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Brown-Dymkoski, Eric (M.S., Mechanical Engineering)

Computational Methodology for Aeroacoustic Simulation Using a Volume Penalization Method and

CAD Generated Geometry

Thesis directed by Prof. Oleg V. Vasilyev

The problem of computational aeroacoustic modelling is complex and of practical interest,

especially for external flows around arbitrary geometries. Aeroacoustic interactions are more sen-

sitive to errors than aerodynamics, and as such, particular care must be taken to accurately and

efficiently model them.

For efficiency, an adaptive multi-resolution grid is used to reduce the number of grid points

while still resolving pertinent scales. The compressible Navier-Stokes equations are solved using

the Adaptive Wavelet Collocation Method (AWCM), where wavelet decomposition provides a fast

and efficient method for grid compression while maintaining rigorous control over the error.

The primary focus of this thesis is developing methodologies for efficient handling of solid

obstacles within flows. Proper modelling of arbitrarily shaped obstacles is a prominent issue for

fluid simulation, for which there are several approaches. Immersed boundary methods are well

suited for use with rectilinear grids as they circumvent the need for a body-conformal mesh and

allow curved geometry. The geometry can be efficiently generated through external CAD software,

and ray-tracing algorithms used to create accurate masking functions. Ray-tracing is attractive

for parallel computational systems as each grid point can be analyzed independently. A masking

function provides the geometry definition for volume penalization methods.

A new volume penalization method is introduced here to address several difficulties associated

with the Brinkman Penalization Method (BPM). Brinkman penalization is generally limited to a

select group of fluid problems, and is greatly restricted in the handling and types of boundary

conditions. To overcome these issues, a new, characteristic-based volume penalization method is

proposed, allowing for general Dirichlet and Neumann boundary conditions to be defined.
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Chapter 1

Introduction

1.1 Motivation and Objective

The problem of flow-generated noise is of increasing engineering significance in the modern

world. It was engine noise by jet aircraft that motivated Sir James Lighthill to derive the first

aeroacoustic analogy in the middle of the 20th century [15]. Any situation that arises where there

exists an unsteady fluid flow produces an acoustic field, and in some cases, this field can be quite

significant. In aviation, automotive, and transportation industries, noise pollution adversely affects

passenger comfort and is of concern to the surrounding communities. There are even aeroacoustic

considerations for the energy industry. With wind turbines’ increased popularity, noise generation

impacts site selection and can retard site approval.

In some cases, the impact of flow noise goes beyond discomfort, and can affect technologi-

cal performance. In the marine environment where acoustic sensing is paramount, such as sonar

mapping or undersea warfare, anticipating and eliminating self-generated sound interference be-

comes a mission critical concern. Noise generated by a sensing platform at frequencies of interest is

detrimental to performance. Furthermore, flow noise from propellers and hull/airframe protrusions

adversely affects platform stealth for both aviation and marine platforms. Characterization and

prediction of aeroacoustic spectra can aid in the mitigation process from the earliest design stages.

Many aeroacoustic problems of practical significance arise from flow past complex bodies.

Therefore, there is a need to develop effective computational tools to accurately simulate arbitrary

shapes. Difficulties manifest in generating realistic geometries and integrating them into a solver
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environment. Computational meshing of applied geometry tends to contribute heavily to the com-

putational cost of a numerical solution, and, additionally, particular care must be given to the

quality of the flow model itself. Paramount to developing efficient models is minimizing the size

of a computational domain, and therefore implementing nonreflecting boundaries. Because of a

solution’s aeroacoustic sensitivity to spurious waves in pressure, it is particularly important that

artificial computational boundaries do introduce significant nonphysical forcing into the domain.

The objective of this thesis is to develop an efficient simulation methodology for flow around

complex geometries, with an emphasis on acoustic generation and interactions. While body-

conformal meshes are straightforward in their treatment of solid obstacle boundary conditions,

effective meshing can be quite costly. Immersed boundary methods eliminate the need for body

fitting, and are even suitable for rendering curves on rectilinear grids. The Brinkman Penalization

Method (BPM) has been shown to be quite effective for a wide range of fluid problems [3, 25], in-

cluding computational aeroacoustics [2, 22]. Originally applied to incompressible flows, Brinkman

penalization has been effectively extended to fully compressible, viscous regimes [21].

However, there are several drawbacks to BPM, including the lack of generality in defining

Neumann boundary conditions. Furthermore, steep gradients can cause computational difficulties

which have been previously handled through changes in the differencing stencil [2] and diffuse

interfaces [25]. To overcome these difficulties, a new volume penalization method is proposed

for the introduction of solid obstacles within the flow. This method provides general treatment

for Neumann conditions, making the method suitable for a wide variety of fluid and non-fluid

simulation.

1.2 Methodology

Computational aeroacoustics is fundamentally rooted in determining the time-accurate solu-

tion of a flow regime. Here, external compressible flow is considered around an obstacle of arbitrary

shape. External flow is applicable to a wide variety of systems of engineering interest. One prac-

tical difficulty of such a problem lies in the scarcity of computational resources. External flows
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often contain multiple temporal and spatial scales to be resolved. Efficient computation requires a

grid that adapts automatically to resolve local scales and is able to follow the transient structures.

Often, this can involve re-meshing steps that can be quite expensive.

The adaptive nature of wavelet modelling lends itself well to an efficient multi-resolution

grid. Use of wavelet based adaptation has shown to be effective in a wide variety of fluid models

[25, 26, 36], including compressible external flows [17]. The Adaptive Wavelet Collocation Method

(AWCM) is used here to resolve multiple scales present in the solution.

Since AWCM utilizes a rectilinear grid, it precludes body-conformal grids for modelling solid

obstacles. Conformal meshing is also undesirable in that the computational costs for effective

grid generation are often quite high. Alternatively, immersed boundary methods are used here.

A new characteristic-based volume penalization (CBVP) method is proposed here to model solid

obstacles and overcome difficulties associated with Brinkman penalization. The error of CBVP

can be rigorously controlled, making it appropriate for the high accuracies needed for aeroacoustic

simulation.

For the prediction of flow generated noise, there are two principle methods of computational

aeroacoustic modelling [37]. Direct methods calculate the sound concurrently with the flow field

solution, accurately resolving acoustic scales on the computational mesh. This method has high

computational costs associated with the acoustic scales, as well as requiring a domain that physically

encompasses the radiation field of interest. Often, though, the sound-generating structures in the

flow are limited to a region that is compact in comparison to the radiation field. In these cases,

hybrid methods implementing aeroacoustic analogy, can be used to separate the calculation of

aeroacoustic source structures with that of the far-field sound propagation. There, an accurate

solution to the flow field only needs to encompass sound-generating structures and acoustic analogy

determines the acoustic radiation. Hybrid methods assume a one-way decoupling of the acoustic

and flow solutions, where the flow generates acoustic waves but these waves do not affect the flow. A

popular aeroacoustic analogy for an external flow regime containing solid obstacles is the Ffowcs-

Williams and Hawkings analogy which models radiation using linear acoustics. To circumvent
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errors associated with finite time intervals, a method has been developed by Lockard to solve the

Ffowcs-Williams and Hawkings equation in the frequency domain [23].

The acoustic solutions themselves are more sensitive than aerodynamic solutions. As such,

aeroacoustic methodologies are particularly sensitive to spurious waves. The treatment of boundary

conditions, especially in external flow, can be a major cause of nonphysical reflections. Fluid

modelling constantly pursues transparent boundaries that allow flow structures to exit the domain

unimpeded. Freund has developed a zonal method for nonreflecting boundaries that introduces

artificial damping and convective terms in a narrow zone around the domain edges [11]. The

strength of the method lies in its computationally simple approach for maintaining accuracy in the

physical domain.

1.3 Organization

The rest of this thesis is organized as follows. Chapter 2 outlines the necessary background

for aeroacoustics and the methods used along with the dominant physics and constitutive equa-

tions. The computational methodologies used for nonreflective boundary conditions, solid obstacle

modelling, and aeroacoustic analysis are described. Chapter 3 discusses the extension of auto-

mated CAD geometry analysis and aeroacoustic analogy for parallel computing. Finally, a new

characteristic-based volume penalization method is introduced in Chapter 4. This method is in-

spired by the Brinkman penalization method, but allows for greater control over specific immersed

boundary conditions. In this chapter, a series of single- and multi-dimensional benchmark problems

are used to validate the new penalization method and the aeroacoustic methodologies. The final

chapter outlines conclusions and comments upon future research on this topic.



Chapter 2

Background

2.1 Aeroacoustics

2.1.1 Classical Acoustics

In linear acoustic theory, acoustic waves are considered solutions of the inhomogeneous wave

equation, in pressure,
(

1

c20

∂2

∂t2
−∇2

)

p = F(x, t), (2.1)

where F(x, t) is any generalized source, or collection of sources, in space and time. Solutions of

the wave equation without the presence of solid boundaries are built upon the free space Green’s

function

G(x,y, t − τ) =
1

4π|x− y| δ
(

t− τ − |x− y|
c0

)

. (2.2)

In three dimensions, this is an expanding sphere centered at y, and zero for any time t < τ . The

Green’s function is impulsive and nonzero only at the distance r = |x − y| from the center y. As

a solution to (2.1), it is the wave, propagating outward at velocity c0, instigated by an impulsive

point source δ(x− y) δ(t− τ) located at x = y, and triggered at time t = τ . The differential form

of Green’s function as an inhomogeneous wave is

(

1

c20

∂2

∂t2
−∇2

)

G = δ(x − y) δ(t− τ). (2.3)
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If we consider that any general source term F(x, t) of (2.1) can be taken as the sum of a collection

of impulsive point sources,

F(x, t) =

∫ ∫ ∞

−∞
F(y, τ)δ(x − y) δ(t− τ)d3ydτ, (2.4)

then the Green’s function can be used to construct further solutions of (2.1). In this way, the

acoustic radiation is the linear superposition of impulsive point disturbances in pressure, given as

p(x, t) =

∫ ∫ ∞

−∞
F(y, τ)G(x,y, t − τ)d3ydτ

=
1

4π

∫ ∫ ∞

−∞

F(y, τ)

|x− y| δ
(

t− τ − |x− y|
c0

)

d3ydτ

=
1

4π

∫ ∞

−∞

F
(

y, t− |x−y|
c0

)

|x− y| d3y. (2.5)

Acoustic waves are generally thought of as deviations of variables from the mean flow, espe-

cially considering the impulsive nature of Green’s function. For this reason it is useful to introduce

pertubation quantities as a more intuitive form of acoustic variables, where

ρ′ = ρ− ρ0

p′ = p− p0.

Since the undisturbed state (p0, ρ0) is typically constant, solutions to the wave equation are the

nonzero perturbations propagating through the medium.

