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Integrating renewable energy into the power grid is challenging due to the intermittent,

variable, and non-dispatchable characteristics of renewable energy generation. From behind-the-

meter (BTM) to transmission settings, this thesis employs stochastic optimization methods to

account for uncertainty in renewable energy generation and addresses computational challenges of

including grid-connected energy storage systems (ESSs) models in optimization problems.

For a BTM setting, a stochastic model predictive control (MPC)-based residential energy

management system (EMS) algorithm is proposed to optimally coordinate residential electricity

usage, controllable appliances, and customer-owned energy sources (e.g., rooftop photovoltaic (PV)

panels and an ESS). Instead of computationally limiting sampling-based stochastic optimization

approaches, chance constraints are used to ensure both a demand response (DR) event and indoor

thermal comfort are satisfied with a high probability given uncertainty in PV generation and

weather forecasts. Case study results highlight the residential EMS algorithm performance from

both customer and utility perspectives.

For large-scale wind power integration in a transmission setting, a two-stage stochastic flexible

line capacity rating algorithm is proposed to determine economic conventional generator dispatch

while minimizing the amount of curtailed wind power across probable wind power generation sce-

narios. Flexible line ratings are incorporated into the model using a sample average approximation

of an integer chance constraint, limiting the probability of non-nominal line capacity rating viola-

tions. Case study results demonstrate the flexible line capacity rating algorithm can reduce total

average wind power curtailment by 40% compared to the static line rating case.

From BTM to transmission settings, grid-connected ESSs are often coupled with renewable
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energy sources in optimization models for many applications in power systems. Theoretical analysis

is provided that guarantees a relaxed convex ESS model will produce a physically realizable opti-

mal control strategy with non-simultaneous ESS charging and discharging. The relaxed convex ESS

model omits the non-convex complementarity constraint that explicitly ensures non-simultaneous

ESS charging and discharging, avoiding computationally limiting non-convex or mixed-integer op-

timization solvers. Case studies with the relaxed convex ESS model show the optimal solutions

satisfy the omitted complementarity constraint, result in significantly faster computation times,

and the penalty-based approach has a negligible impact on the optimal solution.
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Chapter 1

Introduction

This thesis is motivated by the need to address the stable integration of renewable energy into

the power grid, which is challenging due to the intermittent, variable, and non-dispatchable charac-

teristics of renewable energy generation. In this thesis, renewable energy integration is considered

in both behind-the-meter settings with distributed renewable energy resources and transmission

grid settings with large wind farms. To aid with the variability of renewable energy resources,

they are often coupled with electrical energy storage systems. This dissertation also addresses the

use of a computationally tractable energy storage system model for use in large-scale simulations

and provides proper behavior guarantees for this model. This chapter starts with an overview of

renewable energy integration and grid-connected electrical energy storage systems. Then, the main

contributions of this thesis are briefly described, followed by an outline of this dissertation.

1.1 Renewable Energy Integration

Over half the states in the U.S., in addition to local governments, have adopted renewable

portfolio standards that require a certain percentage of electricity sold by utility companies must

come from renewable sources. These policies aim to reduce carbon emissions to combat climate

change and directly impact state and utility investments in renewable technologies [1, 2]. As of

2020, most state targets require that 10%-45% of their electricity must come from renewable energy

sources; however, 14 states (including Colorado) have requirements of over 50% [2]. Adopting these

standards has led to a substantial increase in renewable energy sources being added to the grid. In
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the U.S., 20% of the electricity generating capacity is from renewable resources, where 42.9% of all

new capacity additions are renewable resources (as of 2018) [3]. As increasing amounts of renewable

energy are integrated into the grid to meet these targets, integration has presented new challenges

in power grid operation due to variability in renewable generation availability and uncertainty in

renewable generation forecasts.

Furthermore, renewable energy generation does not necessarily coincide with demand. This is

best seen in the well-known “duck curve” that shows the net load, which is calculated by subtracting

the forecasted renewable generation from the predicted electricity demand [4]. This curve suggests

that dispatchable conventional generation sources (such as coal and natural gas) are relied upon

in the morning until solar energy generation becomes available, after which the need conventional

generation declines quickly for the duration of the daylight hours, and then followed by a steep

increase in conventional generation needed to meet the evening peak demand as the sun goes

down [4]. These fast changes in the electricity generation mix in the mornings and evenings due

to solar energy availability highlights the required fast ramping of conventional generators (if even

feasible within their operating limits), and both generation- and demand-side flexibility. In this

dissertation, both demand- and generation-side solutions are considered to account for variability

in renewable energy generation.

1.1.1 Demand-side Residential Energy Management

This dissertation focuses on behind-the-meter (BTM) energy management solutions to im-

prove the flexibility of customer demand and aid the integration of renewable energy. In particular,

we consider residential energy management solutions since residential buildings account for more

than 37.6% of total electricity consumption in the U.S., which is more than the transportation,

commercial, or industrial sectors [5]. Residential energy management systems provide demand-side

energy management by coordinating multiple flexible residential appliances in real-time, given user

preferences and renewable energy generation forecasts [6, 7]. Flexible appliances can have their

usage shifted in time to better align with renewable energy availability. Home energy management
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systems (HEMS) can increase the energy efficiency of a home by leveraging controllable residential

devices, such as heating, ventilation, and air-conditioning (HVAC) systems, which account for over

50% of total residential electricity usage [5], to be operated during times when renewable energy

generation is available. This dissertation first focuses on a stochastic model predictive control based

HEMS algorithm that accounts for uncertainty in customer-owned renewable resource generation

and incorporates future forecast information such as weather and electricity demand in order to

optimally control residential energy generation and local consumption. Various demand-side utility

electricity pricing structures aimed at effectively using available renewable energy and shaping the

aggregate load curve are considered, including feed-in tariffs, time-of-use prices, and net metering.

The performance of the HEMS algorithm is considered from both utility and customer perspectives.

1.1.2 Generation-side Transmission Capacity Flexibility

Generation-side solutions are also considered for improving the grid’s flexibility to respond

to quickly changing electricity generation mixes as more renewable energy is added to the total

generation capacity. There is currently over 107,300 MW of installed wind capacity in the U.S. (as

of July 2020) [8]. This growing amount is challenging how our transmission grid is operated due

to the variability of wind power availability and uncertainty in wind forecasts. Additionally, as the

penetration of wind power increases, more situations arise where wind power must be curtailed to

minimize transmission congestion [9, 10]. Wind curtailment primarily occurs due to limited avail-

able transmission during a particular time to incorporate some or all of the wind, or high wind

power availability at times of low electricity demand and excess generation cannot be exported to

other areas due to transmission constraints [9, 10]. This dissertation also proposes a stochastic al-

gorithm for flexible transmission line capacity limits, while maintaining safe operation, to minimize

curtailment of energy generated by wind farms.
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1.2 Grid-connected Electrical Energy Storage Systems: Grid Benefits and

Computational Challenges

As mentioned previously, the intermittent nature of most renewable energy sources is one of

the main challenges of integrating renewable generation into the power grid. Variability in renewable

energy sources or renewable energy forecast errors can be partially addressed by incorporating

distributed electrical energy storage systems (ESS) in the power grid [11]. Grid-connected ESSs

are one of the main technologies suggested for stable integration of renewable energy into the

grid. Not only can ESSs act like a generation source, they can simultaneously provide many

other valuable grid services as well. These services include bulk energy services, ancillary services,

transmission services, distribution services, and customer electricity support [11–15]. The services

that grid-connected ESSs provide and their definitions are summarized in Table 1.1.

Due to the many services that grid-connected ESSs provide, they are regularly included in

research on renewable energy integration in all aspects of grid operation. At the core of many

such studies including an ESS, there is an ESS model that describes the physical dynamics and

limits of the system. The model is used to determine how to intelligently operate the battery, i.e.,

charging and discharging decisions, to maximize the value of the services provided by the ESS [16].

However, when deciding on an ESS model, there are many trade-offs between model accuracy and

computational complexity, which are surveyed in [16]. To accurately capture round-trip efficiency

in an ESS model, separate terms are used for ESS charging and discharging. This requires en-

forcing a constraint in the ESS model that prohibits simultaneous charging and discharging. One

way to formulate this constraint without introducing binary variables into the model is to use a

complementarity constraint, which can be computationally limiting since it is non-convex. This

dissertation addresses the use of a relaxed convex ESS model in both BTM and optimal power flow

settings. Theoretical analysis is provided that guarantees proper model behavior, i.e., behavior

that satisfies the complementarity constraint, in general BTM and optimal power flow settings.

Furthermore, situations where proper model behavior for the relaxed convex ESS model cannot be
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guaranteed are highlighted.

1.3 Contributions

The main contributions addressed in this dissertation are listed below.

• Contribution 1. Stochastic residential energy management system algorithms

for demand response and with varying controllable resources. The optimal coordi-

nation of residential electricity usage and customer-owned renewable electricity generation

is determined by a chance constrained model predictive control (MPC) home energy man-

agement system (HEMS) algorithm. In one scenario, chance constraints are used to ensure

a utility-requested demand response (DR) event and indoor thermal comfort are satisfied

with a high probability given the uncertainty in available photovoltaic (PV) generation and

the outdoor temperature forecast. Simulation results for various user preferences and prob-

abilistic model parameters demonstrate that the HEMS algorithm can effectively respond to

demand response requests. In a second scenario, the performance of the MPC-based HEMS

algorithm as the set of controllable appliances varies is considered to capture a variety of

homes that better reflect available controllable resources found in homes today. Similar to

the first scenario, the chance constraint ensures indoor thermal comfort is satisfied with

a high probability given the uncertainty in the outdoor temperature and solar irradiance

forecasts. Simulation results for homes with different sets of controllable resources under

both a constant electricity price and time-of-use (TOU) electricity price are evaluated for

both customer- and utility-centered metrics. Compared to HEMS operation with a con-

stant electricity price, case studies with a time-of-use rate result in demand profiles with

new and larger peaks and increased ESS cycling due to non-preferred ESS usage. Nonethe-

less, across all varying controllable resource scenarios, the HEMS algorithm was always

able to lower the electricity cost to the customer with a TOU rate compared to a constant

electricity rate.
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• Contribution 2. Stochastic flexible transmission line flow rating algorithm for

minimizing wind power curtailment. A two-stage stochastic optimization model is

proposed to determine the optimal conventional generator dispatch while minimizing the

amount of curtailed wind power across wind power generation scenarios. Flexible line

ratings are incorporated into the model using integer chance constraints, limiting the prob-

ability of non-nominal line capacity rating violations across all wind scenarios. This enables

the total transmission line capacity in areas of the network experiencing congestion to be

temporarily increased to allow larger amounts of wind power generation to be transported to

other areas of the network. Simulation results on the RTS-GMLC test system demonstrate

that the flexible line rating algorithm can reduce the total average wind power curtailment

by 40% compared to the case where the line ratings are static.

• Contribution 3. Optimality guarantees for relaxed complementarity models in

energy systems in behind-the-meter and optimal power flow settings. A convex

relaxation for a commonly used ESS model with a complementarity constraint on charging

and discharging is proposed based on a penalty reformulation approach. In this approach,

the complementarity constraints are omitted, and a linear penalty term is added to the op-

timization objective function. In both behind-the-meter and optimal power flow settings,

the theoretical analysis provided guarantees the relaxed convex ESS model produces an

optimal control strategy with proper ESS behavior, i.e., solutions with simultaneous charg-

ing and discharging are suboptimal. Numerical case study results demonstrate proper ESS

behavior when the convex ESS model with the penalty reformulation is used in various

grid-connected ESS settings.

1.4 Organization of Thesis

Chapter 2 provides a brief theoretical overview of stochastic optimization methods, optimality

guarantees for convex optimization problems, and complementarity constraints. First, the Karush-
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Kuhn-Tucker (KKT) optimality conditions for convex optimization problems will be provided and

discussed. Then complementarity constraints will be introduced, and common ways of dealing

with this type of constraints will be discussed. Within stochastic optimization methods, chance

constrained optimization and two-stage stochastic optimization methods are discussed. Lastly,

model predictive control (MPC) is briefly introduced.

Chapter 3 presents two stochastic MPC-based optimization models for a home energy man-

agement system (HEMS) algorithm that optimally coordinates appliances, customer preferences,

and behind-the-meter resources such as photovoltaic (PV) generation and electrical energy storage.

The first chance constrained optimization model captures a situation where the HEMS commu-

nicates with a utility company to accommodate a demand response (DR) request. The second

stochastic optimization model captures a varying set of controllable behind-the-meter appliances

and renewable energy resources under different electricity rates. For both models, a case study

is provided and the performance of the algorithm is measured using both customer-focused and

utility-focused metrics.

Chapter 4 presents a two-stage stochastic optimal power flow model to account for fluctua-

tions in wind power generation that includes flexible transmission line capacity ratings to minimize

wind power curtailment. Traditional transmission line capacity ratings are discussed, and the inte-

ger chance constraint used to enforce the flexible ratings is derived. A case study on the three-area

RTS-GMLC test system is presented to demonstrate the flexible line capacity optimization model

and the resulting reduction in wind power curtailment.

Chapter 5 first provides convex relaxations of models found in energy systems that in-

clude non-convex complementarity constraints. In particular, we are mainly concerned with grid-

connected electrical ESS models. Then, theoretical optimality guarantees and the associated proofs

are presented for the convex relaxations. The optimality guarantees are proven in a behind-the-

meter setting and in a linear power flow approximation (DC OPF). For each setting, numerical

case studies illustrate that proper model behavior is observed in simulations of the convex relaxed

models. Lastly, Chapter 6 discusses the main conclusions of this thesis, as well as areas of possible
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future work.

Portions of this work have been presented in other publications by the author. Chapter 3

material is presented in [17] and [18]. Chapter 4 is based on [19]. Chapter 5 consists of work

from [20] and [21].
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Table 1.1: Services that grid-connected energy storage systems (ESSs) can provide and the levels
at which they can be provided.

Services Transmission Distribution Customer

Electric Energy Arbitrage
ESSs can be used to store energy that was pur-
chased at a low price, and sold back during periods
of high electricity prices.

X X X

Reserve Capacity
ESSs can serve as reserve capacity that can satisfy
loads during contingencies or unexpected outages.

X X

Frequency and Voltage Support
ESSs can help maintain grid frequency and volt-
age within an acceptable range to maintain grid
stability.

X X

Black Start
ESSs can act as an asset when bringing power
plants back online after an outage.

X X

Upgrade Deferrals and Increased Supply
Capacity
ESSs can be used to act as generation capacity to
delay, reduce, or avoid investments in new genera-
tion capacity to meet projected electricity demand
growth.

X X

Power Balancing and Ramping Support
ESSs can help balance momentary differences
caused by fluctuations in generation and electric-
ity demand. Also, ESSs can respond quickly to
steep ramps in net load caused by renewable en-
ergy availability.

X X

Congestion Relief
ESSs can be used to serve loads downstream of
congested transmission corridors, typically during
times of high electricity demand, to minimize con-
gestion in the system.

X X

Power Quality and Reliability
ESSs can quickly respond to short-duration events
that impact power quality and reliability, i.e., lo-
cal variations in voltage and frequency, or service
interruptions.

X X

Demand Charge and Bill Management
ESSs can be used to minimize electricity bills
by storing electricity bought during times of low
prices to be used during times when prices are
high, i.e., TOU prices.

X

Increased PV Self-Consumption
ESSs can be used to store solar electricity gener-
ated BTM for local consumption.

X



Chapter 2

A Brief Introduction to Optimization Theory, Complementarity Constraints,

and Stochastic Optimization

In this chapter, the theoretical background in optimization and control is provided. First, the

Karush-Kuhn-Tucker conditions will be introduced for a general optimization problem. Following

the discussion on optimality conditions, we introduce optimization problems with complementarity

constraints and discuss the approaches often used to solve this type of problem. Then, the stochastic

optimization methods used in this dissertation are introduced, in particular, we introduce chance

(or probability) constrained optimization and two-stage stochastic optimization. Lastly, we present

a brief introduction to model predictive control (MPC). The topics explained in this chapter will

facilitate the contributions of this thesis presented in Chapters 3, 4, and 5.

2.1 Karush-Kuhn-Tucker Optimality Conditions for Convex Problems

In this section, we introduce the Karush-Kuhn-Tucker (KKT) conditions for a general op-

timization problem. First, consider an optimization problem where the functions f : Rn → R,

gi : Rn → R, and hj : Rn → R are differentiable for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J}:

(P) min
x∈X

f(x) (2.1a)

subject to gi(x) ≤ 0, ∀i ∈ {1, . . . , I}, (2.1b)

hj(x) = 0, ∀j ∈ {1, . . . , J}, (2.1c)
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where x ⊆ Rn and the set of feasible solutions x ∈ X is nonempty. Next, let λ = [λ1, . . . , λI ]

denote the vector of Lagrange multipliers corresponding to the inequality constraints in (2.1b)

and let µ = [µ1, . . . , µJ ] denote the vector of Lagrange multipliers corresponding to the equality

constraints in (2.1c). The Lagrange multipliers are also referred to as the dual variables. Then let

x∗ denote an optimal primal solution and let λ∗,µ∗ denote optimal solutions to the dual problem

with zero duality gap (see [22,23] for more details on the dual problem). Then for any optimization

problem of the form (P), an optimal solution (x∗,λ∗,µ∗) must satisfy:

Primal Feasibility: gi(x
∗) ≤ 0, ∀i ∈ {1, . . . , I}, (2.2a)

hj(x
∗) = 0, ∀j ∈ {1, . . . , J}, (2.2b)

Dual Feasibility: λ∗i ≥ 0, ∀i ∈ {1, . . . , I}, (2.2c)

Complementary Slackness: λ∗i gi(x
∗) = 0, ∀i ∈ {1, . . . , I}, (2.2d)

Stationarity: ∇f(x∗) +
I∑
i=1

λ∗i∇gi(x∗) +
J∑
j=1

µ∗j∇hj(x∗) ∈ 0, (2.2e)

which are known as the KKT conditions [22, 23]. When the problem (P) in (2.1) is convex, the

KKT conditions in (2.2) are sufficient for showing x∗ is a minimizer of (P) [22].

The KKT conditions will be used for the theoretical analysis in Chapter 5. In particular,

in Chapter 5, we focus on optimization problems with complementarity constraints, which are

introduced in the next section.

2.2 Complementarity Constraints in Optimization Problems

Optimization problems with a complementarity constraint, also referred to as mathematical

programs with complementarity constraints (MPCCs) in the applied mathematics literature, are

used to model many practical engineering and economic problems. In this thesis, we will focus

on complementarity constraints that arise in energy system models. Here, we introduce a general

optimization problem with complementarity constraints, and motivate why this is an interesting

class of problems and how these constraints are typically handled when solving an optimization

problem.
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Let x,y ∈ Rn, and let f : R2n → R, gi : R2n → R, and hj : R2n → R be convex functions for

all i ∈ {1, 2, . . . , I} and j ∈ {1, 2, . . . , J}. Also let xk and yk denote the kth element of x and y,

respectively, where k ∈ {1, . . . , n}. Then, optimization problems with complementarity constraints,

denoted (Pcc), are of the form

(Pcc) min
x,y∈X

f(x,y) (2.3a)

subject to gi(x,y) ≤ 0, ∀i ∈ {1, 2, . . . , I}, (2.3b)

hj(x,y) = 0, ∀j ∈ {1, 2, . . . , J}, (2.3c)

xk · yl = 0, xk ≥ 0, yl ≥ 0, ∀(k, l) ∈ Z, (2.3d)

where the set Z ⊆ {1, 2, . . . , n}2 collects all pairs (k, l) for which the complementarity condition in

(2.3d) is enforced. The nonlinear, non-convex complementarity constraint in (2.3d) is an analytic

expression for a logical condition which enforces that for a pair of variables xk, yl, xk ≥ 0, yl ≥ 0,

it must be that both xk and yl cannot be simultaneously non-zero for all (k, l) ∈ Z [24–29]. The

nonlinear complementarity constraint in (2.3d) renders (Pcc), an otherwise convex optimization

problem, non-convex.

To further understand the computational challenges posed by the disjunctive and non-convex

features of the complementarity constraint in (2.3d), we next introduce the Mangasarian-Fromowitz

constraint qualification (MFCQ) in nonlinear programming. Consider the general optimization

problem (P) in (2.1), and define the set A(x) := {i | gi(x) = 0, i ∈ {1, . . . , I}}. For the MFCQ to

hold at a feasible point x, both of the following must be satisfied [23,29,30]:

(1) ∇xhj(x) are linearly independent for all j ∈ {1, . . . , J},

(2) there exists a vector p ∈ Rn such that ∇xgi(x)Tp < 0 for all i ∈ A(x) and ∇xhj(x)Tp = 0

for all j ∈ {1, . . . , J}.

Thus, the MPCC given in (2.3), (Pcc), violates the MFCQ at any feasible point. As a consequence,

most of the classic non-linear programming theory cannot be applied to MPCCs. For example, the

constraints for MPCCs are not regular resulting in unstable numerical behavior for algorithms based
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on constraint linearizations, such as sequential quadratic programming (SQP) methods [24,25]. This

highlights that the classic nonlinear optimization methods are often insufficient for dealing with

complementarity constraints [24,25,27,29].

Numerical solution methods for solving MPCCs that guarantee convergence and efficient

practical performance often use relaxation approaches and regularization techniques based on an

exact penalty reformulation [24, 25, 27, 28, 31]. A standard penalty reformulation of (Pcc) in (2.3)

is:

(Ppen
cc ) min

x,y∈X
f(x,y) + ρ

∑
(k,l)∈Z

xkyl (2.4a)

subject to gi(x,y) ≤ 0, ∀i ∈ {1, 2, . . . , I}, (2.4b)

hj(x,y) = 0, ∀j ∈ {1, 2, . . . , J}, (2.4c)

xk ≥ 0, yl ≥ 0, ∀(k, l) ∈ Z, (2.4d)

where ρ > 0 is the penalty parameter. For some structured classes of objective functions f(x,y)

and some set of parameters ρ > 0, this leads to a convex problem. Then, (Ppen
cc ) is iteratively solved

for increasing values of ρ until
∑

(k,l)∈Z xkyl < ε, where ε is some small tolerance (e.g., 1e-04) [28].

In [29], a penalty reformulation of an optimization problem with complementarity constraints is

proposed for using smooth nonlinear programming algorithms, in particular sequential quadratic

programming (SQP) algorithms. In [31], the authors use a penalty reformulation, in addition to

reformulating the complementarity constraint as a system of “semismooth” equations, to achieve a

globally convergent SQP algorithm for solving MPCCs.

Another common approach to solve models that have non-convex complementarity constraints

is reformulating the problem as a {0, 1} mixed integer problem and solving such problems using

mixed integer solvers [26], which can be computationally limiting for large optimization problems.

However, we propose a convex relaxation of (Pcc) in (2.3) since an optimal solution to a convex

model is guaranteed to be a global minimum, and also, convex problems are often computationally

tractable. Thus, in Chapter 5, we propose a specific linear penalty reformulation for complemen-
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tarity constraints that occur in energy system models and prove that the resulting relaxed convex

energy system model only produces optimal solutions that satisfy the original complementarity

constraint.

2.3 Stochastic Optimization Methods

Stochastic optimization seeks to determine an optimal control strategy given some objective

function subject to uncertainty in either the constraint set or the objective function. Stochastic

optimization methods are commonly used to account for the fluctuating and intermittent nature

of renewable energy generation in power grid research. The authors of [32] provide a recent survey

of stochastic optimization methods used in power systems research. In this section, we provide

an overview of the stochastic optimization methods employed in this dissertation. First, chance

constrained optimization is introduced, with some key results that will be leveraged in the work

presented in Chapters 3 and 4. Then, sampling-based stochastic optimization methods are pre-

sented, followed by the sample average approximation (SAA) for integer chance constraints, which

are used in Chapter 4.

2.3.1 Chance Constrained Optimization

Chance constrained programming, i.e., determining a solution to an optimization problem

that satisfies stochastic constraints with some prescribed probability, was first introduced in [33–35].

Since then, chance constrained optimization has been proposed for many engineering applications.

Within power system optimization, chance constraints have been proposed in optimal power flow

settings [36–38], behind-the-meter settings [17, 18, 39, 40], transmission planning and line capacity

limits [41–46], and energy storage sizing [47], among many others, which are of particular interest

in this dissertation. Here, we provide a brief introduction to chance constrained optimization.
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Consider the following general chance constrained problem [48,49]:

min
x∈X

f(x) (2.5a)

subject to gi(x) ≤ 0, ∀i ∈ {1, 2, . . . , I}, (2.5b)

hj(x) = 0, ∀j ∈ {1, 2, . . . , J}, (2.5c)

Pr(Gk(x, ξ) ≤ 0) ≥ 1− ε, ∀k ∈ {1, 2, . . . ,K}, (2.5d)

where X ⊆ Rn is a nonempty convex set, ε ∈ (0, 1), the functions f : Rn → R, gi : Rn → R,

and hj : Rn → R are convex for all i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, ξ is a random vector with

probability distribution P supported on set Ξ ⊂ Rd, Gk(x, ξ) : Rn×Ξ→ R for all k ∈ {1, . . . ,K} is

a function of a random variable, and Pr(A) denotes the probability of event A. Constraints of the

form in (2.5d) are referred to as chance (or probabilistic) constraints. Chance constraints represent

the condition that the inequality constraint Gk(x, ξ) ≤ 0 must be satisfied with some prescribed

probability 1 − ε for each k ∈ {1, . . . ,K}. Note that ε is usually a small number (e.g., 0.05). In

this thesis, the chance constraint will be used in both a BTM energy management system setting

(Chapter 3) and within transmission grid operation to account for uncertainty in renewable energy

integration (Chapter 4).

The chance constraint in (2.5d) can present many computational challenges. In particular,

even when Gk(x, ξ) is affine in both x and ξ for all k ∈ {1, . . . ,K}, the feasible set of this constraint

may still be non-convex depending on the distribution of ξ [48]. One way to handle the potential

non-convexity of the chance constraint is to use a sampling-based approach since it is distribution

agnostic. We discuss sampling-based approaches further in Section 2.3.2. Alternatively, the authors

of [48] propose conservative convex approximations to replace the chance constraint in problems of

the form (2.5).

However, there are distributions of ξ where the feasible set of Gk(x, ξ) ≤ 0 is convex for

all k ∈ {1, . . . ,K}. Prékopa showed that if the functions Gk(x, ξ) are quasi-concave for all k ∈

{1, . . . ,K} and ξ has a continuous distribution with a logarithmically concave (or log-concave)

probability density, then the set x that satisfies (2.5d) is convex [49, Theorem 10.2.1]. Note that
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many common distributions satisfy the log-concavity requirement, such as the multivariate Normal

distribution, the exponential distribution on Rn+, and the Wishart distribution [22].

