
1.  Introduction
Marine low clouds cover vast areas of the eastern subtropical oceans in the form of stratocumulus decks, 
which transition to shallow cumulus toward the west and lower latitudes. They are also found in the cold 
sector of midlatitude cyclones and in the polar regions, very often as mixed-phase clouds. By increasing the 
planetary albedo, marine low clouds play a critical role in Earth's energy budget (e.g., L’Ecuyer et al., 2019). 
Because they reside close to the Earth's surface, their radiative impacts are primarily in the shortwave 
and depend on their macrophysical (e.g., cloud fraction) and microphysical (e.g., drop size distribution) 
properties.

Previous studies have related the marine cloud properties (CPs) to a variety of meteorological factors 
(MFs)—quantities that characterize the marine low cloud environment. These MFs can be derived from 
observations or large-scale model data at various spatial and temporal scales (e.g., Bony et al., 2004; Kubar 
et al., 2011; Mieslinger et al., 2019; Myers & Norris, 2013; Weaver & Ramanathan, 1997). Several compound 

Abstract  Low cloud fractions (LCFs) and meteorological factors (MFs) over an oceanic region 
containing multiple cloud regimes are examined for three data sets: one Energy Exascale Earth System 
Model (E3SM) simulation with the default 72-layer vertical grid (E3SM72), another one with 8-times 
vertical resolution via the Framework for Improvement by Vertical Enhancement (E3SM𝐴𝐴 × 8), and one 
with MFs from ERA5 reanalysis and LCFs from the CERES SSF product (ERA5-SSF). Neural networks 
(NNs) are trained to capture the relationship between MFs and LCF and to select the best-performing MF 
subsets for predicting LCF. NN ensembles are used to (a) confirm the performance of selected MF subsets, 
(b) to serve as proxy models for each data set to predict LCFs for MFs from all data sets, and (c) to classify 
MFs into those in shared and uniquely occupied MF subspaces. Overall, E3SM72 and E3SM𝐴𝐴 × 8 have large 
fractions of MFs in shared MF subspace, but less so near the Californian and Peruvian stratocumulus 
decks. E3SM𝐴𝐴 × 8 and ERA5 have small fractions of MFs in shared MF subspace but greater than E3SM72 
and ERA5, especially in the Southeast Pacific. The differences in LCFs between three pairs of data 
sets are decomposed into those associated with the differences in the LCF-MF relationship and those 
involving different MFs. Given the same MFs, LCFs produced by E3SM𝐴𝐴 × 8 are greater than those produced 
by E3SM72 but are still different from those in ERA5-SSF. In general, the shift in MFs dominates the 
difference in the LCFs.

Plain Language Summary  Marine warm low clouds are critical for both present day and 
future climate because they reflect a lot of solar energy back to space. To make more reliable projections 
of our changing climate, scientists need to improve these clouds in climate models. One question that 
scientists ask is, why do the climate models predict so much less marine warm low cloud cover than the 
satellites see? Is it because the models misrepresent the meteorology (like temperature and humidity) 
or because they are not able to produce enough clouds even if they predict the meteorology well. In this 
work, we use neural networks, a machine learning technique, to answer these questions. We find that our 
recent efforts to improve a climate model help the model produce more marine warm low clouds given the 
same meteorology; these efforts also lead to changes in the meteorology predicted by the model. Further 
model improvements are needed to bring the model predictions closer to the observations.
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MFs, that is, those derived from more basic thermodynamic and dynamic properties, have been proposed 
and have shown a good correlation with CPs. Some of these compound MFs are based on a physical under-
standing of lower-tropospheric atmospheric structure and processes. For example, the lower-tropospheric 
stability (LTS) is defined as the potential temperature difference between 700 mb and surface (Klein & 
Hartmann, 1993); both the estimated inversion strength (EIS, Wood & Bretherton, 2006) and the estimated 
low-level cloud fraction (ELF, Park & Shin, 2019) take into account the empirical thermodynamic structure 
of the lower-troposphere and the former can be interpreted as a measure of effective stability; the estimated 
cloud top entrainment index (ECTEI) considers the impacts of cloud top entrainment instability (Kawai 
et al., 2017). A compound MF can also be derived following a data-driven approach. Wall et al. (2017) ap-
plied principal component analysis to transform four MFs and used the leading principal component as a 
single MF to effectively indicate the transition between the cold and warm sectors of midlatitude cyclones 
in the Southern Ocean and thus the CPs in different parts of these cyclones.

Within the CP-MF framework, the CP in a CP-MF data set is conceptually built on two components: (a) 
the MFs and (b) the relationship between the CPs and the MFs. For a model-based data set, the former 
component is related to the model's ability to reproduce the meteorological regimes while the latter com-
ponent is directly controlled by its physical parameterizations. In practice, one commonly used approach 
is to first group the data by either the CPs (into cloud regimes, e.g., Jakob & Tselioudis, 2003; Tselioudis 
et al., 2000) or the MFs (into meteorological regimes, e.g., Barton et al., 2012; Bony et al., 2004; Bennhold & 
Sherwood, 2008; Mechem et al., 2018; Medeiros & Stevens, 2011; Mülmenstädt et al., 2012; Norris & Weav-
er, 2001; Su et al., 2013), and then examine the frequency of occurrence of the groups as well as the statistics 
of CPs and MFs within each group.

Previous works used this approach for model evaluation and intercomparison and studied whether the 
discrepancy in CPs between model-based and observation-based data sets is dominated by the differences 
in the MFs or the differences in the CP-MF relationships in these data sets. Medeiros and Stevens (2011) 
reported that the large-scale environments are similar between the models and observations they evalu-
ated, implying that the large differences in the tropical low cloud amounts between the models and the 
observations are rooted in the models' physical parameterizations. Su et al. (2013) drew similar conclusions 
regarding their cloud properties of interest. We comment on two aspects of these studies. First, the cloud 
properties of interest were examined as a function of only one or two MFs, which are insufficient to char-
acterize the clouds' environment (Nam & Quaas, 2013). Second, there is no quantification of the similarity 
between the MFs from modeled or observed data sets. Although some other studies (e.g., Ma et al., 2014) 
also attributed model errors to the physical parameterizations using short-term hindcast simulations that 
constrained the large-scale environments, there is emerging evidence pointing to the importance of the MFs 
in driving the spatial errors of modeled low stratiform cloud decks (Brunke et al., 2019).

Our primary concern in this study is the marine warm low cloud fraction (LCF) simulated with the Energy 
Exascale Earth System Model (E3SM), an Earth system model developed by the U.S. Department of Ener-
gy (E3SM Project, 2018). Like many other climate models, E3SM underestimates the marine LCF for low 
latitudes and subtropical regions (Y. Zhang et al., 2019). Recently, Bogenschutz et al. (2021) reported that 
using high vertical resolution in the lower troposphere in E3SM increases the LCFs in the climatological 
subtropical stratocumulus regimes. Lee et al. (2021) implemented the Framework for Improvement by Ver-
tical Enhancement (FIVE, Yamaguchi et al., 2017), a framework that enables the host model to compute 
selected processes at the high vertical resolution, into E3SM and achieved similar improvements at a much 
lower computational cost. In this study, we apply the LCF-MF framework to understand the sources of LCF 
improvements from E3SM to E3SM-FIVE and the sources of LCF errors between model simulations and 
reanalysis and satellite data. We use neural networks (NNs) as a nonlinear regression tool to capture the 
relationships between the LCF and multiple MFs for two model-based data sets and one observation-based 
data set and use the NN ensemble to associate the differences in the LCFs to the differences in the MFs, 
and the differences in the LCF-MF relationship. We will introduce our data sets and methods in detail in 
Section 2, followed by results in Section 3, and conclude after some discussion in Section 4.
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2.  Data and Methods
2.1.  Conceptual Description of Methods

The idea of our approach is summarized in the schematic in Figure 1. 
Assume, for illustration purposes, that the LCF is determined by a single 
MF and that we have LCF and MF data from two data sets: A (represent-
ed by red “+”s) and B (blue “+”s). We first train an ensemble of NNs (the 
mean of which is represented by the red curve) to map the MF from A 
(denoted as 𝐴𝐴 A ) to the LCF from the same data set (denoted as 𝐴𝐴 𝐴𝐴A , which 
is an abbreviation of 𝐴𝐴 𝐴𝐴A(A) since the LCF from a data set is always asso-
ciated with the MF from the same data set). By applying the NN ensemble 
(denoted as 𝐴𝐴 A ) to 𝐴𝐴 B , we can predict what the LCF would be if 𝐴𝐴 B were 
to occur in A (represented by blue “𝐴𝐴 × ”s, and we denote the prediction as 

𝐴𝐴 A(B) ). The differences between 𝐴𝐴 A(B) (blue “𝐴𝐴 × ”) and 𝐴𝐴 𝐴𝐴B given the 
same 𝐴𝐴 B tell us how much difference in LCF between A and B is due to 
different LCF-MF relationships between the two data sets.

