 55 15 0.902
69HDZ299 238-262 58 15 0.881

H, HWE PIC GenBank
0.881 0.0294 0.853 -

0.847 0.5353 0.835 AY366441
0.809 0.3804 0.791 AY366442
0.862 0.2387 0.857 AY366443
0.916 0.1641 0.901 EF093488
0.915 0.8349 0.896 EF093489

Note: Significant p values (p < 0.05) are shown in bold.

(Mantel, 1967). Genetic distances between populations were esti-
mated using F¢/(1 - Fgq).

To identify genetic clusters, we used three different methods.
First, we used a model-based Bayesian clustering method imple-
mented in STRucTUre v2.3.4 (Pritchard, Stephens, & Donnelly, 2000).
This method is used to estimate the number of genetically distinct
clusters (K) with no a priori information regarding the individuals'
geographic sampling locations provided, so clusters were formed
solely on genetic information. We evaluated the hypothesis K= 1-12,
three more than the number of wild populations (Evanno, Regnaut,
& Goudet, 2005), using 100,000 iterations of MCMC following a
burn-in of 50,000 iterations, as longer burn-in or MCMC did not
significantly change our results. We implemented 20 runs for each
value of K and assumed admixture and correlated allele frequencies.
The admixture model allows individuals to have mixed ancestry, as-
suming that a portion of an individual's genome, g, comes from a sub-
population, k (where ¥, g, = 1; Falush, Stephens, & Pritchard, 2003).
To account for unbalanced sampling, the ALPHA value was changed
from the default value (1.0) to 0.5 (Wang, 2016). The most likely
number of genetic clusters (K) was assessed using the highest value
of AK (Evanno et al., 2005) using the program STRUCTURE HARVESTER
v0.6.94 (Earl & vonHoldt, 2012). STrucTURE HARVESTER calculates
the second-order rate of change of the likelihood distribution (AK),
which indicates the most pronounced subdivision within the data
and the optimal number of genetic clusters. We implemented a two-
step approach to evaluate further substructure in the dataset. We
first identified the most likely number of clusters within the overall
sample (n = 106) and then ran subsequent analyses within each of
the K clusters (Evanno et al., 2005).

To corroborate the StrucTure analysis, a discriminant analysis of
principal components (DAPC) was performed in R, using the ade-
genet package (Jombart, 2008; R Core Team, 2017). This multivari-
ate method identifies clusters of genetically related individuals that
maximize between-group variability and minimize within-group vari-
ability by using a set of retained principal components (determined
by the user to optimize variance explained; Jombart, Devillard, &
Balloux, 2010). The optimal number of clusters is determined by the
number of clusters with the smallest Bayesian information criterion
(BIC) value.

To further substantiate both the Structure and DAPC results, a
principal coordinates analysis (PCoA) was performed with a standard
genetic distance matrix (Nei, 1978) using GENALEx v.6.5 (Peakall &
Smouse, 2012).

3 | RESULTS
3.1 | Genetic diversity

The nonexclusion combined probability of identity (P,y; Paetkau &
Strobeck, 1994) of the six markers used in this study was 5.22 x 10™°
and for Py,

probability that two individuals would share the same multilocus

was 1.13 x 1073, These values demonstrate a low

genotype. The six loci were highly polymorphic, with the number
of alleles ranging between 12 and 15 alleles (Table 2). Individuals
were pooled across sampling localities, and there was no evidence
of linkage disequilibrium. One locus was found to significantly devi-
ate from Hardy-Weinberg equilibrium (L-2; Table 2); however, it did
not deviate at any one site specifically and was therefore included in
further analyses.

As a species, ring-tailed lemurs maintain high levels of ge-
netic diversity despite severe habitat fragmentation across their
range. Mean number of alleles (MNA) ranged from 4.33 to 8.67
(Table 3). The mean observed heterozygosity across sampling
sites was 0.811 + 0.044, while mean expected heterozygosity was
0.775 + 0.054. Overall F; was -0.052, and values ranged from
-0.194 at ISALO to 0.042 at BER (Table 3).