When ξ is a random vector with a Normal probability density, then the set of x ∈ Rn that

satisfy (2.5d) is the same as those satisfying

µTx + Φ−1(1− ε)
√

xTΣx ≤ 0, (2.6)

where the vector µ is the expected value of ξ, i.e., E[ξ], Σ is the covariance of the random vector

ξ, and Φ−1(1 − ε) is the inverse cumulative distribution function (CDF) of the standard Normal

distribution N (0, 1) at the fixed probability 1 − ε [49, Theorem 10.4.1]. When ξ is a random

vector with a Normal probability density and ε ≤ 1
2 , then the set of vectors satisfying (2.5d) is

convex [49, Corollary 10.4.2]. In Chapter 3, we use (2.6) to obtain a convex reformulation for a

chance constrained energy management system optimization framework.

2.3.2 Two-Stage Stochastic Optimization

One general way to formulate computationally tractable stochastic optimization problems is

to adopt a scenario-based approach [48, 50–52]. The main advantage of this approach is that it

does not limit the distribution of the random variable; it only requires being able to sample from

the distribution.

Consider the functions f : Rn → R, gi : Rn → R, and hj : Rn → R for all i ∈ {1, . . . , I}

and j ∈ {1, . . . , J} and let x ∈ Rn and y ∈ Rm be vectors of the first and second stage variables,

respectively. Let Ξ ∈ Rd denote the support of probability distribution of ξ. Then, define the

functions f̂ : Rm → R, Gi′ : Rn × Rm × Ξ→ R, and Hj′ : Rn × Rm × Ξ→ R for all i′ ∈ {1, . . . , I ′}

and j′ ∈ {1, . . . , J ′}. In two-stage stochastic programming, we first determine the first stage

variables. Then after observing uncertainty ξ, the second stage variables are decided given the

decisions in the first stage. In this thesis, we are mainly concerned with observing uncertainty in

renewable energy generation over some planning horizon, which impacts the first-stage dispatch

decision for conventional generators. Let E[X] denote the expectation of X. Then, the two-stage
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stochastic optimization problem is given by [50–52]:

min
x

f(x) + E[F (x, ξ)] (2.7a)

subject to gi(x) ≤ 0, ∀i ∈ {1, 2, . . . , I}, (2.7b)

hj(x) = 0, ∀j ∈ {1, 2, . . . , J}, (2.7c)

where F (x, ξ) is the optimal value of the second stage problem:

F (x, ξ) = min
y

f̂(y) (2.8a)

subject to Gi′(x,y, ξ) ≤ 0 ∀i′ ∈ {1, . . . , I ′}, (2.8b)

Hj′(x,y, ξ) = 0 ∀j′ ∈ {1, . . . , J ′}, (2.8c)

To obtain a scenario-based approach for solving the above two-stage problem in (2.7), we assume

the random vector ξ has finite support and that ω ∈ Ω index the realizations (called scenarios) of

ξ, each with probability pω. Then the deterministic form of the problem in (2.7) can be written

as [50–52]:

min
x

f(x) +
N∑
ω=1

pωF (x, ξ(ω)) (2.9a)

subject to gi(x) ≤ 0, ∀i ∈ {1, 2, . . . , I}, (2.9b)

hj(x) = 0, ∀j ∈ {1, 2, . . . , J}, (2.9c)

Gi′(x,y, ξ(ω)) ≤ 0 ∀i′ ∈ {1, . . . , I ′},∀ω ∈ Ω, (2.9d)

Hj′(x,y, ξ(ω)) = 0 ∀j′ ∈ {1, . . . , J ′},∀ω ∈ Ω. (2.9e)

When the two-stage stochastic optimization problem is formulated in its deterministic form as in

(2.9), depending on the size of the problem (determined by the number of scenarios N and the size

of x) and the degree of the functions, solving (2.9) may be computationally limiting. In these cases,

decomposition methods such as Dantzig-Wolfe and Benders decomposition may be used [50, 51].

However, the two-stage stochastic optimization we consider in Chapter 4 is a mixed-integer linear

program that is small enough such that we are able to solve the extensive form of the problem.
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2.3.3 Integer Chance Constraints

In Chapter 4, the two-stage stochastic optimization model we propose includes an integer joint

chance constraint on a second stage variable, i.e., a decision variable in the sample space Ω, which

we refer to as the set of scenarios. Thus, in this section, we derive the sample average approximation

(SAA) of a joint chance constraint. The SAA results in a deterministic approximation of the joint

chance constraint that can be included as a constraint in an optimization problem.

Motivated by [46,53], we first introduce some nomenclature. Define the following:

Et = {ω ∈ Ω : yω,t = 0}, ∀t ∈ T , (2.10a)

EC
t = {ω ∈ Ω : yω,t = 1}, ∀t ∈ T , (2.10b)

F =
⋂
t∈T

Et, (2.10c)

FC =
⋃
t∈T

EC
t , (2.10d)

where (·)C denotes the complement, event Et is a set of scenarios such that yω,t = 0 at time t ∈ T ,

and event EC
t is the complement. Then F is a collection of scenarios in the intersection of Et for

all t ∈ T , and FC is collection of scenarios in the union of EC
t . Then, in this dissertation, we are

interested in the following joint chance constraint:

Pr(FC) ≤ ε, (2.11)

where 0 < ε < 1, which will be the focus of the following SAA derivation based on [46]. Using the

union bound, we have:

Pr(FC) = Pr

( ⋃
t∈T

EC
t

)
≤
∑
t∈T

Pr
(
EC
t

)
,

so the following inequality constraint:

∑
t∈T

Pr
(
EC
t

)
≤ ε, (2.12)

will imply (2.11). Next, we seek the SAA of the chance constraints in (2.11) and (2.12) for a

two-stage stochastic optimization problem with |Ω| scenarios. To do this, first define a new binary
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variable zω ∈ {0, 1} where

zω =


0, ω ∈ F,

1, ω ∈ FC.

(2.13)

Then we relate the variables zω and yω,t with the equations:

zω ≤
∑
t∈T

yω,t, ∀ω ∈ Ω (2.14a)

yω,t ≤ zω, ∀t ∈ T , ∀ω ∈ Ω. (2.14b)

Using the new variables zω together with (2.14), we plug these into (2.11) and (2.12) to obtain the

following SAA of (2.11) and (2.12), respectively:

1

|Ω|
∑
ω∈Ω

zω ≤ ε, (2.15a)

1

|Ω|
∑
ω∈Ω

∑
t∈T

yω,t ≤ ε. (2.15b)

Then, notice that (2.14) and (2.15) imply

1

|Ω|
1

|T |
∑
ω∈Ω

∑
t∈T

yω,t ≤ ε, (2.16)

because 1
|T |
∑

t∈T yω,t ≤ zω for all ω ∈ Ω, which is weaker than (2.15b). Thus, the SAA in (2.16)

is the inequality constraint included in the two-stage stochastic optimization problem. Note that

(2.16) is an approximation of (2.12) as the name SAA implies. We use this general derivation to

aid the presentation of the SAA for an integer chance constraint in Chapter 4.

2.4 Model Predictive Control

Model predictive control (MPC), or receding horizon control, is a control algorithm where

an optimal control strategy is determined at each time step t over a finite prediction horizon Th

subject to constraints that define the system dynamics and constraints. MPC is widely used in

many engineering applications because after each iteration, updated information (such as updated

weather forecasts and electricity demand) can be incorporated into the model.
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To aid in the discussion of MPC, consider a generic MPC formulation [54,55]:

min
xt,ut

Th∑
t=1

J(xt,ut) (2.17a)

subject to gi(xt,ut) ≤ 0, ∀i ∈ {1, . . . , I}, ∀t ∈ {1, . . . , Th}, (2.17b)

hj(xt,ut) = 0, ∀j ∈ {1, . . . , I}, ∀t ∈ {1, . . . , Th}, (2.17c)

xt+1 = ft(xt,ut) ∀t ∈ {1, . . . , Th − 1}, (2.17d)

where the vectors xt and ut collect the state decision variables and input decision variables at time t,

respectively. The objective function is given in (2.17a). The constraints in (2.17b)-(2.17c) describe

the system at each time t in the prediction horizon. With respect to energy systems, the inequality

constraints in (2.17b) ensure that various states of the system, such as indoor temperature or

capacity of a battery, stay within some prescribed limits for comfort or safety and reliability. In

this dissertation, the equality constraint in (2.17c) is used to describe the power balance. Lastly,

the constraint in (2.17d) describes the evolution of the state variables over time, which, for example,

can be used to describe indoor temperature dynamics and energy storage system state of charge.

After each iteration of the MPC algorithm, only the optimal control policy (x∗1,u
∗
1) at the first time

step is implemented, and the new current state is used as the starting point of the next iteration of

the algorithm. Then, the model is moved forward one step in time with updated model parameter

information and resolved [54,55]. Thus, after k iterations of the MPC algorithm, the terminal time

is k + Th. In this dissertation, an MPC-based algorithm is used for a behind-the-meter energy

management system framework in Chapter 3.



Chapter 3

Stochastic Energy Management Systems

This chapter studies the performance of two chance constrained MPC-based home energy

management system (HEMS) algorithms for demand response (DR) that optimally coordinate

home appliances, residentially-owned renewable energy resources, and battery energy storage given

user comfort preferences, energy cost sensitivity, and uncertainty in available PV generation and

outdoor temperature forecast. In both algorithm formulations, chance constraints are included

for handling uncertainty in weather forecasts which impact the indoor temperature dynamics and

renewable energy generation. The performance of both HEMS algorithms will be demonstrated

through a series of case studies.

3.1 Behind-the-Meter Home Energy Management Systems

As mentioned in Section 1.1.1, residential demand-side energy management can be used to

partially address stable renewable energy integration since residential buildings account for 37.6%

of total electricity consumption in the U.S., which is more than the commercial building sector,

industrial building sector, or transportation sector [5]. Home energy management systems (HEMS)

provide demand-side energy management by coordinating multiple residential appliances in real-

time given user preferences and renewable energy resource forecasts [6, 7]. HEMS can increase the

energy efficiency of a home by leveraging controllable residential devices, such as heating, ventila-

tion, and air-conditioning (HVAC) systems, which account for over 50% of total residential load [5].

The authors in [7] survey various HEMS architectures that have been proposed for increasing resi-
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dential energy efficiency. Many of the control methods studied for HEMS applications also include

DR grid service capabilities such as real-time pricing and direct load control, which encourage

consumers to shift the load of flexible devices away from peak demand periods [6, 7]. Typically,

advanced HEMS algorithms use optimization techniques such as MPC [6,56], mixed-integer linear

programming (MILP) [57], or various artificial intelligence techniques [7, 58,59].

In this chapter, two stochastic HEMS algorithms are proposed for optimally coordinating

electricity usage within a home. One approach for using stochastic optimal control methods in

HEMS algorithms is the use of Monte Carlo sampling for representing uncertainties in various

parameters, such as outdoor temperature and renewable energy source generation [60], which can be

computationally restrictive. Another approach for incorporating uncertainty in HEMS algorithms is

using the Markov chain modeling framework [61]. Instead, we propose a chance constrained MPC-

based optimization formulation to include probabilistic models in a HEMS algorithm. Chance

constrained optimization has been used to incorporate uncertainty in renewable energy generation

into optimal energy storage sizing problems [62] and AC optimal power flow problems [36]. Chance

constrained MPC has also been used to include uncertainty in weather forecasts for energy efficient

HVAC system usage in buildings [39]. Chance constraints have also been used to incorporate

uncertainty in dynamic pricing and system loads in a HEMS [40]. However, in this work we present

two chance constrained MPC-based HEMS algorithms to incorporate uncertainty in the weather

forecast and renewable energy generation. In the next section, both chance constrained HEMS

algorithms are introduced and their performance is studied.

3.2 Stochastic MPC-based HEMS Algorithms

In this section, the overall chance constrained MPC-based HEMS optimization problem is

formulated for two different settings. In each setting the chance constraint considering uncertainty

in outdoor weather forecasts is derived. We end with a case study demonstrating the performance

of the HEMS algorithm for each setting. The notation used in the HEMS formulations introduced

in this section is provided in Table 3.1.



23

Table 3.1: Notation for HEMS optimization models.

Parameters
βi House model parameters
Butil DR reduction request from utility

(kW)
ce Cost of Pgrid ($/kWh)

Eb/E
b

Minimum/maximum energy stor-
age in battery (kWh)

Eev/E
ev

Minimum/maximum electric vehi-
cle state of charge (kWh)

ηch/ηdis Battery charging/discharging effi-
ciency

ηev Electric vehicle charg-
ing/discharging efficiency

Th MPC prediction horizon

P
b

Maximum battery charg-
ing/discharging power (kW)

P ac Power consumed by HVAC when
cooling (kW)

P
ev

Maximum electric vehicle charging
power (kW)

P pred Predicted Pgrid consumption with
no DR (kW)

P uc Residential load from uncontrol-
lable devices (kW)

ε Probability that chance constraint
is satisfied, ε ∈ (0, 1)

tDR,f End time of DR period
tDR,n Time of DR notice
tDR,s Start time of DR period

T/T Minimum/maximum indoor air
temperature (°F)

Random Variables
P sol Available solar power (kW)
T out Outdoor air temperature (°F)
P rad Solar Irradiance (W/m2)

Decision Variables
dhvac HVAC control signal (duty cycle)
Eb Battery state of charge (kWh)
Eev Electric vehicle state of charge

(kWh)
P curt PV curtailment (percent)
P ch Power injected into battery storage

(kW)
P dis Power drawn from battery storage

(kW)
P ev Power for charging the electric ve-

hicle (kW)
P grid Power consumed from the grid

(kW)
T in Indoor air temperature (°F)

3.2.1 HEMS with Utility Demand Response Communication

In this section, we provide a chance constrained MPC algorithm for a HEMS capable of

satisfying grid DR requests where the use of flexible (i.e., controllable) devices, such as HVAC

systems, are shifted away from peak demand periods on the power grid. We assume the DR event

is communicated to the HEMS before the DR period begins in the form of a request for some amount

of grid power reduction Butil relative to the amount of grid power the HEMS predicts the home
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requires during the DR period. We consider a HEMS that coordinates a residentially-owned PV

array and home battery system (HBS), an HVAC system, and uncontrollable devices. We assume

uncontrollable residential devices, such as lighting, television, and plug loads, cannot be controlled

with the HEMS. The chance constraints in the HEMS algorithm are used to ensure that both

the DR reduction request and the users’ thermal comfort are satisfied with high probability given

uncertainty in available PV power and outdoor air temperature during the DR period. An overview

of the considered HEMS system is shown in Fig. 3.1. This work is based on the published results

in [17]; however, minor modifications to the formulation have been made to ensure consistency with

results presented later in this thesis.

Figure 3.1: Control and data schematic for HEMS with utility demand response communication.

3.2.1.1 Optimization Formulation

Here, we provide the overall chance constrained MPC optimization model for the HEMS

algorithm. Let the vectors ut = [P grid
t , P curt

t , dhvac
t , P ch

t , P
dis
t ] and xt = [T in

t , E
b
t ] be the collection

of decision variables and state variables, respectively, at time t ∈ T where T = {1, . . . , Th}. Then,
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the overall chance constrained MPC-based convex optimization problem is the following:

min
{xt,ut}

Th
t=1

Th∑
t=1

(ceP grid
t + αP ch

t ) (3.1a)

s.t. 0 ≤ P grid
t , ∀t ∈ T , (3.1b)

0 ≤ P curt
t ≤ P sol

t , ∀t ∈ T , (3.1c)

T in
t+1 = T in

t + β1(T out
t − T in

t )− β2d
hvac
t + β3P

rad
t , ∀t ∈ T , (3.1d)

0 ≤ dhvac
t ≤ 1, ∀t ∈ T , (3.1e)

T t+1 ≤ T in
t+1 ≤ T t+1, ∀t /∈ {tDR,s, tDR,f}, (3.1f)

Pr(T t+1 − T in
t+1 ≤ 0) ≥ 1− εT , ∀t ∈ {tDR,s, tDR,f}, (3.1g)

Pr(T in
t+1 − T t+1 ≤ 0) ≥ 1− εT , ∀t ∈ {tDR,s, tDR,f}, (3.1h)

P grid
t + (P sol

t − P curt
t ) + P dis

t − P uc
t − P acdhvac

t − P ch
t = 0, ∀t ∈ T , (3.1i)

Eb
t+1 = Eb

t + ηchP ch
t ∆t− 1

ηdis
∆tP dis

t , ∀t ∈ T , (3.1j)

Eb ≤ Eb
t+1 ≤ E

b
, ∀t ∈ T , (3.1k)

0 ≤ P dis
t ≤ P b

, ∀t ∈ T , (3.1l)

0 ≤ P ch
t ≤ P

b
, ∀t ∈ T , (3.1m)

Pr

( tDR,f∑
t=tDR,s

P grid
t −

tDR,f∑
t=tDR,s

P pred
t +Butil ≤ 0

)
≥ 1− εDR, ∀t ∈ {tDR,n, tDR,f}. (3.1n)

The objective function in (3.1a) minimizes the cost of electricity drawn from the grid and has

a small penalty on battery usage to capture future replacement costs, where α = 0.01 in this

work. The constraint in (3.1b) enforces that excess PV generation, i.e., PV generation when

the battery is fully charged and all HVAC and uncontrollable loads have been met, cannot be

exported to the grid. Note that this equation can be omitted in a situation where there is net

metering or feed-in tariffs. Equation (3.1c) limits PV curtailment by the amount of PV generation

available. The indoor temperature dynamics model is given in (3.1d), where β1 represents the

building envelope coefficient, β2 is the cooling gain coefficient, and β3 is the solar gain coefficient.

The limits on the HVAC duty cycle (for cooling) are enforced in (3.1e). Outside the DR period, the
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indoor temperature comfort bound is enforced by (3.1f). Notice that the thermal comfort bounds

[T t+1, T t+1] are time-varying to allow the thermal comfort band to be relaxed during times when

the home is unoccupied. During the DR period, the chance constraints in (3.1g)-(3.1h) enforce

that the upper and lower thermal comfort bounds must be satisfied with a high probability 1− εT

and 1 − εT , respectively, given uncertainty in the outdoor air temperature forecast, where εT and

εT are small numbers (e.g., εT , εT ≤ 0.1). The power balance within the home is given in (3.1i).

The HBS model is given in (3.1j)-(3.1m). Since proper behavior is guaranteed by the structure of

the problem (see Chapter 5), we omit the non-convex complementarity constraint P ch
t · P dis

t = 0

for t ∈ {1, . . . , Th} that ensures non-simultaneous HBS charging and discharging. Lastly, (3.1n)

ensures that the DR request, i.e., reducing the predicted residential load by some amount Butil, is

satisfied with a high probability 1 − εDR given uncertainty in available PV generation, where εDR

is a small number (e.g., εDR ≤ 0.1).

3.2.1.2 Derivation of the Chance Constraint

Chance constraints are introduced into the problem to ensure the DR request is satisfied

and the user thermal comfort is maintained with high probability given uncertainty in forecasting

errors in weather parameters that dictate PV power generation and the indoor air temperature. In

this section, we derive a convex reformulation of the chance constraints in (3.1g)-(3.1h) and (3.1n)

according to the methods provided in 2.3.1. First, we will focus on the constraint that ensures

the DR request is satisfied with probability 1− εDR in (3.1n), where the actual power drawn from

the grid is dictated by the power balance constraint in (3.1i), which is subject to uncertainty in

available PV generation. The available PV power can be written as P sol
t = P sol,f

t + P sol,e
t , where

P sol,f
t and P sol,e

t are the solar generation forecast and forecast error at time t, respectively. We

assume the solar forecast error P sol,e
t is Normally distributed P sol,e

t ∼ N (µS
t , (σ

S
t )2) and that P sol,e

t

at different times are independent. Then, we obtain the following expression for P grid
t in (3.1n)
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using (3.1i):

P grid
t = P curt

t − P sol,f
t − P sol,e

t + P uc
t + P acdhvac

t + P ch
t − P dis

t . (3.2)

Notice that the sum of Normally distributed forecast errors will result in another Normally dis-

tributed random variable denoted P sol,e ∼ N (µS, σS) where µS =
∑tDR,f

t=tDR,s
µS
t and

(σS)2 =
∑tDR,f

t=tDR,s
(σS
t )2. We can then write the constraint in (3.1n) as the following:

Pr
(
GDR
t ≤ 0

)
≥ 1− εDR, (3.3)

where GDR
t is given by:

GDR
t =

tDR,f∑
t=tDR,s

P grid
t +Butil −

tDR,f∑
t=tDR,s

P pred
t , (3.4)

and P grid
t is given by (3.2). Since P sol,e is Normally distributed, GDR

t is also Normally distributed

with the following mean µDR and standard deviation σDR given by:

µDR =
tDR,f∑
t=tDR,s

(P acdhvac
t + P uc

t + P ch
t − P dis

t − P
sol,f
t )− µS +Butil −

tDR,f∑
t=tDR,s

P pred
t ,

σDR =
√

(σS)2. (3.5)

Therefore, the chance constraint in (3.1n) can be written as:

Pr(GDR
t ≤ 0) = Φ

(
0− µDR

σDR

)
≥ 1− εDR, (3.6)

where Φ(·) is the CDF of the Normal distribution N (0, 1). The chance constraint that ensures the

DR request is satisfied with a high probability is obtained by taking the inverse CDF of both sides

of (3.6), which is given by:

tDR,f∑
t=tDR,s

P pred
t −

tDR,f∑
t=tDR,s

(P acdhvac
t + P uc

t + P ch
t − P dis

t − P
sol,f
t ) + µS −Butil ≥ Φ−1(1− εDR)

√
(σS)2.

(3.7)

Thus, the constraint in (3.1n) is replaced with the above convex reformulation in (3.7).

Next, we derive the convex reformulation of the chance constraint in (3.1h) that ensures the

thermal comfort upper bound is satisfied with high probability given uncertainty in forecasting
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errors in weather parameters that influence indoor air temperature, i.e., P sol
t and P rad

t . First,

rewrite (3.1h) as

Pr
(
GTt+1 ≤ 0

)
≥ 1− εT , (3.8)

where GTt+1 = T in
t+1−T t+1. For the probabilistic equation in (3.8), write the outdoor temperature as

T out
t = T out,f

t +T out,e
t , where T out,f

t is the forecasted outdoor temperature and T out,e
t is the outdoor

temperature forecast error, and similarly write the solar irradiance as P rad
t = P rad,f

t + P rad,e
t ,

where P rad,f
t is the forecast solar irradiance and P rad,e

t is the solar irradiance forecast error. Both

the outdoor temperature forecast error and solar irradiance error are assumed to be Normally

distributed: T out,e
t ∼ N (µT

t , (σ
T
t )2) and P rad,e

t ∼ N (µP
t , (σ

P
t )2) [63]. Then the function GTt+1

becomes:

GTt+1 = T in
t + β1(T out,f

t + T out,e
t − T in

t )− β2d
hvac
t + β3(P rad,f

t + P rad,e
t )− T t+1. (3.9)

Since T out,e
t and P rad,e

t are Normally distributed, GTt+1 is also Normally distributed with the fol-

lowing mean µTt and standard deviation σTt :

µTt = T in
t + β1(T out,f

t + µT
t − T in

t )− β2d
hvac
t + β3(P rad,f

t + µP
t )− T t+1, (3.10a)

σTt =
√

(β1σT
t )2 + (β3σP

t )2. (3.10b)

Therefore, the chance constraint in (3.8) can be written as

Pr(GTt+1 ≤ 0) = Φ

(
0− µTt
σTt

)
≥ 1− εT , (3.11)

where Φ(·) is the CDF of the standard Normal distribution N (0, 1). The chance constraint for

ensuring the indoor air temperature satisfies the upper bound with probability (1− εT ) is obtained

by taking the inverse CDF of both sides of (3.11):

T t+1 − T in
t − β1(T out,f

t + µT
t − T in

t ) + β2d
hvac
t − β3(P rad,f

t + µP
t )

≥ Φ−1(1− εT )
√

(β1σT
t )2 + (β3σP

t )2, (3.12)

which replaces (3.1h) in the HEMS formulation in (3.1).



29

Lastly, we consider the chance constraint in (3.1g). Using the same method and assumptions

on the uncertainty in outdoor temperature T out
t and solar irradiance P rad

t as in the derivation of

(3.12) above, we obtain the following convex reformulation of (3.1g):

T in
t + β1(T out,f

t + µT
t − T in

t )− β2d
hvac
t + β3(P rad,f

t + µP
t )− T t+1

≥ −Φ−1(1− εT )
√

(β1σT
t )2 + (β3σP

t )2. (3.13)

Thus, (3.13) replaces (3.1g) in the HEMS formulation in (3.1).

3.2.1.3 Case Study

To demonstrate the proposed HEMS algorithm (3.1), we provide simulation results for DR

during a summer afternoon for two different houses. The MATLAB-based solver for disciplined

convex programs, CVX, is used in this work [64,65]. For all simulations, we assume the DR request

notice is received by the HEMS at 2pm, which is 2 hours before the start of the summer load

reduction DR event from 4pm to 6pm, and the DR reduction request needs to be satisfied with

probability at least 1− εDR = 0.95 while maintaining the thermal comfort bounds with probability

at least 1− εT = 1− εT = 0.95. The preferred indoor thermal comfort band is 68°F ≤ T in
t ≤ 72°F

from 9am to 5pm and restricted to 69°F ≤ T in
t ≤ 71°F otherwise, when the residence is assumed to

be occupied. The simulation has a 24 hour prediction horizon with 1 hour time steps.

The device models for both houses are assumed to have the same parameters. The residential

PV array size is 20m2 with a tilt of 30° and an efficiency of 16%. The 5 kWh HBS is restricted

to 15% to 85% of the maximum state of charge (SOC) to preserve the battery lifetime [66]. The

battery inverter power limit is 3 kW with an inverter efficiency of 95%. The battery charging

efficiency ηch and the discharging efficiency is ηdis are 95%. The power consumption of the HVAC

when cooling P ac is 3 kW. The cost of energy ce from the grid is assumed to be a flat rate of

$0.11/kWh. The outdoor air temperature and solar irradiance forecasts were obtained from NOAA

USCRN data [67].

The proposed HEMS algorithm is simulated for two houses, denoted House 1 and House
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Table 3.2: House model parameter values for House 1 and House 2.

