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Abstract 

Parsons, Mark A. (M.A. Geography) 

Data for Modelers—Helping Understand the Climate System 

Thesis directed by Professor Barbara P. Buttenfield 

The Arctic is changing rapidly with dramatic local and global effect. To understand that 

change requires understanding the Arctic as a system. Models of different processes and at 

various scales are necessary tools for analyzing and understanding the Arctic system. Models are 

extremely diverse, yet they all require quality data. Through a series of case studies, augmented 

with with ethnographic observation around the International Polar Year, this thesis examines 

how modelers assess, acquire, and prepare data for their models. By comparing specific case 

studies, common themes emerge that can be compared against broader observation. These 

themes, in turn, suggest data management techniques or requirements for data systems to 

improve access and use by modelers and generally improve understanding of the Arctic system. 

This case study based approach has proven to be a useful method for teasing out both general 

and specific data needs for different models. An overarching lesson is that greater short-term 

benefit to modelers and significant gains in efficiency can be achieved by improving the formats, 

convention, and consistency of the data rather than improved interfaces and analysis tools. A 

“data-first” philosophy can improve the data systems that support the overall interdisciplinary, 

integrative science necessary to understand the complex Arctic system. 
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Chapter I 
INTRODUCTION 

The Arctic is undergoing dramatic climate change with significant impact on the people who 

live there (ACIA, 2005; Krupnik and Jolly, 2002). To understand this change and predict the 

future state of the Arctic, researchers need to take a synthetic and systemic approach that 

addresses the Arctic as a system. This integrative and interdisciplinary approach is a major focus 

of the NSF Arctic System Science program, the interagency Study of Environmental Change 

(SEARCH) (SEARCH, 2005), and the International Polar Year (Allison et al., 2007; ICSU, 

2004). Significant advances in our understanding of the Arctic system have come through 

integrative studies. For example, Serreze et al. (2000) document pan-Arctic warming and 

geophysical changes such as retreating sea ice, snow, and glacier extent and permafrost thaw 

through a broad synthesis of observations spanning 400 years. Chapin et al. (2005) demonstrate 

how the increased prevalence of shrubs over Arctic tundra (Sturm et al., 2001) has reduced 

albedo and created a positive warming feedback. Overpeck et al. (2005) describe the “essential 

components” and interactions of the Arctic system and how a seasonally ice-free period in the 

Arctic could fundamentally alter that system. 

Central in these and related interdisciplinary studies is the integration of data from multiple 

sources. Further advances will likely come from similar integrative studies that will rely on an 

array of models and other tools to integrate, interpret, and even augment disparate data. The 

importance of models was emphasized at a recent NSF-sponsored workshop: “Arctic System 

Synthesis Workshop: New Perspectives through Data Discovery and Modeling” 

(http://www.arcus.org/arcss/message_050707.html). In this context, the term “model” is a very 

broad term describing tools ranging from complex global circulation and numerical weather 

prediction models running on powerful centralized computers to targeted ecological distribution 

models run in a GIS on a researcher’s laptop computer. Despite this disparity, all models have 

one thing in common. They require data.  

Currently Arctic data are managed in disparate ways. Investigators spend undue time seeking 

data and preparing the data for analysis and there is a need for a more integrated approach to 

Arctic data management (ICSU, 2004; NRC, 2006; Parsons, 2006; Parsons et al., 2010; 
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SEARCH, 2005). It is necessary to establish a close and collaborative partnership between 

scientists, observing systems operators, data managers, archivists, and relevant research 

programs to ensure efficient preservation and effective use of Arctic data. The resultant system 

should be designed around the needs of data users and providers to ensure that it is simple, 

predictable, reliable, and readily extensible to address multiple disciplines and innovative use of 

the data.  

Because of the importance of modeling in understanding the Arctic system, a partnership 

between data managers and modelers can develop initial requirements for a broader Arctic data 

system and begin to identify what data management techniques, integration methods, and 

activities serve the Arctic modeling community and contribute to interdisciplinary synthesis and 

improve predictions of the Arctic system. This study is an initial step toward building that 

partnership and toward identifying modeler needs.  

This thesis presents a series of case studies detailing how specific modelers actually access 

and use data in particular scientific investigations. The case studies are augmented with broad 

ethnographic observation of the Arctic research community. The idea is that by comparing 

specific case studies, common themes may emerge that can be compared against broader 

observation. These themes, in turn, may suggest data management techniques or requirements 

for data systems to improve access and use by modelers and generally improve understanding of 

the Arctic system. 

Chapter 2 provides the theoretical basis for this work and it’s approach, and Chapter 3 

describes the general methodology. Chapter 4 describes the case studies and lays out the primary 

evidence for the analysis in Chapter 5. Chapter 6 concludes with some discussion and initial 

conclusions on how data for modelers can be improved.
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Chapter II 
Background and Rationale 

The diversity of models makes understanding their data requirements complex. It is 

necessary to establish a common framework for requirements development. 

Anderson and Woessner (1992) describe a formal protocol for numerical modeling. Their 

direct application is specific to groundwater modeling, but their protocol can be broadly applied 

as a conceptual model for the development of models in general. Figure 2.1 presents a modified 

version of the steps in the protocol. Note the multiple stages in the process that require data. Also 

consider how different stages may require different forms of data from compiled information 

useful to prepare the conceptual model to a 

large volume of detailed arrays for numerical 

processing. 

At each of these stages requiring data, the 

modeler needs to go through the same basic 

steps. 

1. Discover or identify the necessary data.  

2. Assess the relevance, uncertainty, and 

quality of the data and their fitness for 

the application,  

3. Acquire the data for processing and 

analysis. This could be a simple ftp 

transfer or physical acquisition of media 

or it could involve processing data 

remotely. In some applications real time 

or near real time acquisition is 

necessary. 

Figure 2.1. Simplified representation of the steps 
and data inputs in a protocol for model 
application. From Anderson and Woessner (1992). 
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4. Prepare the data for processing. This could involve digitizing analog records or 

reformatting, subsetting, gridding, interpolating, subsampling etc. 

Data Discovery 
Data discovery is an increasingly complex issue as the volume of Earth science data grows 

exponentially. Some of the challenges are technical, but many are rooted in the culture of 

individual geographic disciplines and the willingness of individuals to share their data (Key 

Perspectives Ltd, 2010; Parsons et al., 2010). The library, digital library, and data management 

communities have been researching this issue for a long time, and there are many national and 

international data discovery systems in place such as geodata.gov (formally the Geospatial One 

Stop) and the Global Change Master Directory (http://gcmd.gsfc.nasa.gov/). In addition, national 

and international Earth science organizations are increasingly pushing for greater data sharing 

and enhanced, standardized data descriptions or “metadata” to better enable discovery (de 

Sherbinin and Chen, 2005; ICSU, 2004; Nelson, 2009; OMB, 2002). Several projects and 

initiatives are explicitly addressing data discovery in the Arctic. These include the International 

Polar Year (Parsons and Wilson, 2007; Parsons et al., 2010), the Arctic Portal 

(http://www.arcticportal.com/), the Sustained Arctic Observing Network (SAON—

http://arcticobserving.org), and the Cooperative Arctic Data and Information Service funded to 

support the Arctic Observing Network (NRC 2006). The other aspects of data handling for 

models (assessment, acquisition, preparation) have received much less attention. 

Data Assessment 
Uncertainty and error are inherent in geographic information not only because of limitations 

in data collection or analysis, but also because of imperfect human knowledge (Couclelis, 2003). 

While it is important to continually strive to reduce uncertainty, we must also recognize that 

there are limits to what we can achieve, especially in an environment of expanding data use. The 

ISO standard Open Archive Information System Reference Model requires that archives ensure 

their data are independently understandable by a designated user community (ISO, 2003). Yet 

user communities for a given data set can change over time, and some applications (including 

modeling) may be inappropriate for that data set. It is necessary for data managers to provide the 

necessary context for users to understand the limitations and appropriate use of data (Parsons and 
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Duerr, 2005). Providing and enhancing this context is an important aspect of data stewardship 

(NRC, 2007).  

Understanding data quality was a major theme at the NSF Arctic Synthesis workshop 

mentioned earlier. Participants emphasized the need to be able to consult experts on the data and 

also suggested a variety of data “peer-review” schemes. The need to consult experts has been a 

recurring theme in recent data system development efforts (e.g., NRC 2007; Parsons and Wilson 

2007). Peer-review of data is also a growing topic in the Earth science data management 

community (Parsons et al., 2010). A new journal, Earth System Science Data, has even been 

established as a means to publish high-quality data and all its relevant documentation in a 

classically peer-reviewed form.  

In addition to data quality considerations, modelers have additional assessment criteria, such 

as whether the data are at an appropriate scale, have the necessary temporal and spatial coverage, 

etc. It is necessary for data managers and providers to understand how modelers assess data in 

order to provide the necessary supportive information, tools, and context in a meaningful way. 

Data Acquisition 
Data acquisition can be a relatively straight forward, but it is also hindered by many of the 

technical and cultural barriers that restrict data discovery. If data cannot be discovered then 

clearly they cannot be acquired, but sometimes a data description may be found but the data 

themselves are unavailable. Data may be inaccessible because of legitimate concerns about 

human privacy or threats to species, because they are not in a readily usable form (i.e. not 

digital), because they are not be available soon enough because of data provider imposed 

restrictions, or simply because the data were lost. For example, in 1998, the International 

Permafrost Association and World Data Center (WDC) for Glaciology, Boulder compiled a 

collection of metadata describing frozen ground related data housed around the world. In 2003, 

the WDC attempted to contact the investigators and institutions holding the 89 products not 

housed at the WDC. Forty-five of the 89 products were not readily accessible and may no longer 

be available (Barry and Smith, 2004). Data acquisition is also closely linked to the final step of 
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data preparation. When data can be readily manipulated remotely, transfer loads and data 

preparation requirements can decline.  

Data Preparation 
Data preparation may be the most time consuming step of the four. Because of the diversity 

or lack of Arctic data, modelers must address fundamental issues of scale and coverage and 

detailed technical issues of data formats and grid specifications to ensure data can be used in 

their model. Some of these issues are well understood and can be addressed through tools and 

techniques such as automated subsetting and reformatting, but project or discipline-specific 

models can use highly specialized data structures, resolutions, and time/space domains (e.g. 

hunting tags vs. polar orbiting satellite data). Furthermore, data preparation requirements will 

vary depending on where in the modeling protocol data are being used. Data managers need to 

be able to determine effective means to integrate data across space and time and facilitate ready 

data use by diverse modeling communities. 

A Need for Best Practices 
It is important to note that given the huge disparity of models in scale, discipline, and 

application, it is unlikely that any one data management approach or technical solution will solve 

the needs of Arctic modelers. So the question becomes whether it is possible to identify common 

themes and best practices to guide the development of existing and future Arctic data 

management systems as a whole. By comparing the needs of several different models, it may be 

possible to identify some of those themes and best practices. 
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Chapter III 
OBJECTIVES AND APPROACH 

The overarching goal of this thesis is to determine what data management practices, methods, 

or techniques assist Arctic system modelers. The central proposition is that there are common 

and instructive themes in how modelers assess, acquire, and prepare data. Examination of these 

themes can reveal first principles or overarching guidelines for Arctic data management. These 

principles, in turn inform data management practice in specific ways to improve Arctic system 

modeling. This study examines three disparate modelers/models exploring different phenomena 

at different scales to determine common themes and first principles. The analysis and results 

should be informative to any Arctic data manager, but they are also geared specifically to the 

National Snow and Ice Data Center where appropriate. 

Model Comparison 
A central issue in designing a data system is understanding how a scientist will need to use 

the system and for what purpose and then designing the system to meet those needs. Assessing 

user needs is challenging when trying to design a system that will provide a broad array of 

disparate data to users with differing expertise. Arctic research provides a particular challenge 

with its emphasis on interdisciplinary research in the physical, life, and social sciences. 

Comparing and contrasting the needs of different modelers can provide initial information that 

can be important first step toward the development of a broader interdisciplinary data system. A 

key question, then, is which models to compare. 

One could take a targeted approach and examine several similar models in detail. For 

example, assessing several mesoscale snow models could lead to the development of fairly 

specific requirements and data needs for snow and potentially other land surface modelers. It 

would be difficult, however, to determine which of these needs are specific to the particular issue 

of modeling snow and which are broader issues that apply to Arctic modeling and synthesis in 

general. For example, addressing the spatial heterogeneity of snow cover or water equivalent 

may be such an overriding concern that it could overshadow other needs such as temporal 

consistency. Similarly, inputs to related models are likely to be in similar formats and have 
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similar data preparation issues thereby missing what may be fundamental data preparation issues 

for other models.  

Another approach would be to compare related models that are used in conjunction to 

address a particular science question. For example a sea ice model and polar bear migration 

model might be used in conjunction to understand the effect of declining sea ice on polar bear 

populations (Durner et al., 2009). This would be an interesting study of how models can 

interrelate and provide input to each other. The issue of relating the models, however, could 

become the dominant question and obscure the more generic issues of how modelers assess, 

acquire and prepare data. Therefore, the approach here is to examine several disparate models in 

an attempt to identify common themes and best practices that reach across disciplines, scales, 

and modeling approaches. 

Case Studies and Their Analysis 
Various techniques can be employed to gather user needs, but not all are suitable in this 

situation. Surveys can provide a broad perspective but are limited in the depth of their analysis 

and cannot readily respond to issues identified by participants but unforeseen by the investigator. 

An historical or archival analysis can reveal user trends and preferences, but the disparate nature 

of Arctic data and how they are managed prevents a consistent analysis. Case studies, on the 

other hand, explicitly consider the context of a situation and provide a flexible model that allows 

investigators to probe more deeply into unanticipated areas of interest (Yin, 2003). 

Yin (2003) notes three kinds of case studies: exploratory, descriptive, and explanatory. This 

investigation, while exploratory, also seeks to be both descriptive (how do modelers work?) and 

explanatory (what practices could help modelers?). Accordingly, this study takes a multi-facetted 

analysis strategy as well. In Chapter 4 each case is presented and examined in a consistent 

descriptive framework. The framework considers the process each modeler underwent in the 

context of the model presented by Anderson and Woessner (1992) and carefully considers data 

assessment, acquisition, and improvement at each stage of data use in the process. This 

description provides a general understanding of how the modeler works. In Chapter 5, each case 

is analyzed individually once immediately after it is conducted and then again after each 
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subsequent case study is conducted. The individual assessments identify possible areas for data 

system improvement in each study. The last section of Chapter 5 presents a cross case 

comparison and synthesis. The comparison identifies common issues and themes across the 

different models. The synthesis then examines the areas for improvement and common themes to 

develop and test more refined propositions.  

