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Abstract. Computational physics has benefited from on-going microproces-
sor innovations, which have enabled larger and larger numerical simulations.
One consequence of these technological advancements has been an explosion in
the amount of data generated. For many modelers, available software tools and
computing resources are proving inadequate for investigation of high-resolution
numerical outputs. In this paper we discuss the general problems associated
with very large data visualization and analysis and our work on a particular
solution to those through the development of VAPOR (open source, available at
http://www.vapor.ucar.edu): a desktop application that leverages today’s pow-
erful CPUs and GPUs to enable visualization and analysis of terascale data sets
using only a commodity PC or laptop. We briefly illustrate VAPOR’s utility
through the exploration of a high-resolution simulation aimed at understanding
the effects of hydrogen ionization on convective dynamics in stellar envelopes.

1. Introduction

Continual advancements in microprocessor technology have in the last decades
dramatically increased the capability of the supercomputers available for com-
putational science. Systems with teraflop, and in the near future petaflop, per-
formance have enabled, and will continue to enable, numerical models of ex-
traordinary resolution and scale, with consequent enormous data output. The
ability to manage, analyze, and study the numerical output of scientific compu-
tations has not kept pace with the capacity to generate it. For many numerical
modelers the greatest challenge in the scientific discovery process begins once
the simulation has completed and analysis commences.

Even within the discipline of computational fluid dynamics (our particular
focus), the magnitude of this challenge varies with the scientific goals. Opera-
tional and forecast models often reduce very large three-dimensional volumet-
ric data to two-dimensional maps (e.g., surface temperatures or winds) before
output, thus dramatically diminishing difficulties with data manipulation. In
research focused strictly on statistical or spectral properties of flows, the dimen-
sionality of the solution output may be similarly reduced. This is not true of
efforts which aim to understand the local dynamics, thermodynamics, or phys-
ical stability of the solution. These studies typically focus on force and energy
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balance at precise locations within the domain. The locations of interest, the
nature of the analysis to be undertaken, and the relevant secondary quanti-
ties to be derived, are often not known or determinable before the solution is
computed. In such cases, visualization and analysis on interactive time scales be-
comes essential, and the scientific return realized from the initial computational
effort invested can be limited by the availability, or lack there-of, of appropriate
post-processing resources, both software and hardware.

Many factors have contributed to an imbalance between the size of the prob-
lems currently computable and the size of the solutions interactively analyzable.
Perhaps the most important is the contrasting natures of numerical simulation,
which is well-suited to batch job submission, and data analysis, which is inher-
ently interactive. This contrast is exacerbated by the emphasis that computing
centers typically place on the delivery of batch computing cycles, often to the
detriment of other computing needs. Most batch compute systems consist of
many hundreds or thousands, and soon tens of thousands, of processing units,
while analysis and visualization resources rarely exceed tens of CPUs. The
problem also reflects a disparity in the rate of advancement of other essential
computing technologies. For example, microprocessor performance, the main
driver behind supercomputer advancements, doubles roughly every 18 months
in accordance with ”Moore’s law” (Moore 1965). IO interconnect bandwidth
performance, key to the interactive processing of very large data sets, is on a
much more modest improvement curve. From 1977 to present, CPU performance
has increased by nearly seven orders of magnitude while disk data transfer rates
have increased by only two (Ross et al. 2005). Other computing technologies
exhibit similar disparities, and these trends are expected to continue into the
foreseeable future.

How then does one enable interactive interrogation of terascale data sets?
Without an unrealistic leveling of computing technology advancement or a fun-
damental change in the provisioning of high performance computing resources,
some form of data reduction is necessary. Extraction of local subregions from the
global spatial-temporal domain, based on the occurrence of interesting events,
offers one possibility. Another is the global approximation of the discrete solu-
tion using fewer samples than the original computation. The challenge in the
first case is locating the regions of interest (ROIs), and in the second, achieving
sufficient accuracy to maintain confidence in the coarsened approximation.

We have implemented both forms of data reduction in the VAPOR package
(an open source desktop application available at http://www.vapor.ucar.edu)
and have demonstrated success investigating numerous very large scale simula-
tion outputs using only modest computing resources (Clyne et al. 2007). Multi-
resolution data access, advanced visualization algorithms enabled by today’s
powerful graphics processing units (GPUs), and an intuitive GUI, allow the
researcher to quickly browse the space-time domain of their data to gain qual-
itative understanding and rapidly identify significant features. Once an ROI is
identified, quantitative analysis, often far more computationally intensive than
visualization, can be seamlessly undertaken across the much smaller sub-domain
and at a resolution specified by the user to maintain interactivity. In this paper
we briefly describe VAPOR, focusing on its data handling capabilities, present
some of our experiences using it in the context of a relevant and challenging
problem in astrophysical fluid dynamics, and discuss preliminary work on more
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aggressive data reduction techniques aimed at supporting future petascale ap-
plications.

