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Abstract

Understanding the pathophysiology of Alzheimer disease has relied upon the use of amyloid

peptides from a variety of sources, but most predominantly synthetic peptides produced

using t-butyloxycarbonyl (Boc) or 9-fluorenylmethoxycarbonyl (Fmoc) chemistry. These

synthetic methods can lead to minor impurities which can have profound effects on the bio-

logical activity of amyloid peptides. Here we used a combination of cytotoxicity assays, fibril-

lation assays and high resolution mass spectrometry (MS) to identify impurities in synthetic

amyloid preparations that inhibit both cytotoxicity and aggregation. We identify the Aβ42Δ39

species as the major peptide contaminant responsible for limiting both cytotoxicity and fibril-

lation of the amyloid peptide. In addition, we demonstrate that the presence of this minor

impurity inhibits the formation of a stable Aβ42 dimer observable by MS in very pure peptide

samples. These results highlight the critical importance of purity and provenance of amyloid

peptides in Alzheimer’s research in particular, and biological research in general.

Introduction

Since introduction of the amyloid hypothesis of AD over 20 years ago[1], an overwhelmingly

large literature has accumulated, cementing the central importance of Aβ42 in the mechanism

of the disease [2–7]. Due to its causal role in AD, the Aβ42 peptide is a favored reagent to

model the disease mechanisms and phenotypes. Synthetically derived Aβ42 (sAβ42) has been

widely used in animal models and cell culture systems to aid in understanding the biological

targets and pathological mechanisms of AD. The s Aβ42 is also heavily used for in vitro charac-

terization of the basic biophysical properties which imbue Aβ42 with such unique and toxic

potency. While the synthetic peptide has unquestionably proven to faithfully recapitulate

much of the disease-relevant molecular and physiological pathology, data generated in these

models notably suffer from poor reproducibility[8]. Because of its extreme propensity to
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aggregate in solution, harsh conditions are typically employed in the handling of Aβ42 to keep

it soluble for use in various assays. These include concentrated urea, strong base, guanidine

and even organic solvents such as hexafluro-2-isopropanol (HFIP). However, no single

method is standard in the field. Seeding further variability, numerous conflicting methods are

used in quantifying Aβ42 concentration, including ELISA, Absorbance 280, and BCA assays.

Beyond these complications in handling Aβ, it is now becoming evident that the source and

purity of the peptide can have major impacts on its performance in functional assays [8, 9].

While sAβ42 is widely available from many manufacturers and has been used ubiquitously for

many years, peptides produced via recombinant methods in bacteria are now emerging as an

interesting alternative. Previous studies indicated that sAβ peptide contains impurities that

alter its neurotoxicity and ability to aggregate[9]. Here we have validated those findings and

extended the line of questioning to determine the identity of the contaminants which appear

to inhibit the toxic activities of Aβ42. Through both discovery-oriented and candidate-based

approaches, we have found that a failed valine-valine coupling at position 39–40 in Aβ42 pro-

duces a truncated peptide that co-purifies with full-length Aβ42 and is a potent inhibitor of its

aggregation and cytotoxic activity. These results mandate that future assays using sAβ42

should ensure that this impurity is remove and we propose that this truncated Aβ derivative,

and analogues thereof, merits further investigation in bioassays to characterize its potentially

therapeutic properties for treating Alzheimer’s disease.

Results

Synthetic Aβ42 exhibits reduced toxicity

Motivated by reports of divergent functional properties between recombinant and synthetic

Aβ42[9], we sought to directly compare their cytotoxic potency. Samples of synthetic and

recombinant Aβ42 were prepared as a monomer by solubilizing in hexafluoroisopropanol

(HFIP) and re-drying to film under inert gas flow. The films were re-solubilized in 10 mM

NaOH to prevent aggregation, assayed for peptide content and diluted into culture medium

immediately piror to application. The concentration of each peptide sample was determined

by BCA assay in a method that has been independently verified by SDS-PAGE, UV-Vis spec-

troscopy and amino acid analysis. The popular pheochromocytoma-derived cell line PC12 was

used in a toxicity assay because it is known to express many neuronal proteins and is easily

amenable to high throughput bioassays. A concentration series of recombinant and synthetic

peptide as well as the NaOH vehicle was prepared and applied to cells for 24 hours. At the end-

point, a standard MTT viability assay was performed (Fig 1). We found that recombinant

Aβ42 was potently toxic to the neuron-like PC12 cells, inducing measurable toxicity as low as

25 nM with an apparent LD50 of 190 nM. In contrast, the toxicity of the synthetic peptide was

significantly lower, with an apparent LD50 of 280 nM.

Synthetic Aβ42 exhibits qualitatively different fibrillation characteristics

The aggregation behavior of Aβ42 is well documented and highly investigated, but the rela-

tionship between this behavior and the protein’s acute cytotoxicity is not entirely clear.