Affirming the propositions is a matter of finding multiple lines of evidence that support it. 

This document provides the overall summary of the evidence, but each case study has multiple 

sources of evidence. Sources of evidence include notes, recordings and follow-up on the 

interviews, the published papers of each modeler, other literature, and the data and interfaces 

used by the modelers (Appendix C provides additional information on each of the data sets). 

Finally, to test external validity, I further tested each proposition against experience over the last 

five years helping lead an effort to define an international, interdisciplinary data system for the 

International Polar Year and beyond (de Bruin et al., 2009; Chen and Parsons, 2010; LeDrew et 

al., 2008; Parsons, 2006; Parsons et al., 2010). The question was simply did the proposition 

contradict or was it supported by any of the conclusions growing out of the experience of the 

dozens of data managers involved in the International Polar Year Data and Information Service. 

Although IPY was much broader than modeling, its very interdisciplinary focus was likely to 

face similar issues. It is also reasonable to assume that the IPY experience influenced the 

formulation of my theories and assertions. 

Detailed Approach 
The specific approach is as follows. 

1. Identify a pan-Arctic scale sea-ice and climate model, a meso-scale land surface model, 

and a plot-scale ecological resource model with modelers willing to participate. Chosen 

models are described in chapter 4. 

2. Develop the common case study design across the multiple case studies built around the 

key study questions of how modelers assess, acquire, and prepare data at the various 

stages in the modeling process. While later case studies may change slightly in response 

to discoveries in an earlier study, it is important to maintain some consistency to ensure 
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external validity and reliability of the results (Gerring, 2007; Yin, 2003). Appendix B 

includes the case study survey protocol. Research design elements include: 

a. An assessment of whether the modeler followed a consistent process such as 

described by Anderson and Woessner (2005), a description of the process 

followed, and the points in the process where the data are required.  

b. A common set of interview questions focused on understanding the overall 

process including core topics, such as 

i. How they define and assess data quality. 

ii. To what degree they rely on the original data creator or other experts 

for guidance or authority on data. 

iii. Attributes (e.g. scale, parameters, time step) necessary to assess 

applicability of data to a model. 

iv. Use of interfaces and tools to assess and access data. 

v. Their own use of software tools, platforms, and expertise. 

vi. Specific data requirements of their model (e.g., data models or 

formats, grids, interpolations, projections). 

vii. Downscaling and/or upscaling techniques. 

viii. Calibration and validation approaches 

c. Documentation of the science question addressed by the modeler in their work 

either historically or currently. 

d. A site visit and interview.  

e. Follow up phone and e-mail interviews with each modeler. 

3. Describe the three case studies in a consistent framework including textual descriptions 

and diagrams for each mode describing the study process, data use, and how the data 

were assessed, acquired, and prepared for use. Review with case study participants. 
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4. Analyze each case for specific data system needs or requirements. Repeat after each 

study is conducted. 

5. Analyze all three cases, seek patterns, and identify common themes. 

6. Formulate and test first principles, best practices, or techniques against multiple sources 

of evidence: the interview, participant publications, other literature, and the data used. 

7. Test against ethnographic observation and the experience of the International Polar Year.  

8. Present the results at relevant conferences and other fora such as AAG, the Arctic 

Research Consortium of the U.S., and the Earth Science Informatics section of AGU, and 

seek feedback from the community. 

9. Publish the results in the literature and other outlets for the scientific and data 

management communities. 

Subsequent chapters describe how this approach was implemented. Chapter 4 introduces the 

models and describes each case in a consistent framework. Chapter 5 provides the analysis and 

exploration of propositions and principles. Chapter 6 concludes with some discussion and initial 

conclusions on how data and systems for modelers can be improved.
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Chapter IV 
The Models and Case Studies 

Three models form the basis for the case studies: The Community Sea Ice Model version 5 

(CSIM) (Briegleb et al., 2004), which is the sea ice component of the global-scale Community 

Climate System Model version 3 (CCSM); SnowModel (Liston and Elder, 2006a), which 

aggregates several local-to-regional-scale submodels to simulate multiple snow processes; and 

the Multiple Element Model (MEL) (Rastetter and Shaver, 1992; Rastetter et al., 1997), which 

compares plot-scale interactions between the cycles of two ecosystem elemental resources (e.g., 

carbon and nitrogen). Table 4.1 summarizes the spatial scale, predictive variables or science 

domain, and the general application of each model. As discussed in Chapter 3, the intention was 

to have very disparate models and applications. The models range in spatial scale from meters to 

100s of kilometers and can each be considered at a variety of time scales. In addition, models 

from both the life and physical sciences were chosen to enable exploration of different 

disciplinary cultures and approaches to data handling and processing. The models also vary in 

their general types of application. For example, Snow Model is typically used in a very applied 

context to get the best possible representation of spatially variable snow properties across an 

area, while MEL is generally used in a more theoretical context to understand biogeochemical 

processes in ecosystems. 
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Table 4.1 Overview of the three models that serve as the basis for the case studies. 

Model Spatial 
Scale 

Predictive variables General application 

Community Sea Ice Model 
(within the Community 
Climate System Model) 

1 - 3° • ice thickness distribution 
• ice area 
• ice volume 
• ice internal energy 
• snow volume 
• surface temperature 
• ice velocity  
• stress tensor components 

Prediction of different potential 
future sea ice regimes based on 
different forcing scenarios. 

SnowModel 1 m - 10 km • snow accumulation 
• blowing-snow redistribution 

and sublimation 
• forest canopy interception, 

unloading, and sublimation 
• snow-density evolution 
• snowpack melt 

Detailed characterization of snow 
properties distributed across an 
area based meteorological, 
topographic, and vegetative 
parameters.  

Multiple Element Model defined plot • stocks and fluxes of two 
elements (i.e. N and C) 
within the plot. 

Improved theoretical 
understanding of biogeochemical 
ecosystem processes. 

 

A specific model application and science question was chosen to form the basis for each case 

study. Each of the modelers— Marika Holland, National Center for Atmospheric Research; Glen 

Liston, Colorado State University; and Edward Rastetter, Marine Biological Laboratory—agreed 

to participate in the study and helped identify the relevant application and science question. 

Subsequent sections in this chapter provide an overview of each specific model application; a 

description of the process each investigator went through; a description of the various data used 

in the study; and discussion of how each investigator assessed, acquired, and prepared their data 

for use.  

The Community Sea Ice Model 

Overview 

The Community Sea Ice Model (CSIM) is the sea ice component of the Community Climate 

System Model version 3 (CCSM), which also includes atmosphere, ocean, and land surface 

components (Collins et al., 2006). CSIM v5 captures five state variables across a five-category 

ice thickness distribution: sea ice area, sea ice volume, sea ice internal energy, snow volume, and 
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surface temperature. In addition, it captures ice velocity and stress tensor components, but these 

are not resolved across the ice thickness distribution. Boundary conditions are generally 

represented as ocean and atmospheric fluxes and state variables from the coupler to the other 

components of the CCSM. Alternatively, the CSIM can provide boundary conditions to other 

CCSM elements (Briegleb et al., 2004). This means that data requirements are dependent upon 

the scenarios being modeled. This case study examines how Holland et al. (2006) compared 

multiple ensemble runs of the CCCSM and other models to predict future reductions in Arctic 

sea ice. 

Dr. Holland’s paper is sometimes referred to by the Arctic research community as the sea-ice 

“tipping point” paper. A tipping point is a transition from one stable climatic state to another. Dr. 

Holland says they began the study by looking for a tipping-point, partially in response to Lindsay 

and Zhang’s (2005) initial investigation that asked “The Thinning of Arctic Sea Ice, 1988–2003: 

Have We Passed a Tipping Point?”. Dr. Holland and her team began an initial examination sea 

ice time series from different runs of the coupled CSIM. One run, which they highlight as the 

first figure in their paper (Figure 4.1.), stood out as a clear example of rapid ice loss. This 

prompted more detailed analysis not 

only of the different CCSM 

ensemble members but also 15 other 

models archived as part of the 

World Climate Research 

Programme's (WCRP's) Coupled 

Model Intercomparison Project 

phase 3 (CMIP3) multi-model 

dataset. 

Figure 4.2 outlines the general 

process for Dr. Holland’s study and 

indicates what data are used at 

different points in the process. Table 4.2 provides more specifics on the data. The steps in Figure 

4.2 are as follows. 

Figure 4.1. “Northern Hemisphere September ice extent for 
one Run 1 (black), the Run 1 five-year running mean (blue), 
and the observed five-year running mean (red). The range 
from the ensemble members is in dark grey. Light grey 
indicates the abrupt event.” (Holland et al. (2006), p.2) ©2006 
by the American Geophysical Union. Used with permission. 
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0. The first step, of course, was to run the model, but in this case running the model was not 

an explicit part of the study. The model runs used were production runs that would have 

been run for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment 

or other purposes, regardless of Dr. Holland’s study (hence step “0”). 

1. The first actual step in this study was to identify and acquire the relevant model outputs. 

Dr. Holland considers the outputs from the model runs as the first data input into the 

process. 

2. Create single variable time series. The CCSM typically produces a single monthly file for 

all variables, so it was necessary to produce time series of relevant variables such as sea 

ice area or thickness. 

3. Conduct initial assessment. Based on those time series, investigators do an initial, largely 

qualitative, assessment comparing the model outputs to observations. 

4. Conduct quantitative assessment. Based on the initial assessment, investigators conducted 

more rigorous quantitative comparisons between model output and observations. Note 

that different observations are used in the quantitative analysis than in the qualitative 

analysis. The investigators have a standard diagnostic package that includes multiple 

variables but the only observed value used in the package is the 15% ice concentration 

line (as a measure of ice extent). 

5. Conduct statistical analysis. Building off the quantitative comparison with the 

observations, investigators conduct detailed statistical analyses of the modeled time series 

to try and determine the key driving mechanisms common across model runs. This 

analysis may lead to re-running the model with different simulated atmospheric 

conditions or forcings. Only the CCSM is run repeatedly not the other CMIP3 models. 

6. Present results in papers, talks, and case study interviews. 
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Figure 4.2. General workflow and data inputs for the research process leading to Holland et al. (2006). 
 

Data enter this process at several stages. Initial input to force the models (Data0) are 

predefined forcings and boundary conditions used in the CCSM and are not considered in this 

study. Data1 are the model outputs central to the investigation. Data2 and Data3 are generally 

observations used to compare against the models. Data4 are predefined simulated future 

atmospheric conditions (IPCC, 2000).  

Table 4.2 provides details on the particular data collections. The data are disparate and 

include satellite and submarine observations, climate and chemical transport model outputs, 

reconstructions combining models and observations, and published predicted scenarios of 

climate change. By their nature, observations vary more than the model outputs in scale and 

coverage, but they also less likely to adhere to a common set of data standards. The climate 

model outputs are very well defined either through formal model coupling (e.g., CSIM is directly 

coupled to the atmosphere, ocean, and land components of the CCSM) or because of the large 

effort conducted by the WCRP CMIP3 to define and collect common data formats, grids, and 

variable names for climate models. In this context, observations require greater assessment of 
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usability and more effort to acquire and prepare for comparison with the models. Therefore 

Data2 and Data3 receive more attention in subsequent discussion. 

Table 4.2 Data collections used in Holland et al. (2006) as shown in Figure 4.2. See extended table in 
Appendix C. 

Stage Data Collection/Data Set Application Data Source 

Data0 inputs to CMIP3/CCSM models 
forcing, 
parameterization n/a (production runs done by others) 

Data1 CCSM ensemble runs analysis local 

Data1 
WCRP CMIP3 multi-model dataset (15 
models) analysis 

PCMDI/Earth System Grid: 
https://esg.llnl.gov:8443/ 

Data2 
Hadley Centre Global Sea Ice and Sea Surface 
Temperature (HadISST) (Rayner et al., 2003)  initial assessment 

NCAR Research Data Archive 
http://dss.ucar.edu/datasets/ds277.3/ 

Data2 Sea Ice Index (Fetterer and Knowles, 2002) initial assessment NSIDC: http://nsidc.org/data/g02135.html 
Data2 Ice thickness (Bourke and Garrett, 1987)  initial assessment Bourke and Garett, 1987 

Data3 

Sea Ice Concentrations from Nimbus-7 
SMMR and DMSP SSM/I Passive Microwave 
Data (Cavalieri et al., 1996) full assessment NSIDC:!http://nsidc.org/data/nsidc-0051.html 

Data4 
Special Report on Emissions Scenarios 
forcings simulation forcing standard simulations (IPCC, 2000) 

 

The WCRP CMIP3 Multi-Model Data Set Archive 

Before examining how Dr. Holland conducted her data assessment, some discussion of the 

CMIP3 Multi-Model Data Set Archive is in order. As mentioned, the WCRP made a substantial 

effort to harmonize data across all the CMIP3 models. This effort has significant impact on this 

and other studies by Dr. Holland and others. It is, therefore, helpful to have some understanding 

of the CMIP3 model archive when examining Dr. Holland’s work. 

The Program for Climate Model Diagnosis and Intercomparison (PCMDI) at the 

Lawrence Livermore National Laboratory (LLNL) collects model output contributed by 

modeling centers around the world as part of an effort organized by the WCRP’s Working Group 

on Coupled Modelling (WGCM). This effort supported CMIP3 and was intended to serve 

scientists preparing the Fourth Assessment Report of the IPCC. In particular, it is meant to 

support IPCC's Working Group 1, which focuses on the physical climate system. The collection 

includes outputs that are simulating the present climate, the historical climate of the 20th century, 

and future climates that may occur in response to various scenarios of future greenhouse gas 

emissions. It is formally referred to as WCRP’s CMIP3 multi-model dataset and is supported by 
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the Office of Science, U.S. Department of Energy. More details are available at http://www-

pcmdi.llnl.gov/ipcc/about_ipcc.php. 

