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Precision sensing and measurement is of fundamental importance to any scientific endeavor.

As technologies have advanced, measurements have reached the precipice of quantum limited sens-

ing. As a result of this rapid advancement, the field of quantum metrology has become a distinct

and important field of physics research. Recently, major advancements in quantum technology have

created the opportunity that, in the near future, simple quantum mechanical devices may be used

to probe extreme physics via tabletop experiment [2]. Specifically, matter-wave interferometry is

an area of interest due to its potential for accurate measurements of a myriad of fields, forces, and

interactions [5]. In direct analogue to optical interferometry, matter-wave interferometry uses the

principle of coherently splitting and recombining a wave to measure the difference in the lengths of

the paths taken. The key difference is that matter-wave interferometry uses massive particles in-

stead of light. The smaller de Broglie wavelengths of particles allow for more precise measurements

compared to those of light, at the cost of added complexities through interaction. Additionally,

massive particles are subject to gravity and can sense inertial changes that photons can’t. Although

matter may have a theoretical edge over light, there has not yet been an experimental matter-wave

interferometer that surpasses the best optical interferometer in accuracy. The use of a precisely

controlled shaken lattice provides a completely new pathway for realizing matter-wave interfer-

ometry and may generating higher fidelities and precision [4] than otherwise achievable through

conventional means.

Although shaken lattice interferometry has been shown to be an accurate and effective method

for small atomic systems, there is a downside in its ability to scale to larger atomic ensembles. When

the lattice is loaded with a bosonic gas on the order of 50,000 atoms, atomic interactions become

important. In this thesis, I will discuss the mean field effects of this gas in the lattice, and how
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to control these effects to improve upon existing matter-wave inteferometry. I do this by using the

Gross-Pitaevskii equation to describe the interacting wave-function evolution. Then, I use existing

shaking functions derived for a noninteracting system in a fully interacting simulation to model

these effects in the current configuration of experiments. I improve upon these methods in the

presence of interaction by using the interacting model to learn new shaking functions, whereupon I

compare and contrast how they behave in interacting and non-interacting models. Finally, I show

how these models can be used to precisely measure a simulated constant acceleration similar to

gravity.
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Chapter 1

Introduction

Recent advances in laser cooling and trapping of atoms and molecules have allowed the field of

precision metrology to use quantum measurements with unprecedented size and control. In matter-

wave interferometry, the measurement result depends on the phase difference accumulated between

two de Broglie waves that propagate along spatially separated paths, where each path is associated

to a specific value of atomic momentum. Compared with optical interferometers, where the photon

wavelength is constrained to be in the vicinity of the visible spectrum, the de Broglie wavelength

of atoms can be made small simply by accelerating them. This offers the potential to produce

measurement devices in which the interference patterns contain detailed structures at a scale well

below a typical optical wavelength. Matter-wave interferometry, in particular atom interferometry,

theoretically enables precision measurements of extremely small fields and inertial perturbations.

Employing atoms is of fundamental interest since, unlike their light-wave counterparts, the atoms

are massive and therefore the interferometer’s signal is sensitive to gravitational as well as inertial

phase shifts. Such sensitivity could allow navigation in GPS-free environments and multiple remote

sensing applications such as navigation and groundwater mapping [10].

Although the physical nature of matter-waves may potentially have a theoretical edge over

optical waves, a matter-wave interferometer with higher quantum sensitivity than their optical

counterparts has not yet been realized. Optical waves with an enormous flux of photons are much

easier to deploy experimentally through the use of lasers. On the other hand, current matter-wave

interferometry schemes rely on the use of small ensembles of ultra-cold atoms that are well described
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by single particle physics. The single particle model is simple in theory, but only an approximation

to the real many-body systems relevant to experiment. In this thesis, I will discuss the effects of

the particle-particle interactions at the first level of perturbation theory and the validity of the

non-interacting assumption. Furthermore, I will show solutions to shaking functions that account

for interactions. The fundamental component needed to construct a shaken lattice interferometer

is an optical lattice. The optical lattice is the basis of today’s most precise quantum instrument:

an atomic clock that utilizes ultra-cold atoms confined in a three-dimensional optical lattice that

has achieved timekeeping uncertainty on the order of 10−19 [2] The optical lattice clock is a million

times more precise than the cesium clocks that keep the world’s time. I show that this precise

atomic system may be extended and used as a framework for matter-wave intereferometry that is

capable of measuring not time but inertial forces.