Therefore, negative stain electron microscopy was used to determine if there were structural

correlates of the reduced toxicity displayed by sAβ42. Accordingly, rAβ42 and sAβ42 stocks at

10 μM were diluted to 1 μM in phosphate buffered saline (PBS pH 7.4) to induce aggregation.

Samples were removed for imaging after 60 minutes and analyzed by negative stain electron

microscopy (Fig 2). Both samples show aggregation into fibrils however the rAβ42 shows lon-

ger fibrils with little branching. In contrast the sAβ42 displayed shorter more branched clumps

of fibrils.
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Synthetic Aβ42 exhibits quantitatively different fibrillation dynamics

After observing qualitative differences in the morphology of aggregating fibrils of rAβ42 and

sAβ42, we sought to determine if differences might also exist in the quantitative dynamics of

fibrillation. To this end we performed a standard fluorescence-based assay to track the kinetics

of aggregation in real-time. Thioflavin T (ThT) is a benzothiazole dye that upon binding β-

sheet aggregate structures, such as amyloid fibrils, undergoes a measurable fluorescence emis-

sion shift and has been used for many years as a marker in histological identification of Aβ pla-

ques in brain tissue. Thus an increase in ThT signal represents increased binding to fibrils and

is therefore a direct readout for aggregation. Using the ThT dye assay, we observed distinct

aggregation dynamics between rAβ42 and sAβ42 (Fig 3). The kinetics of aggregation is set

apart by two features of the fluorescent traces. Firstly, the lag time to reach the half-maximal

signal, t1/2, is about 10% longer in the sAβ42 reaction indicating alterations to the early aggre-

gation steps. Secondly, the fast-phase aggregation trajectory is greater for the rAβ42 (0.33/min)

versus the sAβ42 (0.17/min).

Mutations within the Aβ42 glycine zipper motif alter fibrillation and

toxicity

We have observed that the ability of Aβ42 to aggregate correlates with its toxicity. This correla-

tion has been noted before[9–11], however it is not clear by what mechanism the tendency

Fig 1. Recombinant Aβ42 is more cytotoxic than synthetic Aβ42. MTT survival assay after 24h of peptide

treatment at indicated concentrations. Averages from two experiments and six replicates. Error bars represent

SEM. A pairwise T-test across all dose series gave a p = 0.004 comparing the synthetic (SYN) and

recombinant (REC), a p = 0.001 comparting REC and vehicle (VEH), and a p = 0.06 comparing SYN to VEH.

https://doi.org/10.1371/journal.pone.0182804.g001
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toward fibrillation would drive toxicity. To further explore this connection, we assayed if

manipulations which impact aggregation behavior could also alter toxicity. For this experi-

ment we utilized the G37L mutant of the Aβ42 peptide. This mutation disrupts the glycine zip-

per motif (Fig 4) that is important for the normal homo-oligomerization of Aβ42 [10, 12]. It

has been observed that the G37L mutant peptide can act as a dominant negative in an aggrega-

tion assay [9, 10, 13]. Thus, we performed a 1:1 mixing experiment between wild-type and

G37L Aβ42 and applied this peptide to PC12 cells in the same toxicity experiment as above

(Fig 1). We found that the G37L peptide exhibited a slight protective effect from Aβ42 toxicity

(Fig 5). This result supports the claim that features of Aβ42 involved in oligomerization are

also important in toxicity.

A typical lot of commercial Aβ42 peptide is stated as>95% pure from multiple manufactur-

ers. Assuming these numbers are accurate, two distinct scenarios could explain the disparity in

aggregation dynamics and toxicity between recombinant and synthetic Aβ42. One possibility

is that some contaminant in the recombinant peptide is responsible for its comparatively

enhanced toxicity and aggregation behavior. If it were possible to identify this contaminant

and add it to the synthetic Aβ42, increased performance of the synthetic peptide would be

expected. The other possibility is that a minority product present in the synthetic peptide is

inhibiting its natural aggregation and toxicity. To distinguish between these possibilities, a

doping experiment was performed in which a small amount (5% mole fraction) of synthetic

peptide was added to the recombinant peptide and subjected to aggregation analysis by ThT

fluorescence (Fig 6). If a contaminant of the recombinant peptide were responsible for its

enhanced aggregation behavior compared to the synthetic peptide, then no change in dynam-

ics would be expected; but if an inhibitor of aggregation were present in the synthetic peptide,

it should still be able to produce a measurable effect even diluted 20 fold. Strikingly, we

observed that only 5% wt/wt of the synthetic peptide was sufficient to perturb the normal

dynamics of Aβ42 aggregation (Fig 6). Both the time to t1/2 and slope of rapid aggregation

Fig 2. Recombinant Aβ42 displays more uniform fibril formation than synthetic Aβ42. Negative stain EM analysis of recombinant

Aβ42 (left) versus synthetic Aβ42 (right).

https://doi.org/10.1371/journal.pone.0182804.g002
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phase indicate that the dynamics of aggregation have indeed been altered by the minority spe-

cies present in the synthetic peptide. In contrast, 5% wt/wt doping of recombinant Aβ42 into

the synthetic peptide did not alter aggregation behavior, again suggesting the sAβ42 contains

an inhibitor of aggregation. We next used this doping strategy to assess toxicity of Aβ42 mix-

tures in PC12 cells. In agreement with our ThT data, just a small dose of synthetic peptide was

capable of reducing the toxicity of the recombinant peptide by a measurable amount (Fig 7),

further confirming the potency of the inhibitory species present in the synthetic Aβ42

preparation.

