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Abstract 
 
Information retrieval has traditionally been concerned with extracting isolated facts from large 
knowledge bases.  There are times, however, when users have a different goal – they seek to understand 
the structure of the data as a whole, so that they have a conceptual framework into which individual 
facts can later be assimilated.  Today’s search tools do not explicitly support this.  They typically 
provide only a query-response mechanism for obtaining isolated facts, one at a time.  Users are forced 
to form a mental model on their own, inferring the broader structure from these disconnected details.  
Tools specifically designed to help users organize large information spaces are proposed.  Such tools 
will raise the level of abstraction, so that the categories of mental perception can be stated, examined, 
and reasoned about in their own right.  The user’s subjectivity will be honored; different people often 
have different views of the same data, and they want to organize it according to their own individual 
perceptions.  The need for such tools, and the properties designers should strive for, are discussed.  A 
prototype that demonstrates the validity of this kind of tool is presented. 
 
 
I. Introduction 

 

Traditionally, interfaces to large databases have been steeped in the query-response model.  Whether 
formulating SQL queries or performing Google searches, the user’s procedure is the same: issue a request for 
some specific piece of information, and receive a specific result.  The hope is that with enough iterative 
refinements, the user can successfully extract the particular bit of knowledge they were looking for.  Tremendous 
effort has gone into improving the mechanism by which users can ask such questions, and finding ways to deliver 
more relevant results. 

But consider the query-response paradigm for a moment.  It’s really best for the person who confronts an 
overwhelming amount of data that they could never possibly fully digest.  The idea is to allow this user to 
relatively painlessly extract some piece of helpful information, so that they can get back to their task (and away 
from the database!) as quickly as possible.  It is taken for granted that the vast majority of the available 
information is irrelevant, and the goal is to filter it on the user’s behalf.  This is why nearly every query boils 
down to, “find me some small fraction of the data that matches this, and please don’t bother me with anything 
else.”  It is also why a stateless interface is so common – and appropriate – for such tools.  Each nugget mined is 
an isolated piece of information, presumably unrelated to other things that may be asked for later. 
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In many cases, this pattern of interaction is perfectly sufficient.  To use the Web as an example, there are 
times when we simply want to find a single e-mail address, a download site, a publication, or the score of a 
baseball game.  We’re not attempting to form any grand theories about the available information as a whole.  A 
stateless interface is perfect, since it allows us to pose standalone queries and get individual answers quickly. 

But there are times when we users have a completely different goal in mind, and we end up using a search 
engine like Google to accomplish it indirectly.  Sometimes we want to really understand some part of the 
information space in its entirety – what kind of information is out there on a given topic, what may be missing, 
and how it is all related.  And so we form a mental model that helps us generalize and give structure to the myriad 
of individual facts.  This allows us to draw broader conclusions about what the data is telling us as a whole, and 
gives us a framework in which to assimilate new facts as they arrive. 

Perhaps we’re interested in buying a new disk drive, but we don’t really know much about disk drives – what 
different kinds there are, how many vendors offer each kind, what the relative prices are.  Or maybe we want to 
get the “feel” for the literature in a certain research area: who the principal researchers are in that field, who 
works with whom and who’s studying what, how the topic is partitioned into different specialties, etc.  In these 
situations we’re seeking much more than definitive answers to a few isolated questions.  Instead, we’re building 
up a conceptual model as we go – gathering information, relating it to what else we know, making judgments 
about how it is interrelated, and gradually forming a complete mental picture of how the information is 
assembled as a whole. 

Google, of course, has no idea that we’re trying to do this.  It sees no relationship between our various 
queries, and has no concept of what we’re really trying to find out.  Each query is a standalone event that 
provides some piece of information detached from everything else, and it is up to us to assemble these bits 
ourselves into a meaningful mental framework.  The search engine is rather like a consultant who is supremely 
brilliant and utterly dull at the same time: he knows all the answers to every individual question we might ask, 
but throughout the interview it never dawns on him what we’re really driving at.  He coughs up detail after detail, 
but sees no relationship between them and can help us see none. 
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Figure 1. Two different approaches in database interfaces.  In the top picture, each database interaction is an isolated 
question and answer, resulting in a single isolated fact.  The user is forced to infer the broader structure of the information 
space by manually assembling these facts into a mental framework.  In the bottom picture, the interface accommodates a 
higher level of abstraction, modeling the user’s mental constructs explicitly and allowing questions to be asked directly 
about them.  The structure that the navigation experience reveals, then, is not only in the user’s head; it is also embodied 
in the tool.   
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There are many situations in which a user has a vested interest not in merely extracting facts from an 
information space, but in forming a broad and thorough understanding of it.  Indeed, this kind of understanding is 
what gives experts the background to render individual detailed decisions anyway.  A prospective homeowner 
goes to a realtor in part because he believes the end result will be a particular property that is well-suited to him.  
But what gives the realtor the ability to recommend such a house is that she is able to draw on a deep 
understanding of what kinds of properties are available in the area, which ones might be best suited to her client, 
what issues are involved that he may not have considered, and so on.  The final recommendation is a fact, a 
detail.  But the realtor is in the business of building expertise and intuition about the market as a whole, so that 
she can provide many such recommendations.  And it is hardly ideal to try and build such a comprehensive 
understanding by selecting straws from a haystack one at a time. 