In optical interferometry, device components including beamsplitters and mirrors control the

splitting, reflecting, and recombining of the optical wave. Shaken lattice matter-wave interferome-

try requires that the lattice be shaken in a specific way in order to split, reflect, and recombine the

matter-wave. These shaking functions are often unintuitive, and thus will be derived via reinforce-

ment machine learning. To date, these shaking functions have only been found for non-interacting

wave function evolution [4]. Applying an interacting model to the shaken lattice scheme would

incorporate the inevitable effects of the mean-field interaction, and may improve the fidelity and

increase the precision achieved by a fully quantum limited matter-wave interferometer.

In this thesis, I take mean-field interactions into account when generating shaking functions

and simulating the resulting shaken lattice interferometer. In Chapter 2, I provide background on

shaken lattice matter-wave interferometry, Bose Einstein Condensates, and reinforcement learning.

In Chapter 3, I state the problem layout. In Chapter 4, I discuss the interacting and non-interacting

beamsplitter shaking functions. In Chapter 5, I discuss the effects of interactions on the mirror

function. In Chapter 6, I show the cascading of these components to form a complete interferometer

sequence and demonstrate their use for measuring accelerations. Finally, in Chapter 7, I discuss

the conclusions and potential next steps of this research.



Chapter 2

Background

Interferometry has been an important tool in precision metrology for decades. By leveraging

the quantum nature of light and matter, we have been able to measure phenomena on micro and

macroscopic scales [6, 1]. Recently, there has been an emphasis on matter-wave interferometry

because of its theoretical ability to produce extremely detailed interference patterns and sense

inertial changes.

2.1 Matter-Wave Interferometry

The simplest matter-wave interferometer uses the same general scheme as the optical double

slit interferometer. As shown in fig. 2.1, atoms from a source pass through a double slit, travel

along two distinct paths, and recombine via a single slit [3]. The quantum mechanical nature of

small particles, like the helium atom, is used to replace optical waves with matter-waves. Since the

Figure 2.1: Optical double slit interferometer scheme.[3]
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two-path scheme, matter-wave interferometry has advanced to include more complicated schemes.

Modern matter-wave interferometers have split larger particles and increased fidelity by using laser

pulses. The resonant absorption and emission processes alter the energy and momentum of the

matter-wave and cause it to coherently split into two components. The subsequent recombination

causes interference in the manner of optical wave interference. This interference, which manifests as

a fringe, is the measurement output of the interferometer. The phase of the wavefunction depends

on the integrated energy of the particle computed over the distance of the path it travels. Thus, the

interference between the two matter waves depends on the difference in these accumulated phases,

which is a property of the path length difference.

In a matterwave interferometer with a single atom, the wavefunction is first split into two

momenta by the beam splitter; |ψ(t = 0)⟩ = (|+nℏk⟩ + |−nℏk⟩)/
√
2, where k is the wavenumber

corresponding to the de Broglie wavelength. Each branch of the wavefunction travels along path

one (with p = +nℏk) or path two (with p = −nℏk). As the atom travels, it is subject to the

hamiltonian

Ĥ =
p̂2

2m
+max̂, (2.1)

where m is the atomic mass, a is the acceleration due to gravity, and the operators p̂ and x̂ are

momentum and position of the atom, respectively. By taking an interaction picture that is co-falling

with the atoms one finds

ĤInt(t) =
(p̂−mat)2

2m
,

=
p̂2

2m
− atp̂+ (mat)2 ,

(2.2)

where the non-operator terms have been dropped. From this Hamiltonian, the time evolution is

given by exp
(
− i

ℏ
∫ t
0 Ĥ(s)ds

)
|ψ(t = 0)⟩, and the relative phase may be directly calculated via

ϕ(a, t) =
−1

ℏ

∫ t

0
ds

(
⟨+nℏk| Ĥ(s) |+nℏk⟩ − ⟨−nℏk| Ĥ(s) |−nℏk⟩

)
,

=nkat2.

(2.3)
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This relative phase encodes in the interference pattern the value of a, and from this we can use the

Heisenberg energy-time uncertainty principle to conclude that:

(
∆Ĥ

)2
(∆t)2 =

1

4
(nℏkt)2 (∆a)2 (∆t)2 ≥ ℏ2

4
, implies (∆a)2 ≥

(
nkt2

)−2
, (2.4)

where it is assumed ∆t = t. This shows the sensitivity of a matter-wave interferometer is pro-

portional to the area of space-time it encloses: x · t = (vt) · t = nkt2, and directly shows the

enhancement due to smaller de Broglie wavelengths of atoms since k = 2π/λdeBroglie. It should be

noted that this intuitive derivation matches more formal analysis [7] using the Fisher Information.

This bound has not yet been saturated in experiment due to the practical challenges of working

with BECs.