There are very detailed requirements for the format and representation for the model outputs 

that are submitted to the archive. Data must be rpresented in a regular longitude-latitude 

Cartesian grid in the netCDF-CF format. Each file must contain only a single output field from a 

single simulation (i.e., a single run). There is a standard set of variables, which must be named 

according to a defined convention, and the coordinate variables must use particular units in a 

defined way. For example, latitude and longitude must be expressed in “degrees_north” and 

“degrees_east” respectively. Detailed metadata is also required. This required remarkable 

community effort. There was little direct incentive to make this effort beyond the motivation to 

contribute to the IPCC and to enable broad use and scrutiny by the international scientific 

community thereby improving the models over the long term. In the observational community, 

there is apparently less willingness to do this same level of harmonization for observations, and 

indeed it would be a much greater effort. In the Arctic Observing Network (AON), for example, 

most data are being submitted to the data system in very diverse, custom ASCII and even 

proprietary (e.g., Microsoft Excel) formats. The data system supporting AON encourages the use 

of netCDF to better enable data integration, comparison, and visualization but so far the AON 

investigators have shown little interest. As we will see in subsequent analysis, this disparity 

between heterogeneous observational data and well-controlled model inputs and outputs can be a 

key issue. 

Data Assessment 

Data1: Assessment for Data1 is a scientific assessment. There is not really a need to choose 

between different data sets, it is simply a matter of using what is available locally through the 

CCSM and through what is available in the CMIP3 archive led by the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI). The PCMDI archive is a remarkable resource 

for the research community. Dr. Holland said it “has changed the way people do their studies”. A 

similar level of coordination in Arctic observations would be very helpful. 
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Data2 and Data3: These data are used to assess the performance of a given run against the 

observational record. There are several criteria to assess which observational data would be most 

appropriate as shown in Figure 4.3. Of course, the first criterion is the geophysical parameter 

being examined. This 

is constrained by what 

the models produce, 

but is also limited by 

what observations are 

available. This study 

primarily looked at 

ice extent. They 

included some 

consideration of ice 

thickness but were limited by the availability of suitable observations. Spatial and temporal 

coverage requirements (whole Arctic and as long and current as possible) further limit the 

options to few choices. Then in the initial assessment stage the convenience of common data 

formats and grids drive one set of choices, while for a the full assessment it becomes necessary 

to use the most accurate available product, even though it will require additional work to 

reformat and interpolate the data on another grid.  

The HadISST product is readily comparable to the model outputs because it is in the same 

precisely defined, self-describing format (netCDF with Climate Forecast extensions), and Dr. 

Holland can quickly view it with tools she has to hand (e.g., ncview), but Dr. Holland’s 

colleagues in the sea ice research community advised her that the passive microwave time series 

was more consistently accurate for spatially broad, time-series comparisons. As a result, 

HadISST was used in the initial assessment, but the passive microwave data was used for the 

quantitative comparison shown in Figure 4.2. Interestingly, the Sea Ice Index which is an 

interpretive product consisting of images, maps, and time-series plots is derived from the passive 

microwave data. This enabled quick qualitative comparison, but when it came to quantitative 

comparison, the raw data were downloaded, reformatted, and regridded.  

Figure 4.3. Basic data assessment and acquisition process for Data2 and 
Data3 in Holland et al. (2006). 
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The Sea Ice Index also provided another important function by providing an inherent pointer 

to a specific sea ice data set. The National Snow and Ice Data Center provides dozens of sea ice 

products, including several products derived from passive microwave brightness temperatures 

that differ subtly by using different algorithms and error corrections 

(http://nsidc.org/data/seaice/). Dr. Holland, while aware of the differences, is not well versed in 

the subtleties. She was not sure which of the two primary time series she used, only that she got 

what was available through the Sea Ice Index. As Dr. Holland said, “I have enough data to look 

at,” and “My work is not to compare data sets”. The point is that she typically wants a defined 

benchmark data set, often a climatology, readily available in netCDF-CF in a 1° 

latitude/longitude grid. She relies on colleagues and scientific experts (not data centers or 

services) to advise her on the most appropriate product and only reformats and regrids when she 

must. While, we focused on sea ice concentrations and extent in the interview, the same 

approach generally holds for other parameters (e.g., ice thickness or velocity) and forcings (e.g. 

radiative fluxes). 

Data Acquisition 

In this study, analysis was done locally on individual workstations and data were stored on 

the NCAR mass storage system. The organized, centralized facilities of NCAR encourage 

investigators to directly acquire the data. For example, all data except quick looks were 

transferred via ftp even though some data such as the CMIP3 data set are available through the 

Open-source Project for a Network Data Access Protocol (OpenDAP) and are directly accessible 

remotely through IDL, a primary research tool of the investigators. The sea ice observations are 

not currently available through OpenDAP, but it would be worth exploring that possibility as a 

mechanism to address the data format requirements of the modeling community. 

Data Preparation 

Data preparation consisted of three possible processes: 1) creating single-variable time series 

from gridded fields, 2) interpolating and regridding data to the CSIM grid, and 3) reformatting 

data to netCDF-CF. Creating the time series was only necessary for the CCSM output and is a 

routine part of Dr. Holland’s job assessing CSIM output. Interpolating and regridding, while an 
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effort, is also fairly routine, because the CSIM uses an unusual grid with the North Pole 

displaced into Greenland to reduce the convergence of meridians in the Arctic Ocean—the area 

of study. Reformatting, however, is a much bigger issue. Just recently, Dr. Holland, tried to do a 

comparison with some of the SSM/I data and some of her scripts didn’t work because of troubles 

with the format. This can create a level of frustration that can delay or even prohibit initial 

comparisons that could bear fruit. 

Summary 

Dr. Holland examined multiple runs of the CCSM and other models from the CMIP3 looking 

for abrupt shifts in summer sea ice and comparing them to the observational record. The model 

data she examined is stored at the WCRP CMIP3 Multi-Model Data Set Archive, an invaluable 

resource for climate modeling studies. The CMIP3 effort has done much to standardize formats, 

grids, and conventions for climate model output. When comparing the model outputs to 

observations, Dr. Holland conducted a two-part assessment process, an initial qualitative 

assessment followed by a more rigorous quantitative assessment as appropriate. This two-step 

process was necessary because the more consistently accurate time series, the NSIDC sea ice 

concentrations, was in a less convenient format and grid. So it was easier to do an initial 

qualitative assessment with the HadISST data because they were in the same format as the model 

output. Investigators conducted their analysis on local workstations, but they also had the 

advantage of direct access to the large NCAR mass storage system. Dr. Holland’s primary tools 

were IDL and various Unix shell scripts. 

SnowModel 

Overview 

SnowModel aggregates three submodels: a surface-energy balance model, a snowpack 

evolution model, and a wind driven snow depth evolution model. It simulates multiple snow 

processes include snow accumulation, redistribution, sublimation, density evolution, and 

snowpack melt for the global snow classes defined by Sturm (1995). The model was designed to 

be applicable in many different landscapes and has been applied in Greenland (Mernild et al., 
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2006), Antarctica (Liston and Winther, 2005), and forested landscapes (Liston and Elder, 2006a; 

Liston et al., 2008a). It requires as inputs meteorological time series and spatially distributed 

vegetation and topography. The reliability, availability, and consistency of these data can be 

problematic in the Arctic (NRC, 2006). 

This case study examines how Liston et al. (2008a) used SnowModel to simulate snow 

accumulation and distribution across three study areas with extensive observations made during 

the NASA/NOAA Cold Land Processes Experiment (CLPX). CLPX was a field study conducted 

in Northern Colorado and Southern Wyoming between fall 2002 and spring 2003. The 

experiment was designed to improve quantitative understanding, models, and measurements 

necessary to extend our local-scale understanding of cold-region water fluxes, storage, and 

transformations to regional and global scales. It explored the relationships between process-

oriented understanding, land-surface models, and microwave remote sensing by using a multi-

sensor, multi-scale approach. Intensive ground, airborne, and spaceborne observations were 

collected within a framework of nested study areas ranging from 1 ha to 160,000 km2. Study 

areas were selected to represent diverse snow regimes, including that of the Arctic tundra. Four 

Intensive Observation Periods (IOPs) were conducted during February and March of 2002 and 

2003 (Cline et al., 2003).  

The authors of Liston et al. (2008) were some of the leaders of CLPX and were largely 

responsible for the experiment design and implementation. Glen Liston was the general 

modeling lead for the experiment, Kelly Elder was in charge of the field data collection, and 

Donald Cline was the experiment’s principal investigator and leader of the airborne remote 

sensing data collection. The Liston et al. (2008) study was one culminating result of the CLPX, 

in that it produced the best possible representation of high-resolution spatial (30 m) and temporal 

(daily) distribution of snow water equivalent (SWE) over the 25 x 25 km CLPX Mesoscale 

Study Areas (MSAs). A central goal of CLPX was to produce a legacy data collection and the 

daily, 30-m MSA grids produced by Liston et al. (2008) are a significant contribution to that 

collection.  

Dr. Liston said the study was also the first complete application of a unified modeling system 

that incorporates the three submodels and a meteorological distribution model, MicroMet (Liston 
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and Elder, 2006b), in a standard and readily configurable way. Dr. Liston emphasized that the 

modeling system is now a coherent package with one menu that assumes standard inputs and is 

flexible enough to apply to any piece of cold-region real estate regardless of terrain, vegetation, 

snow type, or scale (Dr. Liston has other studies in progress applying SnowModel at scales that 

range from 10 cm to 10 km grid increments). Over the years, Dr. Liston had been developing the 

various components of the system and modifying them to handle different environments. For 

example, SnowModel had originally been applied only in unforested, high-latitude 

environments, but for CLPX, Dr. Liston improved the model to address important forest 

processes such as vegetation snow catch and sublimation (Liston and Elder, 2006a).  

Producing this flexible, unified, modeling system was a major objective for Dr. Liston under 

CLPX, and in some ways it was driven by the requirements of creating this legacy data set. In 

order to create the best possible data set, Dr. Liston tried to gather as much relevant input data as 

he could. Having all this data in many different formats drove him to develop “a tool that was 

smart enough to take any given meteorological tower or any given data set and run my analysis 

scripts and QC procedures.” The final study, therefore, involved a complex interplay of models, 

assimilation schemes, QC processes, and input data sets.  

Figure 4.4 outlines the general process for Dr. Liston’s study and indicates what data are 

used at different steps in the process. Table 4.3 provides more specifics on the data. The process 

is not really as linear as shown in Figure 4.4, and some minor steps are missing, but this provides 

a basic overview in a similar manner as used in the Holland case study. 

1. The process begins by identifying data available from a myriad of meteorological stations 

within the three CLPX Meso-scale Study Areas. Dr. Liston identified 27 relevant 

stations. Some were installed as part of CLPX; others were part of other monitoring 

networks. The stations are summarized in Table 4.3 and are described in more detail in 

Liston et al. (2008, Figure 1 and Table 5).  

2. Determine which variables to use from each meteorological station. MicroMet requires 

inputs of air temperature, relative humidity, wind speed, wind direction, and 

precipitation, but Dr. Liston did not use all these variables from all stations. For example, 
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temperature was used from all the stations, while precipitation was not used from any of 

them. Precipitation forcing came from other sources. Which variables were used from 

each station is described in Liston et al. (2008, Table 5). 

3. Process the meteorological data into a common hourly format for input into MicroMet. 

Each data source required its own set of processing scripts. 

4. Correct all meteorological data for missing values and out-of-range or spurious values in 

accordance with standard protocols.  

5. Run MicroMet to distribute all the meteorological variables over space and time and to 

provide daily, gridded values for input into SnowModel 

6. Run SnowModel (including all its subcomponents) to produce initial estimates of SWE 

values and distribution. 

7. Prepared observed SWE data collected as part CLPX by producing areal averages and by 

applying corrections to some of the data. This step could occur at any time earlier in the 

process, but it is necessary for the next data assimilation step. 

8. Run SnowAssim, a methodology for assimilating observed snow data within SnowModel 

(Liston and Hiemstra, 2008). SnowAssim could be viewed as a subcomponent of 

SnowModel that forces the modeled results to match up with observed values when and 

where they occur.  

9. Create a spatially distributed, precipitation-correction factor, based on the differences 

between the modeled results and the observed values by fitting a surface across the 

differenced values and their locations. These surfaces are shown in Liston et al. (2008, 

Figures 5b, 6b, and 7b). Apply this correction factor to the LAPS precipitation values. 

10. Run the entire modeling system of MicroMet and SnowModel again with the corrected 

precipitation values. In this study it was only necessary to apply the precipitation 

correction once, but sometimes, especially in blowing snow conditions, it can be 

necessary to recalculate and apply the precipitation correction. 
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11. Present the final spatial and temporal distribution of SWE in papers, talks, and case study 

interviews. 

Table 4.3 provides details on the observational data and model output used in the study. 

Data1 consists of five basic meteorological inputs—air temperature, relative humidity, wind 

speed, wind direction, and precipitation—into MicroMet, which aggregates the hourly, point-

based inputs into daily values and distributes them across a regular 30-m grid. Data1a are 

observations from 27 meteorological stations from six different networks or organizations. Not 

all variables were used from every station. Liston et al. (2008, Table 5) provide details.  

Data1b are gridded atmospheric analyses from the Local Analysis and Prediction System 

(LAPS (Liston, 2004; Liston et al., 2008b)) run by the NOAA's Earth System Research 

Laboratory. LAPS combines numerous observed meteorological data sets into a collection of 

atmospheric analyses. The observed data inputs into LAPS are not considered here, because 

Figure 4.4. General workflow and data inputs for the research process leading to Liston et al. (2008). 
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LAPS was run over the CLPX Large Regional Study Area separately as part of CLPX and is not 

directly part of Liston et al. (2008). LAPS analyses include many different 2-D and 3-D 

variables, but Dr. Liston only used the five surface field variables required by MicroMet.  

Data2 are standard, reference topographic and vegetation-classification data sets used by both 

MicroMet and SnowModel. Data3 are observational data collected as part of CLPX. One data set 

was SWE calculated from an average of many field measurements collected during two Intensive 

Observation Periods at nine 1 km2 Intensive Study Areas (ISAs)—three within each MSA. 

Another data set is SWE derived from a standard airborne remote sensing technique that 

measures Gamma radiation coming from the Earth. This data set had a correction applied using 

the gravimetric soil moisture data collected in one of the MSAs. 

Table 4.3 Data collections used in Liston et al. (2008) as shown in Figure 4.4. See extended table in 
Appendix C. 

