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Abstract

A hybrnid (non-ray, non-modal) method for computing the fields

of a paraxial beam propagating in a multimode waveguide (parallel-
plate on dielectrnic slab) at Larnge axial distances is presented.
The method 4s based on the Fourier and Fresnel self-imaging
properties of these waveguides, and Lis capable of high accuracy.
The method is much more efgicient than ray or mode approaches,
while giving complete field information which coupled-power
equations do not provide.

Acknowledgments

The authors are indebted to Prof. R. MacRae for a useful
discussion about theta-functions and Gaussian sums. Numerical
work for this paper was prepared by Mr. S. Nakayama and-

Ms. R. Ebrahimian. This work was carried out under the support
of the U.S. Army Research Office (ARO), grant. no. DAAG 29-G-0173,
Dr. J. Mink, project monitor.



I, INTRODUCTION

Multimode optical fibers appear at present to be the most common
optical waveguiding medium for applications in the immediate future.
Incoherent sources and relatively simple detectors can be used, and
the tolerance problems encountered with single-mode fibers are far less
severe with such waveguidés.

At present, there are essentially three methods available for field
computation in muyltimode waveguides. First, one can take a pure modal
approach--the excitation amplitude of each mode is computed, and all
modes are summed together. Although in principle exact, this approach
suffers not only from the large number of modes which must be kept track
of (10001000 for a typical fiber; 30~ 100 for a slab geometry) but also
from a large degree of cancellation of terms in the mode sum when the
field does not match that of an individual mode. Examples of the appli-
cation of this method may be found in [1]. Although in some special
cases approximate closed-form results are available, a computer analysis
is generally required, and roundoff errors can be expected to accumulate,
especially for large propagation distances.

A second approach is that of geometrical optics (sometimes encountered
as the WKB method). An excellent discussion of this approach has been
given by Gloge and Marcatili [2] (see also [3]). Here one approximates
the effect of a large number of discrete propagating modes by a continu-
ously distributed propagation constant belonging to a "continuous spectrum"
of modes., These, when computed under the WKB approximation, can be

interpreted as a cone of rays lying within some characteristic acceptance



angle of the fiber. The propagation problem then reduces to that of
determining the amplitude with which each ray is excited, and tracing it
down the length of the guide. Intuitively more suitable for multimode
guides because of the "“high-frequency" nature of the problem, this approach
is nonetheless approximate by virtue of the geometrical optics technique.
Moreover, in a situation where paraxial propagation conditions exist (see
below), a large number of rays can be expected to contribute at large
propagation distances (hundreds of meters or several kilometers may not

be uncommon). In this region, the geometrical optics approach can be

seen to suffer from similar disadvantages as does the first.

A third approach (see, e.g., [41,[51,[39]) is a purely numerical one,
wherein the partial differential equation--Helmholtz or its parabolic
approximant--is tackled directly, without the use of either mode or ray
concepts. In [4] and [5], the equation is discretized and solved with
the aid of fast Fourier transform techniques. This method, 1ike the first,
is also capable of arbitrary accuracy in principle, and requires neither
a detailed knowledge of a large number of modes, nor the tracing of a
large number of ray paths. Again, however, when very long propagation
distances are being studied, the discretization of the wave equation in
the longitudinal direction can lead to large error accumulations which do
not seem easily avoidable by this technique.

Finally, we might also mention here the coupled-power equations
approach [1]. This method seeks only to find the total power carried by
each mode, since for many applications the details of the field distribu-
tion from éach mode are not of interest. One then takes a statistical

approach to these equations, and obtains useful results for pulse dispersion



when each mode of the guide is detectable only through its total power.
There are many other applications, however, when the fields themselves are
important, such as in the design of couplers, splitters, switches, splicers,
etc., and it is this problem in which we are interested here.

The method we propose is based on the imaging properties of multi-
mode waveguides. In the paraxial approximation, a parallel-plate or
dielectric slab waveguide will periodically reconstruct the field pattern
at the input plane (and, at more frequent intervals, a string of such
replicas). Because of this, we need only perform our field computations
within the space of one of these periods, and will not suffer the Toss of
accuracy at large distances associated with the methods described above.
Qur computations will be performed for a parallel-plate waveguide with
perfectly conducting walls, but the results are immediately applicable to
the dielectric slab waveguide (Appendix A). The method will allow a
simple formula to be obtained for the propagation of a Gaussian beam of
substantially narrower width than that of the guide; (Note that the study
by Felsen and Shin [6] of beam propagation in waveguides is in practice
restricted to beams which propagate obliquely to the axis of the guide,
and actually will suffer from the same drawbacks at large axial distances
as does the ray method, although it is probably superior to the ray method
at shorter distances). Numerical comparisons with exact (modal) calcula-

tions are quite favorable, even for rather large propagation distances.