2.1.1 Shaken Lattice Interferometry

The most important component of a shaken lattice interferometer is an optical lattice. An

optical lattice is created by the interference of two counter-propagating lasers and can be one,

two, or three dimensional. Atoms at the anti-nodes of the lattice experience a lower potential

energy, if the lattice is red detuned from the atomic transition, and can therefore be trapped, as

seen in fig. 2.2. To shake the lattice, the phase of the light is modulated with two acoustic-optic

modulators, one on each laser. The acoustic-optic modulator is a device that can modulate the

characteristics of the light including the phase, frequency, and amplitude of a radio frequency

signal injected into the device. Amplitude modulation of the optical lattice can also be used to

split, reflect, and recombine particles, although it results in a varying lattice depth that is not a

simple as the one we consider here. Both approaches can cause momentum splitting; the difference

between the momenta of the two components of the quantum wavefunction. This method in this

paper uses phase modulation, which is referred to as the shaking function and causes particles to

split, reflect, and recombine. An illustration of these effects can be seen in fig. 2.3. This process

begins with a particle in the ground state which is split into two counter propagating matter-waves.

The two waves have the same amplitude and opposite momenta of ±2nℏk, where n refers to the
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Figure 2.2: Optical lattice loaded with bosons. [4]

number of photon interactions and k is the wave number. Although it is very difficult to achieve

4ℏk splitting via convectional matter-waver interferometry methods, the shaken lattice method has

shown the ability to easily achieve momentum splitting of 8ℏk [4]. Note that the quantization of the

momentum remains the same for the shaken lattice method due to the fundamental λ/2 periodicity

of the wells of the lattice where λ is the optical wavelength. The momentum spread is an important

factor in the accuracy of the interferometer, because it is inversely proportional to the wavelength.

Shorter wavelengths cause more detailed interference patterns and a more sensitive interferometer.

2.2 Bose Einstein Condensates

A Bose Einstein Condensates (BEC) is a gas of bosonic particles where each boson is in

the same quantum state. This is achieved by cooling the gas below a critical temperature near

absolute zero, which results in a macroscopic fraction of the bosons being in the ground state. The

property that all of the bosons in the BEC are in the same quantum states means that the gas can

be modeled at the mean-field level. Modeling at the mean-field level means that one single-particle

wave function can describe the entire ensemble. A typical BEC achievable in laboratory settings

contains up to 100,000 particles, and thus particle-particle interactions are impossible to avoid. For

this reason, modeling the effects of these interactions on the shaking functions is of interest. Prior

to my work, the one dimensional Schrödinger equation,

∂

∂t
|ψ(t)⟩ = − i

ℏ
Ĥ |ψ(t)⟩ , Ĥ(x, t) = − ℏ2

2m

∂2

∂x2
+ V (x, t) (2.5)
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Figure 2.3: Phase modulation in the lattice causing splitting, reflecting, and recombining of
atoms.[4]

has been used for this purpose, where V (x, t) contains the lattice and gravitational potential energy

contributions. The Schrödinger equation does not include any particle-particle interactions. In this

thesis, I use a Hamiltonian of the form

Ĥ(x, t) = − ℏ2

2m

∂2

∂x2
+ V (x, t) + g|Ψ(x, t)|2, (2.6)

which includes particle-particle interactions at the mean field level and from which the one dimen-

sional Gross-Pitaevskii Equation may be written. The Gross-Pitaevskii equation,

iℏ
∂

∂t
|ψ(x, t)⟩ = (− ℏ2

2m

∂2

∂x2
+ V (x, t) + g|Ψ(x, t)|2) |ψ(x, t)⟩ , (2.7)

is nonlinear because of the third term in the Hamiltonian, which contains ψ. When the model

includes particle interactions, the matter-waves correspond to collective excitations of the BEC.

2.2.1 Experimental production

Experimentally, BECs are created by cooling bosons to extremely low temperatures, typi-

cally around 100 nK. The bosons are obtained from a dispenser source that expels atoms such as

Rubidium-87. A typical BEC begins by capturing atoms in a magneto-optical trap (MOT). The

MOT works by using laser cooling to slow atoms and a magnetic field to contain the atoms. BECs

are short-lived in experiments because they typically decay through inelastic processes.
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Figure 2.4: Reinforcement learning cycle.[4]