In classical acoustics, the generation of acoustic waves in fluids is attributed to a few distinct

phenomena, or sources. These phenomena are, individually and collectively, source terms F(x, t) in

the linear wave equation (2.1) [19]. The first of these is the simple, or monopole, source consisting

of a time varying fluctuation of mass at a point, q(t)δ(x). For a monopole source at the origin, the

forcing of the wave equation is the unsteady mass flux

F(x, t) = −q(t)δ(x). (2.6)

The radiated pressure waves take on the form

p′(x, t) = −
q
(

t− |x|
c0

)

4π|x| , (2.7)
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and

p′(x, t) =
1

4π

∫ ∞

−∞

q
(

y, t− |x−y|
c0

)

|x− y| d3y, (2.8)

for a point and distributed source, respectively. The radiation of acoustic waves from a simple

source is nondirectional in nature.

The second source can be though of as the summation of two monopole sources an infinites-

imal distance apart. If the strengths of these sources are equal and opposite, the net mass flux is

zero and the total monopole strength is zero. However, the wave equation is still satisfied, with a

nonzero source term taking on the form of an unsteady force acting upon the fluid. A dipole source

consisting of a volume force acting in the j th direction at the origin,

F = ∇ · (F(t)δ(x)) = ∂Fj(t)δ(x)

∂xj
, (2.9)

will create acoustic pressure perturbations

p′(x, t) =
∂

∂xj





Fj

(

t− |x|
c0

)

4π|x|



 . (2.10)

The solution for a distribution of dipoles is

p′(x, t) =
1

4π

∂

∂xj

∫ ∞

−∞

Fj

(

y, t− |x−y|
c0

)

|x− y| d3y. (2.11)

The radiation field of the dipole source is a bi-directional figure eight pattern in the direction of the

acting force. Considering the dipole as the sum of two infinitesimally close, opposing monopoles, it is

rightly expected that the strength of a dipole is significantly less than the sum of the two individual

monopoles. The dipole is a less efficient radiator of energy. Dipoles exist whenever fluctuating forces

exist in the fluid, and are often marked by the presence of solid objects. Vibration of machinery or

structures creates dipole acoustic radiation.

The third fundamental source can be thought of as the result of two opposing dipoles super-

imposed an infinitesimal distance apart. The net force at any given instant is zero. However, the

effect of the nonzero stresses from the dipole summation will still provide forcing for a solution to
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the wave equation. The quadrupole source is the volumetric stress

F(x, t) =
∂2Tij(x, t)

∂xixj
. (2.12)

The pressure fluctuations for a point and distributed quadrupole are

p′(x, t) =
∂2

∂xixj

Tij

(

t− |x|
c0

)

4π|x| (2.13)

and

p′(x, t) =
1

4π

∂2

∂xixj

∫ ∞

−∞

Tij

(

y, t− |x−y|
c0

)

|x− y| d3y. (2.14)

Quadrupoles radiate in a cloverleaf pattern, and their strength is less than the combined strength

of the constitutive dipoles, for the same reasons as before. The efficiency of a quadrupole acoustic

source is less than that of the monopole or dipole.

Since higher order sources are still less efficient, discussion typically stops at the quadrupole.

Many aeroacoustic analogies, including the Ffowcs Williams and Hawkings equation, only consider

the effects of monopole, dipole, and quadrupole sources.

2.1.2 Aeroacoustic Analogy

Aeroacoustic analogies are based upon reformulation of the constitutive flow equations,

N (q) = 0, into a form analogous of a wave equation. The general form of aeroacoustic analo-

gies follows

L(q) = S(q),

where q is the set of variables that comprise the solution of the flow equations, L is a wave operator,

and S is analogous to the corresponding source terms [37]. The various aeroacoustic analogies differ

in the form of the wave operator L. The obvious shortcoming, as pointed out my multiple authors

[15, 37] is that the wave operator L and the sources S are both functions of the flow variables q.

The propagation is part of the same flow regime from which it is sourced. In this respect, it is

not precisely a wave equation, but rather only analogy. A principle assumption with aeroacoustic

analogy is that acoustic energies are relatively low, and there is a one-way decoupling of the acoustics
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from the flow. The flow field generates the acoustic perturbations, but the perturbations themselves

do not affect the flow [15].

The most famous, and historically earliest, of the aeroacoustic analogies was derived by

Lighthill in 1952. Specifically motivated by the problem of jet noise, it was built around a steady

free jet in a quiescent fluid [18]. In Lighthill’s analogy, continuity and momentum equations are

rearranged into the form of the linear wave equation (2.1):

(

∂2

∂t2
− c20∇2

)

ρ =
∂2Tij
∂xi∂xj

, (2.15)

where

Tij = ρuiuj + (p − c20ρ)δij − σij. (2.16)

Noting that c20 = ∂p/∂ρ and p′ = p − p0, the more familiar form of the acoustic wave equation

emerges:
(

1

c20

∂2

∂t2
−∇2

)

p′ =
∂2Tij
∂xi∂xj

. (2.17)

In this form, Lighthill has assumed that there are no solid obstacles in the flow and that any mass

sources/sinks are steady state. The result is that his aeroacoustic analogy describes unbounded flow

with a quiescent state at infinity, where the stress tensor Tij describes a quadrupole source. The

form of the solution is straightforward, as shown in equation (2.14), however complete knowledge

of the flow is needed to define the source, Tij .

Williams and Hawkings extended this analogy to include the presence of surfaces in the

flow. With an arbitrary surface, monopole and dipole sources emerge, accounting for the possible

presence of solid obstacles.

Solving aeroacoustic analogies requires time-accurate knowledge of the flow regime. Because

of the difficulty in obtaining analytical solutions to problems of engineering interest, accurate

computational solutions of the flow field are often well suited for prediction of aeroacoustic noise.
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2.2 Governing Equations

The problem considered is external flow of a compressible, viscous fluid on R
2 or R3 in two

or three dimensions. The solution is found in Cartesian coordinates on a domain, Ω = [L1, L2] ×

[M1,M2], containing all obstacles Oi. A hybrid approach to predicting the flow-generated sound

is used, where the aeroacoustic solution is calculated after the transient flow has been determined.

Direct numeric simulation (DNS) of the constitutive equations is used for the low Reynolds number

flows considered here.

2.2.1 Conservation Laws

The fluid flow is governed by the compressible Navier-stokes equations. For a domain with

position vector x and fluid velocity u, the continuity, momentum and energy equations in conser-

vative form are

∂ρ

∂t
= −∂ρuj

∂xj
, (2.18)

∂ρui
∂t

= −∂(ρuiuj)
∂xj

− ∂p

∂xi
+
∂τij
∂xj

, (2.19)

∂ρe

∂t
= − ∂

∂xj
[(ρe+ p)uj ] +

∂(uiτij)

∂xj
+

∂

∂xj

(

k
∂T

∂xj

)

, (2.20)

where ρ is the density of the fluid, ρui is the mass flux, p is the pressure, and k is the thermal

conductivity. The shear stress tensor is

τij = µ

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)

,

and the total specific energy is

e =
1

2
uiui + cpT − p

ρ
,

where p = ρRT , the gas constant is R = cp(γ − 1)/γ, the specific heat ratio is γ =
cp
cv
, and µ is the

dynamic viscosity.

For the computational model, the nondimensionalized Navier-Stokes equations corresponding
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to (2.18), (2.19) and (2.20) are

∂ρ∗

∂t∗
= −

∂ρ∗u∗j
∂x∗j

, (2.21)

∂ρ∗u∗i
∂t∗

= −
∂(ρ∗u∗iu

∗
j)

∂x∗j
− ∂p∗

∂x∗i
+

1

Rea

∂τ∗ij
∂x∗j

, (2.22)

∂ρ∗e∗

∂t∗
= − ∂

∂x∗j

[

(ρ∗e∗ + p∗)u∗j
]

+
1

Rea

∂(u∗i τ
∗
ij)

∂x∗j
+

1

(γ − 1)

1

ReaPr

∂

∂x∗j

(

µ
∂T ∗

∂x∗j

)

, (2.23)

where

p∗ =
ρ∗T ∗

γ
,

τ∗ij = µ∗
(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

− 2

3

∂u∗k
∂xk∗

δij

)

,

e∗ =
1

2
u∗iu

∗
j + cpT

∗ − p∗

ρ∗
,

Rea is the acoustic Reynolds number and Pr is the Prandtl number. Length scales are based on the

characteristic length of the obstacle, L. The velocity u is nondimensionalized based on the reference

speed of sound c0, time based on L/c0, specific energy on c20, density on ρ0, pressure on ρ0c
2
0, viscosity

on µ0, thermal conductivity on µ0cp0 , and temperature on T0. Note that nondimensional pressure

p∗ is not based on a reference pressure p0.

2.2.2 Ffowcs Williams and Hawkings Method

In this nondirect approach, the acoustic scales and radiation are not resolved for concurrently

with the flow solution. Instead, the sound radiation is treated via acoustic analogy. The Ffowcs

Williams and Hawkings equation is solved across the computational domain using the time accurate

solution as the source.

The Ffowcs Williams and Hawkings (FWH) aeroacoustic analogy applies to flow regimes in

R
3 or R

3 containing a rigid closed surface S. A volume function f is prescribed by the surface,

where

f(t) =











f > 0 outside S

f < 0 inside S
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Likewise, the Heaviside function is described by H(f) = 1 for f > 0 and H(f) = 0 for f < 0. The

spatial derivative, ∂f/∂xi is nonzero only upon the surface, S [15].

Under these conditions, and considering fluxes in flow variables across S, the continuity and

momentum equations can exactly be rearranged into the differential forms

(

∂2

∂t2
− c20∇2

)

(H(f)ρ) =
∂2(TijH(f))

∂xi∂xj
− ∂(Fiδ(f))

∂xi
+
∂(Qδ(f))

∂t
, (2.24)

where Tij again is the Lighthill stress tensor (2.16). In comparing the source terms of equation

(2.24) with the fundamental acoustic sources, (2.6) (2.9), we find that the dipole term is

Fi = (Pij + ρui(uj − vj))
∂f

∂xi

and a monopole is given by

Qi = (p0vi + ρ(ui − vi))
∂f

∂xi
,

where v is the velocity of the surface S and Pij is the compressive stress tensor. As in Lighthill’s

analogy (2.17), we see that TijH(f) describes a quadrupole outside of the surface S. Additionally,

Fi describes a dipole on S and Qi a monopole on S. Using the Green’s function, the retarded

potential solution of the Ffowcs Williams and Hawkings equation, given in acoustic perturbation

quantities, is

p′(x, t) = 1
4π

∂2

∂xi∂xj

∫

V

Tij(
|x−y|
c0

)

|x−y| d3y

− 1
4π

∂
∂xi

∫

S

Fi(
|x−y|
c0

)

|x−y| d2y

+ 1
4π

∂
∂t

∫

S

Qi(
|x−y|
c0

)

|x−y| d2y. (2.25)

In two dimensions, the solution (2.25) simply reflects the use of the appropriate two dimensional

Green’s function [23]. The monopole and dipole sources on the surface S are the result of the

changing volume enveloped by S and the unsteady forces present along the boundary. The integral

across the stress tensor Tij considers the perturbations caused by shear stresses in the volume

outside of the surface. It is important to note that shear stresses within S manifest as lower order

sources on S [23].
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In many practical cases, the FWH equation can be simplified by assuming that the surface

is stationary and constant volume in x. Under these assumptions, the monopole source in (2.25)

vanishes, and the dipole source Fi is greatly simplified. In this form, the FWH analogy is known

as Curle’s equation [15].