Identification of Aβ inhibitors

Our data indicate that a potent inhibitor of both toxicity (Fig 5) and aggregation (Fig 6) of

Aβ42 exists as a minority product present in the commercially obtained synthetic peptide.

This finding has wide implications due to the ubiquitous use of synthetic Aβ42 in AD research.

Fig 3. Aggregation of recombinant, and synthetic and Aβ42. ThT fluorescence trace of Aβ42 aggregation, see methods. REC is

recombinant and SYN is synthetic Aβ42. The recombinant materials shows a shorter lag time and faster aggregation rate (0.33/min) than

synthetic material (0.17/min).

https://doi.org/10.1371/journal.pone.0182804.g003
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Fig 4. Sequence and features of human Aβ42. Sequence of human Aβ42 peptide. Histidine residues highlighted in yellow. Glycine 37

highlighted in blue. Valine 39 highlighted in red. Purple bar indicates sequence derived from the transmembrane domain of APP. Blue

curved lines indicated glycine zipper motif.

https://doi.org/10.1371/journal.pone.0182804.g004

Fig 5. Aβ42 G37L protects from Aβ42 toxicity as dominant negative. Aβ42 G37L Protects from Toxicity as

Dominant Negative at high concentrations. Wild-type recombinant Aβ42 was mixed in an equimolar ratio with

Aβ42 G37L. PC12 cells were treated for 24 hours and viability was assayed by MTT. Bars represent 6

biological replicates. Error bars represent SEM. A pairwise T-test across all dose series gave an insignificant

p = 0.06 comparing the recombinant (REC) and recombinant doped with the G37L mutant (REC + G37L). At

the highest concentrations, however a significant protective affect was observed, 25nM p = 0.01, 65nm

p = 0.0001.

https://doi.org/10.1371/journal.pone.0182804.g005
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However, due to the recent commercial availability of recombinant Aβ42, it may not be neces-

sary to improve upon commercial synthesis and purification to avoid these inhibitory contam-

inants. Instead, these unknown inhibitors may prove valuable as a starting point for the

rational design of molecules for therapeutic intervention in AD. Furthermore, these inhibitors

serve as a unique and novel reagent for probing the relationship between Aβ42 aggregation

and toxicity.

We began our study of the contaminants of synthetic Aβ42 by optimizing a chro-

matographic method for both purification and analysis. We found conditions under which we

could elute peaks of recombinant Aβ42 from a C8 reverse-phase column in a mobile phase of

acetonitrile with TFA as a counter ion. We then used this method to analyze the synthetic

Aβ42 sample for the presence of contaminants. The same sharp main peak existed, however a

number of additional minor peaks were observed. There was a distinct peak that eluted just

Fig 6. Small quantities of synthetic Aβ42 inhibit recombinant aggregation. ThT fluorescence trace of Aβ42 aggregation, see methods,

REC is recombinant and SYN is synthetic Aβ42. The recombinant materials was doped with 5% (wt/wt) prior to initiation of the aggregation

assay. A dramatic increase in lag time and fast phase was observed.

https://doi.org/10.1371/journal.pone.0182804.g006
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before the main peak, as well a significant shoulder on both the leading and trailing edges of

the main peak (Fig 8).

We also analyzed both recombinant and synthetic peptide samples by MALDI-TOF mass

spectrometry (Fig 9). This analysis revealed that the synthetic peptide sample contains a

diverse collection of contaminants; however due to their relatively low abundance no specific

identifications from this MALDI-TOF cocktail were possible. Most of the contaminants

appear within approximately 400 mass units of the main peak, corroborating previous sugges-

tions [6] that they may be byproducts of synthesis related to the majority product. A loss or

addition of one to three residues would result in truncated or augmented peptides consistent

with the observed sizes of contaminants.

It has been reported that synthetic Aβ42 contains a significant fraction (>1%) of D-histi-

dine that is suggested to be the functionally relevant contaminant in the synthetic material[6].