2.3 Reinforcement-learning

Reinforcement-learning is a type of machine learning that uses simulations or data to deter-

mine the best solution to a problem. The method executes actions on an environment and uses

trial and error to determine the best output to optimize the outcome. Fig. 2.4 illustrates this

method, showing the cycle in which an action in implemented by the agent and the resulting effect

on the environment returns a reward to the agent. A benefit of this type of machine learning is

that it decreases human bias in the decision-making process. A result of this lack of bias is that

the algorithm can come up with unintuitive solutions that humans would not likely think of. For

example, reinforcement-learning is effective at playing chess and often executes moves which have a

negative effect in the short term but eventually win the game. It is also useful in complex problems

where run of the mill algorithms are ineffective or take too much time. These characteristics make

reinforcement-learning extremely effective in quantum design and a useful tool in shaken lattice

interferometry.
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2.3.1 Environment

The environment is a mathematical model of the problem in which the actions are performed

and where the design takes place. It is important to note that the environment does not need to

be completely understood or completely modeled, it only needs to be described in such a way to

be able to produce observables which determine the reward associated with the actions. In the

application of a shaken lattice interferometer with excitations, the environment is the BEC in the

lattice potential. The model described above is used to determine the state of the BEC in the

current lattice position.

2.3.2 Action

Actions in this framework are phase shifts of the lattice. One action may change the phase by

some amount less than the spatial period, which therefore causes the nodes of the lattice to move.

The learning algorithm is called a Markov decision process, which means that the state of the

environment is determined only by the current state of the system and current action, not by the

past history. The number of actions is a parameter in the design of the algorithm. The algorithm

has a terminal condition which, when reached, determines that no more actions will be taken. This

terminal condition may be some feature of the system (such as a threshold performance metric),

a desired number of actions, or a combination of both. The terminal action may be adjusted to

improve the learning scheme.

2.3.3 Agent and hidden layers

The agent is the neural network that decides the actions. The agent is given a state vector

which contains relevant features of the environment. Given these features, the agent outputs a

vector of quality factors which are called the Q-values. The Q-values are a function of the input

state vector and possible actions. Each Q-value is an estimate of the quality of the action given

the current state by comparing the result of the action with the desired target of the algorithm.

Thus, the highest Q-value corresponds to the most desirable action. The agent executes the action
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associated with the highest Q-value which updates the environment and determines a new state.

2.3.4 Observation and Reward

After taking an action, the agent observes the outcome and a reward is given back to the agent

based on the effectiveness of the action that was chosen. The return is defined as the combination

of both current and future rewards. Since the desired outcome is the end result of the algorithm,

not the individual steps, the current reward is weighted lower than future rewards. The future

reward is determined by the highest Q value of the subsequent action.

2.3.5 Epsilon Greedy

An epsilon-greedy policy prevents the algorithm from choosing the action associated with

the highest Q-value every time. Instead, the algorithm has the probability of epsilon of choosing

a random action. This forces the agent to explore a wider range of actions and prevents it from

being locked into a local solution. The epsilon-greedy policy allows the learning algorithm to weigh

exploration versus optimization.



Chapter 3

Problem Layout

3.1 Physical model

The physical model of this problem consists of a Bose Einstein Condensate in a lattice poten-

tial. The BEC will be modeled at the mean field level via the Gross-Pitaevskii (GP) equation. The

potential is caused by the optical lattice which takes the form of a standing wave. This potential is

controlled by the machine learning algorithm to enforce changes to the BEC. The nonlinear term,

which incorporates particle-particle interactions according the the scattering length, means that the

equation is not analytically solvable. The goal of the problem is to determine the wave equation of

the Hamiltonian of the GP equation. To determine the wave equation, a second order ODE must

be integrated. I use the fourth order Runge-Kutta iterative method to solve this problem. The

Runge-Kutta method requires an initial value, for which I use the ground state of the system. This

is physically reasonable since BECs are created with the bosons into the ground state of the system.

To determine the ground state, I first find the ground state of the non interacting Hamiltonian by

taking the lowest eigenvector of the Hamiltonian matrix. Then, I use imaginary time evolution and

repeated re-normalization to determine the interacting ground state. The imaginary time evolution

uses the same Runge-Kutta method that I will use to find the time evolution of the system but

with an imaginary factor on the time parameter. The imaginary time factor changes the sin and

cosine components of the wave equation to real exponential equations with negative exponents.

The negative exponents mean that the terms with larger energy values go to zero quickly and the

ground state component is amplified. This has the effect of producing a pure representation of
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the ground state after many iterations. This interacting ground state becomes the initial value for

the Runge-Kutta method to solve the time evolution. We now have a model which can solve the

ground state of the Gross-Pitaevskii equation for a BEC in an optical lattice and determine how

the wave equation evolves under time-dependent changes to the potential function.

