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Abstract

Thomson-scattered photospheric light is the dominant constituent of the lower solar corona’s spectral continuum
viewed off-limb at optical wavelengths. Known as the K-corona, it is also linearly polarized. We investigate the
possibility of using the a priori polarized characteristics of the K-corona, together with polarized emission lines, to
measure and correct instrument-induced polarized crosstalk. First we derive the Stokes parameters of the Thomson
scattering of unpolarized light in an irreducible spherical tensor formalism. This allows forward synthesis of the
Thomson-scattered signal for the more complex scenario that includes symmetry-breaking features in the incident
radiation field, which could limit the accuracy of our proposed technique. For this, we make use of an advanced 3D
radiative magnetohydrodynamic coronal model. Together with synthesized polarized signals in the Fe XIII 10746Å
emission line, we find that an ad hoc correction of telescope- and instrument-induced polarization crosstalk is
possible under the assumption of a nondepolarizing optical system.

Unified Astronomy Thesaurus concepts: Solar K corona (2042); Solar E corona (1990); Spectropolarimetry (1973);
Solar magnetic fields (1503)

1. Introduction

The accurate measurement of polarized coronal emission
lines and continua is predicate to their use as remote
diagnostics of the solar coronal magnetic field (see, e.g., Judge
et al. 2013; Landi et al. 2016). Frontier large-aperture
coronagraphic facilities, like the 4 m National Science
Foundation’s Daniel K. Inouye Solar Telescope (DKIST;
Rimmele et al. 2020) and the 1.5 m Coronal Solar Magnetism
Observatory (COSMO; Tomczyk et al. 2016), are designed to
conduct highly sensitive off-limb measurements of the
scattering- and Zeeman-effect-induced polarized signals at
visible and infrared wavelengths, where the intensity contrast
relative to the solar disk is< 10−5. Achieving accurate
polarimetric calibration of such large-aperture systems presents
numerous challenges (see, e.g., Harrington & Sueoka 2017),
especially in the absence of calibration optics that can extend
across the entire entrance pupil. This motivates the develop-
ment of alternative methods that seek to calibrate or validate
system performance through the measurement of natural
sources that are otherwise well characterized (e.g., standard
stars) or whose formation is sufficiently understood. Examples
of the latter include daytime sky Rayleigh scattering (Harring-
ton et al. 2017) and polarized Zeeman profiles of solar surface
magnetic fields (Sanchez Almeida & Lites 1992; Kuhn et al.
1994; Schlichenmaier & Collados 2002). Here, we introduce a
technique for ad hoc polarization correction (or validation) that
utilizes the expected polarized characteristics of the off-limb
corona, in particular, its near-Sun continuum (K-) and line-
emissive (E-) constituents.

Within the lower corona (i.e., heliocentric distances, or
elongations, 2Re as viewed from Earth), the off-limb

continuum is dominated by Thomson scattering of photo-
spheric light by free coronal electrons (i.e., the K-corona;
Schuster 1879; Minnaert 1930; van de Hulst 1950; Inhe-
ster 2015). It has radially decreasing intensities, peaking at a
few millionths of the disk intensity, and it is linearly polarized
with amplitudes of 10%–70%, increasing radially. Eclipse
observations by Vorobiev et al. (2020) show that K-corona
polarization on large spatial scales is oriented tangential to the
solar limb, within measurement uncertainties. This is as
expected for Thomson scattering of an unpolarized photo-
spheric radiation field that is cylindrically symmetric relative to
the radial direction, whereas the presence of symmetry-
breaking features like sunspots can induce deviations in the
polarization direction, as discussed in this work and by Saint-
Hilaire et al. (2021). In addition, the K-corona is largely
spectral line free as the high thermal velocity of coronal
electrons smooths out all but the strongest (Fraunhofer)
absorption lines (Cram 1976).
In contrast, the dust-scattered F-corona (i.e., the inner

zodiacal light) does preserve the spectral features of the
incident radiation. Utilizing this to help separate the F- and
K-corona, in a manner similar to van de Hulst (1950), the semi-
empirical eclipse model of Blackwell & Petford (1966) finds
the inner F-corona polarization to be very weak, decreasing
from 0.9% at elongations of 20 Re to 0.05% at 5 Re (see also
Ingham 1961). This lends support for assuming that the
F-corona has negligible polarization near the Sun, which
subsequently allows F- and K-corona separation through
polarized measurements (Koutchmy & Lamy 1985). Using
color-dependent analysis, however, Boe et al. (2021) recently
found larger fractions of F-corona scattering at small elonga-
tions when compared to Koutchmy & Lamy (1985), which may
result from the relative uncertainty in our knowledge of
F-corona polarization, as discussed by Mann (1992), Kimura &
Mann (1998), and Lamy et al. (2021), and highlights the
importance of spectropolarimetric measurements.
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While recognizing the above uncertainties, it remains the
case that the off-limb continuum polarization is substantially
polarized and oriented, with few exceptions, tangential to the
projected radial vector. As a result, these characteristics offer
a priori constraints on the polarized response of a coronagraph,
given some additional knowledge of the optical system. Lamy
et al. (2021), for example, minimized the deviation angle of the
polarization orientation from the tangential direction by
adjusting the polarized transmissions of a single linear polarizer
model for LASCO-C3 observations.

We consider the case of a more generalized optical system
with a larger number of free variables, as required especially
for modeling articulated full-Stokes polarimeters like DKIST.
Jaeggli et al. (2022) have argued for the benefits of modeling
optical systems using the polar decomposition for a non-
depolarizing Mueller matrix, which treats an arbitrary optical
system as a nondepolarizing combination of an elliptical
diattenuator and an elliptical retarder, as described in Chipman
et al. (2018). As such it can treat crosstalk from intensity to
polarized states, as well as between the polarized states. As will
be shown, applying this model to coronal observations requires
additional constraints. In addition to the continuum polarization
orientation, we take advantage of the spectral line-free
character (apart from telluric absorption) of the Thomson-
scattered continuum and the presumption that the F-corona is
very weakly polarized in the inner corona. An additional
constraint is the expected zero net circular polarization (Stokes
V ) within forbidden emission lines. Under conditions of
excitation by unpolarized photospheric radiation and/or
thermal collisions, the circularly polarized profile results from
Zeeman splitting and is integrated along a line of sight (LOS)
traversing the diffuse, optically thin corona (see, e.g., Schad &
Dima 2020). In the absence of other mechanisms, the line-
integrated Stokes V emissivity is zero.

Below, we demonstrate the use of the K- and E-coronal
signals in constraining the polarimetric system response, by
using a nondepolarizing optical model applied to synthetically
calculated observables. As the upcoming large-aperture facil-
ities, especially DKIST, will often target active regions with
limited fields of view, we consider possible deviations in the
tangential character of Thomson polarization at low heights
near symmetry-breaking features. The role of symmetry-
breaking in the incident radiation field on polarized emission
lines has already been treated in our prior work (Schad &
Dima 2021, hereafter Paper I). We find that jointly considering
the K- and E-coronal signals can benefit from a common
formalism for specifying the incident radiation field, comple-
mentary to the methods introduced by Saint-Hilaire et al.
(2021). Therefore, we begin in Section 2 by deriving the
polarized emissivities in the Stokes formalism for Thomson
scattering, while making use of the irreducible spherical tensors
introduced in Landi Degl’Innocenti (1983). In Section 3, we
forward synthesize Stokes spectra through a 3D radiative
magnetohydrodynamic (MHD) coronal model of a bipolar
active region, before discussing and demonstrating the ad hoc
polarization correction technique in Section 4.