II. THE PARAXIAL APPROXIMATION

To fix ideas, let us consider the parallel-plate waveguide illustrated
in Fig. 1 (the discussion of this section, however, is quite general and
need not be restricted to this specific waveguide). The walls at x = 0
and x = a are perfectly conducting, and some known source produces a given
excitation or input field at the plane z=0. For simplicity, we restrict
ourselves to two dimensional, TE fields, so that the entire field

_=_H+_H E= E - e . .
H aX X aZ 2 , where ax,ay,aZ are Cartesian unit vectors, can

3
Yy
be derived from the scalar function Ey which satisfies

(iﬁ B 2)
+ +k“JE =0 (1)
sz 322 Y

for z>0. Here k = w/fie, where a time dependence exp(iwt) has been
assumed, and u, € are the electrical parameters of the medium filling
the wayeguide.

In the paraxial approximation, we write

Ey(x,z) = e-isz(x,z) (2)

and assume that most propagation takes place nearly in the z-direction;
that is, A(x,z) as a function of z varies slowly compared to exp(-ikz).
Inserting (2) into (1) we obtain
(§E?._ 2ik 5%—+ —ﬁgi) A(x,z) = 0 (3)
9X oz
and in the paraxial approximation, we neglect the 32/822 term compared
to the first derivative term because of the slow variation of A(x,z) in

z assumed above. We thus obtain the following parabolic equation for

A(x,z)[7]:



32 .
(——f - 2ik E) A(x,2z) = 0 (4)
9X
To put this approximation on a more quantitative footing, we can apply
some ideas from the boundary-layer technique [8]. By "stretching" the
variable x into a new variable v = x/a, we can deal with a transverse
variable v which is 0(1) over the entire cross-section of the guide. When

rewritten in terms of v, equation (4) becomes

2
3 . 23 ) )
(g;E-- 2ika 33 A(v,z) =0 (5)

which suggests that the scaling ¢ = const z/ka2 might be convenient. For
reasons which will become clear in the next section, we choose ¢ = ﬂz/4ka2.

Making both changes of variable in (3), we have

2 2 2
(37 -7 )A("’C) - -y M (6)
16k™a 9T

It is natural now to assume a solution to (6) of the form

1 1
Alv.g) ~ A (vsg) + Eg;g'A](vaC) + Ezgz'Az(v,C) toee (7)

so that, by matching powers of (ka)-z, we find a recurrent set of

equations for AO, A], etc.:

2 .
8 _m _s) _
(, 2 A Ya Ao(v’c) 0 (8)
v ) 2A ( )
0 Vs §
i ) ND s - T o (9)
8v2 2 3z , 3¢

and so on. As initial conditions at ¢ = 0, we require Ao(x/a,O) = Ey(x,O)--

a given function--while A](v,O) = Az(v,o) = ... =0.



We are now in a position to estimate the magnitude of the correction
term A], and therefore the error involved in the paraxial approximation.
It is easily verified that, for example,

2
iz @ Ay (vsz)

8v4 8 Bcz

with A2’ A3, etc., given by similar expressions. Because of the scaling

g 2Rse)
A'I(\)SC) - 2_1.'. -

- (10)

of the variables v and ¢, the differentiations in (10) do not increase

the order of magnitude of the function AO. Thus if AO is 0(1), then

A (v.2)] 5 0(z) (1)

so a criterion for the accuracy of the paraxial approximation (A = A )

is that z/kZaz << T, or in other words,

kz << (ka)?t (12)

In addition, of course, we also have the condition k2a2 >> 1, which is

implicit in the expansion (7) and the fact that the guide is highly multi-
mode.

These arguments are not restricted to the case of a parallel-plate
waveguide. However, as with any "order-of-magnitude" arguments, they
say nothing about the proportionality constant implicit in (11). In fact,
this constant will depend sensitively on the function Ao(v,g), mostly
through its initial value Ao(v,O). Thus, a detailed study of the esti-
mate (11) should be made wheh using the paraxial approximation in any
specific situation. This procedure is discussed in some detail by
Tappert [9], who also gives a large number of references to its use in

acoustics. In Appendix A, we consider the paraxial approximation for



a dielectric slab waveguide, and demonstrate an approximate equivalence
with a parallel-plate waveguide.

