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In this thesis the Pseudo-mesh algorithm is adapted for use in CPW
MMIC design. A spatial-domain mixed-potential integral equation (MPIE)
and piece-wise linear roof-top basis functions serve as the foundation of this
algorithm. The MPIE and Green’s functions are derived for the open copla-
nar waveguide. The magnetic and electric Green’s functions are simplified to
one-dimensional Sommerfeld integrals. The MPIE is solved for the magnetic
current distribution with the Galerkin method, One of the distinctive features
of P-mesh is the choice of roof-top basis functions for rectangular and triangu-
lar cells as the sub-domain basis functions. This allows for a more fiexible and
intuitive method of gridding structures.

To characterize a network, the current distribution is sampled and the
scatiering parameters computed. An odd/even mode source excitation excites
the network and a three-point curve-fitting technique in conjunction with a
network connection algorithm is used to solve for the scattering parameters.

A program to calculate the CPW Green’s functions, by Ahmad Hoor-
far, was combined with a modified version of the P-mesh code. This CPW
P-mesh FORTRAN program is used to analyze some passive networks. The

results are found to compare well with experimental results.
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CHAPTER 1
INTRODUCTION

1.1 Background

Monolithic microwave/millimeter-wave integrated circuits (MMICs)
unite planar transmission line structures with active and passive components
on one chip, resulting in smaller, cheaper and higher quality circuits than were
previously available with the traditional microwave/millimeter-wave circuits
characterized by hollow waveguides and coaxial lines. The most common planar
transmission-lines used in MMIC fabrication are microstrips, coplanar waveg-
uides (CPWs), coplanar strips (CPSs) and slotlines. These planar structures
are the building blocks of MMICs which serve as detectors, mixers, couplers
and amplifiers, to name a few,

In the design of MMICs, CPWs are often overlooked in favor of mi-
crostrips. Microstrips are easily adaptable to different circuit structures and a,
good deal is known about how they operate . In the past, lack of accurate de-
sign equations and tools for modeling CPW discontinuities and high frequency
operation has limited CPW applications. Because MMICs lack the tuning ca-
pability of more traditional circuits it is necessary to develop a modeling tool
for CPWs which achieves the desired performance with a minimum number
of design iterations, many such CAD programs are presently available for mi-
crostrips. A full-wave simulator for open CPWs, based on the Pseudo-mesh

(P-mesh) algorithm [1), is developed in this thesis.
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An open coplanar waveguide consists of a conductor with two identical
slots of witith, w, which are separated by a distance, s. This conductor sits on
one or two dielectric slabs (see Figure 1.1). For the CPW mode, the desired
mode of operation, the inner conductor serves as a positive reférence while
the outer conductors are grounded (see Figure 1.2). The mode of propagation
is quasi-TEM except at higher frequencies where the field has longitudinal
components.

The physical layout of the CPW offers inherent advantages over other
open waveguide structures. With all the conductors in one plane the CPW is
convenient for both shunt and series insertions of active and passive compo-
nents. Eliminating the need for via holes, common in microstrip structures,
greatly simplifies MMIC fabrication. Parasitic inductance due to the ground-
ing of FETS is also reduced [2]. Additionally, coplanar waveguides can be
used at millimeter-wavelengths where microstrips would need impr&.cticably
thin substrates and, in at least one case, were shown to have equal or greater
conductor loss and dispersion than coplanar waveguides [3]. These advantages
make CPWs5 an attractive alternative to microstrips.

Applications of coplanar waveguides in integrated circuit design in-
clude detectors, balanced mixers [4], directional couplers [5] and CPW FET
amplifiers for satellite communication systems [6]. CPW discontinuities are
useful in filter design [7] and open and short end CPW terminations are used
extensively for tuning stubs in transitions [8], as well as in the design of planar
balanced mixers and detectors [9]. In the Ka band, amplifiers and a frequency
doubler have been demonstrated with CPWs (see Figures 1.3 -1.5) [10].



Figure 1.1: Coplanar waveguide.

Figure 1.2: Coplanar waveguide mode



Figure 1.4: Low current distributed amplifier.
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Figure 1.5: 15 to 30 GHz frequency doubler.



1.2 Methods of Analysis

Because MMICs employ open waveguides and closely placed elements,
conventional transmission-line theory is no longer an adequate guide to pre-
dicting circuit behavior {1]. To fully take advantage of the uses and benefits
of coplanar waveguides it is necessary to accurately model the discontinuities
and parasitic coupling. When Wen introduced the CPW in 1969 [11] he used
conformal mapping and quasi-static approximations to model this new struc-
ture. Davis et al. [12] took this quasi-static approach further by adapting
it to CPWs of finite substrate thickness. Design equations for CPWs, based
on quasi-static approximations, are summarized in [13]. Although these, and
other quasi-static approaches, work fairly well at low frequencies, they mask
the frequency dependence of important parameters. |

Various full-wave methods have been developed for CPW analysis.
Two common methods of solution to differential equations are the finite-element
method and the finite-difference method. Chang, Wong and Chen [4] used a
variational conformal mapping technique, solved by the finite-element method,
to find the frequency dependence of the effective dielectric constant and the
characteristic impedance of a CPW structure. A finite-difference time-domain
technique was utilized in the analysis of CPWs by Shibata and Sano [14] and
capacitance of CPW discontinuities was calculated using a three-dimensional
finite-difference method by Naghed and Wolff [15).