However, we caution that even a well-trained NN ensemble is only able 
to “interpolate”; it is not designed to “extrapolate” (note the upward-tilt-
ing part of the red curve in the region without data from A). So, not all 
blue “𝐴𝐴 × ”s represent reliable predictions. Inspired by Lohninger  (1999) 
(see Lohninger,  2006), we expect the NN ensemble standard deviation 
(represented by the heights of red shaded bars) to be relatively small for 
regions densely populated by the training data, since the NN ensemble is 
more constrained there, but to become larger when the NN ensemble is 
applied to the MFs far away from the training data. (See Appendix A for a 

demonstration with a toy problem.). We can then classify 𝐴𝐴 B into those residing in an MF subspace shared 
with A (i.e., sharing a range that is also occupied by some 𝐴𝐴 A , denoted as 𝐴𝐴 B,∩A , blue symbols with solid 
line) and those falling into the MF subspace that is uniquely occupied by B (denoted as 𝐴𝐴 B,∩Ā , blue symbols 
with dashed line) based on 𝐴𝐴 A(B) ensemble standard deviation. Similarly, we can use 𝐴𝐴 B to classify 𝐴𝐴 A . 
(We borrow the notation used in set theory, where 𝐴𝐴 A ∩ B means set members that belong to both A and B 
and 𝐴𝐴 A ∩ B̄ means set members that belong to A but not B. We add a comma after the name of the first data 
set in this notation to emphasize that whether the MF of a data point from this data set falls into the shared 
or uniquely occupied MF subspace is determined by the NN ensemble trained on the second data set listed 
in this notation. In other words, “𝐴𝐴 A, ∩ B ” is not interchangeable with “𝐴𝐴 B, ∩ A ”).

Finally we can reliably calculate the difference between 𝐴𝐴 A(B,∩A) and 𝐴𝐴 𝐴𝐴B associated with 𝐴𝐴 B,∩A (denoted 
as 𝐴𝐴 𝐴𝐴B,∩A ). With this difference removed from the total difference between 𝐴𝐴 𝐴𝐴A and 𝐴𝐴 𝐴𝐴B , the remaining differ-
ence is due to the difference in MFs, including the different frequency distributions between 𝐴𝐴 A,∩B and 

𝐴𝐴 B,∩A within the shared MF subspace as well as the differences between 𝐴𝐴 A,∩B̄ and 𝐴𝐴 B,∩Ā .

2.2.  Data Sets

We investigate the monthly mean LCFs and MFs from three data sets. The observation-based data set com-
prises LCFs from CERES Edition 4A (Minnis et al., 2020) Single Scanner Footprint (SSF) product from 2003 
to 2018 and MFs from ERA5 reanalysis (Hersbach et al., 2020) over the same time period. The SSF LCF, 
representing the cloudiness between the surface and 700 mb, is retrieved following Minnis et al.  (2020) 
and based on the cloud masks determined by comparing the radiances observed by MODIS with estimated 
clear-sky radiances through a set of tests (Trepte et al., 2019). We use the average of monthly daytime and 
nighttime mean LCFs for both Terra and Aqua from the Level 3 SSF 𝐴𝐴 1◦ monthly product. The ERA5 reanal-
ysis is obtained as hourly data at 0.𝐴𝐴 25◦ × 0.25◦ resolution and processed to monthly data at 𝐴𝐴 1◦ × 1◦ . We refer 
to this data set as “ERA5-SSF.”

The two model-based data sets come from two 16-year global simulations with E3SM and E3SM-FIVE. 
The E3SM simulation is performed using the standard release of E3SMv1 (Golaz et al., 2019) on its default 

Figure 1.  Scheme for key elements of the methods presented in this 
study. Red and blue “+”s represent the data points from two data sets: (A 
and B) Red curve represents the relation between low cloud fraction (LCF, 
denoted as 𝐴𝐴 𝐴𝐴 ) and meteorological factor (MF, denoted as 𝐴𝐴  ) captured by 
the mean of neural network (NN, denoted as 𝐴𝐴  ) ensemble trained on the 
data from (a) Red shaded bars represent the standard deviation in LCF 
predicted by NN ensemble members. Blue “𝐴𝐴 × ”s represent the mean LCFs 
predicted by 𝐴𝐴 A ensemble for 𝐴𝐴 B (denoted as 𝐴𝐴 A(B) ). Symbols (“+”s 
and “𝐴𝐴 × ”s) in solid lines indicate data points with the MF falling in the MF 
subspace shared between the two data sets (denoted as 𝐴𝐴 A,∩B and 𝐴𝐴 B,∩A ); 
those in dotted lines indicate data points with MFs falling in the uniquely 
occupied MF subspace (denoted as 𝐴𝐴 A,∩B̄ and 𝐴𝐴 B,∩Ā ). Gray shading 
indicates the region shared between 𝐴𝐴 A and 𝐴𝐴 B .



Journal of Advances in Modeling Earth Systems

CHEN ET AL.

10.1029/2021MS002625

4 of 19

72-layer vertical grid. The E3SM-FIVE simulation uses an 8-times resolution vertical grid from the second 
layer above the surface to about 700 mb for three physical parameterizations: Cloud Layers Unified By 
Binormals (CLUBB, Golaz et al., 2002; Larson & Golaz, 2005; Larson, 2017), version two of the Morrison 
and Gettelman microphysical scheme (MG2, Gettelman et al., 2015), and the Rapid Radiative Transfer Mod-
el for GCMs (RRTMG, Iacono et al., 2000; Mlawer et al., 1997). It also calculates the vertical advection by 
the resolved flow on the same high resolution vertical grid to balance the parameterized entrainment due 
to turbulence. Other than this, the two simulations are configured and used in identical ways, with no ad-
justments of the model tunable parameters. Both simulations are driven by climatologically prescribed sea 
surface temperatures (SSTs) and forcings. The atmospheric component is run on an ne30np4 cubed-sphere 
horizontal grid, corresponding to a horizontal resolution of about 𝐴𝐴 1◦ . The first year of each simulation is 
considered as spin-up and the monthly mean MFs and LCFs from the subsequent 15 years are used. Here-
after we refer to the two simulations and the data sets based on their results as “E3SM72” and “E3SM𝐴𝐴 × 8”.

Both E3SM and E3SM-FIVE diagnose the LCF as follows: the model first calculates three cloud fractions 
per grid box: (a) the deep convection cloud fraction from the deep convective mass flux predicted by the 
Zhang-McFarlane (ZM) deep convection scheme (G. J. Zhang & McFarlane, 1995), (b) the liquid cloud frac-
tion by CLUBB from the predicted joint distributions of thermodynamic variables, and (c) the ice stratiform 
cloud fraction that linearly changes with the ratio between the sum of ice mass mixing ratio and the vapor 
mixing ratio and the saturation vapor mixing ratio over ice (Gettelman et al., 2010; Slingo, 1987). Then a 
total cloud fraction is calculated as the sum of the deep convection cloud fraction and the greater value 
between the liquid and ice stratiform cloud fractions. Finally, the LCF, the focus of our work, is diagnosed 
from the total cloud fractions between surface and the 700 mb assuming maximum-random overlap among 
cloudy areas in different layers. The critical difference between the E3SM LCF and the SSF LCF is that 
the former is diagnosed purely from macroscopic quantities while the latter fundamentally relies on the 
interaction between hydrometeor particles (microphysics) and radiation. Satellite instrument simulators 
can partially address this discrepancy but not without their own issues (Pincus et al., 2012). For the current 
study, we focus on the first-order relationship between the MFs and the model-diagnosed LCF and avoid 
the extra complications, as well as benefits, associated with instrument simulators. We do take the average 
of only the hourly LCFs closest to four local times (i.e., 1:30, 10:30, 13:30, and 22:30) to match the overpass 
times of Terra and Aqua.