In closing, we might also note that Polyanskii [11] has obtained a
formula relating the solution of the parabolic equation to that of the
Helmholtz equation which is an alternative to the perturbation series (7).
This same question is addressed from a rather different viewpoint in [36].
Further, another variant of the parabolic equation more suitable for

off-axis propagation has been proposed in [12].



ITT. GREEN®S FUNCTION AND IMAGING

By well-known techniques, the field Ey(x,z) for z >0 in the waveguide
can be expressed in terms of the field Ey(x,O) at an input plane (z=0)

by means of a Green's function G(x,x”;z):'
a

E (x.z) = J £ (x',0)6(x,x" s2)dx’ (13)
0

where G can be expressed as a modal expansion:

8

v -iR Z
sin ~nJ?—sin MX e M. z>0 (14)

G(x,x'32) = % a >
'I /

m

N~

2 2 2)%.

where g = (k% - mn /a On the other hand, the Green's function G

for the paraxial approximation (2), (4) to Ey is given by:

_ikz i zmen /2ka’ (15)

1
mmxX _. MmMmX

o
) sin —/= sin

G (x,x"3z) = %-e ] n 3
m:

0

Evidently G0 could have been obtained from G by replacing Bm by the
first two terms of its binomial expansion By = k-m2w2/2ka2. We see that
whereas G has a large but finite number of modes which propagate, the
paraxial approximation GO has infinitely many such modes. It is con-
venient to rewrite G0 by expressing the sine functions as exponentials;
the result is:

6 (x.x":2) =;L_e-ikz § eizm2w2/2ka2 e-imﬂ(xnx;)/a‘;e;imﬂ(x+x')/a (16)

oY 2 2a

M= -co

If we define

2, = dka’/n (17)

1

(so that the stretched variable of‘the previous section is ¢ = z/z]]), then
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GQ(X,XQ;Z) _ é%_e«1kz Ioe 11{;\1mu(xx )/a _e-1mﬂ(x+x )/%} (18)
M= =eo,

Equation (18) is the basis for the so-called Fourier-and Fresnel-
imaging properties of this waveguide [13]. It is easily seen from (18)
that eXp(TkzlGo is a perfodic function of z:
o _ aTkz1]
Géxm;z+ﬁ])=aéxm;zk (19)
In particular, since (13) implies that G(x,x ;0) is equal to &(x-x")
for 0<(x,x')<a, we have
, -iknz
G, (x>x"5 nzq) = §(x-x")e 1 (20)
for any integer n, i.e., the input plane field is rep]icated at each
of the Fourier image planes z = nZ,q- This phenomenon was first investi-
gated theoretically for unbounded periodic gratings, and the imaging dis-
tance was first given by Rayleigh [14]. Later treatments have been given
in [13], [15]-[17]. Because of the mathematical equivalence of a wave-
guide with a periodic system, this imaging also occurs in waveguides--a
fact apparently first noticed by Rivlin and Shul'dyaev [18] and discussed
at length by a number of authors [10],[19]-[23],[37].

An even more interesting occurrence shows up at z = qu’ where

=4
Zpq " p A1 (21)
and p and q are some positive integers. Let us consider the sum
. . 2
o  ~immx/a +2mimz_ [z
o (x)= ¥ e S (22)
pq . M=
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Let m=pg+r, where r vruns from O to p-1, and express (22) as a

double sum:

X p§1'e“iwx(p&+r)/a-fzﬂiq[p&2+2£r-kr2/P]
=—o =0 (23)

Qpq¥)

P§1 e-fﬂrx/a-+2wiqp2/p( ¥ e“Tﬁng/a)
r=Q 0= oo

However, the summation in parenthesis s nothing more than Q]](px), although
now the argument can range not just from -a to +a (or QO to 2a), but from

-pa to +pa (or O to 2pa). Making use of the formula [24]:

E"eZWme/d —d T §(xend) (24)

m= - N= -
for any positive d,

p-1 Ca s 112 , ca
Q (x) =227y erimx/atemiqri/p v g _2na) (25)
pq p _Y“'"*‘U, ’ n=s =« p

From (18), then, we have

-ikz o

b, - PA y (xoxt - 203y _ t_2na 26
QJx,x,zpq) e n=§m§n(pxn[&b<x > ) - 8(x +x D )] (26)

where the coefficients c, are given by

¢, (p,q) = l.pi] eZﬁiP(Pq+n)/P (27)