The algorithm presented in this thesis solves for the magnetic current
in the slots of the CPW by developing a spatial-domain mixed-potential integral
equation (MPIE). From the moment method solution to this integral equation,

which incorporates rectangular and triangular roof-top basis functions, the
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scatiering matrix, as well as the effective dielectric congtant and the waveguide
wavelength, are de-embedded. |
| Other methods of analysis have also centered upon integral equations
solved with the moment method [16]. The integral equation techniques differ
from the finite-difference and finite-element methods in that theg.r. solve a two-
| dimensional problem instead of a three-dimensional one. This results in fewer
unknowns and a faster program. Knorr and Kuchler [17] used a integral equa-
tion moment method approach on uniform structures. Space domain integral
equations, similar to the one presented in this thesis, have been developed and
evaluated with the moment method in [9] and [18] to study end effects and
CPW discontinuities, respectively. The major difference between these meth-
ods and the CPW P-mesh method is the choice of basis and test functions.
Because the former methods are limited to only rectangular cells, they lack the

versatility to model arbitrary shaped structures efficiently.

1.3 Configuration of Chapters

In Chapter 2 the background for the CPW P-mesh algorithm is dis-
cussed, an overview of the P-mesh theory and its adaptation to CPWs is pre-
sented. The MPIE for the open CPW is derived in detail in Chapter 3. In
Chapter 4 the magnetic current distribution on various structures is analyzed
and the method used to “extract” the scattering parameters from the full-wave
solution for the magnetic current is given. Chapter 5 is composed of the P-mesh
derived data for a variety of CPW structures and comparisons to measured and
theoretical data from other sources.

In this algorithm it is assumed the the conductors are infinitely thin

and perfectly conducting. The dielectrics in regions 1 and 3 are assumed to be



semi-infinite.



CHAPTER 2
P-MESH THEORY

2.1 Introduction

A spatial-domain mixed-potential integral equation(MPIE) and piece-
wise linear roof-top basis functions serve as the foundation of the P-mesh algo-
rithm. This algorithm was developed by Zheng, Chang and Wu ([1], [19)-[21)) .
for application to planar transmission-line structures with an emphasis on mi-
crostrips. Using a full-wave method for numerical modeling, P-mesh provides
physical insight into complex microstrip structures, taking into account both
parasitic coupling and discontinuities. The scattering parameters for the struc-
ture are “de-embedded” from the full-wave solution [21].

The P-mesh algorithm for coplanar waveguides mirrors that for mi-
crostrip structures in many respects. Since adapting the original theory to
coplanar waveguides is the goal of this project, the major changes necessary
will be given in detail in the following chapters. However, for the sake of com-
pleteness, a summary of general P-mesh theory, common to both microstrip
and CPW, will be presented here, with some minor changes to the original
theory duly noted. The reader is referred to [1] for a more in-depth discussion

of these topics.

2.2 Pseudo-Mesh Representation

Using both rectangular and triangular cells the slots of the coplanar

waveguide can be gridded as in Figure 2.1. Instead of electric current on the



Figure 2.1. Junction modeling of a CPW slot with rectangular and triangular
cells.

Figure 2.2: Current flow in wire mesh.
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the conducting strip, as is the case for the microstrip, magnetic current in
. the slots is now being modeled. This magnetic current is represented by the
current “mesh” shown in Figure 2.2. The normal component of the current
density is assumed constant across cell boundaries. Meshes that connect to an
edge are “opened” to comply with the requirement that the normal component
of current (i.e., the tangential electric field) be zero at the edge. Each cell is
. characterized by the total current going into and coming out of each of its
sides. The incoming current is not equal to the outgoing current in each cell.
This current difference contributes the the charge distribution on the cell; if we
insist on Kirchhoff’s current law applying to nodes in the pseudo-mesh, then

these charges can be thought of as residing on capacitors connected to ground.

2.3 Roof-Top Basis Functions

The scattering parameters for the coplanar waveguide are solved nu-
merically by the moment method. The success of this method is largely de-
pendent upon the choice of the basis functions [22]. In this case, a basis
functions which most accurately approximate the magnetic current density are
desired. One of the major advantages of P-mesh is the ability to combine rect-
angular and triangular cells in a self-consistent manner. Rectangular cells can
model rectangular areas of a structure while triangular cells provide an accu-
rate method of representing current flow around a corner, thus allowing for a
more physically intuitive design for arbitrary shapes. These mixed geometries
are possible as a result of the choices for the roof-top basis functions. The
current distribution on rectangular and triangular cells are given in Figures 2.3

and 2.4.
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2.3.1 Rectangular Roof-Top Basis Function The magnetic
current density distribution in a rectangle a can be expressed [1] as

Ma(z,) = 3 VD (g, ) (21)

=1
where V#*! is the normal component of the magnetic current density on side
(4,i+ 1) and D} is the roof-top function for side (i, + 1).
For the rectangular cell [1],

Dz, y) = [(i+1 = 3)(= = Zicz) = (Tigr — 7)Y — Yia))]

D1
.(:r.'_1 - :ri)j‘l'l (.!h'—l — yi)ﬁ;(z,y) € rectangle o (2.2)
dig =/(zi — 2 + (s — y;)? (2.3)

1 Ziq yia
Aiyiii1=1{1 x Yi . (2-4)

1 zi1 vin

2.3.2 Triangular Roof-Top Basis Function  Similarly, the mag-
netic current density on a triangular cell « is represented by [1],

3
Mo(z,y) = 3 Vot D (z,y) (2.5)

=1

where the roof-top function, Di+!, is

oy di; . . .
Di*(z,) = =5 {(z - 2 )8+ (y — pica)ili (2,3) € triangle a. (26)
fm1,i+1
2.3.3 Global Expression for Current Distribution The global
magnetic “mesh” current, V,;, m = 1,2, , M, where M is the number of in-

. . (il
terconnecting “meshes”, can be expressed in terms of V*+1 and Vi¥'*!, For
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Figure 2.3: Current distribution on a rectangular cell.