Typically, we are concerned with noise that propagates large distances where the observer is

located a distance that is many wavelengths away from the source region. Further assuming that

the source region is compact, where the distance from the observer |x−y| is large compared to the

length scale of the source region, Curle’s equation for the acoustic far-field becomes

p′(x, t) ≈ 1
4π

∂2

∂xi∂xj

∫

V

Tij(
|x−y|
c0

)

|x| d3y

− 1
4π

∂
∂xi

∫

S

Fi(
|x|
c0

)

|x−y| d
2y. (2.26)

2.3 Computational Methodologies

2.3.1 Adaptive Wavelet Collocation

Aeroacoustic problems, and many general fluid problems, contain many disparate temporal

and spatial scales. For such problems, discretizing constitutive equations on a constant resolution

mesh is inefficient. High resolutions are only needed at locations where sharp transitions occur. In

regions with gradual spatial variation, fewer points are needed to adequately resolve the solution.

Furthermore, disparate structures are often transient, requiring a continuously adaptive grid to

resolve dissimilar scales.

The adaptive wavelet collocation method (AWCM) is a technique for dynamically adapting a

rectilinear mesh to local scales [32, 33, 34, 35]. A solution, u(x), on a discrete grid is approximated

using a set of wavelets, where there is a one-to-one correspondence between grid points and wavelets.

Filtering out insignificant wavelets from the computational domain can greatly compress the number

of mesh points, while still rigorously maintaining desired accuracy.

Second generation wavelets are used in AWCM, where translational/dilational relationships

between wavelets and a mother wavelet have been abandoned [34]. First, considering an array of
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points x on a closed interval Ω that form a set of J nested grids,

Gj = {xjk ∈ Ω : k ∈ Kj}, j ∈ J . (2.27)

By enforcing xjk = xj+1
2k , the nestedness of the grids, Gj ⊂ Gj+1, is ensured. By desired scaling

functions φjk(x) and wavelets ψj
l (x), a function u(x) can be decomposed [34] by

u(x) =
∑

k∈K0

c0kφ
0
k(x) +

∑

j=0

∑

l

djlψ
j
l (x). (2.28)

By truncating the summation over the jth index at some upper resolution level J , the function

u(x) is approximated by uJ (x). The wavelet coefficients, djl , are representative of that wavelet’s

contribution to the solution. Eliminating wavelets whose coefficients fall below some a priori

threshold ǫ allows for a large number of points to be disregarded, while only incurring an error of

O(ǫ). The remaining set comprises the significant wavelets, defined as those having a coefficient

above the threshold value, that is |djl | ≥ ǫ.

To examine the error incurred in the wavelet approximation, we group the wavelets in equa-

tion (2.28) into those above and below the threshold ǫ,

u(x) = u≥(x) + u<(x). (2.29)

From the wavelet transform, (2.28), the wavelet groups are

u≥(x) =
∑

k∈K0

c0kφ
0
k(x) +

∑

j=0

∑

l
|dj

l
|≥ǫ

djlψ
j
l (x), (2.30)

u<(x) =
∑

j=0

∑

l
|dj

l
|<ǫ

djlψ
j
l (x). (2.31)

From these relationships, it can be shown [9, 33, 34] that

|u(x) − u≥(x)| ≤ C1ǫ ≤ C2N
−p/n, (2.32)

where N is the number of significant wavelets, p is the order of the wavelets, and n is the dimen-

sionality of the problem. The coefficients C1 and C2 are dependent upon the function uJ (x), but

are O(1).
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To realize domain compression and adaptation, we acknowledge that each grid point x

uniquely corresponds to a collocation point for a wavelet. Since u(x) can be approximated by

u≥(x) on an N number of wavelets, all non-significant wavelets and their corresponding grid points

can be discarded. The result is a nested set of computational grids GJ
≥ ⊂ GJ where Gj+1 ⊂ Gj

with areas of high resolution clustered about regions of sharp transition in u(x). The nature of the

adaptive grid GJ
≥ is highly dependent upon u(x).

For transient problems, the grid GJ
≥ (t) is time dependent. As the solution evolves, regions of

with sharp local structures may change position in Ω, and in order to maintain accuracy, changes

in u(x) are anticipated by adding the nearest neighbouring points of significant wavelets to the grid

GJ
≥ [32].

Based upon the compression and interpolation properties of wavelets, the numerical algorithm

for adapting the grid to a transient solution proceeds in a straightforward fashion [34]:

(1) The solution uJ (t) is known from a previous timestep or the initial conditions, and exists

on GJ ,t
≥ for time t. Based on the magnitude of the wavelet coefficients in (2.28) and a given

ǫ, the grid GJ ,t+∆t
≥ is created to include nearest neighbours of xj

i for all j > jmin.

(2) If GJ ,t
≥ and GJ ,t+∆t

≥ are the same, proceed directly to step 3. Otherwise, the solution is

interpolated for the new points in GJ ,t+∆t
≥ .

(3) Integrate the differential system to obtain the new solution uJ≥(t+∆t) on GJ ,t+∆t
≥ , and go

back to step 1.

Since a dyadic, nested grid is used, adaptation from j to j+1 will resolve features at half the

scale. With this adaptation scheme, AWCM not only achieves high compression of the computa-

tional grid, but the L∞-norm error is strictly controlled. By prescribing a lower threshold, ǫ, and a

sufficiently high J to capture all significant wavelets, the error can be systematically reduced by in-

cluding a higher number of wavelets. The adaptation algorithm itself, however, is computationally

cheap and can be effectively implemented at every timestep.



16

2.3.2 Brinkman Penalization

Introduction of solid objects within the domain requires treatment of the domain and con-

stitutive equations in the edges and body of the obstacle. Specified boundary conditions must be

rigorously enforced along surfaces. Where body-fitting meshes are used, prescription of conditions

proceeds in a natural fashion. However, meshing of arbitrarily complex geometry can be expensive,

especially in an adaptive environment. Re-meshing and identifying surface nodes can comprise a

large portion of the solution computational costs.

Immersed boundary methods have been developed to simulate the flow around arbitrary

complex geometry on a non-body conformal grid. The Brinkman penalization method achieves

this by penalizing the flow equations within the obstacle and modelling it as porous media. Porous

media consists of a solid matrix with interconnected pores allowing fluid penetration. The volume

fraction of pores in the media is the porosity φ. For a porosity φ≪ 1, the media could be considered

to resemble a solid obstacle.

The continuity equation for porous media follows naturally [21],

∂ρ

∂t
= − 1

φ

∂ρuj
∂xj

. (2.33)

The momentum equation was first derived for incompressible flows, and later extended to

the compressible regime. For porous media, Darcy’s law for fluid momentum balances the fluid

pressure p with viscous stresses [6],

v = −K
µ
∇p, (2.34)

where v is the seepage velocity given by the Dupuit-Forchheimer relationship v = φu. Addition of

a viscous term, Darcy’s law is extended into the Brinkman equation [3],

∇p = − µ

K
v + µ∇2v. (2.35)

Combining the Brinkman and continuity equations into a form analogous of the incompressible

Navier-Stokes equations [31] yields a conservative form of the momentum equation for fluid in a
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porous media,

1

φ

∂ρvi
∂t

= − 1

φ

∂

∂xj
(ρφ−1vivj)−

∂p

∂xi
+ µ

∂2vi
∂x2j

− µ

K
vi (2.36)

where φ = φ(x). Location dependent porosity is considered in order to model porous media flow in

all of the domain, Ω, as obstacles within an open flow regime. For the region external to obstacles,

φ is set to 1, and internal to the obstacles, φ≪ 1. Liu notes several instances where the momentum

equation (2.36) can be greatly simplified for use in numerical simulation [21].

Lastly, the energy equation for flow through porous media is simply the compressible energy

equation (2.20) with a forcing term to maintain a specified temperature,

∂ρe

∂t
= − ∂

∂xj
[(ρe+ p)vj ] +

∂

∂xj

(

k
∂T

∂xj

)

− h

φ
(T − T0). (2.37)

For simplicity, the heat transfer coefficient h is be included in a normalized thermal permeability

ηT = φ/h.

In using these equations to adequately simulate obstacles in external flow, no-slip boundary

conditions need to be strictly enforced for obstacles Oi,

u = U0 on ∂Oi, (2.38)

where U0 is the obstacle velocity. Angot et al. [1] model this effect for incompressible flows by

using Brinkman penalization with the L2-penalized equation

∂ui
∂t

= −∂(uiuj)
∂xj

− ∂P

∂xi
+ ν

∂2ui
∂x2j

− χ

η
(ui − U0i), (2.39)

where

P =
p

ρ
. (2.40)

Permeability, η = αφ, is a constant normalized viscous permeability. A masking function, χ, is

defined as

χ =











1 in x ∈ Oi,

0 otherwise.

Effectively, χ provides support for the permeability φ(x) = χφ, imposing φ = 1 outside of the

obstacles.
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Appropriate extension of Brinkman penalization to compressible regimes was achieved by Liu

and Vasilyev [21]. In order to enforce no-slip conditions and a constant temperature obstacle, the

compressible Navier-Stokes equations become

∂ρ

∂t
= −

[

1 +

(

1

φ
− 1

)

χ

]

∂ρuj
∂xj

, (2.41)

∂ρui
∂t

= −∂(ρuiuj)
∂xj

− ∂p

∂xi
+
∂τij
∂xj

−χ
η
(ui − U0i) , (2.42)

∂ρe

∂t
= − ∂

∂xj
[(ρe+ p) uj] +

∂(uiτij)

∂xj
+

∂

∂xj

(

k
∂T

∂xj

)

− χ

ηT
(T − T0) , (2.43)

For a solid obstacle within a flow regime, equations (2.41),(2.42) and (2.43) are solved every-

where. More notably, the treatment of derivatives can be uniform across the entire domain. Efficient

finite differencing schemes can be employed, providing a marked advantage over body-conformal

meshes [1].

There are a few drawbacks associated with Brinkman penalization. The introduction of low

porosity on the continuity equation can lead to steep gradients, requiring modifications of the

differencing stencil within the fluid region [2] or the use of diffuse-edge masking functions [25].

