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Abstract

ENCOMPASS is an environment to support the incremental construction of Ada® programs using exe-
cutable specifications and formal techniques similar to the Vienna Development Method. ENCOMPASS
supports the rigorous development of software: parts of a project may use completely formal methods,
while other, less critical parts use less expensive techniques. ENCOMPASS provides automated support
for all aspects of the development process including specification, prototyping, testing, formal verification,
documentation, configuration control and project management. In ENCOMPASS, software can be
specified using PLEASE, an Ada-based executable specification language which can be automatically
translated into Prolog. A prototype implementation of ENCOMPASS has been constructed. In this paper,
we give an overview of ENCOMPASS, describe the decisions made in the design of the prototype, and
discuss the lessons leamed in the process.

1. Introduction

The production of software is both difficult and expensive. One of the largest problems is quality; many of
the systems produced do not satisfy their purchasers in either functionality, performance or reliability. The software
quality problem can be subdivided in a namber of ways, depending on the model of software development used. At
first, a system exists only as an idea in the minds of its users or purchasers. In our model, the first step in the
development process is the creation of a specification which precisely describes the properties and qualities of the
software to be constructed [32]. Unfortunately, with current methods there is no guarantee that the specification
correctly or completely describes the customers desires; a specification is validated when it is shown to correctly
state the customers’ requirements [32]. The specification need not be executable; in general, it must be translated
into an implementation. Depending on the method used for translation, the exact relationship between the
specification and implementation may be unknown. An implementation is verified when it is shown to satisfy its

specification [32].
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Creating a valid specification is a difficult task; the users of the system may not really know what they want,
and they may be unable to communicate their desires to the development team. Formal specifications may be an
ineffective medium for communication between customers and developers, but natural language specifications are
notoriously ambiguous and incomplete. It has been suggested that prototyping and the use of executable
specification languages can enhance the communication between customers and developers [50,101]; providing

prototypes for experimentation and evaluation should enhance the validation process.

Many different techniques can be used to determine if an implementation satisfies a specification. For exam-
ple, testing can be used to check the operation of an implementation on a representative set of input data [33, 60];
however, in general, a program cannot be tested on all possible inputs. In a technical review process, the
specification and implementation are inspected, discussed and compared by a group of knowledgeable personnel
[31,95]; unfortunately, there is no guarantee that they will come to the correct conclusions. If the specification is in
a suitable notation, formal methods can be used to verify the correcmcsé of an implementation [49, 54,98]; how-
ever, with the current state of verification technology, many widely used languages are not completely verifiable.
Many feel that no one technique alone can ensure the production of correct software [27,29]; therefore, methods

which combine a number of techniques have been proposed [74, 100].

1.1. The Vienna Development Method

The Vienna Development Method (VDM) supports the top-down development of software specified in a nota-
tion suitable for formal verification [11, 13, 14,25,48,49,67,78]. In this method, components are first written using
a combination of conventional programming languages and predicate logic. A procedure or function may be
specified using pre- and post-conditions: the pre-condition states the properties that the inputs must satisfy, while the
post-condition states the relationship of inputs to outputs. Similarly, an abstract data type may be specified with an
invariant defining the acceptable states and pre- and post-conditions for the operations. To increase the expressive

power of specifications, the high-level types set, list, and map are added to the language.

These abstract components are then incrementally refined into components in an implementation language.
The refinements are performed one at a time, and each is verified before another is applied; therefore, the final com-
ponents produced by the development satisfy the original specifications. Since each refinement step is small, design

and implementation errors can be detected and corrected sooner and at lower cost. Each step generates verification



conditions which must always be true for the refinement to be correct. Each step is an instantiation of an abstract
refinement; the verification conditions for a step are generated by substituting pre- and post-conditions into the proof

rule for the abstraction.

VDM is used in industrial environments to enhance the development process [14,67,78]. In this type of
environment, the method is not typically applied in all its formality. Pre- and post-conditions are written using
operations and predicates which may not be precisely defined. Verification conditions are generated without the aid
of automated tools and proved informally using a peer revi_ew system. In these situations, formal specifications
serve mostly as a tool for precise communication, and the major impact on methodology is that more time is spent
on specification and design. However, the methods do prove useful in practice. VDM could prove even more use:
ful if it was applied more formally and supported by automated tools. Many feel the cost is justified, and environ-

-ments to support VDM are being constructed [12]. We feel that the time is ripe for the construction of environments
which partially automate formal development methods, and that these environments will eventually prove useful in

industrial settings.