Figure 2.4: Current distribution on a triangular cell.
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two adjacent cells, @ and o/, the common boundary can be either (a;i,i + 1)

or (a';#,i' +1). The total magnetic current across the boundary is
gn
V= Vit = _V::.i'+1_ _ @)

Over the entire structure, the current distribution is [1]

M - -
M(z,y) = 3 VaHn(z,y) (2.8)
m=]
where
H, = Di+1 _ pii+, (2.9)

2.4 Matrix Solution to the MPIE
The MPIE for the CPW, which will be derived in detail in Chapter

3, can be expressed as

41r2/ s'[ s (F) - Ge(F,7)Ms(F )—‘Elg s(F) - Gu(F, 7)v: ' - Ms(F NdFdF
= - fSMS(F) - Hi(F)dr (2.10)

Gg and Gy are Green's functions of electric and magnetic types due to a
magnetic dipole source.  is the source point and # is the observation point.
G and Gy are calculated numerically (Section 3.2.2).

Using Equation 2.8 in the MPIE yields the matrix equation

M
Y VYo =Inim=1,2,3,.. M (2.11)

mi=1

where

472

1. _
FHm{F) - GM(F, 7 )9’ 0s + Hpe (7)) dFd7 (2.12)

kz T (= = =D =t
Yot = 525 [ o 1Bn(#): ol 7 ()
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and

In= - js _Ba(7)- Bi()dr. (2.13)

The electric current, I, is a function of known values and can be calculated
directly. To solv? for the matrix element ¥, ., the integrals in Equation 2.12

are put in the form,

/ ds f ds'Gem(p)z*y =™y ;p,v,4',v' 20 and 0 < p+v, g+’ <1,
cella cella’
(2.14)
The Green'’s functions are calculated numerically then curve-fit into polynomi-
als over a range of p (see Section 3.2),
Np
Gem(p) = Y CFMpr. - (219)
p=-1
Using this semi-analytic expression for the Green’s function, the integrals in
Equation 2.14 reduce to

Q(as C!’, H, v, I‘” 'U', P) = f

ce:

ds/ ds'pPziy ™'y p=—1,0, cery Np.
o cella

(2.16)
From this quadruple integral the admittance matrix is calculated. With You m

and Ir, known, the magnetic current or voltage, V,y, is computed.



CHAPTER 3

THE COPLANAR WAVEGUIDE MIXED POTENTIAL INTEGRAL
EQUATION

3.1 Introduction

In order to solve for the scattering at a junction, the junction must
first be represented adequately. For the CPW the mixed potential integral
equation is chosen to characterize the fields of an arbitrary structure. First
introduced by Harrington [16], the MPIE offers a variety of advantages over
other methods. It is valid for all frequencies, is numerically stable and can be
solved with efficient algorithms [22]. Because it can be analyzed in the spatial
domain, the MPIE allows for good physical insight. Additionally, the Green’s
functions for the MPIE have singularities of 1/R, where R = [r — | is the
distance between the source and observation points, and can be represented by
one-dimensional Sommerfeld integrals for one-dimensionally layered substrates.

Derivation of the MPIE begins with the boundary conditions on the
structure. An impressed magnetic dipole will produce the electric and magnetic
Green’s functions, Gg and Gy, respectively. In Section 3.2 the Whittaker
potentials are implemented in the derivation of these Green’s functions. The
resultant functions, in the form of Sommerfeld integrals, can be solved with.
numerical integration. With Gg and Gy known, the MPIE in the spatial
domain can be solved for the magnetic current. The derivation of the MPIE

is carried out in Section 3.3, using the convolution theory and the moment



16

method. In the following derivations perfect magnetic walls in the slots are

.-assumed and a time variation of e’ is adopted. Because only planar structures

will be analyzed the final expressions will be dependent on only z and y.

3.2 Coplanar Waveguide Green’s Function

3.2.1 Solution to Whittaker Potentials

The coplanar waveg-

uide is shown in Figure 3.1. The scattered electric field in the slots can be rep-

resented by a magnetic current with the aperture metalized over (see Figure

3.2). Using the Whittaker potentials [23], the tangential field components for

this structure are:

o . -
E = V:a—z — WiVt X (ZU)

_ ou .
H, = v,a—z + jwe, 7 X (2V)

where

= 5_?_. + "i
Vi = dr yay
and n denotes the dielectric region.
The wave equation,
U
(V +E) =0

with

ko = Y wzﬂncn

(3.1)
(3.2)

(3.3)

(3.4)

(3.5)



By

rl 1
E E
—L -1 z=h
2
2’ urz { A
z=0
3 ur3

rl rl P ° @ ®
z=h
R " @
erz' L)
z=0
g
r3'ur3

Figure 3.2: Coplanar waveguide equivalent circuit.
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is true for all three regions. Taking the double-Fourier transform,

Fey=[ [ :” Fla, B)e-males+t0) 4o dg. (3.6)

the wave equation becomes

(£ - ka2 g =0 37
where
tn = y/(0? + 82) — €rnpirn (3.8)
and
R(ua) >0 for o+ 82> gqu2,. (3.9)

The solutions to the ordinary differential equations above, for U and

V, are [23]:

[ Ayekous z>h

b= Bye~kwt 4 Cpekwar 0 <z < b (3.10)
\ DyeFkousz z<0
r Ayekonz 2> h

V= Bye~hwt 4 Oyebouar (<2< h (3.11)
. Dyehovss z2<(

Au.v, Bv'v, C'U'Va.nd DU,V are unknowns.
To derive U/ and sz, the boundary conditions for the structure are

needed. At z =0,

E, is continuous (3.12)

A, is continuous. (3.13)
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In the spectral domain the tangential electric field is represented by,

-~

E=v5

Lo 111

— jwpa7, (U) (3.14)

°’| 2.

and the tangential magnetic field is given by,

-~
=

-oUu . - =
= U5 +jwenv. (V) (3.15)

-

where

~

V = —jko(at + B§) V. = —jko(—ay + B2). (3.16)

From the boundary conditions, i, v U and V will all be continuous at
8z a3z

= 0, yielding:

#2(Bv + Cv) = paDy ‘ (3.17)

e2(By 4+ Cv) = 3Dy (3.18)
u3(By — Cy) = u3Dy (3.19)
uz(By — Cy) = uzDy. (3.20)

Combining these equations produces:

Ugfirz — Usflr
Cy=~——By=R B 3.21
v= Usfe3 + Usleo (e, B)By ( )

U2€,3 — U3Eea
= —————By = T'(e, 8)By. 3.22
U2€,3 + U3€y (e, ) By ( )

At 2 =4,

E, is continuous in the slots (3.23)

Ms=nxE, (3.24)
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Since E; is zero on the conductor, E‘, is continuous and Mg = 2 x E
At z=h"

Ms(a, B) = —kous7, By[e~¥otzh _ T, g)ckouzh)
+jwpay Byle%oush 4 p(a, gekorat)

. (3.25)
Dotting both sides of Equation 3.25 with ﬁ' leads to the solution for By,
By = IV Ms(0:h)

kwpa(a? 4+ 52) L : ]

—kouzh + R(a’ ﬁ)ehuzh .
In a similar manner, dotting both sides with v, produces

B = 6.1. * A_}S(a,ﬂ)
YT Bua(e® + 59

(3.26)

1 _
“T(a, ﬁ)ekeuzk] . (3.27)

The remaining unknowns, Ay and Ay, are solved by forcing the tan-
gential electric field to be continuous at z = A

e—h‘“‘zh

V= kouz By (e~*0** ~ T

)ebou:h)] _ jw,uzé'_‘_ [Bu(e-kouzh
+R(a,f) kuu:h)] = élkoulAVekomh] _ jw#IVJ-[AUckWJh]

(3.28)
Grouping similar terms and substituting in Equations 3.26 and 3.27, Ay and
Ay can be written as

- .76 ﬁS(arﬁ) —kouyh
Av= kwp(a® + 57) i

(3.29)
Ay =

V.L Ms(a ﬁ) -—kguﬂl
k3u(e® + 52)

(3.30)
Substituting the values of Ay, Av, By, By, Cy,Cv, Dy and Dy into

Equations 3.10 and 3.11, I and ¥ for all three dielectric regions are known
ﬂ a.f) _kaui(z—-h
Trisnwm(a’L-!-ﬁ’)e wule=h)

= V-Mg(a.8 [ e~*ova(2=2)4 R(o A)ekonz(z+h)
éwz(i'2 +ﬁ;)

1+ R(a.8)cF0%2® ] O0<z<h (3.31)
:59_51_2). 14R - —iah
owns(a?+5%) [Wé%] folusz-uah) 2 < 0

Thn

é>h
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- F
'MO! ku =h

z>h
7 = E"' H;g ,ﬁ) e~honua(a=A) L T(o BYehovalrth)
v owa(e : ) [ 1-1‘((‘25@—5_.3) ) ] 0<z<h (3.32)
1+T - z—ugh
s huz(ﬁ+#g] [1-—1-(:,—5()3%—5 kofuss—uz )] z2<0

3.2.2 Scalar Electric and Magnetic Potentials for the CPW
The last boundary condition on the CPW is the continuity of the tangential
magnetic field in the slots at z = k. For this condition to be true

() = ~H(F)

(3.33)
where H{|;~(F) is the jump in the scattered tangential magnetic field and Hi(F)

is the impressed tangential magnetic field

-~
>

In the spectral domain the tangential magnetic field is represented by,
z - U
-ﬁ H (a$ ﬂ ) =V

P +Iiwe v, V. (3.34)
With the values of I/ and ¥ known, H|*. can be calculated in the spectral
domain.

- Y - Ms(a, 8) - (=19 Ms(a,B)
IV | kouy (kgwp;(az +ﬂz))] +we Yy ( kgu-:(az + A7) )
ol (2 Hs(,8) | (e Rouat = (o, g)ekorah
IV 02 kgwpg(a’+ﬂ’) e‘kﬂu?h-i-R(a, ﬁ)eko‘u;vh
i . A-}s(a, B)\ [e-Fouah 4 T(a, B)ekotizh
kgu:(ﬂz + BZ)

,Be
e~kotzh _ T(a, ﬁ)ekou2h)]