The traditional reverse-phase chromatographic methods used to purify Aβ42 would be incapa-

ble of resolving peptides epimerized at any of the three histidine residues in Aβ42. Racemized

peptide would also be indistinguishable by mass spectrometry, making it very difficult to assay

for this contaminant with commonly used methods. To directly test if an Aβ42 histidine race-

mate was capable of recapitulating the aggregation inhibition imparted by the synthetic pep-

tide, we obtained a sample of racemized peptide for ThT assay. The peptide was synthesized

using a standard solid phase Fmoc-protected method, but at positions 6, 13 and 14 a 50:50

mixture of L- and D-histidine enantiomers was applied. Thus, a mixture of Aβ42 molecules

Fig 7. Synthetic Aβ42 contains a potent inhibitor of toxicity. MTT toxicity assay of PC12 cells treated with

recombinant Aβ42 ± 5% (wt/wt) synthetic Aβ42. Assay performed in triplicate, error bars represent SEM. A

pairwise T-test across all dose series gave a p = 0.007 comparing the recombinant (REC) and recombinant

doped with 5% synthetic (REC + SYN).

https://doi.org/10.1371/journal.pone.0182804.g007
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representing every possible combination of histidine stereochemistry was yielded (noted

below as Aβ42-HIS). The Aβ42-HIS was doped into recombinant Aβ42 at 5% mole fraction, a

much higher concentration than might normally appear in the synthetic peptide, and aggrega-

tion was monitored by ThT fluorescence (Fig 10). We found that even this large dose of

Aβ42-HIS produced a minor alteration in the recombinant peptide’s velocity of aggregation.

Therefore, we conclude that although Aβ42-HIS may be capable of inhibiting Aβ42

Fig 8. HPLC analysis of recombinant and synthetic Aβ42. RP-HPLC of recombinant and synthetic Aβ42

reveals contaminants in synthetic preparation. 10 μg of each peptide sample was loaded. Fractions collected

from synthetic sample are indicated 1, 2 and 3 by dashed lines.

https://doi.org/10.1371/journal.pone.0182804.g008

Primary peptide inhibitor contaminant of amyloid-beta-42 activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182804 August 9, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0182804.g008
https://doi.org/10.1371/journal.pone.0182804


aggregation, it alone is not sufficient to illicit effects of the magnitude observed. Therefore, we

believe that other as yet undiscovered inhibitors in synthetic Aβ42 must exist.

Using RP-HPLC (Fig 8) and mass spectrometry (Fig 9), we observed many contaminating

minority products in synthetic Aβ42. To determine if any of these possessed inhibitory activity,

synthetic Aβ42 samples were fractionated by RP-HPLC and then assayed for inhibition of

aggregation using the ThT assay. Specifically, the main peak of synthetic Aβ42 was isolated

from the contaminating material that eluted on either side of it, yielding fractions labeled 1, 2

and 3 (Fig 8). As before, fractions were doped into recombinant Aβ42 at 5% wt/wt for the

aggregation assay. Significant changes in aggregation dynamics were not observed in recombi-

nant peptide doped with fractions 2 and 3, but we found that fraction 1 contained extremely

potent inhibitory activity (Fig 11). It is important to note that this fraction was still a complex

mixture; therefore, it remains unclear whether its inhibitory activity is caused by a single or

multiple species. Without further analysis by more sensitive methods such as tandem MS-MS,

it is impossible to ascertain the identity of the active agents isolated in fraction 1, although

based on the MALDI-TOF experimental results (Fig 9) we suspect them to be related peptides.

With the quantity of relevant contaminants available for study being extremely limiting we

were prompted us to adopt a candidate-based approach towards identification of Aβ42 activity

inhibitors.

There are several sequence features which are known to pose challenges to standard solid

phase peptide synthesis methods, and therefore can inform rational prediction of peptide syn-

thesis byproducts for a given target. Highly hydrophobic aggregation-prone sequences such as

Fig 9. MALDI mass spectra of Aβ42 samples. MALDI-TOF spectra reveal major contaminants in synthetic

Aβ42 sample.

https://doi.org/10.1371/journal.pone.0182804.g009

Primary peptide inhibitor contaminant of amyloid-beta-42 activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182804 August 9, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0182804.g009
https://doi.org/10.1371/journal.pone.0182804


found in Aβ42 are known to be particularly difficult to generate[14]. Traditional synthesis

methods proceed from the carboxy-terminus towards the amino-terminus coupling a single

amino acid at a time each followed by a round of deprotection. Given that the carboxy-termi-

nal 1/3 of Aβ42 is derived from the transmembrane helix of APP (Fig 4), early steps in the syn-

thesis of Aβ42 are particularly susceptible to aggregation of the nascent peptide chain[14].

Peptide aggregation competes with binding of synthesis reagents including deprotection

agents and subsequent amino acid residues. Because of the iterative nature of the synthesis

process, if either deprotection or coupling fails for a particular molecule in one round, that

molecule may well participate in future rounds of synthesis, yielding a final peptide lacking

only a single amino acid. In addition to these challenges, valine to valine coupling reactions,

which are used in Aβ42 synthesis, are known to be of lower efficiency[15] than other peptide

couplings in general. These facts led us to predict that omission of valine 39 (hereinafter

Aβ42Δ39) generated a putative byproduct of synthesis that could be responsible for the

observed inhibitory activity. This hypothesis is supported by the presence of a peak mass

observed by MALDI mass spectrometry approximately 100 Da below the main peak. Addi-

tionally, the HPLC fraction containing the inhibitory activity eluted slightly before Aβ42, indi-

cating slightly reduced hydrophobicity that is also consistent with deletion of a valine residue.