P r=0
These coefficients are known as Gaussian sums, and play a key role in analytic

number theory [25]. Their most important probehties are summarized in Appendix B.
- For p = 1, only one of the delta-functions, §(x-x'), is nonzero in the

range 0 < (x,x') <a, and we recover the single Fourier image described before.
If p>1 on the other hand, more of the delta-functions in (26) may appear

in this range. Each one contributes to (13) a replica of the -input field

which is shifted by some amount in the x-direction,
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and whose amplitude is [c (p,q)| times that of the original image. Any
terms arising from the terms &(x-+x‘\92na/p) are inverted as well. Images
of this type have been called Fresnel images.
For an input function not symmetric with respect to the center of
the guide x =‘a/2, we have depicted the various images along with their
(complex) amplitudes in Fig. 2 for Zy1s Z3y and Zp1+ The phase factor
exp(~ikz) is omitted in this figure. Figure 2(a) illustrates the input
function Ey(x,o), At z =255 there is on]y one image, which is inverted
with respect to the original, but is also a further 180° out of phase with
respect to the input after the factor exp(-ikz) is accounted for (Fig. 2(b)).
At z = Z34 (Fig, 2(c)), the situation is more involved. One of the images
is an unchanged replica, reduced in amplitude by 1//3 and phase shifted
by 90°. The other two image terms have “broken up" and rearranged the
original pattern. Between them, they both contain two complete replicas
of the original, and again the émp]itude of each is reduced by 1/v3.
Note that this amplitude reduction is consistent with the fact that all
of the power of the original pattern must be divided between the three split
images. At z = Zpy there is both an erect and an inverted image (Fig. 2(d)).
For the special case of a symmetric excitation, Ey(x,O) = Ey(a -x,0),
221, Zn and indeed Zg1 all reproduce the original input function (Fig.3(a)).
If the input function is a beam of sufficiently narrow width, we can recog-
nize three essentially distinct images at Zq, (Fig. 3(b)). At other image
planes, similar conclusions hold.
The Fourier and Fresnel images allow us, in principle, to compute
the field in thé waveguide at any point zpq (and any arbitrary value of

z can be approached as nearly as desired by such a point). This
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procedure could, however, require a Targe value of p, and hence an inordi-
nately Targe number of image terms, resulting in a method which is no

more efficient than the modal approach. In the next section, we will

show how, for a certain specific type of excitation, efficient field compu-
tation can be carried out for any value of 2z, using only a relatively
small number of images.

Let us emphasize in closing this section that the imaging phenomenon
results from the collective interference of the mode sum (14), or alter-
natively from the interference of the series of “rays" (plane waves)
represented by (18), depending on one's preferred physical picture. The
only assumption involved is the paraxial approximation, and in the case
of the parallel-plate waveguide, no approximation of the mode functions
themselves is needed. In the case of a dielectric waveguide, some small
higher-order corrections to the mode functions will be needed (see

Appendix A).
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IV. PROPAGATION OF A GAUSSIAN BEAM

Consider the initial field distribution

~(x- )2 2‘2
£, (x,0) = e Boxo /20, (28)

i.e., a Gaussian beam centered at x_. with waist parameter W,

0
Let 0~<xo«<a, and assume that the "tails" of the beam are negligible at

the walls of the guide:

W << : S <<a -
0<% 3 Wo<<a = X,

In addition, we also suppose that the beam is well collimated, kwo:>>1.
Under these conditions and the paraxial approximation, (13) can be
replaced by

* -(x'~x0)2/2w§ ' .
f e Go(x,xj;z)dx‘ (29)

We wish to evaluate (29) for arbitrary (not necessarily rational) values
of z/zqq-

To do this it is convenient to express GO in terms of the Jacobian
theta-function t%, defined by Whittaker and Watson [26] as;

9y(2]7) = E emzﬂir-+2miz (30)
M= —ca.

(the argument z ds conventionally used in this connection and should not
be confused with the cartesian coordinate z used above). This function
has a wealth of useful properties which we summarize in Appendix B. The
theta-function appears in solutions of other parabolic equations, such as
the heat equation [27]. In the paraxial parabolic equation, however, the
arguments z and T are both real (see below) and 95 must be treated as

a generalized function.
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Using (30), Go becomes

Go(x,x‘;z) = é; e L%(n(éax 11) - (ﬂiégél)1 éfi ) (31)

From (29), then

sikz O~ x ) E .
E (x2) = & )2, E«ﬂW%) _ o [mlxtx ) gé]df
y Xs2) 2a =3 2a 3 2a z
2 11 11
(32)
With the help of (B.11) we ohtain
. 2 . 2
W . m(x-x_) imw m(x+x_) imw
-ikz o'} 2z 0 0’|2z 0
E hz=£JEe1 »&k——-——+ )-ﬂt—-~—+ )
y( ) av?a 3\ 2a Z 2a2 3\ 2a Z1 2a2
(33)

Note that eqn. (33) differs from the paraxial Green's function Go(x,x';z)

in egn. (31) only in that the source point (x',0) has been changed to the
complex location (xo, -1kw§), and in the presence of a normalizing factor
W /2T exp(-kwS). The beam field in (33) is thus the equivalent of the field
of a‘'source at a complex position, as has been noted previously [6], [28], [29].