1.2. ENCOMPASS

The SAGA project is investigating both the formal and practical aspects of providing automated support for
the full range of software engineering activities [15-19,44,51,52,85-89]. The group has constructed ENCOM-
PASS [85,86], an integrated environment to support incremental software development in a manner similar to
VDM. ENCOMPASS extends VDM with the use of executable specifications and testing-based verification

methods. It automates these techniques and integrates them as smoothly as possible into the traditional life-cycle.

In ENCOMPASS, software is specified using a combination of natural language and PLEASE [87-89], an
Ada-based, wide-spectrum, executable specification language. PLEASE specifications may be used in proofs of
correctness; they also may be transformed into prototypes which use Prolog [23] to execute pre- and post-
conditions. These prototypes can enhance both the validation and verification processes. PLEASE specifications
can be incrementally refined into Ada implementations using IDEAL, an environment for programming-in-the-small
which supports verification using peer review, testing or proof techniques. ENCOMPASS provides simple support

for programming-in-the-large including configuration control [51] and project management [18].



ENCOMPASS is an environment for the rigorous [49] development of programs. Although detailed mechan-
ical proofs are not required at every step, the framework is present so that they can be constructed if necessary.
Proof techniques may be used that range from a very detailed, completely formal proof using mechanical theorem
proving, to a development annotated with unproven verification conditions. Parts of a project may use detailed
mechanical verification while other, less critical parts may be handled using less expensive techniques. Our experi-
ence so far leads us to believe that the complete, mechanical verification of large programs will be prohibitively
expensive; however, inexpensive methods can eliminate a large percentage of the verification conditions generated
during a development. By eliminating these trivial veriﬁcatién conditions, the total number is reduced so that the
verification conditions remaining can be more carefully considered by the development personnel. In ENCOM-
PASS, some modules of a system may be developed using PLEASE and IDEAL, §vhjle others are developed using
conventional techniques. This allows the practical power of Ada and the formal power of PLEASE to be combined

in a single project.

In the remainder of this paper, we present ENCOMPASS, PLEASE and IDEAL in more detail, describe the
decisions made in the design of the preliminary implementation, and discuss the lessons learned in the process. In
section two we describe the software development paradigm ENCOMPASS is designed to support, and in section
three we describe the PLEASE executable specification language. In section four we describe IDEAL, the
programming-in-the-small environment for PLEASE, and in section five we present the programming-in-the-large
tools provided by ENCOMPASS. In section six we describe the system status and in section seven we compare our
work with that of other researchers. Finally, in section eight we summarize and draw some conclusions from our

work so far.

2. Development Paradigm

ENCOMPASS is designed to support a particular software development paradigm; this is basically Fairley’s
phased or waterfall life-cycle [32], extended to support the use of executable specifications and VDM. In ENCOM-
PASS, we extend the traditional life-cycle to include a separate phase for user validation; we also combine the
design and implementation processes into a single refinement phase. A development passes through the phases

planning, requirements definition, validation, refinement and system integration.



In ENCOMPASS, software requirements specifications are a combination of natural language documents and
components specified in PLEASE. Although the requirements specification describes a software system, it is not
known if any system which satisfies the specification will satisfy the customers. The validation phase attempts to
show that any system which satisfies the software requirements specification will also satisfy the customers. If not,
then the requirements specification should be corrected before the development proceeds. To aid in the validation
process, the PLEASE components in the specification may be transformed into executable prototypes which can be
used in interactions with the customers. These prototypes may be subjected to a series of tests, be delivered to the
customers for experimentation and evaluation, or be installedlfor production use on a trial basis. We feel the use of

prototypes will increase customer/developer communication and enhance the validation process.

In the refinement phase, the PLEASE specifications are incrementally transformed into Ada implementations.
The refinement phase can be decomposed into a number of steps, each of which consists of a design transformation
and its associated verification phase. Each design transformation creates a new specification, whose relationship to
the original is unknown. Before further refinements are performed, a verification phase must show that any imple-
mentation which satisfies the lower level specification will also satisfy the upper level one. In our model, this is
accomplished using a combination of testing, technical review, and formal verification. The design transformation
may produce components in the base language as well as an updated requirements specification. Components which
have been implemented need not be refined further, but components which are only specified will undergo further

refinements until a complete implementation is produced.