3.2 | Population genetic structure

Pairwise values of F.; among sampling localities ranged from 0.034
to 0.183, with a mean of 0.129. Genetic differentiation among sam-
pling localities was significant in 31 out of 36 cases with nonsignifi-
cant F¢; comparisons between eastern localities AMB-BLK-BER,
AMB-ANJA, and ANJA-SAKA (Table 4). Wright (1978), perhaps
somewhat subjectively, considered F¢; values between 0.05 and

0.15 to indicate moderate genetic differentiation, whereas values
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Site N MNA AR(SE)  H, H,

AMB 5 4.667 4.67 0.833 0.779
BLK 5 4.333 4.33 0.836 0.803
BER 13 8.000 5.88 0.828 0.865
ANJ 10 4.833 419 0.771 0.716
SAKA 10 4.667 4.09 0.857 0.727
TSARA 10 6.167 491 0.722 0.730
ISALO 8 4.667 419 0.854 0.719
BEZA 20 8.500 5.15 0.792 0.821
TNP 25 8.667 5.23 0.807 0.816
Overall 106 6.056 4.74 0.811 0.775

Note: Significant values (p < 0.05) are shown in bold.

of 0.15-0.25 to indicate great genetic differentiation (though
Wright's recommendations were made at a time when highly mu-
table genetic markers, such as microsatellites, were not used).
Pairwise distances (F¢;) between BER and BLK (0.053), BER and
AMB (0.071), and between BEZA and TNP (0.034) indicate minimal
to moderate genetic differentiation between these localities and
are consistent with the clustering seen in the subsequent STRUCTURE
analyses. Larger values of F¢; (>0.15), suggesting great differen-
tiation, were observed between ISALO and sampling locales in the
north (SAKA and TSARA) and south (AMB and BLK). Despite great
geographic distance, there was only moderate F; between BEZA
and BER (0.077), BEZA and BLK (0.083), and TNP and BER (0.091).
The results of Mantel's test (Figure 3) revealed a significant pattern
of isolation-by-distance (IBD; R = 0.418, p = 0.007 based on 1,000
permutations) with geographical distance explaining over 17% of
the variation in genetic distance. However, there was a consider-
able amount of unexplained variation in the IBD data. For example,
in the eastern cluster there is relatively little geographic distance
between the three populations comprising the northern (ANJA-
SAKA-TSARA) and southern groups (AMB-BER-BLK), yet some
sampling sites within each of these triads reflect moderate genetic
differentiation (Figure 3).

TABLE 3 Allelic diversity within

Fis HWE each of the nine ring-tailed lemur
-0.075 0.7111 sampling localities, including mean
-0.042 0.9666 number of alleles (MNA), allelic richness
(AR), observed (H ) and expected (H_)
0.042 0.2995 L0 . L ©
heterozygosity, inbreeding coefficient
-0.077 0.3493 (F,s), and significant deviations from
-0.179 0.0039 Hardy-Weinberg Equilibrium (HWE)
0.011 0.7723 calculated using 10,000 iterations
-0.194 0.1452
0.035 0.3109
0.011 0.2090
-0.052 -

Further analyses demonstrate that eight of nine wild populations
of ring-tailed lemurs can be geographically grouped into two struc-
tured genetic clusters: a western cluster (BEZA, TNP) and an eastern
cluster (ANJA, SAKA, TSARA, BER, AMB, and BLK), as indicated by
the highest value of AK (Figure 2b). Cluster 1 comprised individuals
from the six eastern localities and one central locality (61 of 106 in-
dividuals), and Cluster 2 comprised of individuals from the two west-
ern localities (45 of 106 individuals). The analysis was repeated with
each of the K = 2 clusters separately following Evanno et al. (2005)
and found that Cluster 1 (eastern localities) could be further subdi-
vided into K = 2 geographically structured clusters (southern, sub-
cluster 1: AMB, BLK, BER, and ISALO; northern, subcluster 2: ANJA,
SAKA, and TSARA; Figure 2b). We found that Cluster 2 (western lo-
calities) was comprised of one genetic cluster, as the mean L(K) could
not confidently exclude K = 1. Mean L(K) and AK plots of all STRucTURE
runs are provided in supplementary information (Figure S1).