Stage Data Collection/Data Set Application Data Source 

Data1a Met. data from 10 main CLPX Stations 
MicroMet forcing 
and assimilation 

As described in Elder et al. (2009) based on 
Elder and Goodbody (2004). 

Data1a 
Met data from 5 Fraser Experimental Forest 
Stations Data 

MicroMet forcing 
and assimilation Personally from K. Elder 

Data1a 

Met. Data from 9 National Resource 
Conservation Service Snow Telemetry 
(SNOTEL) Stations 

MicroMet forcing 
and assimilation 

internet: 
http://www.wcc.nrcs.usda.gov/snow/snotel-
temp-data.html 

Data1a Met data from the CLPX flux tower 
MicroMet forcing 
and assimilation internet 

Data1a 

Met data from the National Resource 
Conservation Service Dry Lake Remote 
Automated Weather Station (RAWS) 

MicroMet forcing 
and assimilation internet 

Data1a 
Met. Data from the Desert Research Institute 
Storm Peak Station 

MicroMet forcing 
and assimilation internet 

Data1b 
Local Analysis and Prediction System (LAPS) 
analyses 

MicroMet forcing 
and assimilation 

Locally as described in Liston et al. (2008). 
Also available at NSIDC (Liston, 2004) 

Data2 USGS National Elevation Dataset 
MicroMet and 
SnowModel forcing http://ned.usgs.gov/ 

Data2 USGS National Land Cover Database 
MicroMet and 
SnowModel forcing Vogelmann et al. 2001; http://www.mrlc.gov/ 

Data3 
Average SWE from ground measurements 
over the CLPX Intensive Study Areas (ISAs) 

Snow Model 
assimilation 

Personally from K. Elder as described in Elder 
et al. (2008). Calculated from data held at 
NSIDC (Cline, et al., 2003a; Cline, et al., 
2004) 

Data3 
Corrected SWE from airborne Gamma 
remote sensing 

SnowModel 
assimilation 

Derived from data at NSIDC (Cline and 
Carrol 2004) 

Data3 Gravimetric soil moisture 
Correction to 
Gamma SWE Personally from K. Elder 
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Data Assessment 

Data1a and Data1b: Many meteorological stations exist in the study area. In addition to 

established Federal monitoring networks such as the National Resource Conservation Service’s 

Remote Automated Weather Station (RAWS) and Snowpack Telemetry (SNOTEL) networks, 

more ad hoc stations are also placed in the area. Transportation departments, avalanche forecast 

centers, ski areas, farmers, and individual research groups all have an interest in monitoring 

weather at particular locations. As Dr. Liston said, some of the data from these stations are 

archived; some are not; some are available; some are not. It is not always clear who owns certain 

stations. Given the primary objective of the study to create a legacy data set, Dr. Liston sought to 

get as much data in the area as practical—as much as “I can physically get my hands on.” This is 

not a simple task. There is no comprehensive listing of meteorological stations, and Dr. Liston 

spent a lot of time searching on the internet and contacting colleagues. As a senior researcher 

familiar with the area, however, Dr. Liston already had a sense of what he was seeking. His 

primary criteria for selection were that the stations were located in one of the MSAs, that they 

provided relevant data with hourly or better temporal resolution, and, perhaps most importantly, 

that they were actually accessible (i.e. on the internet). 

In addition to selecting individual stations, Dr. Liston chose to use only certain variables 

from each station. Precipitation was an especially important variable, but it is notoriously 

difficult to measure accurately, especially when frozen (see for example Doesken and Judson 

(1996)). Dr. Liston wanted the precipitation sources to be consistent across MSAs and to account 

for elevation differences. He, therefore, chose not to use precipitation data from any of the 

stations and use LAPS for the overall precipitation forcing. The LAPS precipitation data is not 

necessarily the most realistic, but it is consistent and considers differences in elevation across the 

study area. Because he includes a precipitation correction factor based on assimilation of the 

detailed SWE measurements from CLPX (Data3), he was not as concerned about getting realistic 

so much as consistent precipitation to force his model.  

For the other four parameters, Dr. Liston chose to use all of them from some stations and 

only one or two (temperature and humidity) from others. This decision was partly based on the 

nature of the data provided from each station (resolution, available variables), but it was also 
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based on what sort of inputs MicroMet expects and Dr. Liston’s personal knowledge of the 

individual stations and their location. For example, Dr. Liston did not use wind data from any of 

the SNOTEL stations. MicroMet assumes that the wind speed and direction inputs are fairly 

broad-scale forcings from top of ridge or top of canopy. MicroMet then reduces the wind in the 

canopy. Because Dr. Liston knew that SNOTEL stations are usually in small forest clearings 

(and often valleys) the wind direction and wind speed “don’t mean very much”.  

The location of SNOTEL stations and their limitations tend to be fairly common knowledge 

within the snow monitoring community, but it may not be readily apparent to many atmospheric 

modelers. Dr. Liston has spent four-and-a-half years of his career in the field, and he emphasized 

the value of this extensive field research. “I’m a modeler, but I do a lot of field work. As a 

consequence, I avoid a lot of the pitfalls some modelers might fall into because they’re not as 

familiar with the natural systems and the data sources they use.” 

Data2: For the vegetation and topography inputs, major assessment criteria were scale, 

coverage, and ready availability, but also the potential to reuse the data. These are common, 

well-known reference data sets that were of the highest resolution available for a study at this 

scale and coverage. The fact that they are reference data sets with national coverage makes them 

especially attractive because it is likely that Dr. Liston will be able to use them again in future 

studies and, therefore, will not need to redo any processing necessary to bring them into the 

model. This is an important point. Dr. Liston said, “I’m always looking for data sets that I can 

apply to other applications.” 

Data3: These data were collected as part of CLPX and were essentially designed to 

accommodate Dr. Liston’s study (among others). There was no need to assess their applicability, 

per se, but Dr. Liston did consult extensively with co-authors Elder and Cline on how best to use 

the data. 

Data Acquisition 

All data used in this study were either available locally, sent to Dr. Liston by colleagues, or 

downloaded through FTP. Dr. Liston’s general approach is to write simple scripts that go out and 
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download all the data and then process them into what he needs for his application. He doesn’t 

like sophisticated web interfaces that allow subsetting, regridding, etc. because they don’t 

provide a record of what he has done. “There is a trend toward these funky, GUI web interfaces, 

but they are not that useful to me.” It’s important to him to have a complete record of everything 

he did to process and display the data in the form of notes and non-proprietary scripts as well as 

the final results. This is important to the integrity of the study, but it also allows him to easily go 

back and repeat the acquisition process in the future if he needs to use the data again. When 

asked if there comes a point with some of his broader scale studies where the data volumes make 

this sort of bulk-get-then-process approach prohibitive, he said, so far, he hasn’t reached that 

point. He noted that as we were talking, he was downloading 380 GB of data. It would take 

several days, but that was OK. Together with his colleague, Chris Heimstra, they have 25 TB of 

storage on their personal workstations, and “we’re using every bit of it.” 

Data Preparation 

Data preparation and preprocessing was a significant part of Dr. Liston’s work. 

Data1a: The data from the different meteorological stations contain different sets of variables 

and come in a variety of different formats with different time steps (e.g. 10 min., hourly, 3-

hourly). Each of the six general data sources had their own standard way to format the data, i.e. 

some form of specialized ASCII. Dr. Liston needed to create scripts that extracted the relevant 

parameters, addressed missing values, aggregated the data as necessary into hourly values, and 

formatted them so they would run in MicroMet. He also applied quality control scripts that 

identified things like out-of-range or spurious values according to a standard methodology 

defined by Meek and Hatfield (1994). This customized scripting required significant effort, and 

no individual meteorological format was notably easier than any other to handle. “They all 

required their own specific attention.” One particular issue was the use of tabs as a delimiter 

between values. This is common on PC platforms and with data exported from Microsoft 

Excel™, but because it is an invisible character it can be difficult to deal with especially in a 

cross-platform environment. Dr. Liston works on a UNIX platform, but cross-platform 

compatibility is important to him. 
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Data1b: Processing of the LAPS data is similar to the meteorological stations, but is 

generally easier to deal with because it is a consistent format that Dr. Liston has worked with 

before. The native format of LAPS is gridded netCDF, and while MicroMet can handle gridded 

meteorological inputs it cannot handle both point and gridded inputs at the same time. As a 

result, Dr. Liston needed to convert the 10 km grid to three 5 x 5 arrays of points covering each 

MSA. Each point is at the center of a LAPS grid cell and is handled by MicoMet in the same 

way it handles a meteorological station. 

Data2: The National Elevation Dataset (NED) is available in a variety of raster formats, but 

historically the data has been geared toward GIS users. Co-author Heimstra has developed GIS 

routines to reproject and convert the data into the gridded format expected by MicroMet and 

SnowModel. Similar reprojection and conversion routines were applied to the National Land 

Cover Data Set. In addition, the land cover data are reclassified to the land cover classification 

used by MicroMet and SnowModel.  

Data3: The two SWE data sets assimilated into the SnowModel were both collected as part of 

CLPX and are readily available from NSIDC (http://nsidc.org/data/clpx/), but Dr. Liston applied 

a correction to some of the Gamma data and the ground-based measurements were averaged over 

the 1 km2 Intensive Study Areas. Liston et al. (2008) and Cline (2009) describe how having an 

accurate soil moisture measurement is essential to getting an accurate SWE estimate from the 

Gamma, especially for shallow snow. Dr. Liston applied a correction to the Gamma data for the 

North Park MSA during one of the observation periods based on the soil moisture measured on 

the ground as part of the experiment rather than the general background soil moisture used in the 

data set at NSIDC. Dr. Elder calculated average soil moisture for the North Park MSA from the 

hundreds of soil samples collected during CLPX, and Dr. Liston used this to apply the correction 

after extensive discussion with Dr. Cline, the Gamma expert. For the ground-based 

measurements, Dr. Elder calculated average SWE over each ISA for each IOP simply by 

multiplying the mean snow density calculated from the snow pit measurements by the average 

depths calculated from hundreds of depth measurements (Elder et al., 2009).  

All of this data preparation was done with relatively basic tools, primarily UNIX shell scripts 

and Fortran77. Dr. Liston made a point of how he completely avoids proprietary software. This 
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is partly so he has an openly accessible record of everything he did to prepare and present the 

data. The scripts can then be used “by any graduate student in the world, and I have a lot of 

them.” Furthermore, when using proprietary software “there will come a point where a program 

won’t allow you to do what you want to do, and you can’t fix it. It’s a black box.” 

Summary 

Dr. Liston brought together several models into a consistent modeling framework to simulate 

snow accumulation and distribution across three study areas with very diverse terrain and 

vegetation. A central goal was to produce the best possible high-resolution representation of 

distribution of snow water equivalent over the study areas for use by a variety of cold-land 

process studies. Early steps in the process were to identify, process, and QC meteorological 

inputs from many different sources. SnowModel then used these and other inputs such as 

vegetation and topography to produce initial SWE values, which were then improved through a 

data assimilation process. This was an involved complex study, but much of the effort was 

simply dealing with the very disparate meteorological data from different weather station 

networks. The complete lack of standardization in the meteorological data presented a significant 

hurdle for Dr. Liston in this and other studies. He used primarily Unix shell scripts and Fortran 

programs to prepare the data, and the free Grid Analysis and Display System (GrADS) to 

visualize the model results.  

The Multiple Element Model 

Overview 

The Multiple Element Model (MEL) is an expansion of an earlier model developed by 

Rastetter and Shaver (1992). It is used to compare interactions between the cycles of any two 

ecosystem elemental resources. It has typically been used to compare the interaction of nitrogen 

(N) and carbon (C) cycles to, for example, better understand how N limitation will constrain 

vegetative responses to increased CO2 (Rastetter et al., 1997; Rastetter et al., 2005). The model 

is defined at a plot scale (e.g., a described forest or experimental plot), so it can be parameterized 

by known state variables and fluxes of C and N. Rastetter and others have typically 
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parameterized the model using data from deciduous northeastern forests (Rastetter and Shaver, 

1992; Rastetter et al., 1997; Rastetter et al., 2001; Rastetter et al., 2005), but the model has been 

extended to other ecosystems, including Arctic ecosystems (Herbert et al., 2004). Dr. Rastetter 

notes that a key issue is capturing sufficient parameterization data (i.e. N and C stocks and 

fluxes) from different plots or ecosystems. 

Dr. Rastetter’s use and development of the model has evolved over time. While this case 

study specifically examines the work conducted for Rastetter et al. (2005), it necessarily explores 

the work Dr. Rastetter has done in a series of papers since his first publication of the model in 

1992, especially Rastetter et al. (2001). Therefore, the overall workflow description in this case 

study applies somewhat generically to Dr. Rastetter’s overall work while using the data used for 

Rastetter et al. (2005) as illustrations. Dr. Rastetter made the point that he is a theoretical 

modeler, and that most of his papers address the idea that “there are a number of things about 

ecosystems that we don’t have a good handle on.” He, therefore, runs a series of simulations to 

answer the question “How important is it that we get a handle on a particular process?” In the 

case of Rastetter et al. (2005), he sought to answer the basic question “Does it make a difference 

[in a global warming scenario] if the nitrogen loss from the ecosystem is in a recalcitrant, organic 

form unavailable to plants and microbes versus a labile, inorganic form that is available to plants 

and microbes.” 

Dr. Rastetter ran a series of simulations with different ways of modeling nitrogen loss from 

the ecosystem. Building from Rastetter et al. (2001), he parameterized the model primarily using 

data from the US Forest Service Hubbard Brook Experimental Forest—a long- and well-studied, 

even-aged, second-growth forest in central New Hampshire composed of about 80-90% 

hardwoods and 10-20% conifers (Hubbard Brook Ecosystem Study, 2001). All the simulations 

suggest that it makes a big difference in ecosystem response to warming and increased CO2 

whether nitrogen loss from the system is Dissolved Inorganic Nitrogen (DIN) or Dissolved 
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Organic Nitrogen (DON),1 but the differences are not evident for sixty to one hundred years. 

DON losses can have significant impact on long-term C sequestration in forested ecosystems. Of 

relevance to the Arctic, Rastetter et al. (2005) note that the effects of DON loss would be masked 

in an environment such as the tundra which is becoming more woody in response to elevated 

CO2 and warming (Sturm et al., 2001). 

Figure 4.5 outlines the general process Dr. Rastetter went through in this and related studies 

and shows where data were used during different steps. Table 4.4 provides more specifics on the 

data. The steps in Figure 4.5 are as follows. 