In short, the typical information retrieval application does not offer us any explicit way to track or organize 
or predict or evaluate the emerging conceptual structure that we build as we roam.  But it could.  We could 
broaden the channel, so to speak, between the user and the information (see Figure 1), so that the higher-level 
abstractions people typically think in terms of – categories, trends, relationships – are explicitly modeled and can 
be manipulated.  The result of browsing, then, is not simply a transient succession of items that have been 
viewed, forever lost outside the user’s own head.  It is rather a tangible artifact, a record of what has been learned 
and how it can be generalized to other information not yet seen.   

 

II. Categories for Organization 
 

We propose to design tools specifically to help a user organize and categorize an information space.  People 
will naturally form mental models of domains they explore.  But rather than abandoning the user to carry out that 
process herself, providing her with only a sequence of facts, we aim to incorporate her mental constructs 
explicitly into the user interface experience.  We want to broaden the communication channel between user and 
database, so that the categories of mental perception can be stated, examined, and reasoned about in their own 
right.  In this way, the level of abstraction is raised to the user’s more natural cognitive model, and the tool 
directly assists her in accomplishing her real goal. 

In concrete terms, a first step towards implementing this is to add the notion of categories to the user’s 
browsing toolkit.  As people traverse a large information space (such as the Web, or a large digital library) they 
form semantic judgments and naturally group together pages they view as similar.  Perhaps without realizing it, 
they are categorizing or clustering what they encounter, in order to reduce complexity and impose their own 
rational order on what is otherwise an overwhelming amount of information [Peters 2001]. 

One way to represent “the user’s mental model,” then, is simply as the set of categories that the user has 
identified.  Each category consists of a number of instances (e.g., Web pages) that the user has explicitly 
associated with it.  (These categories may be overlapping, since a given instance may belong to multiple 
categories.)  A category is something much more than just a group of specific instances, however.  It is an 
abstract, mental concept that the user has in mind, of which the labeled instances are merely examples.  The 
concept endures outside the context of the specific instances.  It is a semantic entity, representing some real-
world phenomenon that the user believes is important enough to use in imposing structure on the entire 
information space. 

Electronic tools, of course, have no access to the real-world semantic concept.  They can only see the 
instances that the user has denoted as representative.  But if those instances can be represented by some sort of 
structured feature set, the system ought to be able to use standard data mining techniques to reason about the 
underlying definition of the category. 

This is the heart of our information space organization approach.  Humans excel at rendering intuitive 
judgments about real-world entities.  Data mining excels at examining large numbers of instances that have been 
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so judged, and discovering statistical generalizations about them.  By designing an exploration tool that enables 
both of these to take place, we provide powerful leverage to systematize a large set of data.  Users can browse a 
small part of the space, recognizing categories and grouping related instances together.  The system, then, can 
introspect and guess at a “definition” for each category in terms of the underlying features of its instances.  This 
category definition, perhaps after some editing, can then be used to organize and answer questions about the 
larger information space that is far too time-consuming for the user to explore in detail manually. 

A. An example scenario 
Imagine a professional caterer who has his entire recipe base available in an online database system, perhaps 

an intranet of Web pages that can be browsed.  This information space is absolutely vital to his business, since it 
allows him to appropriately plan events, satisfy his clientele, and minimize costs.  Different types of meals are 
appropriate for different venues, and have different cost profiles based on the number served.  This caterer often 
serves conventions or other multi-day events, and requires sequences of meals that offer variety and balance of 
tastes, while at the same time meeting competitive budgets. 

Each web page contains a description of a single recipe, including its ingredients, preparation time, portion 
sizes, cost, equipment required for preparation and serving, and so on.  Whether this information is expressed in 
free text or in a structured format, it can be mined to produce a set of features that represent that recipe.  These 
features are the material that data mining algorithms will operate on to assist the caterer in organizing his 
information space. 

This professional brings considerable intuitive insight to his task.  He may have hundreds or even thousands 
of possible entrees to select from, but of course his mental conception of them is not merely an unorganized 
miscellany.  He knows that there are certain types of recipes appropriate to certain circumstances, from which he 
can mix and match.  For an elegant winter wedding reception, he immediately thinks of Beef Wellington or Steak 
au Poivre; but with an all-day conference involving three full meals on a constrained budget, he would suggest 
Prosciutto Sandwiches or Pineapple Chicken Wraps for a light outdoor lunch offering. 

An information space organization tool allows him to express his intuition about these categories more 
formally, and brings an inductive reasoning system to bear on the problem.  For example, he could group several 
recipes together in a category called “light lunch fare,” and then ask the system for a preliminary definition of 
that category.  Data mining algorithms would examine the features of the selected instances, contrasting them 
with the values in the recipe pool as a whole.  The system would then display the statistically significant 
commonalities.  In effect, the system is reporting, “based on the fact that you included these seven examples in 
your category, here’s my best guess as to what you mean by ‘light lunch fare.’” 

The caterer may discover, for example, that the recipes he has classified under “light lunch fare” tend to have 
short preparation times, mayonnaise as an ingredient, and under four hundred calories per serving.  This 
information may be helpful in its own right, motivating the caterer to recognize and reflect on his own tendencies 
and biases.  But it also allows him to raise higher-level questions about the category as a whole, as follows. 

He would first edit the system’s preliminary definition, refining its criteria and removing obviously spurious 
attributes.  Then, once he is satisfied, he could ask the system questions like: 

• “What are some ‘light lunch fare’ recipes that are vegetarian?”  This returns a list of instances that fit these 
criteria. 