Parameter House 1 House 2

β1 0.03 0.035

β2 4 3

β3 0.000163 0.000326

2, which have different house model parameters given in Table 3.2. The model parameters are

designed such that House 2 is a less-insulated version of House 1 and has a less efficient HVAC

cooling system, and are based on the parameters learned from the study in [6]. The initial battery

SOC is 1.5 kWh and initial indoor temperature is 73°F for both homes. Simulation results include

cases when the DR reduction request is Butil = 0.5 kW and Butil = 0.75 kW. The simulations also

include cases for varying uncertainty in the random variables, i.e., T out,e
t ∼ N (0, (T base+0.1(t−1))2)

where T base =0.5°F and T base =1.0°F, and P rad,e
t ∼ N (0, (P base+5(t−1))2) where P base =15 W/m2

and P base =30 W/m2. We relate P sol
t to P rad

t by the following equation:

P sol
t =

APVηPVP rad
t

1000
,

where APV is area of the rooftop PV panels (m2) and ηPV is the PV efficiency. Thus, we use this

relation to obtain the distribution P sol,e
t ∼ N

(
0,
( (Pbase+5(t−1))APVηPV

1000

)2)
.

First, we focus on the simulation results for House 1 when Butil=0.75 kW, P base =30 W/m2,

and T base=1.0°F, which are shown in Figs. 3.2 and 3.3. In Fig. 3.2, the battery is discharging when

P batt < 0 and charging when P batt > 0, the HEMS predicted grid power usage is given by P pred,

and the actual grid power usage in the DR event case is denoted P grid. Also, let PPV
t = P sol

t −P curt
t

be the actual available usable PV power and let P hvac = P acdhvac
t be the power required for the

HVAC load. From Fig. 3.2, we can see that the battery only charges when the available PV power

exceeds the base load of the home (including the HVAC load), and is slowly discharging (supplying

power to the home) in the morning hours. During the DR period, the HEMS reduces predicted

grid power usage of House 1 by leveraging the stored energy in the battery system. The results

shown in Fig. 3.3 (top) demonstrate that the indoor air temperature T in
t stays within the preferred

thermal comfort band throughout the simulation, where the outdoor air temperature forecast T out,f
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is shown for reference. The battery SOC is shown in Fig. 3.3 (middle), which highlights the usage

of energy stored in the battery during the DR period. The battery operation is included in Fig. 3.3

(bottom) to show the battery does not simultaneously charge and discharge.

Figure 3.2: Power profiles for House 1 with HEMS algorithm in (3.1) responding to a summer load
reduction DR event of Butil = 0.75 kW with uncertainty in available PV generation and outdoor
air temperature forecast error where P base =30 W/m2 and T base=1.0°F.

Figure 3.3: House 1 thermal comfort and battery operation results with HEMS algorithm in (3.1)
responding to a summer load reduction DR event of Butil = 0.75 kW with uncertainty in available
PV generation and outdoor air temperature forecast error where P base =30 W/m2 and T base=1.0°F.

Next, we look at the impact of the house parameters by focusing on the House 2 HEMS

simulation results provided in Figs. 3.4 and 3.5. In Fig. 3.4, we see that the HVAC load is much
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higher than in House 1 due to House 2’s less efficient HVAC system and weaker building envelope.

This causes the majority of the available PV generation to be used for the HVAC load instead

of charging the battery. After the DR notice occurs, the HEMS in House 2 draws more than the

predicted amount of P grid in order to pre-cool the house in order to satisfy the DR request. As in

House 1, the HEMS in House 2 leverages the energy stored in the battery during the DR period to

reduce the amount of electricity drawn from the grid to meet the DR request. Fig. 3.5 (top) shows

that the indoor air temperature T in
t stays within the preferred thermal comfort band throughout

the simulation, where the outdoor air temperature forecast T out,f is shown for reference. Compared

to House 1, the indoor temperature is much closer to the upper thermal comfort bound in House

2. The battery SOC is shown in Fig. 3.5 (middle), which highlights the usage of energy stored in

the battery during the DR period. The battery operation is included in Fig. 3.5 (bottom) to show

the battery does not simultaneously charge and discharge.

Figure 3.4: Power profiles for House 2 with HEMS algorithm in (3.1) responding to a summer load
reduction DR event of Butil = 0.75 kW with uncertainty in available PV generation and outdoor
air temperature forecast error where P base =30 W/m2 and T base=1.0°F.

Additional simulation results for both houses with varying DR requests Butil and uncertainties

with P base and T base are given in Table 3.3. Let BH1 and BH2 denote the actual reduction in grid

power usage that House 1 and House 2 were able to achieve, respectively. From Table 3.3, we can

see that BH1 and BH2 increase as the uncertainty in the solar forecast increases. For House 1 with

constant P base, increases in the uncertainty in the outdoor air temperature forecast error result in
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Figure 3.5: House 2 thermal comfort and battery operation results with HEMS algorithm in (3.1)
responding to a summer load reduction DR event of Butil = 0.75 kW with uncertainty in available
PV generation and outdoor air temperature forecast error where P base =30 W/m2 and T base=1.0°F.

decreases in BH1 since more energy is required to maintain the indoor house temperature. For the

simulation of House 2 with constant P base, in some cases the HEMS does not need to compensate

further as T base varies since the uncertainty in the available PV is more restrictive. House 1 is able

to achieve grid power usage reduction greater than or equal to the reduction achieved by House 2

due to the increased cooling efficiency and lower building envelope coefficient of House 1 relative

to House 2.

Table 3.3: Additional DR-enabled HEMS algorithm simulation results for House 1 and House 2.

P base (W/m2) T base (°F) Butil (kW) BH1 (kW) BH2 (kW)

15 0.5 0.5 0.6211 0.5815
15 1.0 0.5 0.6200 0.5811
30 0.5 0.5 0.6958 0.6609
30 1.0 0.5 0.6949 0.6609
15 0.5 0.75 0.8594 0.8307
15 1.0 0.75 0.8589 0.8307
30 0.5 0.75 0.9366 0.9109
30 1.0 0.75 0.9362 0.9109

Lastly, Monte Carlo simulations were conducted to validate that the chance constrained

optimization solutions actually satisfy the DR request with probability at least 1 − εDR = 0.95
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and the thermal comfort bounds are satisfied with probability at least 1 − εT = 1 − εT = 0.95.

Monte Carlo simulations use the optimal solution from the chance constrained HEMS formulation in

(3.1) and solar forecast error and outdoor temperature forecast error sampled randomly from their

respective distributions to check that constraints in (3.1g)-(3.1h) and (3.1n) are satisfied. For each

of the eight simulations performed in Table 3.3 for both House 1 and House 2, 5000 Monte Carlo

simulations are performed for validating that the optimal HEMS solutions satisfy the constraints in

(3.1g)-(3.1h) and (3.1n). The percentages in Table 3.4 represent the empirical distributions of the

Monte Carlo simulations that satisfy the DR request in (3.1n) and temperature bounds in (3.1g)-

(3.1h) during the DR period. Thus, in view of Table 3.4, the Monte Carlo simulations validate

that the solution obtained with the chance constrained MPC optimization problem ensures the DR

request and temperature bounds are both satisfied with probability 0.95, respectively.

Table 3.4: Monte Carlo simulation results for validation of the chance constraints in the HEMS
formulation in (3.1).

House 1 House 2
Chance Constraint Satisfaction Chance Constraint Satisfaction

P base T base Butil (3.1g)-(3.1h) (3.1g)-(3.1h)
(W/m2) (°F) (kW) (3.1n) t=17 t=18 (3.1n) t=17 t=18

15 0.5 0.50 99.24 100.00 95.32 95.32 95.58 95.14
15 1.0 0.50 99.30 99.92 95.02 95.52 95.22 95.34
30 0.5 0.50 97.62 100.00 95.34 95.50 95.10 95.08
30 1.0 0.50 97.44 99.98 95.36 95.24 95.24 95.10
15 0.5 0.75 98.96 100.00 95.30 95.64 95.10 95.40
15 1.0 0.75 98.76 99.98 95.04 95.72 95.02 95.34
30 0.5 0.75 97.28 100.00 95.56 95.08 95.44 95.60
30 1.0 0.75 97.56 99.92 95.08 95.18 95.02 95.74

3.2.2 HEMS with Varying Controllable Resources

Next, we study the performance of the second MPC-based HEMS algorithm as the set of

controllable resources vary in both a flat (or non-time-varying) and time-of-use (TOU) electricity

pricing setting. The set of controllable resources includes residentially-owned rooftop PV panels,

a HBS, an electric vehicle (EV), and an HVAC system. The HEMS optimally schedules the set
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of controllable resources given user preferences such as indoor thermal comfort and electricity

cost sensitivity. As in the previous study, the HEMS is also a chance constrained, MPC-based

algorithm, where the chance constraint ensures the indoor thermal comfort is satisfied with a high

probability given uncertainty in the outdoor temperature and solar irradiance forecasts, which

influence indoor air temperature and HVAC usage. Instead of only considering the performance of

a HEMS algorithm with a HBS, rooftop PV generation, an EV, and a controllable HVAC system

like other research in intelligent building-to-grid optimization literature, this study looks at the

performance when a HEMS has a strict subset of those controllable resources. For example, one

of the controllable resource scenarios this study considers is when the HEMS only has access to an

HVAC system to intelligently control. The overall HEMS control and data schematic for the possible

controllable resources is shown in Fig. 3.6. In the next sections, we provide the mathematical

formulation of the HEMS, the derivation of the convex reformulation of the chance constraint, and

case study results for multiple scenarios where the set of controllable resources is different in each

scenario. The HEMS performance is measured with respect to three metrics: HBS operation (daily

cycling), electricity cost to the customer, and grid power usage (load factor to measure variation

in demand throughout the day). This study is based on my published results in [18].

Figure 3.6: Control and data schematic for HEMS with the full set of possible controllable resources.
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Table 3.5: Device scenarios for HEMS with varying controllable resources.

Scenario, s Residentially Owned Devices, Ωs

1 HVAC, PV, EV, HBS

2 HVAC PV, HBS

3 HVAC, PV, EV

4 HVAC, HBS

5 HVAC, EV

6 HVAC, PV

7 HVAC

3.2.2.1 Optimization Formulation

In this section, the overall chance constrained MPC-based optimization problem for the

HEMS is formulated, including the mathematical models for the indoor air temperature dynamics

and controllable residential resources. In this study, we assume that the HEMS must coordinate a

subset (or all) of the following resources: an HVAC system, residential PV generation, an HBS, and

an EV, in addition to satisfying the uncontrollable load using any additional power needed from

the grid. Similar to the previous HEMS study in Section 3.2.1, we assume that excess solar is not

able to be transported to the grid. We consider different scenarios of controllable resources, given

in Table 3.5, to study the effect of available controllable devices on HEMS control performance

with respect to HBS operation, electricity cost, and daily grid load factor. Let the set of devices

in scenario s be denoted Ωs ⊆ {HVAC,PV,EV,HBS}.

Let the vectors ut = [P grid
t , P curt

t , dhvac
t , P ch

t , P
dis
t , P ev

t ] and xt = [T in
t , E

b
t , E

ev
t ] be the collec-

tion of decision variables and state variables, respectively, at time t ∈ T , where T = {1, . . . , Th}.
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Then, the overall chance constrained HEMS optimization problem is the following:

min
{xt,ut}

Th
t=1

Th∑
t=1

cet
(
P grid
t + αP ch

t

)
(3.14a)

s.t. 0 ≤ P grid
t , ∀t ∈ T , (3.14b)

0 ≤ P curt
t ≤ P sol

t , ∀t ∈ T ,PV ∈ Ωs, (3.14c)

0 ≤ dhvac
t ≤ 1, ∀t ∈ T ,HVAC ∈ Ωs, (3.14d)

T in
t+1 = T in

t + β1(T out
t − T in

t )− β2d
hvac
t + β3P

rad
t , ∀t ∈ T ,HVAC ∈ Ωs, (3.14e)

Pr(T in
t+1 − T t+1 ≤ 0) ≥ 1− εT , ∀t ∈ T ,HVAC ∈ Ωs, (3.14f)

Eb
t+1 = Eb

t + ∆tηchP ch
t −∆t

1

ηdis
P dis
t , ∀t ∈ T ,HBS ∈ Ωs, (3.14g)

Eb ≤ Eb
t+1 ≤ E

b
, ∀t ∈ T ,HBS ∈ Ωs, (3.14h)

0 ≤ P ch
t ≤ P

b
, ∀t ∈ T ,HBS ∈ Ωs, (3.14i)

0 ≤ P dis
t ≤ P b

, ∀t ∈ T ,HBS ∈ Ωs, (3.14j)

Eev
t+1 = Eev

t + ∆tηevP ev
t , ∀t ∈ T ,EV ∈ Ωs, (3.14k)

Eev ≤ Eev
t+1 ≤ E

ev
, ∀t ∈ T ,EV ∈ Ωs, (3.14l)

0.9E
ev ≤ Eev

t , ∀t ∈ T f ,EV ∈ Ωs, (3.14m)

Eev
t = 0.2E

ev
, ∀t ∈ T a,EV ∈ Ωs, (3.14n)

P ev
t = 0, ∀t ∈ T a,EV ∈ Ωs, (3.14o)

0 ≤ P ev
t ≤ P

ev
, ∀t ∈ T ,EV ∈ Ωs, (3.14p)

0 = P grid
t + P sol

t − P curt
t + P dis

t − P uc
t − P acdhvac

t − P ch
t −P ev

t , ∀t ∈ T . (3.14q)

The objective function in (3.14a) minimizes the cost of electricity drawn from the grid and has a

small penalty on battery usage to capture future replacement costs, where α = 0.01 in this study.

Here, the cost of electricity is time-varying to allow for TOU prices. The constraint in (3.14b)

enforces that PV generation must be consumed locally and excess cannot be exported to the grid.

As mentioned in the previous HEMS formulation in Section 3.2.1, this equation could be omitted

in a situation where there is net metering or feed-in tariffs. If the HEMS coordinates rooftop PV,
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the equation (3.14c) limits PV curtailment by the amount of PV generation available. If the HEMS

coordinates HVAC usage, equations (3.14d)-(3.14f) model the indoor temperature dynamics, where

β1 represents the building envelope coefficient, β2 is the cooling gain coefficient, and β3 is the

solar gain coefficient. The limits on the HVAC duty cycle (for cooling) are enforced in (3.14d).

The chance constraint in (3.14f) enforces that the upper thermal comfort bound must be satisfied

with a high probability 1− εT given uncertainty in the outdoor air temperature forecast and solar

irradiance, where εT is a small number like 0.05 or 0.1. The derivation of the convex reformulation

of the chance constriant in (3.14f) is provided in the next section. If the HEMS is able to control

a HBS, the optimization uses the battery model constraints given in (3.1j)-(3.1m). We again omit

the non-convex complementarity constraint P ch
t · P dis

t = 0, ∀t ∈ {1, . . . , Th} since proper HBS

charging and discharging behavior is guaranteed by the structure of the problem, i.e., the small

penalty on battery usage in the objection in (3.14a) (see Chapter 5). If an EV is included in the

set of controllable resources, the HEMS algorithm includes the EV charging constraints in (3.14k)-

(3.14p). For constraints (3.14m)-(3.14o), let T f be the set time periods where the EV must be

≥90% charged and let T a be the set of time periods when the EV is unavailable for charging (away

from the home). Then, (3.14m) ensures the EV is charged for the next trip and (3.14n)-(3.14o)

enforces that the EV cannot be charged by the HEMS while away from the home. Lastly, the

power balance (PB) within the home is given in (3.14q). Note that terms in (3.14q) are omitted as

necessary if their corresponding device is not applicable to the HEMS algorithm in scenario s.

3.2.2.2 Derivation of the Chance Constraint

Now, we derive the convex reformulation of the chance constraint in (3.14f) that ensures the

user thermal comfort is maintained with high probability given uncertainty in forecasting errors

in weather parameters that influence indoor air temperature. Notice that this constraint is the

same as the chance constraint in (3.1h). Using the same assumptions and derivation for (3.1h) in
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Section 3.2.1.2, we obtain the following convex reformulation:

T t+1 − T in
t − β1(T out,f

t + µT
t − T in

t ) + β2d
hvac
t − β3(P rad,f

t + µP
t )

≥ Φ−1(1− εT )
√

(β1σT
t )2 + (β3σP

t )2, (3.15)

which replaces (3.14f) in the HEMS formulation in (3.14).

3.2.2.3 Case Study

Case study results demonstrate the dependence of the chance constrained MPC-based HEMS

performance on the set of available controllable resources. For each scenario in Table 3.5, we provide

simulation results for a home subject to a constant electricity price of ce = $0.11/kWh and when

subject to a TOU pricing schedule. The TOU rates in Table 3.6 are based on Xcel Energy’s

summer TOU rates [68]. The problem is implemented in MATLAB and the convex optimization

solver CVX [64,65] is used in this work. For all simulations, we assume the thermal comfort bound

must be satisfied with probability 0.95 (εT = 0.05). The preferred indoor thermal comfort requires

the indoor temperature to be below 72°F for all times t in each scenario s. The simulation is run

for 7 days with a prediction horizon of H = 12 hours with 1 hour time steps. The weather and

uncontrollable load data were obtained from the RBSA data set [69].

The residential PV array size is 16m2 with an efficiency of 16%. The HBS has a rated storage

capacity of 5 kWh and the inverter power limit is 3 kW. The HBS has a charging and discharging

efficiency ηch = ηdis = 95%. The HBS SOC limits Eb and E
b

are 15% and 85% of the rated energy

storage capacity, respectively, which limits battery degradation when operating in this region [6].

The power consumption of the HVAC when cooling is P ac = 3 kW. The EV has a 14.5 kWh

battery capacity, a charging inverter limit of 3.5 kW, and charging efficiency ηev = 95%. Based on

a standard work schedule, we assume that the EV must be charged to ≥ 90% by 9am daily, the

EV is away from the home (not able to be charged) from 9am to 5pm daily, and the EV returns at

5pm daily with the EV battery at 20% capacity.

The chance constrained MPC-based algorithm for a HEMS is simulated using the same house
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Table 3.6: TOU rates for HEMS performance study.

Period Time Price, cet
Off Peak 9pm-9am $0.08/kWh

Shoulder 9am-2pm,6pm-9pm $0.13/kWh

On-Peak 2pm-6pm $0.18/kWh

for each of the 7 device scenarios in Table 3.5 in a constant electricity price schedule and a TOU

varying price schedule. The house has model parameters β1 = 0.03, β2 = 4, and β3 = 1.63× 10−4.

The initial battery SOC is 1.5 kWh, the initial EV SOC is 7.25 kWh, and the initial indoor

temperature is 70°F. The outdoor temperature forecast error at each time t ∈ {1, . . . , Th} is assumed

to be T out,e
t ∼ N (0, (0.5 + 0.1(t − 1))2) and the solar irradiance forecast error is assumed to be

P rad,e
t ∼ N (0, (15 + 5(t− 1))2). We perform receding horizon MPC, where we implement the first

hour of the control strategy, and then repeat the optimization starting from the next hour where

the initial indoor temperature at the next step includes added sampled Gaussian noise from the

weather forecast uncertainty.

Three metrics are used to evaluate HEMS performance. The first metric is average daily

HBS cycling over the 7 day simulation, since battery lifetime is often measured in cycles, which we

define as:

average daily HBS cycling =
1

7

∆t
∑7·24

t=1 P
ch
t

E
b · 85%

. (3.16)

The second metric is total cost to the customer, which is minimized by the HEMS algorithm

objective according to the electricity pricing schedule. The third metric is daily load factor for each

day i in the simulation, which is given by:

load factor for day i =
max({P grid

t }t=24i
t=24(i−1)+1)

mean({P grid
t }t=24i

t=24(i−1)+1)
, (3.17)

which we use to capture the variation in P grid
t each day, i.e., “peakiness” of electricity demand from

the grid.

First, we show the simulation results for Scenario 1, a house with an HVAC system, an HBS,

rooftop PV panels, and an EV, in Figs. 3.7 and 3.8. In Fig. 3.7 (top), we highlight the difference in



41

the electricity drawn from the grid for the different electricity pricing schedules. In a TOU pricing

situation, we see that there is a spike in the amount of P grid
t consumed before the price of electricity

increases at 9 AM daily. Since Scenario 1 includes rooftop PV generation that is able to satisfy

the load during the next price increase at 2 PM daily, we generally do not see the new peaks arise

at the 2 PM price increase time (except in Day 2). In Fig. 3.7 (middle), we provide the indoor air

temperature to show the differences in pre-cooling trends. In the constant electricity price case,

the HEMS pre-cools the home before the hottest part of each day (the outdoor air temperature

is provided in Fig. 3.7 (bottom) for reference). Conversely, in the TOU electricity price case the

HEMS pre-cools the home in the hours leading up to the daily price increases. In Fig. 3.8, we show

the HBS operation in both pricing situations. From Fig. 3.8 (both middle plots), we can see that in

a constant electricity price setting, the HBS generally charges when there is excess solar; whereas,

in the TOU electricity price setting, the HBS is charged when the electricity is least expensive and

discharges to meet the total load when the price of electricity more expensive. This operation also

impacts the HBS cycling pattern as shown in Fig. 3.8 (top).

Next, we provide simulation results in terms of the three metrics described above for each

of the 7 scenarios listed in Table 3.5 with both a constant electricity price and a TOU electricity

price. These results are summarized in Table 3.7, where bolded values indicate an increase from

the constant electricity price case to the TOU pricing case. In Table 3.7, for all scenarios except

Scenarios 3 and 6, we see that the daily load factor is generally larger in the TOU electricity pricing

case than the constant electricity price case. The TOU electicity pricing case for Scenarios 3 and 6

generally do not experience increased daily load factors due to the lack of battery-like devices (HBS

and EV) in these scenarios. In scenarios with battery-like devices, the HEMS charges these before

the daily price increases at 9 AM and 2 PM resulting in higher daily load factors. Additionally,

the average daily HBS cycling increases in a TOU price setting in all scenarios with an HBS. This

further shows that TOU pricing leads to HBS charging patterns where the HBS will charge using

power from the grid during off-peak periods, instead of utilizing the battery to store excess solar.

In all scenarios, the TOU electricity schedule decreases the customer electricity price compared



42

Figure 3.7: Simulation results for for P grid and T in in Scenario 1 for HEMS algorithm with varying
controllable resources. Top: Profiles of power drawn from the grid for both pricing schedules with
the proposed HEMS algorithm. Middle: Average hourly indoor air temperature for both pricing
schedules with the proposed HEMS algorithm. Bottom: Outdoor air temperature forecast.

to a constant price; however, that is often at the cost of increased HBS cycling and daily load

factor. For comparison, a baseline simulation was performed where the HEMS operates without

the chance constrained MPC and the only controllable resource is HVAC. This highlights that, in

most scenarios, the HEMS control using an MPC-based algorithm results in a lower electricity cost,

except in Scenario 4 with a constant electricity price and Scenario 5. In Scenario 4 with a constant

electricity cost, the total electricity price was higher than the baseline case since the inclusion of

chance constraints results in a slightly more conservative HVAC control solution to account for the

uncertainty. In Scenario 5, the total electricity cost is the largest due to the increased load resulting

from the EV and the lack of a coupled HBS or PV system. However, in Scenario 5 the HEMS was

able to reduce the total electricity cost in the TOU price case compared to the constant price

case. Thus, in most scenarios, the HEMS utilizing an MPC-based algorithm was able to leverage

the controllable resources to provide a cost reduction to the consumer, even if HVAC is the only
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Figure 3.8: Simulation results for HBS usage in Scenario 1 for HEMS algorithm with varying
controllable resources. Top: HBS SOC under both pricing schedules with the proposed HEMS
algorithm. Middle(both): Stacked area plot showing HBS charging and discharging behavior with
respect to total load (uncontrollable load and HVAC load) and consumed solar power: PPV =
P sol − P curt. (bottom) EV charging profile under both pricing schedules with the proposed HEMS
algorithm.

controllable resource available.

3.3 Discussion and Conclusions

In this chapter, two chance constrained MPC-based optimization models were proposed for

a HEMS algorithm that coordinates appliances, customer preferences, and BTM controllable re-

sources such as generation from rooftop PV panels and an HBS. These algorithms aim to improve

the flexibility of residential electricity usage to aid the integration of renewable energy onto the

grid.

The first chance constrained MPC-based HEMS algorithm is capable of responding to utility-

requested DR events. Chance constraints were incorporated into the optimization problem to ensure
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Table 3.7: HEMS performance for each varying controllable resource scenario. ‘C’ and ‘TOU’
denote scenario s under a constant electricity price and TOU electricity price, respectively. HBS
cycling is the average daily HBS cycling, calculated using (3.16). The baseline scenario is a HEMS
controlling only an HVAC system without chance constrained MPC.

Scenario, s
Total

Cost ($)
HBS

Cycling
Load Factor

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 - C 24.12 0.45 3.16 1.83 2.41 3.05 2.65 3.09 2.70
1 - TOU 18.82 0.92 3.81 3.87 3.19 3.94 3.63 3.98 4.54

2 - C 16.44 0.41 3.34 2.61 2.87 3.51 2.97 3.47 2.70
2 - TOU 13.23 0.90 4.24 4.30 3.36 4.68 3.95 4.62 4.91

3 - C 24.15 – 3.30 1.82 2.25 2.96 2.86 3.06 2.60
3 - TOU 20.28 – 3.14 3.46 2.31 2.81 2.78 2.96 4.20

4 - C 29.90 0.20 1.69 2.61 1.93 2.18 2.01 1.90 2.11
4 - TOU 28.41 0.86 3.28 3.42 3.29 4.30 2.70 2.83 3.70

5 - C 37.35 – 1.85 2.07 1.49 2.25 1.87 1.96 2.28
5 - TOU 37.14 – 2.84 3.01 2.82 3.69 2.44 2.56 3.45

6 - C 16.46 – 3.55 2.59 2.70 3.28 3.31 3.45 2.60
6 - TOU 14.69 – 3.55 3.75 2.70 3.28 3.26 3.31 4.55

7 - C 29.64 – 1.76 2.64 2.02 2.16 2.02 1.88 2.09
7 - TOU 28.41 – 2.92 3.12 2.92 3.99 2.40 2.68 3.47

Baseline - C 29.67 – 1.61 2.50 1.80 2.26 1.87 1.86 2.20

the DR request and home indoor air temperature preferences are satisfied with a high probability

given uncertainty in both the solar and weather forecasts. Simulation results demonstrate the

proposed HEMS algorithm responded to the DR request by coordinating flexible devices during

the DR notice period prior to DR event, even when the uncertainty in the solar generation and

weather forecasts is increased. Monte Carlo simulations were performed to validate the satisfaction

of the chance constraints.

In the second chance constrained MPC-based HEMS study, the performance of the HEMS

algorithm is compared across multiple scenarios, each with different sets of controllable BTM re-

sources, under a constant electricity price and a TOU electricity price. Similar to the first HEMS

optimization model that was proposed, chance constraints ensured the indoor thermal comfort was

maintained with high probability given uncertainty in the weather forecast. The HEMS perfor-

mance is measured in terms of total electricity cost, HBS cycling, and daily load factor. Simulation

results showed that in most scenarios with a TOU electricity price, the HBS usage and the daily

load factor increased. While an increase in load factor may not be significant on its own, with
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aggregations of many homes, it could require an increase in ramping capacity from generators in

the grid, and potentially have a higher peak load than when HEMS are not present. Although TOU

electricity pricing did impact HBS usage and daily load factor, the HEMS was able to optimally

coordinate the available controllable resources in each scenario to decrease the total electricity cost

for the consumers.