3.2 Computational model

The computational model is the integration of the previously described physical model with

a reinforcement machine learning algorithm. This computational model is used to determine the

shaking functions for the beamsplitter and mirror of the interferometer. In this section, I will

discuss the general structure and interaction between the machine learning algorithm and the

physical model. In the next section I will discuss the specific results for the beamsplitter and

mirror models. The environment of the reinforcement learning algorithm is the BEC in the optical

lattice and is governed by the GP equation. When changes are made to the environment, they

are modeled by the methods described above and the new wave equation is determined. The

changes to the environment are determined by the actions. The actions here are phase shifts

to the optical lattice potential. These phase shifts cause the entire lattice, which we model as

infinitely periodic, to shift left or right in our one dimensional model. The shifting left and right

is where the name shaken lattice comes from. The actions, phase shifts, are determined by the

agent. This is the heart of the machine learning algorithm, which tells us which actions might

be productive and determines a learned shaking function. The agent learns which actions may be

useful by simulating the environment with each proposed action and observing the reward based

on a calculated quantum fidelity. The fidelity is determined by the similarity between the current

wave function and a desired wave function, or target. The mathematical expression for this is the

modulus squared of the inner product of the wave function and the target. The machine learning

cycle runs through many episodes in each trial. During each episode, it chooses an action sequence

and observes the terminal reward. If the terminal fidelity increases, the wave function is closer

to the target, then it records that action sequence. In addition to the learned strategy, there is
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an intentionally introduced element of randomness. This randomness, the epsilon greedy protocol

discussed in the background, prevents the agent from focusing to closely to one solution space too

quickly and forces it to explore the entire range of action sequences. At the beginning of each

trial, the environment is returned to the ground state which was determined by the imaginary time

evolution. This process is repeated for a determined number of learning cycles and the best set of

actions is returned. Then, the system is simulated to interpret its performance.



Chapter 4

Beamsplitter

The beamsplitter model closely follows the method described in the problem statement. With

this method we can find shaking functions for a range of scattering lengths with fidelities above 95%.

The most notable difference between this method and previously established methods [4] is the use

of position space. We model the lattice and the wave function in position space because it is more

straight-forward to solve the Gross-Potaevskii equation this way than in momentum space. The

one dimensional Hamiltonian of the system in position space is

Ĥ(x, t) = − ℏ2

2m

∂2

∂x2
+ V (x, t) + g|Ψ(x, t)|2, (4.1)

where V (x, t) is the external potential of the lattice, m is the atomic mass, and g = 4πℏ2a
m , where a

is the scattering length. We implement periodic boundaries in position space, which also imposes

periodic boundary conditions in momentum space. Although the learning algorithm takes place in

position space, looking at the position space wave function is not an intuitive way to visualize the

effects of the beamsplitter. Thus, most of the plots in this section are in momentum space. I use a

fast Fourier transform (FFT) to transform between position and momentum space.

4.1 Lattice and Environment

The lattice potential, modeled in position space for the previously mentioned reasons, is a

standing wave that results from the sum of sines and cosines. This potential is modeled as

V (x, t) = sin(ϕ) ∗ sin(2kx)− cos(ϕ) ∗ cos(2kx), (4.2)
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where ϕ is the phase of the lattice. The periodic boundary conditions mean that the model only

spans one lattice site such that x, in dimensionless lattice units, goes from −π to π. To implement

these periodic boundary conditions, the kinetic energy term of the Hamiltonian is made to be

periodic. The kinetic energy term,

− ℏ2

2m

∂2

∂x2
, (4.3)

is modeled via numerical finite difference derivative. The periodicity is implemented by mapping

the first element, x = −π, to the last element, x = π. Phase shifts are modeled as changes to the

lattice phase, ϕ. This has the effect of moving the standing wave. To model the effect of this on

the wave-function, we need to solve the Gross-Pitaevskii equation.

4.2 Solving the Gross-Pitaevskii Equation

The Gross-Pitaevskii equation is used to determine the effects of the lattice on the wave-

function of the BEC. The non-linearity of the Gross-Pitaevskii equation necessitates the use of

numerical integration to determine the wave function. As mentioned in the problem statement,

the fourth order Runge-Kutta iterative method is used for the numerical integration. We use this

method in two ways in this project: real time integration and imaginary time integration.

Real time evolution is used to determine the wave function after each phase shift or action.

Physically, this applies the Hamiltonian to the wave function. Computationally, this is implemented

as a loop which calls the Runge-Kutta method to compute the numerical time derivative, or the

left hand side of the Gross-Pitaevskii equation. During the learning cycle, this happens after each

action and is used the calculate the reward. For the beamsplitter, the reward is based on the fidelity,

or how close the wave-function is to the target. In this case, the target is the third excited state

of the Hamiltonian. This state corresponds to good approximation to ±4ℏk momentum splitting.