2. Thomson Scattering of Unpolarized Light

The classical differential cross section for Thomson-
scattered radiation resulting from the interaction of an incident
plane wave with a single electron is given by (see, e.g.,

Jackson 1998)

∣ · ∣ ( )s
W¢

= ¢
¢

d

d
r , 1

k
e
2 2 *

where ¢ and ò denote the scattered and incident polarization
vectors for waves propagating along ¢k and k, respectively, re is
the classical electron radius (2.82× 10−15 m), and the asterisk
denotes complex conjugation. The differential cross section is
the power radiated per unit solid angle (optionally per unit
wavelength) into the scattering direction per unit incident flux,
i.e., the power per unit area and optionally per unit wavelength.
The prime notation on W¢d is used to clarify that the unit solid
angle here is specified in the scattering frame directed along ¢k .

2.1. Polarized Emissivities in a Fixed Stokes Frame

Calculating the polarized emission coefficients (i.e., the
spectral radiance per unit volume) of Thomson scattering along
a given LOS requires considering a volume element with
electron density ne and integrating over all incident radiation
field directions. It is beneficial to consider a fixed geometry
along the scattering direction, with a fixed orientation of the
Stokes vectors along the observer’s LOS. In Figure 1, two
Cartesian coordinate frames are defined with a common origin
at the scattering location. The scattered ray lies along the z-axis
in the primed coordinate frame (i.e., parallel to the unit vector
ˆ¢e z). Its polarization unit vectors, which are orthogonal to the
scattering direction, are given by ˆ¢e x and ˆ¢e y. Meanwhile, the
incident ray’s direction is free to vary and has a polar angle q¢
and an azimuthal angle f¢ in the coordinate frame fixed to the
scattering direction. The second Cartesian frame is aligned with
the incident ray, with êz being parallel to its direction and êx and
êy being its polarization unit vectors. The two coordinate
frames are related through a general 3D rotation. For the case
of unpolarized incident radiation, this can be further simplified
as the rotation of the incident ray’s polarization unit vectors
about its propagation direction being unimportant. Thus, this
degree of freedom can be removed without losing generality.
We here specify the incident plane defined by êx and êz to be
parallel to the scattered direction ˆ¢e z. Subsequently, the sets of
unit vectors are related according to
[ ˆ ˆ ˆ ] ( ) ( )[ ˆ ˆ ˆ ]q f= ¢ ¢ ¢ ¢ ¢e e e e e e, , , , ,x y z

T
y z x y z

T  where ( )q¢y and
( )f¢z are passive Cartesian transformation matrices for

counterclockwise axis rotation about the intrinsic y-axis and

Figure 1. Geometry of the Thomson scattering calculation referenced to a fixed
Stokes frame along the LOS defined by the scattering direction and with Stokes
+Q aligned parallel to the ˆ¢e x polarization vector of the scattered ray.
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using the shorthand notation =C xcosx and =S xsinx .
Assuming the incident radiation field is unpolarized, an

individual wave can be decomposed into two equal compo-
nents of linearly polarized light aligned with the êx and êy axes.

The unit incident flux in the direction W

is given by ( )WWI d , or,

equivalently, ( )W¢W¢I d , when specified in the geometry of the
scattering frame for which W¢


is oriented at ( )q f¢ ¢, . Similar to

Kosowsky (1996), we can define the Stokes parameters of the
scattered wave propagating in the direction ¢k ( ˆ¢e z ) using the
canonical Stokes basis vectors in the primed coordinate frame
and the cross section given in Equation (1). The positive Stokes
Q direction is chosen here to align with the ˆ¢e x vector, as shown
in Figure 1. After multiplying by the electron density ne, the
differential Stokes emissivities (i.e., the spectral radiance in the
scattered direction ˆ¢e z per unit volume per unit solid angle of
the incident radiation) are given by

∣ ˆ · ˆ ∣ ∣ ˆ · ˆ ∣ ( )
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where ˆ ( ˆ ˆ )¢ = ¢ + ¢e e e 2a x y and ˆ ( ˆ ˆ )¢ = ¢ - ¢e e e 2b x y are the
Stokes U basis vectors rotated 45° relative to Stokes Q. òV= 0
in the case of unpolarized incident radiation and is not
considered further. Note that W¢d in Equations (3)–(5) is the
unit solid angle of the incident radiation in the scattering frame,
but not specifically in the scattering direction. The unit solid
angle of the scattered radiation is subsumed into the emission
coefficient.

Using Equation (2), we can transform the unit vectors onto a
common basis to carry out the dot products in
Equations (3)–(5), which results in the Stokes emissivities of
Thomson scattering along the scattered direction ˆ¢e z:

∣ ( ) ( )ˆ ò q¢ = W¢ ¢ + ¢q f¢ ¢
n r

d I
2

1 cos ; 6I e
e e

2
2

z

∣ ( )ˆ ò q f¢ =
-

W¢ ¢ ¢ ¢q f¢ ¢
n r

d I
2

sin cos 2 ; 7Q e
e e

2
2

z

∣ ( )ˆ ò q f¢ =
-

W¢ ¢ ¢ ¢q f¢ ¢
n r

d I
2

sin sin 2 , 8U e
e e

2
2

z

where W¢I  has been rewritten as ¢q f¢ ¢I and is implicitly
wavelength-dependent. Note that the sign differences in our
equations for òQ and òU when compared with Kosowsky (1996)
result from our definition of the +Q reference direction and our
use of f+ ¢ to represent the customary counterclockwise
azimuthal angle. It is clear given the above that when f¢ = 0,
òQ is negative and òU= 0, which corresponds to linear
polarization perpendicular to the scattering plane.

2.2. Quantifying the Incident Radiation Field with Irreducible
Spherical Tensors

While the above equations are complete, the radiation field is
not conveniently quantified, as its angular variation is
referenced to the scattering direction. The radiation field of
an outer stellar atmosphere is more readily determined in a
reference frame aligned with the radial direction, where, in the
nominal case, it is cylindrically symmetric, nonpolarized, and
exhibits limb-darkening. Similar to the case of the cosmic
microwave background (CMB) described by Kosowsky
(1996), it is useful to expand the radiation field in an
irreducible representation. In the CMB field, spherical
harmonics are often used. Here, we employ the (KQ)
representation introduced by Landi Degl’Innocenti (1983), for
which the components of the irreducible tensor of an
unpolarized radiation field JQ

K at frequency ν are given by
(see Equation (5.157) of Landi Degl’Innocenti & Land-
olfi 2004, hereafter LL04):

∮( ) ( ) ( )n
p

n=
W

WJ I
d

4
, ; 90

0

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p

q n=
W

- WJ I
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2 2

d

4
3 cos 1 , ; 100

2 2

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
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2

d

4
sin cos e , ; 111

2 i
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∮( ) ( ) ( )n
p
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W