• “What percentage of my entire recipe base could be classified as ‘light lunch fare?’”  The system may 
respond that 17% of his entrees match this general pattern. 

• “How do ‘light lunch fare’ recipes compare with others in cost?”  He may learn that recipes that fit this 
category tend to be nearly a dollar less per serving than the average recipe.   

• “Which ‘light lunch fare’ recipes haven’t been served in the last year?”  Assuming archival information is 
available, he will obtain a list of alternate dishes that he may have forgotten about, but which might be worth 
rotating back in to his repertoire. 
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Eventually, as the caterer continues to use the tool to explore his information space, he will forge a set of 
important categories that help him get a handle on it.  He may create categories of recipes for “multi-course 
formal dinners,” “sit-down lunch parties,” and “large outdoor gatherings,” populating each one with 
representative instances.  He can then view his entire library at a higher level of abstraction, reasoning in terms of 
categories rather than individual instances.  The mental model that he needs to survive is no longer manually 
cobbled together as a result of a sequence of queries, but is rather tracked by the tool itself, which assists him in 
creating, defining, and extrapolating from categories.  And since this intuition and expertise is no longer isolated 
in his mind, it can be shared with other users who can learn from and perhaps modify these categories to suit their 
own purposes. 

B. Properties of effective tools 
We have identified a number of desirable properties for information space organization tools.  Specifically, 

we believe that they should be abstract, subjective, proactive, persistent, and augmentative. 

• Abstract.  The goal is to identify patterns and global structure in the data; hence, tools must allow the user to 
raise the level of abstraction above that of individual instances.  Humans should be able to use the intangible 
concepts in their minds as first-class constructs in the interface.  This means that in addition to reasoning 
about concrete notions such as “entrees with preparation time of under twenty minutes,” they must also be 
able to reason about abstract notions like “entrees appropriate for intimate dinner gatherings.” 

• Subjective.  In any non-trivial information space, there are alternate ways of organizing data, each based on 
an individual’s perception, and each of them equally “correct.”  When visualizing items in a grocery store, 
some may associate the cereal with the granola bars (based on food content), and others may group it with the 
coffee (based on meal type.)  Neither of these organizations is more valid than the other.  They both identify 
significant patterns in the data that may be of value.  Indeed, some might want to make use of both groupings, 
depending on the context and the task at hand.  We contend that the user must be free to organize the 
information space in any way she sees fit, based on the intuitive conceptions, priorities, goals, and biases she 
brings to the problem. 

This is very different than traditional clustering methods.  Many attempts have been made to 
automatically categorize a large group of documents or data records, based solely on their objective features.  
These approaches do add value by bootstrapping some semblance of structure into an otherwise impenetrable 
morass.  But they give little opportunity for an information seeker to express her own understanding of how 
the data should be organized.  Hence any clusters that are revealed are hardwired to whatever semantics the 
authors of the data had the foresight to add. 

We would argue that there is really no such thing as “the” semantics of a set of data.  Data is just data.  
Semantics only emerge as a user introduces her own subjective evaluation to it.  The system’s job, then, is to 
learn from what the human identifies as semantically related, and to dynamically adjust to this in order to 
help the human recognize the particular patterns that are important to her. 

• Proactive.  The user is ultimately in charge of the browsing experience, but an information space 
organization tool can and should suggest what to look at next.  The system can quickly scan large quantities 
of data in search of items pertinent to the current category.  This helps shape the browsing path towards 
objects of interest, relieving the user of the burden of having to know where to look for relevant information.  
The system can also detect large groups of instances that are quite unlike any category the user has created 
thus far.  It can then direct the user’s attention to this unfamiliar territory at the appropriate time, so that she 
is aware of its existence and can begin to see how it contributes to the total information space structure. 

• Persistent.  The information gained from a user’s interaction with the system should be captured and stored.  
When the user returns, then, it will not be up to her to “dust off the cobwebs” and try to mentally reconstruct 
what she had learned; rather, the system remembers the categories and relationships that were previously 
identified, and can readily produce them.  This nascent structure can also be shared and compared with other 
users. 
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• Augmentative.  As the user browses the data, she endows it with semantics.  In some cases, these semantics 
may be broadly applicable beyond the particular user who identified them, and it may be worthwhile to 
annotate them explicitly in the data.  The system should assist the user in determining when a perceived 
relationship is worth being denoted in the database proper, and provide an easy mechanism for doing so.  As 
more users explore the system, more semantic annotations are added, and the better the system is able to 
identify real-world relationships. 

 
III. “Horse”: A prototype tool for information space organization  
 

To demonstrate these ideas, we developed a prototype system whose core concepts will form the foundation 
of our future work.  The system, called “Horse,” features only a command-line interface since our present goal is 
simply to validate our  basic approach.  But it implements a key part of the framework outlined above, 
proactively guiding the user through an information space organization experience. 

This section has two parts.  First, we will describe the prototype in general terms: the nature of the data it 
operates on, the flow of the user interaction, and the preliminary machine learning algorithms it employs.  It is 
important to realize that all of these aspects are extremely speculative at this stage.  The purpose of our prototype 
is not to prove the superiority of any particular technique, but simply to demonstrate one core aspect of a possible 
information space organization paradigm.  Second, we present our empirical findings from running the system on 
a nontrivial data set: a digital library of popular films. 

