Supporting Personalizable Learning
Gerry Stahl

CU-CS-788-95

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Supporting Personalizable Learning
by Gerry Stahl

CU-CS-788-95
October 1995

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430
(303) 492-7514

For further information or comments, contact the author:
Gerry Stahl
3900 Pebble Beach Drive
Niwot, CO 80503
(303) 444-2792

gerry@cs.colorado.edu

This Technical Report is ©1995 by Gerry Stahl

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
IN THE ACKNOWLEDGMENTS SECTION.

SUPPORTING PERSONALIZABLE LEARNING

BY GERRY STAHL

ABSTRACT

This paper outlines a research agenda for exploring computer-based approaches to
rendering educational resources personalizable. Using proposed technologies, learners
and their teachers can select exploratory activities as well as curriculum to support or
guide these learning activities from digital libraries on the Internet, and adapt the
content and display of these materials to personal interests and local needs.

The paper begins by suggesting an initial testbed for personalizable learning software
building upon the Agentsheets Remote Exploratorium (ARE) that is currently under
construction at the University of Colorado. It then touches upon diverse pedagogical
theories to underscore the importance of personalization to learning. Next, it presents a
vision of a more comprehensive system of software for personalizing resources from
global digital libraries, highlighting the general issues involved. This vision is grounded
in two innovative software systems: a Teacher’'s Curriculum Assistant (TCA) and a
Personalizable Learning Medium (PLM). Generalizing from these prototypes, it considers
several issues for a theory of personalizable software.

PREFACE: IN THE IDEAL WORLD

In the ideal world of the future you would receive this document in the form of
personalizable hypertext. This Preface might query you:

[] Which aspects of the following discussion are of most
interest to you?

[] What background do you already have in these matters?
[] How much time do you want to spend going into details?

Of course, in the really ideal future, you would already have tailored your
computational reading environment to your general preferences and you would just
have to tune that embedded knowledge to your interests in this specific material.
Then, rather than being a fixed presentation of text, this document would be tailored
to your personal interests and it would allow you to explore its ideas in an open-
ended format. The tailoring would be automated, using computational hypertext that
restructures itself dynamically. You could delegate the personalizing and also make
certain decisions yourself on what is presented. You could follow linkages among
ideas at your discretion and expand materials to whatever levels of detail you desired.

We are not yet in that long anticipated future. As a default, the author has had to
assume that you are too busy to study the details of the following argument and has
attempted to present the main points as concisely as possible. Pointers to further
motivational discussion and implementation technicalities are given at the end,
since paper documents do not allow the active linkages of hypertext.

Supporting Personalizable Learning page 1 Gerry Stahl

SECTION |. PERSONALIZING AGENTSHEETS AND THE REMOTE EXPLORATORIUM

Research at CU on human-computer communication and support of life-long
learning has long recognized the need to make complex, poorly structured
information spaces more personal (e.g., Fischer & Nieper, 1987; Fischer & Stevens,
1991). In the following pages, I propose a series of software systems to explore
technologies for personalizable software to support personalizable learning. This
research agenda largely applies approaches and functionality developed at CU—
including in my dissertation (Stahl, 1993b)—to the needs of learners and their
teachers.

During the past two years, [have designed two systems to support personalizable
learning: a Teacher’s Curriculum Assistant (TCA) and a Personalizable Learning
Medium (PLM). The implementation of TCA and PLM would be a substantial
undertaking involving several person-years of design, programming and testing. It
involves creating a digital library of educational resources and curriculum, all
structured in the correct hypertext format and properly indexed. It requires tools for
authors to construct personalizable documents, for teachers to customize lesson plans
and for learners to explore resources. The participation of teachers and learners is
needed to ensure that the software is designed to fulfill real needs and to meet
practical usage requirements.

An incremental approach to implementing the proposed approach to personalizable
software is needed. The Agentsheets Remote Exploratorium (ARE) project at CU
provides a potential testbed for doing this. ARE is a digital library of Agentsheets
simulation titles (Ambach, Perrone & Repenning, 1995). Currently, the ARE library is
centralized on a single Web server; there is little supporting information to guide or
support the selection and use of the titles; only one version of each title is available;
users cannot annotate or otherwise supplement the available information.

There is growing interest among students, teachers and researchers to see the ARE
library grow and decentralize. ARE is now at a formative point in its development.
The published library is still at a manageable size and its administration is still
centralized so that new formats and standards can be introduced without causing
problems for an installed base. This is a good time to explore how techniques of
personalizable software could enhance the usability of ARE.

An incremental approach to developing personalizable software within the ARE
project could proceed in several phases, such as:

1. A personalizable User’s Guide to Agentsheets and the Remote Exploratorium.

2. Personalizable hypertext curriculum materials to suggest educational usages of
Agentsheets simulations and to provide relevant background materials.

3. A personalizable end-user language for manipulating the computational
hypertext.

4. Personalizable versions of Agentsheets titles, with their associated curriculum and
commentaries.

5. Personalizable tools for locating Agentsheets titles globally.

Supporting Personalizable Learning page 2 Gerry Stahl

The following discussion of these phases is meant to be merely suggestive. The
details would have to be worked out with the ARE developers and with typical
potential users such as students and teachers.

PHASE 1: A PERSONAL USER’S GUIDE

Perhaps the most urgent need to support the wider use of Agentsheets is an adequate
User’s Guide. The current manual is too sketchy to meet this need. Without a more
complete manual, the anticipated spread of Agentsheets use by researchers building
new functionality, by university students developing sophisticated new titles and by
public school teachers and students exploring titles in the classroom will continue to
place a prohibitive burden on core ARE staff.

An Agentsheets User’s Guide should be part of the Agentsheets environment, so that
it can be incorporated into context-sensitive help to explain the features of
Agentsheets within Agentsheets. This means adding a hypertext facility to
Agentsheets. Giving people the ability to author commentary in the User’s Guide,
will allow developers at every level of Agentsheets (the substrate, the titles and the
instances) to document their work in a centralized repository.

A hypertext extension to Agentsheets should include support for personal
perspectives and a hypertext navigation language, even if these mechanisms are not
fully implemented during this phase. With perspectives functionality, User's Guide
contents can be entered within different perspectives, such as novice user,
student, teacher, title developer and substrate builder. Then readers can
select the appropriate perspective to display information about using Agentsheets at
their personal level. Individual users and groups of developers can define their own
perspectives and save annotations that are only relevant to them and that will not be
displayed in other perspectives.

The addition of hypertext to Agentsheets will undoubtedly have uses that go far
beyond the User’s Guide and documentation and that cannot yet be foreseen. The
power of computational hypertext will have strong synergies with the computational
agency of the simulation environment. The User’s Guide simply provides a practical
artifact to experiment with in implementing the hypertext.

PHASE 2: PERSONAL CURRICULUM

The next phase is to use the hypertext to develop personalizable educational
curriculum to accompany the Agentsheets titles. This can include lesson plans such
as those in TCA as well as textual (or multimedia) information for students exploring
titles such as that in PLM. These curricular materials will be stored on the Web as part
of ARE. All the techniques of PLM can be developed and tested in this context. Also,
people using this personal curriculum can annotate it and modify it, creating their
own new versions of documents.

PHASE 3: A PERSONAL LANGUAGE IN AGENTALK

Computational hypertext is driven by a navigational language. Queries are expressed

in this language; among other things, these queries retrieve sets of linked nodes and

display their proper versions for the user. This navigational language can be

implemented in the new approach to AgenTalk currently under development.
Supporting Personalizable Learning page 3 Gerry Stahl

AgenTalk is the end-user programming language already used to define the behavior
of agents in Agentsheets. The new approach provides a drop-and-drag visual
programming interface that guides the user in constructing syntactically and
semantically valid expressions. This interface would be very helpful and appropriate
to the hypertext language.

The kernel of the navigational language is required to implement computational
hypertext in Phase 1. However, once in place, it can be extended to serve as an end-
user language for various functions, such as defining queries for searching the Web
and defining critics for analyzing artifacts, including Agentsheets titles and
curriculum lesson plans. Because the vocabulary of the language can be customized
with personal extensions, people can define their personal queries, critics and displays
by using the language.

PHASE 4. EVERYTHING IS PERSONAL

Ultimately, all aspects of the ARE can be made personalizable. Most of Agentsheets is
already modularized or could be made so. This not only means that people can share
pieces of their titles (like an agent behavior or appearance), but that titles can have
multiple versions at any level. The Segregation simulation, for instance, could be
posted on an ARE Web server with multiple versions of its parts embedded in it.
Then a user (e.g., a teacher or a student) could select which of the available behavior
versions a given agent should have. This choice could be made on an ad hoc basis in
the interface for defining behaviors. However, it could also be made by choosing a
perspective; the choice of perspective would make choices of versions throughout the
title all at once, automatically and consistently. Associated hypertextual descriptions
could guide the user in selecting which perspective to choose. Of course, once a
narrow perspective was chosen, all commentary and User’'s Guide information
would be specific (personalized) to the versions associated with that perspective
unless one explicitly requested information from a broader perspective.