Although our focus is on marine warm (liquid only), low clouds, we avoid the tricky problem of identify-
ing this cloud regime from the data by including all the data over the oceanic region between 𝐴𝐴 40◦ S, 𝐴𝐴 40◦ N,  

𝐴𝐴 70◦ W, and 𝐴𝐴 167◦ W. This region encompasses the Californian and Peruvian stratocumulus decks and the 
shallow cumulus regimes; it also contains other cloud regimes, including deep convection in the tropics and 
extratropical cyclones (along the southern and northern edges). However, we only comment on the findings 
related to warm, low clouds. Figure 2 shows an overview of the multi-year mean LCFs from the three data 
sets in the region of interest. Throughout this work, we report LCF as decimals, instead of percentages. 
Compared to the SSF LCFs, the LCF patterns produced by E3SM72 and E3SM𝐴𝐴 × 8 show lower LCF in both 
the Californian and Peruvian stratocumulus decks. The Californian stratocumulus decks in E3SM72 and 
E3SM𝐴𝐴 × 8 sit to the south of 𝐴𝐴 20◦ N and further away from the North America coast. In the Southeast Pacific, 
the low clouds in E3SM72 and E3SM𝐴𝐴 × 8 do not extend far enough to the west of the Peruvian stratocumulus 
decks. E3SM𝐴𝐴 × 8 produces greater LCF than E3SM72 at most locations and improves the agreement with the 
SSF LCFs. The Californian stratocumulus deck in E3SM𝐴𝐴 × 8 shows similar LCFs to E3SM72 to the south of 

𝐴𝐴 20◦ N but covers the area to the north of 𝐴𝐴 20◦ N with much higher LCF. The Peruvian stratocumulus deck 
in E3SM𝐴𝐴 × 8 extends toward the south of its counterpart in E3SM72 with LCFs that can be as much as 0.24 
higher than in E3SM72.

2.3.  NNs and NN Ensembles

We use the densely connected feedforward NN to capture the LCF-MF relationships. It maps an input (col-
umn) vector 𝐴𝐴 ⃖⃖⃗𝑚𝑚0 containing 𝐴𝐴 𝐴𝐴0 MFs as input variables (called features in the machine learning literature) to 
the corresponding LCF (denoted as 𝐴𝐴 𝐴𝐴 ) via a series of operations:

𝑓𝑓 ∼ 𝑔𝑔𝑁𝑁+1(𝑔𝑔𝑁𝑁 (… (𝑔𝑔2(𝑔𝑔1(⃖⃖⃗𝑚𝑚0))))).� (1)
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The input vector 𝐴𝐴 ⃖⃖⃗𝑚𝑚0 is first mapped to 𝐴𝐴 𝐴𝐴1 nodes in the first hidden layer, that is,

⃖⃖⃗𝑚𝑚1 = 𝑔𝑔1(⃖⃖⃗𝑚𝑚0) = 𝜙𝜙1(𝐖𝐖1 ⋅ ⃖⃖⃗𝑚𝑚0 + ⃖⃗𝑏𝑏1),� (2)

where 𝐴𝐴 ⃖⃖⃗𝑚𝑚1 is an 𝐴𝐴 𝐴𝐴1 × 1 vector and 𝐴𝐴 𝐖𝐖1 , 𝐴𝐴 ⃖⃗𝑏𝑏1 , and a nonlinear function 𝐴𝐴 𝐴𝐴1 are the weight matrix, the bias vector, 
and the activation function for 𝐴𝐴 𝐴𝐴1 . Similar operations continue until the nodes in the 𝐴𝐴 𝐴𝐴 th hidden layers are 
mapped to 𝐴𝐴 𝐴𝐴 .

To begin the training of the NNs, the first task is to select the features. We start with an initial pool of 
14 MFs that fall into four categories: quantities characterizing lower-tropospheric thermodynamics, that is, 
potential temperature (𝐴𝐴 𝐴𝐴 ) and relative humidity (RH) at 1,000, 925, 850, and 700 mb; quantities describing 
atmospheric dynamics, that is, horizontal wind speed (𝐴𝐴 𝐴𝐴 ) at 1,000 and 700 mb and vertical air velocity in 
pressure coordinates (𝐴𝐴 𝐴𝐴 ) at 500 mb; one column-integrated quantity, i.e., precipitable water vapor (PWV, 
also called total column water vapor); and surface sensible and latent heat fluxes (𝐴𝐴 𝐴𝐴h and 𝐴𝐴 𝐴𝐴e ). With these 14 
initial MFs, we are essentially testing whether an NN can learn to diagnose the LCF for a variety of cloud 
regimes from coarse resolution soundings of 𝐴𝐴 𝐴𝐴 , RH, 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴 , supplemented with additional information 
on the atmospheric humidity (PWV) and the lower boundary conditions (e.g., surface fluxes) to the atmos-
pheric columns under investigation. We do not include any compound MFs from the literature but train 
NNs to map each of the 16,383 subsets of these 14 basic MFs to the LCFs to search for the best-performing 
subsets. In other words, we train NNs for 14 1-MF subsets, 91 2-MF subsets, 364 3-MF subsets, all the way 
to the MF set containing all 14 MFs. The choice of analyzing monthly mean data at about 𝐴𝐴 1◦ × 1◦ itself is 
another feature selection decision we make. In other words, we exclude the MFs that are relevant at finer 
temporal and spatial scales.

The next step is to decide on the NN architecture, that is, the number of hidden layers 𝐴𝐴 𝐴𝐴 and the number of 
nodes in each hidden layer 𝐴𝐴 𝐴𝐴𝑖𝑖 (for 𝐴𝐴 𝐴𝐴 = 1, 2, … , 𝑁𝑁 ). An NN's architecture controls its capacity. An NN with 
insufficient capability (too few hidden layers or nodes) is unable to memorize the pattern in the training 
data; an NN with excessive capability (too many hidden layers or nodes) tends to overfit the training data 
and does not generalize well to data that it has not seen before. With some trial and error, we choose one 
baseline architecture for each number of features (from 1 to 14) following two steps. We first search all NN 
architectures with five hidden layers and 24 to 32 nodes in each layer for those with 3,250 weights (i.e., 3,250 
elements in all weight matrices combined). Then, from these NN architectures, we choose the one with 
the smallest standard deviation of the numbers of nodes in five hidden layers. For example, the baseline 

Figure 2.  Mean low cloud fractions (LCFs or 𝐴𝐴 𝐴𝐴 ) from SSF, E3SM72, and E3SM𝐴𝐴 × 8 (first row), and differences between them (second row).
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architecture for eight features has 28, 27, 27, 27, and 29 nodes in each 
layer from the input end to the output end, resulting in 3,389 parameters 
(i.e., 3,389 elements in all weight matrices and bias vectors combined).

We standardize all MFs for each data set by removing their means and 
scaling them to unit variance. The distributions of these MFs are all 
skewed, but we do not see noticeable improvements in the NN perfor-
mances when we transform them to more symmetrical distributions. 
Therefore, no additional transformation is performed to the MFs. For the 
training, we linearly transform the LCF to between 𝐴𝐴 − 1 and 1 to match the 
choice of the activation functions used in the NN See below for details.) 
In pilot training, NN performances for E3SM-based data sets are signifi-
cantly worse near the landmasses, including the North and South Ameri-
cas, the Hawaii islands, and, to a lesser extent, the Galapagos Islands. We 
find that some oceanic grids near these landmasses in E3SM-based data 
sets have large surface geopotential, and the MFs at these grids are very 
noisy and contain more extreme values than at other grids. We exclude 
data points at grids with a surface height greater than 10 m to alleviate 
this issue. No data points are excluded for ERA5-SSF since the prob-
lem is less severe, probably because the noisy MFs near landmasses are 
smoothed out as we coarse-grain the original data. There are more than 
1.2 million data points left in each data set. These data points are split into 
68%:17%:15% for the training, validation, and test sets, respectively. On 
average, we train one parameter with at least 250 data points and only see 
a small degradation of the NN performance for the validation set relative 
to the performance for the training set, suggesting little overfitting.

All hidden layers of the NNs use the SWISH activation function (Ram-
achandran et al., 2017), which is simply

𝜙𝜙(𝑥𝑥) = 𝑥𝑥
1 + 𝑒𝑒−𝛽𝛽𝛽𝛽

,� (3)

with the parameter 𝐴𝐴 𝐴𝐴 set to 1; the output layer uses the 𝐴𝐴 tanh activation 
function. The NN parameters are initialized with the He uniform vari-
ance scaling initializer (He et al., 2015) and optimized with the ADAM 
optimizer (Kingma & Ba,  2014) for 100 epochs to minimize the mean 
squared error (MSE) in the NN predictions at a learning rate that starts at 

𝐴𝐴 10−3 and drops to 𝐴𝐴 10−4 if the MSE for the validation data set plateaus. All 
NNs are constructed and trained with TensorFlow (Abadi et al., 2015), 
version 2.2.

Based on the results from NNs with baseline architectures, we perturb the 
NN architecture to generate NN ensembles for selected feature sets. For 

each feature set of interest, we again search all NN architectures with five hidden layers and 24 to 32 nodes 
in each layer but this time for NN architectures that satisfy one of two conditions: (a) number of weights 
equal to 3,249, 3,250, or 3,251 and (b) number of parameters within the baseline architecture's number of 
parameters ±1 . For example, for eight features, the second condition identifies NN architectures with 3,388, 
3,389, or 3,390 parameters. We then train NNs with these NN architectures to generate NN ensembles.