A. The prototype 
1. The data 

Horse can operate on any data for which low-level features have been extracted in the form of key-value 
pairs.  The information space must be comprised of individual instances, each of which is described by a set of 
keys and their associated values, with possibly multiple values corresponding to a given key.  A feature is simply 
a key and its value taken together.  To continue the culinary example, the recipe Tuna Salad Sandwich would 
include the features “ingredient=mayonnaise” and “ingredient= tuna,” while Chicken Noodle Soup would not.   

At the heart of the system is the ability to reason about the semantic similarity between various instances.  
Given the fact that the user has grouped several instances together into a category, the system must be able to 
form a judgment about the likelihood that any other particular instance might also be a member of that category.  
To do this, the system makes use of the only information it has: the features of the instances.  In general, the more 
features an instance has in common with those of a category’s members, the more we consider the instance to be 
a likely member of that category.   

2. The interface 
The goal of the system is to help the user transition from chaos to order.  The input is a disarray of instances; 

the end result is a set of user-defined categories that organize and give structure to those instances. 

Since the purpose of the system is to create and refine categories, this is the backdrop against which all user 
interaction takes place.  The user has at his disposal a set of named categories that he has created, and can switch 
between them at any time.  Only one is active at any given time; it is called the “active category.”  This is the 
category that the user is currently working with, and which the system uses to select instances that may be of 
interest.  Seeing a particular instance, however, may cause the user to want to “switch gears” to a different 
category, or create a new one altogether. 

The basic interaction paradigm involves viewing instances and providing feedback.  The system selects an 
instance from the information space (as described below) and displays it to the user.  The user renders a judgment 
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about it: specifically, whether it is or is not a member of the active category.  He expresses this to the system by 
choosing either the “in” or “out” command.2  

For each category, the system maintains two sets of instances: the known examples and the known 
counterexamples.  Every time the user indicates that an instance is a member of the category he has in mind, 
Horse includes it in the set of known examples for that category.  Every time he indicates an instance is not a 
member, Horse includes it in the set of known counterexamples.  Thus as the user browses, the system gathers 
more and more information about what kinds of instances satisfy the user’s semantic criteria, and what kinds do 
not.  After each judgment, the system selects a new instance to display, and the process continues.  Each time the 
user views an instance and then makes a judgment is called an iteration. 

3. The instance selection algorithm 
The choice of which instance to show the user next is not merely random.  It is carefully selected by the 

system based on what is known about the active category so far.  The current algorithm works as follows: first, 
from the instances in the information space that the user has not yet seen, randomly select a small subset (say, 
twenty.)  This is called the quorum.  Then, examine each instance in the quorum and evaluate how likely it is to 
belong to the active category.  Finally, show the user the instance that is most likely to belong. 

The astute reader will recognize that determining the likelihood that an instance belongs to a category is very 
similar to a standard machine learning problem.  At any point in time, we have two sets of instances that the user 
has provided, one labeled “in the category” and one labeled “not in the category.”  This is our training data.  We 
predict category membership for a new instance by simply training a classifier on the labeled instances and using 
it to classify the new instance as either “in” or “out.”  We currently use the familiar Naïve Bayes algorithm to 
achieve this since it is fast and simple. 

Typically, a two-label Naïve Bayes classifier is used to first estimate the probability that an instance should 
be assigned label 1, and then the probability that it should be assigned label 2.  These two probabilities are 
compared, and whichever one is greater determines the classification.  Our situation is somewhat different, since 
our goal is not to actually label an individual instance, but rather to predict which of a quorum of instances is 
most likely to have a particular label (namely, the “in the category” label.)  We accomplish this in a 
straightforward way: for each instance, we subtract the probability that it is a counterexample from the 
probability that it is an example, and arrive at a single score.  Whichever instance in the quorum has the highest 
score is the one we choose to display. 

We make several further simplifying assumptions in implementing Naïve Bayes.  Given an instance with 
features {Fi}, the standard formula assigns the probability that it should be assigned label X as: 
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Since we are seeking the relative likelihoods for each of two labels, rather than strict mathematical 
probabilities, we drop the denominator in this calculation because it is constant.  But for a similar reason we also 
drop the “prior” term P(X).  This is normally estimated from the overall proportions of the labels in a 

                                                                 
2 Other actions are possible during an iteration besides simply giving “in” or “out” feedback on the current instance.  As mentioned above, 

the user may choose to switch categories based on seeing the new example.  (“No, I wouldn’t consider this item ‘light lunch fare,’ but it 
makes me realize that I probably need a different category for ‘outdoor barbeque items,’ so let me start to work on that…”)  The user can 
also request to view and possibly edit the current category definition, as explained below. 
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representative tagged corpus.  It represents the likelihood that any random instance would be a member of the 
category. 3   

There are two reasons we omit this factor.  First, we do not have any reliable information about it.  The only 
instances we know anything about are the ones the user has explicitly labeled, and since we have deliberately 
been steering him towards presumed “in” examples, these are hardly representative.  But beyond this, we actually 
don’t even care about P(X): we are only comparing examples within a quorum, not attempting to label them 
outright.  Regardless of how strict a category’s criteria are overall, we would draw the same conclusion about 
which of a quorum of instances was most likely to belong to it.  Hence, the “score” that we compute for an 
instance with features {Fi} reduces to: 
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The individual factors in these two products are computed in the usual way: as a fraction of the number of 
labeled training instances that have the given feature.4   We also add a constant smoothing factor to eliminate 
zero counts.  The overall instance selection algorithm is captured in Figure 2. 