1. As with any study, the first step is to set out the science question. This step is important 

to call out in this study, because it can be related to what data are available. 

2. Decide how to represent the necessary processes in the equations to address the question. 

In this case, Dr. Rastetter represented the N loss in four different ways related to the C:N 

ratio. 

3. Adjust standard model. MEL varies from the “standard” N uptake model (Vitousek et al. 

1998) to adequately capture necessary processes to describe DON loss and increased N 

demand by the ecosystem in response to elevated CO2 and to reflect that N uptake by 

plants and microorganisms and N loss all occur simultaneously. The standard model 

assumes a sequential progression where microorganisms immobilize all the N they can, 

then plants take up what they can, then loss may occur. This simplifying assumption 

arose partially because it allowed the model to be formulated only on net and not gross 

                                                

1 “Dissolved Organic Nitrogen (DON) is defined as the difference between Total Dissolved Nitrogen (TDN) and 
Dissolved Inorganic Nitrogen (DIN), which comprises nitrate (NO3-), ammonia (NH4+) and nitrite (NO2-). DON is 
not a single compound but a mixture of compounds ranging from simple amino acids to complex humic substances. 
Most studies on nitrogen loss from ecosystems measure only the inorganic forms of nitrogen, ignoring mobile 
organic forms such as amino acids, aminated sugars, and humic acids that dissolve into soil water and can be lost as 
such” (Barbero, 2006). In Rastetter et al. (2005), they simplify their analysis and define DON to only represent 
forms of N unavailable to plants and microbes, recognizing that there is growing evidence that plans can access 
some DON.  
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mineralization, which is much harder to estimate.2 Dr. Rastetter needed to remove this 

simplification because a central purpose of the study was to better understand how plant 

uptake, microbial immobilization, and N loss differ if N losses are DIN or DON. 

4. Run the simulations with high and low DON loss ratios and with the different N loss 

formulations. All simulations were forced with doubled CO2 and a 4°C temperature 

increase, as predicted for New England by the IPCC (2001), and allowed to run to a new 

steady state. 

5. Review results. The investigators used the basic Rastetter and Shaver (1992) version of 

the model to predict plant and soil C and N stocks, calculate differences from original 

values, and to partition the changes in total ecosystem C according to different factors.  

6. Modify parameterizations as necessary. While it was not the case in this situation, Dr. 

Rastetter noted that sometimes the process of running the model uncovers inconsistencies 

in the data. He gave one example where he used the Hubbard Brook Experimental Forest 

data set to see if he could reproduce the growth of the forest since the last glaciers left 

14,000 years ago, but he couldn’t get the system to grow fast enough in the model. It 

turns out that weathering rates estimated for phosphorus (P) were off. When he presented 

his results at a meeting at Hubbard Brook, he discovered that people were in fact doing 

research on how plants may be fostering more rapid break down of minerals. This could 

lead to a correction in the P weathering rates. In another example, he and a colleague 

realized that they had misinterpreted a data value. The point is that there can often be a 

recalibration process when running the model. 

                                                

2 Mineralization converts organic N to inorganic N. Net mineralization is the total or gross mineralization minus 
what has been immobilized (converted to organic form) by microbes. Net mineralization considers ammonium 
(NH4+) and nitrate (NO3-). Gross mineralization refers only to ammonium (NH4+). 
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7. Present results. Dr. Rastetter emphasized how a major part of his job is communication. 

As a theoretician, he finds it especially important to communicate with empiricists. He 

encourages people to design experiments to empirically test his results and further 

understand processes. He even scoped out such an experiment in the conclusion of 

Rastetter et al. (2005). Of course, the results also often lead to new science questions to 

be assessed. 

Figure 4.5. General workflow and data inputs for the research process leading to Rastetter et al. (2005) 
and similar studies. 

The data used in this study are different than those used by Drs. Holland and Liston. The 

model does not have an explicit spatial dimension. The primary issue is developing the right 

parameterizations for the type of ecosystem being represented. Data are not continuous temporal 

or spatial fields but are typically single-value estimates of chemical stocks or fluxes. These 

values may be estimated from detailed allometric measurements or proxy measurements like 

using stream chemistry to estimate N loss. Values may also be calculated by different models 

and experiments. 

Table 4.4 lists the different data used in the study. Data1 are the primary stocks and fluxes 

and basic parameterizations. The Hubbard Brook Data Set (In particular: Bormann and Likens, 

1979; Whittaker et al., 1979) with some updates, notably to fine root dynamics by Fahey and 



 

36 

Hughes (1994), provide most of the stocks and fluxes. Other sources, including personal 

communication, are fully cited in Rastetter et al. (2001) Table 1, and Table 2 shows the 

parameters estimated by model equations or other cited approaches including an earlier MEL 

study (Rastetter et al., 1997). Goodale et al. (2000) provide the basic C:N ratio necessary to 

develop different model scenarios for DIN and DON loss. The Hubbard Brook data are central to 

the whole project. They are necessary to run the model in a way that approximates a specific 

ecosystem and enables the inclusion of more detailed processes. As such, the data enter the 

process very early on to help define how specific processes can be defined mathematically. They 

may even inform the sort of scientific questions that can reasonably be assessed with the model 

(This is indicated with the dashed line in Figure 4.5 and is discussed in more detail below). 

Data2 are changes in model values that are calculated to maintain a steady state when the model 

is expanded to consider gross and net mineralization processes. These are not observed values 

but calculated calibrations based on well-described theory. Data3 are different constants derived 

from the literature to parameterize the alternate ways of modeling DOC loss and how this is 

associated with DON loss. Data3 also includes the global warming forcing values from the 

Intergovernmental Panel on Climate Change (IPCC 2001). Data4 are also calculated values that 

allow the investigators to partition the changes in ecosystem C into soil and plant components for 

more detailed analysis. 

Table 4.4 Data used in Rastetter et al. (2005) as shown in Figure 4.5. See extended table in Appendix C. 

Stage Data Collection/Data Set Application Data Source 

Data1 

Ecosystem stocks and fluxes and estimated 
parameters primarily from the Hubbard 
Brook Experimental Forest.  

parameterization, 
forcing 

As described in detail in Rastetter et al. 
(2001) Tables 1 and 2..  

Data1 C:N ratio parameterization Goodale et al. (2000) 

Data2 Microbial respiration parameterization 
Calculated modification to values in Rastetter 
(2001) to maintain assumption of steady state. 

Data2 Gross N mineralization parameterization 
Calculated modification to values in Rastetter 
(2001) to maintain assumption of steady state. 

Data2 N immobilization  parameterization 
Calculated modification to values in Rastetter 
(2001) to maintain assumption of steady state. 

Data3 Model 1: constant DOC loss parameterization Baseline assumption. 

Data3 
Model 2: constant: proportional to organic 
matter in the soil 

alternate 
parameterization Based on values from Neff et al. (2000). 

Data3 Model 3: constant: proportional to C:N ratio 
alternate 
parameterization 

Based on values from Aitkenhead and 
McDowell (2000). 

Data3 
Model 4: constant: proportional to microbial 
respiration 

alternate 
parameterization Based on values from Brooks et al. (1999). 

Data3 2x CO2 and 4°C temperature increase forcing IPCC (2001) (for New England) 

Data4 Calculated plant and soil C and N stocks analysis 
Derived from original MEL (Rastetter and 
Shaver, 1992). 
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Data Assessment 

To understand Dr. Rastetter’s approach to data assessment and use, we must consider his 

research context. As mentioned, Dr. Rastetter emphasized that he is a theoretical modeler. His 

goal is to better understand ecosystem processes and their relative importance, not to make 

specific predictions of a future state. As he put it, his approach is “modeling for understanding” 

not “modeling for numbers.” In this context, precise data are somewhat less important. In a 

situation where you are trying to make a precise prediction, like CO2 in the atmosphere in 2100, 

then numbers make “a heck of a lot of difference.” If you are looking at a more qualitative 

question, like whether the form of N loss affects ecosystem response to CO2, then the numbers 

“don’t make that much difference.” Dr. Rastetter said that he could have taken a more abstract 

approach to this question, like the approach initially used in Rastetter and Shaver (1992), but that 

would limit his audience. “Then I’m just talking to theorists, and that just drives me nuts.” Dr. 

Rastetter feels that it is critical to collaborate and communicate with empiricist scientists. To 

help that communication and to facilitate publication in journals beyond strictly modeling 

journals, he needs quality data. Data become central to the communication between theoreticians 

and empiricists. People can better relate to the argument and internalize the concepts if they can 

tie things down to a real ecosystem. They “need numbers they can feel comfortable with” and the 

reviewers “want justification for every number that you use.” So while precise data may be less 

important to a theoretical argument, authoritative data are essential for Dr. Rastetter to publish 

widely. 

Data1: The Hubbard Brook Experimental Forest was established in 1955. The associated 

Hubbard Brook Ecosystem Study began in 1960 as one of the first comprehensive studies of an 

entire ecosystem (Hubbard Brook Ecosystem Study, 2001). The study has developed one of the 

most comprehensive data sets on ecosystem fluxes and element stocks. Dr. Rastetter called it 

“one of the great data sets.” In terms of assessing what data to use in this application, there are 

few options. Dr. Rastetter mentioned the work of Phillip Sollins at the H. J. Andrews 

Experimental Forest in the western Cascade Range of Oregon and the work of Gaius Shaver at 

the Arctic Long Term Ecological Research Site on the North Slope of the Brooks Range in 

Alaska, but the Hubbard Brook Data Set has the distinct advantage that Fahey and Hughes 

(1994) have done excellent work to characterize the dynamics of fine roots at Hubbard Brook. 
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This sort of work has not been done elsewhere, and Dr. Rastetter said a major data need for him 

is “everything below ground”. In addition, Goodale et al (2000) also worked in Hubbard Brook 

and the overall White Mountains to provide the C:N ratio information necessary to asses Dr. 

Rastetter’s N loss question. Dr. Rastetter said he is always looking for ways to get the  model 

in a form that he can publish (i.e., supported by authoritative data), so he is continually searching 

for suitable data across different sources and different ecosystems and trying to stitch things 

together. In this way, data availability can affect how Dr. Rastetter can formulate specific 

questions in his model and can even have some effect on the form of the particular questions Dr. 

Rastetter tries to address (dashed arrow in Figure 4.5.). As a theorist, Dr. Rastetter does not let 

data availability determine the science questions he seeks to answer, but he admits that 

publication pressure and the need to effectively communicate with his “empiricist friends” can 

push him in certain directions.  

Dr. Rastetter is very conscious of this interplay between data and models, especially in 

parameterization and calibration. While precise values for a particular flux, say, may never be 

known, one must recognize that when calibrating a model to fit a specific number, one subsumes 

not only the uncertainty in the model structure but also the uncertainty in the measurement. 

Sometimes, that uncertainty can even be a bias. Dr. Rastetter gave the example of how the work 

by Fahey and Hughes (1994) changed the earlier N uptake rate by more than 50%. Further, on a 

more theoretical level, Dr. Rastetter notes that model construction is often driven by how data 

are actually collected: “the model is a representation of how we measure the system more than it 

is a representation of the system. There are two levels of separation.” These are fundamental 

issues in modeling, and they play a strong role in Dr. Rastetter’s work. It is interesting to note 

how on one hand, as a theoretician, Dr. Rastetter has little need for precise data. On the other 

hand, he is acutely aware of the need for authoritative data across the ecosystem for his results to 

be accepted, understood, and applied. In this sense, he prefers data that have been published in 

the peer-reviewed literature. It is not his job to review the accuracy of different data, so it is good 

that “someone has checked it over.” All these considerations led Dr. Rastetter to the Hubbard 

Brook Data Set for this and previous studies. 
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Data2. These data are calculated values not observations. Their “assessment” is inherent in 

how Dr. Rastetter chose to describe the N processes in the model equations. They are used in a 

form of parameterization and calibration, though, so they are worth calling out given the 

uncertainties of parameterization and calibration.  

Data3. These data are what was necessary for Dr. Rastetter to run the multiple 

implementations of his model. He sought to avoid the potential criticism that he didn’t consider 

how N is lost from the system. He tried to consider approaches representative of the current work 

in the community. So assessment was a matter of identifying accepted sources in the literature. 

The other parts of Data3 are the CO2 and temperature forcings using benchmark IPCC values. 

Data4. These data are also calculated values. Similar to Data2, they illustrate how model 

results can themselves be a form of data. 

Data Acquisition and Preparation. 

Most of the data used by Dr. Rastetter are published numbers, so acquisition and preparation 

is simply a matter of transcription and interpretation. All the Long Term Ecological Research 

sites like Hubbard Brook have data access web sites. Dr. Rastetter says he uses these systems 

occasionally, but that her prefers something from the peer-reviewed literature. Data preparation 

is usually just a matter of unit conversion. Sometimes, preparation is somewhat of a research 

question, like figuring out how to divide a single number into different stocks with different 

fluxes. Sometimes data may need to be corrected for limitations in measurement techniques. For 

example, most people report the total extractable NH4, which is NH4 that is extracted from soil 

using a strong potassium chloride solution. This does not distinguish between the NH4 in soil 

solution and the NH4 stuck to soil particles. This ratio can have significant impact on the long-

term uptake of NH4 by the ecosystem. 

Summary 

Dr. Rastetter is a theoretical modeler. In this application he sought to improve understanding 

of how the form of nitrogen loss from an ecosystem impacts ecosystem response to warming. 
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Data used in this study are quite different from the earlier case studies. The primary need for 

observational data is to parameterize the model. These data are typically single values of element 

stocks or fluxes published in the literature. There are few high-quality data sets that describe all 

these sort of parameters for a particular ecosystem, but having good parameterization is essential 

to Dr. Rastetter’s work and collaboration with empirical researchers.  

Dr. Rastetter’s work provides an interesting contrast to that by Dr. Holland and Dr. Liston. 

Dr. Rastetter not only works in a very different domain—biogeochemistry vs. cryospheric 

science—but also with a different perspective—that of a purely theoretical modeler. The next 

chapter explores these contrasts as well the commonalities across the case studies in a cross-case 

analysis. 
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Chapter V 
 Analysis and Results 

This chapter presents analysis of each individual case followed by a cross-case comparison 

and synthesis. Each case is examined independently for possible areas of data center and data 

system improvement, but the analysis of later studies inevitably builds on the earlier work to 

create a cohesive narrative. The areas for data center improvement that emerge are italicized in 

the text. The comparison and synthesis then seek to create possible principles and practices for 

data managers to improve Arctic system modeling processes. The central proposition is that there 

are instructive themes in how different modelers assess, acquire, and prepare data for their 

models. A goal is to suggest data management techniques or requirements for data systems to 

improve access and use by modelers.  