PHASE 5: PERSONAL RETRIEVAL

The ARE project is primarily concerned with making Agentsheets titles available
over the Web. Enhancing the project with techniques of personalizable software
would result in a globally distributed but locally personalizable web of Agentsheets
versions, curriculum and commentary. That is, versions of title components,
documentation and annotations would be distributed across multiple Web servers.
The distributed nodes and links of the hypertext system would be located, retrieved,
assembled and displayed by the computational hypertext system. In order to maintain
acceptable levels of efficiency, all the relevant components would be downloaded to
the user’s computer and stored locally for a certain period of time. The algorithms for
doing this would need to be worked out. The computational hypertext discussed here
goes considerably beyond the HTML hypertext of the Web; it provides far more
capabilities.

Computational hypermedia has been prototyped in a single-user system; the
challenge is to adapt it to work across the Internet, extending the power an
order of magnitude beyond HTML.

Supporting Personalizable Learning page 4 Gerry Stahl

It might be helpful to use some of the techniques from TCA to support the efficient
finding of relevant titles and associated resources on the Web. These involve the
indexing of all titles and documents at all sites and storing this meta-info at one or
more central sites. Alternatively, it may be possible to automate some of this with
Web search engines and other Internet daemons. It may also be useful to download
the meta-info to local sites periodically to facilitate tiltering and browsing of indexes
in personally structured local search spaces.

In addition to posting Agentsheets titles, documentation and curriculum, the
expanded system would allow users to post their new vocabulary for the hypertext
language—their personal languages—including definitions of search queries and
computational critics. They could also post the names of newly structured
perspectives, along with documentation on the advantages of using those
perspectives. The same language terms, queries and perspectives that are used for
personalizing individual documents could then be used in searching the Web. In
effect, the global ARE web would become a giant personalizable document.

FULFILLING THE PROMISE OF THE WEB

The World Wide Web holds out the promise of providing a decentralized, public
medium to meet people’s information needs and interests. The proposed research
agenda would create a web of information related to Agentsheets titles that could not
only serve as a model for how to make information shareable and manageable, but
would also show how to make the information personalizable. The Agentsheets
Remote Exploratorium could provide an effective testbed in which to develop
techniques for managing decentralized evolution of digital libraries with
personalizable software.

SECTION Il. PERSONALIZABLE LEARNING

TAYLORIZING THE STUDENT VERSUS TAILORING BY THE LEARNER

Learning in the future will not consist primarily of training based on Taylorized
knowledge. With the term Taylorizing 1 refer to the industrial practice of
rationalizing human activities popularized by Frederick Taylor in the early 1900’s.
This corresponds to the behaviorist movement in psychology, to instructionism in
education and, more generally, to rationalism in philosophy. Following this
worldview, one analyzes activities into elemental constituents of required skills,
physical movements and intellectual efforts. Then one optimizes the process by
removing unnecessary steps and often by separating the intellectual supervisory tasks
(management, teachers) from the repetitive motions (workers, students). This
approach drove the industrial revolution and the public education that schooled its
work force.

The term tailorable (or personalizable) learning refers to an alternative approach
needed for the info age. Rationalization provided an historically necessary service by
making explicit the elements of work and learning that had traditionally been
blended in amorphous, tacit, organic ways. But work and learning in today’s world
require reorganization and reintegration of those elements under the control of the

Supporting Personalizable Learning page 5 Gerry Stahl

individual worker or learner. There is too much innovation and info-overload now
to rely on standard operating procedures. Many contemporary work and learning
practices cannot be codified; to work in these domains is to negotiate new definitions
of the domains with one’s colleagues.

Since the beginnings of formal education, theorists have recognized the need to adapt
teaching to the personal situation of the learner. Ironically, the rationalization
process that led to standardization now makes personalizing feasible. By breaking
education into instructional elements, it provides the raw materials for the
computers of learners to re-synthesize these materials in ways suited to individual
needs (e.g., to personal backgrounds or to an immediate task at hand). The computer
provides a tool to assist in organizing enormous numbers of elements according to
flexibly specified constraints. For instance, if this paper were analyzed into elemental
ideas (say, roughly its paragraphs) and their interrelationships (their various types of
linkages) in the form of computational hypertext, then the right software could allow
you, the reader, to tailor the presentation of that material to your personal desires.

The promise of personal computers will finally be achieved when software
makes information personalizable.

Personal computers have always dangled a tempting promise in front of us: to grant
us personal control over information. Too many systems make us adapt to the
computer instead. The power of today’s computers, the sophistication of available
software techniques and the medium of the Internet combine to make feasible the
fulfillment of that promise.

SUPPORTING AUTHENTIC EXPLORATION WITH PERSONALIZED CONTENT

This paper proposes a research agenda to give learners—individually or in
collaborations—control over the information they need for their own learning
practices. Section Il motivates the need for personalizing educational materials: both
authentic projects for constructivist exploration and instructional curricular
materials to support learning-on-demand using such projects. The two competing
pedagogical approaches are here synthesized by making them both personalizable by
the learner.

Pedagogical theories have long argued for a level of personalizing that has not been
practical within traditional schooling contexts. New technologies promise to facilitate
the sharing and personalizing of both constructivist activities and instructionist
curriculum to support those activities. The following review of learning theories
motivates the need for making educational resources personalizable by learners and
their teachers.

PLATO’S CONCEPT OF EDUCATION

Plato presented his view of learning in the Meno dialog 2500 years ago. For him,
education is a process of drawing knowledge out of the learner. This is accomplished
by dialog with the learner, guiding the learner to construct an understanding of the
idea being discussed, such as a theorem of geometry. The dialog format is a
mechanism for situating teaching within the understanding of the learner and for
basing the teaching on the learner’s previous understanding. Unfortunately, this

Supporting Personalizable Learning page 6 Gerry Stahl

personalized approach to education was overshadowed by the idealistic strains that
became dominant in the later Platonist heritage. The subsequent Western tradition—
founded on Plato’s vision of eternal ideas and culminating in rationalism—gives us
little insight for understanding evolving knowledge. Plato himself could not account
for new knowledge, hence his definition of education as a remembering of
something once known but long since forgotten.

ROUSSEAU’S SUBTLE ROLE FOR THE TEACHER OR SELF-LEARNER

In The Education of Emile, Rousseau, too, stresses the need to tune educational
presentations to the personal interests and abilities of the learner. Rousseau thinks
that new material can be learned if one properly prepares, motivates and situates the
learner. The ideal is to lead the learner to construct his knowledge stage by stage,
advancing over time to where he is prepared for learning more and more. In his
labor-extensive economy Rousseau recommends a private tutor who can adapt
educational experiences to a learner’s personal needs.

VYGOTSKY’S ZONE OF PROXIMAL DEVELOPMENT

Vygotsky (1934) clarifies the notion that learners can be ready to learn something they
do not yet understand by defining that readiness as a zone ripe for development. His
developmental psychology differs from Piaget's (1929), deriving from social
communicative functions rather than primarily from an individualistic logic of
development. For both Piaget and Vygotsky, formal education can only succeed when
the student is developmentally prepared; for Vygotsky this is a function of the
student’s social context or community. That is, the ability to learn is dependent upon
the social relations and situations in which the learner is active.

LAVE’S COMMUNITY OF PRACTICE

Lave and Wenger (1991) present a theory of situated learning that focuses on an
individual’s gradually increasing participation in communities of practice. A learner
moves from the periphery of a community inwards by learning the knowledge that
defines that community. The acceptance of the newcomer into the community is a
process of negotiation through which the knowledge base of the community evolves.
This view of education applies not only to non-literate apprentice traditions like the
midwives of Peru, but to socialization processes in public schools and within
professions. Negotiations of knowledge are political processes in which traditions,
factions and individuals vie for their rival interpretations of values and definitions
from their varying perspectives, continually modifying the definition of domain
knowledge in the process. In the theory of situated learning, learning takes place
through social activity (practice or praxis). That activity constructs new domain
knowledge—not just in the sense of constructing personally meaningful
representations of the domain in the mind of the learner, but in the sense of the
community reinterpreting its own definition of the socially constructed domain.
Thus, the activity of learning transforms reality, truth and knowledge (Stahl, 1975).