2. VAPOR

While numerous freeware and commercial applications exist for analyzing and
visualizing large, time-varying gridded data sets, they all have shortcomings that
significantly curtail their usefulness in the exploration of high resolution simu-
lation data. Open source visualization applications, such as Paraview (Ahrens
et al. 2001) and Visit (Childs et al. 2005), and commercial applications such as
CEI’s Ensight, support advanced visualization algorithms appropriate for com-
putational data sets, but are generally lacking in quantitative analysis capabili-
ties. Their utility is, in the authors’ opinion, targeted more towards visualization
experts than scientific end-users, and most significantly, they demand special-
ized parallel computing resources to handle large data sets, resources that are
often unavailable to the individual researcher. High-level data languages such
as ITT’s IDL and Mathwork’s Matlab were designed with the scientific end-user
in mind, support a rich set of mathematical operators suitable for quantitative
data analysis, but offer only limited visualization capability and only minimal
scalability, restricting their use to moderate sized problems.

The VAPOR software environment attempts to address these shortcom-
ings, while at the same time providing an intuitive user interface and feature
set. The design of the VAPOR GUI and functionality is guided by a commit-
tee of computational physicists to ensure that the tool meets the needs of the
user community. VAPOR’s advanced visualization capabilities enable the rapid
identification of features or spatial-temporal ROIs in both scalar and vector
data. Its seamless coupling to high-level analysis languages facilitates rigorous
quantitative investigation and data manipulation on the reduced domain iden-
tified, and its hierarchical data representation scheme permits the investigator
to make effective speed/quality trade-offs in order to maintain a high degree
of interactivity. A more complete description of VAPOR’s capabilities may be
found in Clyne and Rast (2005) and Clyne et al. (2007).

2.1. Hierarchical data representation

The size of high-resolution data sets poses perhaps the greatest challenge to
interactive analysis. Storing all the data on rotating media for random access
is often unfeasible, necessitating time-consuming shuffling of the data between
archival and disk-based storage. Even when sufficient on-line storage capacity
exists, IO bandwidths are generally inadequate to support interactive processing
without costly parallel IO systems. Constraints on the physical memory size
of both the CPU and GPU, form the next bottleneck in the data movement
hierarchy. Even if these issues were addressed, the processing capabilities of the
CPU and GPU place limitations on the amount of data that can be processed
interactively.

The strategy employed by VAPOR to overcome these difficulties is based on
the assumption that, while some analysis may require access to the data at full
resolution, many visualization and analysis operations are less sensitive to infor-
mation loss. This suggests the use of hierarchical data representation. Simula-
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Figure 1. Compressible down flowing thermal plume, from Clyne et al.
(2007), at progressively increasing resolution. Shown from left to right at
632×256, 1262×512, 2522×1024, and 5042×2048, respectively. The individual
plume images were all generated with a software ray caster using the same
transfer function. Note how visual identification of even very fine structures
is fairly insensitive to resolution degradation.

tion outputs are stored hierarchically, with each level in that hierarchy providing
a coarsened approximation of the data at the preceding level. The original data
may be accessed in their entirety, without loss of information, or an approxima-
tion of the original, sampled on a coarser grid, may be retrieved. At each level,
coarsening halves the spatial resolution, yielding, for a three-dimensional data
set, an eight-fold reduction in the data volume and a corresponding reduction
in analysis and visualization resource demands. Grid coarsening currently em-
ploys a three-dimensional Haar wavelet transformation (see §4 for a discussion
of future plans). Storing the Haar wavelet coefficients (Haar 1910) avoids the
penalty of keeping multiple data copies, and allows reconstruction of the data at
factor-of-two resolutions with only minimal overhead. The computational cost
of the forward and inverse transforms are negligible compared to those incurred
by reading or writing the data. Importantly, this hierarchical data access scheme
permits the investigator to throttle the flow of data in accordance with the re-
sources available, and thus control the level of interactivity. Users can browse
coarsened representations of the data across the global spatial-temporal domain
to identify features of interest. Once identified, the reduced domain may be
examined at any level of detail up to the original resolution. Often both visual
inspection (e.g. Figure 1) and numerical analysis are fairly insensitive to rather
dramatic data coarsening (Clyne and Rast 2005), allowing considerable savings
in computational overhead during the early exploratory stages of investigation
when interactivity is most crucial. Subsequent verification of analysis results
can be accomplished less interactively at full resolution if necessary.
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2.2. Coupling visualization with quantitative data analysis

Acquiring a scientific understanding of large numerical data generally requires
an interplay between highly-interactive, but qualitative visual-examination, and
quantitative numerical analysis. Visualization can be used to identify salient
features of the data, which then may give rise to hypotheses that can be vali-
dated or rejected by further study. Conversely, quantitative analysis of the data
requires visualization to illuminate essential geometries and physical properties.
Combining qualitative and quantitative data access is most effective when the
process is seamless, enabling users to quickly transition back and forth between
the two. For very large data sets the challenge is to maintain a sufficient level of
interactivity throughout the process. VAPOR facilitates the interplay between
visualization and analysis by combining data culling, through a combination of
ROI isolation and hierarchical representation as described above, with seamless
coupling to already existent analysis packages. The goal is to provide a tool for
interactive analysis and visualization that does not require the user to learn a
new analysis language.