Dr. Holland and the Community Sea Ice Model 
One of the first things that became evident in this initial study is that modelers have a 

different conception of data than do most scientific data centers. It was telling that the first 

“data” input into Dr. Holland’s process were model outputs from the CCSM and other GCMs. 

This is not the sort of data held by most data centers, which tend to focus on what might better be 

called “observations” or “measurements.” There are data centers, such as the CMIP3 archive at 

PCMDI, who handle model output, and it is increasingly an issue many data centers will have to 

face, but for the most part, climate related data centers focus on satellite, aerial, and shipborne 

observations and field measurements. (The rest of this thesis will use the general terms model 

outputs and observations to distinguish between these broad data types.) Greater consonance in 

the management of these different data types could help climate modelers significantly. Dr. 

Holland noted how the detailed standardization of model output through the CMIP3 project 

really enabled more extensive science. If observations were more coherent with CMIP data 

formats, grids, and naming conventions, there would be even greater benefit. In short, CMIP has 

created a set of standards for data centers to consider when presenting certain data—notably 

broad-scale, gridded, time series of climatic variables.  

In a sense, it comes down to convenience. Dr. Holland readily used data she knew to be less 

accurate for her initial comparisons simply because it was easier. She only used the “better” data 
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set when she needed a very thorough and robust analysis. Convenience can be seen as a way to 

reduce effort. This balance between convenience and data quality or uncertainty is something 

modelers constantly need to consider, so data centers can clearly help by making their data more 

convenient to access and use. 

We can consider convenience as reduced effort, and we can qualitatively measure the effort 

of a research study as a series of steps or decisions points. So by reducing steps in the process, 

we have at some level made it more efficient, more convenient (cf. Pressman and Wildavsky, 

1973). To illustrate this, consider if NSIDC had provided its sea ice data in netCDF-CF (ideally 

in a latitude-longitude grid in accordance with CMIP standards). Dr. Holland could have 

essentially removed the initial assessment process (Figure 4.2, step 3) and several decision 

points. In this study that might have saved a day or two of effort, estimates Dr. Holland. In other 

studies, with greater use of observations, it might be several days of effort saved. Of course, 

there is not one format to serve all communities, but for the GCM community, there is a working 

standard that continues to develop through the CMIP process. Ultimately, data centers should 

provide data in multiple standard or common formats. NSIDC has, in fact, recently introduced a 

new data access system that enables search, subsetting, and delivery of data in multiple formats 

and grids for major gridded data sets. 

In addition, to making the data more convenient in format and grid, Dr. Holland desired tools 

to enable cursory data analysis of data before actual data acquisition. The Sea Ice Index provides 

some of this in the form of browse images, time series plots, and comparisons to climatologies, 

but they are relatively static and do not allow the user to change any of the parameters or 

variables. It is important to note, however, that while Dr. Holland expressed interest in these 

types of tools, she typically gets her data through basic ftp. Further, she does not look to data 

centers to provide information on data quality or applicability. She prefers instead to talk to 

colleagues and get specific recommendations. Ideally, she would like one clear and definitive 

product. This has long been an issue for sea ice, in particular, where diverse sea ice data products 

have different strengths and weaknesses depending on the particular application (Meier et al., 

2001; Parsons and Duerr, 2005). Nevertheless, where possible, data centers, in collaboration 
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with scientists, should clearly and succinctly indicate which products are most suitable for 

different applications. 

This particular study by Dr. Holland (Holland et al. 2006) was a very specific case on the use 

of the CSIM and the CCSM more generally, yet it revealed some interesting insights. An 

examination of other applications of the CCSM could provide additional lessons on this 

important class of models. To use the language of the Open Archival Information System 

Reference Model (ISO, 2003), CSIM and CCSM modelers are a specific “designated 

community” to be explicitly considered for key products held by geophysical data centers like 

NSIDC.  

Dr. Liston and SnowModel 
Unlike Dr. Holland, Dr. Liston’s objective was not to predict possible future states, but rather 

to characterize the current state of a very complex parameter–snow–over variable and complex 

terrain. His study, therefore, included much more direct manipulation and use of observations. 

He even commented that he made extra effort to get more and better data for this study than he 

might do for others because the goal of this study was to produce a benchmark data set. This 

relates to the issue of convenience discussed above. Dr. Liston says that gathering forcing data is 

a constant assessment of payoff vs. effort. In this study, he was willing to work hard to get high-

quality data. That was a central purpose of the whole Cold Land Processes experiment. In other 

situations, where he was not producing a data set but perhaps examining a particular process, the 

balance between payoff and effort would be different. The effort, in this case, was largely finding 

and then preparing the meteorological forcing data from the various meteorological stations.  

As with Dr. Holland, much of the data preparation effort was driven by the differing data 

formats and conventions, but in this case, there is no obvious standard on which to converge. 

Data come from diverse local, regional, and federal sources, each with their own established 

conventions. SNOTEL data, for example, are still in English units. Changing or harmonizing 

these conventions requires significant change to established social and technical infrastructures, 

which in turn creates large implications and tensions (Edwards et al., 2007). Further, the use, 

preferred formats, time-steps, terminology, and units of meteorological data are so diverse as to 
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make the creation of community built standards daunting. Data managers can endeavor to be 

honest brokers, and provide data in multiple formats. Indeed, with this sort of point data and 

diverse user base, it may be most useful to provide a mechanism for users to create their own 

format on demand through a basic queryable, web-services interface to a database. Continued 

research in and application of advanced semantic techniques could also be fruitful. 

 Dr. Liston provided one anecdote that starkly illustrates how much time could be saved with 

more consistent data. He described a master’s student who was working on a similar application 

of SnowModel and had collected data from about 12 meteorological towers from multiple 

networks in Oregon (NRCS, NWS, LTER). Unlike Dr. Liston, the student was not familiar with 

the data type and was not well versed in Unix scripting. It took him about three months to figure 

everything out and get all the data together for the model. Dr. Liston estimates that with his 

experience, it might have taken him about three weeks, but if the data were all in a consistent 

format, it would have taken both the student and his mentor only three days. This suggests 

format harmonization provides significant time savings across science given the myriad 

applications of these data. 

The term data format should be clarified in this context. Most meteorological station data are 

in an ASCII format, but that is a very general characterization. A more precise specification is 

what Raymond (2004) calls the metaformat and is what most people consider to be formats. 

Examples for ASCII include delimiter-separated values and XML. At a greater level of 

specificity is what the NASA Strategic Evolution of Earth Science Enterprise Data Systems 

(SEEDS) Formulation Team (2003) calls the format profile. This is a specific implementation of 

a metaformat and could include more syntactical details such as the order of columns in a tabular 

data set or machine-specific considerations such as byte order and 32 vs. 64-bit words for a 

binary array. It is at this level of the data format profile where most problems occur. The devil is 

in the details. These details can be a syntactical issue like which delimiter to use between 

columns (a real issue in CLPX (Parsons et al., 2004)) to semantic details like what exactly is 

meant by “temperature.” These issues are not unique to meteorological station data, but they 

apply to many regular, point-based, field measurements of the environment. Harmonizing data 

profiles, conventions, vocabularies, etc. within disciplines, let alone across disciplines, is a 
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significant undertaking for both the data management and scientific community. This is a topic 

for more research, but in the short term data managers can highlight the issues and facilitate 

community efforts to harmonize formats and conventions. Fetterer (2009), for example, has been 

coordinating an effort to harmonize sea ice observations. 

While being flexible in how they deliver data, data centers must also be consistent in how 

they serve their data over time. Dr. Liston made the point that he is always looking for data that 

he can reuse. “If I can acquire a data set that fits all my projects, that’s what I want to do.” This 

implies that data centers should be conservative in making changes to data formats, grids, etc. It 

is OK to add more formats, but old ones should not be removed lightly. When data do change, 

such as with new calibrations, this should be clearly indicated. These data provenance issues can 

be all the more challenging when providing data through a queryable database. While a resource, 

such as a central database, that delivered all the meteorological data in one format would have 

saved Dr. Liston a lot of time, he also made the point that he was not very interested in 

sophisticated web interfaces because he wanted a precise record of what he did. Data centers 

should track and include with the data a record of any sort of processing, such as subsetting or 

regridding, that is done prior to data delivery. 

Overall, Dr. Liston did a lot of basic preparatory work that could be done by data centers, be 

it standard error correction algorithms on the meteorological station data, interpolating and 

regridding the land cover data, or making point values out of the gridded LAPS data. The 

question is whether they should. Providing these kinds of services, could be beneficial to some 

users, but scientists can be rather traditionalist. Dr. Liston uses a lot of data, but he gathers it all 

together on his workstation where he does all the processing in a way that he can readily track 

and record with basic scripts and annotations. This gives him precise control and a complete 

record of everything he has done, and he has been working over time to make his tools and 

processes reusable. Data centers today have strong pressure to innovate and provide useful tools 

to manipulate large volumes of data, but at the same time there is a pressure to be more efficient, 

and to develop sustainable, broadly supported data systems. While making data more consistent 

increases scientific efficiency, it is not clear whether providing additional pre-processing services 

always will increase efficiency. More research is needed on the costs and benefits of centralizing 
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certain data services. The answers are likely to be very different for relatively small in-situ 

collections vs. large and growing model output and remote sensing observations. 

Another area where a data center role is unclear is in documenting uncertainty. While it is 

clear that comprehensive documentation of uncertainty is desirable, it is not clear whether it is 

always possible. For example, Dr. Liston made careful and educated choices in his selection of 

variables from the various meteorological stations. He made his decisions based on his personal 

expertise and field experience, but also on common knowledge in the snow community about the 

site characteristics of the stations. To enable broader, more interdisciplinary, and systemic data 

use, data centers need to try and capture and convey this sort of tacit community knowledge. It is 

natural that much scientific knowledge is exchanged through interpersonal communication. The 

goal, therefore, should be to make that knowledge exchange more broadly accessible. Social 

networking tools seem like an obvious approach. It has often been suggested at scientific data 

management workshops and elsewhere to use the comment and discussion tools used by retail 

web sites or similar to discuss and annotate data. Few, if any, of these schemes have been 

implemented, though, and it is unclear if there is the critical mass of participants necessary for 

such social networking approaches to succeed. More experimentation with these tools is 

warranted. In the longer term, semantic research and ontology development promise to help 

convey uncertainty in rich and formal way. 

Dr. Rastetter and the Multiple Element Model 
This study was very different from the previous two. It was in a completely different 

scientific disciple, using a very different approach. The model used very different data and no 

data from NSIDC or other data that I was familiar with when I began the study. Moreover, as a 

theoretical modeler, Dr. Rastetter has a very different view on data. As a result, there are fewer 

obvious lessons to be learned on specific data management practices and more to be learned at a 

theoretical level. A central theme is that data are central to communication between theoreticians 

and empiricists. The data that Dr. Rastetter use are almost all for parameterization, and he is very 

aware of the sensitivities involved. Parameterization can been seen as a process of intelligently 

determining that certain parts of the system can be neglected in the model and certain parts can 

be represented through semi-empirical or imprecise mathematical formulae. Parameterization is 



 

47 

a necessary but fraught part of modeling (McGuffie and Henderson-Sellers, 2005). Further, “The 

most advanced parameterizations have theoretical justification.” (McGuffie and Henderson-

Sellers, 2005). Parameterization, therefore, becomes a focal point for that scientific conversation 

between empiricists and theoreticians. 

Dr. Rastetter emphasized how it was important to have authoritative data, particularly 

something that has been peer-reviewed and that he could cite. Because he is typically using 

single number values for element stocks and fluxes, the numbers can be found in traditional peer-

reviewed literature. For other types of parameterization, and especially when getting into data 

assimilation like Dr. Liston, the data are more complex and less likely to be formally published 

in conventional scientific literature. That does not necessarily mean that these data, typically held 

by scientific data centers, cannot be properly cited and even peer-reviewed.  

Data citation has been described in the literature (e.g., Costello, 2009; Klump et al., 2006), 

and many geophysical data centers, including most NASA centers, recommend specific ways to 

cite their data but their approaches vary. Some data centers, including NOAA National Data 

Centers, do not request formal citation and simply request data be acknowledged in the text. 

Some data centers, including some USGS centers, take different approaches for different 

products. For example, citation may be requested for digital maps while only acknowledgement 

may be requested for tabular data. Occasionally, a data publisher may request that data users cite 

a journal article or other document describing the data. Ironically, these types of citations seem 

to be most broadly used despite the fact that the citation does not directly refer to the actual data 

used. In some cases, the data may actually be a supplement to the article, but more often the data 

extend well beyond a specific article. 

In the Arctic, the International Polar Year explicitly recommends data citation in its Data 

Policy (http://classic.ipy.org/Subcommittees/final_ipy_data_policy.pdf) and has developed 

guidelines for how data should be cited (http://ipydis.org/data/citations.html). These guidelines, 

like any, are imperfect, but they harmonize different approaches and have been adopted by data 

centers around the world. Data centers can and should use these guidelines now to indicate how 

their data should be cited in a way that gives fair acknowledgement of the data author. These 

guidelines can then serve as a basis for evolving approaches to formally cite data.  
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Data citation, while helpful, is only the beginning in asserting the authority of a data set. 

Citation needs to be coupled to some sort of quality assurance or peer-review scheme. In many 

ways, good data have always undergone some level of peer-review, and many NASA and NOAA 

data centers vet the data they handle, but there is no formally recognized or established process. 

Developing that process is a greater challenge than data citation, but it is no less vital to modern, 

data-driven science. It is likely that data publishers will play an important role in establishing 

appropriate peer review processes. Community best practices could be established addressing 

some of the issues discussed in this thesis, such as standard formats and data validation, as well 

as more complex community issues such as determining what level of assurance is necessary to 

apply at large scales when millions of data files may be produced? For example, is academic 

review of processing algorithms such as documented in NASA's Algorithm Theoretical Basis 

Documents sufficient? It is rigorous, but does it receive the same recognition as peer-review?  