The idea that communities of practice have fixed bodies of knowledge that can be
identified and codified as domain rules provided a useful fiction for early attempts at
knowledge-based computer support. However, the limits of this fiction were soon

Supporting Personalizable Learning page 7 Gerry Stahl

reached. The first problem is that domain knowledge is overwhelmingly tacit; it is
learned through gradual participation in a community. Knowledge acquisition
attempts via interviewing of experts confront a multitude of problems: there are no
“experts” who know the whole field; it is hard for experts to formulate much of their
wisdom outside of situated practice (e.g., when interviewed); terms and rules depend
upon further tacit skills and knowledge for their meaning and applicability; different
practitioners have wildly different perspectives on the same field; domains evolve
over time; creative work reinvents the field continuously (Stahl, 1993b).

LEARNING AS INTERPRETATION

The philosophy of interpretation—based on Heidegger's (1927) thought—explains
how a prepared mind learns new domain knowledge, finally answering Plato’s
quandary of how one can learn what one does not already know. Interpretation is a
process of making certain aspects of tacit previous understanding explicit in order to
conceptualize and transform (reinterpret) the knowledge. When faced with a
phenomenon that cannot be readily understood, one makes explicit one’s relevant
tacit understandings (from one’s zone of proximal development) until one can
extend previous knowledge sufficiently to embrace (interpret, comprehend) the new
phenomenon. Afterwards, the new knowledge can revert to a tacit state for use in
future situated practice. According to this philosophy, interpretation is situated,
linguistic and perspectival. That is, it is based on previous understanding, current
concerns and future goals; relies heavily on domain conceptualizations; and
necessarily adopts a personal standpoint. Accordingly, computer support for
interpretive processes should provide situational context, offer linguistic tools and be
personalizable (Stahl, 1993a).

Hermeneutics (the philosophy of interpretation) provides a framework for relating
and synthesizing competing theories of learning. According to hermeneutics,
learning is an interpretive process and is therefore situated, linguistic and
perspectival. Situated refers to the tacit dimension of background skills and
knowledge and to the social context in which learning takes place. Constructivist
attempts to create authentic projects try to create situations in which the learner has a
personal concern for the activity and can bring a background of situated
understanding to the learning experience. On the other hand, linguistic refers to the
process of making knowledge explicit through conceptualization in language. This
corresponds to the instructionist approach of providing abstract information about
the topic being learned. Hermeneutics recognizes the value in both these approaches
and assigns them to stages in the processes of interpretation, that take place within
personal perspectives. Having a perspective means that the learner understands from
within a context of personal concerns, background and goals that ground new
knowledge in understood meanings (Stahl, 1992b).

EXTENDING COGNITION TO MEET THE CHALLENGES OF THE FUTURE

The challenges facing professionals today exceed the interpretive ability of unaided

individuals. Often, the primary new skills needed are symbolic, representational,

terminological. Extended memories (such as electronic media) are needed to keep

track of overwhelming volumes of information, external representations are needed

to structure it and computational tools are needed to process it. At the same time,
Supporting Personalizable Learning page 8 Gerry Stahl

such work cannot be simply automated; the tacit knowledge and the interpretive
skills of experienced people are still absolutely central. As new challenges arise, we
must extend our skills. Conversely, new skills allow us to project newer challenges
that suddenly seem feasible within the proximal zone of our abilities. Through this
dialectic, domains of practice evolve—for individuals and communities. The
computer-based tools that are increasingly called for in this spiraling escalation of
skill requirements must capture domain distinctions and innovations as they are
created, must allow for the construction of new tools and must support creative
personal perspectives on the domain. These are fundamental requirements for
software to support learning throughout life (Stahl, 1992a).

To prepare people for the challenges of the future requires new pedagogical
approaches and new supports. The best way to learn new practices is often to practice
scaled-down versions of them, tojoin in a community of practice gradually from the
periphery. Since skilled workers carry out collaborative projects involving analysis of
data using multiple tools and representations, students should engage in similar but
simpler open-ended projects. The skills that need to be learned are not well-defined,
atomic facts but the ability to define problems, to evaluate approaches, to
communicate issues, to use computational tools, to apply multiple representations, to
delegate tasks, to negotiate team efforts, to plan and to report (NCTM, 1989). These
skills are often best learned tacitly, through participation in projects. One must be
prepared to learn (i.e., have a zone of proximal development already established) by
having been involved in similar, if simpler efforts in the past. One must also be
motivated and engaged in the new activities by being situated in personally authentic
activities.

NEED FOR CURRICULAR CONTEXTS OF PROJECTS

The project-centered learning just described requires curriculum in two senses:
guidance and content. Learners need to be guided through individual projects and
from project to project to ensure that they are ready for the activities and can get the
most out of them. They also need ready access to related information (Stahl, Sumner
& Owen, 1995). Guidance might take the form of a teacher like Rousseau or it might
be accomplished by social structures that guide newcomers into communities of
practice. Often, skilled learners with access to stimulating ideas and engaging info
sources can guide themselves by paying attention to their personal interests and
abilities.

Written curriculum can suggest sequences of projects and can provide supplementary
content to make the projects more effective learning experiences. Such content can
include technical information needed to complete a project, explicit rules useful in
the specific activities or general background information that makes the project more
interesting and meaningful. Curriculum need not mean a detailed blueprint with all
learning defined by explicit facts to be memorized and tested. Rather, it can provide
material for learning-on-demand, giving flexible access to information in response to
a learner’s situated needs. The “situation” in this case includes not only the task at
hand, the physical work environment and the social community of practice, but also
the learner’s personal background knowledge and skills. For this reason, information
delivery should not only be relevant to the task, timely and culturally sensitive, but it

Supporting Personalizable Learning page 9 Gerry Stahl

should be presented in a personally meaningful and effective format for the learner
(Stahl, Sumner & Repenning, 1995).

THE PROBLEM AND THE PROMISE

Education is in crisis. The challenges it is called upon to meet by our info society are
daunting. Many bold actions are needed to reform education adequately. Once
teachers, parents, students and administrators accept the constructionist approach in
principle, the question of what is to replace the old textbooks, drill sheets and lesson
plans poses an overwhelming practical obstacle. Here is where computer access to
digital libraries on the Internet can help: by facilitating the sharing of well thought
through educational activities and resources.

The Crisls In Edusation The Promise of Teshnolegy

ntemet dlgxtal hbrmes : , o

SRR ' mnuvauvepro;ectxdeas -
Emphasxs on ccgmhve skﬁls curriculum guides
o explaratory activities suppomng matmals o 8y

N eed for reform approach

nnovahve resuurces for students ;
_active learning - computer mmulauons :

student~0entered fj- access to

Saence &; maﬁt c&n‘ent fer‘

get hmlts reqmr
t-effechv

Figure 1. Software can bridge the gap between the crisis of education and the promise of technology by
helping learners and their teachers to access project ideas and curriculum and to adapt them to personal
needs.

The preceding paragraphs were intended to sketch a context for proposing how
computers can support learning by making shared resources personal. Until now,
educational software has generally pursued approaches (e.g., “drill and kill” or “edu-
tainment”) that missed the real potential of educational software: to present project
situations and supporting information in formats that learners and their teachers can
make personal. Sections IIT and IV will try to outline what such an approach might
entail.

SECTION lll. TEACHER’S CURRICULUM ASSISTANT

Two sets of issues have already emerged through the effort to establish the
Agentsheets Remote Exploratorium (ARE) on the World Wide Web (Stahl, Sumner
& Repenning, 1995):

Supporting Personalizable Learning page 10 Gerry Stahl

* Curriculum support: Simulations by themselves are not enough to ensure that
learning will take place. There needs to be accompanying curriculum that (a)
suggests ways for teachers to guide their students in integrating the creation and
exploration of the simulations within broader learning contexts and (b) provides
insightful and supportive background and related information.

* Personalized access: The possibility of Agentsheets users posting their creations on
the Web via the ARE points to the need for software utilities to help other
potential users to locate ARE sites, search through them for Agentsheets titles of
interest, download and run selected titles, adapt the titles to their personal needs
and share their creations or adaptations with other people through the Web.

The issues ARE raises are general problems for the use of educational digital libraries.
An independent attempt to think through what kind of software is needed to address
these issues resulted in two prototypes: a Teacher’s Curriculum Assistant (TCA) to
help teachers develop curriculum (Stahl, 1995b) and a Personal Learning Medium
(PLM) to present textual materials to students (Stahl, 1995a). These two systems will
be described in Sections IIl and IV. Then Section V will draw upon these examples to
consider some general issues concerning software support for personalizable
learning.

NEED FOR COMPUTER SUPPORT OF CURRICULUM DEVELOPMENT

Educational researchers are calling for constructivist reforms that require significant
changes in curriculum (Greeno, 1993). Printed textbooks cannot keep pace with the
necessary changes in approach, format or content required by these pedagogical
approaches. Nor are textbooks readily adaptable to local conditions and individual
learning styles. If schools are going to offer students opportunities to construct their
own knowledge actively and interactively, then new educational materials are
needed that foster exploration and that are tailored to local students and their
situations.