We detected similar patterns of structuring in the discriminant
analysis of principal components (DAPC, Figure 2a) between the
northern, southern, and western localities; however, according to
the smallest BIC value, K-means clustering estimated four genetic
clusters. The majority of individuals clustered geographically with
southern localities (AMB, BLK, BER) showing a higher membership

TABLE 4 Pairwise F¢; values (above diagonal) and indication of significant F¢; values (below diagonal) among sampling localities of ring-

tailed lemurs

AMB BLK BER
AMB - 0.125 0.071
BLK NS = 0.053
BER NS NS -
ANJA NS * * =
SAKA * * * NS
TSARA * * * *
ISALO * * * *
BEZA * * * *
TNP * * * *

ANJA
0.124
0.141
0.117

SAKA TSARA ISALO BEZA TNP

0.129 0.185 0.146 0.111 0.139
0.136 0.164 0.183 0.083 0.107
0.107 0.129 0.101 0.077 0.091
0.072 0.109 0.150 0.122 0.155
- 0.131 0.178 0.121 0.124
* = 0.181 0.139 0.136
* * - 0.106 0.125
* * * = 0.034

Note: Significant values indicated with * (p < 0.001 after Bonferroni corrections).



CHANDRASHEKAR ET AL.

FIGURE 3 Results from Mantel's test

Fcology and Evolution o 8037
= WILEY- %%

Isolation by Distance
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probability to Cluster 1, northern localities (ANJA, SAKA, TSARA) 4 | DISCUSSION

to Cluster 2, and the central locality (ISALO) to Cluster 3. Individuals
in the western localities (BEZA and TNP) showed higher member-
ship probabilities to Cluster 4. From our initial analyses, we could
not confidently group ISALO, as our STRUCTURE results indicated that
ISALO clustered with southern localities (BER-AMB-BLK) despite
the distance (301 km) and our DAPC results grouped the site into its
own central cluster. Upon further investigation, we did find support
in our STRucTURE analysis for higher K-values (K = 3-4, Figure S2), sup-
porting the DAPC results and grouping ISALO into a separate central
cluster.

The principal coordinate analysis (PCoA; Figure 4) shows loose
clustering between sampling localities according to geographic
location. Western localities (BEZA and TNP) clustered together
along axis one, while axis 2 separated sampling localities between
north (ANJ, SAKA, TSARA) and south (AMB, BLK, BER). Though
these results indicate geographic separation, the PCoA does show
overlap between sampling localities in west, central, and southern
Madagascar.

4.1 | Genetic diversity and population structure

Although most of Madagascar's ring-tailed lemur populations are
geographically isolated, evidence described herein demonstrate that
they have retained high levels of genetic diversity, with moderate
genetic differentiation among populations despite being separated
by a relatively large geographic distance. We describe levels of ge-
netic diversity (MNA = 6.056, AR = 4.74, global H, = 0.811; Table 3)
that are higher than those found in any other strepsirrhine, includ-
ing mouse lemurs (MNA = 2.75-4.38, Hg = 0.557-0.695; Olivieri,
Sousa, Chikhi, & Radespiel, 2008; Radespiel, Rakotondravony, &
Chikhi, 2008; Table 5). Though differing in size, habitat type, and
protection status, the nine localities sampled in our study showed
similar levels of genetic diversity. Interestingly, ISALO, the largest
forest included in this analysis (81,500 ha), showed one of the lowest
levels of allelic diversity (AR = 4.19) and some of the highest levels
of heterozygosity (H, = 0.85). In fact, the genetic diversity within
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ISALO was most similar to the smallest fragment included in our
study, SAKA (14 ha, AR = 4.09, H, = 0.86; Table 3). This is likely due
to the relatively small number of markers used and our limited sam-
ple size (n = 8 individuals) at the time of this analysis.