Larger momentum splittings lead to higher fidelity interferometers, so it would be of interest to use

a state with higher momentum splitting in the future.

Imaginary time evolution only occurs once when the lattice is initialized and finds the ground
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state wave function. Since the Hamiltonian evolution is comprised of oscillating sin and cos compo-

nents, if time, t, is replaced with imaginary time, it, the Hamiltonian evolution is instead comprised

of decaying exponential functions. The exponents of the different components are proportional to

the energy of the state. Thus, exponential functions corresponding to larger energies decay quickly.

By re-normalizing during the evolution, the ground state is amplified. This process generates what

we call the interacting ground state. This is the ground state of the Hamiltonian of the Gross-

Pitaevskii equation which is distinct from the non-interacting ground state, or the ground state of

the Schrödinger equation, although, they are similar in shape. We use the fact that they are both

smooth and of approximate Gaussian shape to speed up the imaginary time evolution process. We

initialize the ground state as the non interacting ground state so that it is closer to the target. The

non interacting ground state is easily calculated as the first eigenvector of the Hamiltonian matrix

of the Schrödinger equation.

Once the interacting ground state wave function is determined, we use it to calculate the

inputs to the learning algorithm. The two main inputs from the environment to the learning

algorithm are the reward and a feature, i.e., a reduced representation of the full quantum state.

The reward is a function of the fidelity. Since the reward is used to give feedback to the agent, we

want to use a function that can clearly distinguish between high and low fidelity. The function we

use is

fidelity

1− fidelity
, (4.4)

which is zero when the fidelity is zero and approaches infinity when the fidelity approaches one.

This results in a very high reward for high fidelity and a very low reward for low fidelity. The

feature is defined to be a vector which is comprised of the modulus square of the even and odd

parity components of the wave function. This is used by the agent to determine the characteristics

of the wave function. A good characteristic to look at in this problem is the evenness and oddness

of the wave function. This is useful in differentiating the target wave function from adjacent wave

functions that have almost identical energy because the parity alternates with each energy level.



17

4.3 Testing the Non-Interacting Case

In order to verify that the beamsplitter algorithm does what is intended, we begin by using

a scattering length of 0. This puts us in the non-interacting case so the solutions should match

what is seen in other verified models that do not account for mean field effects. As can be seen in

fig. 4.2, the wave function begins almost entirely in the 0ℏk momentum state, or ground state. By

the end of the shaking sequence, the wave function has split into the plus and minus 4ℏk states. It

can be seen that there are is some portion of the wave function that is in the surrounding states

because the squares are not perfectly dark blue. This is because the fidelity of this beamsplitter

shaking function was not 100% so it is not exactly in the target state. The position space wave

function, plotted in fig. 4.1, also shows this momentum splitting. The third energy eigenstate,

which corresponds to the split momentum space wave function discussed previously, has four peaks

over one period of the lattice. The wave function can be seen beginning in the ground state with

one peak and ending with four peaks at the end of the shaking sequence, which corresponds to the

standing wave with ±4ℏk momentum. This solution matches with the expected results and implies

that the model is accurate in the zero scattering case.

4.4 Mean Field Effects on Non-Interacting Shaking Functions

Once the non-interacting case is verified, we can use the interacting model to observe how

mean field effects change the fidelity of a beamsplitter solution that was learned on a non-interacting

model. Note that the experimental setup that implements these shaking functions is estimated to

have an interaction strength on the order of 2 in dimensionless units. As such, I simulated the

non-interacting shaking functions in the interacting model with interaction strengths 2, 5, and 10.

Note that the interaction strength goes up linearly with the number of atoms in the BEC so if the

number of atoms were to double the interaction strength would also double.

It can be seen in table 6.1 that the increasing scattering length decreases the fidelity of the

beamsplitter. When the shaking function is simulated with a scattering length of 0, the fidelity of
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Figure 4.1: Evolution of the position space wave function as a function of time. Time is measured in
steps along the x axis. The y axis is the spatial range of the lattice. The color intensity corresponds
to the density of the wave function where bright yellow is high density and dark blue is low density.

the beamsplitter is 95.3%. With a scattering length of 2, the fidelity is 94.8%. With a scattering

length of 5, the fidelity is 90.5%. With a scattering length of 10, the fidelity is only 60.8%. It is

clear that mean field effects are significant in the beamsplitter.