PLEASE prototypes can be used to verify the correctness of refinements using testing techniques. Most sim-
ply, the prototype produced from a PLEASE specification can be used as a test oracle against which implementa-
tions can be compared. In a more complex situation, the prototypes produced from the original and refined
specifications can be run on the same data and the results compared; this method gives significant assurance that a
refinement is correct at low cost. PLEASE specifications also enhance the verification of system components using
proof techniques; for the purpose of formal verification, the refinement process can be viewed as the construction of

a proof in the Hoare calculus [46, 54].

ENCOMPASS provides support for all aspects of this development paradigm. Many of the tools in ENCOM-

PASS are independent of the language used for development, but others are specific to PLEASE.



3. PLEASE

The first step in the program of research described in this paper is the design of a wide-spectrum, executable
specification language called PLEASE. The design of PLEASE is a compromise between a number of conflicting
goals. First, the language must allow the implementation of software using a conventional programming language.
At present, we are using Ada [92] as the implementation language; it seems a good choice for a number of reasons.
Ada is (arguably) a well designed, modern language. It contains more than enough features, including support for
modular programming. Others are researching Ada-based specification languages [57]; much of their work can be
reused. Ada is enthusiastically supported by the Department of Defense. Commercial compilers have already been
produced and it seems likely that more will be developed for many different architectures. Ada is currently in
industrial use and promises to become widely used in the near future [64]; this decreases the distance between the

somewhat academic work described in this thesis and the real world of software development.

The second design requirement is that PLEASE must allow the specification of software using pre- and post-
conditions written in predicate logic; the more powerful the specification method, the better. Third, the language
must allow the rapid, automatic construction of executable prototypes from these specifications; the prototypes
should be as efficient as possible. Unfortunately, there is a conflict between the second and third goals. A fairly
powerful specification method would use pre- and post-conditions written in the full first-order, predicate logic.
These specifications would use a number of very high-level data types such as sets. Unfortunately, the validity
problem for first-order logic is undecidable [54,58]. Therefore, if we allow full first-order logic to be used for the

specifications, in some cases we will be unable to construct prototypes which are guaranteed to terminate [91].

A resolution theorem prover for first-order logic could be used to construct prototypes’; however, the perfor-
mance of these prototypes would be very poor. The axioms for types such as sets would result in a further decrease
in performance?. The emergence of logic programming as a technology, most notably Prolog [23], suggests that
Hom clauses may provide a good compromise. Although not as powerful as full first-order logic, Horn clauses
allow much more efficient implementation techniques to be used. Commercial Prolog implementations are avail-
able which provide support for machine types such as integers and floating point numbers [71]. By restricting the

types used to those with efficient Prolog implementations, reasonable specification power is combined with

! which are not guaranteed to terminate.
2 For sets in their full generality. Restricted forms can be implemented efficiently.



implementation efficiency.

The fourth design goal is that PLEASE specifications can be incrementally refined into verified implementa-
tions. Given Ada as the base language, problems arise. Ada was not designed with program verification as a goal;
therefore, it contains constructs for which no formal semantics have been developed. For example, the Ada
Language Reference Manual (ALRM) {92] states that in owt parameters may be implemented using either a
copy/restore or pointer strategy. Most of the work on program verification assumes one implementation or the
other. Although PLEASE uses Ada syntax, the constructs do‘not necessarily have the Ada semantics; the semantics
of PLEASE are defined using Hoare calculus proof rules [91]. PLEASE is designed for use only within an encap-
sulated environment; special tools manipulate and display the abstract syntax in a format suitable for humans. In the
current implementation, Ada programs with behavior matching the semantics defined by the proof rules are created
automatically from the PLEASE abstract syntax trees. This approach allows programs in different languages to be
created from the same abstract syntax, and constructs to be provided which are implementable, but not supported, in

the base language.

In order to further clarify the concepts, design and implementation of PLEASE, we will present an example

specification and discuss the construction of its Prolog prototype.

3.1. Specifying a Procedure

For example, Figure 7 shows the PLEASE specification of a package, sort_pkg, which provides a procedure
called sore’. The specification uses the pre-defined package natural_list_pkg, which uses the PLEASE type list to

define the type natural_list as list of natural*. The sort procedure takes two arguments: the first is a possibly
unsorted input list, the second is a sorted list produced as output. The specification defines the predicates permuta-
tion and sorted, as well as giving pre- and post-conditions for the procedure. In the specification, the state before
execution begins is denoted by in(...), while the state after execution has completed is denoted by out(...). The pre-
condition for sort is simply true; the type declarations for the parameters give all the requirements for the input.