Nevertheless, despite the limited number of markers used in this
study, we found continuous patterns of structure across this species'
range, including subdivision of eastern localities into northern and
southern groups. Though there are large geographic distances be-
tween localities, our F¢; results indicated only moderate differentia-
tion between sites. This may be attributed to the dispersal ability of
this species. Being the most terrestrial of living lemurs (Jolly, 1966;
Sussman, 1972, 1974), ring-tailed lemurs can disperse more easily
across nonforested areas than forest-dependent arboreal spe-
cies. Furthermore, the largest river drainage systems in southern
Madagascar are seasonal and therefore do not pose permanent dis-
persal barriers to this species; in fact, they may actually be used as
dispersal corridors (Goodman et al., 2006).

There was strong evidence for isolation-by-distance (IBD),
meaning there was a positive correlation between genetic and geo-
graphic distances among populations. There are currently no records
of subfossil ring-tailed lemurs outside of their current distribution
(Godfrey, Jungers, Simons, Chatrath, & Rakotosamimanana, 1999),
suggesting that this broad geographical range has been stable
through geological time (Goodman et al., 2006). If localities had been
isolated for a long time, we would expect genetic drift to erase any
pattern of IBD (Baden et al., 2014; Olivieri et al., 2008). Therefore,
there is potentially movement and relatively recent interconnectiv-
ity between ring-tailed populations via river basins (e.g., Mandrare
River; Goodman et al., 2006). Genetic structure can result from lim-
ited gene flow or from historical events such as fragmentation; how-
ever, distinguishing between these processes can be challenging,
especially when demography is unknown and forest fragmentation
is recent.

Measures of genetic diversity, gene flow, and population struc-
ture are subjected to time-lag effects (Epps & Keyghobadi, 2015).
For instance, F¢; values typically reflect historic rather than current
population structure if populations have not yet reached migration-
drift equilibrium (Whitlock & McCauley, 1999). Moreover, heterozy-
gosity is slow to decline in previously large populations following a
genetic health bottleneck (Cornuet & Luikart, 1996), a pattern which
has been documented in the western localities of this species range
(BEZA and TNP; Parga et al., 2012). Because deforestation has oc-
curred within the last few decades (Brinkmann et al., 2014; Clarke
et al., 2015; Gardner & Davies, 2014), it may therefore be too recent
to gauge whether habitat loss has negatively impacted genetic di-
versity and gene flow in this species (Keyghobadi, Roland, Matter, &
Strobeck, 2005; Nei, Maruyama, & Chakraborty, 1975).

4.2 | Conservation implications

Genetic diversity is lost more rapidly within fragmented and iso-

lated habitats, elevating a species' extinction risk (Frankham, 1995,
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2003, 2005). Our results indicate that ring-tailed lemur populations
have high levels of genetic diversity. While this is encouraging for
the conservation of the species, this may reflect past, not current
population processes. Though this species is considered the most
ecologically flexible lemur, exploiting anthropogenic landscapes and
persisting in small fragments (Cameron & Gould, 2013; Gabriel, 2013;
LaFleur & Gould, 2009; Sauther et al., 2006), they are significantly
affected by fragmentation and occur at lower densities in poorer
habitats (Eppley, Santini, Tinsman, & Donati, 2020; Gabriel, 2013;
Kelley, 2011; Sussman et al., 2003). In addition, continued fragmen-
tation and further isolation, coupled with climate change, may prove
too much for this historically abundant lemur species. Climatic cycles
have been shown to strongly affect mortality rate within this spe-
cies; a 2-year drought period in southwestern Madagascar resulted
in a tenfold increase (3%-27%) in mortality among adult populations
in this region (Gould et al., 2003).

Our future work aims to increase sampling efforts in underrepre-
sented and unprotected regions, to reflect the full geographic range
of this species and provide a species-wide genetic health assess-
ment (e.g., Calkins & Baden, in review). Moreover, this dataset forms
the basis for future landscape genetics analyses which will be used
to infer migration and gene flow across the species' remaining range.
Because ring-tailed lemurs are highly terrestrial and are suspected to
utilize river basins as dispersal corridors (Goodman et al., 2006), they
may have been able to disperse across Madagascar more easily than
the more restricted arboreal lemur species. We can use landscape
genetic analyses to test this hypothesis to not only better under-
stand what facilitates and impedes gene flow, but also to develop

targeted management plans moving forward.
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