3.  Results
3.1.  Feature Selection and Performance of NNs

We first examine the performance of the NNs with baseline architectures, quantified by the root-mean-
square deviation (RMSD) based on all data points in each data set, where the “deviation” is defined as the 
true LCF minus the prediction by the NNs. Figure 3 shows the distributions of the RMSDs for all 16,383 

Figure 3.  Distribution of performances of neural networks with 
baseline architectures and trained to map all 16,383 subsets of the 
14 meteorological factors (MFs) to the low cloud fractions, sorted by the 
number of MFs in the MF subsets.
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NNs for each data set, sorted by the number of MFs. The overall perfor-
mance and the best performance of the NNs improve as the number of 
MFs increases. The gain in the best performance is small beyond eight 
MFs. On the other hand, when NNs are trained on too few MFs (e.g., 
two MFs), the spatial patterns of the mean deviation show large magni-
tudes and clear correspondence with meteorological regimes, indicating 
insufficient information to characterize all meteorological regimes in our 
problem (e.g., See Figure 12). Based on these two findings, we focus on 
the NNs trained on 3003 8-MF subsets.

Figure 4 shows the distributions of the RMSDs for these 3003 NNs. The 
NNs for ERA5-SSF produce a RMSD distribution that peaks between 
0.056 and 0.057. The best-performing 8-MF subsets have RMSDs that 
are slightly smaller than 0.050 but the worst-performing ones produce 
RMSDs as large as 0.084. The overall performances for the two E3SM-
based data sets are worse than those for ERA5-SSF, but the smallest 
RMSDs are near 0.050, similar to those for ERA5-SSF. To provide some 
context for these values, note that if a predictor randomly samples a uni-
form distribution between 0 and 1 as its prediction for the LCF, the RMSD 
will fall between 0.36 and 0.38; if a predictor randomly draws from the 

true cloud fraction distribution as its prediction, the RMSD will fall between 0.25 and 0.29. Results depend 
on the LCF distribution for each data set.

We test the robustness of the rank of the subsets' performance determined by the NNs with the baseline 
architecture. We train NN ensembles using 341 NN architectures, identified following the aforementioned 
method, for the top six best-performing 8-MF subsets of each data set. Figure 5 displays the distributions of 
the RMSDs for all 18 NN ensembles. The top-performing subset for ERA5-SSF clearly outperforms the oth-
er five subsets. For E3SM72 and E3SM𝐴𝐴 × 8, the top two best-performing subsets perform very similarly, but 
they stand out from the rest of the subsets. The ranks of the top three best-performing subsets suggested by 
these distributions are consistent with those determined by the NNs with the baseline architecture, shown 
in the legend in Figure 5. While it is certainly possible that the randomness in the training process (e.g., 
random initialization of NN parameters, order of data points fed to the NN, and so on) can change the top 
six best-performing subsets, it is unlikely that any other 8-MF subset will outperform the top-performers 
that we have examined here (i.e., the top-performer for ERA5-SSF and the top two best-performing subsets 
for E3SM72 and E3SM𝐴𝐴 × 8).

Table 1 shows the top six best-performing 8-MF subsets for the three data sets. 𝐴𝐴 𝐴𝐴850 and 𝐴𝐴 RH850 are present 
in all 18 8-MF subsets, closely followed by 𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴700 , and 𝐴𝐴 RH1000 , which make 15 to 16 appearances. 𝐴𝐴 RH700 
is rarely useful and 𝐴𝐴 𝐴𝐴700 is not used by any of these 18 8-MF subsets. 𝐴𝐴 𝐴𝐴h and 𝐴𝐴 𝐴𝐴e seem to be interchangeable. 
The best-performing 8-MF subsets for E3SM72 and E3SM𝐴𝐴 × 8 are similar. Actually, these two data sets share 

Figure 4.  Distribution of performances of neural networks with the 
baseline architecture and trained to map all 3003 8-MF subsets of the 
14 meteorological factors to the low cloud fractions.

Figure 5.  Performance of neural network (NN) ensembles generated with 341 perturbed NN architectures and trained to map the top six best-performing 8-MF 
subsets to the low cloud fractions. Numbers in the legend indicate the ranks of the 8-MF subsets determined by the performance of the NNs with the baseline 
architecture.
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the same top two best-performing subsets, which share seven MFs, but one contains 𝐴𝐴 𝐴𝐴h and the other one 
contains 𝐴𝐴 𝐴𝐴e . ERA5-SSF prefers different MF subsets from E3SM72 and E3SM𝐴𝐴 × 8. All top six best-performing 
subsets for ERA5-SSF contain 𝐴𝐴 𝐴𝐴500 and PWV, while only one contains 𝐴𝐴 𝐴𝐴1000 . In contrast, none of the top six 
best-performing subsets for E3SM72 and E3SM𝐴𝐴 × 8 contains 𝐴𝐴 𝐴𝐴500 or PWV, but most of them contain 𝐴𝐴 𝐴𝐴1000 . It is 
possible that different best-performing 8-MF subsets between E3SM-based data sets and ERA5-SSF indicate 
different physics between E3SM and the real world. However, keep in mind that while the LCFs and MFs 
from E3SM72 and E3SM𝐴𝐴 × 8 are generated by self-consistent systems, the SSF LCFs and ERA5 MFs are im-
perfect representations of the real world LCFs and MFs. Besides, the meteorological data used for retrieving 
SSF LCFs are not from ERA5 (See the descriptions in Minnis et al., 2020 or Trepte et al., 2019 for sources 
of data). So, the SSF LCFs may be inconsistent with both the real world meteorology and the ERA5 MFs. 
It is possible that 𝐴𝐴 𝐴𝐴500 and PWV better characterize the large-scale features that are shared among the real 
world, ERA5, and the data used for retrieving SSF LCFs, compared with MFs that characterize the details 
in the boundary layer.

We proceed with the following 8-MF subsets: 𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴850 , 𝐴𝐴 𝐴𝐴700 , 𝐴𝐴 RH925 , 𝐴𝐴 RH850 , 𝐴𝐴 𝐴𝐴e , 𝐴𝐴 𝐴𝐴500 , and PWV for ERA5-SSF; 
𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴850 , 𝐴𝐴 𝐴𝐴700 , 𝐴𝐴 RH1000 , 𝐴𝐴 RH925 , 𝐴𝐴 RH850 , 𝐴𝐴 𝐴𝐴e , and 𝐴𝐴 𝐴𝐴1000 for E3SM72 and E3SM𝐴𝐴 × 8. The latter 8-MF subset shares six 

MFs with the former, but is complemented by 𝐴𝐴 RH1000 and 𝐴𝐴 𝐴𝐴1000 instead of 𝐴𝐴 𝐴𝐴500 and PWV. Figure 6 demon-
strates the performance of the NN ensembles based on the selected 8-MF subsets. The first row displays 
the spatial patterns of the mean deviation between the true LCF and NN ensemble mean. Positive/negative 
deviation indicates that the NN ensemble mean underestimates/overestimates the truth. The mean devia-
tions are mostly small (between 𝐴𝐴 ± 0.03 at over 98.6% locations), suggesting satisfying overall performance 
of the NN ensembles. Those with large magnitudes are only occasionally found near the west coast of both 
the North and South Americas and to the south of the Hawaiian islands. It is possible that our exclusion of 
grids near landmasses is effective but does not completely eliminate the challenging conditions, where the 
topography near or within a grid may provide additional forcings—physical or numerical—that affect the 
LCF on the monthly timescale. We plot the ratio between the squared mean deviation and the mean squared 
deviation at each location (second row in Figure 6) and find that this ratio is usually small, suggesting that 
the NNs do not consistently produce deviations with large magnitude and a certain sign at a given location. 
It is much more difficult to examine whether NNs are consistently biased in some region in the 8-dimen-
sional MF space. We check the correlation between the deviation and each MF in the selected 8-MF subset 

Data set ERA5-SSF E3SM72 E3SM𝐴𝐴 × 8
Number of 

OccurrencesRank 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

𝐴𝐴 𝐴𝐴1000 ∙ 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 16

𝐴𝐴 𝐴𝐴925 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦ 𝐴𝐴 ◦ 8

𝐴𝐴 𝐴𝐴850 ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 18

𝐴𝐴 𝐴𝐴700 ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 15

𝐴𝐴 RH1000 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 15

𝐴𝐴 RH925 ∙ 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦ 𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦ 11

𝐴𝐴 RH850 ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 18

𝐴𝐴 RH700 𝐴𝐴 ◦ 1

𝐴𝐴 𝐴𝐴1000 𝐴𝐴 ◦𝐴𝐴 ◦ ∙ 𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ ∙𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 11

𝐴𝐴 𝐴𝐴700 0

𝐴𝐴 𝐴𝐴500 ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 6

PWV ∙𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 6

𝐴𝐴 𝐴𝐴h 𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦𝐴𝐴 ◦ 10

𝐴𝐴 𝐴𝐴e ∙𝐴𝐴 ◦ 𝐴𝐴 ◦ ∙𝐴𝐴 ◦𝐴𝐴 ◦ ∙ 𝐴𝐴 ◦ 𝐴𝐴 ◦𝐴𝐴 ◦ 10

Note. For each column, circles indicate the meteroloigical factors (MFs) used for this 8-MF subset. The 8-MF subset 
with filled circles are selected for further investigation.