Let us first consider the focussing relative to z Let

11’
z = qzy, + Az, where qz]]/Z < Az 5_211/2 and q s an integer. From

(B.3) and (B.8), we have

"o o~ ikz '(X'XO)Z/ZfZ(AZ) qﬂ(ia(x—xo)
3

. 2
2ia
x z) = = Flaz) © e )
flaz fz(Az) ﬂfZ(Az)
(34)
~(x+x )Z/ZfZQXZ) 1a(x+x ) 2
— e 0 = Lg( 2ia )
3 f (n2)
~ where we have defined a "complex waist parameter' f(Az) as
2
2,0y _ 27 . 4 Az 2 .
f (,AZ) = WOE-—'I ’n-_z z]—]] = w0 - 'IAZ‘/k (35)

Using (8{12), we can further reduce (34) to

2.2 ( 2,002

Woo _§ ~(x-x +2ma)“/2f°(Az) -(x+x_+2ma)/2f(Az

E (x,z) = e~ kz )} <e 0 / -e 0 /2f(b2)
M= =co.

(36)
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Now
. 2
iAzZ/kw
Az) 2w" (Az) 2w”(Az)

where the waist size w(az) 1s given by

2

WP (az) = Wl + (az/kn ) (38)

so we can see that (36) represents an infinite series of Gaussian beams,
each broédened from its focal plane z=qz; as if it were pbopagating in
free space. We illustrate this in Fig. 4. As Az increases, more and
more of the "image" beams contribute significantly to the field in

0O<x<a. At Az = 211/2 (say), the waist size has become

WZ(Z]]/Z) = wg + (Zazlﬂwo)2 = 434/ﬂ2W§ > a2

because our assumptions about the beam imply a >> W, Thus we may
require quite a few terms of the image series (36) in order to compute
the fields at certain values of z.

For such values of Az, we seek to improve the efficiency of our
scheme by transforming (33) in a somewhat different manner. Applying
relation (B.9), we find that

Ey(_X,Z) ='%Q/T21-e-ikz A eﬂirZZZ/Z” ‘1T2Y’2W§/232

!
r=0
. 2 24 2
e1ﬂr(x—x0)/a_& (p[ﬂ(X-XO) L2z T Wo:] 222 , ;2 ™
3\ 7 z,, T TP g P 2
11 2a 11 2a
. 2 241 2
imr(x-x_)/a [rlx+x )" 5 o] . W
LU g ([T, v T2 2z 2 T )
11 2a 11 2a

(39)
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for any specified positive {nteger p. Now, let z = zpq + Azp, where
now -z]]/Zp gmAzp 5_211/2p. The periodicity properties (B.3) and (B.4)
allow us to replace z by Azp in the arguments of the theta-functions

in (39). Subsequently applying (B.8) results in

A | 2,2 .
W Likz P2l oripl -(x=x_)"/2f"(Az ) ia(x~-x )
E,(x,2) =y e K2 Y GFTiTalp g, o Py (——————Jl L
y pf(az,) re0 3 sz(AZp) p
o, (ebx V27282 :
ial -(x xo) /2f (Azp) 1a(x+x0) or 21a2
l 2.2 "€ U\ I
mp fe (62, ) pfe(az.) P lmptf(az,)
p P p
(40)

where f 1is defined in (35) as before. For p=1, this reduces to (34)

as expected. Finally, through the use of (B.12) we obtain

2,5e2
E (x,z) = Wy e'ikz'l-pi] e2ﬂ1r2q/p { § é-2ﬂimr/p[é‘(x-x0+2ma/p)»/2f (Azp)
Yy f(Aij p =0 ,

M= =eo

_(x+x0+2ma/p)2/2f2(Azp2]

-e (41)

Clearly, equation (41) represents a string of Fresnel images at qu’

broadened by their additional propagation distance‘Azp as evidenced hy
the factor f(Azp)(compare (26)-(27)). A slight rearrangement of (41)
yields a single summation (letting m--n): ,
W likz —(x-x0-2na/p)2/2f2(Azp)
Ey(x,Z) “¥az) © n; _wcn(p,q) e

p
—(x+x0-2na/p)2/2f2(Azp) (42)

-
where cn(p,q) is given by (27).
How, then, is p to be chosen? Our goal is to minimize the

number of terms of the series (42) required to give a specified accuracy.