Wf


J I
3

4

d

4
sin e , . 122

2 2 2i


Note that our notation uses f for the azimuthal angle instead of
χ, as used by LL04. These equations fully quantify the
unpolarized radiation field within a given reference frame (i.e.,
in either the local stellar frame or within the scattering
direction’s frame), and they have the advantage that under
rotations, the tensor transforms according to

( ) ( )å¢
¢ =J J R , 13Q
K

P
P
K

PQ
K

where ( )RPQ
K is a rotation matrix discussed further below (see

also LL04 Equation (2.68) and Section 2.7.)
First, using Equations (9)–(12), the I, Q, and U emissivities

in Equations (6)–(8) can be recast, after some algebra, as

∣ ( )ˆ
p

¢ = ¢ +
¢n r

J
J8

3 2
14I e

e e
2

0
0 0

2
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⎛
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⎠

( )s
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n J 1
2

; 15T e 0
0⎛
⎝

⎞
⎠

( )∣ ( )ˆ s+ ¢ = - ¢i n J3 , 16Q U e T e 2
2

z 

where the primed ¢JQ
K notation denotes spherical tensor

components in the coordinate frame aligned with the scattering
direction (i.e., along an observer’s LOS). The mean intensity
(K, Q= 0, 0) is preserved in all coordinate frames ( ¢ =J J0

0
0
0).

The term ω (or w¢ in the scattered frame) is referred to as the
anisotropy factor given by J J2 0

2
0
0 (or ¢ ¢J J2 0

2
0

0). σT

(= » ´p -r 0.665 10e
8

3
2 24 cm2) is the total Thomson electron

cross section. Equations (15) and (16) are comparable to the
spherical-harmonic expansion used in the CMB theory
(Kosowsky 1996). In particular, both sets of equations agree
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that linear polarization in the scattered light is directly
proportional to the quadrupole moment (K, Q= 2, 2) of the
incident radiation field in the frame aligned with the scattered
direction.

2.3. The Cylindrically Symmetric Limb-darkened Case

Equations (15) and (16) can be used to compute the
Thomson-scattered emissivities for any unpolarized incident
radiation field. We first consider the typical stellar case of an
unpolarized radiation field that is cylindrically symmetric
relative to the star’s radial direction, that varies in intensity
relative to the polar angle due to limb-darkening, and that is
emergent into an optically thin outer atmosphere. In such a
case, the incident radiation field at any point in the outer
atmosphere is quantified entirely by two components (J0

0 and
J0

2), but only in the radial coordinate frame where the +z-axis is
directed radially outwards. As this does not align with the
scattered direction, we must transform these components, using
Equation (13), into the coordinate frame defined above for
Equations (15) and (16), i.e., the LOS is along its respective
z-axis.

( )RPQ
K in Equation (13) describes a Eulerian rotation, with

R representing the (α, β, γ) angle triad. The orders of active
rotations are γ about the original (“fixed”) z-axis, β about the
original y-axis, and α about the original z-axis. Transforming
JQ

K from the radial frame to the primed coordinate axes that
align with the LOS frame requires a passive rotation of the
axes. This implies a transformation consisting of transposed
elemental rotation matrices.4 In the cylindrically symmetric
case, the primary angle that modifies the amplitude of the
polarized scattering is the inclination angle of the LOS relative
to the radial z-axis, which we denote as χ and which
corresponds to β in the axes rotation. α and γ, in this case,
control only the orientation of the Stokes reference frame (see
Figure 2). The passive rotation R= (− π/2, χ, 0) transforms
the coordinate axes, such that the z-axis is aligned along an
LOS directed in the -Y direction of the radial frame, and the x-
axis (defining +Q) is aligned parallel with the radial direction.
Using Equation (13) and the algebraic formula for the
associated reduced rotation matrices, the radiation field tensor
components in the LOS frame (again, for the cylindrically
symmetric case, where =J 01

2 and =J 02
2 ) are given by:

( ) ( )c¢ = -J J
1

2
3 cos 1 ; 170

2 2
0
2

( ) ( )c w c¢ = =J J J
3

8
sin

3

4
sin ; 182

2 2
0
2

0
0 2

and the anisotropy factor in the rotated frame is related to the
radial frame by

( ) ( )w c w¢ = -
1

2
3 cos 1 . 192

Therefore, Equations (15) and (16) become

∣ ( )ˆ s
w

w c¢ = + -n J 1
2

3

4
sin ; 20I e T e 0

0 2
z ⎛

⎝
⎞
⎠

( )∣ ( ) ( )ˆ s w c+ ¢ = -i n J
3

4
sin . 21Q U e T e 0

0 2
z 

As J0
0 and ω in an outer atmosphere are both positive and real,

òU= 0 and òQ is negative, which implies that the linear
polarization orientation is perpendicular to the projected radial
direction, as expected.

2.3.1. Analytic Formulae for the Radiation Field Tensor

Analytic formulae can be derived for J0
0 and ω when

expanding the limb-darkened stellar intensity in the canonical
manner, as is thoroughly described in Section 12.3 of LL04.
We summarize this formalism here for completeness, so as to
increase the utility of the above equations. The limb-darkening
law is first written as

( ) ( ) ( ) ( )åy y= - -
=

I I u0 1 1 cos , 22
i

N

i
i

1

⎡
⎣⎢

⎤
⎦⎥

where ψ is the angle between the emitted radiation and the local
radial vector (see Figure 2), and there is an implicit wavelength
dependence for I(0) and the ui values. As the intensity is
cylindrically symmetric relative to the radial direction, the J0

0

component (Equation (9)) is

( )ò m= m
-

J I
1

2
d , 230

0

1

1

where μ= qcos . ψ is related to μ and the maximum value of θ
in the integration, which is defined by when the rays are
tangential to the stellar limb, denoted here as γ. γ is used for

Figure 2. Geometry for the LOS frame relative to the axes used for quantifying
the radiation field in the local radial frame. The LOS frame is specified by the
zyz extrinsic Euler angles γ = 0 (not shown), β = χ, and α = α. The choice
γ = 0 results in the +Q Stokes direction being aligned with the projected radial
direction at point P, which is located at height h above the stellar surface. One
example incident ray is shown in blue, which exits the stellar photosphere at an
angle ψ relative to the surface normal.

4 This is equivalent to active counterclockwise rotations in a right-handed
coordinate system with the transformation (α → − α, β → − β, γ → − γ).

4

The Astrophysical Journal, 933:53 (12pp), 2022 July 1 Schad, Jaeggli, & Dima



consistency with the literature, but should not be confused with
γ used prior to this point for the Euler rotation angle. This
relation is given by

( )y
q g

g
=

-
cos

cos cos

sin
24

2 2

and, therefore,

[ ( )

( )
( )

( )

ò

å

n

n
m g

g
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=

+
-

m
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=

=

J
I
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2

cos

sin
d . 25

i

N

i

i

i

0
0 1

cos

1

0

1

2 2 ⎤

⎦
⎥

This can be directly integrated, and for a limb-darkening law
expanded to the quadratic terms, results in

[ ] ( )= + +J
I

a a u a u
2

, 260
0 0

0 1 1 2 2

where an=0,1,2 are given by analytical functions of γ. Using a
similar approach, as also shown in LL04, the analytical formula
for ω (in the radial coordinate frame) can be written as:

( )=
+ +
+ +

w
c c u c u

a a u a u

1

2
. 270 1 1 2 2

0 1 1 2 2

We include the analytical formula for the an, bn, and cn values
from LL04 in the Appendix.