Table 1 
Initial 14 Meteorological Factors (MFs) and Best-Performing 8-MF Subsets
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and find them to be uncorrelated. The correlation coefficient between the NN ensemble mean and the truth 
is greater than 0.966 for all data sets (plots omitted).

3.2.  Classification of MFs

Next, we use the NN ensemble standard deviation to classify MFs into shared and uniquely occupied MF 
subspaces. Figure 7a shows the joint distribution of NN ensemble standard deviation and NN ensemble 

Figure 6.  Performance of neural network (NN) ensembles trained on the selected 8-MF subsets. First row shows the mean of the deviation (𝐴𝐴 𝐴𝐴𝐴 , where the 
deviation, 𝐴𝐴 𝐴𝐴 , is defined as the true low cloud fractions minus the NN ensemble mean); second row shows the ratio between the squared mean deviation (𝐴𝐴 𝐴𝐴𝐴2 ) and 
the mean squared deviation (𝐴𝐴 𝑒𝑒2 ).

Figure 7.  Joint distributions of neural network (NN) ensemble standard deviation and NN ensemble mean for 
(a) 𝐴𝐴 E3SM×8(E3SM×8) and (b) 𝐴𝐴 E3SM×8(E3SM72) ; Spatial patterns of the root-mean-square of NN ensemble standard 
deviations for (c) 𝐴𝐴 E3SM×8(E3SM×8) and (d) 𝐴𝐴 E3SM×8(E3SM72) .
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mean for 𝐴𝐴 E3SM×8(E3SM×8) . The NN ensemble standard deviation is smallest for some data points with NN 
ensemble mean around 0.1, increases with the NN ensemble mean, and remains steady for NN ensemble 
mean between about 0.3 to 0.7. The largest standard deviation is smaller than 0.1. Recall that if we were to 
draw 341 random numbers independently from a uniform distribution between 0 and 1 and use them as the 
predicted LCFs, then the mean prediction would be close to 0.5 and the standard deviation close to 0.29. So, 
the NN ensemble members agree with one another significantly better than the randomly drawn numbers. 
Over the region of interest, the RMS of the NN ensemble standard deviation is smaller than 0.03 except 
for a few locations near the west coasts of South America (Figure 7c). When 𝐴𝐴 E3SM×8 is applied to 𝐴𝐴 E3SM72 , 
the NN ensemble standard deviation is more dispersed, most evidently for NN ensemble mean up to 0.8 
(Figure 7b). The RMS of the NN ensemble standard deviation becomes larger at most locations (Figure 7d), 
most evidently for two regions: one to the north and east of the Californian stratocumulus deck in E3SM72 
and the other one centered around 𝐴𝐴 20◦ S, 𝐴𝐴 90◦ W to the south of the Peruvian stratocumulus deck in E3SM72.

For the data used in Figure 7a, we have validated that the NN ensemble means are close to the truth. Howev-
er, the true values are unknown for the NN ensemble means shown in Figure 7b. We ignore the dependency 
of the NN ensemble standard deviation on the NN ensemble mean and compare the distributions of the 
NN ensemble standard deviation for 𝐴𝐴 E3SM×8(E3SM×8) and 𝐴𝐴 E3SM×8(E3SM72) . Altogether, 79.9% of 𝐴𝐴 E3SM72 
produce 𝐴𝐴 E3SM×8(E3SM72) ensemble standard deviations smaller than 0.0188, which is the 𝐴𝐴 90th percentile of 
the 𝐴𝐴 E3SM×8(E3SM×8) ensemble standard deviations. We classify these 𝐴𝐴 E3SM72 into an MF subspace that is 
shared between E3SM𝐴𝐴 × 8 and E3SM72, and the rest of 𝐴𝐴 E3SM72 into the MF subspace that is uniquely oc-
cupied by E3SM72. In Figure 9a, we find smaller fractions of 𝐴𝐴 E3SM72,∩E3SM×8 in the regions that see larger 
increases in the RMS of NN ensemble standard deviation from Figure 7c to Figure 7d. Similarly, we use the 

𝐴𝐴 E3SM72 ensemble to classify 𝐴𝐴 E3SM×8 . The spatial pattern of the fraction of 𝐴𝐴 E3SM×8,∩E3SM72 (Figure 9b) is 
similar to that for 𝐴𝐴 E3SM72,∩E3SM×8 .

Figure 8 shows the same results but for ERA5-SSF and E3SM72. Although the patterns in Figures 8a and 8c 
are comparable with those in Figures 7a and 7c, NN ensemble standard deviations for 𝐴𝐴 ERA5-SSF(E3SM72) 
are much greater than those for 𝐴𝐴 ERA5-SSF(ERA5-SSF) . In Figure 8b, the highest frequency of occurrence is 
found near an NN ensemble standard deviation close to 0.1 and an NN ensemble mean close to 0.4, different 
from those in Figures 7a, 7b and 8a, indicating generally large NN ensemble standard deviations. While 
the largest RMS of the 𝐴𝐴 E3SM×8(E3SM72) ensemble standard deviation is smaller than 0.05 (Figure 7d), that 
for 𝐴𝐴 ERA5-SSF(E3SM72) is greater than 0.1. Comparing the spatial patterns in Figures 8c and 8d, the greatest 

Figure 8.  Same as Figure 7 but for E3SM72 and ERA5-SSF.
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increases in the RMS of NN ensemble standard deviations from 𝐴𝐴 ERA5-SSF(ERA5-SSF) to 𝐴𝐴 ERA5-SSF(E3SM72) 
occur over the tropical oceans far away from continents, different from the case for E3SM𝐴𝐴 × 8 and E3SM72. 
Only 13.8% of the 𝐴𝐴 ERA5-SSF(E3SM72) ensemble standard deviations are smaller than 0.0192, the 𝐴𝐴 90th per-
centile of the 𝐴𝐴 ERA5-SSF(ERA5-SSF) ensemble standard deviations. The very limited overlap between the 
MF subspace occupied by 𝐴𝐴 E3SM72 and 𝐴𝐴 ERA5-SSF is also reflected in the spatial pattern of the fraction of 

𝐴𝐴 E3SM72,∩ERA5-SSF (Figure 9c) and that of 𝐴𝐴 ERA5-SSF,∩E3SM72 (Figure 9d).

The results for ERA5-SSF and E3SM𝐴𝐴 × 8 are comparable to those for ERA5-SSF and E3SM72. We highlight 
the differences between the fractions of 𝐴𝐴 E3SM×8,∩ERA5-SSF and 𝐴𝐴 E3SM72,∩ERA5-SSF (Figure 9e) and the differ-
ences between the fractions of 𝐴𝐴 ERA5-SSF,∩E3SM×8 and 𝐴𝐴 ERA5-SSF,∩E3SM72 (Figure 9f). It is clear that the overlap 
between 𝐴𝐴 ERA5-SSF and 𝐴𝐴 E3SM×8 is greater than that between 𝐴𝐴 ERA5-SSF and 𝐴𝐴 E3SM72 for both the North and 
the Southeast Pacific. The largest increase occurs in the region centered around 𝐴𝐴 13◦ S, 𝐴𝐴 87◦ W, where the frac-
tion of 𝐴𝐴 ERA5-SSF,∩E3SM×8 can be more than 30% larger than the fraction of 𝐴𝐴 ERA5-SSF,∩E3SM72 . The differences 
in patterns in Figures 9e and 9f are expected since the distributions of MFs from each pair of data sets (e.g., 

𝐴𝐴 ERA5-SSF and 𝐴𝐴 E3SM72 ) are different in their shared MF subspace.

3.3.  Decomposition of LCF Differences

In this subsection, we decompose the differences in LCF between the three data sets into those associated 
with different MFs and with different LCF-MF relationships.