This technique is experimental, and we plan to adjust it in light of what we learn from our investigations.  
But it is worth noting that the “quorum” approach attempts to mimic what humans ordinarily go through as they 
form categorizations about things in their world.  People excel at forming useful generalizations from only small 
subsets of the available data.  Consider the film domain.  Anyone who has seen a fair number of movies during 
their lifetime inevitably groups them in various ways – they know that there are “violent action movies” and 
“Hitchcockian thrillers” and “silly comedies.”  These are doubtless real-world phenomena, yet the amazing thing 
is that we can identify them by viewing only a small fraction of the total number of movies ever produced.  This 
is the rationale behind our “quorum” approach.  The system achieves scalability in the same way humans do: by 
being satisfied to examine very small samples at a time.  To determine what a human means by a particular 
classification, Horse grabs a few examples that are “close at hand” and presents the one in that group that looks 
the closest to what they have already identified.  It doesn’t have to search the database exhaustively at each 
iteration, looking for the very best match out of millions of items.  After all, one doesn’t need to watch every 
movie ever filmed to determine that there is such a thing as “silly comedies.” 

 
Notice the role of the Nq parameter in this procedure.  As it shrinks to 1, the system presents instances more 

and more completely randomly.  As it grows to N, the size of the entire information space, the more the system 
scours the database looking for what it thinks is the closest possible fit to the user’s category.  In between these 
two extremes, the system presents an instance that looks “good enough”: better than merely a random selection, 
but also likely to be inferior to a number of other instances that would have been found had the database been 
exhaustively searched. 

This represents a compromise between two conflicting goals.  On the one hand, we want to honor the user’s 
time by showing him what we feel is most relevant to him.  On the other hand, we also want to learn as much 
about his category definition as we can, and this is best achieved when we get corrective feedback in the form of 
key counterexamples.  If we showed him only “safe” examples that we were certain he would approve for the 
category, the system’s learning would be slowed.  Showing the user the best of a randomly selected pool, then, 
balances these two objectives. 

 

                                                                 
3 For example, if nearly every recipe in the database could be considered “light lunch fare,” then the prior probability P(“in”) would be 

very high and P(“out”) would be low.  If such recipes were relatively rare, on the other hand, the opposite would be true. 
4 For instance, if five out of the eight instances identified as “light lunch fare” had “ingredient=mayonnaise” as a feature, then 

P(“ingredient=mayonnaise” | “in”) would be 0.625.  If only one of the ten instances that the user has determined are not “light lunch fare” 
had that feature, then P(“ingredient=mayonnaise” | “out”) would be 0.1. 
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At the start of each iteration, we have an active category that has a set of known examples {Ei} and a set of 
known counterexamples {Ci }. 

1. Randomly choose a quorum of Nq instances from the entire information space, {Qi }, 0 <= i < Nq. 

2. For each instance in the quorum, use its features to compute the likelihood score that the user would judge it as 
an example of the active category: 
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i
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 (Each factor in the two terms includes an add-constant smoothing factor to eliminate zero counts.) 

3. Show the user the instance with the highest score, and ask for feedback as to whether this instance is in fact an 
example or a counterexample. 

4. Add the new instance to the example set or counterexample set, appropriately, and repeat these steps for the 
next iteration. 

Figure 2.  An instance selection algorithm. 

 

4. Hypothesizing about category definitions 
Finally, as the user adds examples and counterexamples to a category, Horse attempts to “learn” the 

underlying definition.  This amounts to a feature selection process in which the system determines which features 
are truly relevant to distinguish members of the category from nonmembers.  For this, we use a statistical 
difference of means test to trim features that do not meet a certain significance threshold. 

At each point in time the active category has Ne  examples {Ei} and Ne counterexamples {Ci}.  Horse 
considers each feature in turn.  Every feature is either present or absent from a given instance.  We compute the 
“mean” of each of these two groups (the examples and the counterexamples) by assigning a value of 1 to an 
instance if it has the feature, and 0 if it doesn’t.  Call these means µe  and µc.  Our significance statistic is: 
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( 2ˆ eσ and 2ˆ cσ are the estimated variance of the examples and counterexamples, respectively, with regard to the 
feature.)  We establish a threshold for this statistic, and trim from consideration any feature which fails to meet it.  
Since the data is sparse, we use the “student’s t” distribution to vary the threshold based on the sizes of the 
groups.  (As more examples and counterexamples are acquired, the raw value of the statistic does not have to be 
as high for the feature to be considered significant.)  Features which meet the threshold, then, we deem to be 
relevant to the category.  They are retained in what we call the “hypothesis”; that is, the system’s current best 
guess as to what the true underlying category definition is. 

For practical reasons, we do not attempt to trim features until the sizes of the category’s example and 
counterexample sets reach a certain critical mass.  Currently we have this set at four: when at least four examples 
and four counterexamples have been identified, we apply the difference of means test and eliminate features that 
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do not seem to affect category membership.  From that point on, we re-apply the test at the end of each iteration 
so as to gradually prune irrelevant features from our hypothesis. 

At any time, the user can request to view the current category hypothesis.  This displays a list of all of the 
features the system deems relevant, together with their significance values.  The user can review and edit this 
feature list, directly adding or removing features based on his intuitive domain knowledge. 

B. Organizing the Internet Movie Database 
The Internet Movie Database (IMDb, at www.imdb.com) is a free, online collection of movie information 

whose maintainers encourage public contributions of data.  It is massive, containing structured and free-text 
information for over six million different films.  Users can browse selections online and get information about all 
of a movie’s screen credits (directors, actors, producers, etc), as well as more subjective information such as 
aggregate user ratings and descriptive keywords. 