Furthermore, the BPM is limited in the application of Dirichlet boundary conditions. The use

of porosity φ mimics a no-flux boundary condition, but does not allow for application of general

Neumann conditions. This makes Brinkman penalization in its current form unsuitable for fluid

simulations involving specified heat fluxes.

2.3.3 Generation and Incorporation of Complex Geometry

The use of penalization methods depends on a description of a mask function, χ, that ac-

curately represents any arbitrary obstacle Oi. For simple geometry, this is readily accomplished

through analytical functions to describe surfaces. However, for problems of engineering interest, the

complexity of the geometry can make it impractical or impossible to create a satisfactory masking

function analytically, especially in three dimensions.

The use of CAD software to generate desired geometry is a practical recourse, greatly simpli-

fying obstacle definition. Determining χ for a given discrete grid is the primary challenge to using
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CAD models. For a set of points P in R containing a closed surface S, it must be found whether the

points are located inside (χ = 1) or outside (χ = 0) of S. Automated analysis of points constrained

by an arbitrary surface is a problem well known in computer graphics as well as in computational

modelling. For in/out determination, consider a ray originating from point P1 and extending to

infinity. If the ray intersects S an even number of times, it is located outside, if it intersects S an

odd number of times, it is inside. If there are zero intersections, the point is definitively outside.

In theory, the direction of the ray can be arbitrary, and only one ray is needed. Ghosh argues that

this principle, known as the odd-parity rule, has a basis in Gauss’ Law and electromagnetic field

theory [14].

Analyzing CAD geometry requires a file format that defines solid body surfaces, as opposed

to volumetric representation. Consider then, a closed surface S comprised of a piecewise continuous

assembly of bounded analytical surfaces s{si}. Determination of point location is then based upon

ray intersections with any si ⊂ S. Knowing the bounded points ξ|si that form the surface si,

determination of intersections from an arbitrary ray follows naturally. In developing an algorithm,

Schneider and Eberly suggest a parametric ray of the form

m = P(x) + τm̂,

where m̂ is the direction of ray [27]. If ξ = f(x), and a τ can be found so that

ξ|si = P(x) + τm̂, (2.44)

for a specified m̂, then intersection is determined for m with si. Particular care must be taken for

rays that intersect nodes and edges of si, and experience shows that multiple rays are needed to

ensure robust analysis.

Some standardized CAD formats include representation of geometric surfaces by using a mesh

of complex polygons. For non-planar surfaces, fine resolution with a large number of polygons is

used. Odd-parity algorithms are relatively simple for such a format, as ξ|si is planar and intersection

easy to determine. As such, using poly-mesh representation is a popular method of computational

analysis.
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For universal representation of smooth contoured geometry, Initial Graphics Exchange Spec-

ification (IGES) files format is used. Aside from planar surfaces, IGES utilizes a wide variety of

circular, revolved, and B-spline curves to accurately represent curved surfaces. The principle advan-

tage of this is that fewer surfaces are needed to represent complex geometry at a greater precision.

This is advantageous in fluid modelling to guarantee sufficient resolution of the geometry. In using

IGES format, the resolution of a surface is limited only by the resolution of the mesh, which can

be defined or changed based on the needs of the simulation without requiring file regeneration.

A standard file format, IGES is not proprietary to modelling platforms. This format is ASCII

based, or compressed version thereof, and contains descriptions of five classes of entities: curve

and surface geometries, constructive solids, boundary represented solids, annotation entities, and

structures [30]. The format is maintained as a specification by the US Product Data Association,

and as such, is readily available and accessible for use in the computational environment.

2.3.4 Nonreflective Boundary Conditions

In addition to the immersed boundaries, the domain boundaries must also be well posed and

representative of the physics of the external flow. Unlike internal flows, where physical boundaries

readily define the domain, external flows are typically modelled as being unbounded where the edges

are transparent to the flow. Additionally, any interactions of fluid structures with the boundary

must not create spurious reflections back into the flow.

A practical computational domain is constructed by imposing artificial boundaries around

flows of interest. To establish boundaries at a distance where flow structures have effectively

dissipated to the undisturbed state would often be computationally impractical, if not impossible.

In many cases, the desired flow characteristics lie in a much more compact region. In order to

accurately simulate the physical system, the boundaries must therefore allow flow structures to

propagate out without reflection of nonphysical phenomena back into the domain.

In the case of aeroacoustic simulation, this is particularly important as sound computation

is especially sensitive to spurious perturbations. The domain should only be large enough to
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capture structures that significantly contribute to aeroacoustic sourcing. Dynamically significant

flow structures may arise that are not of aeroacoustic interest, and could be present near the domain

boundary. Such fluctuations could cause nonphysical wave reflection if boundary conditions are

not carefully established. Such spurious waves can easily interfere with the calculation of acoustic

propagation [11].

2.3.4.1 Convection-Zone Boundary Conditions

In order to prescribe numerically transparent boundaries, the time-dependent solution must

be fully defined along the domain edge. For external flows, this is not usually possible to do

explicitly. For any transient hyperbolic system, such as the compressible Navier-Stokes equations

in the inviscid limit, the behaviour along the boundary is described by outgoing waves as well

as incoming waves from outside the domain. The outgoing waves are sufficiently defined by the

interior solution, but the incoming waves have no such support. For a well posed problem, the

precise behaviour of incoming waves must be determined, or at least sufficiently simulated [28].

Characteristic analysis of the one dimensional Euler equations [28] yields the eigenvalues

λ1 = u− c, λ2 = u, λ3 = u+ c,

which represent the propagation velocities of the characteristic waves, where u is the convective

velocity and c is the speed of sound. Analogously applying these characteristics to the compressible

Navier-Stokes equations, we examine them along an arbitrary boundary [24]. At an outflow bound-

ary, we only want to pass internal structures our of the domain. For this boundary type, λ2 and

λ3 are defined by the interior solution, and pose no direct complication to condition prescription.

However, the incoming wave at velocity u− c must be somehow treated. At an inflow boundary, it

may be desired to pass flow features into the domain while simultaneously preventing reflection of

outgoing acoustic waves. For a well posed inflow, we find that there are several boundary condition

sets that are well posed [24]. The problem with explicit definition of flow variables is that they are

rigid and will cause nonphysical reflections.



22

Poinsot and Lele dealt with boundary difficulties by proposing evolutionary conditions that

estimate desired inflow and outflow behaviours based on approximations of characteristic wave

amplitude [24]. Another, mathematically simpler, method of approximating nonreflecting boundary

treatments was proposed by Freund [11]. Freund’s method is zonal-based, in that the computational

domain is extended by a nonphysical buffer region. In this region, the flow is conditioned to

provide nonreflecting support for the physical domain. The compressible Navier-Stokes equations

are modified with the addition of two nonphysical terms within the boundary region [11],

∂ρ

∂t
+
∂(ρuj)

∂xj
+ U(x1)

∂ρ

∂x1
= −σ(x1)(ρ− ρ0) (2.45)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+ U(x1)

∂(ρui)

∂x1
=

∂τij
∂xj

− σ(x1)[ρui − (ρui)0] (2.46)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
+ U(x1)

∂()ρe)

∂x1
=

∂(ujτij)

∂xj
− σ(x1)[ρe− (ρe)0], (2.47)

for boundaries in the normal x1 direction.

In general, the artificial convection U(x1) is chosen so that |U(x1)| ≥ c. The artificial damping

term, σ, drives the solution along the boundaries to the quiescent state, supporting the numerical

solution. The introduction of these artificial terms imposes numerical forcing in the boundary

region, which causes spurious waves back into the physical domain. To ease this problem, a smooth

transition in compact support from the physical domain to |U(x1)| ≥ c is required. Furthermore,

the nonreflective efficacy of the buffer zone can be increased by increasing the size [37].

One of the strengths of Freund’s method is that it can be applied to both the inflow and

outflow boundaries. To eliminate the problem of unknown waves propagating inward at an outflow

boundary, U(x1) is defined with an outward convective velocity above c. Now all of the characteristic

waves propagate with a net outward velocity, so that the boundary behavior is fully described by

the solution interior to the domain. Furthermore, σ(x1) serves to quickly dampen outgoing waves

to prevent spurious reflections, which are caused by the numerical forcing induced by the addition

of the artificial terms. Since U(x1) is directed outwards, nonphysical reflections propagating inward

from the boundary are slowed, spending longer time in the dissipative boundary zone [11].

On an inflow boundary, U(x1) is chosen to be inward pointing. The effect of this is twofold.
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Structures and desired flow characteristics that are passed into the domain propagate quickly

through the nonphysical boundary zone, undergoing minimal artificial damping. Additionally,

acoustic waves propagating upstream are asymptotically slowed and dissipated to the quiescent

state [11].

2.3.5 Ffowcs-Williams Hawkings Analysis

While efficient computation favors a minimizing of the domain, the acoustic far-field and

regions of interest can be quite large. In addition to spatial requirements, direct computation of

aeroacoustics concurrent with the flow field places heavy computational demands alongside the

difficulty of accurately resolving acoustic radiation scales. To circumvent these difficulties, hy-

brid methods are used, where an appropriate acoustic analogy is solved after the flow solution is

computed in the near-field. The Ffowcs Williams Hawkings method has shown to be a popular

approach. In theory, this amounts to solving the Ffowcs Williams Hawkings equation (2.25) upon a

discrete flow solution. In practice, analysis of the Ffowcs Williams Hawkings equation (2.25) runs

into several challenges.

In its exact form it contains a computationally expensive volume integral of the computa-

tionally expensive stress tensor Tij . Furthermore, in two dimensions, the Green’s function

G(x,y, t − τ) =
H(c0(t− τ)− |x− y|)

2πc0
√

c20(t− τ)2 − |x− y|2
(2.48)

necessitates a infinite time integral. While truncation of the time span can be used to approximate

the solution, the timespan required could still pose computational difficulties [23].

An eloquent way around this is to perform the integration in the frequency domain and

assume a periodic solution. A flow solution only needs to be run long enough to capture the

longest frequencies of interest. For aperiodic flows, windowing of the solution can be used to

approximate a periodic state. Algorithms for both two and three dimensional Ffowc Williams

Hawkings integrations in the frequency domain were developed by Lockard and are readily available

[23].
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The presence of the volume integral can be approximated by appropriate placement of the

Ffowcs Williams Hawkings surface S. While it is natural to consider a computational surface

coinciding with the surface of solid obstacles in the flow, it is not required. Alternatively, a fully

permeable surface in the flow may be prescribed. Placement of such a surface precludes the ability to

predict the radiation field within the surface, but since far-field acoustics are primarily considered,

this limitation is of little practical consequence. Placement of S is determinant on the flow in

question. The volume integral across the stress tensor is performed outside of S, so in choosing S to

fully encompass all significant shear stresses, equation (2.25) can be sufficiently approximated even

with neglecting the volume integration. Though the surface integrals do not explicitly consider the

quadrupole source, shear mixing effects within S are captured by the monopole and dipole terms.