We calculate the mean patterns of 𝐴𝐴 𝐴𝐴E3SM×8,∩E3SM72 and 𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 and the difference between them, and 
then repeat the calculation for �E3SM×8,∩E3SM72 and �E3SM72,∩E3SM×8 . Qualitatively, the pattern of the difference 
between 𝐴𝐴 𝐴𝐴E3SM×8,∩E3SM72 and 𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 (Figure 10a) correlates well with the difference between 𝐴𝐴 𝐴𝐴E3SM×8 
and 𝐴𝐴 𝐴𝐴E3SM72 (Figure 2f), with E3SM𝐴𝐴 × 8 having greater LCF to the north of 𝐴𝐴 20◦ N and near the Peruvian stra-
tocumulus deck. However, the magnitude of the difference between 𝐴𝐴 𝐴𝐴E3SM×8,∩E3SM72 and 𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 is 
smaller than that in Figure 2f. Also, there is a clear offset between the areas with most positive differences 
in Figure 10a and in Figure 2f, with the former residing to the north and east of 𝐴𝐴 20◦ S, 𝐴𝐴 90◦ W and the latter 
centered around that point. The pattern of the difference between �E3SM×8,∩E3SM72 and �E3SM72,∩E3SM×8 also 

Figure 9.  (a–d) Fractions of meteorological factors (MFs) in shared MF subspaces; (e) difference between fractions of 
𝐴𝐴 E3SM×8,∩ERA5-SSF and 𝐴𝐴 E3SM72,∩ERA5-SSF ; (f) difference between fractions of 𝐴𝐴 ERA5-SSF,∩E3SM×8 and 𝐴𝐴 ERA5-SSF,∩E3SM72 .
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shows positive differences in the North and Southeast Pacific (Figure 10b) with magnitudes greater than 
those in Figure 10a and the greatest values to the south of 𝐴𝐴 20◦ S.

Note that the sum of the differences shown in Figures 10a and 10b is not equal to the differences in Fig-
ure 2f. Also, although 𝐴𝐴 𝐴𝐴E3SM×8,∩E3SM72 and 𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 are based on MFs in the shared MF subspace, one is 
associated with 𝐴𝐴 E3SM×8,∩E3SM72 and the other one with 𝐴𝐴 E3SM72,∩E3SM×8 , the joint distribution of which with-
in the shared MF subspace could be different from that of 𝐴𝐴 E3SM×8,∩E3SM72 . To remove these two factors from 
the comparison, we first take an intermediate step to examine the difference between the mean patterns 
of 𝐴𝐴 E3SM×8(E3SM72,∩E3SM×8) ensemble mean and 𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 . Shown in Figure 10c, these relatively small 
LCF differences with values between 𝐴𝐴 − 0.05 and 0.10 at most locations are entirely due to the difference in 
the LCF-MF relationship between E3SM𝐴𝐴 × 8 and E3SM72 for 𝐴𝐴 E3SM72,∩E3SM×8 . The magnitude of the differ-
ences in LCF from this source gets slightly smaller after being weighted by the fraction of 𝐴𝐴 E3SM72,∩E3SM×8 
at each location (Figure 10d). The remaining differences between 𝐴𝐴 𝐴𝐴E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 , shown in Figure 10e, 
involve a shift from E3SM72 MFs to E3SM𝐴𝐴 × 8 MFs. We conclude that most of the differences between 𝐴𝐴 𝐴𝐴E3SM×8 
and 𝐴𝐴 𝐴𝐴E3SM72 are associated with different MFs between the two data sets.

We repeat the comparison for E3SM72 and ERA5-SSF (Figure  11). The magnitude of differences be-
tween 𝐴𝐴 𝐴𝐴E3SM72,∩ERA5-SSF and 𝐴𝐴 𝐴𝐴ERA5-SSF,∩E3SM72 (Figures 11a) is much greater than that for 𝐴𝐴 𝐴𝐴E3SM×8,∩E3SM72 and 

𝐴𝐴 𝐴𝐴E3SM72,∩E3SM×8 (Figure 10a) but smaller than that between �E3SM72,∩ERA5-SSF and �ERA5-SSF,∩E3SM72 (Figures 11b). 
The differences between 𝐴𝐴 𝐴𝐴E3SM72,∩ERA5-SSF and 𝐴𝐴 𝐴𝐴ERA5-SSF,∩E3SM72 at some locations may not be representa-
tive because of low fractions of MFs in the shared MF subspace. In the North Pacific, only a few loca-
tions very close to the North American coast see relatively high fractions of both 𝐴𝐴 E3SM72,∩ERA5-SSF and 

𝐴𝐴 ERA5-SSF,∩E3SM72 . The fraction of 𝐴𝐴 ERA5-SSF,∩ERA5-SSF quickly drops to less than 20% (38 data points), 10% 
(19 data points), and even 5% (10 data points) as one moves toward the south and the west. Similarly, the 
relatively large negative differences in the South Pacific are based on a few data points from ERA5-SSF. Still, 
the mean differences between 𝐴𝐴 𝐴𝐴E3SM72,∩ERA5-SSF and 𝐴𝐴 ERA5-SSF(E3SM72,∩ERA5-SSF) ensemble mean can easily 
reach below −0.15 around the Californian stratocumulus deck and −0.30 in the Southeast Pacific. It is not 
surprising that the magnitude of the differences between 𝐴𝐴 𝐴𝐴E3SM72,∩ERA5-SSF and 𝐴𝐴 ERA5-SSF(E3SM72,∩ERA5-SSF) in 
Figures 11d is small, since the results are weighted by the small fraction of 𝐴𝐴 E3SM72,∩ERA5-SSF . Consequently, 

Figure 10.  Spatial patterns of difference between mean 𝐴𝐴 𝐴𝐴E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 associated with meteorological factors (MFs) in (a) shared and (b) uniquely 
occupied MF subspaces; spatial patterns of difference between 𝐴𝐴 E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 for 𝐴𝐴 E3SM72,∩E3SM×8 (c) before and (d) after being weighted by the fraction of 

𝐴𝐴 E3SM72,∩E3SM×8 ; (e) spatial pattern of remaining difference between 𝐴𝐴 𝐴𝐴E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 .
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the remaining differences that are associated with a shift from ERA5 MFs to E3SM72 MFs (Figures 11e) 
dominate the total differences between 𝐴𝐴 𝐴𝐴E3SM72 and 𝐴𝐴 𝐴𝐴ERA5-SSF (Figure 2d).

The results for E3SM𝐴𝐴 × 8 and ERA5-SSF are again comparable to those for E3SM72 and ERA5-SSF and 
omitted here.

4.  Discussion
4.1.  Implications of LCF Decomposition Results

Regarding the model intercomparison between E3SM72 and E3SM𝐴𝐴 × 8, we discover that the environments 
for marine low clouds in E3SM72 and E3SM𝐴𝐴 × 8 (characterized by the selected 8 MFs) differ around both 
the Californian and Peruvian stratocumulus decks, and most of the difference between 𝐴𝐴 𝐴𝐴E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 
is associated with a shift in MFs, detected by NN ensemble standard deviations. Our results suggest that 
there are twofold impacts of using 8-times vertical resolution via FIVE in the lower troposphere for certain 
processes (i.e., three physical parameterizations and the vertical advection by the resolved flow). On the 
one hand, E3SM𝐴𝐴 × 8 directly produces greater LCFs than E3SM72 given the same MFs in the shared MF sub-
space. On the other hand, E3SM𝐴𝐴 × 8 shifts the low cloud environments toward meteorological regimes, char-
acterized by the MFs, that support higher LCF. The latter indirect impact has to be caused by the processes 
computed on the high vertical resolution feeding back to the standard resolution aspect of E3SM-FIVE. In 
our results, this indirect impact dominates the difference between 𝐴𝐴 𝐴𝐴E3SM×8 and 𝐴𝐴 𝐴𝐴E3SM72 . However, the shift 
in MFs is confined to limited regions, suggesting a weak coupling between the stratocumulus and cumulus 
regimes and the boundary layer over other oceanic areas in our region of interest in E3SM's atmospheric 
component.

Regarding the evaluation of E3SM72 and E3SM𝐴𝐴 × 8 against ERA5-SSF, we find large discrepancies in the 
LCF-MF relationship between the E3SM-based data sets and ERA5-SSF. In this sense, our results agree with 
previous studies that physical parameterizations are responsible for errors in E3SM-produced LCFs. Recall 
that the primary reason to compute the vertical advection by the resolved flow at the high vertical resolution 
is to balance the parameterized entrainment due to turbulence; we consider this component as part of the 
physical parameterizations that are different between E3SM𝐴𝐴 × 8 and E3SM72. However, we show that the dif-
ferences in the MFs are still large enough to dominate the differences between E3SM-based LCFs and SSF 

Figure 11.  Same as Figure 10 but for comparison between ERA5-SSF and E3SM72.
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LCFs. What we are unable to conclude from the current study is whether (and how much) a set of “perfect” 
parameterizations for the processes parameterized by CLUBB, MG2, and RRTMG alone is sufficient to shift 
the MFs in E3SM toward more realistic meteorological regimes.