Chapter 4

Flexible Line Flow Ratings for Minimizing Wind Power Curtailment in

Transmission Grids

This chapter presents a two-stage stochastic optimization model to determine the optimal

economic generator dispatch while minimizing the amount of curtailed wind power across possible

generation scenarios. The model includes a novel chance constrained flexible transmission line

capacity rating model that allows line capacities to be temporarily increased in areas of the network

experiencing congestion to minimize available wind power generation curtailment. The proposed

two-stage optimization model’s performance with flexible line capacity ratings is demonstrated on

the three-area RTS-GMLC data set [70], where wind power curtailment is reduced by 40% compared

to when line capacity ratings are fixed.

4.1 Transmission Line Capacity Ratings and Wind Power Curtailment

Trends

As mentioned in Section 1.1.2, there is currently over 103,700 MW of installed wind capacity

in the United States [8] (as of July 2020). This growing amount is challenging how our transmission

grid is operated. As the penetration of wind power increases, more situations arise where wind power

must be curtailed in order to minimize transmission congestion [9,10]. Wind curtailment primarily

occurs due to limited available transmission during a particular time to incorporate some or all of

the wind, or high wind power availability at times of low load and when excess generation cannot

be exported to other areas due to transmission constraints [9, 10]. In this chapter, we propose
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an optimization framework for flexible transmission line capacity ratings to minimize wind power

curtailment by temporarily and safely increasing line ratings.

Line rating constraints are used by transmission operators to ensure that flows (power car-

rying capacity) on transmission lines do not result in damage to the lines or equipment or cause

reliability issues. Today, most regional transmission organizations/independent system operators

(RTOs/ISOs) use either static line ratings or seasonal line ratings [71, 72]. Included in these rat-

ings are a continuous rating (indefinitely), a long-term rating (hours), and a short-term emergency

rating (minutes) [72, 73]. However, many RTOs/ISOs are researching dynamic line ratings (DLR)

that reflect weather conditions and line congestion in real-time [71].

Incorporating DLR with chance constraints has been considered to address transmission line

congestion and uncertainty in renewable generation forecasts and weather conditions [42–45]. A

chance constrained congestion management problem is proposed in [43] to ensure the probability

that a line is overloaded is less than some prescribed value. In a security constrained optimal power

flow setting with DLR, chance constraints are used to incorporate uncertainty in weather conditions

that impact the line ratings [45].

Additionally, chance constraints have been used to address uncertainty in wind power gen-

eration. In [42], chance constraints are used in a two-stage stochastic unit commitment problem

to ensure that the available wind power is utilized with a high probability. Similar to our use of

chance constraints for line capacity limits in this study, chance constraints have been used to ensure

those line ratings are satisfied with a high probability in a security constrained optimal power flow

setting [44]. In [74], the authors propose a stochastic two-stage program that minimizes congestion

due to uncertain wind generation in the network by allowing stochastic variation in line ratings.

Optimal transmission switching has been proposed as another approach for mitigating line

congestion in transmission networks. In [75], the authors propose a security constrained optimal

power flow model with transmission switching and DLR that is based on real-time weather con-

ditions and conductor properties in order to alleviate transmission congestion and ensure power

flows in the network are more homogeneous. In [76], a sample average approximation of a chance
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constraint is proposed to ensure available wind power is utilized with high probability in a day

ahead economic dispatch with optimal transmission switching.

Using integer chance constraints to model flexible system limits, similar to those we present

in this study, has been proposed within a unit commitment setting. In [46], chance constraints

are used to ensure that the generators operating limits are violated with a low probability when

uncertainty in wind power availability is considered. In this study, we use a similar approach where

we use an integer chance constraint to ensure the probability of line capacity limit violations is less

than some prescribed value in solving the optimal power flow with uncertain wind generation.

This chapter proposes a two-stage stochastic optimal power flow model with flexible trans-

mission line capacity ratings to account for variability in wind power generation and alleviate line

congestion. We formulate an integer joint chance constraint to limit the probability of continuous

line rating violations across all considered wind scenarios, all times, and all lines in the network.

During violations, the rating is increased to the long-term line limit. We use a sample average (SAA)

approximation for the joint chance constraint in order to render it computationally tractable. This

chapter is based on my published work in [19].

4.2 Two-Stage Stochastic Optimization Model for Flexible Line Flow Ratings

This section discusses the flexible line flow ratings we use in this study and provides the

overall formulation for the two-stage stochastic problem. Then the uncertainty in wind forecast

errors is discussed, and we derive the SAA of the chance constraint, using the method described in

Section 2.3.3, that captures uncertainty in the forecasted wind output.

4.2.1 Flexible Line Flow Ratings

In this work, we assume the line flow rating must nominally be at the continuous rating. As

mentioned in Section 4.1, a line can safely and reliably be at its continuous rating, denoted F l,

for an indefinite amount of time. However, to mitigate congestion in the network and minimize

curtailment of available wind generation, a line flow rating can be increased temporarily to its long
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Table 4.1: Notation for flexible line flow rating model.

Sets
l ∈ L Set of lines l = (i, j)
b ∈ B Set of buses
g ∈ G Set of thermal, dispatchable gener-

ators
r ∈ R Set of renewable sources (PV and

hydro)
w ∈ W Set of wind sources
s ∈ S Set of scenarios
h ∈ Hg Set of cost function sample points

for generator g
t ∈ T Hourly time steps: 1, . . . , T
Rb Set of renewable sources r at bus b
Wb Set of wind sources w at bus b
Gb Set of generators at bus b
Lo
b Set of lines with origin bus b
Ld
b Set of lines with destination bus b

First Stage Decision Variables

PG
g,t Real power dispatch of generator g

cG
g,t Generation cost of generator g

ag,h,t Coefficient of sample point h for
generator g solution as a point on
generator cost function

Second Stage Decision Variables

yl,t,s Binary indicating line rating viola-
tion of line l

σl,t,s Continuous line flow rating viola-
tion amount

θb,t,s Voltage angle at bus b
Pl,t,s Power flow on line l
P c
r,t,s Curtailment of renewable source r

P c
w,t,s Curtailment of wind source w

Parameters

F l Continuous line power flow rating

F l Long term line power flow rating
Bl Susceptance of line l
PL
b,t Active power consumed at bus b

PG Minimum real power dispatch of
generator g

P
G

Maximum real power dispatch of
generator g

cg,h Generation cost of generator g at
sample point h (USD/hr)

ε Probability line flow violation limit
is satisfied

i Origin bus of line l
j Destination bus of line l
P res
r,t Available power from renewable

source r
P f
t Forecasted available power from

wind source w
P c
r,t Maximum curtailment of renewable

source r
P c
w,t Maximum curtailment of from wind

source w
gFS
b Bus b fixed shunt conductance
ps Probability of scenario s
pg,h Real power output of generator g at

sample point h

Random Variables
P e
w,t,s Forecast error of wind source w

P̃wind
w,t,s Available power from wind source

w

term rating, denoted F l, for a maximum of some given number of consecutive hours. Here, we

assume that a line can be at its long term rating for a maximum of 24 consecutive hours [73], and

the ratings are naturally such that F l > F l for all lines l ∈ L. We propose a chance constraint to

ensure that the continuous line flow rating is violated (up to a maximum of the long term rating)

with a low probability across all lines in the network, all time steps in the simulation, and all

considered wind scenarios.
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4.2.2 Two-Stage Stochastic Optimization Model

Next, we introduce the two-stage stochastic program with flexible line flow ratings to minimize

wind power curtailment. The relevant notation is given in Table 4.1. In the first stage, we decide

the optimal economic dispatch of the thermal generators subject to a linear power flow model with

network constraints, i.e., DC OPF. We then observe the error in the available wind power forecast.

Then in the second stage, we determine the curtailment of power generated from wind sources.

The overall flexible line capacity rating optimization problem is:

min
∑
t∈T

[∑
g∈G

cG
g,t + ps

∑
s∈S

∑
w∈W

P c
w,t,s

]
(4.1a)

subject to:

cG
g,t =

∑
g∈G

∑
h∈Hg

cg,hag,h,t, ∀g ∈ G,∀t ∈ T , (4.1b)

PG
g,t =

∑
h∈Hg

pg,hag,h,t, ∀g ∈ G,∀t ∈ T , (4.1c)

0 ≤ ag,h,t, ∀g ∈ G, ∀t ∈ T , ∀h ∈ Hg, (4.1d)∑
h∈Hg

ag,h,t = 1, ∀g ∈ G,∀t ∈ T , (4.1e)

∑
g∈Gb

PG
g,t +

∑
l∈Ldb

Pl,t,s −
∑
l∈Lob

Pl,t.s − gFS
b +

∑
r∈Rb

(P res
r,t − P c

r,t,s)+

∑
w∈Wb

(P̃wind
w,t − P c

w,t,s)− PL
b,t = 0, ∀b ∈ B,∀t ∈ T ,∀s ∈ S, (4.1f)

0 ≤ P c
r,t,s ≤ P

res
r,t , ∀r ∈ R,∀t ∈ T ,∀s ∈ S, (4.1g)

0 ≤ P c
w,t,s ≤ P

wind
w,t,s, ∀w ∈ W,∀t ∈ T ,∀s ∈ S, (4.1h)

PG
g ≤ PG

g,t ≤ P
G
g , ∀g ∈ G,∀t ∈ T (4.1i)

Pl,t,s = Bl(θi,t,s − θj,t,s), ∀l ∈ L,∀t ∈ T ,∀s ∈ S, (4.1j)
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− (F l + σl,t,s) ≤ Pl,t,s ≤ F l + σl,t,s, ∀l ∈ L,∀t ∈ T ,∀s ∈ S, (4.1k)

0 ≤ σl,t,s ≤ yl,t,s(F l − F l), ∀l ∈ L,∀t ∈ T ,∀s ∈ S, (4.1l)

1

|T ||L||S|
∑
s∈S

∑
t∈T

∑
l∈L

yl,t,s ≤ ε (4.1m)

yl,t,s ∈ {0, 1}, ∀l ∈ L,∀t ∈ T ,∀s ∈ S. (4.1n)

The objective function in (4.1a) ensures that the generator dispatch is economical and expected

curtailment of wind sources is minimized. Constraints (4.1b)-(4.1e) model the generator dispatch

cost as a linear interpolation of |Hg|-many sample points (pg,h, cg,h) of the generator dispatch and

corresponding cost. The power balance at each bus is enforced in (4.1f). Equations (4.1g) and (4.1h)

limit the curtailable power from renewable energy sources and wind sources, respectively, since

curtailment can be at most the available power. In the RTS-GMLC dataset [70], it is assumed that

hydroelectric generation units are self scheduling and any rooftop photovoltaic (PV) generation is

must-take; thus, for these renewable sources P
res
r,t = 0 for all times t ∈ T . However, wind and utility

PV are fully curtailable; thus, for utility PV sources P
res
r,t = P res

r,t and wind sources P
wind
w,t,s = P̃wind

w,t,s

for all times t ∈ T and scenarios s ∈ S. In this work, we assume that the available wind power P̃wind
w,t,s

is a random variable and is a function of the wind forecast and forecast error. The uncertainty

in available wind power will be discussed further in Section 4.2.3. The real power dispatch for

thermal generators is limited in (4.1i). The DC OPF power flow equations are given in (4.1j)-

(4.1k). Equation (4.1k) allows the continuous line flow limits to be violated by some amount σl,t,s.

The magnitude of the line flow violation can be at most the difference between the continuous line

flow rating F l and the long term line rating F l when the binary variable yl,t,s = 1, which is enforced

by (4.1l). The chance constraint in (4.1m) ensures that lines only violate their nominal continuous

line capacity rating with probability at most ε across all lines, time steps, and considered wind

scenarios. In Section 4.2.4, the chance constraint in (4.1m) will be further discussed. Lastly, (4.1n)

enforces that yl,t,s is a binary variable.
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4.2.3 Wind Forecast Uncertainty

As mentioned in Section 4.2.2, the available wind power P̃wind
w,t,s can be represented as:

P̃wind
w,t,s = P f

w,t + P e
w,t,s, (4.2)

where P f
w,t is the wind forecast and P e

w,t,s is the forecast error. We assume the hourly wind

forecast error is a random variable captured by a truncated Cauchy distribution, as demonstrated

in [77, 78]. The Cauchy distribution is truncated such that its support is [−Cw,+Cw], where Cw

is the rated capacity of wind source w ∈ W (in MW). For each wind source w ∈ W, the Cauchy

distribution describing the wind forecast error has location parameter x0 = 0 and scale parameter

γw,t = 0.15 · P f
w,t. Note that the two-stage stochastic framework for flexible line limits we propose

in this thesis is distribution agnostic due to the use of the SAA method.

4.2.4 Integer Chance Constraint Derivation

Next, we derive the SAA of the joint chance constraint in (4.1m) using the method de-

scribed in Section 2.3.3. As in Section 2.3.3, we begin by defining the following events and their

complements:

El,t = {s ∈ S : yl,t,s = 0}, ∀l ∈ L,∀t ∈ T ,

EC
l,t = {s ∈ S : yl,t,s = 1}, ∀l ∈ L, ∀t ∈ T ,

H =
⋂

t∈T ,l∈L
El,t,

HC =
⋃

t∈T ,l∈L
EC
l,t,

where S is the sample space, which we refer to as the set of scenarios, and (·)C denotes the

complement. Thus, El,t is the set of wind scenarios such that line l ∈ L does not violate the

continuous line rating at time t ∈ T , and EC
l,t is the complement. Then, H is the collection of

scenarios in the intersection of El,t for all l ∈ L and t ∈ T , and HC is the collection of scenarios

in the union of EC
l,t for all l ∈ L and t ∈ T . In this work, we want to ensure that the probability
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of nominal continuous line capacity rating F l violations is limited to at most ε across all lines, all

time steps in the simulation, and all possible wind scenarios. As shown in Section 2.3.3, this is

equivalent to:

Pr(HC) ≤ ε. (4.3)

Then, following the steps for deriving the SAA of an integer chance constraint described in Sec-

tion 2.3.3, we obtain:

1

|T ||L||S|
∑
s∈S

∑
t∈T

∑
l∈L

yl,t,s ≤ ε. (4.4)

Thus, we replace (4.1m) with the SAA in (4.4) above.

4.3 Case Study: RTS-GMLC Test System with Flexible Line Flow Ratings

In this section, we provide simulation results for the two-stage stochastic program with 100

wind scenarios on the 73-bus RTS-GMLC test system [70]. We simulate a futuristic high-wind

scenario where the system experiences transmission congestion, the active power demand at each

bus is increased by 35%, and the capacity of each wind source is doubled. A visualization of

the RTS-GMLC test system is shown in Fig. 4.1. For the discussions in this section, and to be

consistent with the RTS-GMLC test system, note that buses with labels that begin with a ‘1’, ‘2’,

or ‘3’ belong to Area 1, 2, or 3, respectively. Similarly, lines that begin with an ‘A’, ‘B’, or ‘C’

belong to Area 1, 2, or 3, respectively. The RTS-GMLC test system is a natural choice for studying

the proposed flexible line flow rating model in (4.1) because Area 3 has a high concentration of

renewable energy resources compared to the other two areas. The available wind source forecasts

are shown in Fig. 4.2.

The stochastic optimization problem is implemented in Pyomo [79], and uses the RTS-GMLC

data parser and other calculation functions from EGRET [80]. We solve the proposed two-stage

optimization problem in (4.1), a mixed-integer linear program (MILP), using an academic Gurobi

8.1.1 license [81]. For the simulations provided, we use a 24 hour planning horizon with hourly
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Area 3

Area 2

Area 1

Figure 4.1: The 73-bus RTS-GMLC test system. The network has 3 areas and consists of 120 lines,
76 thermal generators, 76 renewable energy sources, and 4 wind sources. Each node represents a
bus, and the node color represents the type of renewable energy source located at that bus. Note
that buses can contain multiple types of generation sources. The node size is proportional to the
generating capacity at that bus for the August day used in these simulations. The line thickness
corresponds to the line rating capacity.

Figure 4.2: Available wind power forecast for each wind source in the RTS GMLC test system.

time steps. The simulations in this work were performed on a computer with a 2.4 GHz Intel core

processor with 8 GB of RAM. All simulations are solved to a MIP optimality gap of 0.1% (0.001)

and each simulation took less than 10 minutes to complete.
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We provide simulations results for the problem formulation in (4.1) for both ε = 0.01 and

ε = 0.05, where ε is the probability of continuous power flow rating violations across all lines, time

steps, and wind scenarios. In Table 4.2, we compare the number of continuous line rating violations

when ε = 0.01 and ε = 0.05 across all time periods and considered scenarios for each line. Note

that lines not included in Table 4.2 never violated their continuous rating, i.e., −F l ≤ pt,sl ≤ F l

for all times and all considered scenarios. From Table 4.2, we can see that some of the lines that

experience temporary line capacity violations connect buses with wind sources. Furthermore, when

ε is relaxed from 0.01 to 0.05, we see that the total number of violations increase, as expected. The

SAA of the joint chance constraint in (4.4) is binding when ε = 0.01 since the sum of violations in

column 2 of Table 4.2 is equal to ε|L||T ||S|, and (4.4) is not binding when ε = 0.05. Furthermore,

Table 4.2 shows that the majority of the violations are lines connected to wind sources and the line

CB-1. Line CB-1, which links Area 3 to Area 2, experiences transmission line capacity increases

above its nominal limit in order to transport the excess power from wind sources to other areas of

the network with less distributed renewable and wind sources. Also in Table 4.2, notice that there

are no lines connected to the wind source at bus 122 that experience line violations, which is likely

due to the lack of distributed renewable and wind sources in Area 1 compared to Area 3.

Table 4.2: Number of continuous line rating violations across all times and considered wind scenarios
for both ε = 0.01 and ε = 0.05. Both the origin and destination bus labels are given, where bold
bus labels indicate there is a wind source at that bus.

Line l

(origin bus, destination bus)

∑
t∈T

∑
s∈S

yl,t,s

ε = 0.01 ε = 0.05

B12-1 (208, 209) 300 300

C6 (303, 309) 708 780

C27 (316, 317) 165 210

C29 (317, 318) 653 698

CB-1 (318, 223) 1054 1099

Total Violations 2880 3087

For the lines in Table 4.2, we show the number of violations as a function of time in Fig. 4.3 for
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Figure 4.3: Number of continuous line rating violations at each time in the planning horizon for
lines when ε = 0.01 and ε = 0.05. Each of the included lines are also referenced in Table 4.2.

both ε = 0.01 and ε = 0.05. Fig. 4.3 demonstrates that, as the probability of continuous line rating

violations is relaxed, the number of violations increase during times of high wind availability. The

violations seen in Fig. 4.3 for lines C27 and C29, which are both connected to bus 317, correlate

with times of high wind availability for the wind source at bus 317, as seen in the forecasts in

Fig. 4.2. Similarly, the line violations for line C6, which is connected to the wind sources at bus

303 and 309, correspond to times with increased wind generation, as seen from both Figs. 4.2 and

4.3 together. Line CB-1 experiences violations during both times of increased wind generation in

the early morning and afternoon hours in order to transport excess wind power generation from
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Area 3 to Area 2.

Table 4.3: Comparison of wind power curtailment for each wind source with flexible line capacity
ratings and fixed line capacity ratings. Sum of wind power curtailment for each wind source over
all scenarios in the simulation planning horizon (MW).

Wind Location

(bus)

∑
t∈T

∑
s∈S

P c
w,t,s

ε = 0.01 ε = 0.05
Fixed Rating:

−F l ≤ pl,t,s ≤ F l
303 85.40 19.60 136.10

309 89.12 3.81 143.45

317 1590.77 1534.37 2887.36

122 227.82 435.24 156.68

Next, we demonstrate that allowing temporary violations of continuous line flow ratings

minimizes the curtailment of available wind power. We compare the average wind power curtailment

with the proposed flexible line flow limits and with the flow limits fixed at the continuous line

flow rating F l with the same 100 wind scenarios, i.e., we replace constraints (4.1k)-(4.1n) with

−F l ≤ pt,sl ≤ F l for all l ∈ L, t ∈ T , s ∈ S. Table 4.3 gives the sum of the average wind power

curtailment over all wind scenarios at each time step in the simulation. For the wind sources in

Area 3 shown in Table 4.3, when we allow flexible line flow ratings, we see that the wind curtailment

is less than when the line flow ratings are fixed at the continuous rating. In other words, wind

curtailment in the flexible line rating cases (ε = 0.01 and ε = 0.05) is less than the wind curtailment

observed with fixed line ratings in the congested area of the network. When we compare the wind

curtailment between the flexible line flow cases for ε = 0.01 and ε = 0.05 in Table 4.3, we see

that curtailment decreases when the probability of violating the continuous line rating increases in

Area 3, as expected since the number of violations can increase. The wind source at bus 122 in

Area 1 does not experience the same curtailment pattern as seen for the wind sources in Area 3 in

Table 4.3, which is likely due to less congestion in Area 1 as a result of less distributed renewable

energy sources. In total, the proposed method with flexible line flow ratings results in 40.03% less

wind energy curtailment and 0.67% reduction in conventional generation dispatch costs compared
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to when the line ratings are fixed at their nominal continuous rating.

4.4 Discussion and Conclusions

A two-stage stochastic optimal power flow problem with flexible line ratings is proposed to

address uncertainty in wind power forecasts, alleviate line congestion, and minimize wind power

curtailment. We use the SAA of a joint chance constraint that limits the probability of continuous

line rating violations across all considered wind scenarios, all times in the simulation, and all lines in

the network. We provide simulation results on the RTS GMLC test system showing that flexible line

limits minimize the wind power curtailment in a congested area of the network with a large amount

of distributed renewable and wind sources. By allowing violations of the nominal continuous line

rating with some low probability, wind power that would have been otherwise curtailed is exported

to other parts of the network to satisfy the power demand. We show that lines that experience

violations and the occurrence of those violations correspond to the wind source location and the

times of high wind generation. Lastly, the majority of continuous line rating violations occur on lines

in Area 3 and on a line that connects Area 3 to Area 2, which transports the excess wind generation

to other parts of the network with less distributed renewable sources and wind sources.



Chapter 5

Optimality Guarantees for Models with Complementarity Constraints in

Energy Systems

This chapter presents theoretical analysis that guarantees proper model behavior for relaxed

convex models commonly found in power and energy optimization problems. The focus of this work

is primarily on grid-connected electrical ESS models, where the non-convex complementarity con-

straint is omitted from the optimization model using a penalty reformulation approach. In a BTM

setting, theoretical analysis for omitting the complementarity constraint in feed-in tariff models is

also provided. The optimality guarantees for the ESS model are proven for an energy management

system setting under various EMS-to-grid interaction scenarios, an transmission setting with a lin-

ear power flow approximation (DC OPF), and in a distribution setting with a second-order cone

relaxation of AC OPF. For each setting, numerical case studies are provided to demonstrate the

proper behavior of the relaxed convex models.

5.1 Models with Complementarity Constraints in Energy Systems

Models commonly found in energy system optimization problems often include a non-convex

complementarity constraint, which ensure two modes of operation cannot happen simultaneously

in a given model. In particular, we are interested in grid-connected ESS models that include a com-

plementarity constraint to ensure that the optimization does not produce a physically unrealizable

control policy where the ESS simultaneously charges and discharges. Ensuring proper ESS model

behavior in optimization problems is important because ESSs are widely included in research on
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renewable energy integration and power grid resiliency. ESSs are a valuable asset for stable renew-

able energy integration into the grid since they can act as a generation source and simultaneously

provide other valuable demand-side grid services, such as energy arbitrage, power quality and reli-

ability, storing excess renewable energy generation, and electricity bill management [11,13]. These

benefits are driving rapid adoption of ESSs both in front of and behind the meter [82]. And due to

recent regulations in the United States [83], ESSs are expected to increasingly participate in grid

operations. For all these reasons, it is important to efficiently and accurately compute optimal ESS

operation.

Let t ∈ T be the set of discrete time steps and let e ∈ E be the set of ESSs in a system. The

following convex ESS model will be the main focus of the theoretical analysis in this chapter:

Ee,t+1 = Ee,t + ∆t
(
ηch
e P

ch
e,t − 1

ηdise
P dis
e,t

)
, ∀e ∈ E , ∀t ∈ T , (5.1a)

Ee ≤ Ee,t+1 ≤ Ee, ∀e ∈ E , ∀t ∈ T , (5.1b)

0 ≤ P ch
e,t ≤ P

ch
e , ∀e ∈ E , ∀t ∈ T , (5.1c)

0 ≤ P dis
e,t ≤ P

dis
e , ∀e ∈ E , ∀t ∈ T . (5.1d)

The ESS state of charge dynamics is given in (5.1a), where the charging and discharging efficiencies

are such that 0 < ηch
e , η

dis
e < 1. Notice that this ESS model has separate terms for ESS charging and

discharging, i.e., P ch
e,t and P dis

e,t , which captures a more realistic round-trip efficiency by accounting

for losses in ESS-to-grid interactions [11]. The ESS state of charge (SOC) is constrained between

the minimum and maximum SOC limits in (5.1b). The charging and discharging limits are enforced

in (5.1c) and (5.1d), respectively.

Ensuring proper ESS dynamics in (5.1), i.e., ensuring the model does not allow the opti-

mization to produce a physically unrealizable optimal control policy where the ESS simultaneously

charges and discharges, is often achieved by including the non-convex complementarity constraint:

P ch
e,t · P dis

e,t = 0, ∀e ∈ E ,∀t ∈ T . (5.2)

The complementarity constraint in (5.2) ensures that P ch
e,t and P dis

e,t cannot simultaneously both be
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non-zero. The computational challenges associated with including the complementarity constraint

in (5.2) are discussed in Section 2.2. Alternatively, the complementarity constraint in (5.2) can be

enforced by modifying (5.1) to include binary variables. The authors in [56, 60, 84–88] (and many

others) adopt an ESS model with binary variables in their research to guarantee optimal solutions

obey proper non-simultaneous charging and discharging constraints. However, introducing binary

variables into an optimization problem requires the use of a mixed integer programming (MIP)

solver and may be computationally limiting depending on the size of the optimization problem.