(3.35)
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Grouping similar terms and taking the inverse Fourier transform, to convert

back to the spatial domain, yields

k3(c? + 6%) k3(a? + %)
xe~kole=ti) do df = AH(FAL  (3.36)

j/;: [ﬁ‘l(a1ﬂ) ‘}6 . ﬂs(a, ﬂ) + ﬁz(a,ﬁ)eJ‘eJ‘ . Hs(a, ﬁ)]

where
z J U U2 Uszliry + U2ﬂ,3tdn’l(kou:h)]
Fla,f)==|—+— 3.37
O e
F:';(a, g) = _J|en + €ra Ugérg + uac,.gtanh(kough)] (3.38)
Tolth 2 Dty
DTE = Uoflie3 + usy,gtanh(kough) (339)
and
DM = uze,; + useatanh(kouah). (3.40)
Sinc kv d —Yu

e an are unit vectors, the following iden-
iko(a467) iko(od+a2)F ’ &

tity is true [24]:

el Tk o §A

TR e+ (.41
VuVe A _ ;. VYA

e +p) - Mt g 42

Using this identity in combination with Equations 3.36 and 3.33 yields,
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qoo = ] = 1 = -~ =
[ [ 1Ge(a8)Ms(e, 8) — 55 Gaa(ex, )77 - Hs(cs, )
| xe~ib(@ i) dodf = ~ B (F) . (343)
where
Gela, B) = J [3 4 &2 tiskes + Uapisstank(kouzh) (3.44)
’ Mo {1 U2 Drg
and
; 1 J (v | up upen + use,.3tanh(kou2h)]
Gu(e,f) = e { L | 2Ly 22
M(a ﬂ) (a2 +ﬂ2) {7:'0 [Prl + Hr2 DTM

+Gz(a, ﬁ)} . (345)

G e(a, 8) and G m(c, ) represent the scalar electric and magnetic potentials in
the spectral domain. Taking the double Fourier transform converts the Green’s

functions to the spatial domain,

Ge(7,7) = [ [ Gala,p)eilex+dadp (3.46)
Gul(F, ™) = / [: Ghe(a, B)e ™=+ go g, (3.47)

" Making a polar change of coordinates reduces Equations 3.46 and 3.47

to one-dimensional Sommerfeld integrals [23]. Letting

a=Acosy (3.48)

and

B = Asiny (3.49)
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results in
o0 =
GE(F,7) = 2x /o Ge(A\)AJo(Apko)d  (350)
Gu(F, 7) = 2r j:’ Gt (W) AJo(Apko)dA (3.51)
where
A=/a?+ B2 (3.52)
and

p=y(z-2)+y-y). (3.53)
At p = 0 both Gg and Gy have a singularity. To compute the Sommerfeld
integrals accurately and efficiently the static singular term for each Green’s

function must first be subtracted out.

where
—j2r 1
Gg = + — 3.55)
E 5 (€n eﬂ)kop ( )
m o oo [P €ra Uslira + Uzptratanh(koush)
6F = 2n /o J /\Jo(,\.pko)[uz —
+:—: — (e + Crz)] d) (3.56)
-2r {1 1 ) 1 '
Gl = (-—+— L 3.57
M o Br1 pe2) kop ( )
and

© —j Uy | Uy UpEry + ugeratanh(kouzh) €y

G = o [~ L a0k [ 4 22 + &0

M W‘/ﬂ A”o o(Apko) [#rl B2 Dy U
42 Yokt F vapirstanh(ough) (i 1 )] o (358)

4+ —
Uy DTE Hr1 Br2
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In a method developed by Hoorfar (see Figure 3.3) [25], G5 and G

are integrated over the real axis from 0 to },, where
As = Min(na,n3) = 0.25 ;n; = /feqp,,. (3.59)
From A, to A, the path of integration is triangular with
Ae = Maz(ng,n3) — 0.20 (3.60)

and height, h, a function of kop and kgt. An averaging technique is used for
real axis integration from A, to some A, and closed form corrections are used
for the integration from Amq. to infinity.

When the values of GF* and G have been calculated for a set of p

values, they are then curve-fit into polynomials over a range of p:

Ny
Gem(p) = 3 CFMp?, (3.61)

p=—1

where M are the curve-fitting coefficients and N, is the order of the poly-

nomial.

3.3 Mixed-Potential Integral Equation
To put the MPIE,

R = 1 = .. =
| [ 1G5t B1Mts(e,8) - 5Guela, 87 - Hls(e, B)
xe~REe) dodg = _Fi(7), (3.62)
in the desired form, apply the convolution theorem,

[ Fe,8)b(a, premte=+tigads = Z]:% js F(F)G(F,7)d7.  (3.63)

-0



Figure 3.3: Path of integration.

The resultant equation is

kg

— | |GE(F, \Ms(7) — —I-EGM(T", PV - Ms(F)| dF' = = Hi(F). (3.64)
4mt Js k3

Using the Galerkin method, both sides of Equation 3.64 are dotted

with Mg(F)and integrated over the surface, 5, to produce,

) :
Vs(F o o (7 1o iz = =f T (=

4% .[ fs[MS(") - G(F, 7)Ms(¥) - EMSM -Gu(F, ™)e've - Ms(7)|drdr’

= - [ Ms(r) - Bi(F)dr. (3.65)

Gg and Gy can be calculated, as was shown in the previous section, and A

is known. Approximating Mg with roof-tap basis functions, the MPIE can be

solved for the magnetic current (see Section 2.4).



CHAPTER 4
DE-EMBEDDING OF NETWORK PARAMETERS

4.1 Introduction

Impedance, admittance and scattering parameters are all means by
which a network can be characterized. For the P-mesh simulator it was found
that the simplest and most straightforward way to characterize a discontinuity
is to find the scattering parameters (1. The CPW P-mesh algorithm solves
for magnetic current distributions and, from this distribution, computes the
scattering parameters,

De-embedding arms are the means by which scattering parameters
are “measured” once current distributions have been calculated. The de-
embedding technique for the CPW is based on the method used in the mi-
crostrip version of P-mesh [1]. This basic method and the changes necessary,
due to the geometry and the desired mode of operation of the CPW, are sum-
marized here. The current distribution on a few structures is discusséd in
Section 4.2. The curve-fitting technique is described in Section 4.3. Network
excitation and mode extraction are the subjects of Section 4.4 and multi-port
network de-embedding and the connection algorithm are discussed in Sections

4.5 and 4.6, respectively.