Isolated ideas for classroom activities and individual resources like computer
simulations, programming environments, CD-ROMs, or video disks do not by
themselves foster conceptual development. They need curricular contexts and related
materials that supply motivation, background, goals and opportunities for reflection.
They need to fit into developmentally appropriate, balanced structures that allow
time on task/time off task, exploration/reflection, individual thought/group
discussion, absorption/presentation. Classroom teachers have neither the time nor
the resources to design this kind of subtle curriculum from scratch on their own.

Electronic repositories of curriculum are necessary to speed the pace of educational
reform and to lower costs of innovative curriculum development. They must
combine the latest educational resources with carefully crafted curriculum. Attempts
to date to fill this need with scattered Internet postings or World Wide Web pages of
fixed resources have proven to be too limited. They do not provide a complete
solution to the needs of teachers who want to reform their classroom teaching. They
lack supporting materials, suggested lesson plans, or variations for different
circumstances. Standard Internet browsers do not adequately support teacher needs:
locating relevant resources, searching among them, selecting the best fit, adapting

Supporting Personalizable Learning page 11 Gerry Stahl

resources and curriculum to local needs, organizing curriculum into effective
learning contexts and sharing results or experiences.

There is a need to: (i) reuse and adapt model curriculum and resources to
local classroom situations, (ii) disseminate innovative classroom ideas and
experiences globally, (iii) establish digital educational repositories to promote
sharing of effective reform curriculum.

THE TCA APPROACH

The Teacher’s Curriculum Assistant responds to the needs of teachers interested in
implementing educational reform in their classrooms by exploring how best to make
available to them model curriculum disseminated via the technology of digital
libraries. It provides software tools to teachers for personalizing the curriculum to
their students, their teaching styles and their local conditions.

TCAis an Internet-based curriculum development environment. It provides teachers
with facilities to make effective use of educational resources available on the Internet.
It allows providers of resources—such as publishers of textbooks, educational
software, or CD-ROMs—to index and publish their offerings where teachers can
locate them. It manages the digital repositories so they can grow in an orderly way.

Acceptance of TCA by teachers, providers and repository managers entails agreement
upon a set of standards for descriptive indexing of resources and for structuring of
curriculum. For instance, a preliminary TCA prototype uses approximately 30 indexes
for resources; it structures curriculum in a hierarchy of semester themes, weekly
units, and daily lesson plans composed of resources; and it adopts certain repository
management policies. These standards are essential for providing computer support
to teachers. With such standards, many techniques of artificial intelligence and
information retrieval can be applied to the tasks of locating, searching, selecting,
adapting, organizing and sharing resources and curricula. Without them, teachers
will remain lost in the Web’s immense hyperspace.

In TCA the curriculum repository works as follows (figure 2): Curriculum providers
post educational resources to their own servers on the Internet. They publish the
addresses of these resources on a central TCA server. Along with the addresses, they
also publish descriptions (indexes) of the resources and suggested curriculum for
using the resources, adhering to TCA standards. Providers include educational
software publishers, textbook publishers, educational research centers, and other
organizations interested in the development and dissemination of reform
curriculum. Teachers have TCA client software on their desktop computers. This
software maintains a database of resource indexes and curriculum that is periodically
updated from the TCA Internet server via the school district. Teachers do their
curriculum planning with the information on their own computers and then
download resources they need from the Internet addresses stored there. This allows
the latest educational resources to flow into the teacher’s computer, where they are
organized into meaningful curriculum to structure classroom activities.

Supporting Personalizable Learning page 12 Gerry Stahl

TCA-server with curriculum
& indexes to resources

Ilnteornat

provider-clients with Internet sources
of published multimedia resources

teacher clients with desktop databases of
curriculum & indexes to resources

Figure 2. TCA network architecture. Large resources are stored on Internet servers, while summary
information about these resources is copied to the desktop computers of teachers.

A TCA PROTOTYPE

TCA includes both client and server software for accessing and maintaining
educational digital libraries on the Internet: (i) teacher-client software for teachers to
make use of model curriculum and multimedia resources, (ii) provider-client
software for organizations to publish educational resources on the Internet, and (iii)
TCA-server software to manage the digital repositories of curriculum.

Teacher-client software

The TCA approach begins with teachers and curriculum developers. It works with
them to understand teachers’ curriculum needs and the traditional curriculum usage
process. It explores with teachers ways in which personal computers with access to
educational resources and model curriculum can be used to meet their needs and to
help them obtain and adopt useful curriculum in their classrooms.

When teachers try to use browsers like Netscape or Mosaic to take advantage of the

educational ideas that are beginning to be posted to the Web, they meet with the
following problems:

* there are no effective methods for locating relevant curriculum sites,

* itis too hard to search for items of interest,

* these is no choice of versions to select for different situations,

* there are no tools for adapting what is found to local needs,

¢ there is no support for organizing scattered ideas into workable curriculum,
¢ there are no ways for teachers to share their experiences.

These problems can be overcome with centralized repositories of carefully structured
curriculum and indexed resources. The repositories should support two-way

Supporting Personalizable Learning page 13 Gerry Stahl

communication, so that teachers can share their experiences using materials in the
repositories and can “grow” the repositories.

Based on preliminary study of these issues, a TCA prototype has been developed. Six
interface screens have been designed for teacher support: Profiler, Explorer, Versions,
Editor, Planner, Networker.

The Profiler, Explorer, and Versions interfaces work together for information
retrieval (figure 3). The Profiler helps teachers define classroom profiles and locates
curriculum and resources that match the profile. The Explorer displays these items
and allows the teacher to search through them to find related items. Versions then
helps the teacher select from alternative versions that have been adapted by other
teachers. Through these interfaces, teachers can locate the available materials that
most closely match their personal needs; this makes it easier to tailor the materials to
individual requirements.

rer
.
o ves chart of vatios on a circle
o plam Greek Mimt ~ wath - week 1 -

2:
3
%z
52
[
kS
&
2
10

> it . .
> plam Goeek Mind - math - week 1 -~ day %
class work on N=L to 5§
graph N ws. B
homevank: complete chart for N = 2 to 9
: i ratios on a circle
: The ubiquity of patterns S Pascal preogrEm
: LISP version
: Pascal wersion
: version with gquadratic equation

his curriculum was designed to help studd
biguity, and representation of geometric

NEF Proj. on Computer Supported
01/22/95
2/14/95

o

Figure 3. The teacher-client software interface for locating, searching, and selecting resources and

curriculum: the Profiler, Explorer, and Versions.

The Planner, Editor and Networker help the teacher to prepare resources and
curriculum for use and to share the results of classroom use (figure 4). The Planner is

Supporting Personalizable Learning page 14 Gerry Stahl

a design environment for reusing and reorganizing lesson plans. The Editor allows
the teacher to modify and adapt resources. This is a primary means for personalizing
the curriculum. Finally, the Networker supports interactions with the Internet,
providing a two-way medium of communication with a global community of
teachers. Using the Networker, a teacher can share personalized versions of standard
curriculum with other teachers who might have similar needs.

with 2 points, there is 1 1ine, dividing the circle into 2 regions.
i re are 2 nes, dividing the cirele into 4 regions.

chart-of ratios on: a cuxle
graph ¥ us, B

Lecture on regions of a cirtle
Lecture om induction and deduction
class work en N1 i §

homework; covplete chart for N=2 to 9
Pascal progeam

Lisp progrem

Critigua: The yamcuraem take o0 mach
o to other daya
i i tie mb B s g
different grouye of ahudste

Figure 4. The teacher-client interface for adapting, organizing, and sharing resources and curriculum: the
Planner, Editor and Networker.

Provider-client software

For teachers to reuse and build upon model curriculum and innovative resources,
they must have easy access to large repositories of materials that have been developed
by provider organizations. It requires thoughtful design work, structuring and
presentation to develop materials that can be personalized by many teachers with
different needs. The TCA software supports this task. Provider-client software gives
computer-based support to the providers of curriculum and resources in preparing
their materials for the TCA Internet repository.

Digital libraries of model curriculum and related educational resources must be put
on the Internet. Both units of curriculum and individual resources must be indexed
with descriptors that correspond to teacher interests (e.g., educational standards) and
to classroom profiles.

Supporting Personalizable Learning page 15 Gerry Stahl

TCA includes software tools to facilitate the construction and inter-relating of
curriculum items, the indexing of resources, and the creation of alternative versions
of both curriculum and resources. These tools are primarily for providers of
curriculum. They can be used by NSF-funded projects submitting content to the
repository, by school district staff and by publishers of educational software or
textbooks.

Multimedia resources are maintained on servers distributed across the Internet.
These are typically servers owned by the provider. The resources can include textual
readings, evaluation materials, video clips or software such as simulations. That way,
these large files do not take up room on the teachers’ computers. This also allows the
providers to update the materials whenever necessary.