4.5 Learning with the Interacting Model

The shaking function for the interacting beamsplitter is generated in the same way as the non-

interacting shaking function but with a non-zero interaction strength. In this thesis, a beamsplitter

solution is calculated with a interaction strength of 10 in dimensionless units. The interaction

strength scales linearly with the number of atoms in the BEC, and inversely with the number of
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Figure 4.2: Evolution of the momentum space wave function as a function of time. Time is
measured in steps along the x axis. The y axis is the momentum range of the wave function. The
color intensity corresponds to the density of the wave function where bright yellow is high density
and dark blue is low density.

lattice sites occupied. The shaking function is shown in fig. 4.4. It has a fidelity of 97.3%. This

shows a promising solution to the problems that arose from interactions on the non-interacting

learning function. The learning cycle with interactions does take longer than the non-interacting

case because of the numerical integration. As such, the program needs to run for longer to find high

fidelity solutions. To achieve 97.3% fidelity, the program ran for around 24 hours. The algorithm

could be improved in the future by optimizing the learning parameters, action list, and target state.
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Figure 4.3: Shaking function determined by the reinforcement learning algorithm. The x axis is
the step number and the y axis is the phase shift in radians.
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————————————a————————————————————– b

1

2

3

Table 4.1: Non-interacting beamsplitter solution under varying interactions strengths. a) Varying
interaction strengths in momentum space. b) Varying interaction strengths in position space. 1)
interaction strength 2. 2) Interaction strength 5. 3) Interaction strength 10.
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Figure 4.4: Shaking function determined by the reinforcement learning algorithm. The x axis is
the step number and the y axis is the phase shift in radians.
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Figure 4.5: Evolution of the momentum space wave function as a function of time. Time is
measured in steps along the x axis. The y axis is the momentum range of the wave function. The
color intensity corresponds to the density of the wave function where bright yellow is high density
and dark blue is low density.
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Figure 4.6: Evolution of the position space wave function as a function of time. Time is measured in
steps along the x axis. The y axis is the spacial range of the lattice. The color intensity corresponds
to the density of the wave function where bright yellow is high density and dark blue is low density.
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Chapter 5

Mirror

The mirror component of the interferometer reflects the wave function in momentum space.

Since this component acts on the wave once it has been split by the beamsplitter, the density is

lower in each well and the mean field effects are lessened. In this project it is assumed that the

mean field effects in this case are negligible. In section 5.2 we will show that this is the case. Thus,

a non-interacting model is used to calculate the shaking function for the mirror component of the

interferometer.

5.1 Lattice and Environment

The mirror version of the machine learning algorithm is in momentum space and the learning

is done on a unitary instead of the wave function. The reason for this is that a general mirror

should have the effect of reflecting any general wave function rather than transforming it into a

specific wave-function. We use the same method with the target as a unitary of all zeros with off

diagonal ones in the top right and bottom left corners. This unitary will flip the wave-function in

momentum space. The feature and fidelity of the learning algorithm are also different from the

beamsplitter. The fidelity is the channel fidelity given as

F =
1

ds(ds + 1)
[Tr(MM †) + |Tr(M)|2].[4] (5.1)

The feature is similar to the feature in the beamsplitter lattice. Again, the goal is to describe

the parity of the wave-function to the actor. Now, we want to note the parity of the result of the
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unitary acting on the wave function. The feature is thus the parity of the unitary acting on the

even and odd components of the wave-function.

5.2 Mean Field Effects

The mirror should have the function of reflecting the wave in both momentum and position

space. We will first show the noninteracting case to verify that the mirror function has the expected

action. The following mirror sequence is acted on the split wave-function.

Figure 5.1: Evolution of the momentum space wave function as a function of time. Time is
measured in steps along the x axis. The y axis is the spacial range of the lattice. The color
intensity corresponds to the density of the wave function where bright yellow is high density and
dark blue is low density.

The shaking function used in this simulation is shown in fig. 5.2. It was generated from the
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non-interacting case via the methods described above and has a fidelity of 97.7%.

Figure 5.2: Non-interacting shaking function for mirror sequence

It can be seen in fig. 5.1 that the initial wave-function is slightly more dense in the −4ℏk

component than the 4ℏk component. At the end of the shaking sequence, it can be seen that the

resulting wave-function is more dense in the 4ℏk component than the −4ℏk component. This is

the expected result of the reflection in momentum space. The initial fidelity of the state was 99.5%

and was 99.8% after the mirror sequence.

