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Relativistic Electrons in Earth’s Outer Radiation Belt: Wave-Particle Interactions and 

Precipitation Loss 

Thesis directed by Professor Xinlin Li 

Earth’s outer radiation belt is a highly dynamic region of the magnetosphere composed of 

relativistic electrons with often unpredictable variations in energy and spatial extent.  

Understanding this variable radiation environment is critical for protecting both spacecraft and 

humans in space.  A number of competing acceleration and loss processes combine to produce 

net enhancements or depletions of the outer radiation belt.  Electron precipitation into the 

atmosphere is a critical part of this loss, and quantified understanding of this mechanism is 

needed in order to understand and ultimately predict radiation belt dynamics.  In the following 

work, we investigate the contribution of electron precipitation to radiation belt losses, looking at 

what times precipitation is important and at how much loss it contributes.  Through a 

combination of long-term existing data sets as well as new CubeSat measurements we perform 

both statistical and detailed event studies to better understand the nature and extent of MeV 

electron loss to the atmosphere.  We analyze measurements of precipitating electrons directly as 

well as electromagnetic waves that may be causing this precipitation.  Our studies provide a 

more cohesive picture of outer radiation belt dynamics and the relationship between precipitating 

energetic electrons and global magnetospheric conditions. 
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Chapter 1: Introduction 

The radiation belts are a highly dynamic region of Earth’s magnetosphere, with often-

unpredictable variations in intensity and spatial range.  The high energy particles found in this 

region can be damaging to both spacecraft and humans in space, and understanding this variable 

radiation environment and its response to geomagnetic activity is critical to mitigating spacecraft 

anomalies.  The physical processes controlling the acceleration and loss of trapped relativistic 

electrons in the radiation belts are complex, and there are a number of competing processes that 

can combine to produce net enhancements or depletions of the belts.  Particle precipitation into 

the atmosphere is a critical part of radiation belt electron loss, and without quantified 

understanding of this loss mechanism, we are unable to fully understand acceleration 

mechanisms.  The work in this dissertation addresses two main topics, both related to 

understanding the role of precipitation loss on the overall dynamics of the outer radiation belt.  In 

the first half of this work, we focus on one wave mode in particular, electromagnetic ion 

cyclotron (EMIC) waves, believed to be responsible for scattering MeV electrons into the 

atmosphere.  Studying the distributions of these waves, as well as the conditions in which they 

are generated, can give insight into when this particular loss mechanism may be active.  The 

latter half of this work then shifts to examine precipitating electrons directly, with studies 

enabled by measurements at low altitude from both the 20 year SAMPEX mission as well as the 

more recent Colorado Student Space Weather Experiment (CSSWE) CubeSat, designed, built, 

and operated by students at the University of Colorado. 

We begin in Chapter 2 with a brief overview of the terrestrial magnetospheric system and 

the various plasma populations that make it up.  The focus is on the outer Van Allen radiation 
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belt and the various source and loss mechanisms that contribute to its overall dynamics.  In 

particular, we look at the role of wave-particle interactions, which can scatter MeV electrons into 

the atmosphere, and review the basic physics behind these resonant interactions.  Finally, some 

of the open questions in radiation belt physics that motivate our work are outlined.  

Theory has shown that EMIC waves, which arise from anisotropic ion populations, can 

resonantly interact with energetic electrons and scatter them into the atmosphere.  Studies of this 

anisotropic ion population and free energy source can give insight into the likely presence and 

growth of these waves, and thus aid studies of this precipitation loss process.  In Chapter 3, we 

investigate the local plasma conditions in which EMIC waves develop and use this to create a 

plasma-based proxy for the waves.  To test the validity of the proxy, we compare EMIC wave 

distributions inferred from Los Alamos National Laboratory (LANL) plasma data at 

geosynchronous orbit (GEO) with wave measurements from GOES spacecraft, also at GEO.  

This chapter describes the development of the plasma-based wave proxy and validates the use of 

it for future investigations of EMIC wave distributions in the inner magnetosphere.   