The convex ESS model in (5.1) with the complementarity constraint omitted is widely used

in power system optimization research, as seen in [6,62,89] (and many others); however, the authors

do not comment on whether they can guarantee proper ESS behavior. When the complementarity

constraint is omitted, situations arise when the optimization can result in an optimal control policy

where the ESS simultaneously charges and discharges. Thus, this chapter focuses on providing

theoretical analysis that guarantees an optimization problem that includes the ESS model in (5.1)

with the complementarity constraint in (5.2) omitted will not produce an optimal solution with

simultaneous ESS charging and discharging. To achieve this, we use a penalty reformulation ap-

proach, similar to the penalty reformulation approach introduced in Section 2.2, in order to omit

the non-convex complementarity constraint. Thus, the following linear penalty on ESS charging

and discharging:
∑

e∈E
∑

t∈T (αeP
ch
e,t+βeP

dis
e,t ), where αe ≥ 0, βe ≥ 0, and (αe+βe) > 0 for all e ∈ E ,

is added to the objective in each of the grid settings described in this chapter. Notice that this

implies the optimization objective only needs to penalize either charging or discharging in practice.

The ESS charging and discharging penalties αe and βe can be used to capture the lifetime cost of

charging and discharging the ESS, respectively. Other ESS lifetime prediction considerations are

presented in [90,91].

Similarly, in BTM settings, a non-convex complementarity constraint also arises when mod-

eling the electricity price in a feed-in tariff (FiT) pricing situation to ensure that the EMS cannot

physically simultaneously buy and sell power through a single service entrance. In Section 5.2, we

will provide analysis for omitting the complementarity constraint in this model as well.
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Previous studies have shown situations when the complementarity constraint can be omitted

in optimization problems that include the ESS model in (5.1) [89,91–95]. A similar penalty reformu-

lation approach was suggested by the authors in [92] for ESS models in a load-leveling optimization

model. We extend their work by providing theoretical guarantees for a convex relaxed ESS model

in three additional settings beyond load-leveling. In an economic dispatch setting, the authors

in [93] present theoretical analysis ensuring non-simultaneous ESS charging and discharging using

a similar penalty approach. For an SDP relaxation of the optimal power flow problem (OPF) for

transmission, the authors in [94] show that the complementarity constraint in the ESS model can

be omitted when the locational marginal prices (LMP’s) are positive. This thesis extends the work

in [94] by using a linear penalty reformulation approach to guarantee proper convex ESS model

behavior even when the LMP’s are not strictly positive. The authors in [89] provide analysis on

simultaneous charging and discharging for the ESS model in (5.1) for a distributed power system

with multiple grid-connected storage systems, but do not model power flows. They also identify the

situations where simultaneous ESS charging is observed, i.e., when the optimization cannot further

reduce dispatchable generation supply and the ESSs are all at their maximum capacity. For these

situations, the penalty approach presented in this thesis is able to successfully guarantee an ESS

model will not provide an optimal solution will exhibit simultaneous ESS charging and discharging.

In [91], the authors suggest a penalty approach similar to the one we suggest in Section 5.2 in

order to omit the complementarity constraint in (5.2). The work in this chapter generalizes the

penalty approach suggested in [91] by offering simple conditions the penalty approach must satisfy.

The authors in [95] provide similar theoretical results for ESS behavior when the complementarity

constraint is omitted in a distribution setting when formulated as a second order cone program

(SOCP). This chapter extends the results in [89, 91–95] to BTM EMS settings [21], transmission

settings for DC OPF [20], and distribution settings for the SOCP relaxation of AC OPF. In each

setting, the theoretical results maintain generality to ensure they can be applied to many situations

with various objectives, as well as when there are multiple ESSs in a system or at each bus. In

the BTM EMS setting, the omission of a complementarity constraint ensuring proper feed-in tariff
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(FiT) model behavior is also studied. Numerical case studies are provided for each situation to

highlight the theoretical guarantees.

5.2 Guarantees for Complementarity Constraints in Energy Management

Systems

An ESS is often at the core of many EMSs since they can act as a generation source and

simultaneously provide other valuable demand-side grid services, such as energy arbitrage, power

quality and reliability, storing excess renewable energy generation, and electricity bill management

[11, 13]. Thus, we seek to use the convex relaxed ESS model in BTM EMS settings. Similarly, a

non-convex complementarity constraint also arises when modeling the electricity price in a feed-in

tariff (FiT) pricing situation to ensure that the EMS cannot simultaneously buy and sell power

through a single service entrance. To address this, we propose an EMS formulation that includes a

relaxed convex ESS model and FiT pricing model, i.e., the non-convex complementarity constraints

are omitted from the overall EMS model. We provide theoretical analysis that guarantees proper

model behavior for the relaxed convex ESS and FiT models in an EMS. In this work, we adopt

a general definition of an EMS, where the EMS manages available renewable energy generation,

ESS operation, and electricity drawn from and sold to the grid while satisfying the electricity

demand to minimize the cost of electricity. This general definition permits use of the EMS model

in diverse settings–such as a home, building, or microgrid–and under various electricity rate/cost

structures. In this paper we consider two EMS-to-grid interaction scenarios. In the first, the site is

permitted to both draw from and export power to the grid. In the second, the site is prohibited from

exporting. These broad scenarios allow us to demonstrate elimination of typical complementarity

constraints, modeling of the overall problem, and what guarantees can be provided. Notice that

the second scenario captures a situation where the EMS is coordinating electricity for an islanded

microgrid, where electricity drawn from the grid represents electricity generated from a dispatchable

generation source, for example. For each scenario, we present theoretical analysis for proper relaxed

convex model behavior both static and flexible load, and under multiple types of electricity pricing
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including time-of-use (TOU) rates, demand charges, net metering, and feed-in tariffs.

5.2.1 Energy Management System Formulation

Next, the general convex EMS formulations are provided for each scenario with both static

and flexible load, and under multiple types of electricity pricing. The relevant notation for the

following convex EMS models is given in Table 5.1. For the following discussion, let the set of

discrete time steps {1, . . . ,H} be denoted T . Also let the EMS optimization variables for all time

t be collected in the vector xH = [x1 x2 . . . xH ] where xt collects the optimization variables

associated to time t.

Table 5.1: Notation for convex EMS models.

Sets
e ∈ E Set of energy storage systems
t ∈ T Hourly time steps: 1, . . . ,H

Decision Variables
Ee,t State of charge of ESS e (kWh)
P c
t Curtailed renewable power genera-

tion (kW)
P ch
e,t Power injected into ESS e (kW)

P dis
e,t Power drawn from ESS e (kW)

P exp
t Power exported to the grid (kW)

P grid
t Power drawn from the grid (kW)
P flx Flexible, shifted load (kW)

Parameters
cd Cost of electricity drawn from grid

($/kWh)
ce Payment for electricity sold to grid

($/kWh)
cdc Demand charge cost ($/kWh)
γ Fraction of load that is sheddable
Einit
e Initial state of charge of ESS e

(kWh)

Ee Maximum energy storage in ESS e
(kWh)

Ee Minimum energy storage in ESS e
(kWh)

ηch
e Charging efficiency of ESS e
ηdis
e Discharging efficiency of ESS e
H Optimization planning horizon

P e Maximum charging/discharging
power of ESS e (kW)

P res
t Available power renewable energy

source (kW)
PL
t Total load b (kW)
ρ Inconvenience penalty for shedding

load
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5.2.1.1 EMS-to-Grid Scenario 1: Buying and Selling Electricity

EMS-to-grid Scenario 1 is considered in both a net metering and FiT setting. First we model

the net metering setting, where we assume the cost of drawing electricity from the grid is equal to

the amount the customer is compensated for selling (or exporting) electricity to the grid. Then,

the optimization objective function is:

fobj
1 (xH) =

H∑
t=1

(
cd
t P

grid
t +

∑
e∈E

(
αeP

ch
e,t + βeP

dis
e,t

))
, (5.3)

which captures both the cost of electricity and the ESS penalty terms. The overall general EMS

formulation for net metering, denoted NM-G, is:

min
xH

fobj
1 (xH) (5.4a)

s.t. (5.1a)− (5.1d),

0 ≤ P c
t ≤ P res

t , ∀t ∈ T , (5.4b)

PL
t − P

grid
t − P res

t + P c
t +

∑
e∈E

(P ch
e,t − P dis

e,t ) = 0, ∀t ∈ T . (5.4c)

The EMS objective function in (5.4a) minimizes the cost of electricity and includes the linear ESS

penalty described above, where cd
t ≥ 0 is the unit cost or compensation to the customer based on

whether the EMS is drawing (P grid
t > 0) or exporting (P grid

t < 0) electricity to the grid. Note that

in a net metering setting, ce
t = cd

t for all t ∈ T . The convex ESS model with the complementarity

constraint omitted is given by (5.1a)-(5.1d). Curtailment of renewable energy generation is included

in (5.4b) and the power balance is enforced in (5.4c).

Next, the EMS is formulated for FiT electricity pricing, where a consumer can provide a grid

service by exporting excess electricity produced at a price strictly less than the price of electricity

drawn from the grid, i.e., cd
t > ce

t ≥ 0. Then, the optimization objective function is:

fobj
2 (xH) =

H∑
t=1

(
cd
t P

grid
t − ce

tP
exp
t +

∑
e∈E

(αeP
ch
e,t + βeP

dis
e,t )
)
, (5.5)

which captures both the cost of buying electricity and the compensation for selling electricity, and

the ESS penalty terms. Then, the overall general EMS formulation under FiT pricing, denoted
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FiT-G, is:

min
xH

fobj
2 (xH) (5.6a)

s.t. (5.1a)− (5.1d),

0 ≤ P grid
t , ∀t ∈ T , (5.6b)

0 ≤ P exp
t , ∀t ∈ T , (5.6c)

0 ≤ P c
t ≤ P res

t , ∀t ∈ T , (5.6d)

PL
t + P exp

t − P grid
t − P res

t + P c
t +

∑
e∈E

(P ch
e,t − P dis

e,t ) = 0, ∀t ∈ T . (5.6e)

The EMS objective function in (5.6a) minimizes the cost of electricity and includes the ESS penalty,

where cd
t is the unit cost of drawing electricity from the grid and ce

t is compensation to the customer

for exporting electricity to the grid. The convex ESS model with the complementarity constraint

omitted is given by (5.1a)-(5.1d). The power drawn from the grid and the excess power exported

to the grid is represented by two variables, P grid
t and P exp

t , respectively, as seen in (5.6b)-(5.6c).

The power balance is enforced in (5.6e). Furthermore, the EMS formulation should not produce

an optimal solution where the EMS draws and exports electricity to the grid simultaneously, which

could be enforced by including the constraint:

P grid
t · P exp

t = 0, ∀t ∈ T . (5.7)

Notice that (5.7) is a non-convex complementarity constraint and is omitted in (5.6) in order to

preserve the convexity of the overall EMS optimization model. As with the ESS complementarity

constraint, the FiT constraint in (5.7) can also be enforced by including binary variables [96, 97];

however, we focus on the convex relaxation in this paper where a reformulation with binary variables

is not used and (5.7) is omitted. In Section 5.2.2, we formally provide conditions and prove that

any optimal solution to (5.6) obeys (5.7) while not explicitly including it in the EMS formulation

or introducing binary variables.
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5.2.1.2 EMS-to-Grid Scenario 2: Buying Electricity Only

Next, the overall convex EMS optimization model is given for EMS-to-grid Scenario 2, where

the EMS can only draw electricity from the grid. The general convex EMS formulation for Scenario

2, denoted S2-G, is:

min
xH

fobj
1 (xH) (5.8a)

s.t. (5.1a)− (5.1d),

0 ≤ P grid
t , ∀t ∈ T , (5.8b)

0 ≤ P c
t ≤ P res

t , ∀t ∈ T , (5.8c)

PL
t − P

grid
t − P res

t + P c
t +

∑
e∈E

(P ch
e,t − P dis

e,t ) = 0, ∀t ∈ T . (5.8d)

Since excess power generation is not able to be exported to the grid in EMS-to-grid Scenario 2, the

power drawn from the grid is constrained to be non-negative in (5.8b) and curtailment of renewable

energy generation is included in (5.8c). The power balance is given in (5.8d).

5.2.1.3 EMS Models for Various Electricity Pricing Settings

The theoretical results for omitting complementarity constraints are also presented for the

case that the EMS models given in (5.4), (5.6), (5.8) can be modified to capture additional electricity

pricing settings. Notice that each EMS model is based on a time-varying cost of electricity, i.e.

cd
t and ce

t are indexed by time t. The general EMS models already capture settings where TOU

electricity prices, or other time-varying electricity price schedules, are used.

Any of the EMS optimization models in (5.4), (5.6), (5.8) can be slightly modified to accom-

modate demand charges where customers are charged a separate rate for their peak usage over a

given time interval, i.e., a cost of cdc maxt∈T {P grid
1 , . . . , P grid

H } is added to the customer bill where

cdc > 0. This max term incorporated into the convex EMS formulation using epigraph form. De-

fine a new decision variable d. Then, for an EMS optimization model with a demand charge, the
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objective functions become:

fobj−D
1 (xH) =

H∑
t=1

(
cd
t P

grid
t +

∑
e∈E

(
αeP

ch
e,t + βeP

dis
e,t

))
+ cdcd, (5.9)

fobj−D
2 (xH) =

H∑
t=1

(
cd
t P

grid
t − ce

tP
exp
t +

∑
e∈E

(αeP
ch
e,t + βeP

dis
e,t )
)

+ cdcd, (5.10)

and the following constraints are added to the overall EMS optimization problem:

P grid
t ≤ d, ∀t ∈ T . (5.11a)

In the net metering case, we add the additional constraint:

0 ≤ d, (5.11b)

to ensure that the demand charge is only applied to power drawn from the grid, i.e., when P grid
t ≥ 0.

When a general EMS formulation is modified to include demand charges, the resulting overall

optimization model is denoted by adding ‘-D’, e.g., NM-G with the demand charge model will be

denoted NM-D.

5.2.1.4 EMS Models with Flexible Demand

Lastly, we introduce a further modification to the general convex EMS formulations in (5.4),

(5.6), (5.8) where the electrical load is flexible, i.e., some amount of the non-critical load can either

be shedded or added at each time step. Our theoretical analysis for convex EMS models without

complementarity constraints will also extend to the case when the EMS can coordinate flexible

load. To add flexible load scheduling to any of the generic formulations in (5.4), (5.6), (5.8), we

first introduce a new variable P flx
t , where load is shed when P flx

t > 0 and load is added when

P flx
t < 0. Let fpb

t (xt) denote the left-hand-side of the power balance of the general EMS model

that is being modified to include flexible demand constraints. In the flexible demand case, the
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following constraints are added to the optimization problem:

P flx
t ≤ γtPL

t , ∀t ∈ T , (5.12a)∑
t∈T

P flx
t = 0, (5.12b)

fpb
t (xt)− P flx

t = 0, ∀t ∈ T . (5.12c)

The constraint in (5.12a) ensures that only γt ∈ [0, 1] proportion of the load is sheddable at each

time step, i.e., (1 − γt) of the demand is critical and cannot be shed. The constraint in (5.12b)

ensures that the shedded loads are shifted to other time steps in the optimization horizon. When

an EMS model is modified to allow shiftable load, the left-hand side of the original power balance

equality constraint fpb
t (xt) must be modified to include the term −P flx

t , as shown in (5.12c). A

penalty ρt associated with the inconvenience of shedding load, i.e., when P flx
t > 0, is added to

the EMS objective function:
∑

t∈T ρt max{0, P flx
t }. This max term is implemented using epigraph

form, where a new variable st is introduced. Then, for an EMS optimization model with flexible

load, the objective functions become:

fobj−F
1 (xH) =

H∑
t=1

(
cd
t P

grid
t + ρtst +

∑
e∈E

(
αeP

ch
e,t + βeP

dis
e,t

))
, (5.12d)

fobj−F
2 (xH) =

H∑
t=1

(
cd
t P

grid
t − ce

tP
exp
t + ρtst +

∑
e∈E

(αeP
ch
e,t + βeP

dis
e,t )
)
, (5.12e)

and the following constraints are added to the overall EMS optimization problem:

0 ≤ st ∀t ∈ T , (5.12f)

P flx
t ≤ st, ∀t ∈ T . (5.12g)

When a general EMS formulation is modified to include flexible demand, the resulting overall

optimization model is denoted by adding ‘-F’, e.g., if the flexible demand model is added to NM-G,

it will be referred to as NM-F. Further, if both the demand charge model and flexible demand is

considered, then the overall model will be referred to as NM-D-F.
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5.2.2 Theoretical Guarantees for Relaxed Energy Management System Models

with Complementarity Constraints

We formally prove that for each convex EMS formulation provided in Section 5.2.1, the

optimal solution will satisfy the omitted non-convex constraints in (5.2) and (5.7) without explicitly

including either in the EMS formulation. To aid in our theoretical analysis, we leverage the KKT

optimality conditions. The KKT conditions provide necessary conditions that must be satisfied

for a solution to a broad range of optimization problems to be optimal. For convex optimization

problems with differentiable objective functions, any solution that satisfies the KKT conditions is

optimal [22]. These conditions are leveraged to show that the optimal solutions of the convex EMS

formulations in NM-all, FiT-all, and S2-all will obey the omitted non-convex constraints in (5.2)

and (5.7), i.e., solutions that violate these non-convex constraints will violate the KKT conditions.

To aid in our discussion, let NM-all refer to all the net metering models {NM-G, NM-D,

NM-F, NM-D-F}. Similarly, let FiT-all refer to {FiT-G, FiT-D, FiT-F, FiT-D-F} and S2-all refer

to {S2-G, S2-D, S2-F, S2-D-F}. Additionally, To aid in the presentation of the KKT conditions, we

introduce additional notation for describing the inequality and equality constraints in the convex

EMS formulations given in Section 5.2.1. Writing each convex EMS formulation in standard form

[22], we introduce the notation for the Lagrange multipliers associated with the inequality and

equality constraints (written in standard form) in optimization models:

λgrid
t : − P grid

t ≤ 0, (5.13a)

λexp
t : − P exp

t ≤ 0, (5.13b)

λres
t : − P c

t ≤ 0, (5.13c)

λ
res
t : P c

t − P res
t ≤ 0, (5.13d)

λch
e,t : − P ch

e,t ≤ 0, (5.13e)

λ
ch
e,t : P ch

e,t − P
ch
e ≤ 0, (5.13f)

λdis
e,t : − P dis

e,t ≤ 0, (5.13g)
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λ
dis
e,t : P dis

e,t − P
dis
e ≤ 0, (5.13h)

λsoc
e,t : Ee − Ee,0 + ∆t

t−1∑
n=1

(
1
ηdise

P dis
e,t − ηch

e P
ch
e,t

)
≤ 0, (5.13i)

λ
soc
e,t : Ee,0 + ∆t

t−1∑
n=1

(
ηch
e P

ch
e,t − 1

ηdise
P dis
e,t

)
− Ee ≤ 0, (5.13j)

λ
flx
t : P flx

t − γtPL
t ≤ 0, (5.13k)

λflx1
t : − st ≤ 0, (5.13l)

λflx2
t : P flx

t − st ≤ 0, (5.13m)

λdc1 : − d ≤ 0, (5.13n)

λdc2
t : P grid

t − d ≤ 0, (5.13o)

µs :
∑
t∈T

P flx
t = 0, (5.13p)

µpb
t : (5.4c), (5.6e), (5.8d), (5.12c), (5.13q)

for all t ∈ T and e ∈ E . For the KKT-based theoretical analysis used in our proofs, we write the

stationarity constraint for each EMS formulation given in Section 5.2.1. The stationarity constraint

for the NM-G EMS model is:

cd
t − µ

pb
t = 0, ∀t ∈ T , (5.14a)

− λres
t + λ

res
t + µpb

t = 0, ∀t ∈ T , (5.14b)

αe − λch
e,t + λ

ch
e,t + ηch

e ∆t
H∑
n=t

(λ
soc
e,n − λsoc

e,n) + µpb
t = 0, ∀e ∈ E , ∀t ∈ T , (5.14c)

βe − λdis
e,t + λ

dis
e,t +

1

ηdis
e

∆t

H∑
n=t

(λsoc
e,n − λ

soc
e,n)− µpb

t = 0, ∀e ∈ E , ∀t ∈ T . (5.14d)

The stationarity constraint for the net metering EMS model with demand charges, NM-D, is:

cd
t + λdc2

t − µpb
t = 0, ∀t ∈ T , (5.15a)

cdc − λdc1 − λdc2
t = 0, ∀t ∈ T , (5.15b)

(5.14b)− (5.14d). (5.15c)
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The stationarity constraint for the net metering EMS model with flexible demand, NM-F, is:

λflx2
t + λ

flx
t + µs − µpb

t = 0, ∀t ∈ T , (5.16a)

ρt − λflx1
t − λflx2

t = 0, ∀t ∈ T , (5.16b)

(5.14). (5.16c)

The stationarity constraint for the net metering EMS model with both demand charges and flexible

demand, NM-D-F, is:

(5.15), (5.16a)− (5.16b). (5.17)

The stationarity constraint for the general FiT EMS model, FiT-G, is:

cd
t − λ

grid
t − µpb

t = 0, ∀t ∈ T , (5.18a)

− ce
t − λ

exp
t + µpb

t = 0, ∀t ∈ T , (5.18b)

(5.14b)− (5.14d). (5.18c)

The stationarity constraint for the FiT EMS model with demand charges, FiT-D, is:

cd
t − λ

grid
t + λdc2

t − µpb
t = 0, ∀t ∈ T , (5.19a)

cdc − λdc2
t = 0, ∀t ∈ T , (5.19b)

(5.18b), (5.14b)− (5.14d). (5.19c)

The stationarity constraint for the FiT EMS model with flexible demand, FiT-F, is given by (5.16a)-

(5.16b) and (5.18). The stationary constraint for the FiT EMS model with both demand charges

and flexible demand, FiT-D-F, is given by (5.16a)-(5.16b) and (5.19).

Lastly, the stationarity constraint for the Scenario 2 EMS models are given by:

(1) S2-G: (5.14b)-(5.14d),(5.18a),

(2) S2-D: (5.14b)-(5.14d),(5.19a)-(5.19b),

(3) S2-F: (5.14b)-(5.14d),(5.16a)-(5.16b),(5.18a),
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(4) S2-D-F: (5.14b)-(5.14d),(5.16a)-(5.16b),(5.19a)-(5.19b).

Next, we provide a lemma to aid us in our theoretical analysis for the ESS model in (5.1).

For the following analysis, let the optimal solution at some time τ ∈ T in the planning horizon be

denoted by x̃τ .

Lemma 5.1 Assume αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1 for some ESS e ∈ E . If

µpb
t ≥ 0, then an optimal solution to any of the EMS models in NM-all, FiT-all, and S2-all will

satisfy (5.2) for some time t ∈ T , i.e., a solution where 0 < P̃ ch
e,t ≤ P

ch
e and 0 < P̃ dis

e,t ≤ P
dis
e will be

suboptimal at time t ∈ T for ESS e.

Proof. We prove this claim by contradiction. So, assume an optimal solution to any of the

EMS models NM-all, FiT-all, or S2-all is such that the constraint in (5.2) is not satisfied at some

time τ ∈ T and ESS e ∈ E , i.e., 0 < P̃ ch
e,τ ≤ P

ch
e and 0 < P̃ dis

e,τ ≤ P
dis
e . In other words, the

convex EMS formulation produced an optimal solution where an ESS e simultaneously charging

and discharging. Also, assume that µpb
τ ≥ 0, as stated in the statement of the Lemma. By the

complementary slackness conditions at time τ , we obtain that λch
e,τ = λdis

e,τ = 0. We also determine

that λ
ch
e,τ ≥ 0 and λ

dis
e,τ ≥ 0 by the dual feasibility property and the assumption that 0 < P̃ ch

e,τ ≤ P
ch
e

and 0 < P̃ dis
e,τ ≤ P

dis
e . Then (5.14c)-(5.14d) become:

αe + λ
ch
e,τ + ηch

e ∆t

H∑
n=τ

(λ
soc
e,n − λsoc

e,n) + µpb
τ = 0, (5.20)

βe + λ
dis
e,τ + 1

ηdise
∆t

H∑
n=τ

(λsoc
e,n − λ

soc
e,n)− µpb

τ = 0. (5.21)

Solving for I =
∑H

n=τ (λ
soc
n − λsoc

n ) in (5.20), and then replacing −I in (5.21), we get:

βe + 1
ηdise ηche

αe + λ
dis
e,τ + 1

ηdise ηche
λ

ch
e,τ + ( 1

ηdise ηche
− 1)µpb

τ = 0. (5.22)

By the assumption that αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1, the sum of the first two

terms in (5.22) is positive. Then by dual feasibility, both the third and fourth terms in (5.22) are

non-negative. With the assumption that µpb
τ ≥ 0, we obtain a contradiction since the left hand side

of (5.22) cannot equal zero. Therefore, if µpb
τ ≥ 0, then an optimal solution to the convex EMS
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models in NM-all, FiT-all, and S2-all will obey (5.2) at some time τ ∈ T for ESS e. �

5.2.2.1 Theoretical Analysis for EMS-to-Grid Scenario 1

In this section, we provide our theoretical result for EMS models for EMS-to-grid Scenario

1, i.e., (5.4), (5.6), as well as their possible demand charge and flexible demand modifications.

Proposition 5.1 Assume αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1 for some ESS e ∈ E .

Further assume that cd
t ≥ 0 for the net metering cases (NM-all), and cd

t > ce
t ≥ 0 for the FiT cases

(FiT-all) for all t ∈ T . Then, an optimal solution to any of the EMS models in NM-all and FiT-all

will satisfy (5.2) for such as ESS e and for all t ∈ T . Additionally, an optimal solution to any of

the EMS models in FiT-all will satisfy (5.7) for all time t ∈ T .

Proof. Assume αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1 for some ESS e ∈ E . Further

assume that cd
t ≥ 0 for the net metering cases (NM-all), and cd

t > ce
t ≥ 0 for the FiT cases (FiT-all)

for all t ∈ T .

We begin by showing that the optimal solution to any model in NM-all and FiT-all will

satisfy the ESS charging and discharging complementarity constraint in (5.2), without explicitly

including it in the optimization model. First, we will consider the NM-all models. For NM-G and

NM-F, by (5.14a) we have µpb
t = cd

t ≥ 0 (since we assume cd
t ≥ 0 for all t ∈ T ). Thus, by Lemma

5.1, we know that an optimal solution to NM-G and NM-F will satisfy (5.2) since µpb
t ≥ 0 for all

time t ∈ T . For NM-D and NM-D-F, by (5.15a) we have µpb
t = cd

t + λdc2
t ≥ 0 since cd

t ≥ 0 by

our assumption and λdc2
t ≥ 0 by dual feasibility. Then, by Lemma 5.1, we know that an optimal

solution to NM-D and NM-D-F will satisfy (5.2) since µpb
t ≥ 0 for all time t ∈ T for ESS e.

For the FiT-all models, again by (5.18b), we have µpb
t = ce

t + λexp
t ≥ 0 since ce

t ≥ 0 by our

assumption and λexp
t ≥ 0 by dual feasibility. Then, by Lemma 5.1, an optimal solution to the EMS

models in FiT-all will satisfy (5.2) for ESS e and all t ∈ T .