Absolute mass resolution by MALDI-TOF is inversely correlated with analyte mass[16],

and therefore the 3% difference in mass of Aβ42Δ39 from the total peptide would prove

Fig 10. Aβ42 mutation aggregation kinetics. ThT fluorescence was used to assay aggregation dynamics of 5%

Aβ42-HIS mixed into recombinant Aβ42 (REC + HIS) or 5% Aβ42Δ39 (REC + Δ39).

https://doi.org/10.1371/journal.pone.0182804.g010
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difficult to resolve using solely this method. Digestion of the sample with trypsin would gener-

ate a C-terminal fragment Aβ42 29–42 (Fig 4). Aβ42 29–42 has an expected mass of approxi-

mately 1270 Da which would shift to 1171 Da upon deletion of Val 39, a change of nearly 10%

which would be more readily resolved. Therefore, this combinatorial method of enzymatic

digestion and subsequent MALDI-TOF analysis was performed in order to reveal putative

Aβ42Δ39 contaminants. Digestion was carried out on synthetic Aβ42 overnight at 37˚C. The

resultant peptides were desalted/concentrated with a C4 reversed-phase ZipTip and eluted in

acetonitrile and analyzed by MALDI-TOF.

After significant optimization of desalting conditions and matrix/spotting parameters we

were able to identify the expected four trypsin digestion peaks for fragment AA1-5, observed

mass 638.21 (Calc. 637.29); fragment AA6-16, observed mass 1337.23 (Calc 1337.60); fragment

AA17-28, observed mass 1324.79 (Calc. 1325.67); and fragment AA29-42, observed mass

1271.55 (Calc. 1269.76). We did not observe any peaks corresponding to partial digestion indi-

cating that the reaction had gone to completion. Disappointingly, the 29–42 peptide of interest,

containing Aβ42Δ39, was found to ionize very poorly by MALDI, leading to very weak signal.

We did not see evidence of a peak near 1153Da although we considered this uninformative as

the Aβ42Δ39 would represent only a very small fraction of the already weak signal from the

29–42 fragment.

Fig 11. Contaminant is potent inhibitor of aggregation. HPLC fraction 1 and 3 was doped into recombinant Aβ42 at

5% wt/wt and aggregation was assessed by ThT fluorescence. Fraction 1 contained a potent inhibitor of Aβ42

aggregation.

https://doi.org/10.1371/journal.pone.0182804.g011
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To overcome the sensitivity hurdles of MALDI-TOF in the identification of potential con-

taminants, we turned to ESI-Orbitrap mass spectrometry analysis on both recombinant and

synthetic Aβ42 (Fig 12). This data confirmed the presence of the many contaminating species

in synthetic Aβ42 observed by MALDI MS and HPLC. The ESI-Orbitrap data allowed us to

resolve individual peaks out of the shoulder present on the Aβ42 peak seen by MALDI MS

from approximately 4200 Da to 4500 Da. Importantly, a peak of 4417.25 Da was observed, con-

sistent with the presence of Aβ42Δ39. Based on this finding, we proceeded with direct evalua-

tion of Aβ42Δ39 as an inhibitor of Aβ42 aggregation. Also of note was the presence of a peak

in the recombinant sample of Aβ42 dimer, M/Z 1290.52. This indicates not only that small

oligomers can form under the inhibitory conditions used (1% NH4OH), but that these oligo-

mers can remain intact through electrospray ionization, trapping and detection. The absence

of this peak in the synthetic sample appears to serve as further evidence of its reduced ability to

aggregate.

Finally, to directly test if Aβ42Δ39 was capable of inhibiting Aβ42 aggregation kinetics, we

obtained the modified peptide, mixed it into recombinant Aβ42 at 5% mole fraction, and

assayed aggregation by ThT fluorescence. We observed a remarkable inhibition with a near

Fig 12. ESI-Orbitrap MS of synthetic and recombinant Aβ42. Top panel, ESI-Orbitrap MS analysis of

recombinant Aβ42 show the presence of a dimeric species at 1290.52 M/Z and the lack of the Aβ42Δ39

peptide at 1472.42 M/Z. Bottom panel, ESI-Orbitrap MS analysis of synthetic Aβ42 showing the clear

presence of the Aβ42Δ39 peptide at 1472.42 M/Z and many other contaminating species but undetectable

levels of the 1290.52 M/Z dimer species.

https://doi.org/10.1371/journal.pone.0182804.g012
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two-fold increase of t1
2

from 17.9 minutes (Aβ42) to 30.5 minutes (Aβ42Δ39) (Fig 10). This

shift was reminiscent of the effect imparted by the HPLC fraction 1 (Fig 11) further corrobo-

rating that Aβ42Δ39 is the major active component of that fraction.