Next, using this proxy, we investigate the storm-time distributions of EMIC waves in 

relation to radiation belt enhancements and suppressions.  Some geomagnetic storms result in net 

radiation belt enhancements, while others cause depletions or no net change at all.  

Understanding what processes lead to these differing post-storm results is still one of the open 

questions and goals of radiation belt studies.  Chapter 4 details a superposed epoch study 

performed to investigate plasma conditions and inferred wave distributions in local time as well 

as storm phase.  Utilizing seven LANL spacecraft spanning ~15 years, we are thus able to 

statistically examine inferred EMIC wave distributions during two different sets of storms – ones 

resulting in post-storm enhancements of outer radiation belt MeV electrons and ones resulting in 



 

  

3 

no enhancements.  This study gives insight into the global distributions of EMIC waves during 

storm times and their relation to post-storm radiation belt responses.   

In addition to an understanding of electromagnetic wave distributions in the 

magnetosphere, characterization of relativistic electron precipitation is needed to fully 

understand radiation belt losses into Earth’s atmosphere.  Thus in Chapter 5, we move to study 

precipitating MeV electrons directly.  In particular, signatures of rapid pitch angle scattering into 

the loss cone are often observed by low altitude satellites.  Through high-cadence low-altitude 

measurements from the SAMPEX satellite, we investigate two distinct types of rapid 

precipitation: millisecond-long “microbursts” as well as longer duration “precipitation bands.”  

The distributions of these events are analyzed over a variety of geomagnetic conditions to look at 

the relative contributions of these two precipitation types to overall radiation belt losses.   

Finally, in Chapters 6 and 7 we discuss some new low-altitude measurements used to 

further characterize radiation belt precipitation.  The CSSWE CubeSat, built by graduate students 

at the University of Colorado Boulder, was launched in September 2012 into a low-altitude, 

high-inclination orbit and measures energetic particles precipitating from the radiation belts into 

Earth’s atmosphere.  A brief overview of the CSSWE system and the scientific measurements it 

provides is given in Chapter 6, as well as my involvement in the project, namely as Project 

Manager for the past three years.  Chapter 7 presents one result from the mission thus far, a 

detailed conjunction study quantifying loss during rapid precipitation events.  By combining 

magnetically conjugate measurements from CSSWE and the 2013 BARREL balloon campaign, 

measuring electron precipitation signatures above Antarctica, we estimate the spatial features of 

rapid precipitation events and quantify the number of electrons lost to the atmosphere during 

such events.   
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Our studies of long-term existing data sets, combined with these new measurements, 

help form a more cohesive picture of the relationship between electromagnetic waves, their 

source populations, and the interactions of these waves with relativistic electrons in the outer 

radiation belt.!  Through a combination of numerous in situ measurements – of the low energy 

plasma populations, high energy radiation belt electrons, and electromagnetic waves – we 

perform both statistical as well as detailed event studies to better understand the nature and 

extent of MeV precipitation and radiation belt losses.  These studies aid in the understanding of 

outer radiation belt dynamics and the relationship between precipitating energetic electrons and 

global magnetospheric conditions. 
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Chapter 2: Relevant Background 

2.1 Earth’s Inner Magnetosphere  

The magnetosphere is a tear-shaped region carved out of the solar wind by Earth’s 

internal, roughly dipolar magnetic field.  The solar wind, emitted radially outward from the sun, 

compresses this dipole field on the dayside while the tail of the magnetosphere stretches back up 

to 100s of Earth radii (RE, =6371 km).  Separating the magnetosphere from interplanetary space 

is a boundary termed the magnetopause, whose location is determined primarily by a balance 

between solar wind flow pressure and the magnetic pressure of Earth’s field.  While this 

boundary is typically located at geocentric distances of ~10 RE at the subsolar point, its location 

is highly dynamic and can be moved inwards of 6 RE during large solar wind pressure pulses.  

Numerous overlapping particle populations and current systems exist within the magnetosphere, 

illustrated in Figure 2.1, and a few of the regions relevant to this work are discussed below. 