Furthermore, quadrupole terms are less efficient than other sources, so eliminating the volume

integral can be done safely except in extended quadrupole dominated fields. Flows, like free jets,

where there are no strict monopole or dipole terms, and the quadrupole field extends semi-infinitely,

become problematic with these methods [23]. The flows considered here contain solid obstacles,

and therefore contain the more efficient dipole source.



Chapter 3

Parallelization of Ray-Tracing Algorithm and Aeroacoustic Analogy

3.1 Extension of CAD Model Analysis Algorithm to Parallel Computers

Geometry for complex obstacles can be efficiently generated using CAD software. In order

to use the geometry with volume penalization methods, a masking function χ(x) for a given grid

must be constructed from the CAD files. Tracing rays emitted from grid points, and counting their

intersections with the obstacle surfaces, effectively determines the local χ value.

3.1.1 Optimization of Ray-Tracing for Structured, Multi-Resolution Grid

Incorporation of the ray tracing algorithm into the adaptive solver must be done carefully

to preserve computational efficiency. For the ray-tracing algorithm that is used with the AWCM

solver, not all nodes incur equal computational cost. First, when the geometry is initialized, a

bounding box is created reflecting the extents of the geometry on the cardinal axes. For external

flow regimes, this efficiently determines χ for the large number of points that are not in the vicinity

of the obstacle at a minimum cost.

At the next level, points that fall within the bounding box are considered. For rays parallel

to the principle axes, root finding algorithms are used to determine the location of intersections.

The computational cost is highly dependent upon the total number of intersections, the type of

surface, and the nature of the geometry itself. This particular code classifies discrete geometry

elements as either a revolved or non-uniform rational B-spline (NURBS) entity.

One practical difficulty with implementation of the algorithm is the representation of complex
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geometry as a conglomeration of distinct entity. Contact surfaces between entities need to be

rendered as internal points for the overall geometry. However, points on the surface can be rendered

as external when the surface itself is counted as an intersection. When the grid adapts on the

perceived surface, this causes the needless addition of large numbers of points along the internal

seam between entities, as shown in Figure 3.1a. The geometry consists of a half-circle and half-

ellipse joined along the minor axis. This effect is avoided by adding in a nominal offset smaller

than the finest resolution of the grid. The discrete mask, χ, is unaffected, but the internal seam is

removed, as in Figure 3.1b.

(a) With seam (b) Without seam

Figure 3.1: Grid adapted to solid obstacle comprised of elliptical and circular entities.

In general, each point with an intersecting ray will add appreciable computational cost to a

calculation as the root-finding algorithms must converge to a precision that is smaller than the finest

resolution of the grid. For large numbers of points, the relative computational cost can comprise a

large portion of the computation time, especially if all nodes points must be re-evaluated at each

time step.

For some solvers, such as AWCM, the structured nature of the grid can be a distinct advan-

tage. For a fixed object, the masking function is static, so that the in/out data associated with
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any given point does not change for the duration of the calculation. Unique points only need to be

evaluated once. Much of the computational load for geometry analysis is therefore shifted to the

grid adaptation on initial conditions, and only new points in the grid evaluated thereafter. The

largest contributions to computational cost then come from highly transient structures that cause

grid adaptation in the immediate vicinity of the obstacle.

3.1.2 Ray-Tracing for Parallel Computing

Parallelization of the ray-tracing algorithm proceeds in a straightforward fashion. The mask-

ing function, χ, as well as an new-point identifier are attached to the point and communicated

between processors as the solution is partitioned and repartitioned throughout the duration of a

calculation. Once initialized, the geometry definitiions are held in the memory, requiring only a

single file I/O per processor. Though each point is evaluated independently, the parallelization

of the code is highly problem specific. Subdomains containing highly transient solutions in the

vicinity of computationally intensive geometry will incur a high cost, while static structures away

from the obstacle are only marginally impacted.

3.1.3 Results and Discussion

The computational load of the ray-tracing algorithm is considered for a two dimensional

acoustic scattering problem. The geometry consists of a cylinder located at the origin on a com-

putational domain of Ω = [−2, 3.5] × [−2, 2], and asymmetric about the y-axis. The cylinder is

elliptical for x < 0 and circular for x > 0. In the IGES format, it is represented by both recognized

geometric entities: a revolved and a NURBS surfaces.

The propagation and scattering of an acoustic wave from a source at x = 2 causes the grid to

adapt continually for the duration of the calculation. The grid adapts in all regions of Ω, including

in the immediate vicinity of the obstacle. Though simple, this problem represents the broad spectra

of difficulties for effective code parallization.

Figure 3.2a shows the total CPU time for the CAD analysis calculations at each timestep
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Figure 3.3: Strong scaling of CAD algorithm.

vis-à-vis the total number of grid points. A majority of the total walltime is incurred during the

initializing of the grid. For the first several hundred iterations in time, the grid adapts heavily as the

acoustic perturbation begins to propagate outward. However, since the points added are far away

from the obstacle, the root finding algorithms are not used and the computational cost is negligible.

When the acoustic waves approach the obstacle, near iteration 7000, ray-tracing is necessary to

determine the mask for each point, and the computational cost rises accordingly. However, the

number of points analyzed remains small.

The strong scaling for the ray-tracing algorithms in Figure 3.3a shows the embarrassingly

parallel nature of this method for the problem considered.

3.2 Parallel Implementation of Ffowcs-Williams Hawkings Integration Sur-

face

In order to calculate the aeroacoustic far-field, the time-accurate flow solution is needed

for the Ffowcs Williams and Hawkings equations. The FWH code, developed by Lockard [23],

requires constant time stepping and static nodes for the flow variables on the integration surface.
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Since aeroacoustic analysis is performed in post-processing, interfacing with the AWCM code only

demands that appropriate solution files are produced and a strictly defined integration surface

imposed in the computational grid.

3.2.1 Review of Serial Interface

The FWH code has previously been used with the AWCM code for serial cases, and the

interface is quite direct. The surface of integration for the FWH equations is defined by a discrete

number of linear patches that are parallel to the principle axes. They are generated during the

initialization of the code by adding points to the adaptive grid at a desired level of resolution. The

most efficient patches have endpoints that lie on the jmin grid level to avoid unnecessary adaptation.

Once constructed, the variables are simply written at desired timesteps.

3.2.2 FWH parallel Interface

The parallel implementation of the FWH interfacing minimally affects the construction of the

integration surface. During initialization, the FWH surface is defined on all processors, and each

processor filters out points not resident to the local subdomain at each time step. At the desired

timestep, all information for FWH points are passed to processor 0 for writing. In cases where it

would be desirable to use an adaptive timestep, the parallel overhead is greater. Communication

is required at every iteration in order to retain the integration surface in memory for interpolation.

3.2.3 Results and Discussion

Strong scaling is examined for two-dimensional acoustic scattering from an arbitrary solid

obstacle located at the origin. The FWH surface is constructed so that it resides on multiple

processors. A simple, first-order interpolation is used here for an adaptive, though higher-order

schemes may be used with no additional communication requirements. The strong scaling for

writing of FWH information is shown in Figure 3.4. The strong scaling across the low number of

processors examined here is slightly less than 1, however, the adaptive timestep is a worst case
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scenario and the low relative computational overhead makes this approach a feasible option.
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Figure 3.4: Strong scaling for writing of FWH integration surface to file.



Chapter 4

Characteristic-Based Volume Penalization Method

Immersed boundary methods have been developed to model flows around a solid obstacle

without the need for body conformal meshes. While pseudo-conformal and multi-resolution grids are

often used [2, 7, 13, 21], releasing the requirement for node/surface coincidence allows one to avoid

costly re-meshing. This proposed method builds upon some of the principles that are employed

for the Brinkman Penalization Method for compressible flows [21], particularly the treatment of

Dirichlet boundary conditions.

While Brinkman penalization has shown to be effective in many fluid applications [2, 21], the

drawbacks are pronounced. Steep gradients at the surface have shown to be problematic, requir-

ing diffuse boundaries or, for Bae and Moon, local changes in differencing stencil [2]. Brinkman

penalization is also limited to a small set of fluid problems and lacks generalizability.

The premise of this new Characteristic-Based Volume Penalization (CBVP) is to use Brinkman-

style forcing for Dirichlet conditions, while introducing penalized convective terms to impose Neu-

mann conditions. For Neumann conditions, the dominant penalization terms force the equations

into a hyperbolic system with a single, inward-pointing characteristic. That way, the nonphysical

penalized region only affects the physical solution through the derivative values at the boundary.

4.1 Characteristic-Based Volume Penalization

Characteristic-Based Volume Penalization allows for the implementation of Dirichlet, Neu-

mann, and Robin type boundary conditions by introducing forcing into the constitutive equations.
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For a domain, Ω containing obstacles Oi, desired boundary conditions are to be imposed upon the

obstacle surfaces Si. Penalization is applied only to the region inside of the obstacle by mean of a

masking function, χ, where

χ =











1 if x ∈ Oi,

0 otherwise.

The expression of penalized terms, and therefore the strict enforcement of the boundary conditions,

is controlled by penalization parameter, η, in such a way that the solution converges as η → 0.

Dirichlet conditions are imposed in the same fashion as with the Brinkman penalization

method [21]. For a generalized quantity, the penalization term is added to the constitutive equation

to provide forcing toward some target value, U0, by

∂u

∂t
= · · ·RHS · · · − χ

ηb
(u− U0), (4.1)

where ∂u/∂t is a general constitutive equation for some variable of interest.

Neumann boundary conditions can be imposed by introducing similar-style forcing on the

normal derivative. For a target normal derivative q the governing equation for u is penalized

∂u

∂t
= · · ·RHS · · · − χ

ηc
nk

(

∂u

∂xk
− q

)

, (4.2)

for a desired value, q, where nkêk is the inward pointing surface normal of the obstacle. As ηc

becomes small, the penalization term begins to dominate (4.2). While the right hand side of the

constitutive equation is still present in the penalized region, it acts on a much larger timescale. For

a sufficiently small penalization parameter, (4.2) becomes a hyperbolic equation,

∂u

∂t
= − χ

ηc
nk

(

∂u

∂xk
− q

)

(4.3)

within the obstacle. For (4.3), there is a single characteristic pointing inward on the obstacle, and

the steady state solution is

∂u

∂xk
= q. (4.4)

The solution u on si is governed by the constitutive equations, while the nonphysical internal region

only affects the fluid through the normal derivative. The characteristic ensures that the nonphysical

internal solution does not propagate outward.
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Note that these schemes (4.1-4.2) are generic and not applied to any particular system of

PDE’s. Penalization can be independently imposed for any set of problem specific quantities, and

extended to the governing system provided that consistent relationships are available.