The post-condition for sort states that the cutput is a permutation of the input and the output is sorted.

3 To increase readability and understandability, the syntax of PLEASE is similar to Anna [57].

4 In PLEASE, as in Prolog, the empty list is denoted by [ ], and a list literal is denoted by [/], where / is a comma separated
list of elements. The functions d, ¢/, and cons have their usual meanings and L, | | L, denotes the concatenation of the elements
of L and L,.
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with natural list_pkg ; use natural list_pkg ;
package sort pkg is

-—: predicate permutation( L1, L2 : in out natural_list ) is true if
— Front, Back : natural list ;

--: begin

- Ll = [] and L2 = []

- or

— L1 = Front| [cons (hd (L2),Back) and

—— permutation (Front| |Back, tl(L2))

-—: predicate sorted( L : in out natural list ) is true if
--: begin

-3 L =1}

-3 ox

- t1(L = (1]

~=1 or

-1 hd(L) <= hd(tl(L)) and sorted(tl (L))

-~: end ;

procedure sort{ Input : in natural list ; Output : out natural_ list ) ;
~~| where in( true ),
- out ( permutation(Input, Qutput) and sorted(Output) ) ;

end sort pkg ;

Figure 7. Specification of sort procedure

In PLEASE, a predicate syntactically resembles a procedure and may contain local type, variable, function or
predicate definitions. For example, the predicate permutation states that two lists are permutations of each other if
both of the lists are empty, or if the first element in the second list is in the first list and the remainder of the two lists
are permutations of each other. At present, predicates are specified using Hom clauses: a subset of predicate logic
which is also the basis for Prolog [20,23]. This approach allows a simple translation from predicate definitions into

Prolog procedures.

3.2. Prototyping the Specification
The specification in Figure 7 can be automatically translated into a prototype written in a combination of Pro-

log and Ada’. The predicates permutation and sorted and the pre- and post-conditions for sort are translated into

5 For a more complete treatment of this example see [88] or [91].



Prolog procedures, which are executed by an interpreter in the current implementation. When the sort procedure is
called, the in parameter is converted to the Prolog representation and the call is passed to the interpreter. When the
Prolog procedure for sort completes, the out parameter is converted to the Ada representation and the original call
returns. Tools in the ENCOMPASS environment perform the translation and generate code to handle I/O and other
implementation level details. The Prolog procedure for sort simply "executes" the pre- and post-conditions. The
notion of execution is quite different for pre- and post-conditions. Executing a pre-condition involves checking that
given data satisfies a logical expression. Executing a post-condition means finding data that satisfies a logical
expression. For example, the post-condition for sort must find a value for the output list such that the input and out-

put are permutations of each other and the output is sorted.

Although many implementations show significant deviations [82], a "pure" Prolog interpreter can be viewed
as a resolution theorem prover [20,23]. In order to dramatically increase Prolog’s efficiency, several concessions
were made. First, Prolog is based on Horn clauses [20,23]. Horn clauses allow a much more efficient implementa-
tion, but represent only a subset of first-order logic; for example, the formulae p > q \/ r can not be written using
Horn clauses. Another limitation is that in Prolog there can be only one clause with no positive literal, or head; this
is called the goal. Therefore, there is no way to state that a predicate is not true for a particular value; for example
that sorted([2,1]) is false. The solution used is the closed world assumption: if a goal is not provably true, then it is
assumed to be false. While this is acceptable for Homn clauses, it can cause inconsistencies for full first-order logic
[72]. We do not believe the closed world assumption is suitable for software engineering applications. We view
software development as an incremental process in which each step adds more information about the system to be
built to the knowledge-base. Therefore, the knowledge-base will almost always be incomplete. Also, at times it is

more convenient to state what is false than what is true.