              

Figure 2.1  A schematic of Earth’s magnetosphere, with various plasma populations and current 
systems labeled.  (Adapted from Kivelson and Russell, 1995) 
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2.1.1 Particle Populations  

The plasmasphere (depicted in Figure 2.1) is a cold (~eV), dense (~103 cm-3) region of 

plasma, sitting just above the ionosphere and extending outwards to distances of 2-6 RE, 

depending on solar wind and geomagnetic conditions.  It is composed primarily of H+ ions, but 

He+, O+, O2+, N+, and N2+ have also been observed.  The motion of this plasma is determined by 

the summation of an inward pointing corotation electric field and a dawn-dusk convection 

electric field, depicted in Figure 2.2.  Close to Earth, the corotation field dominates, and thus the 

cold plasmamasphere tends to corotate about Earth, following lines of constant potential.  The 

boundary of this region, the plasmapause, is determined by the strength of the convection electric 

field; during geomagnetically active times, when convection is enhanced, this boundary moves 

inward, shrinking the plasmasphere and often creating drainage plumes on the dusk side, as 

illustrated in Figure 2.3.  These plumes bring cold, dense material to larger radial distances 

across the afternoon sector and out to the magnetopause. 

 Overlapping the outer extent of the plasmasphere, starting at roughly 4 RE, is the ring 

current, composed of 10s to a few 100s keV ions and electrons drifting opposite directions about 

Earth, creating a westward-directed current.  While less dense than the plasmasphere (typical 

ring current densities are ~1 cm-3), this population contains the bulk of the energy density in the 

inner magneosphere.  This population is also responsible for providing the free energy source for 

some types of wave growth in the inner magnetosphere.  The strength of the ring current, as well 

as its composition, is highly dependent on geomagnetic activity, and the dynamics of this region 

during geomagnetic storms will be discussed further in Section 2.1.3. 
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Figure 2.2  Lines of constant potential from the convection electric field (upper left), corotation 
electric field (upper right), and the total electric field (bottom), a combination of the two.  (Top 
panels from Lyons and Williams, 1984; bottom panel adapted from Kavanagh et al., 1968) 
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Figure 2.3  Extreme ultraviolet (EUV) images of the plasmasphere taken by the IMAGE satellite.  
The sun is to the right, and the shadow of Earth is visible on the left hand side of each image.  Left 
hand panel shows an extended plasmasphere prior to the April 2001 storm, while the right panel 
shows the post-storm plasmasphere, compressed in closer to Earth with a drainage plume extending 
outward towards the dayside magnetopause.  (Copyright Jerry Goldstein/SwRI) 

 

The most energetic and tenuous population in the inner magnetosphere is found in the 

radiation belts, toroidal regions of energetic particles.  In the steady state picture, two belts exist: 

an inner belt, centered around 1.5 RE and dominated by multi-MeV protons, and an outer belt, 

peaking between 4-5 RE, composed primarily of electrons ranging from 100s keV up to multi-

MeV energies.  A region of low flux, called the slot region, exists in between the two belts.  

Typical fluxes of the two species during solar maximum are shown in Figure 2.4 based on 

NASA’s  empirical AP/AE-8 model, a statistical model derived from over 20 satellites.   

2.1.2 Charged Particle Motion 

The toroidal shape of the radiation belts is dictated by charged particle motion in a dipole 

magnetic field, which is composed of three main, periodic motions – gyration about the field 

line, bouncing along the field line, and drift motion about Earth (illustrated in Figure 2.5).  

Particles gyrate perpendicularly around a magnetic field line, electrons in a right handed sense  
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Figure 2.4 NASA AP-8 and AE-8 empirical models for the radiation environment during solar 
maximum. Top panel (AP-8) shows integral proton flux for energies >10 MeV and bottom panel (AE-
8) >1 MeV integral electron flux. Axes show distance in units of Earth radii (RE).  (From the Space 
Environment Information System website – www.spenvis.oma.be) 