4.2 Current Distribution

4.2.1 Introduction Before the scattering parameters are calcu-

lated for a given network, the magnetic current distribution on the structure
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must first be computed. While this current distribution alone is not an ade-
quate means of characterizing a network, it does lend iﬁsight into the physical
operation of the network and can be a valuable tool in understanding how
magnetic current flows in CPWs.

The distribution of a few representative structures will be present_ed
and discussed. All structures have de-embedding arms attached to the ports.
In “measuring” the S-parameters, the current on these de-embedding arms is
sampled. It is assumed for this de-embedding scheme, that the de-embedding
arms have a sinusoidal current distribution, i.e., they are far enough from
any discontinuity that higher order modes are negligible. That assumption is
verified in this section.

It should be noted that each slot is only one cell wide in the following
examples. Due to an error in the viewing program the structures appear to
have an extra row of cells in the center. These extra cells should be ignored.

Figure 4.1 shows a short-end CPW stub as it was gridded for P-
mesh analysis. The magnitudes of the longitudinal magnetic current and the
transverse magnetic current are pictured in Figures 4.2 and 4.3, respectively.
From the longitudinal current distribution on the de-embedding arms one can
conclude that the sinusoidal standing wave assumption is a valid one. The
transverse current is shown to be significant only at transition regions.

The magnetic current distribution on the T-junction (Figure 4.4) also
shows a sinusoidal distribution on the de-embedding arms and transverse cur-
rent at the transition regions only. Because it is an asymmetric structure, the
current on the two arms of a port are not necessarily equa‘l as they were in the

symmetric case. With port 1 excited the lower arms of ports 2 and 3 have larger
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Figure 4.1: Grid of short-end CPW stub.

2.274

Figure 4.3: Magnitude of transverse ¢urrent on the short-end stub.
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currents than the upper arms (see Figure 4.5). When port 2 is excited the port
1 slot closest to port 2 has a magnetic current distribution that is more than
twice as large as that of the other slot (see Figure 4.6). While these results are
all rather intuitive it is helpful to compare relative size of the currents for the

different slots and understand what happens at points of transition.

4.2.2 Conclusion The major conclusions that can be drawn from

the current distribution on these networks are:

o transverse current is signiﬁcé.nt only in regions of transition
e current distribution on the de-embedding arms approximates a sinusoidal

standing wave,

The two structures examined here are analyzed in more detail in Chapter 5.

4.3 Three-Point De-embedding

P-mesh de-embedding implements a three-point curve-fitting tech-
nique to extract an “electric current” scattering matrix from microstrip struc-
tures. In the case of CPWs, a magnetic current or voltage scattering matrix
is extracted instead. This matrix is calculated from the equations derived in
Chapters 2 and 3. To apply this technique de-embedding arms are attached
to the input and output ports of the structure. A de-émbedding arm length of
0.7 wavelengths was found to work well for symmetric structures. For nonsym-
metric structures, such as the T-junction, longer arms may be needed. Since
the de-embedding arms are assumed to be long enough such that the current
distribution on the feedlines is close to sir;usoidal, the current standing wave

at each port can be sampled, as follows, leading to the incident and reflected
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Figure 4.6, Magnitudes of longitudinal and transverse currents when port 2 is

excited.
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waves and, hence, the scattering parameters.

Assuming 2 sinusoidal magnetic current distribution, V(z):
V(z) = ae™ + be™* (4.1)

where z is the port linear coordinate and a(= —3=) and b= 7%;) are nor-
malized wave variables. Taking three equi-spaced points on the port(see figure

4.7), with the middle point(z = 0) in the center of the arm, we can write,

=—zy: V] =ae™ 4 b~ (4.2)
z =0: Vo=a+bd ‘ (4.3)
z =2z: Va=ae "™ 4 b (44)

Combining these three equations yields,

coshyzg = -‘-’-‘2%:3 (4.5}

a= -‘-:%:TV_?-::%} (46)

b= —Yi=Voe0 (4.7)

TRl T

If Bz, < 3§ then the solution for 7 is unique. With v known, the
incident and reflected waves can be calculated from the equations above and

the scattering parameters computed.

4.4 Network Source Excitation and Mode Extraction
From the algorithm developed in the previous chapters the magnetic
current distribution on each arm is calculated. However, unlike microstrips,

CPWs have two arms per port instead of one. Thus, before the curve-fitting
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Figure 4.7: One-port coplanar waveguide with de-embedding arms.
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technique can be applied the current.distribution for each port must be exam-
ined more closely. Tl‘1e manner in which this distribution is calculated depends
upon the desired mode of operation.

The CPW is capable of supporting either the CPW mode, the coupled
slotline mode or a combination of the two. The mode of operation is largely,
although not exclusively, determined by the excitation to the network. The
CPW mode, or odd mode, is excited by sources, on each arm of 2 port, of
equal magnitude and opposite phase(see figure 4.8). This mode concentrates
the fields around the slot aperture and, because it is less dispersive than the
coupled slotline mode(3], is commonly used in CPW circuits. At nonsymmetric
discontinuities, however, the even(slotline)-mode, as well as an odd-mode, can
be generated with an odd mode source excitation. While air-bridges and bond-
ing wires are often used to short out this parasitic mode in MMIC fabrication,
incorporating them in the algorithm presented here is beyond the scope of this
thesis.