Viewing Prolog as a theorem prover, execution can be seen as proving a formula of the form 3 X p(i) by
finding an example 2 such that p(a) is true. Using this model, the translation from PLEASE predicates to Prolog
code is simply a sequence of transformations between equivalent formulae. The only complication is that terms are
unraveled into conjunctions of relations to provide a reasonable notion of equality®. Briefly, we assume that for

each function f(X), there exists a relation F(X,y) such that f(X)=y iff F(X,y). We unravel the formula P(..f(%)..) into

8 For a more complete explanation of the translation process see [88, 91].



the equivalent formula 3t (FX,t) A P(.t.))’. The prototypes produced by this translation process are partially
correct [54,58] with respect to the épeciﬁcaﬁons. In other words, if a prototype terminates normally then the value
returned will satisfy the post-condition. A prototype would be totally correct [54,58] if it was also guaranteed to
terminate normally. In general it is not possible to extend our approach to total correctness [91]. Although the Pro-
log procedures produced by our translation process have the proper logical properties, there is no guarantee that they
will terminate. In the last step of the translation process, a number of heuristic transformations are used on the Pro-

log procedures to increase the chances of termination.

Prolog is implemented using a depth-first search strategy and clauses are considered in the order they appear
textually. This allows a very efficient implementation and enables the programmer to control the search process in a
simple manner. At present, PLEASE specifications are purely declarative; unlike Prolog, the evaluation order can
not be controlled by the programmer. At the beginning of our work, we felt the addition of an operational semantics
to PLEASE would simply complicate matters. Our experience leads us to believe this is not practical; it is too
difficult for a translator to construct a prototype with reasonable chances of termination from a purely declarative
specification. Future versions of PLEASE will allow the programmer the control the order in which clauses are
evaluated in a manner similar to Prolog. We believe that we can allow the programmer to force evaluation and

“cut” branches from the search without compromising the declarative semantics of the specification.

4. IDEAL

We believe that languages similar to PLEASE can greatly enhance the software development process; we also
believe that to realize the full benefits of PLEASE an integrated support environment is needed. The environment
must provide facilities to create PLEASE specifications, construct prototypes from these specifications, validate the
specifications using the prototypes produced, refine the validated specifications into Ada implementations, and ver-
ify the correctness of the refinement process. IDEAL is an environment that supports these activities. IDEAL con-
tains four tools: TED [44], a proof management system which is interfaced to a number of theorem provers; ISLET,
a prototype program/proof editor; a tool to support the construction of executable prototypes from PLEASE
specifications; and a test harness. The user interacts with these tools through a common interface. The tools in

IDEAL operate on components which are stored in a module data base.

7 For other solutions to the equality problem for Prolog see [36, 53].

10



In the module database, a set of symbol tables represent the PLEASE specifications and Ada programs being
developed. These symbol tables are displayed and manipulated by ISLET. ISLET can be used to create PLEASE
specifications and incrementally refine them into Ada programs. Steps in the refinement process may generate
verification conditions in the underlying first-order logic; these can be reformated as proofs which serve as input for
TED. Using TED, the user can structure the proof into a number of lemmas and bring in pre-existing theories. The
symbol tables also serve as input for the prototyping tool, which uses them to produce executable prototypes from
PLEASE specifications. The load modules produced from both prototypes and final implementations are used by
the test harness. From the test harness, the user can invoke commands to: edit or browse the input for a test case;
generate output for a test case; or run a program and compare the results with output that has been previously

checked for correctness.

The central tool in IDEAL is ISLET. It not only manipulates the symbol tables representing specifications

and implementations, but provides a user interface and, in a sense, controls the entire development process.

4.1. ISLET

ISLET supports both the creation of PLEASE specifications and their incremental refinement into annotated
Ada implementations. This process can be viewed in two ways: as the development of a program, or as the con-
struction of a proof in the Hoare calculus [46,54]. The user interacts with ISLET through a simple language-
oriented editor similar to [73]. The editor provides commands to add, delete, and refine constructs; as the
program/proof is incrementally constructed, the syntax and semantics are constantly checked. The editor also con-

trols the other components: an algebraic simplifier, a number of simple proof procedures, and an interface to TED.

Many steps in the refinement process generate verification conditions in the underlying first-order logic.
These verification conditions are first simplified algebraically and then subjected to a number of simple proof tac-
tics. These methods can handle a large percentage of the verification conditions generated. If a set of verification
conditions can not be proved using these methods alone, TED can be invoked in an attempt to prove the verification
conditions. Using TED is very expensive, both in system resources and user time; however, many complex
theorems can be proved with its aid. The algebraic simplification and simple proof tactics used in ISLET are very
inexpensive; however, they are not very powerful. The combined use of these two methods supports the rigorous

[49] development of programs. Most of the verification conditions will be proven using inexpensive methods; those
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that are expensive to verify may be proven immediately, or deferred until a later time. Parts of a system may be

developed using completely mechanical methods, while other, less critical parts may use less expensive techniques.