 

and protons left handed.  The gyration or cyclotron frequency is defined as !i = |qi|B/mi, where i 

denotes particle species, q particle charge, B magnetic field strength, and m the mass of the 

particle.  As a particle travels along a field line, the field-aligned gradient of the magnetic field 

will cause its velocity parallel to this field (v||) to decrease and ultimately reverse at a “mirror 
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point,” whose location is determined by the magnetic field gradient and the particle pitch 

angle, defined as " where tan(")=v!/v||.  This mirror point occurs at the point at which 

B=B0/sin2"0, where B0 is the minimum field strength along the field line and "0 the pitch angle at 

this minimum.  Particles in the magnetosphere whose mirror point is below ~100km altitude will 

be lost to the atmosphere before they can return up the field line, while particles mirroring above 

this height remain trapped in the inner magnetosphere.  A loss cone can thus be defined as all 

pitch angles small enough to be lost to the atmosphere for a given magnetic field configuration.  

An empty loss cone would imply that all particles remain trapped in the magnetosphere, while a 

full loss cone would lead to rapid particle precipitation.   

         

Figure 2.5  The three characteristic motions of a charged particle in a dipole magnetic field.  An 
electron (proton) will gyrate about the field line in a right (left) hand sense (depicted on the far left).  
A field-aligned gradient of the magnetic field causes a particle’s parallel velocity to decrease as it 
moves to regions of higher field strength, until a point termed the “mirror point” when it reverses 
and returns back along the field line.  Motion between two mirror points creates the bounce motion 
depicted in the middle panel.  Finally, field gradient and curvature effects cause electrons (protons) 
to drift eastward (westward) about Earth as they gyrate and bounce (depicted on the far right).  
(From Kivelson and Russell, 1995) 

 

Finally, the curvature and radial gradient of Earth’s magnetic field cause electrons to drift 

eastward about Earth and ions to drift westward.  This charge-dependent drift is the source of the 

ring current, described previously.  Figure 2.6 shows the timescales associated with these 

periodic motions for electrons and protons over a range of energies and radial distances.  For a 1 
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MeV electron in the outer radiation belt, gyration, bounce, and drift periods are roughly 10-3, 

100, and 103 seconds, respectively. 

 

 

Figure 2.6  Gyration, bounce, and drift frequencies for equatorially mirroring particles in Earth’s 
magnetic field as a function of energy and radial distance. (Adapted from Schulz and Lanzerotti, 
1974) 

 

With each of these periodic motions is an associated adiabatic invariant, whose value is 

conserved so long as fields do not vary on timescales faster than the oscillation frequency.  The 

first adiabatic invariant µ, associated with gyromotion, is defined as p!
2/2m0Bo, where p! is the 

momentum perpendicular to the background magnetic field B0, and m0 is the rest mass.  The 

second invariant J equals 

! 

" p|| ds, or the momentum parallel to B0 integrated over the guiding 

center path of the particle over one bounce period.  This is often rewritten as K=J/[2#(2m0µ)].  

Finally, the third adiabatic invariant ϕ is related to the drift motion of a particle about Earth, and 

is equal to the magnetic flux contained within the orbit path.  This invariant is often written in 

terms of the Roederer L* parameter, equal to 2$k0/(ϕRE), where k0 is Earth’s magnetic moment 
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[Roederer, 1970].  In a perfect dipole field, L* is equal to a parameter known as McIlwain L.  

This L is defined as the geocentric distance to a magnetic field line at its equatorial crossing 

point, in units of RE [McIlwain, 1961].  In non-dipolar or time-varying fields, this L value is not 

necessarily conserved and is no longer equivalent to L*, but it is less computationally expensive 

to calculate and still useful for organizing particle populations in the inner magnetosphere so L 

or L shell will often be used in studies presented here.   

These adiabatic invariants are often used when examining particle phase space density 

(PSD) in the radiation belts.  Typically a function of position and velocity vectors, PSD can also 

be expressed in terms of these three adiabatic coordinates, µ, K, and L*.  This coordinate system 

is often used to distinguish between true acceleration/loss of particles and simply adiabatic 

changes that will revert back to the original state once a disturbance passes.  PSD profiles are 

also commonly used to identify the source location of electron energization [e.g. Green and 

Kivelson, 2004].   