2.3.2. Integrated Signals in a Spherically Symmetric Model

It can easily be demonstrated that Equations (20) and (21),
together with Equations (26) and (27), are consistent with the
equations often used to compute the polarized Thomson-
scattered intensities in the solar case, as reviewed in Howard &
Tappin (2009). One difference of the equations provided here is
that the limb-darkening law is expanded to quadratic terms,
whereas Howard & Tappin (2009) and earlier authors consider
only the linear limb-darkening terms. The quadratic expansion
allows the direct use of the wavelength-dependent quadratic
expansion values for solar limb darkening, as cataloged in
Allen’s Astrophysical Quantities (Cox et al. 2000). In general,
we find the difference in the polarized Thomson-scattered
signal to be less than a few percent between the quadratic and
best-fit linear expansion.

In Figure 3, we calculate, as verification of our method and
for reference, the integrated Stokes signals for the Thomson-
scattered K-corona for a spherically symmetric coronal model.
We use the empirical model of a solar streamer near solar
minimum from Gibson et al. (1999). The Stokes signals are
calculated by integrating the emission coefficients along the
LOS, i.e.,

( )ò=S ds, 28i
s

i

where Si is the Stokes vector (i= {I, Q, U, V}). The units are
given in millionths of the disk center’s solar spectral radiance.
As the classical Thomson scattering cross section is not
wavelength-dependent, it is primarily the spectrally dependent
limb darkening that results in the weak chromaticity of the
resultant curves. Note that we plot the absolute value of Stokes
Q, as the sign of Q here is negative, referring to linear

polarization oriented perpendicular to the projected radial
vector. The bottom panel shows the degree of polarization,
given by the polarized brightness (pB) divided by the total
intensity:

( )= =
+ +

DoP
pB

I

Q U V

I
. 29

2 2 2

As is evident, Figure 3 reproduces the K-corona characteristics
described in the introduction.

3. Forward Synthesis in the Non-Cylindrically-
Symmetric Case

We now turn our focus to how active regions, through their
influence on the local radiation field, alter the magnitude and
orientation of the polarized Thomson-scattered signal. Saint-
Hilaire et al. (2021) have recently performed a similar
investigation, wherein they use a numerical integration scheme
to define “geometric factor maps” that account for the
symmetry-breaking characteristics in the radiation field above
the sunspots. The benefit of the formalism outlined in the
previous section is that such “geometric factor maps” become

Figure 3. Top: forward synthesized Thomson-scattered K-corona intensity and
the absolute value of Stokes Q for a spherically symmetric electron density
model and cylindrically symmetric incident radiation field. Bottom: the
corresponding degree of polarization.
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decomposed into an irreducible representation that can be
rotated easily to different scattering directions. Furthermore, we
gain more intuition from using the (KQ) representation, as the
emissivities directly map onto particular components of the
expanded incident radiation field (see Equations (14)–(16)).

3.1. Radiation Field Calculations in a 3D MHD Active Region
Simulation

We forward synthesize the Thomson-scattered spectral
radiance emergent from an advanced 3D radiative MHD
simulation of a solar active region generated by the MURaM
code (Rempel 2017). The same simulation snapshot has been
described in Schad & Dima (2020) and Paper I, and used to
synthesize visible and infrared polarized emission lines in
nonrelativistic quantum theory, based on the atomic density
matrix formalism. The simulation domain extends over a
volume of 98.304× 49.152× 49.152 Mm (1024× 512× 1024
voxels) and includes a bipolar active region, with two
simulated sunspots connected by an arcade magnetic field
simulated up to≈ 41 Mm above the photosphere.

Paper I studied the symmetry-breaking in the incident
radiation field near the simulated sunspots by forward
synthesizing the 3D photospheric continuum radiation field.
By numerical integration of Equations (9)–(12), Paper I
determined the KQ components of the radiation field in the
local solar radial frame. Starting with these previously
calculated JQ

K quantities, we here determine the relevant tensor
components in the LOS frame that contribute to the Thomson-
scattered signal. These are ¢J0

0 (=J0
0), ¢J0

2, and ¢J2
2, as included

in Equations (14)–(16).
Panels (a)–(d) and (e)–(h) of Figure 4, respectively, show the

contributing components of the incident radiation field to the
Thomson-scattered continuum, quantified in the scattering
reference frame for a horizontal (z= 15 Mm) and a vertical
(y= 0 Mm) slice of the simulation. As in Paper I, the observer
is assumed to be located in the −Y direction, with an LOS
parallel to the Y-axis, and the reference direction for Stokes +Q
is aligned with the radial direction. The wavelength is set to be
10775Å, which is local to both the Fe XIII 10746 and 10798Å
forbidden coronal emission lines.

3.2. Integrated Polarized Thomson-scattered Intensities

The LOS integrated polarized Thomson signals at 10775Å
are shown in Figure 5 and can be compared to the radiation
field components in Figure 4. As expected, the Stokes Q signals
are, with few exceptions, negative and larger than Stokes U.
Recall that Stokes U is zero for the cylindrically symmetric
case, whereas here the symmetry-breaking effects of the two
sunspots introduce an imaginary component into the quadru-
pole moment of the radiation field (see Figures 4(d) and (h)).
This results in the rotation of the plane of linear polarization
relative to the expected tangential direction. As shown in
Figure 5(f), the range of this deviation is approximately± 5°,
and it is larger with closer proximity to the sunspots near
X=± 25 Mm.

As discussed in the introduction, we make use (in the next
section) of the expectation that the Thomson-scattered
K-corona polarization orientation is tangential to the solar
limb. Clearly, this is not fully satisfied by our synthetic
observables, due to the symmetry-breaking effects of the
sunspots on the incident radiation field. That said, as shown in

Figure 6, the absolute mean and median deviation angles as a
function of height are less than 0°.15 and 0°.25, respectively,
while the 5th to 95th percentile values at the top of the domain
are −0°.42 to 0°.29. Thus, without more extensive modeling,
one may significantly mitigate the role of the symmetry-
breaking on the expected continuum polarization direction by
averaging over structures and/or avoiding the lower coronal
regions above the sunspots.

4. An Ad Hoc Polarization Correction Technique for the
Corona

Following the methodology introduced by Jaeggli et al.
(2022), we now consider the use of the expected K-coronal and
E-coronal polarized characteristics to constrain a model for an
optical system’s polarized response. We begin with the
assumption that the optical system is well described by a
nondepolarizing Mueller matrix. A Mueller matrix is a linear
transformation matrix that maps one Stokes vector to another
(Chipman et al. 2018), and therefore we implicitly assume that
a set of polarimetrically modulated intensities has been
demodulated in a consistent manner. A nondepolarizing
Mueller matrix can be further decomposed into an elliptical
diattenuator and elliptical retarder, i.e.,

( )= =M M M M M . 30P R R Dsys

MP and MD are left-equivalent and right-equivalent diattenua-
tors, respectively, and MR is the Mueller matrix for a general
elliptical retarder. Below, we use the left-equivalent diattenua-
tor form of this decomposition and further use the z–x–z
extrinsic Euler angles to express the general elliptical retarder
model, i.e.,

( )

( )

a b g =

- - -
+ - -

a g b a g a g b g a a b

g a a b g a b g a g a b

b g g b b

M

C C C S S C S C C S S S

C S C C S C C C S S C S

S S C S C

, ,

1 0 0 0
0

0

0

, 31

R

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where Sα (Cα) refers to the sine (cosine) of α. Once again, these
Euler angles should not be confused with those defined in the
previous section. In this case, they can be interpreted as
retardances.