IMDb also permits its data to be downloaded as a series of text files.  To test our prototype, we obtained a 
small subset of the total database and massaged it into the format that Horse can understand.  We chose to 
concentrate on the “top 250 movies” as judged by overall IMDb user ratings, and on only a small set of features: 
the writers, directors, and descriptive keywords for these films.  Altogether, this amounts to around one megabyte 
of text information.  Horse reads this data from disk at startup and then allows the user to explore it as described 
above. 

The information is almost ideal for our study.  Since we include only the highest rated films of all time, users 
are likely to have at least heard of nearly every instance they are presented with.  Yet it is diverse enough that 
different users are likely to want to categorize the films in different ways, depending on their perceptions and 
tastes. 

We attempted to include only features that would have a bearing on a movie fan’s perception of similarity.  It 
seemed unlikely that a user would consider two films similar because they had the same boom operator, for 
example.  But two films with the same writer or director might well be perceived as similar for that reason.  The 
keywords are a particularly interesting case.  Each IMDb film contains a variable number of annotations that 
online users have added in an attempt to describe some feature of the plot.  For example, the keywords for the 
1957 film “Witness for the Prosecution” are: 

based-on-play courtroom twist-in-the-end blood-type microphone pill trial will-and-testament perjury murder 
remake based-on-adaptation 

This is a relatively small list; “The Godfather,” for instance, contains well over a hundred terms.  Our 
supposition is that when a user groups several films together in a category, the similarity that he perceives may be 
reflected in some subset of shared keywords.  If true, our system should be able to detect the relevant ones and 
use them to characterize the category as a whole. 

1. A sample scenario 
We now present the results of an actual interactive session with Horse, in order to illustrate how the system 

can be used. 

A father of young children has recently rented “The Wizard of Oz” from his local video store and shown it to 
the entire family.  The children were delighted with the film, and so were the parents: it was entertaining, 
provoked family discussion, and featured content that they felt was appropriate for the age of the viewers.  A 
regular family movie night, they decide, might be an enjoyable activity to incorporate into their weekly routine, 
provided that they can find other movies as suitable as “The Wizard of Oz” turned out to be. 

The father returns the video to the store, and on the way, he considers what he might rent for upcoming 
movie nights.  Perhaps without realizing it, he is beginning to form an abstract category in his mind: “Films for 
Family Movie Night.”  Of all the movies ever produced, only a relatively small subset would meet his criteria.  
Yet it is difficult for him to even state what the criteria are – they are not directly related to any single attribute 
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that he knows of; for instance, a particular director, actor, or film studio.  The only thing the man has to go on is 
his knowledge of particular instances.  He remembers seeing “Oliver!” and “Cinderella” as a child, and knows 
that they would be appropriate, whereas “Saving Private Ryan” and “Silence of the Lambs” would obviously not 
be.  But as reliable as this intuition may be, it is just that: intuition.  The father has no idea what features any of 
these films have.  Although he knows that “Oliver!” fits the category he has in mind, he could not say who the 
director or any of the actors were, or what descriptive keywords anyone might have assigned to the film.  All he 
can do is form semantic judgments about each instance as a unit.  It is up to Horse to help him discover which 
features may bear out his intuition. 

He engages the application and creates a new category called “Films for Family Movie Night.”  Then he 
bootstraps this category by finding the particular instance “The Wizard of Oz” and adding it as an example.  
(Finding a known film by name is achieved by a straightforward Boolean search.)  Horse then begins the first 
iteration for this category.  It collects a quorum of twenty random samples from the entire pool, judges each of 
their probabilities of belonging to the category (based only on this single example, of course), and displays for 
the user the film with the best score: 

Braveheart. 

At first glance, this seems preposterous.  What movie could be more different from “The Wizard of Oz” than 
a violent war epic like “Braveheart?”  To understand this, we must recognize three factors.  First, remember that 
“Braveheart” merely represents the most likely instance in the quorum, not the entire database.  It is always 
possible to get a “bad sample” with very few representative instances, in which case the best of a bad lot will be 
shown.  This is actually beneficial, since it helps the system learn by providing an opportunity for a 
counterexample.  Second, upon examination of the low-level features, it turns out that the two films actually do 
share a number of keywords, among them: uncle, castle, courage, and friendship.  Presumably some or all of 
these will turn out to be statistically insignificant as more data is acquired about the category.  And this is 
precisely the third factor: the information about the category is yet small.  When the user first begins, and has 
specified only one or two examples or counterexamples, the system has very little to work with.  It weighs 
spurious attributes as heavily as truly relevant ones, since it cannot tell the difference.  Hence, it is quite likely to 
veer off in the wrong direction at first.  As more and more examples and counterexamples are identified, 
however, we expect Horse to converge on the “true” category definition. 

And this is in fact what eventually happens.  After the user resoundingly informs Horse that “Braveheart” is 
not an example of the “Films for Family Movie Night” category, the system adds the instance to its set of 
counterexamples and performs a new iteration.  The next few instances presented, together with the user’s 
judgments are, in order: 

The Terminator (out) 
Pirates of the Caribbean (out) 
Beauty and the Beast (in) 
Young Frankenstein (out) 
A Beautiful Mind (out) 
Back to the Future (in) 
Taxi Driver (out) 
Hobgoblins (out) 
X2 (out) 
Future War (out) 
E.T. The Extra Terrestrial (in) 
From Justin to Kelly (out) 
Stalag 17 (out) 
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Each entry in this list represents an iteration of the system: Horse chose to display the instance listed, and the 
user responded with feedback as to whether the instance was “in” or “out” of the “Films for Family Movie Night” 
category. 