17

The series (42) should be taken from n=- N to N + 1, with N chosen so

as to have a relative error term less than a given magnitude, say 10'5.
This criterion can. be specified a priori as
N =[3pw (Azp)/a] + 1 (43)

where the square brackets denote the greatest integer less than or equal
to the enclosed quantity, and w(-) is the function given in (38). This
criterion can be obtained by estimating the magnitudes of the successive
terms in (42). Now, as zp varies from 0 to iZ]]/Zp = in]/Z, (43)

varies from 3pw0/a +1 to

224 \z
6 af, P,
™ W 4ai

If p«< a/2w0, then N may vary between 1 and a maximum of about 6a/ww0,

as Azp varies on the interval [-zp]/z, +zp]/2]. On the other hand, if
p > 2a2/nw§, N varies from a minimum of at least 4a/mw_. to a maximum

0
of at Teast 6/§_a/ﬂwo. Such large values of p are thus clearly undesir-
able for efficient field computations (because more images of the Gaussian
beam are fitted inside the waveguide than can be accommodated without
severe overlap). Although small values of p may give very small values

of Azp for certain values of 1z, a single choice of p for all z

results in a simpler computer program. Thus, the choice of

p = [a/wo] + 1

appears to us to be nearly optimal.
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V. NUMERICAL RESULTS

Numerical results for 0<z<zg, were computed for a symmetrical

Gaussian beam 5 o
~(x-a/2)"/2w

Ey(x,O) = e °
for a waveguide with ka = 973.4, kwO = 110.3. Computations were made
using both an exact.mode series (cf. (14)) and the hybrid-image represen-
tation (42). The two methods gave graphically indistinguishable results
over this range, which are displayed in Fig. 5. Note that 5 or 6 is
the maximum distinguishable number of beams in this case, and is a
Suitab]e choice for p.

Figure 6 shows that for very large values of 1z, the accuracy of
the paraxial approximation has begun to deteriorate slightly. In a
future paper, we will examine how to obtain closed-form expressions for
this correction, but meanwhile we note that even for z = 250211, the
accuracy of the paraxial expression is quite good. If we take this
example to model anvoptica1 waveguide with a =100y, wo==7,07u, the

distance 250z represents about a 50mlength of waveguide which of

11
course is a huge number of wavelengths, We thus see that the paraxial
approximation is capable of excellent accuracy over modest lengths of

waveguide, even at optical frequencies.
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VI. CONCLUSION

We have described a hybrid technique for computing the fields of
a paraxial beam propagating in a multimode waveguide for very Tong
distances. The method relies on the periodic Fourier and Fresnel
imaging properties of the guide, and is highly efficient for beams of
moderate width compared to either full modal or ray approaches. Numer-
ical comparisons have confirmed the accuracy of this method.

This approach should be susceptible to generalizations in several
divections. For a beam with oblique incidence (as in [6]), the parabolic
approximation of section II can be modified when the dominant propagation
factor in the z-direction is other than exp(-ikz) as indicated in [12].
Higher-order corrections to the paraxial solution for a dielectric slab
similar to those for the metallic guide given in Section II can also be
obtained, Slowly-varying guide widths and inhomogeneous refractive
index profiles should also be tractable by similar methods. Investigations
into these areas are currently being made, as is the generalization to

waveguides of circular symmetry.
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APPENDIX A
THE PARAXIAL APPROXIMATION FOR A DIELECTRIC SLAB

Consider the step-index dielectric slab waveguide shown in Fig. 7,
The slab has thickness b and refractive index Ny The cladding index is
nys and both media are assumed to be nonmagnetic. .The TE modes for this

waveguide have the field distribution [1]

k.;/o(,z-n-lz X
- sin ¢ (a)

E = e—~'lkOl,Z A s-in"E(;/ng —OLZ X + d)(ocﬂ 0<x<b
_i /. ' -k/o"-n7 (x-b)
" 1kaz p sin{é ng -az b + ¢(aﬂe‘ ! X >b

o~Tkaz 5 g x <0

(A.T)

where A 1is an arbitrary constant amplitude. Here k 1s the wavenumber
of free space, kg 1is the propagation constant of the mode, and ¢(a)

is the phase shift associated with the Goos-Hénchen effect:
¢(a) = sin*][%b Vng ‘GZ/V] - (A.2)
where V 1is the so-called normalized frequency v