4.1. Synthetic Coronal Spectra

Let us now consider the components of a set of observable
off-limb coronal Stokes spectra with the intent of generating
model profiles with synthetic crosstalk applied. Similar to Dima
et al. (2019), we write the true Stokes spectra incident on the
optical system (subscript “i”) as

[ ] ( )= + +I t I I I ; 32i E K Batm

[ ] ( )= +Q t Q Q ; 33i E Katm

[ ] ( )= +U t U U ; 34i E Katm

[ ] ( )=V t V , 35i Eatm

where “E” and “K” represent the line-emissive and K-coronal
components, respectively, and tatm represents telluric atmo-
spheric absorption. All quantities have an implicit wavelength
dependence. IB represents a “background” (B) component that
is assumed to be unpolarized and that plays an important role in
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the ad hoc correction method described below. IB consists not
only of the F-corona, which we presume to be unpolarized, but
also scattered light that is inherent to most coronagraphic
observations of the low corona and typically dominates the
F-corona signal. As discussed by Dima et al. (2019), both
circumsolar forward scattering of solar disk light by aerosols in
Earth’s atmosphere and instrumental scattered light (due to
diffraction and/or surface scattering by dust) can contribute to
IB, and they are generally indistinguishable from each other
(and from the F-corona) without further modeling and/or
external measurements. As the telluric scattering occurs at

shallow angles, it is assumed that the atmospheric scattered
light remains unpolarized on average, as it is comprised of
integrated solar disk light. We further assume that the
instrument-induced scattered light follows (to good approx-
imation) the same optical path as the coronal emission, which is
expected to be a reasonable assumption for most coronagraphs
where scattering in the entrance pupil is the dominant source.
In combination, these assumptions allow us to consider IB as a
separate unpolarized source component with the same spectral
characteristics as the integrated solar photospheric spectrum. In
Figure 7 (the top four panels), we show one synthetic Stokes

Figure 4. The incident radiation field components within the bipolar 3D MURaM coronal simulation that contribute to the Thomson-scattered continuum at
λ = 10775 Å. The observer’s LOS aligns with the Y-axis, and, for reference, two simulated sunspots are located near X ± 25 Mm (Y = 0 Mm). The top panels, (a)–(d),
provide a horizontal slice at Z = 15 Mm, and the bottom panels, (e)–(h), show a vertical slice at Y = 0 Mm. Note that the total mean intensity ( ¢J0

0) is given in spectral
radiance units, while each other panel is normalized by ¢J0

0.
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vector (the black lines) emergent from the 3D MHD simulation
at 〈X, Z〉= 〈32, 32〉 Mm (see the coordinates in Figure 5),
which combines the Thomson-scattered signal with the Fe XIII
10746Å polarized emission (computed in Paper I) and a
background/scattered light component as per

Equations (32)–(35). The units are given in spectral radiance
relative to the disk center intensity (Idc). IB is given a
representative magnitude of 25 millionths of Idc, with spectral
features taken from a photospheric spectral atlas (Wallace et al.
1993), which is shown separated into solar and telluric
components in the fifth (or bottom) panel of Figure 7. The
most prominent spectral features include the Fe XIII emission
line near 10746Å, the telluric H2O lines at 10743.46Å and
10744.67Å, and the Si I photospheric line at 10749.4Å. The
Thomson-scattered emission vector at this location is
[ ] [ ]= - * -I Q U V I, , , 0.4011, 0.0662, 0.0019, 0 10 ;K dc

6

therefore, the linear polarization angle of the continuum is
primarily tangential to the limb, though rotated by 0.83°. The
Fe XIII Q and U profiles have a Gaussian-like shape, while
Stokes V is antisymmetric. Note the presence of the telluric
lines in the true Stokes Q signal and the absence of the
scattered Si I photospheric line signal at 10744.67Å.

4.2. Applying Polarimetric Crosstalk

For illustrative purposes, we define one system-polarized
response matrix (Msys) for use in the rest of the paper. We
consider a weakly diattenuating system with a diattenuation
magnitude D= 0.05 oriented at a polar angle of 45° and
a− 20° azimuth on the Poincaré sphere. The individual vector
components are á ñ = á - ñd d d, , 0.0332, 0.0121, 0.0354H R45 .

Figure 5. The synthesized polarized Thomson-scattered continuum along the −y direction through the bipolar MHD coronal simulation. Panels (a), (c), and (e) show
the total intensity, Stokes Q, and Stokes U intensities in units of millionths of the disk center’s spectral radiance. Panel (b) is the LOS average electron density in the
simulation domain. Panel (d) shows the degree of polarization, while panel (f) shows the deviation angle of the linear polarization direction relative to the tangential
direction, which, in the established reference frame, is equal to the azimuth ( ( )- U Q0.5 arctan 2 , ) minus 90°.

Figure 6. Height dependence of the linear polarization deviation angle relative
to the tangential direction for the synthetic Thomson-scattered signals shown in
Figure 5.
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The elliptical retardances, i.e., rotation angles, are set to
a b gá ñ = á   - ñ, , 10 , 30 , 80 , which results in

∣

( )

=

-
- - -

M

1. 0.025 0.041 0.015
0.033 0.319 0.809 0.492
0.012 0.943 0.319 0.087

0.035 0.087 0.493 0.865

. 36

sys True

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

After applying this defined-system Mueller system to the
incident Stokes vector through matrix multiplication, the exit
(or measured) Stokes vectors appear as shown by the dashed–
dotted red lines in Figure 7. With the addition of polarized
crosstalk, the continuum polarization level is nonzero for each

Stokes parameter, and the scattered Si I line is now present in
each as well. Furthermore, the Gaussian-like coronal emission
profile in the incident intensity dominates the spectral structures
of all components, such that there is no longer a recognizable
antisymmetric Stokes V signal.