5. ENCOMPASS

IDEAL provides an integrated environment for programming-in-the-small using PLEASE; while this alone
can enhance the development process, more can be gained with the addition of an environment for programming-
in-the-large. ENCOMPASS is such an environment; it provides support for all aspects of software development. In
ENCOMPASS, software is decomposed into modules which can be developed using either IDEAL or more conven-
tional tools. ENCOMPASS provides facilities to store, track, manipulate and control all the objects used in the
software development process: documents, specifications, source code, proofs, test data, and load modules are all
supported. ENCOMPASS also provides mechanisms to support the interactions among developers; the system

allows the creation, decomposition, distribution, monitoring and compietion of tasks.

In ENCOMPASS, the user accesses and modifies components using a set of software development tools. The
configuration management system structures the software components developed by a project and stores them in a
project data base. The configuration management system also provides a primitive form of software capabilities to
control access to components. The project management system uses these capabilities to control both access to data

and interactions between developers.

5.1. Configuration and Project Management

Configuration management is concerned with the identification, control, auditing, and accounting of the com-
ponents produced and used in software development and maintenance [10]. A number of different configuration
management systems have been proposed, developed and/or used [30,65,70]. In ENCOMPASS, the configuration
management system is responsible for maintaining the consistency of, integrity of, and relationships between the
products of software development. In ENCOMPASS, software configurations are modeled using a variant of the
entity-relationship model [22] which incorporates the concept of aggregation [79]. At present, most databases do
not provide the features necessary to support integrated software development environments [8]; our model provides
us with a natural way to describe software and also has a convenient implementation on conventional computer sys-

tems [51].
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In ENCOMPASS, a view is a mapping from names to components; access to components is controlled
through the use of views. A project under development has a unique base view or project library which contains all
the components of the system being developed and all the relationships between them. Other views can be created
from the project library by restricting access; a derived view can only contain entities or relationships present in the
base view. The granularity of the present implementation is somewhat coarse: locking is at the module level. While
this notion of view is simpler than that typically taken in the database community [26], we feel the elimination of the
view-update problem justifies the restriction. A software development database stores objects which undergo fre-

quent changes of state; the underlying database should be able to process these changes without difficulty.

A project management system must identify, control, and monitor the tasks that comprise the software
development and maintenance processes. Different models of these processes lead to different approaches to pro-
ject management [77]. The ENCOMPASS project management system is based on a management by objectives
approach [39]: each step in the development process satisfies an objective by producing a milestone. For example,
the objective of the requirements definition phase is to describe the properties that the software system to be con-
structed must satisfy; the milestone for this phase is a specification which lists these properties. In ENCOMPASS,
PLEASE provides many machine-recognizable milestones; for example, the existence of a PLEASE specification,
the production of a verified implementation, and the correct execution of a set of test cases by a prototype can all be
recognized by the system. We feel the existence of these milestones significantly enhances automation of the

approach.

The ENCOMPASS project management system is based on a hierarchical project organization: the team
members form a DAG. The system is organized around work trays [18], which provide a mechanism to allocate,
store, track and transfer the components produced and used within a software development project. Each member
of the project has a workspace containing a number of trays. Each tray holds tasks containing the products pro-
duced and used during software development; these products are stored as entities within the ENCOMPASS
configuration management system. Work trays may be used for communication within a project: tasks may be
transferred between workspaces. Any object stored in the project database can be transferred using the tray system

without special "packing” or preparation. We feel this greatly increases the utility of the system.
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6. System Status

The SAGA project has been active at the University of Illinois at Urbana-Champaign since the early eighties.
The ENCOMPASS environment has been under development since 1984. A prototype implementation of ENCOM-
PASS has been operational since 1986; it is written in a combination of C, Csh, Prolog and Ada. This prototype
includes the tools necessary to support software development using PLEASE: an initial version of ISLET, the
language-oriented editor used to create PLEASE specifications and refine them into Ada implementations; software
which automatically translates PLEASE specifications into Prolog procedures and generates the support code neces-
sary to call these procedures from Ada; the run-time support routines and axiom sets for a number of pre-defined
types; and interfaces to the ENCOMPASS test harness and TED. PLEASE and ENCOMPASS have been used to
develop a number of programs, including specification, prototyping, and mechanical verification. At present, all the
programs developed have been less than one hundred lines in length, but some have included more than one
module, allowing demonstrations of the ENCOMPASS configuration control and project management systems.
Research is continuing at both the University of Illinois and the University of Colorado, including construction of

second generation configuration and project management systems [19].