Lastly, we show that an optimal solution to the EMS models in FiT-all satisfies (5.7). We
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prove this by contradiction, so assume that at some time τ ∈ T , the optimal solution to an FiT-all

model is such that (5.7) is not satisfied, i.e., P̃ grid
τ > 0 and P̃ exp

τ > 0. By the complementary

slackness condition at time τ , we obtain λexp
τ = λgrid

τ = 0. For FiT-G and FiT-F, the stationarity

constraints in (5.18a)-(5.18b) become:

cd
τ − µpb

τ = 0,

−ce
τ + µpb

τ = 0,

implying µpb
τ = cd

τ = ce
τ , which results in a contradiction due to our assumption that 0 ≤ ce

t < cd
t

for all t ∈ T . Thus, an optimal solution to FiT-G and FiT-D must satisfy (5.7) for all t ∈ T .

Similarly, for FiT-D and FiT-D-F, the stationarity constraints in (5.18b) and (5.19a) become:

cd
τ + λdc2

τ − µpb
τ = 0,

−ce
τ + µpb

τ = 0,

which imply that ce
τ = cd

τ + λdc2
τ , which results in a contradiction since cd

τ + λdc2
τ > ceτ by our FiT

rate assumptions and λdc2
τ ≥ 0 by dual feasibility. Thus, the optimal solution to any convex model

in FiT-all will satisfy (5.7) for ESS e for all t ∈ T . �

Notice that the statement of Proposition 5.1 does not depend on prior knowledge of the optimal

solutions to the EMS models. This distinguishes the strength of the Proposition 5.1 statement

from that of Proposition 5.2 for EMS-to-grid Scenario 2, as well as previous works in this space

[20,89,91–95].

5.2.2.2 Theoretical Analysis for EMS-to-Grid Scenario 2

In this section, we provide our theoretical result for EMS models for EMS-to-grid Scenario 2,

i.e., (5.8) and the possible demand charge and flexible demand modifications.

Proposition 5.2 Assume αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1 for some ESS e ∈ E .

Further assume that cd
t ≥ 0 at time t ∈ T . If at least one of the following conditions hold:

C1) 0 < P̃ grid
t at time t ∈ T ,
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C2) 0 ≤ P̃ c
t < P res

t at time t ∈ T ,

C3)
∑H

n=t(λ
soc
e,n − λsoc

e,n) ≤ 0 at time t ∈ T ,

then an optimal solution to any of the EMS models in S2-all will satisfy (5.2) for ESS e ∈ E and

time t.

Proof. Assume αe, βe ≥ 0, (αe + βe) > 0, and 0 < ηch
e , η

dis
e < 1 for some ESS e ∈ E . Also assume

that cd
t ≥ 0 at time t ∈ T .

For each of the three conditions given in Proposition 5.2, we will show that an optimal solution

will satisfy (5.2). We begin by assuming that Condition C1 is true, i.e., the optimal solution to a

model in S2-all is such that P̃ grid
t > 0 for time t ∈ T . Then, with the complementary slackness

condition, we obtain λgrid
t = 0. For S2-G and S2-F, by the stationarity condition in (5.18a) we

have µpb
t = cd

t ≥ 0 by our assumption that cd
t ≥ 0. Then, by Lemma 5.1, the optimal solution to

S2-G and S2-F will satisfy (5.2) for ESS e if P̃ grid
t > 0. For S2-D and S2-D-F, by the stationarity

condition in (5.19a) we have µpb
t = cd

t + λdc2
t ≥ 0 by our assumption that cd

t ≥ 0 and λdc2
t ≥ 0 by

dual feasibility. Then, by Lemma 5.1, the optimal solution to S2-D and S2-D-F will satisfy (5.2)

for ESS e if P̃ grid
t > 0. Thus, if the optimal solution to a model in S2-all is such that P̃ grid

t > 0 for

time t ∈ T , the optimal solution will satisfy (5.2) for ESS e.

Next, assume that Condition C2 is true, i.e., the optimal solution to a model in S2-all is such

that 0 ≤ P̃ c
t < P res

t for time t ∈ T . By the complementary slackness condition, we obtain λ
res
t = 0.

Then, for each model in S2-all, by (5.14b) we have µpb
t = λres

t ≥ 0 because of dual feasibility.

Therefore, by Lemma 5.1, the EMS models in S2-all will satisfy (5.2).

Lastly, we consider Condition C3. Assume that Condition C3 is true at time t ∈ T , i.e.,∑H
n=t(λ

soc
e,n − λsoc

e,n) ≤ 0 at time t ∈ T . Assume that the optimal solution to any of the EMS models

in S2-all is such that the constraint in (5.2) is not satisfied at time t ∈ T and ESS e ∈ E , i.e.

0 < P̃ ch
e,t ≤ P

ch
e and 0 < P̃ dis

e,t ≤ P
dis
e . By the complementary slackness conditions at time t, we

obtain that λch
e,t = λdis

e,t = 0. We also determine that λ
ch
e,t ≥ 0 and λ

dis
e,t ≥ 0 by the dual feasibility

property and the assumption that 0 < P̃ ch
e,t ≤ P

ch
e and 0 < P̃ dis

e,t ≤ P
dis
e . Then (5.14c)-(5.14d)
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become (5.20)-(5.21). Adding (5.20) and (5.21) together, we obtain:

αe + βe + λ
ch
e,t + λ

dis
e,t + ∆t(ηch

e − 1
ηdise

)

H∑
n=t

(λ
soc
e,n − λsoc

e,n) = 0. (5.23)

By the assumption that αe, βe ≥ 0, (αe+βe) > 0, and 0 < ηch
e , η

dis
e < 1, together with dual feasibil-

ity, the sum of the first four terms in (5.23) is positive. Since (ηch
e − 1

ηdise
) < 0 and our assumption

that
∑H

n=t(λ
soc
e,n − λsoc

e,n) ≤ 0, we obtain a contradiction since the left hand side of (5.23) cannot

equal zero. Thus, if Condition C3 is satisfied, an optimal solution to any of the models in S2-all

will satisfy (5.2) at time t ∈ T for ESS e. �

5.2.2.3 Applying Our Theoretical Results in Practice

Lastly, we discuss cases when the penalty approach for guaranteeing proper ESS model

behavior is not necessary. For each EMS optimization model, we summarize our results for various

electricity prices and under the presence or absence of our proposed penalty approach in Table 5.2.

Notice in Table 5.2, it is possible to ensure physically possible ESS optimal control strategies

without the penalty approach as long as the electricity price is strictly positive for all time t ∈ T .

In the case that an energy utility charges cte = $0/kWh for some time t ∈ T to flatten grid power

demand over time [98], our results guaranteeing proper ESS model behavior will hold as long as

the penalty approach is adopted where we require αe, βe ≥ 0 such that (αe + βe) > 0. Importantly,

Table 5.2 also highlights situations where simultaneous ESS charging and discharging will happen

if our proposed penalty approach is not used.

5.2.3 Numerical Results: Case Study with Various EMS Models

Case studies that capture the behavior each proposed relaxed convex EMS model are pro-

vided to highlight our theoretical results. We also show a case study to demonstrate physically

unrealizable ESS behavior (simultaneous charging and discharging EMS solution) when the lin-

ear penalty approach is not used. The EMS models are simulated for 24 hours with 1 hour time
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Table 5.2: Summary of results. Assume αe ≥ 0 and βe ≥ 0 for some e ∈ E .

EMS-to-Grid Scenario Penalty Sum Electricity Cost
Guaranteed Proper ESS

Model Behavior?

Scenario 1:

Net Metering

0 < (αe + βe) 0 ≤ cd
t ∀t ∈ T Yes

0 = (αe + βe)
cd
t = 0

for some t ∈ T
No

0 = (αe + βe) 0 < cd
t , ∀t ∈ T Yes

Scenario 1:

FiT

0 < (αe + βe)
0 < ce

t < cd
t

∀t ∈ T
Yes

0 = (αe + βe)
0 = ce

t < cd
t

for some t ∈ T
Yes

Scenario 2
0 < (αe + βe) 0 ≤ cd

t ∀t ∈ T Yes

0 = (αe + βe)
cd
t = 0

for some t ∈ T
No

Table 5.3: ESS parameters for EMS case studies. The symbol ‘–’ indicates a penalty parameter
that is not applicable to the case study.

ESS e
Efficiency

ηch
e (= ηdis

e )

Penalty Parameter αe

NM FiT Scenario 2

1 0.97 0.010 0.010 0.010

2 0.95 0.010 0.010 0.000

3 0.93 0.015 – –

steps in Python using CVXPY [99, 100]. The electricity demand data and weather data (for PV

generation) are from different days in the RBSA dataset [69], and are increased for this study to

capture futuristic situations with high renewable energy generation. The ESS parameters used in

the EMS case studies are given in Table 5.3, where each ESS is assumed to have a capacity Ee of

5 kWh, maximum charging and discharging power P
ch
e = P

dis
e = 3kW, initial ESS state of charge

2.5 kWh, and discharging penalty βe = 0 for each ESS e = {1, 2, 3}. The shiftable proportion

of the flexible load γt and the load shedding inconvenience parameter ρt are given in Fig. 5.1.

For showing that the complementarity constraints in (5.2) and (5.7) are satisfied, we define the



79

Figure 5.1: Parameter values for ρt and γt for EMS case studies.

Table 5.4: TOU electricity prices for case studies.

Time of Day Period
Electricity Price cd

t ($/kWh)

Case 1 Case 2

9PM-9AM Off-Peak 0.08 0.00

9AM-2PM

6PM-9PM
Shoulder 0.13 0.10

2PM-6PM On-Peak 0.18 0.15

numerical complementarity gap:

Complementarity Gap for ESS e at time t = P ch
e,t · P dis

e,t ,

Complementarity Gap for FiT at time t = P grid
t · P exp

t ,

which should be numerically close to zero in our case studies.

First, we consider a case study for NM-G, where the EMS is coordinating three ESSs, PV

generation, and buying and selling power to the grid to satisfy the electricity demand and minimize

the electricity cost under net metering. In this case study, the TOU pricing (Case 2) schedule in

Table 5.4 is used, which captures the case where the cost of electricity is $0.0/kWh for some time

t ∈ T . The results of this case study are shown in Fig. 5.2. The power profiles shown in Fig. 5.2

(top) demonstrate that the ESSs are charging when the electricity is $0.0/kWh and discharge when

the electricity is most expensive during the peak TOU pricing period. Fig. 5.2 (bottom) shows the

penalty approach ensures the complementarity constraint (5.2) is satisfied, even when the price of

electricity is $0.0/kWh, as described in Proposition 5.1.
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Figure 5.2: Case study results for the NM-G model with TOU pricing Case 2 in Table 5.4. Top:
Power balance showing optimal EMS resource coordination. Bottom: Numerical complementarity
gap for each ESS.

Next, we consider a second case study for FiT-F, where the EMS is coordinating two ESSs,

PV generation, flexible load scheduling, and buying and selling power to the grid in order to

minimize the overall cost of electricity under FiT electricity pricing, where ce
t =$0.08/kWh and

cd
t =$0.11/kWh for all t ∈ T . The results of this case study are shown in Fig. 5.3. In Fig. 5.3 (top),

the power profiles show that excess PV generation (after the load is met) is either sold back to the

grid or used to charge the ESS. Otherwise, the EMS is using power drawn from the grid and the

ESS to satisfy the load. The forecasted load profile is depicted with the black dash-dotted line to

illustrate the load shifting results. In Fig. 5.3 (bottom), the complementarity gap for both the ESS

and FiT model are shown to highlight that the complementarity constraints in (5.2) and (5.7) are

numerically satisfied without explicitly including these constraints in the optimization problem, as

proven in Proposition 5.1.
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Figure 5.3: Case study for the FiT-F model where ce
t =$0.08/kWh and cd

t =$0.11/kWh for all
t ∈ T . Top: Power balance showing optimal EMS resource coordination. Bottom: Numerical
complementarity gap for both ESS 1 and 2 operation and FiT pricing variables.

Lastly, we consider a case study for S2-D-F, where the EMS is coordinating 2 ESSs, PV

generation, flexible load scheduling, and buying power from the grid in order to meet the electricity

demand and minimize the overall cost of electricity under demand charges and a TOU pricing

(Case 1) schedule in Table 5.4. In this case study, ESS 1 is incorporated into the EMS using the

proposed penalty approach, while ESS 2 does not use the penalty approach (α2 = 0), as seen

in Table 5.3 (Scenario 2). The results of this case study are shown in Fig. 5.4, where the top

plot shows the EMS draws power from the grid and the ESSs to satisfy the demand when there

is no PV generation. When the PV generation exceeds the load and the ESS capacity, we see

that without the penalty approach, ESS 2 simultaneously charges and discharges in order to waste

energy since excess power cannot be exported to the grid. When the penalty approach is used, the

excess PV generation is curtailed properly, instead of using the ESS charging and discharging losses
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to “curtail” power. The complementarity gap for ESS 1 and 2, Fig. 5.4 (middle) and (bottom),

respectively, demonstrate that ESS 1 satisfies (5.2) ensuring proper ESS model behavior when the

penalty approach is used and ESS 2 does not satisfy (5.2) since the penalty approach was not

adopted in the EMS formulation, as expected from our results in Proposition 5.2.

Figure 5.4: Case study results for S2-D-F with TOU electricity pricing schedule in Table 5.4 (Case
1) where penalty approach is not adopted for all ESSs in the EMS formulation. Top: Power balance
demonstrating the optimal EMS control strategy. Middle: Numerical complementarity gap for ESS
1. Bottom: Numerical complementarity gap for ESS 2.

5.3 Grid-Connected Energy Storage System Models with Complementarity

Constraints in DC OPF

In this section, an exact penalty reformulation approach is presented in order to omit the

non-convex complementarity constraints in an ESS model for use in a general DC OPF problem
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in a transmission setting. The reformulation consists of modifying the cost function to include a

penalty function with an associated penalty parameter with the complementarity constraint omit-

ted. The KKT conditions are used to show that solutions to the convex relaxed problem satisfy the

complementarity constraints without explicitly including them in the optimization model. The DC

OPF setting has increased complexity compared to the EMS setting described above in Section 5.2

due to the introduction of power flows in the network, adoption of a general optimization objec-

tive function, and the consideration of various possible resources (multiple generators, renewable

sources, and/or ESSs) at each bus. Next, the DC OPF optimization model with a relaxed convex

grid-connected ESS model is introduced. Then, the theoretical analysis for guaranteeing a solution

with non-simultaneous charging and discharging presented. Lastly, extensive simulation results

for various IEEE test systems are provided to demonstrate the sensitivity of the optimal solution

to the penalty reformulation approach and the computational savings with the proposed convex

ESS model versus the non-convex ESS model. The relevant notation for this section is given in

Table 5.5.

5.3.1 DC OPF Formulation with Renewables and Grid-Connected Energy Storage

Systems

Next, we provide the mathematical formulation for the DC OPF problem and the conditions

that guarantee non-simultaneous charging and discharging behavior in a linear ESS model. We

consider a DC OPF problem that optimally coordinates dispatchable and non-dispatchable power

sources and energy storage systems to satisfy some load to minimize generation costs in a trans-

mission network given line capacity limits under the assumptions line conductances are negligible,

voltage magnitudes are all 1.0 p.u., and voltage angle differences are sufficiently small. In this

work, we assume the network consists of dispatchable power sources g ∈ G (i.e., coal, gas, nuclear,

hydro), non-dispatchable power sources r ∈ R (i.e., wind, solar), and energy storage systems e ∈ E

to satisfy the total network load.

The control variables at each time t ∈ T are collected in the vector xH =
[
x1 x2 · · ·xH

]T
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Table 5.5: Notation for DC OPF with ESSs and renewable energy sources.

Sets
r ∈ R Set of non-dispatchable sources (re-

newable)
e ∈ E Set of energy storage systems
b ∈ B Set of buses in the network
g ∈ G Set of dispatchable sources (thermal,

hydro)
t ∈ T Hourly time steps: 1, . . . ,H
d ∈ Bb Set of buses connected to bus b
bd ∈ L Set of lines in network
Gb Set of dispatchable power sources at

bus b
Rb Set of non-dispatchable power sources

at bus b
Eb Set of energy storage systems at bus b

Decision Variables
Ee,t State of charge of ESS e (MWh)
P ch
e,t Power injected into ESS e (MW)
P dis
e,t Power drawn from ESS e (MW)
PG
g,t Power generated from the dispatchable

source g (MW)
P c
r,t Curtailed power of non-dispatchable

source r (MW)
θb,t Voltage angle at bus b

Parameters
H Prediction horizon
Bbd Susceptence of line connecting bus b

and d
Einit
e Initial state of charge of ESS e (MWh)

Ee Maximum energy storage in ESS e
(MWh)

Ee Minimum energy storage in ESS e
(MWh)

ηche Charging efficiency of ESS e
ηdise Discharging efficiency of ESS e
fbd Capacity of line connecting bus b and

d
P e Maximum charging/discharging power

of ESS e (MW)

PG
g Minimum real power dispatch of source

g (MW)

P
G

g Maximum real power dispatch of
source g (MW)

P res
r,t Available power from non-dispatchable

source r (MW)
PL
b,t Active power demand at bus b (MW)

where xt = [{PG
g,t}g∈G , {P ch

e,t, P
dis
e,t }e∈E , {P c

r,t}r∈R, {θb,t}b∈B]T . Then, the overall objective function

ftot(xH) is:

ftot(xH) =

H∑
t=1

(
fcost(P

G) + ρfpen(Pch,Pdis)
)
, (5.24)

where ρ > 0 is the penalty parameter, PG is a vector collecting PG
g,t for all g ∈ G and t ∈ {1, . . . ,H},

and Pch and Pdis are vectors collecting P ch
e,t and P dis

e,t , respectively, for all e ∈ E and t ∈ {1, . . . ,H}.

To enforce the complementarity constraint, we include a penalty function fpen(Pch,Pdis) [24, 25].

We assume ftot(xH) is a differentiable, non-decreasing, positive-valued, convex function, which

captures the characteristics of common objective functions used in solving the DC OPF problem

such as generation costs and future ESS replacement costs [90]. Let ∂xtftot(x̃H) denote the partial

derivative of ftot(xH) with respect to the control variable xt evaluated at x̃H . Note that the

conditions on (5.24) imply that ∂PG
g,t
ftot(x̃H), ∂P ch

e,t
ftot(x̃H), ∂Pdis

e,t
ftot(x̃H) ≥ 0 for all g ∈ G, e ∈ E

and ∂P c
r,t
ftot(x̃H) = 0 for all r ∈ R and t ∈ {1, . . . ,H}. The overall relaxed convex MPC-based DC
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OPF problem with ESSs and the objective function in (5.24) is:

min
xH

ftot(xH) (5.25a)

s.t. PG
g ≤ PG

g,t ≤ P
G
g , ∀g ∈ G,∀t ∈ T , (5.25b)

0 ≤ P c
r,t ≤ P res

r,t , ∀r ∈ R,∀t ∈ T , (5.25c)

0 ≤ P ch
e,t ≤ P e, ∀e ∈ E ,∀t ∈ T , (5.25d)

0 ≤ P dis
e,t ≤ P e, ∀e ∈ E ,∀t ∈ T , (5.25e)

Ee ≤ Ee,t+1 ≤ Ee, ∀e ∈ E ,∀t ∈ T , (5.25f)

Ee,t+1 = Ee,t + ηch
e ∆tP ch

e,t −
1

ηdis
e

∆tP dis
e,t , ∀e ∈ E ,∀t ∈ T , (5.25g)

− fbd ≤ Bbd(θb,t − θd,t) ≤ fbd, ∀d ∈ Bb,∀t ∈ T , (5.25h)

0 =
∑
e∈Eb

(P ch
e,t − P dis

e,t )−
∑
r∈Rb

(P res
r,t − P c

r,t) + PL
b,t −

∑
g∈Gb

PG
g,t

+
∑
d∈Bb

Bbd(θb,t − θd,t), ∀b ∈ B,∀t ∈ T . (5.25i)

The constraint in (5.25b) provides the upper and lower limits on power generation for dispatchable

power sources g ∈ G. In (5.25c), the curtailed power P c
r,t is limited by the available non-dispatchable

power P res
r,t for each non-dispatchable power source r ∈ R. Thus, the supplied non-dispatchable

power is given by (P res
r,t − P c

r,t) for all r ∈ R and t ∈ T . The constraint in (5.25h) enforces the

capacity limits of the line from bus b to bus d, where Bbd is the susceptence of the line and fbd is

the maximum capacity of line. The power balance constraint at each bus b is given in (5.25i).

The MPC-based DC OPF problem given in (5.25) will be the basis of the analysis presented

in Section 5.3.2.2 for the proposed linear ESS model. We use the KKT conditions to determine

conditions, together with assumptions on the choice of fcost(P
G) and fpen(Pch,Pdis), that the DC

OPF problem must satisfy such that the optimal solution to (P1) does not result in simultaneous

charging and discharging, i.e., the complementarity constraints in (5.2) are satisfied.
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5.3.2 Theoretical Guarantees for Relaxed Energy Storage System Models in DC

OPF

First, we derive the KKT conditions for the optimization problem given in (5.25). The KKT

conditions will be used in the proof of Proposition 5.3 where we prove that simultaneous charging

and discharging, i.e., 0 < P ch
e,t, P

dis
e,t ≤ P e for any e ∈ E and for any time t ∈ T , in the ESS model

in (5.1) is suboptimal in the DC OPF problem given certain conditions are satisfied. To maintain

notational consistency with our published results in [20], for the remainder of our discussion in

Section 5.3, let ηd
e = 1

ηdise
for all e ∈ E .

5.3.2.1 Derivation of the KKT Conditions for the DC OPF Problem

To aid in the presentation of the KKT conditions, we introduce additional notation for

describing the inequality and equality constraints in the optimization problem given in (5.25).

Writing (5.25) in standard form [22], we denote the functions on the left-hand side of the inequality

constraints in (5.25) by:

fgen
g,t

(xH) = PG
g − PG

g,t, ∀g ∈ G, ∀t ∈ T , (5.26a)

f
gen
g,t (xH) = PG

g,t − P
G
g , ∀g ∈ G, ∀t ∈ T , (5.26b)

f res
r,t

(xH) = −P c
r,t, ∀r ∈ R, ∀t ∈ T , (5.26c)

f
res
r,t (xH) = P c

r,t − P res
r,t , ∀r ∈ R, ∀t ∈ T , (5.26d)

f ch
e,t

(xH) = −P ch
e,t, ∀e ∈ E , ∀t ∈ T , (5.26e)

f
ch
e,t(xH) = P ch

e,t − P e, ∀e ∈ E , ∀t ∈ T , (5.26f)

fdis
e,t

(xH) = −P dis
e,t , ∀e ∈ E , ∀t ∈ T , (5.26g)
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f
dis
e,t (xH) = P dis

e,t − P e, ∀e ∈ E , ∀t ∈ T , (5.26h)

f soc
e,t

(xH) = Ee − Ee,0 + ∆t

t−1∑
n=1

(
ηd
eP

dis
e,n − ηch

e P
ch
e,n

)
, ∀e ∈ E , ∀t ∈ T , (5.26i)

f
soc
e,t (xH) = Ee,0 + ∆t

t−1∑
n=1

(
ηch
e P

ch
e,n − ηd

eP
dis
e,n

)
− Ee, ∀e ∈ E , ∀t ∈ T , (5.26j)

fbf
bd,t

(xH) = −fbd −Bbd(θb,t − θd,t), ∀bd ∈ L, ∀t ∈ T , (5.26k)

f
bf
bd,t(xH) = Bbd(θb,t − θd,t)− fbd, ∀bd ∈ L, ∀t ∈ T . (5.26l)

Note that the inequality constraints on the ESS state of charge limits in (5.26i)-(5.26j) are obtained

by substituting the ESS dynamics constraint in (5.25g) into the ESS operating bounds in (5.25f)

and solving the ESS dynamics model in (5.25g) at the current time step t in terms of all the previous

time steps. Similarly, the equality constraint in (5.25i) that enforces the power balance equation

at each time t describes H equality constraints. We denote the functions on the right-hand side of

the equality constraints in (5.25i) by the function ht(x̃H) for t = {1, . . . ,H}.