A central TCA server maintains all the model curriculum associated with the
resources as well as the descriptive indexes to the resources. Teachers have a copy of
the indexes on their computers and can update their copies from the TCA server at
will. The indexes allow teachers to search for interesting items without downloading
the large resources. This means that teachers can do their curriculum planning and
class preparation on their computer without connecting to the Internet. They only
need to connect in order to download selected resources for adaptation and
distribution to students. The Internet locations of the resources are included in the
indexes. Downloading can be consolidated by a school district for all its teachers and
done over night if Internet traffic is heavy during the school day.

Provider software incorporates the TCA index standards: what descriptors are
required or optional, what values the descriptors may take and which descriptors may
take user-defined values. These indexes are used to structure the curriculum items,
the summary information for multimedia resources and the classroom profiles that
teachers enter into their copies of TCA. This set of standards is what makes possible
extensive software support for curriculum development in TCA.

TCA-server software

Acceptance of the proposed digital repository by a national community of teachers
requires the collaboration of a number of organizations as well as the compilation of
a critical mass of curriculum content. Management structures have to be agreed upon
and standards need to be adopted for the formatting of content.

The organization and quality control of information in digital libraries is critical if
they are to be useful and usable. There are two extreme models of how to build an
effective library of personalizable materials: (i) provide a few very general materials
that have been well thought out and carefully structured for adaptation to diverse
needs or (ii) allow practitioners to contribute many versions of materials that have
proven successful in classrooms. The need for control over contents must be balanced
by the desirability of users being able to comment upon, modify and expand these
contents. Digital repositories can be structured variously to adopt different
management approaches. One repository could contain model mathematics
curriculum developed by NSF-funded projects, be managed by a committee of NSF
staff and grantees, and allow no additions by teachers using the curriculum. A second
repository could contain mathematics curriculum used by a local school district, be
managed by curriculum staff, and allow narrative annotations by teachers discussing

Supporting Personalizable Learning page 16 Gerry Stahl

their experiences using resources and curriculum. A third repository could be open
for postings by teachers, be self-managed, and allow teachers to add new ideas,
innovative resources, adapted versions, and annotations.

SECTION IV. PERSONALIZABLE LEARNING MEDIUM

OVERVIEW OFFPLM

While TCA is primarily intended to support teachers, PLM is designed for the
individual learner; together, the two systems support personalizing of the whole
classroom process of organizing learning activities and engaging in them. Once
activities and curriculum are found in a digital library, they must be adapted to the
needs and interests of individual learners and presented to them in personally
meaningful formats. PLM is a systematic attempt to integrate a number of software
techniques into a system to personalize educational materials and to present them in
the most effective format for the individual learners. PLM incorporates some of the
functionality from TCA within a system designed for learners to use themselves, and
then it adds personalizable display functions.

PLM (1) provides access to current educational materials on the Internet, (2)
supports hypertext exploration, (3) incorporates multimedia simulations, and
(4) provides comprehensive personalizability.

A personalized browser of digital libraries

It is not feasible to manually develop separate versions of curriculum for each type of
learner and each set of student interests. However, it is technically feasible to store a
single corpus of properly structured curriculum on the Internet, keep it up-to-date,
and automate its analysis into elemental units that can then be recombined in a large
variety of ways to match the needs and desires of different audiences. Furthermore,
this process of personalizing can be put under the control of the learner in ways that
are not overly intrusive or demanding. PLM takes this approach. It provides a
personalized browser of educational resources and related curriculum stored in
digital libraries on the Internet. It then displays the material to the learner in a
personalized presentation.

Computational hypermedia to customize HTML

Academic research in computer science suggests many promising applications of
hypermedia to education, particularly if hypermedia is extended with techniques
from artificial intelligence. Promising technologies for this include perspectives
mechanisms and task-specific languages. Retrieval of hypermedia materials can use
techniques of query reformulation, fuzzy logic and case-based reasoning (Stahl &
Owen, 1995) to aid in the difficult task of making relevancy criteria explicit. The user
interface to a hypermedia knowledge system can take the form of a design
environment to help people construct useful presentations of information.

The technology underlying the PLM system is computational hypermedia. It is a fine-
grained hypermedia approach that incorporates personal perspectives and a
navigational language. This hypermedia differs from conventional approaches (like

Supporting Personalizable Learning page 17 Gerry Stahl

Hypercard) in that text is broken down into sentence or paragraph-length nodes
rather than pages and eventually built back up through selection by labeled links.
That is, sets of nodes are selected and organized based on choices of perspectives and
formulations of queries in a task-specific end-user language. New labels for links can
be defined by end-users; they extend the semantics of the navigation language.
Alternative versions of nodes can be defined; they are displayed in different
perspectives. Displays are defined by statements in the language and take into account
the current perspective and the link labels (Stahl, 1991). These techniques facilitate
the creation of hypermedia webs of information for learners to explore, where the
presentation of displays and available paths are tuned to the learner’s needs.

Multimedia incorporating active simulations

The multimedia available with PLM includes text formulated in versions of SGML
(the Standard Generalized Mark-up Language for digital text), such as HIML (the
hypertext mark-up language used by the Web). It also includes text formulated for
Mathematica and other simulations. These alternative description systems are
translated and integrated into the PLM hypermedia system. This way, resources
posted to the Web or developed in applications like Mathematica can be seamlessly
integrated. Someone reading a PLM document can click on a region to download
another Web document or execute a Mathematica computation.

A comprehensive sequence of personalizing mechanisms

As currently conceived, information in PLM passes through eight stages in moving
from an educational digital library on the Internet to a display on the learner’s
computer monitor. (The eight stages are detailed below.) During each transition there
are mechanisms to tailor the information to the learner’s needs. This provides a
comprehensive process of customization. Although the mechanisms that control the
personalizing at each stage can be accessed by the learner and adjusted as much as
desired, most of them can operate automatically behind the scenes. Initial choices in
specifying personal preferences can be made by the learner, a teacher, or a software
installer and then left alone. The learner can then simply select subject matter and
options from menus.

TECHNOLOGIES FOR PERSONALIZING

Perhaps the most important advances in software in the next decade will come in
technologies for personalizing information to individual users. A number of recent
technological standards for hypertext set the stage for this advance. These standards
include: the Dexter Hypertext Reference Model and SGML. They provide standard
formats for hypertext that incorporate means for defining custom variations on the
internal structure of the hypertext and on the display of hypertext documents. For
instance, SGML specifies how to create Document Type Definitions (DTDs) that
determine how various textual elements (titles, emphasized terms, embedded links)
will appear in displays. World Wide Web documents conform to a specific SGML
language, namely HTML..

Similar mark-up languages are used in software applications like Mathematica.
Mathematica is a powerful program for the development of documents that include
mathematical computations. Sections of the documents are labeled as titles, text,

Supporting Personalizable Learning page 18 Gerry Stahl

computation inputs, etc. One can, for instance, write the equations of a 3-D graphical
object and then activate the document section to display the computed graphic. The
Mathematica language allows a user to specify how the graphic should appear: 3-D
perspective, scale, grid lines, or axis labeling. A student reading a Mathematica
document can edit the document to explore variations of the problem discussed and
then decide how to display the result.

Until recently, most software was designed either for narrowly-defined tasks that
required little effort by users but granted them little control (e.g., walk-up-and-use
applications like ATM cash machines) or systems for dedicated specialists (like CAD
programs for architectural drafting or professional programming environments) that
require months or years to master. The high-functionality systems allow for open-
ended expression, but at prohibitive cognitive costs. Personalizable software would be
adjustable, so users could choose not only levels of power but which functions they
want. These decisions could then be modified as user needs and experience evolve.

The next generation of software should empower users to personalize
software and information displays without burdening them excessively.

Personalizable software should provide tools and mechanisms for users to structure
information the way they want by indicating their desires in natural ways. PLM brings
together a set of technologies that can work together to do this for learners accessing
digital educational materials.

These technologies for providing user control of information were explored in
Hermes!, a system for NASA designers (Stahl, 1993b). The HEerMES design
environment was based on a philosophical analysis of human understanding and a
theory of how best to provide computer support for designer’s efforts to interpret new
designs. The goal was to support personalized views of architectural drawings and of
design rationale that corresponded to the designers’ differing interpretive
perspectives.

The system of hypermedia in HerMEs incorporates fine-grained nodes and typed
links, a perspectives mechanism, and a navigational language. The HERMES project
built on research into intelligent hypermedia, including PHipias (Stahl, McCall &
Peper, 1992). It also incorporated the design environment approach of systems like
JANus (Fischer, Nakakoji, Ostwald, Stahl & Sumner, 1993b). These technologies were
developed for providing high-functionality, knowledge-based computer support to
professionals working on complex tasks.

