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A B S T R A C T

Emergence of a novel pathogen drives the urgent need for diagnostic tests that can aid in defining disease
prevalence. The limitations associated with rapid development and deployment of these tests result in a
dilemma: In efforts to optimize prevalence estimates, would tests be better used in the lab to reduce uncertainty
in test characteristics or to increase sample size in field studies? Here, we provide a framework to address this
question through a joint Bayesian model that simultaneously analyzes lab validation and field survey data,
and we define the impact of test allocation on inferences of sensitivity, specificity, and prevalence. In many
scenarios, prevalence estimates can be most improved by apportioning additional effort towards validation
rather than to the field. The joint model provides superior estimation of prevalence, sensitivity, and specificity,
compared with typical analyses that model lab and field data separately, and it can be used to inform sample
allocation when testing is limited.
1. Introduction

Prevalence is traditionally estimated by analyzing the outcomes
from diagnostic tests given to a subset of the population. During
analysis of these outcomes, the sensitivity and specificity of the test,
as well as the number of samples in the survey, are incorporated
into point estimates and uncertainty bounds for the true prevalence.
In many cases, sensitivity and specificity are taken to be fixed char-
acteristics of the test (Flahault et al., 2005; Reiczigel et al., 2010).
However, sensitivity and specificity are themselves estimated from test
outcomes in validation studies. As a result, they, too, carry statistical
uncertainty, and that statistical uncertainty should be carried forward
into estimates of prevalence (Rogan and Gladen, 1978; Stringhini et al.,
2020; Gelman and Carpenter, 2020). Since prevalence estimates may
improve as sample size increases and with reduced uncertainty in the
test characteristics, a fundamental study design question arises: Given
limited testing capacity, how should one allocate tests between the
field and validation lab? This question is especially pertinent with the
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emergence of a novel pathogen, when test availability is limited and
diagnostic tests are not yet well validated.

Here, we review the derivation for a Bayesian joint posterior dis-
tribution for prevalence and test sensitivity and specificity based on
sampling models for both the field survey data and validation data,
originally introduced in Gelman and Carpenter (2020). While others
have demonstrated how to estimate prevalence from this model or
extensions of it (Stringhini et al., 2020; Levesque and Maybury, 2020;
Nisar et al., 2021; Levin et al., 2022; Lopez et al., 2022), we highlight
the utility of this model for addressing the problem of how to allocate
a fixed number of tests between the field and the lab to produce the
best prevalence estimates when the testing capacity is limited. We
demonstrate that, when the sensitivity and specificity of a test have
not yet been well established, the largest improvement in prevalence
estimates could result from allocating samples to test validation rather
than to the survey. Finally, we showcase how this joint model can
produce improved estimates of sensitivity and specificity compared to
models based only on the lab data.
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2. Methods

Our goal is to estimate population prevalence (𝜃), test sensitivity
𝑠𝑒), and test specificity (𝑠𝑝) by learning from the field survey data

and the validation data 𝑉 . The field survey data 𝑋 contains the
umber of positive tests (𝑛+) out of 𝑁field samples. The validation
ata 𝑉 contains the number of true positives (𝑡𝑝) resulting from 𝑁pos
ositive control samples, providing information on test sensitivity, and
he number of true negatives (𝑡𝑛) resulting from 𝑁neg negative control
amples, providing information about test specificity. We employ Bayes’
ule for estimation

r(𝜃, 𝑠𝑒, 𝑠𝑝 ∣ 𝑋, 𝑉 ) ∝ Pr(𝑋, 𝑉 ∣ 𝜃, 𝑠𝑒, 𝑠𝑝) , (1)

here we assume independent uniform priors on each of the parame-
ers {𝜃, 𝑠𝑒, 𝑠𝑝}. Note that informative priors could also be used for 𝑠𝑒 and
𝑝, were data from other studies or from the manufacturer are available.
urvey data 𝑋 and validation data 𝑉 are collected independently via
ifferent processes but share the test’s sensitivity and specificity. We
ewrite Eq. (1) as

r(𝜃, 𝑠𝑒, 𝑠𝑝 ∣ 𝑋, 𝑉 ) ∝ Pr(𝑋 ∣ 𝜃, 𝑠𝑒, 𝑠𝑝) Pr(𝑉 ∣ 𝑠𝑒, 𝑠𝑝) . (2)