So far, mostly counterexamples have been presented, which indicates that the category is not yet converging.  
Several of the counterexamples were close enough to give the user pause, however.  “Pirates of the Caribbean,” a 
recent Disney film, seems like a possibility until the man remembers overhearing at work that it contained some 
scary images, and therefore might not be appropriate for his children.  Similarly, “Young Frankenstein” is a fairly 
close match, except that the man has seen this film before and recalls some adult humor.  So he rejects this 
instance as well. 

It may seem that up to this point the system has been floundering, presenting merely random examples and 
determining nothing useful about them.  But in fact our experience with Horse is that once a critical mass of 
examples and counterexamples have been identified, the system tends to converge quite rapidly.  So it is here.  In 
an almost magical way, the next sequence of examples presented are: 

It’s a Wonderful Life (in) 
The Adventures of Robin Hood (in) 
North by Northwest (out) 
Star Wars: Return of the Jedi (in) 
Fantasia (in) 
Toy Story (in) 
Being There (out) 
The Princess Bride (in) 
Finding Nemo (in) 
Whale Rider (in) 
Stand by Me (in) 
Toy Story 2 (in) 
Monsters, Inc. (in) 
Shrek (in) 

and so on.  At this point, nearly every example Horse chooses to show is exactly what the user has in mind.  
Clearly, it has caught on to something in the underlying data that reflects the user’s mental perception.  The user 
requests to see the current category hypothesis, and is presented with: 

Current hypothesis for category “Films for Family Movie Night”: 
 NOT keyword=murder (2.40) 
 keyword=cgi-film (2.70) 
 keyword=computer-animation (2.70) 
 NOT keyword=marriage-proposal (2.40) 
 keyword=kids-and-family (7.20) 

Each feature listed here represents a statistically significant tendency in the data that the user has judged.  
Those preceded by “NOT” tend to be reflective of counterexamples; the others are reflective of examples.  The 
numbers in parentheses are the values of the significance statistic, as explained above. 

Clearly, the most relevant feature is the keyword “kids-and-family”; it was present in 14 of 16 examples, and 
in none of the 13 counterexamples.  This may seem obvious; however, the user did not know a priori that such a 
feature even existed.  To discover it manually, he would have had to wade through lists of literally hundreds of 
keywords and other features hoping to guess which one(s) would be applicable to his category.  Instead, Horse 
automatically sifted this out for him by simply reasoning about the examples he had identified. 

The other features are thought-provoking as well.  The keyword “marriage-proposal” looks like an accidental 
artifact of the data, one which the user will probably trim.  (For the curious, it is present in the counterexamples 
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“Braveheart,” “Pirates of the Caribbean,” “A Beautiful Mind,” and “North by Northwest,” but in none of the 
examples.)  Computer animation is something he had not previously considered, but this discovery makes him 
realize that several of the instances he has identified are in fact cartoons, and that searching specifically in that 
direction for movies might yield a fruitful search.  “Cgi-film” is a term the user is not familiar with, but after a bit 
of poking on the Web he discovers that CGI stands for “Computer Generated Images,” which again reinforces the 
previous discovery. 

2. Discussion 
This example, though simple, illustrates a number of benefits to this kind of user interaction paradigm: 

1. The user is relieved of the responsibility of knowing how the data is represented.  In our scenario, the user 
didn’t have to study the features of the instances in order to effectively interact with the database.  He simply 
operated at the instance level, and let Horse worry about which features were relevant to his inquiry.  Then, when 
he asked for the category definition, he was instantly directed to the probable features of interest.  This is an 
especially important benefit when novice users are involved.  They approach the database with considerable 
uncertainty as to what it contains, what they want to know, and how to ask for it.  This style of interface enables 
them to be productive with very little up front time investment. 

2. It helps the user clarify and crystallize his intuition.  The user chooses instances based on his semantic 
interpretation, which may be somewhat ill-defined.  But the system promptly informs him of the feature-level 
trends that align with these choices.  In the above scenario, Horse exposed what the man perhaps hadn’t realized: 
that in general, CGI films were likely candidates for movie night.  The interface experience is thus not only 
productive, but insightful. 

3. It enables customized category-based information retrieval.  As we have seen, once the system has enough 
examples to converge, it can readily find new instances of a category using its similarity metrics.  This is 
potentially much more precise than a hand-crafted Boolean search, in which a user must try to express his 
intuition as a combination of low-level fields.  With Horse, finding new instances “like these” happens 
automatically. 

4. In enables category-based questions to be posed.  Our current prototype does not demonstrate this, but it is 
a major aim of our future work: to raise the level of abstraction from instances to categories.  One could imagine 
the man in the above scenario asking for the common writers and directors of “family movie night” films, or 
which movies in that category overlap with another category, or how frequently “family movie night” films are 
released these days compared with in decades past.  Indeed, we believe it is often the case that the questions users 
want to ask about a large database are general and strategic, rather than concerned with individual details.  And 
once a user has refined a set of categories to his satisfaction, they can be used as operands to powerful category-
level operators that shed light on the database’s trends as a whole. 