How does this contrast with review processes for research data collections produced by 

individual investigators or small projects that rarely produce the level of documentation or 

undergo the levels of review of the large programs? These, along with data citation, are the sorts 

of issues the data management community needs to address in collaboration with scientific 

researchers (Parsons et al., 2010). 

Cross-Case Comparison and Synthesis 
When comparing these different studies, what is immediately striking is the differences 

between the studies. These differences reemphasize how important it is for data managers to 

understand their audience and their needs. If data managers can better define their designated 

community and their data application, they can better target their user-needs-assessment efforts. 

These case studies suggest that there are certain categories of modelers and data application that 

may be instructive when assessing modeler data needs. These three modelers had six general 

data applications (Tables 4.2-4.4): forcing, assimilation, parameterization, assessment, analysis, 

and correction or calibration. These different applications create different data assessment 

criteria. For model forcing and data assimilation, consistency of the data is very important. For 

example, Dr. Liston’s variable selection of wind from the different meteorological towers was 

largely geared toward ensuring the data were consistent. For parameterization, the data need to 

be broadly accepted and authoritative. For example, Dr. Rastetter’s efforts to engage empiricists 
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hinged on using accepted data for the parameterization. For assessment of model results, the data 

need to be broadly representative or “true”. For example, Dr. Holland made extra effort to get the 

more representative sea ice data for her full assessment. 

Other categories of use would likely emerge in additional studies These could include 

validation or verification and model conceptualization. Dr. Holland was essentially doing 

verification when assessing how the CCSM output compared to the observations. Dr. Rastetter 

showed how data availability can influence how a model is conceptualized or mathematically 

defined. 

One can also consider the types of modeling being conducted. Dr. Holland’s work might be 

considered predictive modeling. As such she is largely interested in getting the best data 

representation she can of the predicted value, sea ice, to assess and verify her results. Dr. Liston 

might be considered a descriptive modeler, who is therefore interested in getting the most 

comprehensive and consistent inputs he can in order to produce the best overall description of 

the current state of a variable, snow. Dr. Rastetter as a theoretical modeler interested in 

understanding different ecosystem processes needs authoritative data in order for his theoretical 

arguments to be accepted by the broader scientific community. 

Other ways of classifying models and their applications could also be identified. For 

example, Serreze and Barry (2005) define seven general model types used in the Arctic. The 

point is that by better defining their audience, data managers can better serve their needs. For 

example, NSIDC could benefit from a closer examination of predictive GCM modeler needs. 

Despite the differences in these case studies, there were some commonalities. Chief among 

these is how modelers have a much broader conception of data than many scientific data centers, 

which tend to focus on observations from relatively narrow disciplines. Data centers cannot 

provide all the data needs of modelers. The literature and the models themselves are but two 

other data sources. Data centers, therefore, need to focus on what they are best able to provide to 

meet modeler needs. For example, in NSIDC’s case providing consistent climate data records of 

key cryospheric variables in accordance with CMIP standards could greatly assist the GCM 
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community. Greater harmonization of disparate point measurements could significantly help 

with descriptive modeling and data assimilation.  

Other commonalties also emerged from these studies. Table 5.1 lists some of the potential 

commonalities identified during the conduct and assessment of the three case studies. They are 

listed roughly in the order of the strength of the commonality as measured by how true each 

statement is for each model.  

Table 5.1. Common issues or attributes across the three case studies. The upper case T in the columns on 
the right indicates the statement is very true for that model or case; the lower case t indicates the 
statement is somewhat true; and blank indicates that the statement is not true or it could not be 
determined. 

Commonality CSIM 
Snow 
Model MEL 

1. Data availability limits types of studies. T T T 
2. Continually evolved and reapplied model over time.  t T T 
3. Need to reformat data to input into model. T T t 
4. Data from data centers is acquired in bulk via ftp rather than through specialized interfaces.  T T t 
5. Much of the data used does not come from data centers. t t T 
6. Multiple runs of different models are conducted (to satisfy reviewers). T  T 
7. Need to regrid data to match model. T T  
8. Need to be able to cite data sources (esp. for parameterization). t  T 
9. Spend a lot of time searching for data.  T t 

 

In reviewing these commonalities, we can begin to see some larger themes. It is not 

surprising that data availability can limit what scientific work is done (#1). Much of the 

necessary data are simply not available, but this limitation could also indicate a data discovery 

issue given that data centers are not necessarily a primary source of data (#5) and that two 

modelers called out discovery issues even though data discovery was not part of the study (#9). It 

is also not surprising that modelers build on previous work and continually evolve their modeling 

system (#2). This evolution suggests, however, a need for data to be consistently available over 

time in the same location, format, grid, etc. The need for consistency pairs with the common 

need to reformat (#3) and sometimes regrid (#7) data to emphasize the theme of convenience 

discussed earlier. Considering the issues of discovery and convenience suggests a need for data 

centers to identify and prepare specific products for specific community needs. 
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Careful examination of these themes can reveal more specific or actionable propositions that 

can be fully tested against the evidence in each case study. Table 5.2 shows how major 

propositions match up to the case study evidence. Sources of evidence include notes, recordings 

and follow-up on the interviews (I), the papers of each modeler (P), other literature (L), and the 

data and interfaces used by the modelers (D). Appendix C provides additional information on the 

data sets. An additional source of data is ethnographic or participant observation. In other words, 

the propositions are also tested against personal, professional experience and careful observation 

as an active participant in the Arctic science community. This is discussed in more detail in 

Chapter 6. 

 Table 5.2 lists some major propositions and shows where specific evidence for each 

assertion can be identified. All of these propositions are worthy of greater consideration by the 

data management community regardless of how well they are supported by these particular 

studies. Chapter 6 explores these propositions further and begins to develop a few more 

overarching principles.  
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Table 5.2. Some of the more viable propositions for data systems improvement that were tested during 
this study with indications of where there is evidence to support each proposition. 

Proposition Holland Liston Rastetter  

 I P L D I P L D I P L D Ethnographic Evidence 

Data should be available in multiple 
common formats or specified on 
demand 

x x 
 

x x x x x 
  

x x 
Strongly supported. 

Do not move/change data x    x        Strongly supported. 

Include provenance with data     
x 

       Seems an obvious good idea, but there 
is little apparent demand for this or 
discussion of the topic. Other issues 
appear more pressing. 

Provide recommended data citation     
x 

  
x x x x 

 Strong evidence in data management 
community. Less in the scientific 
research community. 

Data need peer review x    x   x x x x x A nascent but growing discussion topic. 

A common criterion is the effort 
needed to use data--modelers want 
to simply download data in the same 
format, same grid, scalable, etc. (This 
requires understanding of specific 
needs.) 

x 

   

x x 

 

x x 

   Strongly supported. 

Focus on data not system--Content 
first!  

• Harmonizing data formats would 
reduce processing steps and save 
time 

• Providing multiple formats would 
reduce processing steps and save 
time 

x x 

 

x x 

 

x x x x x ? 

Strongly supported. 

Data centers should clearly indicate 
the authoritative products for certain 
applications (parameterization, GCM 
validation, etc.) 

x 
 

x x x 
 

x x 
  

x x 

Periodic requests for this, but it’s 
difficult to match many products to 
diverse communities.  

 
I=interview P=papers L=other literature D=data themselves 
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Chapter VI 
Summary and Discussion 

The Arctic environment is rapidly changing. To understand this change and its implications 

requires an integrated approach that considers the Arctic as a complex system. Models of various 

scales and types are major tools for this integrated approach. For the models to be effective and 

meaningful, they need quality data for forcing, parameterization, calibration, and assessment. Yet 

data in the Arctic are dispersed and heterogeneous. To make the data more useful, data managers 

need to better understand the needs of modelers and how they actually access and use data. 

This thesis has set out to describe how certain modelers work in detail and to improve 

understanding of how they assess, prepare, and acquire data for their models. The intention was 

to identify common, instructive themes or first principles that apply across the models. These 

themes then suggest data management techniques or requirements for data systems to improve 

access and use by modelers and generally improve understanding of the Arctic system. 

The approach to this research was based in proven social science research methods. The 

primary method was through the development and analysis of case studies. Case studies have 

been used extensively to understand business and political processes, but they have rarely been 

applied as a means to develop data system requirements. And while case studies may not 

explicitly enumerate system requirements, they do help us understand how modelers actually 

work. This understanding can lead to important insights and challenge some of the assumptions 

data manages may have made. These insights can then be used to develop propositions for data 

system improvement as shown in Table 5.2. To refine the propositions and to test their internal 

and external validity, each case study was presented in a consistent framework and then analyzed 

independently and in a cross-case synthesis. This question of external validity or applicability 

beyond an individual case is a central issue in case study research (Gerring, 2007), so each 

proposition was also tested against broad ethnographic observations described here.  

 Ethnographic research is challenging, in part, because the observer's presence can obviously 

influence the observation process and subsequent interpretation. As an ethnographer, I am not an 
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impartial researcher. As a data manager at NSIDC, I professionally interact with all three of the 

participants. I developed the initial sea ice product comparison page at NSIDC in response to 

requests from sea ice researchers like Dr. Holland (Parsons and Duerr, 2005). I led the data 

management effort for the Cold Land Processes Experiment, the source of much of Dr. Liston’s 

data (Parsons et al., 2004). I met Dr. Rastetter at the Arctic synthesis workshop described in 

Chapter 1. I was an invited speaker on data and technology issues, and Dr. Rastetter was an 

outspoken advocate for improved data availability. More importantly, I have been helping lead a 

broad team of scientists and data managers around the world to create a sustained, 

interdisciplinary polar data system initially for IPY, but also for polar science more generally. 

This effort has included a variety of workshops, conference sessions, interoperability 

experiments, standards assessments, and the creation of new data systems. It is a slow, grass 

roots, but growing effort, that has learned a lot about interdisciplinary data management and 

integrated system development (Parsons et al., 2010). The IPY data management experience has 

greatly informed this study. So while the observations may not be impartial, they are extensive, 

rich, and supported by professional data management expertise. 

With this in mind, we return now to the cross-case comparison. Analyzing each of the case 

studies independently and in concert has led to many insights and has suggested many principles 

and practices that were highlighted in chapter 5. These suggestions are valuable in their own 

right, but it is difficult to test the full validity of any particular assertion with only three case 

studies. Inevitably more research is necessary, but one important but simple principle emerges: 

work on the data first. Data are more important than systems. Data centers get more return on 

their investment in reducing user effort by providing consistent, well-described data in the 

desired format than they do in developing improved data analysis, subsetting, and access tools. 

This basic principle, focus on the data first, implies immediate action data centers can take to 

improve modeling efficiency, by providing data in multiple precise formats and harmonizing 

basic meteorological and hydrological in-situ measurements across multiple stations and 

networks. In some cases, it may be appropriate to develop specific products for specific 

communities. 
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It is clear how data improvement could have improved the efficiency of each modeler be it a 

through a sea ice data set in self-described format, a consistent way to present air temperature, or 

a defined split between net and gross mineralization. An example from IPY provides further 

illustration of how data harmonization increases efficiency. A major multinational, European, 

IPY project—Developing Arctic Modelling and Observing Capabilities for Long-term 

Environmental Studies (DAMOCLES)—sought to develop an inexpensive data management 

system for the project. Early in the project, in response to desires of the modelers, data collectors 

agreed to provide all their data to the DAMOCLES data system in netCDF-CF. The intent was to 

reduce data management costs and make more money available for data collection and research. 

At first, there was some resistance to providing the data in netCDF, but as the data managers 

worked with the communities and developed tools to help them convert their data, the system 

began to work well. Very soon after the project began, all the data were available through 

multiple protocols (ftp, WCS, OpenDAP, KML) and readily useful with many existing tools in 

the Arctic ocean/ice and climate modeling community—all at a fraction of the original supposed 

cost. The modeling systems are more efficient and so is the data system because of early 

agreement and collaboration on a common format (Ø. Godøy, personal communication). 

Related to the principle of focusing on data is appropriate credit and accountability for the 

data. Data citation is a practice that needs to grow and data centers should always provide 

recommended citations for their holdings. This is a nascent practice but it should be encouraged 

and further developed. Meanwhile more research is needed on how best to review, assure, and 

assert the quality of data. Formal studies should be conducted on peer-review schemes, 

community review through social networking and virtual organizations, and effective means of 

presenting uncertainty. 

A few cautions when considering these results. These case studies all focused on well-

established senior scientists. It is possible that an analysis including more junior scientist might 

have revealed different results. Nevertheless, scientists as a whole tend to be conservative in their 

methods, and casual observation of more junior modelers suggests they take similar approaches 

to their data assessment, acquisition, and preparation—i.e. get it all at once and then process it 

into what they need. Examining a different set of models would also have likely led to different 
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insights. That said, given the disparity of these three models and the external validation through 

the IPY and other work, it is unlikely that additional findings would actively refute what was 

learned from these models. Finally, perhaps most importantly, ignoring the issue of data 

discovery may have avoided some key issues. Data discovery is clearly a big issue. It could have 

been such a big issue, though, that it could have overshadowed the details of how modelers 

assess data. More of these type of studies focused on data discovery could be beneficial. 

The first conclusion of this overall analysis is simply that this is an effective study method. 

By examining how modelers work, one learns much more about their real issues and priorities 

and how they make decisions. One gets a much better understanding of why modelers need what 

they do. Simply asking users what they want is not always revealing or even accurate, whereas 

understanding how they work reveals the underlying needs. This case study methodology could 

be a nice additional form of user engagement beyond conventional advisory groups, use cases, 

and usability studies. Simply conducting the case study provides insight even if each insight is 

not fully “proven”. During the time conducting these studies, I found they often informed my 

daily decisions as a data manager that ultimately manifested into formal system requirements on 

some projects and ideas for funding proposals. One of the criticisms of usability studies is that 

they only identify what is wrong with a system. They do not always provide guidance on new 

data system approaches. This case study approach can better uncover true needs. When 

developing a new portal, it would be useful to conduct a few short case studies of how users have 

worked in the past. This may be criticized as a backward looking approach, but when coupled 

with the development of formal use cases and agile, iterative development approaches, it is likely 

to produce a system more consistently useful for the specific community. Indeed these studies 

would be most effective when targeted around a specific data center and user community. 