4.1.1 Penalized Navier-Stokes Equations

For the problems considered here, penalization is prescribed for adiabatic, no-slip, and an

approximate Neumann boundary condition, on immersed boundaries Si. That is

∂ρ
∂n = 0,

u = U0,

∂T
∂n = 0,



























on Si (4.5)

must be satisfied. While the Neumann condition on density is disingenuous considering the adi-

abatic condition, it is an approximation made to simplify and speed up the calculation. For the

boundary layer of an adiabatic obstacle,

∂ρ

∂n
=
ρ

p

∂p

∂n
= O

(

1√
Re

)

(4.6)

at the interface. This approximation works well for high Reynolds number flows.

To enforce this set of boundary conditions, equations are assumed of the form

∂ρ

∂t
= · · · − χ

ηc
nk

∂ρ

∂xk
, (4.7)

∂ρui
∂t

= · · · − χ

ηb
ρ (ui − U0i) , (4.8)

∂T

∂t
= · · · − χ

ηc
nk

∂T

∂xk
. (4.9)

Note that both (4.7) and (4.9) make use of the same parameter, ηc. This is following a simplest

convention of penalizing like conditions similarly, as well as noting that pressure, density, and

pressure are related through the equation of state. Using (4.7-4.9), the ideal gas equation, and

the energy equation of state, the penalized nondimensional Navier-Stokes equations for boundary
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conditions (4.5) are

∂ρ∗

∂t∗
= −

∂ρ∗u∗j
∂x∗j

− χ

ηc
nk
∂ρ∗

∂x∗k
, (4.10)

∂ρ∗u∗i
∂t∗

= −
∂(ρ∗u∗i u

∗
j)

∂x∗j
− ∂p∗

∂x∗i
+

1

Rea

∂τ∗ij
∂x∗j

− χ

ηb
ρ∗ (u∗i − U∗

0i) , (4.11)

∂ρ∗e∗

∂t∗
= − ∂

∂x∗j

[

(ρ∗e∗ + p∗)u∗j
]

+
1

Rea

∂(u∗i τ
∗
ij)

∂x∗j
+

1

(γ − 1)

1

ReaPr

∂

∂x∗j

(

µ
∂T ∗

∂x∗j

)

− χ

ηc

1

(γ − 1)
nk
∂p∗

∂x∗k
− χ

ηb
ρ∗u∗i (u

∗
i − U∗

0i) +
χ

ηc

u∗iu
∗
i

2
nk
∂ρ∗

∂x∗k
, (4.12)

where it remains unchanged that

p∗ =
ρ∗T ∗

γ
,

τ∗ij = µ∗
(

∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

− 2

3

∂u∗k
∂xk∗

δij

)

,

e∗ =
1

2
u∗iu

∗
j + cpT

∗ − p∗

ρ∗
.

In a general sense, equations (4.10-4.12) are valid on all Ω. However, strict application across

the domain can lead to a convergence of characteristics with multi-valued singularities. This will

invariable arise for any geometry where the surface normals converge within the computational

domain, such as the typical case of a fully enclosed obstacle. Depending on the variables penalized

in this manner, this can lead to accumulation in the regions of intersection. However, the region

where the penalization terms affect the fluid solution is limited to a narrow region along the inside

surface of the obstacle. For the adaptive wavelet solver used here, this region only consists of the

points belonging to the differencing stencil for any fluid node. By properly resolving the obstacle,

intersections can typically be avoided, except in the case of thin geometry. The penalization in

(4.2) therefore only has local support within this narrow region, and effective sink terms prevent

accumulations within the obstacle. Distance functions based on the masking term χ have been used

effectively to provid local support functions, though their practical construction is omitted here.
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4.2 Stability and Artificial Viscosity

As noted by Liu and Vasilyev, the Brinkman term, ηb, introduces additional stiffness into the

problem [21]. The solution in ρu is driven to the target value of U0 on the timescale of ηb within

the obstacle, which is much smaller than the acoustic timescales of the problem. At the interface,

this forcing creates a boundary layer within the obstacle. The boundary layer within the obstacle

has a length-scale on the order of δ =
√

ηb
Rea

. For stability, the boundary layer ought to be resolved,

implying a mesh resolution of ∆xi <
√

ηb
Rea

at every resolution on the adaptive grid. For moderate

values of ηb, the resolution requirements can quickly become computationally burdensome, even for

adaptive multi-resolution methods.

Insufficiently resolved, the internal boundary layer leads to a discontinuity in the first deriva-

tive of momentum. This causes oscillations that propagate outward into the fluid domain. While

these are low amplitude oscillations, the adaptive grid attempts to resolve them, greatly adding to

the computational cost of the solution.

One solution would be to use a diffuse boundary region for the obstacle, where χ transitions

smoothly from 1 to 0 across a finite distance. Since a sharp interface becomes important at high

Reynolds numbers, an alternative method is to use artificial viscosity to supplement physical vis-

cosity at the solid-fluid interface. The length scale of a boundary layer, δ, for a solution of timescale

τ with viscosity ν is δ2 = ντ ; so for a prescribed resolution, the viscosity ν required to sufficiently

smooth the solution inside the boundary layer is

ν >
∆x2

ηb
. (4.13)

That is to say that ν, the necessary viscosity for numerical stability, is dependant upon the desired

resolution. For low Reynolds number flows or high resolution grids, this requirement will be met

by the physical viscosity. Where this requirement is not met, artificial viscosity can be provided to

compliment the physical viscosity through

νn = max

{

α
∆x2

ηb
− 1

Rea
, 0

}

. (4.14)
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Since proper resolution requires O(10) points in the boundary layer, the factor α is on the order

of O(100). While loosening the resolution requirement, the use of artificial viscosity contributes to

additional error in the solution by lengthening the boundary layer within the obstacle.

4.3 Error Estimation From Acoustic Theory

The addition of the convective terms associated with penalization parameter ηc on the Navier-

Stokes equations, (4.10-4.12), implies a discontinuous change in the speed of sound at the interface.

From acoustic theory, this impedance mismatch would cause physical reflection of incoming waves

based upon the relation. The reflection coefficient for incident pressure waves at an interface is

R =
Z2 − Z1

Z2 + Z1
, (4.15)

where the impedence in terms of the density, cross-sectional area S, and speed of sound c is

Z = ρc/S. Since the density and cross-sectional area of the fluid for both regions is equal at the

boundary, R is simply given by

R =
c2 − c1
c2 + c1

=
1− ηc
1 + ηc

≈ 1− 2ηc. (4.16)

For reflected acoustic waves, the expected amplitude error is O(ηc). However, it is worthwhile

to note that does not consider the errors introduced from the penalized no-slip condition.

4.4 Asymptotic Analysis

While the penalized Navier-Stokes equations cannot be directly analyzed, rigorous asymptotic

analysis of the acoustic timescale behavior gives insight into the error convergence of the penaliza-

tion parameters ηb and ηc. One-dimensional flow is considered for an acoustic pulse reflecting off

an obstacle. The error is examined in the fully reflected pulse.

For simplicity, a further modification is made to the penalized Navier-Stokes equations (4.10-

4.12). The inviscid (Euler equation) terms are removed within the penalized region.



37

∂ρ∗

∂t∗
= − (1− χ)

∂ρ∗u∗j
∂x∗j

− χ

ηc
nk
∂ρ∗

∂x∗k
, (4.17)

∂ρ∗u∗i
∂t∗

= − (1− χ)

[

∂(ρ∗u∗iu
∗
j )

∂x∗j
+
∂p∗

∂x∗i

]

+
1

Rea

∂τ∗ij
∂x∗j

− χ

ηb
ρ∗ (u∗i − U∗

0i) , (4.18)

∂ρ∗e∗

∂t∗
= − (1− χ)

∂

∂x∗j

[

(ρ∗e∗ + p∗)u∗j
]

+
1

Rea

∂(u∗i τ
∗
ij)

∂x∗j
+

1

(γ − 1)

1

ReaPr

∂

∂x∗j

(

µ
∂T ∗

∂x∗j

)

− χ

ηc

1

(γ − 1)
nk
∂p∗

∂x∗k
− χ

ηb
ρ∗u∗i (u

∗
i − U∗

0i) +
χ

ηc

u∗i u
∗
i

2
nk
∂ρ∗

∂x∗k
. (4.19)

It is important to retain the viscous terms everywhere on Ω for stability. Removing viscous terms

would create a discontinuity from the Brinkman penalization forcing for the Dirichlet condition

(4.1). This reduces or eliminates the need for artificial viscosity required to stabilize the penalization

method.

4.4.1 Asymptotic Analysis of the Fluid Region

First the amplitudes of the variables are asymptotically expanded for the smaller of (ηb, ηc).

The resulting equations, after substituting into the constitutive equations and discarding higher

order terms, are the same for the cases where ηb << ηc and ηb >> ηc. To preserve this generality,

η = min(ηb, ηc) for the following expansions.

For the region occupied by the fluid, the leading amplitude perturbation terms for nondi-

mensionalized flow variables are

ρf (x, t) = 1 + ǫρ′0f + ǫηρ′1f + . . . , uf (x, t) = ǫu′0f + ǫηcu
′
1f + . . . , (4.20)

pf (x, t) =
1

γ
+ ǫp′0f + ǫηp′1f + . . . , Tf (x, t) = 1 + ǫT ′

0f + ǫηT ′
1f + . . . (4.21)

Substitution into (4.17-4.19) and retaining only first order terms yields the linear system

∂u′f
∂t

+
∂p′f
∂x

= 0, (4.22)

∂p′f
∂t

+
∂u′f
∂x

= 0, (4.23)

for both zero- and first-order perturbation quantities. Viscous terms are neglected in the high

Reynolds number limit, where 1
Rea

<< η. Additionally, the relation ρ′f = p′f holds, and the flow
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is isentropic. The resulting system (4.22-4.23) is simply the linear acoustic equations, describing

small amplitude pulses propagating through the fluid.

4.4.2 Asymptotic Analysis of the Penalized Region

Within the penalized region, representative of a solid obstacle, the asymptotic expansion of

flow variable amplitudes are the same as within the fluid region. The principle difference enters in

the value of the masking function, χ = 1 in equations (4.10-4.12). Once again, considering the case

where η = min(ηb, ηc), the flow variables through the first-order perturbations is

ρp(x, t) = 1 + ǫρ′0p + ǫηρ′1p + . . . , up(x, t) = ǫu′0p + ǫηu′1p + . . . , (4.24)

pp(x, t) =
1

γ
+ ǫp′0p + ǫηp′1p + . . . , Tp(x, t) = 1 + ǫT ′

0p + ǫηT ′
1p + . . . (4.25)

Retaining first-order terms from (4.17-4.19) gives the following system in terms of the first-order

perturbation quantities,

∂ρ′p
∂t

+
1

ηc

∂ρ′p
∂n

= 0, (4.26)

∂u′p
∂t

+
1

ηb
u′p = 0, (4.27)

∂p′p
∂t

+
1

ηc

∂p′p
∂n

= 0, (4.28)

where n indicates the inward-pointing normal. Again, the isentropic relation ρ′f = p′f holds. Here,

the decision to remove inviscid terms from the Navier-Stokes equations is justified, as the equations

are completely uncoupled within the penalized region, and as such, the analytical solution is much

more straightforward.