2.1.3 Geomagnetic Storms 

Geomagnetic storms are temporary global disturbances of the magnetic field, driven by 

transient solar wind events.  One of the most common measures of a storm is the Disturbance 

Storm Time, or Dst, index.  As the storm-time ring current becomes enhanced, this current 

induces a southward magnetic field, oppositely directed from that of Earth’s.  This negative 

deflection in field strength is measured at multiple magnetometer stations on the ground, and is 

used to create the Dst index.  An example of this index is shown in Figure 2.7, capturing a large 

geomagnetic storm occurring around Day 25.  The maximum deflection of the field (or Dstmin) 

reaches roughly -140 nT, indicated by the red star.  Storms can typically be broken up into three 

phases: storm sudden commencement or “initial phase”, where the Dst becomes positive briefly; 
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the “main phase”, as the ring current builds up to its maximum and Dst drops to negative 

values; and finally the “recovery phase” as the storm-time ring current decays away, returning 

Dst and the magnetosphere to a quiet-time state.   

      

Figure 2.7  Dst index during a geomagnetic storm occurring on Day 25.  The three primary storm 
phases are marked in different colors, pink, purple, and yellow. (From Sarachaga et al., 2014) 

 

Two main solar wind drivers of geomagnetic storms exist: coronal mass ejections 

(CMEs) and corotating interaction regions (CIRs).  CME-driven storms typically have large 

negative Dst signatures and are most frequent during solar maximum.  CIR-driven storms, on the 

other hand, often produce less extreme excursions in Dst but have more extended recovery 

phases [Borovsky and Denton, 2006].  They are associated with high speed streams (HSSs) in the 

solar wind, produced by coronal holes on the sun, most common during the declining phase of 

the solar cycle.  These storms are often recurrent with a 27-day periodicity, the solar rotation 

period.  Geomagnetic storms can have dramatic effects on the particle populations within Earth’s 

magnetosphere, and the two storm types often result in different magnetospheric responses.  In 

particular, the radiation belt is highly responsive to geomagnetic activity, and these dynamics are 

described in the following section. 
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2.2 Radiation Belt Dynamics 

While the inner radiation belt is fairly stable, the outer belt can be highly dynamic, with 

often-unpredictable variations in intensity and spatial extent, particularly following geomagnetic 

storms.  The physical processes controlling the acceleration and loss of trapped relativistic 

electrons in the radiation belts are complex, and there are a number of competing processes that 

can combine to produce net enhancements or depletions of the belts.  NASA’s Van Allen Probes 

mission [Kessel et al., 2012], launched in August 2012 to investigate these dynamics, has 

provided an unprecedented look at the detailed phenomena affecting the radiation belts.  Figure 

2.8 from Baker et al. [2013] illustrates this highly variable response of the outer radiation belt to 

geomagnetic storms, showing 4.5 MeV electrons measured by the Van Allen Probes/REPT 

instrument [Baker et al., 2012] across L* and time during three consecutive storms, each of 

roughly similar magnitude as indicated by the Dst index on the bottom panel.  Understanding the 

combination of processes that produce these dramatically different responses in the magnitude, 

location, and structure of the outer belt is still an open area of study.  

More statistically, Reeves et al. [2003] found that roughly 50% of geomagnetic storms 

cause enhancements in the outer radiation belt, ~20% cause depletions, and the remaining 30% 

result in no significant change in MeV electron flux.  Understanding which storms cause what 

response, and if there are any predictive factors in the solar wind or magnetosphere, has long 

been a subject of study in the radiation belt community.  To understand radiation belt dynamics 

and ultimately predict relativistic electron variations, an understanding of both acceleration and 

loss mechanisms is needed.  Below we briefly review some of the primary acceleration and loss 

processes affecting radiation belt electrons.   
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Figure 2.8 (a) 4.5 MeV electron measurements from the Van Allen Probes/REPT instrument from 
early mission.  (b-d) The solar wind speed, interplanetary magnetic field, and Dst index, respectively, 
for this same period.  As evident from panel (d), three geomagnetic storms occur (~9/1, 9/30, and 
10/9), each resulting in dramatically different responses in the outer radiation belt electrons.  (From 
Baker et al., 2013)   

 

2.2.1 Acceleration Mechanisms 

Two main electron acceleration mechanisms exist in the outer radiation belt: inward 

radial transport and local heating.  By conserving the first and second adiabatic invariants, radial 

transport can energize electrons by moving them inward to smaller radial distances from Earth 

and thus into regions of increased magnetic field strength.  This process can be accomplished via 
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large scale electric and magnetic field fluctuations at periods comparable to the electron drift 

period (~mHz for outer belt electrons) [Falthammar, 1965].   