In the following subsections, we discuss a few issues that relate to our methods and may affect the robust-
ness of our results.

4.2.  Considerations Behind the MF Pool

We have taken a brute-force approach to pick the best-performing features for each data set. Once we make 
the decision to settle on 8-MF subsets, this feature selection method guarantees delivery of a global opti-
mum MF subset given the MF candidates, albeit at a relatively high computational cost. While training NNs 
on 16,383 MF subsets and a couple of hundred ensemble members for selected MF subsets is manageable, 
the task quickly becomes unattainable as the MF pool expands. Nevertheless, we test 8-MF subsets for a few 
slightly perturbed MF pools. We find that replacing 𝐴𝐴 𝐴𝐴500 with 𝐴𝐴 𝐴𝐴700 decreases the performance of 𝐴𝐴 ERA5-SSF ; 
like 𝐴𝐴 𝐴𝐴500 , 𝐴𝐴 𝐴𝐴700 does not make it into the best-performing subsets for E3SM72 and E3SM𝐴𝐴 × 8.

One limitation of our NN approach is that it captures the correlation between MFs and LCF but does not 
reveal the causation. So, highly correlated MFs will be interchangeable. We do not test surface temper-
ature advection due to its correlation with surface sensible heat flux, nor SST due to its correlation with 

𝐴𝐴 𝐴𝐴1000 . Weaver and Ramanathan (1997) suggested that the monthly 𝐴𝐴 𝐴𝐴500 variance is a good predictor of the 
cloud radiative forcing (CRF) over the Northern Hemisphere extratropical oceans. Despite the correlation 
between CRF and LCF, we do not find any advantage in using 𝐴𝐴 𝐴𝐴500 variance as a feature, probably because 
other MFs we examine contain sufficient information to predict the LCF over extratropical oceans.

A related issue is the need to avoid MFs that are too closely related to, or even equivalent to the LCF. We 
argue that it is inevitable to include MFs related to the humidity in the lower troposphere, simply because 
moisture is an essential component of cloud formation. We examine the joint distributions between the LCF 
and a few humidity related MFs (i.e., 𝐴𝐴 RH1000 , 𝐴𝐴 RH925 , 𝐴𝐴 RH850 , and PWV) in the form of two-dimensional histo-
grams. The patterns can be very different for the same MF across three data sets. While these different joint 
distributions themselves can be used to diagnose model defects (Bennhold & Sherwood, 2008), for our work 
we believe that the success of our NNs does not rest on trivially simple relationships between humidity-re-
lated MFs and the LCF. Another MF we examine is the solar insolation at the top-of-atmosphere (SOLIN). 

Figure 12.  Same as Figure 6 but for a single neural network with the baseline architecture and trained on two meteorological factors: 𝐴𝐴 𝐴𝐴700 and 𝐴𝐴 𝐴𝐴1000 .



Journal of Advances in Modeling Earth Systems

CHEN ET AL.

10.1029/2021MS002625

15 of 19

𝐴𝐴 ERA5-SSF performs better when SOLIN is included as a feature. However, we drop SOLIN so that we are not 
mapping a strong indicator of the seasonality to the LCF, which itself experiences seasonal changes.

4.3.  Comparison With LTS, EIS, ECTEI, and ELF

In this work, we have selected the best-performing MF subsets from basic MFs. It is natural to ask (a) how the 
8-MF subsets we select compare with compound MFs that have been shown to correlate well with the LCFs, 
for example, LTS, EIS, ECTEI, and ELF and (b) whether it is beneficial to include these compound MFs in 
the initial MF pool. The first question can be partially answered with Figures 5 and 8 in Park and Shin (2019), 
where the correlation coefficients reported suggest that the linear statistical models that map each of these 
compound MFs to the LCF do not outperform the NN ensembles. However, there are differences between their 
and our data and methods (e.g., spatial and temporal scales). The second question is still a valid one, since it is 
possible that an NN trained on one of these four compound MFs plus only a few extra basic MFs might achieve 
the same performance as an NN trained on more basic MFs, thus reducing the dimensionality of the problem.

To answer these two questions, we trained additional NNs to map three new sets of MFs to the LCFs, for each 
data set, and for each compound MF. MF Set 1 is just the compound MF itself. MF Set 2 is composed of the 
MFs that are used to construct the compound MF. We define LTS as 𝐴𝐴 𝐴𝐴700 − 𝜃𝜃1000 , so the MFs used to construct 
LTS are simply 𝐴𝐴 𝐴𝐴1000 and 𝐴𝐴 𝐴𝐴700 . EIS is estimated from 𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴700 , and 𝐴𝐴 RH1000 , slightly different from Wood and 
Bretherton (2006), where the authors used surface temperature, surface pressure, and a constant RH of 80%. 
ECTEI is calculated from 𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴700 , 𝐴𝐴 RH1000 , and 𝐴𝐴 RH700 , following Kawai et al. (2017), and only involves one 
more MF than EIS. ELF is also estimated from 𝐴𝐴 𝐴𝐴1000 , 𝐴𝐴 𝐴𝐴700 , and 𝐴𝐴 RH1000 , the same MFs that are used to calculate 
EIS, based on the first line in Equation 4 in Park and Shin (2019) and similar simplifications adopted in Wood 
and Bretherton (2006). Including 𝐴𝐴 𝐴𝐴 and RH from more levels should improve the estimation of the inversion 
base height and the surface-based mixing layer top height, the two key components for ELF. Thus, we define 
an MF subset comprising 𝐴𝐴 𝐴𝐴 and RH at 1,000, 925, 850, and 700 mb as the MF Set 2 for ELF to differentiate from 
the MF Set 2 for EIS. MF Set 3 is composed of the compound MF plus the MFs in the selected 8-MF subset 
but not included in MF Set 2. For example, MF Set 3 for ERA5-SSF for ELF contains ELF (the compound MF 
itself) and 𝐴𝐴 𝐴𝐴e , 𝐴𝐴 𝐴𝐴500 , and PWV (because other MFs in the selected 8-MF subset for ERA5-SSF are present in 
MF Set 2 for ERA5-SSF for ELF). Only the NNs with baseline architectures are trained on these new MF sets.

The results of these tests show that none of these alternative MF sets outperforms the selected 8-MF sub-
sets. The NN trained on MF Set 2 for ELF performs well, but this MF set is just one of the 8-MF subsets 
that we examined before and we already know that it is not the top-performer. The performance of the NNs 
trained on MF Set 3 for LTS, EIS, or ECTEI are close to the selected 8-MF subsets. However, these NNs are 
trained on six or seven features, only one or two fewer than the 8-MF subsets. Also, these MF sets do not 
outperform the best-performing 6-MF or 7-MF subsets shown in Figure 3. We conclude that there is no 
obvious advantage in including these compound MFs in our initial MF pool.

4.4.  Other Issues

A key component of our work is to classify MFs into shared and uniquely occupied MF subspaces. This task 
falls into the broader category of problems known as outlier detection or anomaly detection for which many 
techniques have been developed. See a few examples summarized in Géron, 2019, Chapter 9. The task be-
comes more complicated in high-dimensional space (Zimek et al., 2012). We tackle this task by considering 
NN ensemble standard deviations. Although this method has not been reported in the scientific literature, 
the philosophy behind it is sound: if a new data point falls in the area where we are not able to sufficiently 
constrain the NN ensemble members, it probably does not belong to the data used to train the NN ensem-
ble. Regardless, one can imagine that some data points may be ambiguous enough to cause uncertainty in 
the classification results. While we use the toy problem (in Appendix A) to demonstrate the validity of this 
method, more rigorous studies are warranted to provide a more solid foundation.

We comment on two aspects of NN ensemble standard deviation. First, the NN ensemble standard deviation 
when the NN ensemble is applied to its training data represents the intrinsic variability of NN ensemble 
member performance. This variability exists because there is no guarantee that the optimizer (ADAM in 
our case) that searches for the optimal NN parameters can find the global optimum, and consequently, the 
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performance of each NN ensemble member is a random variable. Second, although we observe in the toy 
problem that the NN ensemble standard deviation is larger when the NN ensemble is applied to inputs out-
side of the range of its training data, it is possible that for some of these inputs, the NN ensemble standard 
deviation can accidentally be small, no matter whether the NN ensemble means prediction is close to the 
truth. These inputs will be classified as sharing the range with the training data. Following this logic, the 
fraction of MFs in the shared MF subspace reported in this work may be overestimated, but this does not 
affect our conclusion that the differences in MFs have a significant contribution to the differences in LCF.