Given the parameter values {𝜃, 𝑠𝑒, 𝑠𝑝}, the probability that a single
andom field test is positive is equal to the probability of obtaining a
rue positive or a false positive: 𝑝 = 𝜃𝑠𝑒+(1−𝜃)(1−𝑠𝑝). Assuming the field
ample represents a random sample from the population and uniform
revalence across the population, the number of positive outcomes after
field independent tests is binomially distributed, so the probability of

bserving 𝑛+ positive tests is

r(𝑛+ ∣ 𝜃, 𝑠𝑒, 𝑠𝑝) =
(

𝑁field
𝑛+

)

𝑝𝑛+ (1 − 𝑝)𝑁field−𝑛+ . (3)

f the true test sensitivity is 𝑠𝑒, then the probability that a known
ositive sample produces a positive test outcome – a true positive –
s 𝑠𝑒, while the probability of a false negative is 1 − 𝑠𝑒. The number of
rue positives 𝑡𝑝 in a set of 𝑁pos independent positive validation tests
s also binomially distributed:

r(𝑡𝑝 ∣ 𝑠𝑒) =
(

𝑁pos
𝑡𝑝

)

𝑠𝑒𝑡𝑝(1 − 𝑠𝑒)𝑁pos−𝑡𝑝 . (4)

parallel argument for true specificity 𝑠𝑝 and the outcomes of 𝑁neg
ndependent negative validation tests leads to the probability of ob-
erving 𝑡𝑛 true negatives:

r(𝑡𝑛 ∣ 𝑠𝑝) =
(

𝑁neg
𝑡𝑛

)

𝑠𝑝𝑡𝑛(1 − 𝑠𝑝)𝑁neg−𝑡𝑛 . (5)

ubstituting the probabilities in Eqs. (3), (4), and (5) into Eq. (2) and
bsorbing constants into the proportion, we obtain

r(𝜃, 𝑠𝑒, 𝑠𝑝 ∣ 𝑋, 𝑉 ) ∝
(

[1 − 𝑠𝑝 + 𝜃(𝑠𝑒 + 𝑠𝑝 − 1)]𝑛+

× [𝑠𝑝 − 𝜃(𝑠𝑒 + 𝑠𝑝 − 1)]𝑁field−𝑛+
)

× 𝑠𝑝𝑡𝑛(1 − 𝑠𝑝)𝑁neg−𝑡𝑛𝑠𝑒𝑡𝑝(1 − 𝑠𝑒)𝑁pos−𝑡𝑝 . (6)

Eq. (6) provides the form of the joint posterior distribution of 𝜃,
𝑒, and 𝑠𝑝, allowing one to learn simultaneously about these quantities
nd see how they depend on the data. Although the joint posterior
istribution is not amenable to analytic computations (e.g., calculating
xpectations and variances), it is easily sampled using a Markov chain
onte Carlo (MCMC) algorithm. These posterior samples can then be

sed to estimate any summary statistics of interest, including point
stimates (e.g., posterior means and modes) and credible intervals
or the parameters. Posterior samples can further be passed as inputs
nto subsequent modeling tasks to account for uncertainty in preva-
ence (Larremore et al., 2021; Kissler et al., 2020). (See an in-browser
avascript calculator for computing the posterior distribution https:
/larremorelab.github.io/covid19testgroup and open-source code in R
2

t

Fig. 1. Increased validation effort decreases prevalence uncertainty. Prevalence esti-
mates from 75 (𝑛+) positives in 500 (𝑁field) field samples, using validation outcomes
of {𝑡𝑝, 𝑡𝑛} = {47, 49} based on 𝑁neg = 𝑁pos = 50 samples (solid line), {94, 98} based on

neg = 𝑁pos = 100 samples (dashed line). Widths of 95% credible intervals decreased by
4% (prevalence), 32% (sensitivity), and 34% (specificity) due to increased validation
fforts. Dotted line shows a Bayesian analysis of the same data using point estimates
f 94% sensitivity and 98% specificity, equivalent to infinite lab validation data, for
eference.

nd Python https://github.com/LarremoreLab/bayesian-joint-prev-se-
p. Gelman and Carpenter (2020) also provide Stan code for estimating
his model.)

This model framework assumes that each diagnostic test is indepen-
ent of the others and that the conditions in the field and validation
re sufficiently similar that the diagnostic test has the same sensitivity
nd specificity in both. This assumption, and relaxations thereof, are
onsidered in the Discussion.