The more intriguing conclusion is that the best expenditure of limited resources to increase 

the efficiency of modeling studies is to improve the consistency and flexibility of the data and 

the documentation rather than enhanced interfaces and analysis tools. There is a demand and 

need for these tools, but there is greater short-term return (reduction of scientific effort) with 

improved data, which, in turn, makes it easier to build more effective tools in the long run. It is 
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likely that this data-first philosophy can improve the data systems that support the overall 

interdisciplinary, integrative science necessary to understand the complex Arctic system. 
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Appendix A: 
ACRONYM LIST 

AAG: Association of American Geographers 
AGU: American Geophysical Union 
AON: Arctic Observing Network 
CCSM: Community Climate System Model version 3 
CLPX: Cold Land Processes Experiment 
CMIP: Coupled Model Intercomparison Project  
CSIM: Community Sea Ice Model 
CSIM: Community Sea Ice Model version 5 
DAMOCLES: Developing Arctic Modelling and Observing Capabilities for Long-term 

Environmental Studies 
DIN: Dissolved Inorganic Nitrogen 
DON: Dissolved Organic Nitrogen 
FTP: file transfer protocol 
GCM: Global Climate Model 
HadISST: Hadley Centre Global Sea Ice and Sea Surface Temperature  
IOP: Intensive Observation Period 
IPCC: Intergovernmental Panel on Climate Change 
ISA: Intensive Study Area 
LAPS: Local Analysis and Prediction System 
MEL: Multiple Element Model 
MSA: Mesoscale Study Area 
NASA: National Aeronautics and Space Administration 
NCAR: National Center for Atmospheric Research 
NED: National Elevation Data Set 
netCDF-CF: network Common Data Format with Climate Forecast Extensions 
NOAA: National Oceanographic and Atmospheric Administration 
NRC: National Research Council 
NSF: National Science Foundation 
NSIDC: National Snow and Ice Data Center 
OpenDAP: Open-source Project for a Network Data Access Protocol 
PCMDI: Program for Climate Model Diagnosis and Intercomparison 
RAWS: Remote Automated Weather Station 
SAON: Sustained Arctic Observing Network 
SEARCH: Study of Arctic Environmental Change 
SNOTEL: Snow Telemetry 
SWE: snow water equivalent 
USGS: United States Geological Survey 
WCRP: World Climate Research Programme 
WCS: Web Coverage Service 
WDC: World Data Center
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Appendix B: 
Case Study Interview Protocol 

This is a general protocol to guide the interview portion of the three case studies in this 

thesis. It is intentionally open and not overly detailed to allow the participants to guide the 

discussion in ways that are relevant to their situation. Nevertheless, to aid analysis, it is necessary 

to have a certain degree of consistency across the three studies and to ensure certain topics are 

addressed. This protocol provides an approach to ensure that consistency and completeness. 

1. Prior to the first interview. 

a. Obtain agreement from the modeler to participate. Provide background and 

rationale on my study to the participant. This can be an e-mail or phone call or 

could include full details of the project if the participant desires. It will include a 

description of the general approach and specifics of how much time and effort 

will be involved. Clearly state that the participant will be named and 

acknowledged in the study in accordance with their wishes and will have the 

opportunity to review and accept how they are represented before any publication.  

b. Agree with the participant on a particular application of their model to study. 

The research and application behind a recent paper, for example. 

c. Ask the participant for a list of data used in the study. 

2. First interview (~2 hours) 

a. General background 

i. Have them describe the science questions they were trying to address 

with the particular model application and more generally.  

ii. Have the participant outline their overall research approach for the 

model application in question, highlighting when they need to use data. 

Did they follow a formal protocol (e.g., Anderson and Woessner 1992)? 

b. Assessment 

i. Develop/refine a list of data used by the modeler in the agreed 

application. This will likely require some targeted questions around the 

approach that they described above. This will be a baseline to refer to in 

detailed questioning. 
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ii. Create a table indicating the purpose of each data collection (e.g., 

evaluation, assimilation) and the primary criteria the modeler used to 

assess the applicability of the data (e.g., spatial or temporal scale or 

coverage, accuracy, format, relation to tools). Explore what criteria were 

most important and what compromises in the data the modeler had to 

accept or work around. What defines data “consistency”? How important 

is it? 

iii. Develop a similar table for data that are desirable but not available. 

iv. Referring to the table(s). Have the participant describe how they assess 

various data (e.g., documentation, scientific articles, talk to experts at a 

data center or the data provider, reputation of provider). What was 

missing? What would have made assessment easier? Tools, info 

presentation, greater knowledge by data center, attribution, etc.  

v. Explore how the application of the data in the study influences the 

assessment. Is there a relationship between the presentation and format of 

the final product and the input data? 

vi. Probe assumptions. Why is the modeler making certain decisions? 

What data assessment criteria are taken for granted? Use specific data sets 

as examples: Why did you use a particular data set? What was good about 

it? What was lacking? 

vii. Use concept maps, flow diagrams, or other tools to get the participant 

to illustrate their overall assessment process. Consider the actual and 

idealized situation. Start to sketch out causal linkages (cf. Gerring 2007). 

Employ white boards or lots of scratch paper. This can continually be 

developed in the subsequent sections of the interview.  

c. Acquisition 

i. Add to the data set table how each data set was acquired. Describe 

source, data transfer method. 

ii. Where do the data need to be? Modeler’s workstation? 

Supercomputer? Available though standard protocols (e.g. OpenDAP, 

OGC)? 
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iii. What problems restricted acquisition? Any disconnect between access 

and discovery? Data release, timeliness issues, formats or media? Describe 

a more ideal process. 

iv. Did you subset or resample the data in any way? Would you have 

liked to? 

d. Preparation 

i. Have the participant describe the general data preparation process for 

each class of data however defined (e.g. assimilation or evaluation). Is 

there a need to develop some level of consistency? 

ii. Delve into appropriate particulars. Are there issues of format, down- or 

upscaling, cross data set integration, data interpolation, etc? 

3. Prior to second interview 

a. Send participant use case diagrams, concept maps, or other figures; the 

complete data set table; and brief descriptions of initial conclusions. 

4. Second interview (30-60 min) 

a. Follow up with any questions necessary to remove gaps in understanding or to 

remove ambiguity from first interview 

b. Review and revise figures and text provided earlier.



 

 

Appendix C:  
Detailed Summary Tables of Data Used by the Modelers 

Table C-1. Data used in Holland et al. (2006) 
Stage Data Collection/Data Set Applicatio

n 
Data Source Other 

data 
considered 

Evaluation Criteria Data 
Access 
Method 

Pre-
processing 
(remote) 

Data 
Prep. 

Data0 inputs to CMIP3/CCSM models initalization n/a (production 
runs done by 
others) 

n/a worked with the model n/a no n/a 

Data1 CCSM ensemble runs analysis local PCMDI 
model runs 

convenience--available 
locally 

internal no no 

Data1 WCRP CMIP3 multi-model 
dataset (15 models) 

analysis PCMDI/Earth 
System Grid:  
https://esg.llnl.gov:
8443/home/public
HomePage.do 

CCSM convenience--readily 
available (still only used 
when requested by 
reveiewer) 
convenience--in standard 
form at PCMDI 

ftp no regrid 

Data2 Hadley Centre Global Sea Ice 
and Sea Surface Temperature 
(HadISST) (Rayner et al., 2003) 

initial 
assesment 

NCAR Research 
Data Archive 
http://dss.ucar.edu/
datasets/ds277.3/ 

SSM/I parameter to match 
model output 
long, current  time series 
format (netCDF) 
grid 
validity--discussion with 
colleagues  

ftp no regrid 

Data2 Sea Ice Index (Fetterer, and 
Knowles, 2002) 

initial 
assesment 

NSIDC: 
http://nsidc.org/dat
a/g02135.html 

none quick look http select period no 

Data2 Ice thickness (Bourke, and 
Garrett, 1987)  

initial 
assesment 

Bourke and 
Garnett 1986 

none all that's available, hasn't 
considered Rothrok 

literature n/a no 

Data3 Sea Ice Concentrations from 
Nimbus-7 SMMR and DMSP 
SSM/I Passive Microwave Data 
(Cavalieri et al., 1996) 

full 
assessment 

NSIDC: 
http://nsidc.org/dat
a/nsidc-0051.html 

HadISST parameter to match 
model output 
long, current  time series 
accuracy 

ftp no regrid to 
model 
grid; 
reformat 
to 
netCDF 

Data3 ice thickness (Bourke, and 
Garrett, 1987)  

full 
assessment 

Bourke and 
Garnett 1986 

none all that's available, hasn't 
considered rothrok 

literature n/a no 

Data4 Special Report on Emissions 
Scenarios forcings 

forcing standard 
simulations 

n/a n/a, it's the benchmark n/a n/a no 
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Table C.2 Data used in Liston et al. (2008) 
Stage Data 

Collection/Data 
Set 

Applicatio
n 

Data source Other data 
considered 

Evaluation criteria Data 
access 
meth

od 

Pre-
proces

sing 
(remot

e) 

Data prep. 

0 LAPS inputs 
input to 
LAPS       

data1a 

CLPX main met 
stations(precipitation, 
wind speed and 
direction, air 
temperature, and 
relative humidity) 

MicroMet 
forcing and 
assimulation 

cited as Elder et al 
2009; as calculated 
from 
http://nsidc.org/dat
a/nsidc-0172.html 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 

data1a 

Fraser Experimental 
Forest Met stations 

MicroMet 
forcing and 
assimulation 

From Kelly directly 
or from 
http://www.fs.fed.u
s/rm/fraser/data/in
dex.shtml? 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 

data1a 
SNOTEL 
temperatures 

MicroMet 
forcing and 
assimulation 

http://www.wcc.nr
cs.usda.gov/snow/s
notel-temp-
data.html 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 

data1a CLPX Flux Tower 

MicroMet 
forcing and 
assimulation internet 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 
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data1a RAWS Met 

MicroMet 
forcing and 
assimulation internet 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 

data1a 

DRI met 

MicroMet 
forcing and 
assimulation internet 

other local 
towers or 
regional 
networks 

location (ine MSA) 
temporal resolution 
(hourly or better) 
accessible on the 
internet (convenient) 
personal knowledge of 
terrain and 
measurement quality ftp 

site 
selection 

MicroMet preprocessing including 
missing value ID, basic QC (Meek 
and Hatfield 1994), complete 
missing values (Liston and Elder 
2006). Wind assumed missing 
under canopy 

data1b 

Local Analysis and 
Prediction System 
(LAPS) analyses 

MicroMet 
forcing and 
assimulation 

Dan Birkenheuer 
acknowledged 
(Liston et al 2008) none 

consistency of inputs, 
especially precipitation ftp 

spatial 
and 
temporal 
subsettin
g 

convert gridded values to point 
values 

data2 
USGS National 
Elevation Dataset 

MicroMet 
and 
SnowModel 
forcing http://ned.usgs.gov/ none 

high resolution 
coverage 
consistency 
reuse ftp 

spatial 
subsettin
g 

reprojected and gridded from GIS 
format 

data2 
National Land Cover 
Data 

MicroMet 
and 
SnowModel 
forcing  

Vogelmann et 
al 2001 none 

high 
resoluti
on 
coverag
e 
consist
ency 
reuse ftp spatial subsetting 

data3 
Gravimetric Soil 
moisture 

Gamma 
calibration/c
orrection 

 personally from 
Elder n/a created for project 

individu
al no 

used by Cline and Elder to 
calculate Gamma SWE 

data3 
SWE from Gamma 
data 

SnowModel 
assimilation 

Derived from data 
at NSIDC by Elder 
(Cline et al. 2004) n/a created for project 

individu
al  

Recalculated NP IOP3 data using 
measured soil moisture. 
Multilply Each North Park 
GAMMA value by the ratio of the                                                                                                                                                                                           
ISA average to the GAMMA 
average for Each IOP. 
Interpolate to simulation grid 
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Table C.3 Data Used in Rastetter et al. (2005) 

Stage Data 
Collection/Data 

Set 

Application Data source Other 
data 

considered 

Evaluation 
criteria 

Data 
access 

method 

Pre-
processing 
(remote) 

Data 
prep. 

Data1 Hubbard brook etc. 
paramaterization, 
forcing 

stocks and fluxs from sources 
described in Rastetter et al. 
(2001) table 1 then used to 
calculate parameters in table 
2. Mostly peer-reviewed refs 
with some pers. 
Communication. 

HJ Andrews. 
Arctic LTER 

Comprehesiveness--
fine root dynamics! 
Authoratative/citable 

transcripti
on and 
interpreta
tion none 

unit 
conversion 
and other 
calculations 

Data1 

C:N ratio parameterization Goodale, et al. 2001 none 
fit with Hubbard 
Brook data 

transcripti
on and 
interpreta
tion none 

little or 
none 

Data2 Microbial respiration parameterization 

calculated modification to 
values in Rastetetter 2001 to 
maintain assumtion of steady 
state n/a 

inherent in how N 
processes are 
described in the 
model n/a none 

little or 
none 

Data2 
Gross N 
mineralization parameterization 

calculated modification to 
values in Rastetetter 2001 to 
maintain assumtion of steady 
state n/a 

inherent in how N 
processes are 
described in the 
model n/a none 

little or 
none 

Data2 N immobilization  parameterization 

calculated modification to 
values in Rastetetter 2001 to 
maintain assumtion of steady 
state n/a 

inherent in how N 
processes are 
described in the 
model n/a none 

little or 
none 

Data3 
2x CO2 and 4°C 
temperature increase forcing 

IPCC 2001 (for New 
England) none benchmark 

transcripti
on and 
interpreta
tion none 

little or 
none 

Data3 
M1: constant DOC 
loss parameterization baseline assumption none none n/a none 

little or 
none 

Data3 

M2 constatnt: 
proportional to 
organic matter in the 
soil 

alternate 
parameterization 

based on values from Neff et 
al. 2000 none authoratative 

transcripti
on and 
interpreta
tion none 

little or 
none 

Data3 

M3 constant: 
proportional to C:N 
ratio 

alternate 
parameterization 

based on values from 
Aitkenhead and McDowell 
2000 none authoratative 

transcripti
on and 
interpreta
tion none 

little or 
none 
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Data3 

M4 constant: 
proportional to 
microbial respiration 

alternate 
parameterization  

based on 
values from 
Brooks et al 
1999 none 

authoratat
ive 

transcription 
and 
interpretation none 

Data4 
Calculated plant and 
soil C and N stocks assessment 

Derived from original MEL 
(Rastetter, et al. 1992) n/a inherent in model n/a none 

little or 
none 
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