_ 2 2 |
V = kb n, - N (A.3)

Note that V >> 1 for a highly multimode guide.
The characteristic equation which determines the eigenvalues o is

obtained by requiring HZ to be continuous at x==b£

| sin[é/ng-az b + 2¢(ui] = d B (A.4)

The paraxial approximation to these modes (o = no) is found as in [10]
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by reckoning ¢(o) to be small. From (A.2) and (A.4), we then obtain

ST,nE(/ng ~o?b(1 + 2/V)] = 0
or , (A.5)

2 2
_ 2 _ mw
On "~ /4; '

K2b2(1 +2/V)2

approximately

i.e., the propagation constants for a parallel-plate waveguide of
s1ightly larger width a=b(1+2/V). The corresponding field within the

slab is, from (A.1),

-iko,_z /
e A sin;E< ng - (X+b/V£lv 0<x<b (A.6)

Here we have

mm mm

a, =N - *0
moo o kB2ez/)? AR e/

\: 4 4
0 m T ‘ :
ot +2n)? }

For most optical waveguides the first error term is Tikely to be the

2 2 ( 4 4

(A.7)

larger, but in any case we require

kzbzv3 >> ] and k4b4 >> 1
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APPENDIX B
PROPERTIES OF c (p,q) and 1&(z|t)

In this Appendix, we derive a number of useful properties of the
Gaussian sums cn(b,q) defined by:(27), and the theta-function L%(z|r),
defined by

] 2_. .
19(2|T) - Z e miT+2miz (8.1)

m=-o

where, for our purposes, z fis an arbitrary complex number, while <t
Ties in the upper half-plane Im(t) > 0. If T 1lies on the real axis,
we likewise require that z be real, and in this case 1%(2[1) must be
treated as a genera]ized function.

From Whittaker and Watson [26], we can obtain a number of periodicity

and parity relations:

Ya(zlt) = y(-z|1) (8.2)
Jy(z|t+2n) = \93(2[1) (B.3)
W(z +nr]1) = S(z]7) n=0,+,%2,... (B.4)

. 2 .
\93(z+m|f) =TI T =202 g (7)) (B.5)

A1l four relations are easy consequences of the definition (B.1). It is

also interesting to note that 1% satisfies the parabolic equation

+ 2 =0 (B.6)
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which is obtained from the Helmholtz equation in the paraxial approximatibn,
and is similarly easily verified (cf. egn.(8)).
For real z, L% at t=0 (as a generalized function) can be evalu-

ated as [24],[30]:

o]

Wizjo)= [ MZ=n T s(z-nm) (8.7)
m: -0 n= =
Another useful relation, which holds for general z and T, is
obtained from Jacobi"s imaginary transformation [26 ]:
' . 2, .
Y -1 4+ 1
VJ%(Z[T) = 72 eln/ z-/mit ﬁ%(%_|_ %J (B.8)
This relation can be verified using the Poisson summation formula [24].
The identities which form the basis for the "image-splitting"
properties of the theta -function can be deduced from a more general

expression given by Krazer [31] (see also [32]). These relations, which

might be referred to as modular relations, are

-1 2 o
Blele) = T & L Ll (8.9)
r=0
_ 'I p—] + .
bzl < 7T ] 5) (5.10)

Equation (B.9) is verified by writing m=ptt+r, r=0,1,...,(p-1) in (B.1);

‘ (B.10) follows by substituting (B.1) into the right hand side. Actually

(B.9) and (B.10) can also be derived from each other using (B.8) as well.
An integral which the authors could not find in the literature

is given below:
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. 5 2 ,
- b b
J emaX +bx DLQ,,(,XIT)C'X - J_’ge /4a %(ZlT+1_ ) (B.11)

ma

The derivation is straightforward, proceeding by integrating (B.1) term-by-
term.
Finally, we note that

2 oo 2
%(12'11’) - eZ /’ITT Z e"(Z'I'mTTT) /7T (B.]Z)
m: - 0O

i.e., %% can be related to a string of displaced Gaussian functions.

The Gaussian sums cn(p,q) depend on the prime factorizations of
the integers p and q. The properties of these sums can be derived by
following methods outlined in [25] or [33] for the special case of co(p,q).
Here, we will only present the results, and refer the interested reader to
[25] and [33] for the methods of proof (see also [34], [35] and [38]).