Discussion

The lack of reproducibility in various studies using amyloid peptides has been well docu-

mented[8] and in this study we sought to determine a potential cause of the lack of reproduc-

ibility. Prior studies demonstrated the additional purification of synthetic Aβ42 could restore

both aggregation kinetics and toxicity yet the nature of the inhibitory material in synthetic

Aβ42 was not investigated[9]. We have found that synthetic manufacturing of Aβ42 generates

contaminating byproducts that inhibit Aβ42 aggregation andwe have identified Aβ42Δ39 as a

potent agent of this inhibition that is observed in synthetic Aβ42 preparations. The Aβ42Δ39

material mostly likely arises due to the relative inefficiency of β-branched amino acid coupling

during solid phase peptide synthesis. To a lesser extent, another suggested contaminant,

Aβ42-HIS, also exhibited some inhibition of aggregation. Previously observed variably in

assays utilizing Aβ42 can most readily be ascribed to the primary contaminants observed in

synthetically prepared Aβ42. Although Aβ42 is particularly prone to synthetic contaminants

arising from coupling inefficiencies, the potential for minor impurities to alter both the bio-

physical and biological properties of synthetically prepared peptides should be born in mind

regardless of the peptide investigated. Finally, and most intriguingly, the observed correlation

between Aβ42 toxicity and aggregation kinetics, suggests that Aβ42Δ39 and perhaps Aβ42-HIS

may exhibit neuroprotective activity in AD models. Indeed, c-terminal fragments of Aβ42

have been shown to inhibit toxicity[17] and aggregation[18]. Future studies will reveal whether

treatment with various analogs of Aβ42Δ39 or Aβ42-HIS can serve to attenuate Aβ42 toxicity,

possibly yielding an important new class of compounds for therapeutic intervention in Alzhei-

mer’s disease.

Materials and methods

Materials

Thioflavin T was and MTT assay were purchased from Sigma-Aldrich. Recombinant Aβ42

was obtained from either AmideBio (Lot No. 20130515) or rPeptide (Lot No. 9131142H). Syn-

thetic Aβ42 was purchased from Bachem (Lot No. 0572194) and AnaSpec (Lot No. 31475).

Aβ42Δ39 was custom synthesized by Anaspec. All peptide concentrations were determined

using the BCA Protein Assay Kit, CAT# 23225, from Pierce using the provided Albumin stan-

dard. All other chemicals were of analytical grade.

ThT assay

This assay was performed as previously described. Briefly Stock solutions of ThT were freshly

prepared a 2 mM in 50 mM glycine buffer pH 8.5 and aliquoted and stored at −80˚C prior to

use. For assays, an aliquot was thawed and diluted 50 fold in 50mM glycine pH 8.5 buffer to a

40 μM concentration. Aβ(1–42) aggregation was measured by adding 50 μLof 10 μM stock Aβ
(1–42) followed by 50 μL of a 40 μM ThT solution and then monitoring fluorescence intensity

using an excitation wavelength of 440nm and an emission wavelength of 468nm using a

Molecular Devices SpectraMax M5 plate reader at 42 sec intervals (S1 Table).
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MTT assay

This assay was performed according to the Sigma-Aldrich guide. Briefly, MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide was dissolved in phenol free culture

media at 5 mg/ml and sterile filtered. To cells grown in 96 well plates, stock MTT solution was

added at 10% of the total per well and plates incubated at 37˚C for 4 hours. MTT solubilization

solution was then added to all wells and mixed thoroughly and the plate was read at 570nm

using a Molecular Devices SpectraMax M5 plate reader using a reference wavelength of 630

nm (S2 Table).

HPLC analysis

Samples were analyzed on an Agilent 1100 and fractions isolated using a 4.6 × 250 mm

reversed phase Vydac MS C8 column (Grace) using a two phase elution comprised of 1% ACN

+ 0.1% trifluoroacetic acid (Buffer A) and 100% ACN + 0.1% trifluoroacetic acid (Buffer B) at

70˚C. The elution profile was, 0–10 min; 0% B, 10–30 min linear increase to 80% B, with a con-

stant flow rate of 0.8 ml/min and protein was detected at 215 nm.

Electron microscopy

Samples for EM were prepared according similar to the methods of Komatsu[19]. Briefly, a 2%

w/v aqueous solution of uranyl acetate at pH 4.2 was filtered (0.2 μm) to remove small precipi-

tates and stored in foil covered container prior to use. Approximately 10 ng (3 μL) of amyloid

sample was place on a freshly glow discharged carbon film on a 300 mesh copper grid for 1

minute. The sample was blotted and then the uranyl acetate solution was applied for 30 sec-

onds and then blotted and air dried. Images were recorded on side mounted CCD camera

using a Phillips CM100 at 80 kV.