4.3. The Ad Hoc Correction Merit Function and Its Application
to a Single Profile

Our goal is to use a priori constraints for the spectral content
of the incident Stokes vectors to determine and remove the
effects of the instrument’s polarized response. In contrast to
Jaeggli et al. (2022), we here treat a case where the incident
continuum is polarized, which entangles the diattenuation and
retardance effects contained in Equation (30) for the con-
tinuum. Furthermore, as the coronal Q and U emissions
generally have a line shape that is similar to the total intensity,
we cannot differentiate the crosstalk between I and (Q, U, V )
from that between the polarized states themselves. Instead, we
must take advantage of the scattered photospheric line signal,
using a technique first introduced by Dima et al. (2019). The
presence of a solar absorption line in the measured (subscript
“m”) polarized spectra, when the polarization of the F-corona is
negligible, directly indicates crosstalk from I to the polarized
state. Using Equation (30), we subtract the measured polariza-
tion in the continuum (λ= λc) from that in the photospheric
line (λ= λL), and obtain an inverse formulation for the
diattenuation vector quantities in terms of the measured spectra:

( ) ( )
( ) ( )

( )l l
l l

=
-
-

d
Q Q

I I
; 37H

m L m c

m L m c

( ) ( )
( ) ( )

( )l l
l l

=
-
-

d
U U

I I
; 38m L m c

m L m c
45

( ) ( )
( ) ( )

( )l l
l l

=
-
-

d
V V

I I
. 39R

m L m c

m L m c

Following Dima et al. (2019), each can also be found by
minimizing the difference for multiple points within a solar
line, assuming an average value obtained in the continuum,
e.g.,

{ [( ( ) ( )]

[ ( ) ( )]} ( )

å l l

l l

-

- -
l l=

d I I

Q Q

minimize

. 40

d

N

H m m c

m m c
2

H L

L

Applying this directly to the “measured” profiles, i.e., the
synthetic profiles with crosstalk added (Figure 7), using the Si I
line with 10749.58< λL< 10750.45 Å (to avoid blending with
the coronal line), we reproduce the input values for the
diattenuation vector to high precision. We can subsequently
calculate the left-equivalent diattenuation matrix MP and apply
its inverse to the “measured” profiles, thereby removing the
intensity to polarization crosstalk.
The crosstalk between the polarized states due to the

system’s elliptical retardance remains to be corrected at this
stage. Let us call this intermediary, diattenuation-corrected,
Stokes vector SR. We now apply the assumption that the
Thomson-scattered continuum linear polarization is directed
tangential to the projected stellar radius vector, which in the
chosen reference frame implies that Q is negative and U, V are
both zero. As an elliptical retarder (MR) is nondepolarizing, we

Figure 7. Top four panels: the true synthetic Stokes vector emergent from the
MHD simulation at 〈x, z〉 = 〈32, 32〉 Mm is given in black. The dashed–dotted
red lines represent the “measured” Stokes vector with polarized crosstalk
added, while the blue lines show the two solutions found for the crosstalk-
corrected signals. The right-axis tick marks apply only to the crosstalk-added
signals. Bottom panel: the photospheric atlas spectrum acquired at the disk
center separated into solar and telluric components.
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can directly measure the magnitude of continuum linear
polarization using the SR vector, and associate it with the
recovered (corrected) incident Q state:

( ) ( ) ( ) ( ) ( )l l l l= - + +Q Q U V , 41c R c R c R ccorr
2 2 2

where the negative sign accounts for the defined direction for
Stokes +Q.

In principle, using the determined value of Qcorr(λc) and the
expressions for the second-column elements of MR in
Equation (31), one has enough information to infer the
retardance angles (α, β, γ) using the measured continuum
values of SR. However, the matrix elements are highly
nonlinear functions of these angles. Small deviations in the
true incident U continuum polarization and/or measurement
noise make this solution unstable. Therefore, we add another
constraint that requires the line-integrated Stokes V signal to be
zero, as discussed in the introduction. To summarize, we solve
the following minimization problem:

∣ ( )

( ) ( ) ( ) ∣
∣ ( )∣
∣ ( )∣

( )

( )

l

l l l
l
l

l

+

+ +

å

=

a b g

l
-M

Q

Q U V

U
V

V

S S

minimize

,

,
,

subject to , 42

c

R c R c R c

c

c

R R

, ,
corr

2 2 2

corr

corr

corr

corr ,FIT
1

where -MR,FIT
1 is the inverse of the fitted elliptical retarder’s

Mueller matrix with free variables (α, β, γ).
Using the Nelder–Mead minimization algorithm5 and many

random initial guesses, we find that the above technique yields
two possible solutions,

( )a b gá ñ = á   -  ñ, , 8 .42, 30 .04, 80 .0 , 431

( )a b gá ñ = á    ñ, , 171 .58, 149 .96, 100 .0 , 442

both of which are shown in Figure 7 using blue lines. We can
further assess the errors of these two solutions by calculating
the error matrix E as follows:

∣ ∣

( )

=

= - -
  



-E M M

1 0 0 0
0 0.9996 0.0276 0.0001
0 0.0304 0.9996 0.0007
0 0.0001 0.0007 1.0000

, 45

FIT sys FIT
1

sys True

 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where the top (bottom) values of the± andm signals refer to
solution #1 (#2). The error magnitude is the same in both
cases; only the signs of the third and fourth row flip, which
correspond to the corrected U and V profiles. The sign
degeneracy for U and V is expected, as no a priori constraint is
applied to their sign. Instead, this degeneracy must be resolved
with other methods. The deviation of the error matrix from
unity can be explained by the limits of our approximation.
Recall that the plane of linear polarization deviates from our
assumed direction, in this example, by 0°.83. The equivalent

Mueller rotation matrix for this deviation is given by

( )-
1 0 0 0
0 0.9996 0.0289 0
0 0.0289 0.9996 0
0 0 0 1

, 46
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

which closely resembles the error matrix above. As such, this
deviation angle of the true incident vector is the dominant error
source in the method (ignoring noise and/or other systematics).

4.3.1. Application along a Horizontal Slice

As the error magnitudes discussed above scale primarily
with the deviation of the linear polarization angle from the
tangential direction, we can attempt to improve the perfor-
mance of this method by an appropriate selection of measured
vectors. One strategy is to avoid areas above active regions
where symmetry-breaking in the incident radiation field can be
neglected. Another strategy is to include a diversity of
measured vectors across an active region within the minimiza-
tion steps described above. This requires that one can assume
that the optical system’s response is uniform (within some
accuracy specification) across the considered field of view, and
that the field of view includes structure distributed about a
symmetry-breaking feature, such that the mean deviation angle
is reduced, as in Figure 6.
The left-column panels of Figure 8 show synthetic Stokes

spectra that include the E, K, and background components for a
horizontal slice across the MHD simulation at Z= 30Mm. The
“measured” spectra (with crosstalk) resulting from the applica-
tion of Equation (36) are shown in the middle column. Using
all the spectral profiles in this slice for the ad hoc correction
method, we find the following two solutions for the elliptical
retardance angles:

( )a b gá ñ = á   -  ñ, , 10 .6, 30 .0, 80 .0 , 471

( )a b gá ñ = á    ñ, , 169 .4, 150 .0, 100 .0 , 482

with an error matrix given by

∣ ∣

( )

=

=  -


-E M M

1 0 0 0
0 0.9999 0.0108 0
0 0.0108 0.9999 0.0002
0 0 0.0002 1

. 49

FIT sys FIT
1

sys True



⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

In comparison to Equation (45), we find the rotational error
terms that interchange Q and U to be reduced by a factor of 3,
and all terms that interchange with V are reduced
to� 2× 10−4. The corrected Stokes spectra are shown in the
right column of Figure 8.