. Results

To demonstrate the impact of conducting additional validation tests,
e computed the posterior distributions in Eq. (6) for two scenarios in
hich field survey data consisting of 75 positive and 425 negative tests
ere analyzed using two sets of validation data. The first set was based
n 100 validation tests and the other based on 200 validation tests, with
ests split equally between positive and negative controls in both cases.
oth validation data sets contained 94% true positives and 98% true
egatives. The increase in validation samples resulted in a change in
he 95% posterior credible interval for prevalence from [0.054, 0.182] to
0.084, 0.180] (Fig. 1), corresponding to a 24% reduction in the credible
nterval width from additional validation data alone.

To compare the results of finite validation efforts to the theoret-
cal optimum of infinite validation tests, we computed a posterior
istribution for prevalence assuming known values of sensitivity and
pecificity of 94% and 98%, respectively. This results in a decrease
n the width of the posterior credible interval by an additional 30%
Fig. 1). The marginal impact of each additional validation test on
osterior prevalence uncertainty decreases as this theoretical limit is
pproached.

When there is a limit on the number of tests that a prevalence
tudy can use, due to budget, time, throughput, or other constraints,
t may be tempting to deploy as many tests as possible to the field.
his follows an intuition that additional field samples will decrease
ncertainty in estimates of 𝜃. However, additional validation samples
ill also indirectly decrease uncertainty in 𝜃 by reducing uncertainty
round sensitivity and/or specificity. By taking posterior uncertainty
f prevalence as the quantity to be minimized, we can search over
ombinations of 𝑁field, 𝑁neg, and 𝑁pos, representing the numbers of
ield, negative control, and positive control tests, respectively. When
he total number of tests 𝑁 = 𝑁field + 𝑁neg + 𝑁pos is fixed, only two
ample sizes can be specified freely, which means that this sample
llocation problem becomes a minimization over a two-dimensional
rid.

To demonstrate the use of this approach, we considered the alloca-

ion of 𝑁 = 1000 tests in a setting where sensitivity and specificity are

https://larremorelab.github.io/covid19testgroup
https://larremorelab.github.io/covid19testgroup
https://larremorelab.github.io/covid19testgroup
https://github.com/LarremoreLab/bayesian-joint-prev-se-sp
https://github.com/LarremoreLab/bayesian-joint-prev-se-sp
https://github.com/LarremoreLab/bayesian-joint-prev-se-sp
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Fig. 2. Optimized allocation of tests. Uncertainty in prevalence estimates, represented
as 95% credible interval width, is shown as a heatmap for various allocations of
𝑁 = 1000 tests, when prevalence is suspected to be 0.15, sensitivity 0.93, and specificity
0.98. Each pixel represents a choice of 𝑁neg and 𝑁pos, where 𝑁field = 𝑁 −𝑁neg −𝑁pos.
Widths are indicated by color (see colorbar) with values larger than 0.09, or invalid
choices of 𝑁pos and 𝑁neg, in white. Each pixel was computed based on data equal to
the expected test results for that allocation and using posterior samples from Eq. (6).
Optimal allocations for the studied scenario favor allocation to negative controls over
positive controls, with only 600–700 samples allocated to the field survey. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

suspected to be around 𝑠𝑒 = 0.93 and 𝑠𝑝 = 0.98 and in a population with
suspected prevalence of 0.15. We allocated 𝑁pos and 𝑁neg to positive
and negative controls, respectively, with the remainder allocated to
𝑁field. We then sampled from the posterior distribution for 𝜃 in Eq. (6)
conditional on data equal to the expected counts of 𝑡𝑝, 𝑡𝑛, and 𝑛+.
From these posterior samples, we computed the width of the 90%
credible interval, and recorded it, before continuing to a new choice of
sample allocation. Through this process, we found that at least twice
as many samples should be allocated to specificity validation (𝑁neg) as
compared to sensitivity validation (𝑁pos), and that around 1/3 of the
1000 total tests should be used for validation instead of for the field
study (Fig. 2).

An additional consequence of jointly modeling the validation and
field data is that estimates of sensitivity and specificity may be affected
by field survey data. Mathematically, this is because sensitivity and
specificity appear in the probabilities of both the field and lab data
sets in Eqs. (3), (4), and (5). To illustrate this point, we considered a
scenario in which 95 of 100 negative controls were found to be negative
during validation, resulting in a point estimate of specificity of 0.95,
followed by a large study in a low prevalence area that resulted in only
10 positive tests out of 1000 samples. Such field data would appear
inconsistent with the validation data, because even if prevalence were
zero, one would expect 50 positives from 1000 field tests. However,
an analysis based on Eq. (6) resolves this apparent inconsistency by
inferring that the test’s specificity is likely to be higher than 0.95, with
a posterior mean of 0.961 and posterior mode of 0.977 (Fig. 3, solid
line). For comparison, we also analyzed the validation data separately
using a uniform prior on specificity, which produced a beta posterior
distribution with a posterior mean of 0.941 and a posterior mode at
0.95 (Fig. 3, dashed line).