Local heating, on the other hand, occurs via wave-particle interactions that violate the 

first adiabatic invariant, causing local energy diffusion.  Signatures of this acceleration 

mechanism have been identified by a peak in phase space density within the heart of the outer 

radiation belt, rather than a flat profile or gradient increasing outwards [e.g. Green and Kivelson, 

2004; Reeves et al., 2013].  Whistler mode chorus waves are a primary mechanism shown to 

cause substantial local heating [Temerin et al., 1994; Li et al., 1997].  As depicted in Figure 2.9, 

these waves are generated outside the plasmasphere on the dawn side (~midnight to noon) from 

the free energy provided by anisotropic (T!>T||) keV electrons injected from the tail during  

     

Figure 2.9 A cartoon schematic of the inner magnetosphere, looking down on the equatorial plane 
with the sun towards the top.  A few of the primary wave modes important for the dynamics of outer 
radiation belt electrons are depicted, namely plasmaspheric hiss (green), whistler mode chorus 
(blue), and electromagnetic ion cyclotron (EMIC) waves (orange), in their expected regions of 
generation.  These modes can all resonate with energetic electrons, causing energy as well as pitch 
angle diffusion.  (Adapted from Summers et al., 1998) 
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active times.  With frequencies ranging from ~100Hz to 5 kHz (~0.1-0.8 !e), these right-hand 

polarized waves often occur in discrete elements of rising or falling tones [Li et al., 2012] and 

are resonant with the gyrofrequency of energetic electrons (!e).  

2.2.2 Loss Mechanisms 

A number of relativistic electron loss processes also exist in the inner magnetosphere, the 

primary ones being: magnetopause shadowing, outward radial diffusion, and precipitation into 

the atmosphere.  Magnetopause shadowing occurs when the drift paths of energetic electrons 

intersect the magnetopause and are thus lost to this outer boundary.  This mechanism has been 

shown to produce rapid loss often seen at outer edge of the radiation belt during the main phase 

of geomagnetic storms, under sharp pressure pulses in the solar wind [Li et al., 1997; Millan and 

Thorne, 2007]. 

Similarly to inward radial diffusion described previously, outward diffusion can cause de-

energization and further losses to the magnetopause by transporting electrons to regions of lower 

magnetic field strength.  As the direction of radial diffusion (inward or outward) is determined 

by PSD gradients, a sharp decrease in the electron population at larger radial distances, due for 

example to magnetopause shadowing, can cause enhanced outward diffusion [Shprits et al., 

2006; Turner et al., 2012].   

Finally, precipitation of electrons into the atmosphere, as a result of pitch angle scattering 

into the loss cone, is another important loss process of radiation belt electrons.  A number of 

different wave types can resonantly interact with MeV electrons, breaking their first invariant 

and scattering their pitch angles to small enough values that they collide with the atmosphere 

before mirroring back up the field line.  Hiss, whistler mode chorus, and electromagnetic ion 

cyclotron (EMIC) waves, all illustrated in Figure 2.9 in their respective generation regions, can 
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contribute to precipitation losses in this way.  Plasmaspheric hiss, concentrated within the 

cold, high-density plasma region of the inner magnetosphere, is a broadband whistler mode wave 

with frequencies ranging from ~100Hz – few kHz.  This wave mode can precipitate electrons at 

low L shells and has been accredited for creation of the slot region between the inner and outer 

radiation belts [Lyons and Thorne, 1973].  Whistler mode chorus waves, mentioned previously as 

a source of energy diffusion and local acceleration, can also cause pitch angle diffusion.  As both 

a potential acceleration and loss mechanism, these waves will be discussed in more detail in 

Chapter 5.  Finally, EMIC waves range from ~0.1 – 5Hz and appear at frequencies below and 

approaching the local proton gyrofrequency (!p), typically with stopbands at the 0+, He+, and H+ 

gyrofrequencies.  These waves, generated by anisotropic (T!>T||) keV ions as they drift across 

the dusk sector, can also resonate with MeV electrons, causing pitch angle scattering and loss.  