The perturbation equations (4.26-4.28) form a linear hyperbolic system of PDEs with a

single characteristic pointing inward on the penalized domain. Strong damping on velocity drives

the solution towards the no-slip condition on timescale ηb, while strong convection on timescale

ηc enforces the desired Neumann conditions. This implies ηb < ηc to avoid excessive phase errors.

Otherwise, waves are convected inside the obstacle more quickly than the no-slip condition can be

enforced, leading to a greater wave penetration past the interface.
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In order to ensure continuity within the penalized domain, viscous terms from (4.18) must

be retained. Assuming constant viscosity, (4.27) becomes

∂u′p
∂t

+
1

ηb
u′p −

1

Rea

∂2u′p
∂x2

= 0. (4.29)

4.4.3 Asymptotic Analysis of Error Convergence

In order to examine the error convergence as ηb, ηc → 0, the two systems (4.22-4.23) and

(4.26-4.28) are solved on a one-dimensional split domain. Fluid occupies the semi-infinite region

x < 0, while x ≥ 0 is considered the solid obstacle and appropriately penalized.

The solution in the fluid region, in terms of initial (u′0(x), p
′
0(x)) conditions and boundary

values (u′1(t), p
′
1(t)) at the fluid-obstacle interface, is

u′f (x, t) =
1

2
u′0(x− t) +

1

2
p′0(x− t) +

1

2
u′1(x+ t)− 1

2
p′1(x+ t) (4.30)

p′f (x, t) =
1

2
u′0(x− t) +

1

2
p′0(x− t)− 1

2
u′1(x+ t) +

1

2
p′1(x+ t) (4.31)

for both zero- and first-order perturbations.

The solution in the penalized region can be determined for each variable independently. The

first order perturbation of pressure is easily solved based on the propagation of boundary conditions

for a single characteristic with speed λ = 1
ηc
,

p′p(x, t) = p′1(t− ηcx). (4.32)

The first order velocity perturbation of u′p can be solved by transforming (4.29) into the form

of an inhomogeneous heat equation through

w(x, t) = e
− t

ηb (u′(x, t)− u′(0, t)). (4.33)

With continuity of the first derivative implied with the fluid domain, the solution of u′(x, t) on the

semi-infinite domain is known [4]. Provided that the limits of the solution are finite and constant as

x → 0 for variable parameter ηb, then the solution at the interface, u∗(t) = u′p
∣

∣

x=0
, is O(ηb). Now
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considering the timescale t >> ηb, the quasi-steady state solution to the boundary value problem

(4.29) is found to be

u′p(x, t) = u∗(t) exp

(

−x(Rea
ηb

)1/2
)

. (4.34)

Enforcing continuity and smoothness between the fluid domain and penalized domain solu-

tions, u′f
∣

∣

x=0
= u′p

∣

∣

x=0
and

∂u′
f

∂x

∣

∣

x=0
=

∂u′
p

∂x

∣

∣

x=0
, yields the acoustic solution with leading error terms

O(ηc, η
1/2
b ). This reinforces that optimally, the penalization parameters should be chosen so that

ηb < ηc.

4.5 Results and Discussion

The first benchmark problem is to verify the behavior of penalized equations for each of the

Dirichlet and Neumann boundary conditions. One dimensional heat conduction transients allow

for each boundary condition to be examined in the simplest case of a scalar valued solution without

the effects of coupling.

Two general groups of fluid benchmark problems are considered to validate the penalization

for no-slip, adiabatic boundary conditions on coupled equations. The first group is for acoustic

scattering problems, and directly corresponds to the asymptotic analysis earlier in this chapter. A

one dimensional case is used to show convergence of the solution on the penalization parameters.

A second case shows a multi-dimensional application and the validity of curved boundaries. The

second group of fluid simulations is formed around the canonical problem of external nonzero mean

flow past a cylinder. Low Reynolds number, incompressible flow is used to validate the methods,

especially for boundary layer separation, under the presence of a stabilizing viscous zone at the

surface. Periodic vortex shedding is also considered to validate the methods for compressible flows

at moderate Reynolds numbers.

All problems are solved using Freund-type boundary conditions in a zone bounding the phys-

ical domain. The characteristic length for two dimensional problems is the diameter of the cylinder.
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4.5.1 Benchmark Problem I: One Dimensional Heat Conduction

Heat conduction provides a good platform for examining CBVP of each boundary condi-

tion individually. There is a corresponding physical application for each boundary condition, and

furthermore, these problems exemplify the versatility of the method. Unlike earlier Brinkman meth-

ods, CBVP is not limited to fluid problems, but is rather a general form of individual boundary

conditions that can be applied to a wide variety of PDEs.

The constitutive equation is the one-dimensional heat equation for nondimensional temper-

ature perturbation T ,

∂T

∂t
− k

∂2T

∂x2
= 0, (4.35)

and is applied in the physical domain. The physical domain consists of Ω = [−1 0), while the

penalized domain is Ωp = [0 0.5]. For all cases, the initial conditions are T0(−1) = 1 and T0(x) = 0

elsewhere. The left boundary condition is T (0, t) = 1.

This problem is solved for a nonadaptive grid. In determining the error, the solution is

compared with numerical results for the exact boundary conditions imposed in the usual fashion

at the right physical boundary, x = 0. The resolution used for all simulations is ∆x = 1
1024 . Errors

are examined during the transint solution for a thermal conductivity of k = 0.5.

Penalization for the Dirichlet condition is prescribed by (4.1) for constant temperature

T (0, t) = 0. In Figure 4.1a, the error can clearly be seen converging on O(η
1/2
b ). This agrees

with the expected error term introduced by the no-slip condition on the asymptotic analysis.

The Neumann condition for an adiabatic boundary, ∂T
∂n = 0, is imposed by penalization of

the form in (4.2). The error converges on O(ηc), shown in Figure 4.1b, and agrees with the error

introduced by the Neumann boundary condition from the asymptotic analysis.

4.5.2 Benchmark Problem II: One Dimensional Normal Wave

The penalized equations are solved on a domain Ω = [−0.5 0.5], where the fluid occupies

Ωf = [−0.5 0), and the solid obstacle is Ωs = [0 0.5]. Initial conditions for the incident wave are
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Figure 4.1: Time-averaged L2 norm error for converging ηc and ηb.

given by Gaussian distributions in the perturbation quantities

ρ′ = u′ = 10−3exp

[

−ln(2)

(

(x+ 0.25)2

0.004

)]

, (4.36)

with

e =
1

2
uiui + cpT − p

ρ
. (4.37)

The Reynolds number is Rea = 10−5.

This problem is first solved for the penalization scheme in (4.17-4.19) where the inviscid

fluxes are removed and the penalized obstacle becomes uncoupled for Re→ ∞. This simplification

corresponds to the equations used in the asymptotic analysis outlined in the previous section, and

therefore error convergence of O(ηc, η
1/2
b ) is expected. In the second set, where the Navier-Stokes

equations are left intact within Ωp, the problem is considered for both high-resolution cases where

the stability requirement (4.13) is met, and a computationally efficient resolution where localized

viscosity is introduced.

Figure 4.2 shows a fully reflected wave for high resolution and artificial viscosity cases. Note

the increased phase and amplitude errors introduced by the presence of the viscous layer for waves

travelling in the negative x-direction. The more pronounced phase error arises from the increased
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Figure 4.2: Fully reflected pressure waves for a high resolution penalized case, a case with artificial
viscosity added near the solid interface, and the analytical solution.

offset stagnation point from the solid interface.

Where ηb = 10−3, the highest effective resolution on the adaptive grid is ∆x = O(10−6),

enough to resolve transient structures created by the Brinkman forcing term. For comparison,

sufficient resolution of the boundary layer is O( 1√
Rea

), or O(10−3).

Figure 4.3a show the error convergence on a fully reflected pulse for the cases where ηb = ηc

and ηb >> ηc = 8 × 10−4. The error convergence of both cases is the same, namely O(η
1/2
b ),

implying that the error introduced ηc is relatively lower than that of ηb. This result matches well to

the asymptotic analysis presented in the previous section. For ηc >> ηb = 4× 10−5, the error was

examined for a pulse in mid reflection, and the L2 norm error convergence shown in Figure 4.3b.

The error converges on η
1/2
c before quickly saturating from numerical viscosity. Note the disparate

magnitudes of error incurred for cases where ηb ≅ ηc. The value of ηb must be several orders of

magnitude smaller than ηc in order to introduce comparable errors.

This result is beneficial for computational efficiency. When using Krylov-space time integra-

tion, the penalized equations have been found to be unstable in for ηc-based CFL that is much

larger than O(20). Satisfactory accuracy can still be obtained for ηc = 0.1, which allows for use of
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Figure 4.3: Time-averaged L2 norm error for converging ηc and ηb with Euler terms removed.

the acoustic CFL without implementing split timesteps.

The same problem was solved with the full Navier-Stokes equations left intact within the

penalized region. Thus the equations remain coupled throughout the entire domain, even in the

inviscid limit.

For ηc = constant, Figure 4.4a shows error convergence on O(ηb). Conversely, where ηb =

constant, Figure 4.4b shows initial error convergence on O(η0.85c ), before saturating on some un-

known error source. The translation in convergence plots for ηc = constant and ηb = constant, in

Figures 4.4a and 4.4b respectively, indicate general error convergence on O(ηb(ηc + E)0.85), where

E is the undetermined error term from Figure 4.4b. Again, we see that ηb ought to be the more

strictly controlled parameter.

For lower resolution cases, where the viscosity requirement in (4.13) is not met, artificial

viscosity was added to a narrow region in the vicinity of the solid interface. While the theoretical

thickness of the viscous layer must be on O(ηb), the practical implementation is much thicker. A

smooth support function is desired to avoid discontinuities in the solution derivative. In order to

properly resolve the diffuse boundary between the physical viscosity and the artificial viscosity, the

zone is about three times thicker than the theoretical requirement.
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Figure 4.4: Time-averaged L2 norm error for converging ηc and ηb.

With use of artificial viscosity, the error quickly saturates for a given resolution, as shown in

Figure (4.5). Further convergence of ηb increases the viscosity requirement, and any accuracy gains

are offset. Therefore, in such cases, the accuracy is controlled by the resolution.