To extract the odd-mode, the mode of interest, the current for each
port is defined as the difference between the currents on the arms of the port,

In terms of the three-point curve fitting scheme, V4, V; and V4 become,

Vi = Vi (armh) — Vi (armh +1)  (48)
V; = Vy(amN) - Vy(armN +1) (4.9)
Vs = Vs(armN) ~ Va(arm + 1) (4.10)

and the reflected odd mode wave is calculated as a function of the incident odd

mode wave, i.e.,

b = S5i’ad + Si5as + ... + NaN (4.11)
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Figure 4.8. Odd mode excitation matrix for a four-port CPW structure. For
an N-port network the source excitation would be represented by an N x 2N

matrix.
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Figure 4.9. Combined odd/even mode excitation matrix for a four-port CPW

structure.
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While extracting the odd mode in this manner is sufficient for symmetric net-
works, problems arise in nonsymmetric junctions where an even mode that
is no longer negligible is generated. Power converted from odd to even and
then back to the odd mode is not being accounted for. When the even mode
resonates this ca.n cause problems. To rectify this it is necessary to take into
account the even mode as an odd mode source. Doing this the reflected wave
becomes,

b = STy ay + Sitas + ... + S{xad + Sias. (4.12)

In matrix form we have,

() [sos osoroseeooooson | (e
B siosi s s || a
by Sss S35 S8 o s || a
b | = s s s oos || o (4.13)
B s S St o S | | e
VB ) LS s Sk o St \ ey )

To satisfy this equation the even mode must also be extracted from
the magnetic current distribution. To do this the odd mode network excitation
is replaced with one that will purposely generate even and odd-modes(see figure
4.9), to prevent errors from very small even-modes. This network excitation
was chosen randomly and found to work well. The even mode js extracted by
adding the current along the arms of the port. With this method each port has
an odd mode and an even mode incident and reflected wave. As a result, the
calculation of the odd mode is more accurate and the value of the even mode

generated is now known.
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4.5 Multi-Port Network De-embedding

From section 4.2 the S-parameters for a one-port network can easily
be solved. To find the scattering parameters for a multiple-port network a, b
and 7 for each port and each excitation must be detected. If all ports kave the
same tra.ns(rerse geometry then Equation, 4.13, only is needed and we are left
with N? equations and N? unknowns.

For ports of different transverse geometries, i.e. different characteris-

tic impedances, we have to let
Si; = \/5:S;. (4.14)

and assume §}; = §7;, for passive, isotropic networks, to account for wave

normalization and to aveid the need to define the characteristic impedances.

4.6 A General Network Connection Algorithm
The general network connection algorithm is the same as that used
in the microstrip version of P-mesh.[1] In short, the new S-matrix, S, for

connected networks A and B(see figure 4.10) is,
(8= (7] - [$4)[S®),) {S4)IT) (4.15)

where [SB], is the global S-matrix for network B, the smaller of the two, and
(T] is the identity matrix [I] with the 1’s in the (i,4)-th and (j, )-th elements
replaced with 0’s. The reader is referred to [1] for further details.



39

1-st pont (i-1)-th pont
N-th port i=th port
a—] o]
: sA :
—— —
j=th port

{j+1)=th port

Figure 4.10: A network connection.




CHAPTER 5
CPW CIRCUITS

5.1 Introduction

The P-mesh algorithm for coplanar waveguides is useful only if it is
accurate. To prove its accuracy, this algorithm was applied to symmetric and
nonsymmetric junctions consisting of a section of transmission line, open and
short-end CPW stubs, a T-junction and a two-stub CPW-slotline transition.
The theoretical results for the waveguide wavelength, the effective dielectric
constant and the scattering parameters are compared to measured and theo-
retical results from other sources. )

A cross-section of the CPW model is shown in Figure 5.1. The reader

is referred to Section 1.2 for a discussion of some of the techniques presented

in this chapter.

5.2 CPW Transmission Line Parameters

A section of CPW transmission-line (h = 0.635 mm, ¢, = 10.03)
was analyzed with P-mesh for two geometries. The theoretically derived data
demonstrated a frequency dependence for the waveguide wavelength ratio, %g-,
which is to be expected since 5;: is inversely proportional to /&7y, which, in
turn, increases with frequency. This agrees closely with data calculated from
Cohn’s equations and measured results [26] (See Figure 5.2). The quasi-static

results from Wen are also given.
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Figure 5.1: Coplanar Waveguide.
Assume €, = €3 = §i;1 = ;3 = pir3 = 1 and k3 = oo, unless stated otherwise.)

0.50
w—fp—  Case A (P-mesh)
—e— CiuB: P-mesh
1 » ' Mesxnured (Hoider)
im Wen
'.,E. —e, — X
& 4
r
- 0.45 ~
F
..:' Ho—— N — * %
-
-3
0.40 T T Y T
8 9 10 11 12 13
Frequency (GHz)

Figure 5.2: CPW waveguide wavelength as a function of frequency.
Case A: w= 0.05 mm, s= 1.17 mm.
Case B: w= 0.21 mm, s= 0.5 mm.
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Since the effective dielectric constant,

| c
Crepy = W’ (5-1)

is simply dependent on ), it is comparably accurate.