These waves will be discussed in more detail in Chapters 3 and 4.   

As demonstrated in Figure 2.9, the generation regions of these various wave modes, 

which can cause electron acceleration as well as loss, are highly dictated by location of the cold 

plasma population and plasmapause boundary.  Additionally ring current particles often provide 

the free energy source for wave generation.  The coupled nature of these diverse magnetospheric 

populations is apparent, as well as the important role electromagnetic waves play in the transfer 

of energy from one to the other.    

2.3 Wave-Particle Interactions 

Wave-particle interactions play a critical role in radiation belt dynamics, providing a 

source of both acceleration and loss of energetic electrons in the inner magnetosphere.  A brief 

review is presented here of some of the basic physics behind resonant wave-particle interactions 
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leading both to energy diffusion as well as pitch angle scattering.  In particular, we focus on 

waves resonant with the gyromotion of energetic electrons, which can change a particle’s 

momentum as well as energy by breaking the first adiabatic invariant.  The resonance condition 

governing this interaction can be written as: 

! 

" # k||v|| =
n$
%      

(2.1) 

where % is the wave frequency, k|| and v|| the components of the wave vector and particle 

velocity, respectively, parallel to the background magnetic field, ! the qyrofrequency of the 

particle, & the relativistic factor, and n some integer multiple (=0, ±1, ±2, etc).  For a particle 

approaching a wave of the same polarization and of frequency less than !, the wave frequency 

may be Doppler shifted upwards to match that of the particle.  In this case, a particle in phase 

with the oscillating electric and magnetic fields of the wave can either lose or gain energy in both 

the perpendicular and parallel directions, causing either wave growth or damping and particle 

energization [Tsurutani and Lakhina, 1997].  This type of resonance can occur, for example, 

between right hand polarized (RHP) whistler mode chorus waves and electrons, which gyrate in 

the right-handed sense, as they propagate along a field line towards each other (Figure 2.10 

depicts this same type of interaction between and ion and LHP wave).   

Anomalous resonance, on the other hand, can cause interaction between waves and 

particles with oppositely handed polarizations.  In this situation, as an electron (or ion) overtakes 

a LHP (RHP) wave, the wave polarization appears reversed in the reference frame of the particle, 

allowing resonance conditions to be met.  EMIC wave resonance with MeV electrons is one 

example of this type of interaction [Thorne and Kennel, 1971].   

These resonant interactions are often described as a diffusive process, where the net result 

after multiple interactions between many electrons and wave packets is to smooth out pitch angle  
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Figure 2.10 A schematic illustrating the interaction between gyroresonant waves and particles.  The 
top panel illustrates a scenario resulting in normal cyclotron resonance, and the bottom panel shows 
how both the parallel and perpendicular velocities of the particle can be altered by the wave via the 
Lorentz force. (From Tsurutani and Lakhina, 1997) 

 

and energy gradients.  While this quasilinear diffusion formalism is not necessarily appropriate 

for large monochromatic waves, such as the large amplitude whistler mode waves first reported 

by Cattell et al. [2008], it has been shown to well represent the bulk electron behavior for a large 

number of wave types [Thorne et al., 2013].   

2.4 Open Questions and Motivation 

Above, we’ve described the variability of the outer radiation belt and outlined some of 

the key processes involved in causing enhancements and depletions of the energetic electrons 

trapped in this region.  While much work has been done on these topics, critical open questions 

remain regarding the contribution of each of these processes to overall outer belt dynamics.  