We will now show the effects of the mean field interactions on the mirror sequence. As can

be seen in fig. 5.1, the mirror has a similar action independent of the mean field effects. With

interaction strength 2, the fidelity went from 99.5% to 98.9% after the mirror sequence. With

interaction strength 5, the fidelity went from 99.4% to 98.9% after the mirror sequence. With



28

interaction strength 5, the fidelity went from 99.3% to 97.6% after the mirror sequence. This shows

that the mean field effects are very small on the mirror sequence as was expected.
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1

2

3

Table 5.1: Non-interacting mirror solution under varying interactions strengths. a) varying in-
teraction strengths in momentum space. b) varying interaction strengths in position space. 1)
interaction strength 2. 2) interaction strength 5. 3) interaction strength 10.
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Chapter 6

Interferometer and Measurment

6.1 Sequence and Components

The interferometer sequence is comprised of the beamsplitter, mirror, and recombiner shaking

functions. The recombiner function is defined as the reverse of the beamsplitter shaking function.

This is the case because the time reversal property of the Gross-Pitaevskii equation allows us to undo

the actions of the beamsplitter by applying the action in the opposite order.[8] The noninteracting

shaking function for the interferometer is shown in fig. 6.1. It can be seen that the interval 30 to

40 is the reflection of the interval 0 to 10.

Figure 6.1: Shaking function of interferometer learned on the non-interacting model
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The noninteracting interferometer is shown in momentum space in fig. 6.2. It can be seen

that the mean field effects become more apparent in the higher scattering cases. In fig. 6.1, the

interferometer is shown to decrease in fidelity as interaction strength increases. The shape of the

interferometer in momentum space becomes blurry and there is a weaker peak at the final action.

Figure 6.2: Non-interacting interferometer in momentum space. The x axis is time measured in
steps. The x axis is momentum and the color represents the density of the wave-function with
yellow indicating high density.

6.2 Interacting Interferometer

The interacting interferometer is generated in the same way as the non-interacting interfer-

ometer but with an interacting beamsplitter shaking function. The shaking sequence is shown in

fig. 6.3 and was generated with an interaction strength of 10 dimensionless units. The first 10
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steps are the beamsplitter sequence and the final ten steps are the recombiner, the reverse of the

beamsplitter sequence. The 14 steps in the center are the mirror shaking function. This mirror

function could be the same across the non-interacting and interacting models in theory. This func-

tion is different from the one shown previously because the frequency of the trap was changed in

this learning cycle.

Figure 6.3: Shaking function determined by the reinforcement learning algorithm. The x axis is
the step number and the y axis is the phase shift in radians.

The momentum space plot of the evolution of the interacting interferometer is shown in

fig. 6.4. This shows the simulation of the interacting model with the interacting interferometer

shaking function. In the final step there is a clear peak in the ground state momentum. This shows

that it is possible to account for interactions in the learning cycle and maintain a high fidelity

interferometer.

6.3 Measuring Acceleration

The interferometer is used to measure acceleration by observing a fringe pattern. Under

zero acceleration, the fringe should look like the last action in the interferometer sequence. We
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Figure 6.4: Evolution of the momentum space wave function as a function of time. Time is
measured in steps along the x axis. The y axis is the momentum range of the wave function. The
color intensity corresponds to the density of the wave function where bright yellow is high density
and dark blue is low density.

can model the acceleration as a quadratically increasing phase shift in time imposed to the lattice.

By implementing this model, we can simulate the fringe patterns that we expect to see under

different magnitudes of acceleration. A plot of this is shown in fig. 6.6 for the learning solution and

simulations with scattering 10.
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Figure 6.5: Evolution of the position space wave function as a function of time. Time is measured in
steps along the x axis. The y axis is the spacial range of the lattice. The color intensity corresponds
to the density of the wave function where bright yellow is high density and dark blue is low density.



35

————————————a————————————————————– b

1

2

3

Table 6.1: Non-interacting interferometer solution under varying interactions strengths. a) varying
interaction strengths in momentum space. b) varying interaction strengths in position space. 1)
interaction strength 2. 2) interaction strength 5. 3) interaction strength 10.
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Figure 6.6: The different fringe patterns, shown in momentum space, that will be measured as a
result of varying acceleration. The x axis is acceleration measured in units of gravity. The y axis
is different values of momentum. The color represents the density of the wave-function.



37

Chapter 7

Conclusion

Shaken lattice matter-wave interferometry is a viable method to achieve high fidelity mea-

surements of acceleration. The mean-field effects do lower the fidelity when they become strong

enough. It is of interest to model these effects and account for them if the interaction strength

is high. It is possible to generate shaking functions for the interacting model using reinforcement

learning and the Gross-Pitaevskii equation. The study of interactions in shaken lattice interferom-

etry would benefit from further research in characterization of effects of interaction strength and

properties of BECs.
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