4.5.3 Benchmark Problem III: Acoustic Scattering of a Single Source

Acoustic scattering from a two-dimensional cylinder is considered. This problem demon-

strates multidimensional application of the penalization method, where the surface normal is dif-

ferent from the incidence angle of reflected waves. Furthermore, it shows the ability to resolve and

properly model the effects of a curved surface. A cylinder of r = 0.5 is located at the origin, and

the initial conditions are a Gaussian distribution in pressure, given by the perturbation

p′ = 10−3exp

[

−ln(2)

(

(x− 4)2 + y2

0.22

)]

. (4.38)

The initial conditions on the native variables are then ρ = ρ0 + p′, ρu1 = ρu2 = 0 and e = cpT − p
ρ .

The problem is solved for Rea = 105 on a physical domain ΩP = [−3, 5] × [−3, 3]. The

adaptive grid has 8 levels of resolution, ranging from [16 × 12] to [2048 × 1536]. This resolution is

not sufficient for the stability of the penalization terms at the solid interface, so artificial viscosity



46

10
−3

10
−2

10
−1

10
−1.7

10
−1.6

10
−1.5

10
−1.4

10
−1.3

10
−1.2

L
2
 Norm Error − Pressure

η
b

Figure 4.5: Error convergence for 1D acoustic reflection with artificial viscosity introduced at the
solid interface.

has been introduced. The penalization parameters are set to moderate values of ηb = ηc = 2×10−2

to reduce the size and strength of the viscous zone and to aid in a rapid calculation. The viscous

zone about the obstacle has a width of O(D10−2), where D is the cylinder diameter.

The computational domain is shown in Figure 4.6. The Fruend buffer zone is clearly shown,

as well as the integration surface for the Ffowcs Williams and Hawkings equation. To include all

major acoustic sources, the FWH surface encompasses both the initial acoustic perturbation and

the obstacle. The solution in time is examined at mid- and far-field locations A-F in Figure 4.7.

The mid-field numerical solutions (Locations A-E) correspond well with the inviscid analytical

solution. Some of the error arises from the curved surfaces of the obstacle being represented

discretely on a rectilinear grid. Furthermore, the increased viscosity in the immediate vicinity of

the obstacle dampens the wave reflection, introducing amplitude and phase errors. However, in

light of the reduced computational costs, the results are quite satisfactory.

The far-field time history at Location F = (10, 10) lies outside of the computational domain.

The numerical solution is only determined here by the use of the FWH analogy. The advantage

of this method is clearly exemplified, as an accurate solution has been obtained while limiting the

computation to aeroacoustic source regions.



47

Figure 4.6: Layout of 2D acoustic scattering problem. A solid obstacle is located at the origin, and
pressure waves propagate from a source centered at (4, 0).

At many of the locations, the FWH solution is more accurate than the direct numerical

calculation. This arises primarily from spurious reflections from the boundary. Location D, near

the corner of the domain, is particularly prone to nonphysical reflections. Since the FWH surface is

located further from the domain edge than most of the points, and does not encompass the sources

of the reflections (i.e. the Freund buffer zone), these reflections have a much lower impact on the

FWH solution. While a larger domain and buffer zone may be used to reduce spurious reflections

in regions of interest, the use of aeroacoustic analogy obviates the need for this extra computational

cost.

4.5.4 Benchmark Problem IV: Incompressible Flow Past a Circular Cylinder

In order to verify the use of artificial viscosity along the immersed boundary, incompressible

flow past a circular cylinder is considered. As additional viscosity is required to stabilize the

solution at more moderate resolutions, it is important to consider its effect upon the boundary

layer. For low Reynolds numbers, the boundary layer behavior in the wake of a circular cylinder is

well documented for both experimental and numerical cases [5, 8, 10, 20, 29]

The flow is modelled as weakly compressible withM = 0.03 and freestream Reynolds number
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Figure 4.7: Time histories of pressure perturbations at several locations.
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Figure 4.8: Velocity magnitude of weakly compressible flow past a cylinder at Re = 40.

of Re = 40 (Rea = 1333). A cylinder of r = 0.5 (D = 1.0) is centered on the origin of domain

ΩP = [−5, 10] × [−5, 5], and the penalization parameters are ηb = 2 × 10−2 and ηc = 10−1.

The maximum effective resolution is 2560 × 3840, requiring additional viscosity to stabilize the

penalization terms in the solution. The boundary layer separation point θ, and the wake length L

are both measured from the trailing edge of the cylinder.

The boundary layer separation point is highly dependent upon the Reynolds number [5]. At

the resolution used, the effective freestream Reynolds number near the interface is Re ≅ 10. From

Coutanceau’s results, the corresponding separation point would be θ = 35◦.

The velocity of the flow field at steady state is shown in Figure 4.8. The location of the

boundary layer separation in this problem was found to be θ = 49.9◦. This is markedly less than

numerical results found in the literature, enumerated in Table 4.1. The artificial viscosity delays

boundary layer separation. For problems that are highly sensitive to separation locations, the use

of artificial viscosity ought to be minimized by the use of high resolutions.

Θ L CD

Dennis and Chang [8] 53.8◦ 2.35 1.52

Fornberg [10] 55.6◦ 2.24 1.50

Tullio et al. [7] 53.7◦ 2.23 1.49

Present 49.9◦ 2.22 1.52

Table 4.1: Numerical results for incompressible flow past a 2D cylinder at Re = 40
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Even with this discrepancy, the wake length and drag coefficient agree well with previously

established results. The symmetrical separation region is L = 2.22, and the drag coefficient is

CD = 1.52. Compare this with the results in Table 4.1.

4.5.5 Benchmark Problem V: Vortex Shedding from a Circular Cylinder

This problem considers impulsively started flow of M = 0.2 and Rea = 750 (Re = 150) on

the physical domain ΩP = [−5, 10]× [−5, 5]. A solid cylinder of r = 0.5 is located at the origin. For

CBVP, penalization parameters of ηb = 2× 10−2 and ηc = 10−1 are used. The maximum effective

resolution is 2560 × 3840, requiring a viscous zone with effective Reynolds number Re ≅ 10 along

the solid interface to satisfy requirement from equation 4.13.

Figure 4.9: Pressure Figure 4.10: Temperature

Figure 4.11: Velocity Magnitude Figure 4.12: Vorticity

The instantaneous values of several flow variables are shown in Figures (4.9-4.12a), where the

Karman vortex street is clearly seen. Along the surface of the cylinder, the flow remains unsteady

throughout the duration of the calculation. Unlike previous simulations, which approached steady
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Figure 4.13: Force coefficients at Re = 150

state along the solid interface, this demonstrates the stability and accuracy of CBVP for continually

transient solutions. Slight nonphysical reflections can be seen from the outflow boundary where

vortices exit the domain.

The time-averaged pressure coefficient, Cp, is shown in Figure 4.13a, normalized to the leading

edge stagnation point. Note that θ = 0◦ corresponds with the trailing edge of the cylinder. The

pressure coefficient corresponds well with the results of Inoue and Hatakeyama [16], which was

solved using a cylindrical coordinate system. The noise in the present results is an artifact from

representing a circle on a rectilinear grid and the accompanying interpolation of surface points. The

artificial viscosity used to stabilize the penalization method does not appear to introduce much error

into the pressure at the interface, an important result for determining aerodynamic forces on the

surface.

Time variant force coefficients are shown in Figure 4.13b. This forcing suggests perpendicular

acoustic dipoles with the lifting dipole being the dominant source. The present simulation corre-

sponds well with the forcing results of Inoue and Hatakeyama [16], though with a slightly lower

amplitude for Cl. The Strouhal number for the shedding frequency is St = 0.19, which agrees well

with both numerical [16] and analytical [12] results, both of which indicate a Strouhal number of
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St ≅ 0.19 for Re = 150.

Since the physical domain does not fully encompass the wake, strong vortices are convected

out of the xmax boundary. Therefore, quadrupole sources from the stress in the vortices are

lost from the aeroacoustic solution. However, dipole tones dominate the solution at such a low

Reynolds number [23]. For integration of the FWH equation in the frequency domain, a combined

Hanning/Dirichlet windowing function is used, with the Dirichlet function covering 75% of the

signal sample. Lockard’s results show a slight loss of acoustic amplitude due to the convection of

vortices out of the FWH integration surface, though the tonal dominance remains intact [23].

Cross-stream from the obstacle (θ = 90◦), the aeroacoustic field is dominated by the shed-

ding frequency caused by the lifting forces, while the dominant tone in the upstream/downstream

directions (θ = 0◦, 180◦) arise from the forcing from drag. The pressure power spectra in Figure

4.14 shows the same amplitude and frequency relationship between the drag tones and lifting tones

as the unsteady forcing in Figure 4.13b. The directionality of the harmonic tones indicates that

the aeroacoustic dipoles have been modelled correctly radiate accordingly into the far-field. Noise

at higher frequencies is an artifact of the low temporal resolution and spurious reflections at the

downstream boundary.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

A cohesive model has been developed here for the accurate and efficient prediction of aeroa-

coustic radiation on parallel processors. The use of aeroacoustic analogy and immersed boundary

method allows for the use of small, structured grids, controlling the problem size.

One of the principle outcomes is the development of a new penalization method for immersed

boundaries where individual conditions can be imposed naturally. For viscous flow and acoustic

propagation, this method has shown to be accurate with a rigorously controllable error. The

results on a series of benchmark problems agree well with previously established results, validating

the method on the acoustic timescale. Furthermore, this penalization method is sufficient for

modelling aeroacoutic noise from the presence of solid obstacles. Owing to the general nature of

the immersed boundary conditions, this volume penalization method can be applied beyond fluid

dynamics to a wide variety of physical models.

One of the principle difficulties is the CFL limit that is imposed by the convective penalization

term, ηc. For small ηc, instabilities result for problems solved on the acoustic timescale using Krylov-

space time integration. This is mitigated through the use of upwind-differencing in penalized

regions, as well as the greater error introduced by ηb terms.
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5.2 Future Research

While the ability to use CAD generated geometry to define penalization masking functions

is a powerful asset for Brinkman penalization, it is insufficient for the volume penalization method.

Since CVPM also requires distance functions and surface normals, extension of IGES file analysis

would be a worthwhile platform for further development.

Characteristic-based volume penalization can also be extended into problems of higher com-

plexity , including supersonic and three-dimensional domains and problems with moving obstacles.

Such cases would provide a comprehensive foundation for the use of CBVP with the Navier-Stokes

equations.

Additionally, CBVP has only been used here for low Reynolds number viscous flows, where

the Navier-Stokes equations can be solved directly. Many aeroacoustic flows of interest occur

at high Reynolds numbers, requiring turbulence modelling. Further work can be done to apply

CBVP to turbulence equations, including Reynolds-Averaged Navier-Stokes (RANS) and Large

Eddy Simulation (LES).

On of the advantages to CBVP is the ability to implement general Neumann boundary

conditions. The use of this method on problems involving heat transfer at a solid interface are yet

unexplored.

Lastly, the CFL limit imposed by the ηc convective term can become problematic. Circum-

venting this problem using alternative time integration methods, or a split time step is worth further

investigation for developing the practical usefulness of CBVP.
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