Assume that an optimal solution x̃H to (5.25) exists and let λpart
dev,t and λ

part
dev,t denote the La-

grange multiplier associated with the inequality constraint fpart
dev,t

(x̃H) and f
part
dev,t(x̃H), respectively,

and let µi,t denote the Lagrange multiplier associated with the power balance equality constraint in

(5.25i) where the right-hand side is denoted hb,t(x̃H) for bus b at time t. Then the KKT conditions

are the following:

Primal Feasibility:

fgen
g,t

(x̃H), f
gen

g,t (x̃H) ≤ 0, ∀g ∈ G,∀t ∈ T , (5.27a)

f res
r,t

(x̃H), f
res

r,t (x̃H) ≤ 0, ∀r ∈ R,∀t ∈ T , (5.27b)

f ch
e,t

(x̃H), fdis
e,t

(x̃H), f soc
e,t

(x̃H), f
ch

e,t(x̃H), f
dis

e,t(x̃H), f
soc

e,t (x̃H) ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.27c)

fbf
bd,t

(x̃H), f
bf

bd,t(x̃H) ≤ 0, ∀bd ∈ L,∀t ∈ T , (5.27d)

hb,t(x̃H) = 0, ∀b ∈ B,∀t ∈ T , (5.27e)
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Dual Feasibility:

λgeng,t , λ
gen

g,t ≥ 0, ∀g ∈ G,∀t ∈ T , (5.27f)

λresr,t , λ
res

r,t ≥ 0, ∀r ∈ R,∀t ∈ T , (5.27g)

λche,t, λ
ch

e,t, λ
dis
e,t , λ

dis

e,t , λ
soc
e,t , λ

soc

e,t ≥ 0, ∀e ∈ E ,∀t ∈ T , (5.27h)

λbfbd,t, λ
bf

bd,t ≥ 0, ∀bd ∈ L,∀t ∈ T , (5.27i)

Complementary Slackness:

λgeng,t f
gen

g,t
(x̃H) = λ

gen

g,t f
gen

g,t (x̃H) = 0, ∀g ∈ G,∀t ∈ T , (5.27j)

λresr,tf
res

r,t
(x̃H) = λ

res

r,tf
res

r,t (x̃H) = 0, ∀r ∈ R,∀t ∈ T , (5.27k)

λche,tf
ch

e,t
(x̃H) = λdise,tf

dis

e,t
(x̃H) = λsoce,t f

soc

e,t
(x̃H) = 0,

λ
ch

e,tf
ch

e,t(x̃H) = λ
dis

e,tf
dis

e,t(x̃H) = λ
soc

e,t f
soc

e,t (x̃H) = 0, ∀e ∈ E ,∀t ∈ T , (5.27l)

λbfbd,tf
bf

bd,t
(x̃H) = λ

bf

bd,tf
bf

bd,t(x̃H) = 0, ∀bd ∈ L,∀t ∈ T , (5.27m)

Stationarity:

∇ftot(x̃H) +

H∑
t=1

(∑
g∈G

(λgeng,t ∇f
gen

g,t
(x̃H) + λ

gen

g,t ∇f
gen

g,t (x̃H))

+
∑
r∈R

(λresr,t∇f
res

r,t
(x̃H) + λ

res

r,t∇f
res

r,t (x̃H))

+
∑
e∈E

(λche,t∇f
ch

e,t
(x̃H) + λ

ch

e,t∇f
ch

e,t(x̃H) + λdise,t∇f
dis

e,t
(x̃H) + λ

dis

e,t∇f
dis

e,t(x̃H)

+ λsoce,t∇f
soc

e,t
(x̃H) + λ

soc

e,t∇f
soc

e,t (x̃H))

+
∑
bd∈L

(λbfbd,t∇f
bf

bd,t
(x̃H) + λ

bf

bd,t∇f
bf

bd,t(x̃H)) +
∑
b∈B

µb,t∇hb,t(x̃H)

)
∈ 0, (5.27n)

where 0 ∈ RH(|G|+|R|+2|E|+|L|). Recall that for convex optimization problems with differentiable

objective functions, any solution that satisfies the KKT conditions given in (5.27a)-(5.27n) is op-

timal [22]. In the proof of Proposition 5.3, we leverage the KKT conditions to give a series of

conditions that must be satisfied to guarantee non-simultaneous ESS charging and discharging in
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the DC OPF problem given in (5.25). We decompose the condition in (5.27n) into:

∂PG
g,t
ftot(x̃H)− λgen

g,t + λ
gen
g,t − µb,t = 0, ∀g ∈ Gb,∀t ∈ T , (5.28)

− λres
r,t + λ

res
r,t + µb,t = 0, ∀r ∈ Rb,∀b ∈ B,∀t ∈ T , (5.29)

∂P ch
e,t
ftot(x̃H)− λch

e,t + λ
ch
e,t + ηch

e ∆t

H∑
n=t

(λ
soc
e,n − λsoc

e,n) + µb,t = 0, ∀e ∈ Eb,∀b ∈ B,∀t ∈ T , (5.30)

∂Pdis
e,t
ftot(x̃H)− λdis

e,t + λ
dis
e,t + ηd

e∆t

H∑
n=t

(λsoc
e,n − λ

soc
e,n)− µb,t = 0, ∀e ∈ Eb,∀b ∈ B,∀t ∈ T , (5.31)

∑
d∈Bb

Bbd(λ
bf
bd,t − λbf

bd,t − µd,t) + µb,t
∑
d∈Bb

Bbd = 0, ∀b ∈ B,∀t ∈ T . (5.32)

5.3.2.2 Relaxed Convex ESS Model Behavior Guarantees in the DC OPF Problem

In Proposition 5.3, we show that solutions with nonzero ESS charging and discharging during

the same time step for the model in (5.1) used in the DC OPF problem is suboptimal when certain

conditions are satisfied. These conditions ensure that physically unrealizable policies where we

simultaneously charge and discharge the ESS are not optimal. Note that the presence or absence

of a load at a bus does not have an affect on the results of Proposition 5.3. At the conclusion of

the proof, we comment on how the conditions in Proposition 5.3 naturally arise in the DC OPF

setting. For the following discussion, the phrase “for some” should be interpreted to mean “at least

one.”

Proposition 5.3 Let ftot(xH) be a differentiable convex cost function where ∂P ch
e,t
ftot(x̃H) ≥ 0,

∂Pdis
e,t
ftot(x̃H) ≥ 0 and (∂P ch

e,t
ftot(x̃H) + ∂Pdis

e,t
ftot(x̃H)) > 0 for all e ∈ Eb and t ∈ {1, . . . ,H}. A

solution to (5.25) where 0 < P̃ ch
e,t, P̃

dis
e,t ≤ P e for some ESS e ∈ Eb at bus b ∈ B and at some time

t ∈ {1, . . . ,H} is suboptimal if at least one of the following conditions is satisfied:

C1) ∂PG
g,t
ftot(x̃H) ≥ 0 and PG

g < P̃G
g,t ≤ P

G
g for some g ∈ Gb,

C2) 0 ≤ P̃ c
r,t < P res

r,t for some r ∈ Rb,

C3) Ee ≤ Ẽe,n < Ee for all n ∈ {t+ 1, . . . ,H} for some e ∈ Eb, or
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C4) −fbd ≤ Bbd(θ̃b,t − θ̃d,t) < fbd for all d ∈ Bb and
∑

d∈Bb µd,t ≥ 0.

Proof. Let x̃H be an optimal solution to (P1). We will prove this claim by contradiction. So,

assume that the optimal solution x̃τ = [{P̃G
g,τ}g∈G , {P̃ ch

e,τ , P̃
dis
e,τ }e∈E , {P̃ c

r,τ}r∈R, {θ̃b,τ}b∈B]T at some

time τ ∈ {1, . . . ,H} is such that for some ESS κ ∈ Eb there is simultaneous charging and discharging,

i.e., 0 < P̃ ch
κ,τ , P̃

dis
κ,τ ≤ P κ. We use the complementary slackness conditions at time τ ∈ {1, . . . ,H}

in (5.27l) with our assumption on the operation of ESS κ to determine that λch
κ,τ = λdis

κ,τ = 0 and

λ
ch
κ,τ , λ

dis
κ,τ ≥ 0. Using the above conditions on the Lagrange multipliers at time τ together with

(5.30)-(5.31), we have:

∂P ch
κ,τ
ftot(x̃H) + λ

ch
κ,τ + ηch

κ ∆t
H∑
n=τ

(λ
soc
κ,n − λsoc

κ,n) + µb,τ = 0, (5.33)

∂Pdis
κ,τ
ftot(x̃H) + λ

dis
κ,τ + ηd

κ∆t
H∑
n=τ

(λsoc
κ,n − λ

soc
κ,n)− µb,τ = 0, (5.34)

Solving for I =
∑H

n=τ (λ
soc
κ,n − λsoc

κ,n) in (5.33), and then replacing −I in (5.34), we get:

∂Pdis
κ,τ
ftot(x̃H) +

ηd
κ

ηch
κ

∂P ch
κ,τ
ftot(x̃H) + λ

dis
κ,τ +

ηd
κ

ηch
κ

λ
ch
κ,τ + µb,τ

(
ηd
κ

ηch
κ

− 1

)
= 0. (5.35)

Notice that with our assumptions on the cost function ftot(x̃H), the sum of the first two terms

in (5.35) is strictly positive. Then with the dual feasibility condition in (5.27h), we obtain a

contradiction in (5.35) when µb,τ ≥ 0. For each condition in the proposition statement, we will

show how this affects µb,τ to result in a contradiction proving that a solution with nonzero ESS

charging and discharging is suboptimal.

First, we consider Condition C1 where ∂PG
g,τ
ftot(x̃H) ≥ 0 and PG

g < P̃G
g,τ ≤ P

G
g for some

g ∈ Gb. Using the dual feasibility and complementary slackness conditions in (5.27f) and (5.27j), re-

spectively, and (5.28) with the assumption on P̃G
g,τ , we determine λgen

g,τ = 0 and µb,τ = ∂PG
g,τ
ftot(x̃H)+

λ
gen
g,τ . Then µb,τ ≥ 0, and since the sum of the first two terms in (5.35) are positive by assump-

tion, we obtain a contradiction since the left-hand-side of (5.35) cannot equal 0. Thus, a solution

where 0 < P̃ ch
e,t, P̃

dis
e,t ≤ P e for any ESS e ∈ Eb at time t is suboptimal if ∂PG

g,τ
ftot(x̃H) ≥ 0 and

PG
g < P̃G

g,τ ≤ P
G
g for some g ∈ Gb at time t ∈ {1, . . . ,H}, because it does not satisfy the KKT

conditions for the DC OPF problem.
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Next, we consider Condition C2 where the optimal solution is such that 0 ≤ P̃ c
r,τ < P res

r,τ

for some r ∈ Rb. Using the dual feasibility and complementary slackness conditions in (5.27g)

and (5.27k), respectively, and with (5.29), we determine λ
res
r,τ = 0 and µb,τ = λres

r,τ . Then µb,τ ≥ 0,

which again results in a contradiction since the left-hand-side of (5.35) cannot equal 0. Thus, a

solution where any ESS e ∈ Eb simultaneously charges and discharges at time t is suboptimal if

0 ≤ P̃ c
r,t < P res

r,t for some r ∈ Rb, because the KKT conditions for the DC OPF problem are not

satisfied at time t.

Next, we consider Condition C3 where Eκ ≤ Ẽκ,n < Eκ for all times n ∈ {τ + 1, . . . ,H}

for ESS κ ∈ Eb. Using the dual feasibility and complementary slackness conditions in (5.27h) and

(5.27l), respectively, we determine
∑H

n=τ λ
soc
κ,n = 0. Then (5.34) becomes:

∂Pdis
κ,τ
ftot(x̃H) + λ

dis
κ,τ + ηd

κ∆t
H∑
n=τ

λsoc
κ,n − µb,τ = 0,

which implies µb,τ ≥ 0 by the dual feasibility condition and the assumption ∂Pdis
κ,τ
ftot(x̃H) ≥ 0.

Since µb,τ ≥ 0, we obtain a contradiction in (5.35) since the left-hand-side cannot equal zero. Thus,

if the solution is such that Ee ≤ Ẽe,n < Ee for all n ∈ {t + 1, . . . ,H} for some ESS e ∈ Eb, then

simultaneous charging and discharging, i.e., 0 < P̃ ch
e,t, P̃

dis
e,t ≤ P e, is suboptimal at time t.

Lastly, we consider Condition C4 where −fbd ≤ Bbd(θ̃b,τ − θ̃d,τ ) < fbd for all d ∈ Bb and∑
d∈Bb µd,τ ≥ 0. Using the dual feasibility and complementary slackness conditions in (5.27i) and

(5.27m), respectively, we determine that λ
bf
bd,τ = 0 and λbf

bd,τ ≥ 0. Then (5.32) becomes:∑
d∈Bb

Bbd(−λbf
bd,τ − µd,τ ) + µb,τ

∑
d∈Bb

Bbd = 0,

where Bbd ≥ 0, and with the assumption that
∑

d∈Bb µd,τ ≥ 0, we have µb,τ ≥ 0. Since µb,τ ≥ 0, we

obtain a contradiction in (5.35) since the left-hand-side must be strictly positive. Thus, if the system

is such that −fbd ≤ Bbd(θ̃b,t − θ̃d,t) < fbd for all d ∈ Bb and
∑

d∈Bb µd,t ≥ 0 at time t ∈ {1, . . . ,H},

then a solution where there is simultaneous charging and discharging, i.e., 0 < P̃ ch
e,t, P̃

dis
e,t ≤ P e for

any ESS e ∈ Eb, is suboptimal.

Thus, if any of the four conditions above are satisfied for all time t ∈ {1, . . . ,H}, then a

feasible point where there is simultaneous charging and discharging for any ESS e ∈ Eb at any time
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t ∈ {1, . . . ,H} in the MPC prediction horizon will be suboptimal. �

5.3.2.3 Further Discussion on Proposition 5.3

Conditions C1-C4 given in Proposition 5.3, which ensure an optimal solution with non-

simultaneous ESS charging and discharging, naturally arise in the DC OPF problem. Condition C1

captures the situation when the cost function is designed to satisfy ∂PG
g,τ
ftot(x̃H) ≥ 0 and there is at

least one dispatchable energy source g ∈ Gb that is operating above its minimum generation output

for some time τ ∈ {1, . . . ,H}. A commonly used cost function is a quadratic penalty on dispatchable

power generation which satisfies the assumption on the partial derivative of the cost function

∂PG
g,τ
ftot(x̃H) ≥ 0 [47, 89, 94, 101–103]. Additionally, to satisfy the load throughout the network, it

is optimal for the dispatchable generator to be operating above its minimum generation output.

Condition C2 is the case where there is at least one non-dispatchable energy source r ∈ Rb that is

not curtailing all available generation. This condition is commonly met since it is not optimal in

this setting to curtail non-dispatchable power sources (such as wind and solar) to meet the network

load. Condition C3 captures the situation where the optimal charging and discharging strategy

is such that the ESS κ ∈ Eb will not attain the maximum SOC during times n ∈ {τ + 1, . . . ,H}.

Condition C3 will be easily met when the excess solar energy after serving the network load is less

than the available ESS capacity for times n ∈ {τ + 1, . . . ,H}. Condition C4 describes when the

line congestion does not attain its upper power flow limit for lines connecting adjacent buses d ∈ Bb

to bus b and the sum of Lagrange multipliers corresponding to the power balance constraint at

adjacent buses is non-negative at time τ ∈ T .

Next, we provide a remark on when a penalty on ESS charging or discharging does not need

to be included in the overall objective function, i.e., when ∂Pdis
κ,τ
ftot(x̃H) = ∂P ch

κ,τ
ftot(x̃H) = 0, to

ensure non-simultaneous charging and discharging, which follows directly from Proposition 5.3. We

also provide a remark on conditions when the penalty reformulation does not ensure proper ESS

charging and discharging behavior.
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Remark 5.1 If the system is such that for some g ∈ Gb, PG
g < P̃G

g,t ≤ P
G
g and ∂PG

g,t
ftot(x̃H) > 0

for all t ∈ {1, . . . ,H}, then for each ESS e ∈ Eb it will be suboptimal to simultaneously charge and

discharge for all time t ∈ {1, . . . ,H} without the use of the penalty approach, i.e., the cost function

can be chosen such that ∂Pdis
e,τ
ftot(x̃H) = ∂P ch

e,τ
ftot(x̃H) = 0.

Remark 5.2 If the system is such that for some g ∈ Gb, PG
g = P̃G

g,t ≤ P
G
g or for some r ∈ Rb,

P̃ c
r,t = P res

r,t at time t ∈ {1, . . . ,H}, then the penalty reformulation does not ensure that a solution

with simultaneous charging and discharging to the DC OPF problem with the convex relaxed ESS

model will be suboptimal.

5.3.3 Case Study: Proper Energy Storage System Model Behavior in DC OPF

To demonstrate the charging and discharging behavior of the ESS model, we provide simula-

tion results on the IEEE 14-bus, 57-bus, and 118-bus test systems using MATPOWER’s quadratic

generation cost parameters [104] for the proposed MPC-based DC OPF problem in (5.25). The

system is modified to include non-dispatchable renewable sources, i.e., photovoltaic (PV) sources,

and ESSs. We first use the smaller modified IEEE 14-bus test system to highlight the ESS model

behavior with respect to the conditions presented in Proposition 5.3. We then provide simulation

results on larger, modified IEEE 57-bus and 118-bus test systems to compare the computation

time using the proposed linear ESS model in (5.1) versus the same model with the non-convex

complementarity constraint in (5.2) included. The network load data is obtained from PJM’s pub-

licly available database [105] and the solar data is obtained from NREL’s Solar Power Data for

Integration Studies [106]. The simulation has a 12-hour prediction horizon (H = 12) with 1 hour

time intervals (∆t = 1). The MPC-based DC OPF problem in (5.25) is implemented in Python

using the Pyomo [107,108] optimization modeling language, and uses the MATPOWER data parser

and other select functions from EGRET [80]. The simulations in this work were performed on a

computer with a 2.4 GHz Intel Core i5 processor with 8 GB of RAM. For the following simulations,



94

we use the quadratic cost function:

ftot(xH) =
H∑
t=1

∑
g∈G

(ag(P
G
g,t)

2 + bgP
G
g,t + cg) +

∑
e∈E

ρeP
ch
e,t

 , (5.36)

where the generation cost parameters satisfy ag > 0, bg > 0, cg ≥ 0 for all g ∈ G, and ρe > 0 for

each e ∈ E will be specified in each simulation. The penalty function is a linear penalty on ESS

charging to capture future ESS replacement costs.

5.3.3.1 Simulation Results for IEEE 14-bus Test System

The MPC-based DC OPF problem in (5.25) is first simulated with the convex ESS model in

(5.1) and the cost function in (5.36) where ρe = 0.01 for all e ∈ E . We modify the IEEE 14-bus

test system by adding 7 PV sources and 10 ESSs, as described in Table 5.6. Note that shaded

entries in the tables throughout Section 5.3.3 imply “not applicable.” Thus, bus 6 reflects the case

when any of Conditions C1, C3, or C4 can hold (traditional power generator and ESS); buses 2, 3,

and 8 reflect when Conditions C1-C4 can hold (traditional power generator, solar, and ESS); and

buses 9, 10, and 12 reflect when Conditions C2-C4 can hold (solar and ESS). The ESS charging

efficiency ηch
e is randomly chosen from [0.92, 0.93, . . . , 0.97], and the ESS capacity Ee is randomly

chosen from [20, 25, . . . , 50] for each ESS e ∈ E . The discharging efficiency for each ESS is ηd
e = 1

ηche
.

The maximum charging/discharging power Pe is chosen to be 60% of the ESS capacity Ee. The

simulation results are provided in Fig. 5.5. The power profiles shown in Fig. 5.5 at three of the

modified buses demonstrate non-simultaneous ESS charging and discharging when the conditions

in Proposition 5.3 are satisfied. We show power profiles for buses 6, 8, and 12 since they together

capture all the conditions possible in Proposition 5.3.

Next, the MPC-based DC OPF problem in (5.25) is simulated with the convex ESS model

in (5.1) and with the cost function in (5.36). For this simulation, the penalty parameter for the

ESS at bus 12 has been modified to ρe = 0, i.e., only the ESS at bus 12 is not penalized so

∂P ch
e,t
ftot(x̃H) = ∂Pdis

e,t
ftot(x̃H) = 0. The penalty parameter for all ESSs except the one at bus 12

is ρe = 0.01, as in the previous simulation. The power profiles in Fig. 5.6 show that simultaneous
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Table 5.6: Bus locations of PV sources and ESSs in each DC OPF simulation.

Type 14-Bus System 57-Bus System 118-Bus System

PV
2, 3, 5,

8-10, 12

2, 5, 7-9, 14,

17, 25, 29, 31, 32,

37, 42, 45, 49, 52,

53, 55

4, 9, 13, 16, 18,

27, 33, 49, 58, 61,

63, 64, 73, 84, 98,

101, 103, 109

ESS

(10)

2, 3, 5-10,

12, 14

7, 9, 12, 14, 25,

30, 42, 49, 52, 56

16, 18, 19, 27, 37,

49, 84, 90, 98, 101

ESS

(15)

1-3, 5, 7, 9, 14,

25, 29, 36, 37, 42,

49, 50, 52

3, 5, 9, 16, 18,

27, 49, 58, 73, 83,

84, 98, 99, 101, 103

ESS

(20)

1-3, 5, 7-9, 14,

17, 21, 25, 29, 36,

37, 40, 42, 48, 49,

52, 53

2, 9, 13, 16, 18,

27, 33, 35, 49, 57,

58, 63, 73, 83, 84,

98, 99, 101, 103, 105

Figure 5.5: Simulation results for the DC OPF when the conditions in Proposition 5.3 are satisfied,
highlighting the power profiles for total generation, available solar, total curtailment, and total ESS
charging and discharging to optimally satisfy the total network load (top). Power profiles at bus 6
(middle left). Power profiles at bus 8 (middle right). Power profiles at bus 12 (bottom left). SOC
of ESSs (bottom right).

ESS charging and discharging at bus 12 does occur from Hour 9 to 14 when the conditions in

Proposition 5.3 are not satisfied. The simulation in Fig. 5.6 also shows proper non-simultaneous

ESS charging and discharging behavior buses 6 and 8 since the penalty parameter for the ESSs
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at those buses ensures the desired ESS model behavior. The difference between Fig. 5.5 and

Fig. 5.6 are negligible aside from the charging and discharging strategy for the ESS at bus 12,

which demonstrates that changing the penalty parameter on one ESS does not significantly impact

the other optimization decisions.

Figure 5.6: Simulation results for the DC OPF when the conditions in Proposition 5.3 are NOT
satisfied, highlighting the power profiles for total generation, available solar, total curtailment, and
total ESS charging and discharging to optimally satisfy the total network load (top). Power profiles
at bus 6 (middle left). Power profiles at bus 8 (middle right). Power profiles at bus 12 (bottom
left). SOC of ESSs (bottom right).

Next, we provide simulations to illustrate the relationship between the penalty parameter ρe

and the numerical complementarity gap, which we define as:

Numerical Complementarity Gap =

24∑
t=1

P̃ ch
e,t · P̃ dis

e,t (5.37)

for an ESS e ∈ E , which should be numerically close to zero. We again simulate the DC OPF

problem in (5.25) with the relaxed convex ESS model and with the cost function as in (5.36) for

varying magnitudes of the penalty parameter ρe = [10−4, 10−3, . . . , 101] for the ESS at bus 12

and where ρe = 0.01 for all other ESSs in the network. Similar approaches for tuning the penalty

parameter are presented in [24, 28]. The simulation results for the ESS at bus 12 is shown in
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Fig. 5.7. In each of the plots showing the ESS behavior at bus 12, ESS behavior does not change

Figure 5.7: Charging and discharging behavior of the ESS located at bus 12 as the penalty parameter
ρe increases in magnitude. (bottom): Numerical complementarity gap (Compl. Gap) as penalty
parameter ρe increases in magnitude.

significantly as ρe is increased, although simultaneous charging and discharging is observed when

ρe = 0.0001 from Hour 9 to 14. Furthermore, from Fig. 5.7 we can see that including the penalty

parameter ρe to ensure proper ESS model behavior has a negligible impact on the optimal charging

and discharging strategies for various values of ρe. In Fig. 5.7 (bottom) we highlight that the

numerical complementarity gap decreases as the penalty parameter increases, which demonstrates

that tuning may be necessary to ensure the convex relaxation of the ESS model achieves ESS

non-simultaneous charging and discharging behavior given a desired numerical complementarity

gap tolerance. Note that for ρe = 101, the numerical complementarity gap is equal to zero. The

numerical complementarity gap can also be further decreased for a given penalty parameter by

tightening the solver termination convergence tolerance.
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5.3.3.2 Simulation Results for Larger Networks

In this section, additional simulations on larger networks, i.e., the IEEE 57-bus and 118-bus

test systems, were performed for each ESS model - both the convex model in (5.1) and the same

model with the complementarity constraint (5.2) included. The simulations with the non-convex

ESS model are solved using IPOPT [109]. For each network, it is solved with 10 ESSs, 15 ESSs, and

20 ESSs. The bus locations of the non-dispatchable PV sources and ESSs are given in Table 5.6, and

the ESS efficiency and capacity parameters were randomly chosen in the same way as described for

the IEEE 14-bus test system study in Section 5.3.3.1. The cost function in (5.36) with the penalty

parameter value ρe = 0.01 is used for each simulation with the RC ESS model. The penalty

term in the objective function is omitted when the NC ESS model is used. We first compare the

computation time when the proposed relaxed convex, linear (RC) ESS model in (5.1) is used versus

when the non-convex (NC) ESS model with the complementarity constraint in (5.2) is used in the

MPC-based DC OPF problem. Table 5.7 summarizes the computation time results for both the

RC and NC ESS models for each network. Table 5.7 shows both the average computation time for

each iteration (24 iterations total) of the MPC-based DC OPF problem with a 12 hour prediction

horizon, and the total time the 24 hour simulation took to complete. To measure the computation

time savings by using the linear, convex ESS model in (5.1), we define the Speed-up Factor metric

as:

Speed-up Factor (SF) =
tNC

tRC
,

where tNC is the total computation time with the non-convex ESS model with IPOPT and tRC is the

total computation time with the linear, convex ESS model. In Table 5.7, we also include the time it

takes to solve (5.25) with the linear, convex ESS model with an academic Gurobi license [81] since

that is a natural choice when solving a convex optimization problem without the complementarity

constraint. From Table 5.7, we can see that using the RC ESS model results in finding an optimal

solution approximately three times faster than with the NC ESS model when IPOPT is used, and

can be increased to thirty times faster when Gurobi is used. Thus, using the proposed RC ESS
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model results in a significant reduction in computation time when solving optimization problems

on larger test systems.

Table 5.7: Computation time comparison for the relaxed convex, linear (RC) ESS model in (5.1)
versus the non-convex (NC) ESS model with constraint (5.2). The speed-up factor is denoted SF.
All times are reported in seconds.

10 ESS 15 ESS 20 ESSNetwork

(ESS Model, Solver) Avg. Total SF Avg. Total SF Avg. Total SF

14-Bus (NC, IPOPT) 0.497 11.937

14-Bus (RC, IPOPT) 0.196 4.709 2.535

14-Bus (RC, Gurobi) 0.021 0.492 24.258

57-Bus (NC, IPOPT) 1.428 34.267 1.577 37.839 1.598 38.350

57-Bus (RC, IPOPT) 0.406 9.742 3.518 0.467 11.207 3.376 0.495 11.882 3.227

57 Bus (RC, Gurobi) 0.038 0.901 38.014 0.042 1.017 37.190 0.051 1.232 31.133

118-Bus (NC, IPOPT) 2.795 67.077 2.900 69.607 2.932 70.368

118-Bus (RC, IPOPT) 0.814 19.534 3.434 0.844 20.263 3.435 0.905 21.726 3.239

118-Bus (RC, Gurobi) 0.075 1.799 37.292 0.089 2.143 32.473 0.095 2.275 30.935

In Fig. 5.8, the percent change in the cost function value with respect to solving DC OPF

with the non-convex ESS model is given for the IEEE 14-bus, 57-bus, and 118-bus test systems and

each ESS scenario at each iteration of the MPC. This highlights that the difference in optimality

between the NC and RC ESS models, and between the solution obtained with IPOPT and Gurobi

is negligible.

5.4 Relaxed Convex Grid-Connected Energy Storage Models in Distribution

Settings

In this section, theoretical guarantees are provided for proper behavior of a grid-connected,

convex ESS model in the second order cone (SOC) relaxation of the AC OPF problem in a distri-

bution setting. Similar to the BTM and transmission settings, a penalty reformulation approach is

used where the KKT conditions are leveraged in our theoretical analysis in order to omit the ESS

complementarity constraint to maintain the convexity of the optimization problem. Compared to

the transmission setting in Section 5.3 where the network is a mesh graph, the distribution setting

is a radial network where the root node is the point of common coupling (PCC), or the distribution
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Figure 5.8: Percent change in cost function value for each iteration of the MPC-based DC OPF
problem with a 12 hour prediction horizon. The percent change is with respect to the cost function
value obtained when solving the MPC-based DC OPF with the NC ESS model. IEEE 14-bus test
system (top row). IEEE 57-bus test system for each ESS scenario (middle row). IEEE 118-bus test
system for each ESS scenario (bottom row).

substation, where the distribution network is connected to the transmission grid. An additional

key difference is that the line capacity limits are not included when considering OPF in distribution

settings, since a binding line capacity limit constraint would necessitate load shed downstream in

the network. In distribution grids, it is also assumed there is an “infinite” generator at the root

node, which represents power supplied to the distribution grid from the transmission grid.