In order to describe the properties of cn(p,q), we will use the

following notations from number theory [25]:

k| m: k divides m (without remainder)
k+m: k does not divide m
(kom): greatest common factor of k and m

a=b (mod m): wm|(a-b)
(km): Legendre's symbol defined for odd primes m;

'(k|m) + 1 if tZ = k (mod m) for some integer t

and k £ 0 (mod m).

(k|m) = - 1 if t2 Z k (mod m) for any integer t.
(0fm)

The following properties are elementary:

0.
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c,(pPsq +p) =c (p.q) (B.13)
cn+p(p,q) = ¢, (p,q) (B.14)
Ch(1=Q) =1 (B.15)
1 pln (5.16)
C (P,O) = B.]G
: 0 ptn :
Reciprocity law (for q odd):
; . .2 . A
- - 2-
c(Pa) = fob eMV/ATINYERG (g, o MIPA/ZTINY cx(q,p) (8.17)
where * denotes complex conjugate. In particular, from (B.15) and
(B.17) there follows
eT”./4'T”'n2/2p -mip/2-min
cn(p,]) = [1 +e 1 (B.18)
v2p
We need only consider the case when (p,q) =1, because of
c 1 (Psq) k|n
Cn(kpskq) = n/k (B.19)
k+n
Also, we need only consider the case when p is odd or a power of 2,
because if (p],pz) =1,
€ (PPosa) = ¢ (Pysap,)c, (Pysapy) (B.20)
These cases can be reduced to the case n =0, since if p 1is odd and
(p»q) =1, then
. 2
2
¢, (psa) = €M /P ¢ (pq) (8.21)
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where d is the solution (unique mod p) of
4ngo = -1 (mod p) .
If p= 2% and (p>q) =1, then
'1 _ e-ﬂin
2
¢ (2,q) = { 22 4o (@) /2 (1 +§'“"“)e-zninz(z‘“‘2+po)/q

n
o =2,4,6 .... (B.22)

. -min s 2rn=0i=2
p-(0-1)/2, mia/4 ( 1 +§ )e-znm (27 "+py)/q
o = 3,5,7 ....

where P, is the solution (unique mod q) of

Lit2 py = -1 (mod q) .

Further factoring of odd p wusing (B.20) results in co(ﬁx,q), where

p 1is an odd prime and (q,p) = 1. In this case

p-(x/z o= 032,4a se e

c (P saq) = o | (.23)
po/2 JIP-N/8 () =1,3,5,....

From the foregoing properties we can deduce that if (p,q) =1,

Nj=

e (p>a)| = p (B.24)

if p 1is odd, and

e (psa) = (172 1 (B.25)

alternately in n if .p = p2% with p odd and o > 1. We can conclude

from this that the power in the original image is equally divided among all
Fourier or Fresnel images which have a non-vanishing amplitude.
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Fig. 1:
Fig. 2:

Fig. 3:

Fig. 4:

Fig. 7:

Figure Captions
Parallel-plate waveguide.

Imaging of a nonsymmetrical field distribution.
(a) Input function Ey(x,O).

(b) Ey(x,zZ]) = Ey(a - x,0) (Inverted image).

(c) The three components of Ey(x,zs]);

( g L-i1/6 -Ey(%a- x,0) ; o\<x\<%
E (x,z = —E (x,0) +
y 3l J3Y /3 E (x- gél,o) .28 v <a
y 3 3
. 2a ) a
. e-1w/6 Ey(x 3 0); 0<x$3
4a _ .oa
ﬁ- -<Ey(3 x,0) ; T<X<a

(d) The two components of Ey(x,z4]);

E,(x.24) = [ef M4 E,(x,0) + e3“‘/45y(a -x,0)1//5.

Imaging of a symmetric field distribution.

(a) [E,(x,0)] = [E (x2p))] = [E,

(b) The three components of Ey(x,z3]).

(x,z4])| = |E (X’281)I .

Y

Overlapping of original and image beams in overmoded waveguide.

Evaluation of power distribution of Gaussian beam over 1/8 -cycle:
ka = 973.39; kwo==110.3. (a) z/z]]= 0; (b) 3/512; (c) 8/512;
(d) 13/512; (e) 16/512; (f) 22/512; (g) 28/512; (h) 32/512;
(i) 55/512; (j) 64/512.

Exact and approximate power patterns at large axial distance;

ka = 1538.23; kwo =174.3; z/z]] =250.119.

Dielectric slab waveguide
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