The subset of PLEASE currently implemented includes the if, while, and assignment statements, as well as
procedure calls with in, out or in out parameters. The language now supports a small, fixed set of types including
natural numbers, lists and characters. The initial implementation of PLEASE is based on the UNSW Prolog inter-
preter [76] and the Verdix Ada Development System [93]; it runs under Berkeley Unix® on a Sun 2/170. The Pro-
log interpreter and Ada program run as a separate processes and communicate through pipes®. This implementation
is somewhat expensive; for example, there is a five CPU second overhead to start the Prolog interpreter, but this is
incurred only once during program execution. A procedure call from Ada to Prolog costs about forty milliseconds
excluding parameter conversion. As an example of actual performance, the sort prototype produced from the
specification given in this paper can process a list of length four in an average of .9 seconds and a list of length five
in an average of 4.7 seconds. Current research on PLEASE involves the addition of more pre-defined types and an
algebraic type definition facility. We are also constructing an improved implementation in which the Prolog inter-

preter and base language share run-time data structures, thus reducing the procedure call overhead.

Unix® is a trademark of AT&T.
8 Pipes are a buffering mechanism implemented in Unix.
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The combination of algebraic simplification and simple proof tactics implemented in ISLET seems to work
very well; in our experience, it can eliminate between fifty and ninety per cent of the verification conditions gen-
erated during refinement. For example, [88] presents a design transformation on the specification in this paper. The
transformation consists of twenty-six steps, only two of which generated verification conditions which could not be
certified by the simple methods. The example presented in [85] also consists of twenty six steps, only four of which
generated verification conditions which did not yield to the simple approach. The simple methods run very quickly:
less than one second response time in all the cases examines so far. The use of TED is very expensive; for example,
the first complex verification condition in [88] can be certified in about five CPU seconds simply by invoking the
theorem prover on the file produced by ISLET. The second verification condition can not be proved in this manner;
it requires a considerable investment of user time to decompose it into a number of lemmas. Current work on
IDEAL involves the use of more complex proof tactics, such as induction over the pre-defined types and bounded-

depth search. We are also extending IDEAL with a deductive synthesis component [90].

7. Comparison with Related Work

The work presented in this paper is similar to a number of previous or on-going research projects. For exam-
ple, many specification methods have been previously proposed, designed or put into use [34,99]; they can be
formally-based [1,9,35,41,45,63], or encorporate natural language and graphics [75]. The formally-based
methods may be roughly divided into model-oriented [1,9,45] and axiomatic approaches [35,40,63], although
languages which combine the two methods have also been proposed [42,96]. PLEASE is a model-oriented
approach; in other words, components are described in terms of pre-defined types and operations. As far as we
know, it differs from other work in its combination of Ada, Prolog, and an environment supporting both model-

oriented and informal specifications.

Many different development methods have been proposed [3, 38,47,49,62,97]; for example, in transforma-
tional programming a very-high level specification is used to produce an efficient implementation by a series of
correctness preserving modifications [2,4,21,66,69]. Artificial intelligence techniques can be applied to the
software development problem in a number of ways [3,5,37,55,80,94]; for example, in deductive synthesis,
theorem proving techniques are used create verified code from specifications [28,37,59]. A more radical approach

is termed proofs as programs; in this method, the development of a program is viewed as the creation of a proof in
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constructive logic [6,24]. The work described in this dissertation is not based on a particularly unique development
method; in fact, it can be viewed as a transformational approach [7]. However, it is an attempt to integrate execut-
able specifications and incremental verification into the traditional life-cycle. Work is now underway to extend

ENCOMPASS to encorporate artificial intelligence techniques [90].

Many different tools have been proposed to support the software development process [61]. These include
systems for the verification of programs [43,56], environments for programming-in-the-small [84], environments
for the construction of a program and its proof simultaneously [73], and environments for programming-in-the-large
[68, 8'1,83]. As far as we know, ENCOMPASS is unique in its combination of tools and underlying technology.
The system combines an incremental verification system and executable specifications based on resolution theorem
proving with a test harness and an environment for programming-in-the-large. ENCOMPASS also allows some
modules of a project to be developed using PLEASE and formal methods, while other modules are developed using

conventional techniques; we know of no other environment designed to support such a methodology.