4. Discussion

The sensitivity and specificity of a diagnostic test are inferred from
a finite number of validations tests. As a consequence, sensitivity and
specificity themselves carry uncertainty, which affects the statistical
interpretation of prevalence surveys in the field. As shown in Gel-
man and Carpenter (2020), studies that use only point estimates of
3

Fig. 3. Test outcomes from the field affect estimates of sensitivity and specificity.
Specificity estimates are shown for validation outcomes {𝑡𝑝, 𝑡𝑛} = {100, 95} based on
𝑁pos = 𝑁neg = 100 controls analyzed independently of field data (dashed line; Beta
posterior distribution) or jointly with 𝑛+ = 10 positives in 𝑁field = 1000 field samples
(solid line). While Fig. 1 illustrates the influence of lab validation data on prevalence
estimates, this figure illustrates the less intuitive influence of field survey data on
specificity estimates. This effect of field data is strongest on specificity when prevalence
is low, and strongest on sensitivity when prevalence is high.

test characteristics can dramatically underestimate uncertainty around
prevalence (e.g., Fig. 1). Here, we reviewed how this issue can be
ameliorated by jointly modeling field data and validation data using
standard Bayesian techniques. Our results provides insight for two gen-
eral lines of intuition. First, when prevalence is low, validation samples
should be preferentially allocated to specificity over sensitivity, with
the opposite recommendation for high prevalence scenarios. Second,
without strong prior information about the sensitivity and specificity
of a diagnostic test, substantial validation efforts are required.

Bayesian frameworks such as the one utilized here can be used even
when no validation data is available (Joseph et al., 1995; Branscum
et al., 2005; Toft et al., 2005; Diggle, 2011). Furthermore, they can
easily incorporate prior information about prevalence, sensitivity, or
specificity from other pilot or validation studies – either directly, as
validation data, or indirectly, through the considered use of informative
priors – and can jointly model the application of multiple diagnostic
tests with different performance characteristics simultaneously (Joseph
et al., 1995) or scenarios when multiple lab validation data sets are
available (Gelman and Carpenter, 2020). These methods also avoid the
need to rely on asymptotic approximations (Flahault et al., 2005) in the
process of calculating confidence intervals.

The direct inclusion of validation tests in prevalence estimation not
only allows uncertain sensitivity and specificity to affect prevalence
estimates (Figs. 1 and 2), but also allows field data to affect sensitivity
and specificity estimates (Fig. 3). This underscores the importance of
reporting the raw outcomes from validation tests. The outcomes of
validation tests should be included directly in publications that analyze
field data whenever possible, motivated by statistical and reproducibil-
ity requirements. In some cases, the teams developing the diagnostic
test in the lab and those deploying tests in the field are different.
This work highlights the value of feedback between these groups, as
collaborative efforts could improve test assay development and refine-
ment, especially as new variants emerge and test performance may
change. This study’s results rely on a number of assumptions. First, we
assumed that validation samples are representative of the populations
surveyed in the field. However, in the rapid deployment of SARS-CoV-
2 seroprevalence surveys, for instance, positive control samples were
restricted to only symptomatic and virologically confirmed COVID-19
cases, leading to validation samples that do not fully represent the
antibody responses of asymptomatic individuals (Long et al., 2020).
Second, we assumed identical diagnostic protocols for lab and field
samples, as well as identical test performance in both settings. While
test performance can vary across these settings in practice (Greiner and
Gardner, 2000), during the emergence of a new pathogen there is likely
not time for ample test validation before test deployment, thus making
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this assumption necessary. Together, these assumptions allowed us to
jointly model lab and field data in Eq. (6), which makes explicit the
often implicit mathematical link between the field and the lab.

By highlighting the marginal value of additional validation effort,
joint models like Eq. (6) expose the tradeoff between collecting valida-
tion and field data when testing capacity is limited. This simulation-
informed approach to sample allocation allows a finite number of
samples to be maximally utilized via strategic study design (Hens et al.,
2012; Blaizot et al., 2019; Larremore et al., 2021). Differing costs
between lab and field test deployment may heavily influence decisions
about test allocation. While such costs are not explicitly considered
here, the current framework could be extended to include cost by
redefining the objective as the minimization of a combination of both
prevalence uncertainty and total cost.
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