Next, the SOC relaxation of the AC OPF problem with a relaxed convex ESS model is intro-

duced. Then, the theoretical analysis is presented for guaranteeing non-simultaneous charging and

discharging. Lastly, simulation results are provided to demonstrate proper charging and discharg-

ing behavior with the relaxed convex ESS model, and computation time savings with the relaxed

convex ESS model compared to an equivalent mixed-integer ESS model. The relevant notation for

this section is given in Table 5.4.
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Table 5.8: Notation for SOCP relaxation of the AC OPF model.

Sets
b ∈ B Set of buses
b ∈ B+ Set of buses excluding the origin

bus b = 0
l ∈ L Set of lines l = (b, d)
l ∈ Lb Set of lines connected to bus b
l ∈ Ld

b Set of lines with destination bus b
l ∈ Lo

b Set of lines with origin bus b
r ∈ R Set of distributed energy resources
r ∈ Rb Set of distributed energy sources at

bus b
e ∈ E Set of ESSs
e ∈ Eb Set of ESSs at bus b
t ∈ T Set of discrete time periods

{1, 2, . . . ,H}
Parameters

gl Conductance of line l
bl Susceptance of line l
V b Minimum voltage at bus b (p.u.)

V b Maximum voltage at bus b (p.u.)
P res
r Available generation from renew-

able energy source r (kW)

P e Maximum charging/discharging
power of ESS e (kW)

Ee Minimum ESS e state of charge
(kWh)

Ee Maximum ESS e state of charge
(kWh)

ηch
e Charging efficiency of ESS e
ηdis
d Discharging efficiency of ESS e
PL
b,t Real power demand at bus b (kW)

QL
b,t Reactive power demand at bus b

(kVar)

Variables
PG
t Real power dispatch of generator

(kW)
QG
t Reactive power dispatch of genera-

tor (kVar)
P ch
e,t Power injected into ESS e (kW)

P dis
e,t Power drawn from ESS e (kW)

Ee,t State of charge of ESS e (kWh)
P curt
r,t Renewable energy generation cur-

tailment (kW)
cb,t SOCP variable for voltage squared

term
cl,t SOCP variable for cosine term
sl,t SOCP variable for sine term
pl(b),t Real power flow on line l leaving bus

b at time t (kW)
ql(b),t Reactive power flow on line l leaving

bus b at time t (kVar)
pl(d),t Real power flow on line l leaving bus

d at time t (kW)
ql(d),t Reactive power flow on line l leaving

bus d at time t (kVar)

5.4.1 Second Order Cone Relaxation of AC OPF with Energy Storage

Next, we provide the mathematical formulation of the SOC relaxation of the AC OPF problem

with distributed energy resources (renewable generation and ESSs) in a distribution setting. In a

distribution network, it is necessary to model power losses and reactive power due to the high R/X

ratio; thus a relaxation of AC OPF that captures nodal voltage, and real and reactive power must

be used. The general non-convex AC OPF problem seeks to optimize real and reactive power in
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a network subject to constraints on voltage magnitude and voltage angle at each bus [110]. The

SOC relaxation, which was first proposed in [111, 112], results in a convex optimization problem

where the non-convex quadratic terms in AC OPF are replaced with new variables cb,t, cl,t, sl,t

and associated constraints:

cb,t = v2
b,t, ∀b ∈ B, ∀t ∈ T , (5.38)

cl,t = cos(θb,t − θd,t)cb,tcd,t, ∀l ∈ L, ∀t ∈ T , (5.39)

sl,t = sin(θb,t − θd,t)cb,tcd,t, ∀l ∈ L, ∀t ∈ T , (5.40)

c2
l,t + s2

l,t ≤ cb,tcd,t, ∀l ∈ L, ∀t ∈ T , (5.41)

where vb,t is the voltage magnitude and θb,t is the voltage angle at each bus b ∈ B. Let the

optimization variables for all time t be collected in the vector xH = [x1 x2 . . . xH ] where xt

collects the optimization variables associated to time t. Then the overall SOC relaxation of the AC

OPF problem with distributed energy resources is given by:

min
xH

f tot(xH) (5.42a)

s.t. V 2
b ≤ cb,t ≤ V

2
b , ∀b ∈ B+,∀t ∈ T , (5.42b)

c2
l,t + s2

l,t ≤ cb,tcd,t, ∀l ∈ L,∀t ∈ T , (5.42c)

Ee,t+1 = Ee,t + ∆tηch
e P

ch
e,t −∆t 1

ηdise
P dis
e,t , ∀e ∈ E ,∀t ∈ T , (5.42d)

Ee ≤ Ee,t+1 ≤ Ee, ∀e ∈ E ,∀t ∈ T , (5.42e)

0 ≤ P ch
e,t ≤ P e, ∀e ∈ E ,∀t ∈ T , (5.42f)

0 ≤ P dis
e,t ≤ P e, ∀e ∈ E ,∀t ∈ T , (5.42g)

0 ≤ P curt
r,t ≤ P res

r,t , ∀r ∈ R,∀t ∈ T , (5.42h)

pl(b),t = cb,tgl − cl,tgl − sl,tbl, ∀l ∈ L, ∀t ∈ T , (5.42i)
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pl(d),t = cb,tgl − cl,tgl + sl,tbl, ∀l ∈ L,∀t ∈ T , (5.42j)

ql(b),t = −cb,tbl + cl,tbl − sl,tgl, ∀l ∈ L,∀t ∈ T , (5.42k)

ql(d),t = −cb,tbl + cl,tbl + sl,tgl, ∀l ∈ L, ∀t ∈ T , (5.42l)

− PG
t +

∑
l∈Lob

pl(b),t = 0, ∀b /∈ B+,∀t ∈ T , (5.42m)

−QG
t +

∑
l∈Lob

ql(b),t = 0, ∀b /∈ B+,∀t ∈ T , (5.42n)

PL
b,t +

∑
l∈Lob

pl(b),t +
∑
l∈Ldb

pl(d),t +
∑
e∈Eb

(P ch
e,t − P dis

e,t )

−
∑
r∈Rb

(P res
r,t − P curt

r,t ) = 0, ∀b ∈ B+, ∀t ∈ T , (5.42o)

QL
b,t +

∑
l∈Lob

ql(b),t +
∑
l∈Ldb

ql(d),t = 0, ∀b ∈ B+,∀t ∈ T . (5.42p)

The objective function in (5.42a) is assumed to be differentiable and convex, where the exact

objective function is not specified to preserve generality of our results. The node voltage limits

are enforced in (5.42b). The second order cone constraint is given by (5.42c). The relaxed convex

ESS model is included in (5.42d)-(5.42g). Curtailment of distributed energy resources is enforced

in (5.42h). The real and reactive power flow constraints are given in (5.42i)-(5.42l). The real and

reactive power balance at the root bus is given by (5.42m) and (5.42n), respectively. The real

and reactive power balance for buses b ∈ B+ is given by (5.42o) and (5.42p). The overall SOC

relaxation of AC OPF optimization model with distributed energy sources and ESSs in (5.42) will

be the focus of our analysis for ensuring an optimal solution will satisfy proper ESS charging and

discharging behavior in (5.2).

5.4.2 Theoretical Guarantees for Relaxed Energy Storage System Models in the

SOC Relaxation of AC OPF in Distribution

For our theoretical analysis, the KKT conditions are again leveraged since the SOC relaxation

of AC OPF in (5.42) is a convex SOC program (SOCP). For use in the theoretical analysis, we

introduce some notation for the Lagrange multipliers associated with the equality and inequality
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constraints in (5.42) (written in standard form):

λvb,t : V 2
b − cb,t ≤ 0, ∀b ∈ B+,∀t ∈ T , (5.43a)

λ
v

b,t : cb,t − V
2

b ≤ 0, ∀b ∈ B+,∀t ∈ T , (5.43b)

λsocpl,t : c2l,t + s2l,t − cb,tcd,t ≤ 0, ∀l ∈ L,∀t ∈ T , (5.43c)

λche,t : − P ch
e,t ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43d)

λ
ch

e,t : P ch
e,t − P e ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43e)

λdise,t : − P dis
e,t ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43f)

λ
dis

e,t : P dis
e,t − P e ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43g)

λsoce,t : Ee − Ee,0 + ∆t

t−1∑
n=1

(
1
ηdis
e
P dis
e,t − ηche P ch

e,t

)
≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43h)

λ
soc

e,t : Ee,0 + ∆t

t−1∑
n=1

(
ηche P

ch
e,t − 1

ηdis
e
P dis
e,t

)
− Ee ≤ 0, ∀e ∈ E ,∀t ∈ T , (5.43i)

λresr,t : − P c
r,t ≤ 0, ∀r ∈ R,∀t ∈ T , (5.43j)

λ
res

r,t : P c
r,t − P res

r,t ≤ 0, ∀r ∈ R,∀t ∈ T , (5.43k)

µP
0,t : − PG

t +
∑
l∈Lo

b

(cb,tgl − cl,tgl − sl,tbl) = 0, ∀t ∈ T , (5.43l)

µQ
0,t : −QG

t +
∑
l∈Lo

b

(−cb,tbl + cl,tbl − sl,tgl) = 0, ∀t ∈ T , (5.43m)

µP
b,t : PL

b,t +
∑
l∈Lo

b

(cb,tgl − cl,tgl − sl,tbl) +
∑
l∈Ld

b

(cb,tgl − cl,tgl + sl,tbl)

+
∑
e∈Eb

(P ch
e,t − P dis

e,t )−
∑
r∈Rb

(P res
r,t − P curt

r,t ) = 0, ∀b ∈ B+,∀t ∈ T , (5.43n)

µQ
b,t : QL

b,t +
∑
l∈Lo

b

(−cb,tbl + cl,tbl − sl,tgl) +
∑
l∈Ld

b

(−cb,tbl + cl,tbl + sl,tgl) = 0, ∀b ∈ B+,∀t ∈ T . (5.43o)

Notice that, even with the addition of modeling nodal voltage magnitude limits and reactive power,

the ESS variables P dis
e,t and P ch

e,t only show up in the real power balance, as in the BTM and

transmission setting. Let Br denote the set of buses with distributed energy sources and let Be
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denote the set of buses with an ESS. Then, the KKT stationarity conditions of interest are:

− λres
r,t + λ

res
r,t + µP

b,t = 0, ∀b ∈ Br,∀t ∈ T , (5.44a)

∂P ch
e,t
ftot(x̃H)− λch

e,t + λ
ch
e,t + ηch

e ∆t
H∑
n=t

(λ
soc
e,n − λsoc

e,n) + µP
b,t = 0, ∀b ∈ Be,∀t ∈ T , (5.44b)

∂Pdis
e,t
ftot(x̃H)− λdis

e,t + λ
dis
e,t + 1

ηdise
∆t

H∑
n=t

(λsoc
e,n − λ

soc
e,n)− µP

b,t = 0, ∀b ∈ Be,∀t ∈ T . (5.44c)

Thus, our following theoretical result is intuitive from our previous analysis for the BTM and

transmission setting. For the following discussion, let the vector x̃H denote an optimal solution to

(5.42).

Proposition 5.4 Assume the objective function f tot(xH) is differentiable and convex. Further

assume that ∂P ch
e,t
f tot(x̃H) ≥ 0, ∂Pdis

e,t
f tot(x̃H) ≥ 0, and (∂P ch

e,t
f tot(x̃H) + ∂Pdis

e,t
f tot(x̃H)) > 0 for all

e ∈ E and t ∈ T . A solution satisfies P ch
e,t · P dis

e,t = 0 at time t ∈ T for ESS e ∈ Eb if at least one of

the following conditions is satisfied at bus b ∈ B:

C1) µP
b,t ≥ 0,

C2) 0 ≤ P̃ c
r,t < P res

r,t for some r ∈ Rb,

C3)
∑H

n=t(λ
soc
e,n − λsoc

e,n) ≤ 0.

Proof. Let the assumptions in the proposition statement hold. For each of the three conditions

given in Proposition 5.4, we will show that an optimal solution to (5.42) will satisfy (5.2). We begin

by assuming that Condition C1 is true, i.e., µP
b,t ≥ 0 at time t ∈ T at bus b ∈ B. Also assume that

ESS e ∈ Eb is simultaneously charging and discharging at time t. Solving for I =
∑H

n=t(λ
soc
e,n−λsoc

e,n)

in (5.44b), and plugging −I into (5.44c), we obtain:

∂Pdis
e,t
f tot(x̃H) + 1

ηdise ηche
∂P ch

e,t
f tot(x̃H) + λ

dis
e,t + 1

ηdise ηche
λ

ch
e,t + ( 1

ηdise ηche
− 1)µP

b,t = 0, (5.45)

since λch
e,t = λdis

e,t = 0 by our assumption that ESS e is simultaneously charging and discharging.

Then, the first four terms in (5.45) are strictly greater than 0, by our assumptions on the objection

function f tot(xH) and the KKT dual feasibility condition. Also, the quantity ( 1
ηdise ηche

− 1) > 0 by
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our assumptions on the ESS model efficiency parameters. Thus, we obtain a contradiction since

(5.45) cannot equal zero when Condition C1 is true. Thus, if an optimal solution to (5.42) satisfies

Condition C1, then the optimal solution at time t will satisfy (5.2) for ESS e at bus b.

Next, assume Condition C2 is true, i.e., the optimal solution to (5.42) is such that 0 ≤ P̃ c
r,t <

P res
r,t at time t ∈ T for some r ∈ Rb, that is located with ESS e ∈ Eb at bus b ∈ B. By the KKT

complementarity slackness condition, we obtain λ
res
r,t = 0. Then, by (5.44a) we have µP

b,t = λres
r,t ≥ 0

because of the KKT dual feasibility condition. Therefore, from our analysis for Condition C1 when

µP
b,t ≥ 0, ESS e will satisfy the complementarity constraint in (5.2) at time t.

Lastly, assume Condition C3 is true, i.e.,
∑H

n=t(λ
soc
e,n − λsoc

e,n) ≤ 0 at time t ∈ T for ESS

e ∈ Eb.But, ESS e is simultaneously charging and discharging at time t, i.e., 0 < P̃ ch
e,t ≤ P e and

0 < P̃ dis
e,t ≤ P e. By the KKT complementary slackness condition, we obtain that λch

e,t = λdis
e,t = 0.

Then, adding (5.44b) and (5.44c) together, we obtain:

∂P ch
e,t
f tot(x̃H) + ∂Pdis

e,t
f tot(x̃H) + λ

ch
e,t + λ

dis
e,t + ∆t

(
ηch
e −

1

ηdis
e

) H∑
n=t

(λ
soc
e,n − λsoc

e,n) = 0. (5.46)

By the assumption that ∂P ch
e,t
f tot(x̃H) ≥ 0, ∂Pdis

e,t
f tot(x̃H) ≥ 0, (∂P ch

e,t
f tot(x̃H) + ∂Pdis

e,t
f tot(x̃H)) > 0,

and 0 < ηch
e , η

dis
e < 1, together with λ

ch
e,t ≥ 0 and λ

dis
e,t ≥ 0 by the KKT dual feasibility condition,

the sum of the first four terms in (5.46) is positive. Since (ηch
e − 1

ηdise
) < 0 and our assumption that∑H

n=t(λ
soc
e,n − λsoc

e,n) ≤ 0, we obtain a contradiction since the left-hand side of (5.46) cannot equal

zero. Thus, if Condition C3 is satisfied, an optimal solution to (5.42) will satisfy (5.2) at time t for

ESS e. �

5.4.3 Case Study: Proper Energy Storage System Model Behavior in Distribution

To demonstrate the optimal charging and discharging behavior of the ESS model, simulation

results are provided on the IEEE 18-bus test feeder [104] for the SOC relaxed OPF model in (5.42).

The 18-bus test feeder is modified to include distributed renewable sources, i.e., PV sources, and

ESSs at arbitrary nodes, as shown in Table 5.9. Simulation results are provided for (5.42) when
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|E| is 5, 10, and 15. The ESS charging efficiency ηch
e is randomly chosen from [0.92, 0.93, . . . , 0.97],

and the ESS capacity Ee is randomly chosen from [40, 45, . . . , 100] for each ESS e ∈ E . The

discharging efficiency for each ESS is ηdis
e = ηch

e . The maximum charging/discharging power Pe

is chosen to be 60% of the ESS capacity Ee. The network load data is obtained from PJM’s

publicly available database [105] and the solar data is obtained from NREL’s Solar Power Data

for Integration Studies [106]. The model in (5.42) is simulated for 24 hours (H = 24) with 1 hour

time intervals (∆t = 1). The model in (5.42) is implemented in Python using the Pyomo [107,108]

optimization modeling language, using the MATPOWER data parser and other select functions

from EGRET [80], and solved using an academic Gurobi 8.1.1 license [81]. The simulations in this

work were performed on a computer with a 3.4 GHz AMD Ryzen 5 processor with 16 GB of RAM.

The objective function used in this study is:

f tot(xH) =
∑
t∈T

(
QG
t +

∑
e∈E

0.1P dis
e,t

)
, (5.47)

which satisfies the assumptions of the model formulation in Proposition 5.4.

Table 5.9: Bus locations for distributed resources, i.e., ESSs and PV sources, in the IEEE 18-bus
test feeder.

Distributed Resource Bus Locations

PV 2-5, 7-9, 12-14
ESS (5) 1, 3, 11, 12, 17
ESS (10) 2, 3, 5, 7, 10, 12-14, 16, 18
ESS (15) 1-5, 7-16

The numerical complementarity gap results for each simulation with varying numbers of

ESSs in the distribution feeder are shown in Fig. 5.9, where the numerical complementarity gap

for each ESS e ∈ E is defined as P̃ ch
e,t · P̃ dis

e,t . From Fig. 5.9, our proposed penalty approach achieves

a numerical complementarity gap on the order of 10−8 and 10−9, showing the complementarity

constraint (5.2) is numerically satisfied.

Lastly, simulations results are provided to demonstrate the computation time savings achieved

with the relaxed convex ESS model in (5.42) compared to when the following mixed-integer ESS



108

Figure 5.9: Numerical complementarity gap for distributed ESSs in the IEEE 18-bus test feeder.
Top: Simulation with |E| = 5. Middle: Simulation with |E| = 10. Bottom: Simulation with
|E| = 15.

model is used:

Ee,t+1 = Ee,t + ∆tηch
e P

ch
e,tbe,t −∆t 1

ηdise
P dis
e,t (1− be,t), ∀e ∈ E , ∀t ∈ T , (5.48a)

Ee ≤ Ee,t+1 ≤ Ee, ∀e ∈ E , ∀t ∈ T , (5.48b)

0 ≤ P ch
e,t ≤ P e, ∀e ∈ E , ∀t ∈ T , (5.48c)

0 ≤ P dis
e,t ≤ P e, ∀e ∈ E , ∀t ∈ T , (5.48d)

be,t ∈ {0, 1}, ∀e ∈ E , ∀t ∈ T , (5.48e)

where be,t is a binary variable introduced into the ESS model to enforce the omitted complementar-

ity constraint (5.2). When the binary ESS model in (5.48) replaces the relaxed convex ESS model

in (5.42d)-(5.42g), the overall optimization problem in (5.42) becomes a mixed-integer SOCP (MIS-

OCP), which is solved using Gurobi. To measure the computation time savings achieved by using
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the relaxed convex ESS model, we define the Speed-Up Factor metric as:

Speed-Up Factor =
tMISOCP

tSOCP
,

where tMISOCP is the total computation time to solve the MISOCP problem and tSOCP is the

total computation time to solve (5.42). In Table 5.10, our numerical experiments show significant

computation time savings when the relaxed convex ESS model is used.

Table 5.10: Computation time savings for the relaxed convex ESS model compared to a mixed-
integer ESS model in a distribution setting.

Number
of ESSs

Speed-Up Factor, tMISOCP

tSOCP

5 8.442
10 16.506
15 16.353

5.5 Discussion and Conclusions

This chapter provides a convex relaxation for a grid-connected ESS model using the penalty

reformulation approach in a multi-period BTM EMS setting, in a DC OPF problem in transmission,

and an SOCP relaxation of AC OPF in distribution. We provide the conditions under which the

relaxed convex ESS model in each optimization model ensures a solution with an ESS simultaneously

charging and discharging is suboptimal. In the EMS setting, our theoretical guarantees include

EMS models that capture net metering, FiTs, demand charges, TOU rates, and flexible load

scheduling. We leverage the KKT conditions for our analysis, with assumptions on the properties

that the optimization objective function must satisfy, to provide guarantees for situations where

a solution with simultaneous ESS charging and discharging is suboptimal. Thus, ESS models

with non-convex complementarity constraints to prevent simultaneous charging and discharging

are unnecessary when the conditions presented in this chapter are satisfied for their respective

grid settings. Numerical case study results were provided to show the proper ESS charging and

discharging behavior when the conditions for the relaxation to hold are satisfied, as well as when
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the necessary conditions to guarantee non-simultaneous ESS charging and discharging are not

satisfied. In the transmission and distribution setting, we provide additional simulation results on

multiple IEEE test systems showing that the computation time is reduced when using relaxed ESS

model compared to a non-convex ESS model, while still ensuring that the correct non-simultaneous

charging and discharging is observed.



Chapter 6

Conclusion and Future Directions

In this thesis, we presented stochastic optimization methods for integrating renewable en-

ergy into the power grid in both BTM settings with distributed renewable energy resources and

transmission grid settings with large wind farms. Integrating renewable energy is challenging due

to the intermittent, variable, and non-dispatchable characteristics of renewable energy generation.

To reduce the impact of these challenges on the grid, ESSs are often coupled with renewable energy

sources in many active areas of power grid optimization research. This thesis also presented theo-

retical analysis for a grid-connected convex ESS model that is guaranteed to produce a physically

realizable control policy when included in optimization models from BTM to transmission settings.

To aid in BTM renewable energy integration, two chance constrained MPC-based optimiza-

tion models were proposed for a HEMS algorithm that coordinates appliances, customer prefer-

ences, and BTM controllable resources such as generation from rooftop PV panels and an HBS.

The first chance constrained MPC-based HEMS responded to utility-requested DR events, and

chance constraints were incorporated into the optimization problem to ensure the DR request and

home indoor air temperature preferences are satisfied with a high probability given uncertainty in

both the solar and weather forecasts. In the second chance constrained MPC-based HEMS study,

the performance of the HEMS algorithm was compared across multiple scenarios, each with dif-

ferent sets of controllable BTM resources, under a constant electricity price and a TOU electricity

price. Similarly, chance constraints ensured the indoor thermal comfort was maintained with high

probability given uncertainty in the weather forecast. When comparing the performance results
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with TOU electricity prices to constant electricity prices, the HBS usage and the daily load fac-

tor increased in most scenarios with a TOU electricity price. Additionally, with TOU prices, the

HEMS was able to optimally coordinate the available controllable resources in each scenario to

decrease the total electricity cost for the consumers. Future work in chance constrained HEMS

models includes incorporating other flexible loads, such as a dishwasher and/or water heater, into

the proposed optimization framework. This may allow for further load flexibility and help with

reducing HBS cycling and daily load factor. Further work on stochastic MPC-based HEMS algo-

rithms includes incorporating other stochastic parameters with non-Gaussian distributions, such as

home occupancy schedules and EV arrival and departure times, which can be incorporated into the

optimization model using existing techniques in the literature [36]. A future research direction also

includes determining optimal time-varying residential electricity rates that produce optimal EMS

behavior, ensuring favorable HEMS performance from both customer and utility perspectives.

For integrating power generation from large wind farms at the transmission level, we proposed

a two-stage stochastic optimal power flow problem with flexible line ratings to address uncertainty

in wind power forecasts, alleviate line congestion, and minimize wind power curtailment. An SAA

of a joint chance constraint is used to limit the probability of continuous line rating violations

across probable wind scenario realizations, all times in the simulation, and all lines in the network.

Simulation results on the RTS GMLC test system demonstrated that flexible line limits reduce

the wind power curtailment in a congested area of the network with a large amount of distributed

renewable and wind sources. By allowing violations of the nominal continuous line rating, wind

power that would have been otherwise curtailed was exported to other areas of the network to

satisfy the power demand. Future work includes using a Bender’s decomposition algorithm or

Generalized Disjunctive Programming (GDP) to consider a larger number of wind scenarios and

compare our approach to optimal transmission switching (OTS). Additionally, incorporating ESSs

into the test system may further help mitigate congestion in the network and minimize wind power

curtailment. Excess available wind power could be stored in the ESS for use during periods of low

renewable energy generation.



113

Lastly, this dissertation proposed a penalty reformulation approach for a relaxed convex

grid-connected ESS model for use in power system optimization models. For a BTM EMS setting,

DC OPF in transmission setting, and SOC relaxation of AC OPF in a distribution setting, we

provided conditions under which the non-convex complementarity constraint can be omitted from

an optimization model while ensuring feasible solutions with simultaneous charging and discharging

are suboptimal. In the EMS setting, the proper ESS model behavior guarantees were extended

to situations with net metering, FiTs, demand charges, TOU rates, and flexible load scheduling.

Numerical case study results were provided for both the BTM and transmission setting to highlight

proper ESS model behavior when the conditions for the convex relaxation to hold were satisfied, as

well as when the necessary conditions to guarantee non-simultaneous ESS charging and discharging

were not satisfied. In the DC OPF setting, we also provided simulation results on multiple IEEE test

systems showing that the computation time was reduced when using relaxed ESS model compared to

the nonlinear ESS model with the complementarity constraint, while still ensuring that the correct

non-simultaneous charging and discharging was observed. In the SOC relaxed AC OPF setting,

simulation results demonstrated the computation time savings with the relaxed convex ESS model

compared to a mixed-integer linear ESS model where binary variables are used to ensure non-

simultaneous charging and discharging. Future work includes ensuring non-simultaneous charging

and discharging in stochastic ESS models and under different stochastic elements in both BTM and

transmission settings. In the BTM EMS setting, potential future directions include extending our

theoretical guarantees to transactive energy and peer-to-peer energy trading models. Additionally,

future work could include studying relaxing complementarity conditions for other device models

with binary modes of operation that arise in either BTM or transmission settings.
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[49] A. Prékopa, “Convexity theory of probabilistic constrained problems,” in Stochastic
Programming. Springer Netherlands, vol. 324, pp. 301–317.

[50] ——, “Two-stage stochastic programming problems,” in Stochastic Programming. Springer
Netherlands, vol. 324, pp. 301–317.

[51] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed. Springer,
2011.
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