Computational hypermedia, as seen in the “Design Rationale” window of Figure 5,
makes many decisions on the presentation of material dynamically (i.e., while the
computer system is running), based on information that the user has specified. Here,
the displays are assembled dynamically to meet the specified needs of the reader. The
reader can then revise the criteria or make explicit decisions on what to see next.

" HERMES ver. 2.0 is © 1994 by Gerry Stahl
Supporting Personalizable Learning page 19 Gerry Stahl

Hermes Design Environment

File

| e
The private areas are not separated from
the public areas.

| W/hat are the design considerations
1| for bunks?

T

| roperation

® Mavigate out-going lip
O Navigate in-coming 1"
O Edit the text

(Author or Annotate - e
O Cancel) s

Out-going Links discussion of issue;

issue What are the design considerations for bunks
" Gel] Privacy Perspective

What should be the size of the bunks?
‘What should be the access ta the bunks?
What should be the arrangement of the

bunks?
The bunks should be lined along the outer
Predicates walls.
Tdiccussion ! This arrangement provides easy access
|lissue_tree ‘ from the central corridor.
| subisgue_trr:e This arrangement keeps the central

corridor open.
This arrangement allows bunks and crew
stations 1o be aligned vertically,

The bunks should be oriented one way on

Figure 5. A screen image from the HERMES design environment. Note that the text in the central window
has been dynamically assembled based on a statement in the end-user language (discussion of
issue) and that a specific perspective has been selected (the privacy perspective). The text here
is design rationale: a hierarchy of issues about the design of bunks, alternative answers to the issues, and
arguments for these answers. Each issue, answer and argument is stored as a separate node; labeled links
store their interrelationships; they are consolidated into information displays by the execution of language
statements within perspectives.

THE SEQUENCE OF PERSONALIZING IN PLM

The technical approach to designing PLM integrates customization ideas,
mechanisms, and industry standards from TCA, HERMES, and SGML.

Personalization in PLM takes place in eight sequential stages within the process of
selecting materials from the digital library, analyzing them into hypertext nodes and
links, and synthesizing selected contents into a personalized display. The stages are
represented in Figure 6 and discussed below:

Supporting Personalizable Learning page 20 Gerry Stahl

Figure 6. The sequence of personalizing mechanisms in PL M.

Stage 1. Searching for relevant materials.

The learner defines a Profile of the materials sought in the educational digital library.
This profile includes characteristics of the learner as well; generally, the profile of the
learner will not have to be altered frequently. For instance, the learner might request
exercises involving the geometry of circles. The learner’s profile might specify tenth
grade mathematics ability, ninth grade reading level, and a preference for
visualizations. It might also indicate availability of specific computer hardware and
software. The profile is used by PLM to formulate a query that retrieves a selection of
materials from the library. The profile functions as a user model for the software, but
one that is under the control of the user.

Stage 2. Browsing among related resources.

Descriptions of selected materials are displayed in an Explorer window. The learner
uses this interface to browse among related library resources, such as curriculum
guides, software tools, historical background, useful mathematical techniques,
relevant video clips. By providing for browsing within the confines of the Profile
search, PLM gives the learner freedom to explore without the danger of becoming
lost. Figure 3 showed an implementation of this synthesis of search and browsing for
teachers in TCA. Other browsing tools are possible, including graphical maps of
hypertext associations among materials.

Stage 3. Selecting the best fit version.

The digital library may include multiple versions of a given resource. For instance, a
geometry problem might be approached using 2-D constructions, equations, or

Supporting Personalizable Learning page 21 Gerry Stahl

computer programming. The learner can select the most appealing approach. In
Figure 3, a Versions selector was integrated with the Profile and the Explorer.

Stage 4. Parsing into nodes and links.

Documents are broken down into their elements (as hypertext nodes), connected by
typed hypertext links. The link types are based on the element’s SGML markup type
(e.g., “title”). This is done automatically by PLM. Custom node and link types may be
defined by learners—or by their teachers.

Stage 5. Viewing from a perspective.

The learner’s profile defines a perspective. The currently active perspective selects
which nodes and links can be viewed. This allows multiple, redundant forms of
information to be present in resources in the library, of which all but one form will be
filtered out. For instance, many people may have annotated a particular resource, but
a learner may want to filter out all annotations except her own, her teacher’s and her
classmates’. Then she would define her own perspective and have it inherit from her
teacher’s and her class’ in order to view what they view in their perspectives.

Stage 6. Querying with the language.

All PLM displays are created dynamically by queries in the hypermedia navigation
language. Statements in the language in effect specify starting nodes and types of links
to traverse. Execution of a statement takes place within a selected perspective and
results in a collection of linked nodes. This collection is the material selected for
display. The language can be extended by end-users and terms in the language can
have different meanings in different perspectives. By judicious naming of terms,
users can construct sets of language statements that read like natural expressions in
the task domain of interest.

Stage 7. Synthesizing a display.

PLM constructs a document from the collection of nodes and links. The document is
marked up using a version of SGML. At this stage, the information retrieved from
the library has been personalized.

Stage 8. Formatting the presentation.

The final stage is to display the information. The display format can be personalized
by adjusting the mark-up definitions. For instance, the hierarchical design rationale
in Figure 5 was indented by level. Alternatively, different levels could be italicized or
text size and color adjusted to individual preferences.

Through these eight stages, standardized materials are selected and displayed in a way
that can be tuned extensively by individual learners to their needs. A thoughtfully
prepared document in the digital library can be personalized differently by each
learner in the world.

Supporting Personalizable Learning page 22 Gerry Stahl

SECTION V. PERSONALIZABLE SOFTWARE

Reflection upon the approach to personalizable software in TCA and PLM raises a
number of general issues. Section V discusses several of these. It begins with the role
of personal perspectives for organizing sets of choices made in personalizing
information. Then it discusses the use of meta-info and meta-data for implementing
functionality that empowers users with control over documents. It concludes by
presenting a typology of approaches to personalizing, distinguishing the methods that
have been used in different systems.

PERSONAL PERSPECTIVES ON INFORMATION

According to the philosophy of interpretation, everyone understands things from
their own perspective. This perspective is based on their situation in history, in
society, in their own life, in their work and in their general concerns: what they
know, like and need; how they have been socialized; and how they interact with
other people.

To be an effective learner is to be able to control information that one comes across
and to personalize it within one’s own perspective. Critical thinking—the hallmark
of a sophisticated learner—consists in being able to uncover the perspectives that are
implicit in information and to critique those perspective from one’s own viewpoint.
Ideology critique, for instance, lays bare the social mediations that have molded
information so that one can evaluate the relevance of that information to one’s own
position and concerns.

Reality can only be viewed from perspectives; all knowledge is someone’s
interpretation.

There are several general implications of the perspectival character of information
for the task of supporting education with software mechanisms: (i) information
should be presented in ways that allow one to select different perspectives; (i) one
should be able to define and adjust one’s own perspective; and (iii) one should be able
to control definitions of perspectives. Control here means being able to make
perspectives visible and changeable. For all perspectives, one should be able to see the
definition of the perspective and to understand how it affects the display of
information. For one’s own perspective, one should also be able to modify its
definition.

Such control over information has always been seen as desirable by visionaries of
computer supported information exploration. In the inaugural discussion of the idea
of hypertext libraries, Bush (1945) proposed that learners should be able to define their
own paths through information. In the most recent vision of digital libraries,
Negroponte (1995) emphasizes, “Being digital, whatever it means, means having
your way.” However, to date the need to personalize information sources has not
received the attention it deserves in software system implementations.

One reason that systems to personalize information have not been pursued is that

such control can be a double-edged sword. Most people do not have the time, skill or

interest to organize the information that they use. Ideally, people want to delegate the

organizing of most information, yet be in control of organizing very special elements.

Delegation can take the form of trusting that some presumably reliable people have
Supporting Personalizable Learning page 23 Gerry Stahl

already organized the materials or, given software agent technology, it can take the
form of instructing computers in how to automate the process of organizing the
information.

In general, one probably wants different levels of control over information, accepting
the perspectives in which much information is embodied and personalizing other
information to one’s own perspective. The implementation of such control may also
take place on different levels. For instance, an author may structure some material, a
teacher may adapt parts of it and a learner may personalize other sections. Each of
these people may do some of this work manually, some of it using pre-programmed
software mechanisms and some using mechanisms that they have tailored for
specific tasks.

IMPLEMENTING LEVELS OF CONTROL

Two programming principles are especially important for implementing computer
support for levels of control:

* Provide information about information (meta-info).

* Migrate modifiable data up to levels of fixed program instructions (meta-data).

To empower users with control over information, provide them with access to
meta-info and meta-data.