5. Summary and Discussion

There are two primary features of the work presented here.
We first have provided the formulation for the polarized
emissivities of Thomson scattering, where the unpolarized
incident radiation field is treated using irreducible spherical
tensors. As the established theory for the synthesis of the
polarized E-corona uses the (KQ) representation, we find it
advantageous to utilize a comparable formulation for the
K-corona, especially when working with large MHD simula-
tions. In this way, the components of the incident radiation field

5 We used the implementation of the Nelder–Mead algorithm provided in the
Scipy optimize.minimize module (Gao & Han 2012; Virtanen et al. 2020).
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only need to be calculated in one reference frame, and they can
subsequently be transformed to account for multiple LOS. We
find that this is an advantage over the approach of Saint-Hilaire
et al. (2021), and it can likewise be used to quantify the
radiation field above real observed features, as demonstrated by
Schad et al. (2015) and Schad et al. (2021).

Second, we have proposed an ad hoc technique for deriving
the Mueller matrix of a nondepolarizing optical system, based
on the combined a priori characteristics of the polarized E- and
K-corona signals in the low corona (assuming the F-corona is
unpolarized). The technique performs well in the ideal case,
and is primarily limited by the median deviation of the linear

polarization angle from the assumed orientation. We have not
considered the role of measurement noise here, nor specific
outlier cases (such as when the emission line’s Stokes vector
does not contain signal in all polarized states); however, we do
expect that each could influence the relative errors of the
individual terms of the inferred-system Mueller matrix. We
note that the signal-to-noise requirements for a Stokes V
measurement in an emission line are generally two to three
orders of magnitude more stringent than for Q and U, as
observed by Lin et al. (2004).
A prerequisite for the application of the proposed technique

is a spectrally adjacent photospheric line that is scattered by the

Figure 8. Synthetic Stokes spectra centered on the Fe XIII 10746 Å line, including Thomson scattering and an unpolarized background spectrum. The Stokes spectra
incident on the optical system at a simulation height of Z = 30 Mm are shown on the left. Zero-level contours for Q and U are provided to distinguish regions where
Stokes U takes negative or positive values. The middle column shows the Stokes spectra with crosstalk applied. The right column shows spectra after applying the
crosstalk correction method.
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sky, or the optical system, into the target optical path.
Importantly, we assume that this scattered light can be treated
as an unpolarized component of the total signal incident on the
optical system and is influenced by the same polarization
response matrix. Many important polarized coronal emission
lines are located near a photospheric line (Schad & Dima 2020;
Ali et al. 2022); however, the application of our technique may
in some cases be complicated by line blends and/or weak
signals. In the event that a suitable photospheric line is
unavailable, one may attempt to correct specific components of
the crosstalk with other assumptions, at the cost of increased
error. Dima et al. (2019) address the error incurred in
measurements of linear polarization when one assumes that
the continuum is unpolarized (i.e., there is no K-coronal
signal). And Lin et al. (2004) treat I, Q, U crosstalk into V by
assuming that I, Q, and U are proportional to each other and
symmetric about line-center.

Together with adequate system knowledge of a given optical
system, to understand the potential limitations, we believe that
the proposed technique is generally robust and useful,
particularly for initial system characterization and/or the
validation of a more complete system model. The strategies
discussed here are adaptable to both slit- and filter-based
spectropolarimeters, including those currently in operation or
under development for DKIST and COSMO.

The National Solar Observatory (NSO) is operated by the
Association of Universities for Research in Astronomy, Inc.
(AURA), under a cooperative agreement with the National
Science Foundation. This research has made use of NASA’s
Astrophysics Data System.

Appendix
Integration Coefficients

The integration coefficients referenced in Section 2.3 are
reproduced from LL04 Section 12.3 here for convenience:

( )( )
( )

( )

( )

( )( )
( )

g
g

=
=
= -

= - -
+

=
+ -

+

= -

= - - -
+

=
- + + +

+
= -
= -
= -

g

g

g

g
g

g

g

g

g g

g

g

g g
g

g

g

g

g g g g

g

C

S

a C

a C
C

S

S

C

a
C C

C

b C

b C C
C

S

S

C

b
C C C C

C

c b a
c b a
c b a

cos

sin

1

1

2

1

2
ln

1

2 1

3 1

1

3
1

1

24
8 3 2

1

8
ln

1

1 3 6 4 2

15 1
,

3
3
3 .

0

1

2

2

0
3

1
3 2

4

2

3 2

0 0 0

1 1 1

2 2 2

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ORCID iDs

Thomas A. Schad https://orcid.org/0000-0002-7451-9804
Sarah A. Jaeggli https://orcid.org/0000-0001-5459-2628
Gabriel I. Dima https://orcid.org/0000-0002-6003-4646

References

Ali, A., Paraschiv, A., Reardon, K., & Judge, P. 2022, ApJ, 932, 22
Blackwell, D. E., & Petford, A. D. 1966, MNRAS, 131, 399
Boe, B., Habbal, S., Downs, C., & Druckmüller, M. 2021, ApJ, 912, 44
Chipman, R., Lam, W.-S., & Young, G. 2018, Polarized Light and Optical

Systems (Boca Raton, FL: CRC Press),
Cox, C., Allen, C., Cox, A., et al. 2000, Allenʼs Astrophysical Quantities

(Berlin: Springer),
Cram, L. E. 1976, SoPh, 48, 3
Dima, G. I., Kuhn, J. R., & Schad, T. A. 2019, ApJ, 877, 144
Gao, F., & Han, L. 2012, Comput. Optim. Appl., 51, 259
Gibson, S. E., Fludra, A., Bagenal, F., et al. 1999, JGR, 104, 9691
Harrington, D. M., Kuhn, J. R., & Ariste, A. L. 2017, JATIS, 3, 018001
Harrington, D. M., & Sueoka, S. R. 2017, JATIS, 3, 018002
Howard, T. A., & Tappin, S. J. 2009, SSRv, 147, 89
Ingham, M. F. 1961, MNRAS, 122, 157
Inhester, B. 2015, arXiv:1512.00651
Jackson, J. D. 1998, Classical Electrodynamics (3rd ed.; Wiley: New

York, NY)
Jaeggli, S. A., Schad, T. A., Tarr, L. A., & Harrington, D. M. 2022,

arXiv:2204.03732
Judge, P. G., Habbal, S., & Landi, E. 2013, SoPh, 288, 467
Kimura, H., & Mann, I. 1998, EP&S, 50, 493
Kosowsky, A. 1996, AnPhy, 246, 49
Koutchmy, S., & Lamy, P.L. 1985, in Properties and Interactions of

Interplanetary Dust, Proc. of IAU Colloq. 85, ed. R. H. Giese & P. Lamy
(Dordrecht: Reidel Publishing), 63

Kuhn, J. R., Balasubramaniam, K. S., Kopp, G., et al. 1994, SoPh, 153, 143
Lamy, P., Gilardy, H., Llebaria, A., et al. 2021, SoPh, 296, 76
Landi Degl’Innocenti, E. 1983, SoPh, 85, 3
Landi Degl’Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines,