ESI-Orbitrap mass spectrometry

Amyloid Beta samples were reconstituted in pH 10 1% NH4OH at 1 mg/mL. Samples were

infused at 300 nl/min for nano-electrospray ionization and mass spectrometry analysis per-

formed on a LTQ-Orbitrap (ThermoFisher). Survey scans were collected in the Orbitrap at

60,000 resolution (at m/z = 300). The maximum injection time for MS survey scans was 500

ms with 1 microscan and AGC = 1x106. For LTQ MS/MS scans, maximum injection time for

survey scans was 250 ms with 1 microscan and AGC = 1x106. Peptides were fragmented by

CAD for 30 ms in 1 mTorr of N2 with a normalized collision energy of 35% and activation

Q = 0.25.

Supporting information

S1 Table.

(CSV)

S2 Table.

(CSV)

Author Contributions

Conceptualization: Daniel J. Adams, William M. Old, Michael H. B. Stowell.

Data curation: Michael H. B. Stowell.

Formal analysis: Daniel J. Adams, John P. Mayer, William M. Old, Michael H. B. Stowell.

Primary peptide inhibitor contaminant of amyloid-beta-42 activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182804 August 9, 2017 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0182804.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0182804.s002
https://doi.org/10.1371/journal.pone.0182804


Funding acquisition: Michael H. B. Stowell.

Investigation: Daniel J. Adams, Travis G. Nemkov, William M. Old.

Supervision: William M. Old, Michael H. B. Stowell.

Validation: William M. Old, Michael H. B. Stowell.

Writing – original draft: Daniel J. Adams, John P. Mayer, William M. Old, Michael H. B.

Stowell.

Writing – review & editing: Daniel J. Adams, Michael H. B. Stowell.

References
1. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease.

Trends in pharmacological sciences. 1991; 12(10):383–8. Epub 1991/10/01. PMID: 1763432.

2. Masters CL, Selkoe DJ. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer dis-

ease. Cold Spring Harb Perspect Med. 2012; 2(6):a006262. Epub 2012/06/08. https://doi.org/10.1101/

cshperspect.a006262 PMID: 22675658;

3. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an

appraisal for the development of therapeutics. Nature reviews Drug discovery. 2011; 10(9):698–712.

Epub 2011/08/20. https://doi.org/10.1038/nrd3505 PMID: 21852788.

4. Walsh DM, Selkoe DJ. A beta oligomers—a decade of discovery. Journal of neurochemistry. 2007; 101

(5):1172–84. Epub 2007/02/09. https://doi.org/10.1111/j.1471-4159.2006.04426.x PMID: 17286590.

5. Seeman P, Seeman N. Alzheimer’s disease: beta-amyloid plaque formation in human brain. Synapse.

2011; 65(12):1289–97. Epub 2011/06/03. https://doi.org/10.1002/syn.20957 PMID: 21633975.

6. Giuffrida ML, Caraci F, De Bona P, Pappalardo G, Nicoletti F, Rizzarelli E, et al. The monomer state of

beta-amyloid: where the Alzheimer’s disease protein meets physiology. Reviews in the neurosciences.

2010; 21(2):83–93. Epub 2010/07/10. PMID: 20614800.

7. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the

road to therapeutics. Science. 2002; 297(5580):353–6. Epub 2002/07/20. https://doi.org/10.1126/

science.1072994 PMID: 12130773.

8. Editor. State of aggregation. Nature neuroscience. 2011; 14(4):399. Epub 2011/03/30. https://doi.org/

10.1038/nn0411-399 PMID: 21445061.

9. Finder VH, Vodopivec I, Nitsch RM, Glockshuber R. The recombinant amyloid-beta peptide Abeta1-42

aggregates faster and is more neurotoxic than synthetic Abeta1-42. Journal of molecular biology. 2010;

396(1):9–18. Epub 2009/12/23. https://doi.org/10.1016/j.jmb.2009.12.016 PMID: 20026079.

10. Fonte V, Dostal V, Roberts CM, Gonzales P, Lacor PN, Velasco PT, et al. A glycine zipper motif medi-

ates the formation of toxic beta-amyloid oligomers in vitro and in vivo. Mol Neurodegener. 2011; 6

(1):61. Epub 2011/08/25. https://doi.org/10.1186/1750-1326-6-61 PMID: 21861874;

11. Hung LW, Ciccotosto GD, Giannakis E, Tew DJ, Perez K, Masters CL, et al. Amyloid-beta peptide

(Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers corre-

late with neurotoxicity. The Journal of neuroscience: the official journal of the Society for Neuroscience.

2008; 28(46):11950–8. Epub 2008/11/14. https://doi.org/10.1523/JNEUROSCI.3916-08.2008 PMID:

19005060.

12. Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU. Transmembrane glycine zippers: physiologi-

cal and pathological roles in membrane proteins. P Natl Acad Sci USA. 2005; 102(40):14278–83. Epub

2005/09/24. https://doi.org/10.1073/pnas.0501234102 PMID: 16179394;

13. Harmeier A, Wozny C, Rost BR, Munter LM, Hua H, Georgiev O, et al. Role of amyloid-beta glycine 33

in oligomerization, toxicity, and neuronal plasticity. The Journal of neuroscience: the official journal of

the Society for Neuroscience. 2009; 29(23):7582–90. Epub 2009/06/12. https://doi.org/10.1523/

JNEUROSCI.1336-09.2009 PMID: 19515926.

14. Tickler AK, Clippingdale AB, Wade JD. Amyloid-beta as a "difficult sequence" in solid phase peptide

synthesis. Protein Pept Lett. 2004; 11(4):377–84. Epub 2004/08/26. PMID: 15327371.

15. Young JD, Huang AS, Ariel N, Bruins JB, Ng D, Stevens RL. Coupling efficiencies of amino acids in the

solid phase synthesis of peptides. Pept Res. 1990; 3(4):194–200. Epub 1990/07/01. PMID: 2134063.

16. Reiber DC, Grover TA, Brown RS. Identifying proteins using matrix-assisted laser desorption/ionization

in-source fragmentation data combined with database searching. Analytical chemistry. 1998; 70

(4):673–83. Epub 1998/03/10. PMID: 9491752.

Primary peptide inhibitor contaminant of amyloid-beta-42 activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182804 August 9, 2017 16 / 17

http://www.ncbi.nlm.nih.gov/pubmed/1763432
https://doi.org/10.1101/cshperspect.a006262
https://doi.org/10.1101/cshperspect.a006262
http://www.ncbi.nlm.nih.gov/pubmed/22675658
https://doi.org/10.1038/nrd3505
http://www.ncbi.nlm.nih.gov/pubmed/21852788
https://doi.org/10.1111/j.1471-4159.2006.04426.x
http://www.ncbi.nlm.nih.gov/pubmed/17286590
https://doi.org/10.1002/syn.20957
http://www.ncbi.nlm.nih.gov/pubmed/21633975
http://www.ncbi.nlm.nih.gov/pubmed/20614800
https://doi.org/10.1126/science.1072994
https://doi.org/10.1126/science.1072994
http://www.ncbi.nlm.nih.gov/pubmed/12130773
https://doi.org/10.1038/nn0411-399
https://doi.org/10.1038/nn0411-399
http://www.ncbi.nlm.nih.gov/pubmed/21445061
https://doi.org/10.1016/j.jmb.2009.12.016
http://www.ncbi.nlm.nih.gov/pubmed/20026079
https://doi.org/10.1186/1750-1326-6-61
http://www.ncbi.nlm.nih.gov/pubmed/21861874
https://doi.org/10.1523/JNEUROSCI.3916-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19005060
https://doi.org/10.1073/pnas.0501234102
http://www.ncbi.nlm.nih.gov/pubmed/16179394
https://doi.org/10.1523/JNEUROSCI.1336-09.2009
https://doi.org/10.1523/JNEUROSCI.1336-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19515926
http://www.ncbi.nlm.nih.gov/pubmed/15327371
http://www.ncbi.nlm.nih.gov/pubmed/2134063
http://www.ncbi.nlm.nih.gov/pubmed/9491752
https://doi.org/10.1371/journal.pone.0182804


17. Li H, Du Z, Lopes DH, Fradinger EA, Wang C, Bitan G. C-terminal tetrapeptides inhibit Abeta42-induced

neurotoxicity primarily through specific interaction at the N-terminus of Abeta42. J Med Chem. 2011; 54

(24):8451–60. https://doi.org/10.1021/jm200982p PMID: 22087474;

18. Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT. Abeta(39–42) modulates Abeta oligomerization

but not fibril formation. Biochemistry. 2012; 51(1):108–17. https://doi.org/10.1021/bi201520b PMID:

22129303;

19. Komatsu H, Feingold-Link E, Sharp KA, Rastogi T, Axelsen PH. Intrinsic linear heterogeneity of amyloid

beta protein fibrils revealed by higher resolution mass-per-length determinations. The Journal of biologi-

cal chemistry. 2010; 285(53):41843–51. Epub 2010/10/14. https://doi.org/10.1074/jbc.M110.165068

PMID: 20940298;

Primary peptide inhibitor contaminant of amyloid-beta-42 activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0182804 August 9, 2017 17 / 17

https://doi.org/10.1021/jm200982p
http://www.ncbi.nlm.nih.gov/pubmed/22087474
https://doi.org/10.1021/bi201520b
http://www.ncbi.nlm.nih.gov/pubmed/22129303
https://doi.org/10.1074/jbc.M110.165068
http://www.ncbi.nlm.nih.gov/pubmed/20940298
https://doi.org/10.1371/journal.pone.0182804