VAPOR visualization is performed with intrinsic algorithms that are accel-
erated using the hardware GPUs, while numerical analysis currently employs
ITT’s fourth-generation language IDL. The coupling between IDL and VAPOR
is facilitated by a library of data access routines, which allow IDL read and write
access to VAPOR’s wavelet-encoded data representation. This data access li-
brary could be employed by other scientific data processing utilities as well, and
so the approach is readily generalizable to other analysis packages. The user
can simultaneously maintain active VAPOR and IDL (or other analysis) ses-
sions, visually identifying ROIs with VAPOR and exporting them to IDL for
further study. Interactivity within IDL is maintained if the ROI is sufficiently
small or if the operation is sufficiently well-behaved over coarsened approxima-
tions of the data (Clyne and Rast 2005). Newly calculated quantities can then
be imported back into the existing VAPOR session for continued visual inves-
tigation. By repeating this process, very large data sets can be interactively
explored, visualized, and analyzed without the usual delays caused by reading,
writing, and operating on the data arrays in full.

The main advantage of coupling visual data investigation with an array-
based data analysis language is the ability to defer expensive calculations of
derived quantities until they are needed and then perform them only over sub-
domains of interest. The time and space required for computing such variables
in advance and across the entire domain can easily overwhelm the resources
available, delaying or preventing altogether further analysis. Moreover, some
quantities can only be computed with reference to the location of a flow structure
and are therefore not in principle a priori computable (see §3). The coupling
between VAPOR and IDL facilitates the calculation of derived quantities as
needed over sub-regions of the domain, realizing considerable savings in storage
space and processing time.

3. Example Application

Solar and stellar envelope convection occurs in the presence of ionization and
recombination of the principal plasma constituents, notably hydrogen. These
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Figure 2. Two views of a single snapshot of the hydrogen ionization state
in a simulation of compressible ionizing convection. Supersonic downflows ini-
tiate in the partially ionized region (orange/yellow color tones) of the domain.
Sites of supersonic downflow are indicated with green color tones.

processes significantly influence both the transport properties and dynamics of
the convective flows by modifying the particle number density, specific heat, and
internal energy content of the gas (Rast & Toomre 1993). In particular, strong
temperature fluctuations and enhanced buoyancy forces develop locally in the
fluid wherever rapid changes in ionization state occur. The spatial and temporal
scales of motion decrease and the flow velocities increase as the fraction of fluid
participating in ionization increases. Buoyantly accelerated supersonic down-
flows, not seen in simulations of ideal-gas convection, result. We have examined
these effects utilizing a series of idealized three-dimensional numerical experi-
ments, which simulate compressible convection in a plane-parallel layer of fluid,
a specified fraction of which is reactive (ionizing and recombining) single-atomic-
level hydrogen. The fully nonlinear three-dimensional solutions were computed
using a hybrid-pseudospectral code, employing spectral decomposition in the
two horizontal directions and second-order finite-difference derivative approxi-
mations in the vertical. With the exception of the thermal diffusion term, treated
implicitly, the solution was time advanced using an explicit two-level Adams-
Bashforth scheme. (This differs from the three-dimensional compressible plume
model of Figures 1 and 4 which employed a fully explicit second-order finite-
difference code with third-order Runge-Kutta time stepping.) Figure 2 presents
a snapshot from one of these simulations. Shown, from two perspectives, is the
ionization state of hydrogen (orange/yellow tones) overlain by the sites of su-
personic downflows (green). As the reactive fraction of hydrogen increases, the
frequency of occurrence and vigor of the supersonic downflows also increases.