8. Summary and Conclusions

Traditional methods do not ensure the production of correct software. VDM [13,49,67] is a method which
has been used in industrial settings to enhance software development. In VDM, software is first specified using a
combination of programming languages and predicate logic. These abstract components are then refined into com-
ponents in an implementation language. The refinement process consists of a number of steps. Each step is small
and is verified before another is applied; therefore, errors can be detected early and corrected at low cost. ENCOM-
PASS [85, 86] is an integrated environment which supports software development using executable specifications
and formal techniques similar to VDM. ENCOMPASS enhances VDM by reducing both the effort involved and the

chance of errors.

ENCOMPASS is an environment for the rigorous [49] development of programs. Although detailed mechan-
ical proofs are not required at every step, the framework is present so that they can be constructed if necessary.
Proof techniques may be used that range from a very detailed, completely formal proof using mechanical theorem
proving, to a development "annotated" with unproven verification conditions. Parts of a project may use detailed
mechanical verification while other, less critical parts may be handled using less expensive techniques. Our experi-

ence so far leads us to believe that the complete, mechanical verification of large programs will be prohibitively
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expensive; however, inexpensive methods can eliminate a large percentage of the verification conditions generated
during a development. By eliminating these "trivial” verification conditions, the total number is reduced so that the

verification conditions remaining can be more carefully considered by the development personnel.

In ENCOMPASS, software is first specified using a combination of natural language and PLEASE [87-89], an
Ada-based, wide spectrum, executable specification and design language. PLEASE specifications can be used in
proofs of correctness; they can also be transformed into prototypes which use Prolog to "execute" pre and post-
conditions. We feel the early production of prototypes will increase customer/developer communication and
enhance the software development process. We believe that specifications combining conventional languages and
logic programming are a promising basis for a development methodology. As the specifications are both executable
and formally based, the equivalence between specification and implementation can be determined using either test-

ing or proof techniques.

At present, PLEASE specifications are based on Horn clauses in a manner similar to pure Prolog. Our experi-
ence leads us to believe that this is not sufficient for software specification. Using this method, it is not possible to
state that something is false. The solution used in Prolog is the closed world assumption: it is assumed that all truths
are known. If something is not provably true, then it is assumed to be false. We do not believe this is suitable for
software engineering applications. We view software development as an incremental process in which each step
adds more information about the system to be built to the knowledge-base. Therefore, the knowledge-base will

almost always be incomplete. Also, at times it will be more convenient to state what is false than what is true.

At present, PLEASE specifications are purely declarative; unlike Prolog, the evaluation order can not be con-
trolled by the programmer. At the beginning of our work, we felt the addition of a operational semantics to
PLEASE would simply complicate matters. Our experience leads us to believe this is not practical; it is too difficult
for a translator to construct a prototype with reasonable chances of termination from a purely declarative
specification. Future versions of PLEASE will allow the programmer the control the order in which clauses are
evaluated in a manner similar to Prolog. We believe that we can allow the programmer to force evaluation and

"cut” branches from the search without compromising the declarative semantics of the specification.

In ENCOMPASS, components specified in PLEASE are incrementally refined into Ada components using
IDEAL, an environment for programming in the small which supports verification using any combination of testing,

peer review, or formal methods. From a formal viewpoint, many steps in the refinement process generate
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verification conditions in the underlying first-order logic. These verification conditions are first subjected to a
number of simple (and inexpensive) proof tactics. These methods can handle a large percentage of the verification
conditions generated. If a set of verification conditions can not be proved using these methods alone, then a more
powerful (and expensive) system can be invoked. In our experience, most of the verification conditions will be pro-
ven using the inexpensive methods. Those that are expensive to verify may be proven immediately, or deferred

until a later time.

The work described in this paper has just completed the "proof of concept” stage. A prototype implementa-
tion has been constructed and demonstrated on a number of small examples. Even at this stage, we feel we have
shown that logic programming and conventional languages can be combined into executable specifications and that
automated environments can provide significant support for development methods such as VDM. We believe a
large class of tools can be constructed which provide fifty to ninety percent solutions to the generally unsolvable
problems involved. We feel that the use of future environments similar to ENCOMPASS will greatly enhance the

specification, design and development of software.
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