We perform sensitivity tests regarding a few elements in our method. First, there are many methods for 
generating NN ensembles (see Section 7.11 in Goodfellow et al., 2016) and we test one alternative method to 
generate NN ensembles by simply training the NNs with the baseline architecture on selected 8-MF subsets 
341 times for each data set. The random initialization of parameters leads to one unique NN each time. The 
distributions of the performances of NN ensemble members generated this way are narrower than those 
shown in Figure 5 but this does not change our conclusions. Second, we test two alternative values of the 
threshold used to classify the MFs (85% and 95%) and get similar results to those shown thus far (based on 
a threshold of 90%). Third, increasing the number of features will improve the performance of the NNs but 
may result in reduced fractions of MFs in shared MF subspaces. We repeat the analysis with NN ensem-
bles (containing 226 NN ensemble members identified following the method in Section 2.3) trained on all 
14 MFs. Still, the results are similar to what we find with selected 8-MF subsets.

We are essentially interpreting 𝐴𝐴 A that produce relatively small 𝐴𝐴 B(A) ensemble standard deviation, 
compared with 𝐴𝐴 B(B) ensemble standard deviations, as sharing an MF subspace with 𝐴𝐴 B , where A is 
one of ERA5-SSF, E3SM72, and E3SM𝐴𝐴 × 8 and B is one of the remaining two. A fundamental question is 
whether this interpretation is reasonable. For example, we show in Figure 9a the spatial distribution of 
the frequency of occurence of 𝐴𝐴 E3SM72 that produce 𝐴𝐴 E3SM×8(E3SM72) smaller than the 𝐴𝐴 90th percentile of 

𝐴𝐴 E3SM×8(E3SM×8) . While we interpret it as the spatial distribution of the fraction of 𝐴𝐴 E3SM72,∩E3SM×8 , one 
can also interpret the same figure as the spatial distribution of the frequency of occurrence of 𝐴𝐴 E3SM72 
that produce 𝐴𝐴 E3SM×8(E3SM72) smaller than the 𝐴𝐴 80th percentile of 𝐴𝐴 E3SM×8(E3SM72) , since the fraction of 

𝐴𝐴 E3SM72,∩E3SM×8 is about 80%. We plot the spatial distribution of the frequency of occurrence of 𝐴𝐴 E3SM72 
that produce 𝐴𝐴 E3SM72(E3SM72) smaller than the 𝐴𝐴 80th percentile of 𝐴𝐴 E3SM72(E3SM72) and the frequency of 
occurrence of 𝐴𝐴 E3SM×8 that produce 𝐴𝐴 E3SM×8(E3SM×8) smaller than the 𝐴𝐴 80th percentile of 𝐴𝐴 E3SM×8(E3SM×8) . 
These spatial distributions are significantly different from the patterns shown in Figure 9a, more so for the 
Southeast Pacific, confirming that we have been detecting anomalies, instead of identifying regions where 
the NN ensemble members naturally show larger standard deviations.

Last but not least, besides the different definitions of LCFs that we have discussed earlier, the definitions of 
MFs may not be the same between E3SM-based data sets and ERA5. For example, the model used to pro-
duce ERA5 runs with a 137-level vertical grid, different from E3SM's vertical grid, and different interpola-
tion methods are used to interpolate variables from the two models' native vertical grids to selected pressure 
levels. For now, we simply assume that for a given variable, whatever is available from each data set is the 
best estimate of this variable for this data set.

5.  Summary
Recent work has shown that FIVE improves the representation of shallow clouds in E3SM by computing 
selected physical parameterizations and the vertical advection by the resolved flow on high resolution ver-
tical grids. In this study, we compare the results from an E3SM simulation on its default 72-layer vertical 
grid (E3SM72) with those from an E3SM-FIVE simulation using 8-times vertical resolution for the lower 
troposphere (E3SM𝐴𝐴 × 8) and evaluate these two simulations with ERA5 reanalysis and CERES SSF products 
(ERA5-SSF). Specifically, the goal is to understand the contributions of the MFs and the relationship be-
tween the LCF and the MFs to the improvement of LCFs from E3SM72 to E3SM𝐴𝐴 × 8, and the discrepancy 
between E3SM-produced LCFs and SSF LCFs.

The critical tool used is the NN ensemble. An NN ensemble is trained for each data set to not only capture 
the LCF-MF relationship but also to serve as proxy models to (a) predict LCFs for MFs from all data sets and 
(b) to classify MFs into those in shared and uniquely occupied MF subspaces. The idea is that the standard 
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deviations among NN ensemble members when the NN ensemble trained on one data set is applied to the 
MFs from the same data set can be used as a reference to check the NN ensemble standard deviations when 
the NN ensemble is applied to MFs from another data set. MFs producing large NN ensemble standard devia-
tions relative to the reference are more likely to fall outside the MF subspace that is occupied by MFs from the 
original data set. We apply this method to data over the oceanic region between 𝐴𝐴 40◦ S, 𝐴𝐴 40◦ N, 𝐴𝐴 70◦ W, and 𝐴𝐴 167◦ W.

Overall, E3SM72 and E3SM𝐴𝐴 × 8 have large fractions of MFs in shared MF subspace, but less so near the Cal-
ifornian and Peruvian stratocumulus decks. Both E3SM72 and E3SM𝐴𝐴 × 8 have small fractions of MFs in MF 
subspace shared with ERA5, but the fractions shared between E3SM𝐴𝐴 × 8 and ERA5 MFs are larger than those 
between E3SM72 and ERA5 MFs, especially in the Southeast Pacific. Using 8-times vertical resolution via 
FIVE in the lower troposphere for certain processes directly produces greater LCFs given the same (shared) 
MFs; it also shifts the low cloud environments toward meteorological regimes that support higher LCF. The 
latter impact dominates the difference in LCF between E3SM𝐴𝐴 × 8 and E3SM72. However, this impact is con-
fined to limited regions, suggesting a weak coupling between the stratocumulus and cumulus regimes and 
the boundary layer over other oceanic areas in our region of interest in E3SM's atmospheric component. 
Both E3SM72 and E3SM𝐴𝐴 × 8 produce lower LCF than SSF given the same MFs in the very limited shared MF 
subspaces. However, it is the differences in the MFs between the E3SM-based data sets and ERA5-SSF that 
dominate the difference in LCF between them. Further improvement in E3SM-produced LCFs will require 
the improvement of physical parameterizations to narrow the gap between the LCF-MF relationships in 
the E3SM and ERA5 worlds. In addition, model development to bring E3SM-produced MFs closer to the 
observed MFs should be a key focus of effort.

Appendix A:  Toy Problem Demonstrating the Behavior of NN Ensembles
We train an NN ensemble to fit a sinusoidal function 𝐴𝐴 𝐴𝐴 = sin(𝑋𝑋) . The inputs for the training data set are 
randomly drawn between −� and 𝐴𝐴 𝐴𝐴 . The NN ensemble consists 24 members, which all have the same archi-
tecture (two hidden layers with 10 hidden nodes in each layer) and are generated by randomly initializing 
weights and biases. Then the NN ensemble is used to make prediction for inputs from −3� to 𝐴𝐴 3𝜋𝜋 . As shown 

Figure A1.  (a) Truth (𝐴𝐴 𝐴𝐴 = sin(𝑋𝑋) between −� and 𝐴𝐴 𝐴𝐴 , black solid line) and the predictions by 24 neural network (NN) 
ensemble members for inputs from −3� to 𝐴𝐴 3𝜋𝜋 (other lines with various colors and line types). (b) Standard deviation 
among NN ensemble members.
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in Figure A1a, predictions from all NN ensemble members agree reasonably well with the truth for inputs 
between −� and 𝐴𝐴 𝐴𝐴 , where the NN ensemble is constrained by the training data, but diverge for inputs out-
side of this range. Consistent with this behavior, the standard deviation among NN ensemble members 
increases outside of 𝐴𝐴 (−𝜋𝜋𝜋 𝜋𝜋) (Figure A1b).

Data Availability Statement
The data used for this research, including processed ERA5 MFs and SSF LCFs, are available at https://
csl.noaa.gov/groups/csl9/datasets/data/cloud_phys/2021-Chen-etal/. The original ERA5 reanalysis data 
are available at the Copernicus Climate Change Service Climate Data Store (https://doi.org/10.24381/cds.
bd0915c6 and https://doi.org/10.24381/cds.adbb2d47). The original CERES SSF1deg products are available 
at CERES Data Products (https://ceres.larc.nasa.gov/data/#ssf1deg-level-3).
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