IV. Related work 
 

The problem of automatically clustering large groups of documents or structured instances has been given 
much attention.  Advanced web exploration tools like KartOO [Baleydier 2004] and [Grokker 2004] perform this 
for natural language text, for instance, and the On-To-Knowledge project’s Spectacle initiative [Fluit et al. 2003] 
does the same for ontologically annotated data.  What makes these approaches different from ours is their 
implicit objectivity.  They analyze data and group it according to the system’s absolute definition of similarity.  
Such tools provide important benefits, since they reveal structure that was previously buried.  Our belief, 
however, is that great gains can be made by incorporating the user’s subjective notions as well.  Instances may 
have a multitude of features, but for a given user executing a given task, only a few may be relevant, and in ways 
that a static clustering algorithm would be unable to predict.  Spectacle recognizes this to some degree: cluster 
maps are configurable, in that the user can choose the terms upon which they will be based.  However, the system 
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does not assist them in discovering this: it is up to the user to know in advance what features are relevant for the 
relationship of interest.   

The SEAL portal from the University of Karlsruhe [Maedche et al. 2001] performs a “semantic ranking” of 
ontology-based query results based on the perceived similarity to the posed query.  This incorporates ideas such 
as the relative proximity of terms within a taxonomy.  This bears some resemblance to our judgments about likely 
category membership, though we envision permeating these ideas throughout the user interaction experience 
rather than using them in an auxiliary role. 

Personalized search systems, such as those described in Shahabi’s excellent survey [Shahabi and Chen 2003], 
take into account the interests of users when filtering query results.  The emphasis, however, is on sifting 
“irrelevant” information from what the user finds “interesting.”  In our approach, categorization is a different 
problem from interesting vs. non-interesting – it is the discovery of different kinds of interesting things, and how 
those different kinds relate to one another. 

Closer to our approach is the DASHER project from the University of Southern California [Neches et al. 
1998; Yao et al. 1999].  Users can collaborate to organize a web information space, creating hierarchical 
categories to which specific URLs can be added.  Natural language processing algorithms help identify common 
noun phrases in documents, so that users can compare their own categorizations with the noun phrase clusters.  
Inductive learning then attempts to populate categories with instances based on “bag of words” comparisons.  
The system builds decision lists to classify documents, and then uses a “fan out” technique to examine the 
hyperlinks emanating from a page to search for other similar pages.  In general, DASHER is more focused on 
quickly finding information on a defined set of topics than on exploring the relationships between categories of 
instances throughout an information space.  Our work can be seen as extending these ideas, moving towards an 
interface in which categories are more than merely groupings of pages, but first-class objects about which higher-
level questions can be posed. 

Santini et al.’s work on image databases [Santini and Jain 1999; Santini et al. 2001; Staab et al. 2002] also 
resembles ours to some degree.  Their El Niño system is a graphical editor that allows users to position images at 
various locations on a screen and thereby manually cluster them.  Images from within the large database will 
automatically appear and disappear from the screen as the user interacts and the system learns which images are 
the most relevant.  The idea is that the semantics of an image is not an intrinsic property that can be filtered via a 
query process, but rather an emergent property that user interaction exposes.  Related images, once identified, can 
be manually lumped into a named “visual concept” for future retrieval, and decorated with metadata.  This work 
differs from ours primarily in that it is custom-tailored to the image domain, and also does not support the 
category-based questioning so central to our approach. 

V. Conclusion 
 

The use of semantically sophisticated tools for mining, filtering, and querying vast amounts of information on 
the Web has been studied in detail [Boley et al. 1999; Chakrabarti and Batterywala 2000; Cooley et al. 1997; 
Grosky et al. 2002; Lieberman 1999; Staab et al. 2000].  In particular, when people are confronted with large 
amounts of information on a topic they have significant interest in, their goal is to first grasp its overall makeup.  
They are not interested in details yet, because they have no context in which to interpret them.  They need to 
learn “what is out there” first, so they can begin to build a mental model of the domain into which the details can 
fit.  Of course, often the only way to do this is by examining individual instances until themes and trends become 
apparent.  But at least at first, those details are only stepping stones towards a larger objective: finding a way to 
organize and make sense of the space as a whole. 

Considering that this is often the user’s goal, it is striking that tools have not been developed to assist this 
process.  Instead, most tools for exploring information spaces are fact-oriented: they aim to draw out the most 
relevant instances from a larger pool, while leaving to the user the problem of interpreting how those instances 
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are related to one another.  Little attention has been given to the larger problem of how to assist humans in 
discovering the overall patterns and structure in the space.  Those attempts that have been made tend to be 
objective and absolute, rather than encouraging the user to draw his own conclusions and enabling him to 
materialize and experiment with them. 

We believe that computer tools can aid this process by incorporating “mental model” constructs (such as 
categories) into the interface.  The software can then help the user build his conceptual framework, and in a way 
that is concrete and tangible.  We are not claiming any “deep AI” here – this is not empathic software capable of 
identifying with human perceptions.  It simply automates the most tedious parts of the procedure.  As we have 
seen, tools can quickly analyze a human’s semantic choices in terms of the underlying data representation, and 
thereby assist him in recognizing the patterns that he perceived but perhaps couldn’t articulate.  The next step is 
to equip him to manipulate those patterns directly, raising the interface experience from the tactical to the 
strategic.  In our future work, we hope to discover that this is indeed a valuable way to help people leverage large 
amounts of information more naturally and effectively. 
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