The following table illustrates these principles:

role product level
hypertext author hyperdocument information
commentator organization meta-info
reader personal path interpretation
Agentsheets AS programmer mechanisms program
AS title designer simulation titles meta-data
AS player instances of titles data
PLM PLM builder build mechanisms program
PLM adapter define structure meta-content
PLM author/reader read & create text content

Table 1. The use of meta-info and meta-data in systems of hypertext, in Agentsheets and in PLM.

In table 1 three roles have been distinguished for people involved with each of three
systems: hypertext, Agentsheets and PLM. Imagine the development and use of a
hypertext document. Originally, an author (perhaps a textbook writer) enters
information into the hyperdocument. Then someone (perhaps a teacher or
curriculum specialist) performs a middle role, organizing the material by defining
sections, giving them descriptive labels and linking them together in useful ways.
This defines meta-info about the original material, making it more valuable by

Supporting Personalizable Learning page 24 Gerry Stahl

facilitating personalized use of the information. In the end, a reader (perhaps a
student) blazes a personal path of exploration through the hyperdocument, using the
meta-info to make informed choices about what to view.

Meta-info defines the linking that makes hypertext possible. But it also plays a role in
prose. Note the extensive presence of meta-info in this paper to guide the reader
through a dense argument: abstract, preface, reader’s guide, table of contents, several
layers of headings, figure text, cross-references, bibliographic references. There are also
many implicit structural indicators, from grammatical ways of defining syntactic
relationships to the repetition of names and terms that were discussed in previous
sections. Many of these literary techniques of communicating meta-info to guide
interpretation would be transformed in hypertext media. The danger in non-linear
hypertext is that the reader will quickly become lost. Personalizing the hypertext can
be used to re-impose structure—but this time under the reader’s rather than the
author’s control.

Agentsheets was also developed with a three-level division of labor in mind. The
program was created by a software developer to provide tools for simulation
designers and behaviors for simulation viewers. The developer's product is a
program. Periodically, he revises the program to meet new needs that title designers
have reported. The designers build simulation titles within the Agentsheets
environment. Their innovations do not change the Agentsheets program itself, but
provide a level of meta-data that defines the look and behavior of components of the
new simulation. For instance, the designer of the Segregation simulation defined
ways of arranging houses and placing different sets of people in the houses with
different rules about wanting to have neighbors who belong to their own set. These
simulation titles are then shared across the Internet using ARE. Finally, simulation
players can use the titles to set up specific situations to simulate. For instance,
students using Segregation can define three racial groups, each of which wants to
have 50% of their immediate neighbors be of the same race. The students can arrange
icons representing people of these three races in a simulated village and see how they
move around. The definitions at this level are simply data (e.g., location coordinates
of icons) to Agentsheets. The possibility of programming a general simulation
environment like Agentsheets instead of having to program each title from scratch is
a consequence of migrating much of the simulation functionality down to the level
of meta-data. What would otherwise have been simply part of the program source
code has been made into a layer of variable data that controls the end-user’s data.

PLM incorporates both these strategies. It structures documents with layers of meta-
info, such as labeled links. It also treats decisions about structuring, like choices of
perspectives, as meta-data. These are built into the PLM program at the first level. The
specific interface facilities enable people to either personalize information directly or
else personalize the automated mechanisms that structure the presentations of
information. This work can be done by the end users—the learners who read, create
paths and annotate the hyperdocuments—or by people in intermediate roles
(teachers, curriculum specialists or other super-users) who define the way
information will be structured for the learners. Ideally, the work of controlling the
presentation of information can be shared among authors, adapters, readers and the

Supporting Personalizable Learning page 25 Gerry Stahl

software support systems for each of them. This way the burden should not be too
great on anyone, yet the level of control will be substantial and effective.

LEVELS OF PERSONALIZING

There have been some initial efforts in commercial software relevant to the goal of
making information personalizable, although most of the work remains to be done.?
Even the terminology to define this goal is yet to be worked out.

Various levels of personalizing can be distinguished. Different system approaches
implement different forms of personalizability. These alternative forms represent
specific trade-offs between what the user can do and what the system does
automatically. Certain levels of personalizing are appropriate for specific domains,
individual users and different use situations. It is useful to identify several categories
or major forms that personalizing can take. In the following list the labels are
somewhat arbitrary because there has been no consistent distinction of these various
forms in the literature. Each of the following levels is discussed below:

* Specify: adjust settings to select values of predefined parameters; e.g., a user
expertise level may be specified on a scale between novice and expert.

* Tune: adjust display presentations; e.g., set second level headings to print in bold.

* Customize: extend list of options with new categories or objects; e.g., add a new
icon to a palette of representations.

* Personalize: make choices that change the program’s global set of settings; e.g.,
choose an overall viewing perspective.

* Tailor: change tool functionality; e.g., add a spelling checker or a spreadsheet to an
existing application.

* Program: define arbitrary system behaviors; e.g., change the source code defining
how something is computed.

Specification components and user models

Within the tradition of autonomous artificial intelligence, the common approach to
personalizing the presentation of information is to include a user model, ie., a
description for the software of characteristics of the person using the software. For
instance, many tutoring programs build up a model of the student being tutored
based on the history of the student’s behavior using the program (e.g., what sorts of
errors that student typically commits). Due to the emphasis on implementing
autonomous behavior by the software, these user models were generally not visible
or modifiable by the students or their teachers.

The idea of a specification component is to allow users to define the computer’s
model of what the user wants (Fischer, Nakakoji, Ostwald, Stahl & Sumner, 1993b).
For instance, a person using the software could specify a level of difficulty, particular

? As Lanier (1995) points out, many current attempts to personalize software with agents and front-ends
for novices insult the user’s intelligence rather than augmenting it, as called for by Engelbart (1963).

Supporting Personalizable Learning page 26 Gerry Stahl

topics of interest or other requirements. This is a mechanism for the sharing of meta-
info between the computer and the user. Such shared information allows the
software to draw more useful inferences. For instance, in TCA, the Profiler acts as a
specification component allowing a teacher to define a user model relevant to the
selection of curriculum. This is used by the TCA system not only to formulate search
queries, but also to define critics for analyzing retrieved lesson plans. The critics are
rules that compare meta-info in the indices of resources with meta-info in the user
profile to determine whether particular resources are compatible with the needs of
the teacher.

Display tuning

The display of information may be tuned to user preferences. The display of hypertext
Web pages, for instance, is tuned by browsers like Netscape to the user’s operating
system: headings and other features look different on a Mac, on an ASCII (text only)
terminal or in X-Windows. This is accomplished by encoding display information
using the HTML standard, which is variously interpreted by the browsers. This
technique is used extensively in PLM, although there the user has additional control
over how the display is formatted, whereas Netscape does this tuning autonomously.

End-user customization

The list of features that can be specified and have their display tuned in a system like
HIML is pre-defined and fixed. There are just so many levels of headings, etc.
allowed. There is no way to define a new feature, like a call-out text.

End-user customization permits the definition of new features. For instance, in
HERMES a user can add new names to the list of legal types of nodes and links. These
names are also used in the navigation language, making the semantics of the
language extensible. Similarly, the list of allowable perspectives can be extended,
adding new perspectives (as meta-data) that may build on (inherit) existing
perspectives. This kind of customization or extensibility is critical for knowledge-
based systems because the definition of domains of knowledge is rarely fixed or
independent of users and their innovative tasks (Stahl, 1995¢).

Personalizable software

Users should be able to define how they want their software to behave for them.
Personalizable software should request the name of the user and then reconfigure
itself to do all the things that user specified in the past. If a user has entered a profile
of specific interests, has tuned displays in certain ways, has customized lists of terms
and has extended palettes to include new items, then all of this should be made
automatically available to that user.

The personal perspectives mechanism provides a way of organizing this association
of comprehensive changes with individual users. In a program like HermEs that
incorporates perspectives, all work by a user is carried out in a perspective. Thus,
everything created is associated with some perspective. In the simple case, users
always use their own perspectives. Then, their changes are always available to them.

The perspective mechanism also allows for shared perspectives for collaboration.
Here, several users can work in one perspective and share specifications, tunings or
customizations made in that perspective. They can each also have their own

Supporting Personalizable Learning page 27 Gerry Stahl

perspectives with their private personalizations. Their private perspectives can
inherit from their shared perspective, so that they can take advantage of group
changes as well as their private ones. Inheritance of perspectives allows people to
build up sets of personalizations by choosing among existing perspectives to inherit
from and reuse. This means that one does not have to personalize a system from
scratch, dramatically reducing the overhead otherwise involved in personalizable
software.