5.3 CPW Short-End and Open-End Stubs

The short-end and open-end series stubs, shown in Figures 5.3 and
9.4, serve as filter elements. When the stub in the center of Figure 5.3 has a
length of 14‘ it will short out Port 1, resulting in total reflection. For the stub
in Figure 5.4, a stub length of -'?‘1 will produce an open circuit resulting in total
transmission from Port 1 to Port 2. A theoretical and experimental analysis
of these stubs has been carried out by Dib, Katehi, Ponchak and Simons (18].
The scattering parameters for the short-end and open-end CPW stubs, derived
from P-mesh compare favorably with both the measured and theoretical values
from {18]. The magnitudes and phases for pertinent S-parameters are given
in Figures 5.5 -5.8. For the short-end stub, resonant frequency as a function
of stub length was also measured. Since a stub of length 541 will resonate, the

relationship between resonant frequency and stub length can be expressed as

€
4L.feert

Since fres is dependent on €. gy, as well as L, the relationship between f,., and

frn = (5-2)

L will not be linear. The results shown in Figure 5.10 agree well with each
other and with Equation 5.2.

Small discrepancies between theoretical results and measured results
may be due to differences in the models used. The theoretical model in [18]

was assumed to be in a cavity. Radiation, ‘conductor and dielectric losses
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weren’t included in this analysis. Experimental data was taken from open,
lossy structures. The P-mesh model is also for an open structure, and it does

include radiation loss, though not conductor or dielectric losses.

5.4 T-Junction

While microstrip T-junctions have been studied extensively, not much
information is available for CPW T-junctions. To further complicate matters,
T-junctions without air-bridges are difficult to measure. Measurement probes
often short circuit the ground planes [14]. Utilizing a three-dimensional finite-
difference technique, Shibata and Sano [14] analyzed the CPW T-junction,
shown in Figure 5.11, with and without air-bridges. The scattering parameters
for the latter structure were derived with P-mesh. Comparison of the r&sulfs
(Figure 5.12) show that, with the ground planes unconnected, the structure
does not act like a T-junction. While the reflection, [S11], decreases with
the removal of the air-bridges, the transmitted signal, |Sy;/|, also decreases,

indicating a large, undesired, conversion to the even mode.

5.5 Two-Stub CPW-Slotline Transition

A method to excite propagation along slotlines, proposed by Houdart,
and examined in more detail by Hanna and Ramboz 8], is the two-stub
CPW-slotline transition. Being a planar transition, it is reproductable and
easy to fabricate, thus, giving it an edge over coaxial-slotline transitions and
microstrip-slotline transitions.

Using an equivalent circuit approach and optimizing slotline and stub
lengths, Hanna and Ramboz designed a.nd' analyzed the CPW-slotline transi-

tion given in Figure 5.13. Analysis of the same structure, without bonding
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wires, by P-mesh gives very different results (see Figure 5.14). As in the T-
. junction case, this complex structure, with its grounds unconnected, demon-

strates a large even mode propagation.

5.6 Conclusion

From the examples in the previous sections the CPW P-mesh algo-
rithm appears to be an effective modeling tool for MMIC design. The data
presented demonstrate good agreement between P-mesh, actual measurements
and other theories. Dielectric and conductor loss, which are not included in
the CPW P-mesh algorithm, do not appear to have a significant effect in these
examples. However, the inability to model air-bridges and bonding wires rules
out the use of the P-mes_;h simulator in the analysis of more complex structures,
such as T-junctions and the CPW-slotline transition, which need air-bridges

or bonding wires to operate in the desired manner.
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Figure 5.3: Short-end CPW stub with L=1500 pm
(h = 25mil, h3 = 125mil, €,3 = 9 9, €3 = 2.2; other dimensio n pm.)

. ////////////////%%é/////
- — 7// . 75 /___
N7/ ‘% | f////////é __

o — —

22222777

Figure 5.4: Open-en dCPWtwahL-lE)OOpm
(h = 25mil, k3 = 125mil, &;2 = 9.9, €,3 = 2.2; other dimensions i n um.)
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Figure 5.5: |51;| and |Sy| for short-end CPW stub.
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CHAPTER 6
CONCLUSION

The goal of this thesis was to adapt the P-mesh theory to coplanar
waveguides and implement it in a CAD program.

The first step in achieving this goal was the derivation of the MPIE for
the CPW. Assuming an impressed magnetic current in the slots and applying
the boundary conditions, the MPIE and the Green’s functions were derived.
The magnetic and electric Green’s functions were simplified to one-dimensional
Sommerfeld integrals which can be calculated by numerical integration.

The MPIE was solved for the magnetic current with the moment
method. One of the distinctive features of P-mesh is the choice of roof-top basis
functions for rectangular and triangular cells as the basis and testing functions.
With rectangular cells modeling regular regions and triangular cells modeling
irregular regions, the algorithm gains flexibility and improved accuracy.

With the current distribution for the structure known, P-mesh be-
comes a valuable {00l in understanding what happens physically to current at
CPW discontinuities.

To characterize a network, the current distribut.ion is sampled and the
scattering parameters calculated. With an odd/even mode excitation the odd
and even mode currents for each port are calculated. The three-point curve-
fitting technique in conjunction with a network connection algorithm leads to

the derivation of the scattering parameters.
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For various CPW structures the P-mesh derived data was found to
be in accordance with measured and theoretical data from other sources.

For use in MMIC design the algorithm was implemented in a CAD
program. A program to calculate the CPW Green’s functions, by Ahmad
Hoorfar, was integrated into the P-mesh program, developed by J i;n X. Zheng.
Major changes to this code included the source excitation and de-embedding
sections.

For the structures analyzed, the CPW P-mesh code performed well.
However, for more complex structures flcating grounds are unrealistic. The
incorporation of air-bridges and bonding wires into the program will greatly
extend the number of practical MMIC structures which can be analyzed with
the CPW P-mesh. The addition of dielectric and conductor loss is also desir-
able.
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