We used VAPOR’s visualization capabilities to identify sites of supersonic
downflow, and IDL to quantitatively examine their dynamics. As illustrated in
Figure 3, sites of supersonic downflow are also those of very high vertical vortic-
ity. The cores of the vortex tubes are evacuated, with centripetal acceleration
locally balancing acceleration due to the radially (inwardly) directed pressure
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Figure 3. Force balance at a site of supersonic downflow showing the
results of analysis undertaken at full (a) and half (b) resolutions. Vertical
vorticity contours overlay grey scale images of key dynamical quantities: hor-
izontal mass flux convergence, buoyancy force, centripetal acceleration, and
radial pressure gradient. Plots below lie along vertical and horizontal cuts
through the plume center at the depth of the grey scaled images.

gradient. Buoyancy forces that accelerate the fluid to supersonic speeds are
maximum on the periphery of the tube where inflowing material accumulates.
We note that in this case, not only is the ROI unknown before analysis begins,
but at least two of the physical quantities of interest, the centripetal accelera-
tion and the radial pressure gradient, can not be calculated globally as part of
the batch simulation even if their need were anticipated. Computation of these
quantities requires identification of the vortex center, itself part of the solution.
Finally, comparison between Figures 3a and b illustrates that, while there are
small quantitative differences, the same physical interpretation of these flows
follows when conducting the above analysis at half spatial resolution (a factor
of eight in data reduction). This is not unusual for both visual and analytic op-
erations (Clyne and Rast 2005) since little information in most hydrodynamic
solutions resides at the Nyquist frequency.

In this example application, a mechanistic not statistical understanding
of the solution was desired. It is for this type of investigation that VAPOR
is particularly well suited. With it, local flow properties, force balance, and
stability can be interactively interrogated. Since the sites of interest are not
a priori known, their interactive selection from the vast spatial-temporal data
volume is essential. For very large data volumes, interactivity can be maintained
only through a combination of ROI selection and multi-resolution access. In the
example above, these together enabled a factor of 128 reduction in the data
volume of a single snapshot cube before the analysis of an individual downflow
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site was undertaken. Much greater savings were achieved if one considers the
cost of the interactive browsing required to identify individual events in the full
data time series. Data reduction translates directly into enhanced interactivity
and consequent scientific productivity.

4. Towards the petascale

The methods we have described and illustrated above have been shown to be
highly valuable in the exploration of terascale data sets using only modest com-
puting resources. We have successfully employed them on data from simulations
with up to 15363 grid points (Clyne et al. 2007). However, interrogating data
from forthcoming petascale applications will, we believe, require even more ag-
gressive data reduction methods, and we again turn toward wavelet representa-
tions (Daubechies 1988; Mallat 1989; Sweldens 1995).

With a suitable choice of basis function, u, and without loss of information,
we can represent a large class of functions, f , containing N samples as

f(t) =

N−1∑

n=0

anun(t). (1)

If un(t) are complex exponentials, the expansion is the discrete Fourier series.
If un(t) are wavelet functions, the summation is a wavelet series typically rep-
resented as a two-parameter expansion:

f(t) =

log2N−1∑

j=0

j∑

k=0

dj,kψj,k(t), (2)

where dj,k are the real-valued coefficients, j represents scale and k translation
of the wavelet basis functions ψ.

We can compress our representation of f by creating a partial sum, reducing
the number of terms in the expansion. Thus an approximation of f , f̂ , may be
given by

f̂(t) =

M−1∑

m=0

amum(t), (3)

where (M < N). The L2 error between f and f̂ is then

L2 = ‖f(t) − f̂(t)‖2
2 (4)

For a wavelet expansion we can compress f by truncating j, limiting the scale
(frequency) of f . This is precisely how VAPOR currently creates a hierarchical
data representation. A nice property of frequency truncation compression is that
the surviving coefficient parameters, j and k, are implicit and we do not need
to store their values. However, better approximations may be achieved if we
exploit the fact that for orthonormal basis functions, a property many wavelet
families posses, the L2 error of an approximation is given by:
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Figure 4. Comparison of plume data set (Clyne et al. 2007) compressed
64:1. Shown from left to right are: data compressed using frequency trun-
cation; the original data; data compressed by prioritizing wavelet coefficients
to minimize the L2 error. The individual plume images were all interactively
rendered on a GPU using the same transfer function. Note, this GPU based
rendering process, used by VAPOR, differs from the early non-interactive
software-based approach used to make Figure 1.

L2 = ‖f(t) − f̂(t)‖2
2 =

N−1∑

i=M

(ai)
2 , (5)

where ai are the discarded coefficients. Thus an optimal compression, minimiz-
ing the L2 error, can be obtained simply by discarding those coefficients with
smallest absolute value. If the coefficients are zero, no error is introduced. It is
this property that we can exploit to provide a more accurate representation of
f for a given byte budget, or achieve comparable fidelity with scale truncation
using a smaller byte budget.

Figure 4 compares images of the same data set but separately employing
scale truncation and L2 error minimization. The improved fidelity and finer
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grained control achieved when using the latter approximation does not come
without a cost. Unlike the frequency truncation method currently employed,
the coefficient prioritization method (L2 error minimization) requires explicit
storage of the location (i, j parameters) of the surviving coefficients, di,j . Thus
a non-negligible storage overhead is introduced. Furthermore, identifying these
coefficients can be a computationally expensive task. We are presently exploring
solutions to both of these challenges.
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