Tailorable functionality

The trend in the next generation of commercial software is to support personalizing
through component-ware. OpenDoc, OLE 2 and development environments like
VisualBasic allow software functionality to be developed in independently compiled
components. Users can then build their personal system by combining useful
components. Everyone can have their own personal toolbelt of components—just
like every carpenter meets his or her special needs with a unique toolbelt full of
standardized tools. Unfortunately, the market is not yet ready for people to create
their own software this way. When they do, the available components will still have
to include mechanisms like specification components, display standards, perspectives
and task-specific languages in order to support the forms of personalizability
discussed above. It is not clear how independently developed components will be able
to share meta-info and meta-data adequately to have these personalization
components work effectively across them.

Programmability

There are many levels of programming: graphical direct manipulation, visual
programming systems, task-specific end-user scripting languages and general purpose
programming languages. Fach has its advantages in power, disadvantages in
cognitive load and appropriateness to specific uses. As a means to personalizing
software, programmability probably serves best as a last resort. When specifying,
tuning, customizing, personalizing and tailoring cannot accomplish what one wants
then programming may be necessary. In many cases, a task-specific language can meet
this need without imposing undue requirements on the user. Task-specific languages
can use the visual conventions or textual terminology of the domain and can restrict
the syntax through direct manipulation or predefined templates in order to
minimize the cognitive load on the user.

SOME GENERAL LESSONS CONCERNING PERSONALIZABLE SOFTWARE

This paper has been concerned with computer support for learners and their teachers
using resources from the Web. The systems that were described above, TCA and PLM,
illustrated a comprehensive approach to global sharing of educational resources
combined with local personalizing of relevant materials. Computer support for this
takes the form of personalizable software. A number of issues related to the design,
implementation and use of personalizable software were discussed in this final
Section. It is notable that many of the issues concerning software that personalizes
documents apply to personalizing that software itself. Hence the productive
ambiguity of the term personalizable software.

Supporting Personalizable Learning page 28 Gerry Stahl

POINTERS TO FURTHER INFORMATION

Ambach,], Perrone, C, Repenning, A (1995) “Remote Exploratoriums: Combining
Networking Media and Design Environments. Computers and Education. 24 (3) pp.
163-176.

Bush, V (1945) “As We May Think.” Atlantic Monthly. 176 (1) pp. 101-108. Reprinted in
(Greif, 1988).

Engelbart, D (1963) “A Conceptual Framework for the Augmentation of Man’s Intellect.”
Reprinted in (Greif, 1988).

Fischer, G, Nakakoji, K, Ostwald, J, Stahl, G, Sumner, T (1993a) “Embedding Computer-
Based Critics in the Contexts of Design.” Proceedings of InterCHI ‘93. Conference on
Human Factors in Computing Systems, Amsterdam, April 1993. pp. 157-164.

Fischer, G, Nakakoji, K, Ostwald, J, Stahl, G, Sumner, T (1993b) “Embedding Critics in
Design Environments.” The Knowledge Engineering Review, 4 (8), Dec. 93. pp. 285-
307.

Fischer, G, Stevens, C (1991) “Information Access in Complex, Poorly Structured

Information Spaces.” Proceedings of CHI “91. Conference on Human Factors in

Computing Systems, New York, April 1991. pp. 63-70.

Fischer, G, Nieper, H (1987) “Personalized Intelligent Information Systems.” Workshop
Report, Breckenridge, CO. Technical Report 87-9. Institute of Cognitive Science,
University of Colorado at Boulder.

Greeno, J (1993) “For Research to Reform Education and Cognitive Science.” In The
Challenge in Mathematics and Science Education: Psychology’s Response. Edited by
Penner, L, Batsche, G, Knoff, H, Nelson, D. APA Press. 1993.

Greif, 1(1988) Computer-Supported Cooperative Work. Morgan Kaufmann.
Heidegger, M (1927) Being and Time. Harper & Row. 1962.
Lanier, J (1995) “Agents of Alienation.” Interactions. 2 (3) pp. 66-72.

Lave,], Wenger, E (1991) Situated Learning: Legitimate Peripheral Participation.
Cambridge University Press.

NCTM (1989) Curriculum and Evaluation Standards for School Mathematics. National
Council of Teachers of Mathematics.

Negroponte, N (1995) Being Digital.
Piaget,] (1927) The Language and Though of the Child. Meridian Books. 1955.

Repenning, A, Sumner, T (1995) “Agentsheets: A Medium for Creating Domain-oriented
Visual Programming Languages.” IEEE Computer. March. pp. 17-25.

Stahl, G (1995a) A Personalized Learning Medium. Proposal to NSF/SBIR from Owen
Research Inc. June 1995.

Stahl, G (1995b) The Teacher’s Curriculum Assistant: A Curriculum Repository and
Development Environment to Support SMET Educational Reform. Proposal to
NSF/NIE from Owen Research Inc. April 1995.

Supporting Personalizable Learning page 29 Gerry Stahl

Stahl, G (1995¢) “Supporting Interpretation in Design.” Submitted to Design Studies.
Special issue on Design Cognition and Computation. 18 pages.

Stahl, G, Owen, R (1995) “Armchair Missions to Mars: Using Case-Based Reasoning and
Fuzzy Logic to Simulate a Time Series Model of Astronaut Crews.” Submitted to
Knowledge-Based Systems. 10 pages.

Stahl, G, Sumner, T, Owen, R (1995) “Share Globally, Adapt Locally: Software to Create
and Distribute Student-centered Curriculum.” Computers and Education. Special
issue on Education and the Internet. 24 (3) pp. 237-246.

Stahl, G, Sumner, T, Repenning, A (1995) “Internet Repositories for Collaborative
Learning: Supporting Both Students and Teachers.” Forthcoming in Proceedings of
Computer Support for Collaborative Learning. October 17-20.

Stahl, G (1993a) “Supporting Situated Interpretation.” Proceedings of the Cognitive
Science Society: A Multidisciplinary Conference on Cognition. Boulder, 1993. pp. 965-
970.

Stahl, G (1993b) Interpretation in Design: The Problem of Tacit and Explicit
Understanding in Computer Support of Cooperative Design. Ph.D. dissertation.
Department of Computer Science. University of Colorado at Boulder. Technical report
CU-CS-688-93. UMI dissertation services, Ann Arbor, M1, order no. 9423544. 451 + xiv

pages.
Stahl, G (1992a) A Computational Medium for Supporting Interpretation in Design.

Technical Report CU-CS-598-92. Computer Science Department, University of
Colorado at Boulder. 39 pages.

Stahl, G (1992b) Toward a Theory of Hermeneutic Software Design. Technical Report CU-
(S5-589-92. Computer Science Department, University of Colorado at Boulder. 16 pages.

Stahl, G, McCall, R, Peper, G (1992) “Extending Hypermedia with an Inference Language:
an Alternative to Rule-Based Expert Systems.” Proceedings of the IBM ITL Conference:
Expert Systems (October 19-21, 1992). pp. 160-167.

Stahl, G (1991) A Hypermedia Inference Language as an Alternative to Rule-Based Expert
Systems. Technical Report CU-CS-557-91. Computer Science Department, University
of Colorado at Boulder. 23 pages.

Stahl, G (1975) Marxian Hermeneutics and Heideggerian Social Theory: Interpreting and
Transforming Our World. PhD. dissertation. Department of Philosophy,
Northwestern University. Evanston, IL. Dissertation Abstracts 36 (7) order no. 75-
29,759. 372 pages.

Vygotsky, L. (1936) Thought and Language. MIT Press. 1986.

Supporting Personalizable Learning page 30 Gerry Stahl

RESEARCHAGENDA CONTENTS
Abstract
Preface: In the ideal world
Section I. Personalizing Agentsheets and the Remote Exploratorium
Phase 1: A personal user’s guide
Phase 2: Personal curriculum
Phase 3: A personal language in AgenTalk
Phase 4: Everything is personal
Phase 5: Personal retrieval
Fulfilling the promise of the Web
Section IL Personalizable learning
Taylorizing the student versus tailoring by the learner
Supporting authentic exploration with personalized content
Plato’s concept of education
Rousseau’s subtle role for the teacher or self-learner
Vygotsky’s zone of proximal development
Lave’s community of practice
Learning as interpretation
Extending cognition to meet the challenges of the future
Need for curricular contexts of projects
The problem and the promise
Section IIL Teacher’s Curriculum Assistant
Need for computer support of curriculum development
The TCA approach
A TCA prototype
Section IV. Personalizable Learning Medium
Overview of PLM
Technologies for personalizing
The sequence of personalizing in PLM
Section V. Personalizable software
Personal perspectives on information
Implementing levels of control
Levels of personalizing
Some general lessons concerning personalizable software
Pointers to further information

Research Agenda Contents

Supporting Personalizable Learning page 31

Gerry Stahl

OG0 0N NN OOy U U U e W W WN e e

WORON N NN NN F e R e e e e e
e 0O R W WO ® NN W =S O