Vol. 307 (Berlin: Springer),
Landi, E., Habbal, S. R., & Tomczyk, S. 2016, JGRA, 121, 8237
Lin, H., Kuhn, J. R., & Coulter, R. 2004, ApJL, 613, L177
Mann, I. 1992, A&A, 261, 329
Minnaert, M. 1930, ZAp, 1, 209
Rempel, M. 2017, ApJ, 834, 10
Rimmele, T. R., Warner, M., Keil, S. L., et al. 2020, SoPh, 295, 172
Saint-Hilaire, P., Oliveros, J. C. M., & Hudson, H. S. 2021, ApJ, 923, 276
Sanchez Almeida, J., & Lites, B. W. 1992, ApJ, 398, 359
Schad, T., & Dima, G. 2020, SoPh, 295, 98
Schad, T., & Dima, G. 2021, SoPh, 296, 166
Schad, T. A., Dima, G. I., & Anan, T. 2021, ApJ, 916, 5
Schad, T. A., Penn, M. J., Lin, H., & Tritschler, A. 2015, SoPh, 290, 1607
Schlichenmaier, R., & Collados, M. 2002, A&A, 381, 668
Schuster, A. 1879, MNRAS, 40, 35
Tomczyk, S., Landi, E., Burkepile, J. T., et al. 2016, JGRA, 121, 7470
van de Hulst, H. C. 1950, Bull. Astron. Inst. Netherlands, 11, 135
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Vorobiev, D., Ninkov, Z., Bernard, L., & Brock, N. 2020, PASP, 132, 024202
Wallace, L., Hinkle, K., & Livingston, W. C. 1993, An atlas of the

photospheric spectrum from 8900 to 13600 cm-1 (7350 to 11230
[angstroms]), NSO Technical Report #93-001, National Solar Observatory

12

The Astrophysical Journal, 933:53 (12pp), 2022 July 1 Schad, Jaeggli, & Dima

https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0002-7451-9804
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0001-5459-2628
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://orcid.org/0000-0002-6003-4646
https://doi.org/10.3847/1538-4357/ac610a
https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract
https://doi.org/10.1093/mnras/131.3.399
https://ui.adsabs.harvard.edu/abs/1966MNRAS.131..399B/abstract
https://doi.org/10.3847/1538-4357/abea79
https://ui.adsabs.harvard.edu/abs/2021ApJ...912...44B/abstract
https://doi.org/10.1007/BF00153327
https://ui.adsabs.harvard.edu/abs/1976SoPh...48....3C/abstract
https://doi.org/10.3847/1538-4357/ab1cb7
https://ui.adsabs.harvard.edu/abs/2019ApJ...877..144D/abstract
https://doi.org/10.1007/s10589-010-9329-3
https://doi.org/10.1029/98JA02681
https://ui.adsabs.harvard.edu/abs/1999JGR...104.9691G/abstract
https://doi.org/10.1117/1.JATIS.3.1.018001
https://ui.adsabs.harvard.edu/abs/2017JATIS...3a8001H/abstract
https://doi.org/10.1117/1.JATIS.3.1.018002
https://ui.adsabs.harvard.edu/abs/2017JATIS...3a8002H/abstract
https://doi.org/10.1007/s11214-009-9577-7
https://ui.adsabs.harvard.edu/abs/2009SSRv..147...89H/abstract
https://doi.org/10.1093/mnras/122.2.157
https://ui.adsabs.harvard.edu/abs/1961MNRAS.122..157I/abstract
http://arxiv.org/abs/1512.00651
http://arxiv.org/abs/2204.03732
https://doi.org/10.1007/s11207-013-0309-5
https://ui.adsabs.harvard.edu/abs/2013SoPh..288..467J/abstract
https://doi.org/10.1186/BF03352140
https://ui.adsabs.harvard.edu/abs/1998EP&S...50..493K/abstract
https://doi.org/10.1006/aphy.1996.0020
https://ui.adsabs.harvard.edu/abs/1996AnPhy.246...49K/abstract
https://doi.org/10.1007/978-94-009-5464-9_14
https://doi.org/10.1007/BF00712497
https://ui.adsabs.harvard.edu/abs/1994SoPh..153..143K/abstract
https://doi.org/10.1007/s11207-021-01819-z
https://ui.adsabs.harvard.edu/abs/2021SoPh..296...76L/abstract
https://doi.org/10.1007/BF00148254
https://ui.adsabs.harvard.edu/abs/1983SoPh...85....3L/abstract
https://doi.org/10.1002/2016JA022598
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.8237L/abstract
https://doi.org/10.1086/425217
https://ui.adsabs.harvard.edu/abs/2004ApJ...613L.177L/abstract
https://ui.adsabs.harvard.edu/abs/1992A&A...261..329M/abstract
https://ui.adsabs.harvard.edu/abs/1930ZA......1..209M/abstract
https://doi.org/10.3847/1538-4357/834/1/10
https://ui.adsabs.harvard.edu/abs/2017ApJ...834...10R/abstract
https://doi.org/10.1007/s11207-020-01736-7
https://ui.adsabs.harvard.edu/abs/2020SoPh..295..172R/abstract
https://doi.org/10.3847/1538-4357/ac2f9b
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..276S/abstract
https://doi.org/10.1086/171861
https://ui.adsabs.harvard.edu/abs/1992ApJ...398..359S/abstract
https://doi.org/10.1007/s11207-020-01669-1
https://ui.adsabs.harvard.edu/abs/2020SoPh..295...98S/abstract
https://doi.org/10.1007/s11207-021-01917-y
https://ui.adsabs.harvard.edu/abs/2021SoPh..296..166S/abstract
https://doi.org/10.3847/1538-4357/ac01eb
https://ui.adsabs.harvard.edu/abs/2021ApJ...916....5S/abstract
https://doi.org/10.1007/s11207-015-0706-z
https://ui.adsabs.harvard.edu/abs/2015SoPh..290.1607S/abstract
https://doi.org/10.1051/0004-6361:20011459
https://ui.adsabs.harvard.edu/abs/2002A&A...381..668S/abstract
https://doi.org/10.1093/mnras/40.2.35
https://ui.adsabs.harvard.edu/abs/1879MNRAS..40...35S/abstract
https://doi.org/10.1002/2016JA022871
https://ui.adsabs.harvard.edu/abs/2016JGRA..121.7470T/abstract
https://ui.adsabs.harvard.edu/abs/1950BAN....11..135V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1088/1538-3873/ab55f1
https://ui.adsabs.harvard.edu/abs/2020PASP..132b4202V/abstract

	1. Introduction
	2. Thomson Scattering of Unpolarized Light
	2.1. Polarized Emissivities in a Fixed Stokes Frame
	2.2. Quantifying the Incident Radiation Field with Irreducible Spherical Tensors
	2.3. The Cylindrically Symmetric Limb-darkened Case
	2.3.1. Analytic Formulae for the Radiation Field Tensor
	2.3.2. Integrated Signals in a Spherically Symmetric Model


	3. Forward Synthesis in the Non-Cylindrically-Symmetric Case
	3.1. Radiation Field Calculations in a 3D MHD Active Region Simulation
	3.2. Integrated Polarized Thomson-scattered Intensities

	4. An Ad Hoc Polarization Correction Technique for the Corona
	4.1. Synthetic Coronal Spectra
	4.2. Applying Polarimetric Crosstalk
	4.3. The Ad Hoc Correction Merit Function and Its Application to a Single Profile
	4.3.1. Application along a Horizontal Slice


	5. Summary and Discussion
	AppendixIntegration Coefficients
	References