When and where do losses dominate over acceleration mechanisms?  What role does 

precipitation play in these losses, compared to magnetopause shadowing or outward radial 

diffusion?  And what mechanisms or wave modes are primarily responsible for the precipitation?  
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In the following work, we investigate the contribution of wave-particle interactions and 

precipitation loss to the overall dynamics of the outer radiation belt.   
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Chapter 3: A Plasma-Based Proxy for EMIC Waves 

The following chapter is based primarily on work that was published in Blum et al. (2012), A 

comparison of magnetic field measurements and a plasma-based proxy to infer EMIC wave 

distributions at geosynchronous orbit, J. Geophys. Res., 117, A05220.  

3.1 Introduction 

Plasma waves in Earth’s inner magnetosphere can resonantly interact with trapped 

electrons and accelerate them to MeV energies as well as cause pitch angle diffusion and scatter 

them into the atmosphere.  Theory has shown that electromagnetic ion cyclotron (EMIC) waves 

are one such source of pitch angle scattering and can thus cause electron precipitation and 

enhanced losses to the outer radiation belt [Thorne and Kennel, 1971].  EMIC waves are 

generated in the inner magnetosphere by anisotropic (T! > T||) keV ion populations as the ions 

convect in from the tail and drift westward around Earth (e.g., Anderson et al., 1996).  Large 

anisotropies, as well as the presence of cool plasma, can produce enhanced EMIC wave growth 

[Cornwall et al., 1970; Horne and Thorne 1993].   

EMIC waves often occur in the afternoon sector where ring current ions overlap cool, 

dense plasmaspheric plumes [Spasojevic et al., 2004].  A number of studies have examined the 

distributions of EMIC waves across local time and L shell using magnetometer measurements 

from a variety of satellites including CRRES, GOES, AMPTE CCE, and DE 1 (e.g., Meredith et 

al., 2003; Clausen et al., 2011; Anderson et al., 1992; Erlandson and Ukhorskiy, 2001, 

respectively).  In the inner magnetosphere, the waves are observed primarily on the dusk side, 

with occurrences peaking during the main phase of storms but often persisting into the recovery 
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phase as well [Fraser and Nguyen, 2001; Bossen et al., 1976; Halford et al., 2010].  While in 

situ EMIC measurements show strong wave activity during the main phase of storms, a relative 

absence is observed in ground measurements of Pc1-Pc2 waves during this storm phase 

[Engebretson et al., 2008, Posch et al., 2010].   

EMIC waves are able to gyroresonate with both keV ions as well as MeV electrons, 

breaking the first adiabatic invariant and scattering the particles into the loss cone [Albert, 2003; 

Summers and Thorne, 2003].  In order to better quantify losses of radiation belt electrons due to 

EMIC waves, an understanding of the waves’ global distributions is needed.  As these waves are 

a localized phenomenon, multi-point measurements are necessary to accurately measure EMIC 

distributions and determine the spatial and temporal extent of the waves. 

To enable better investigation of the spatial and temporal evolution of these waves, as 

well as their storm-time distributions, we develop a plasma-based proxy for EMIC wave activity 

based on Alfven-cyclotron instability theory [Gary et al., 1994].  Using in situ plasma 

measurements from the Los Alamos National Laboratory (LANL) instruments onboard 

geosynchronous satellites, this EMIC proxy is calculated and compared to in situ wave 

measurements from the GOES satellites to investigate the accuracy and validity of such a proxy 

over local time and during varying levels of geomagnetic activity.  We look both at single events, 

as well as statistical distributions, and compare the LANL proxy to GOES direct EMIC wave 

measurements.  The proxy is found to correspond well with measured waves both statistically 

and for individual instances, demonstrating the value of plasma measurements to infer EMIC 

wave distributions.  Subsequent studies have also investigated this proxy and these will be 

briefly described in Section 3.5.   
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3.2 Linear Theory and Proxy Development 

       Observations, theory, and simulations have established the following general picture for 

the interaction of anisotropic ion velocity distributions and enhanced EMIC fluctuations in space 

plasmas.  Consider an idealized electron-proton collisionless plasma in which both species are 

represented by bi-Maxwellian velocity distributions.  Consider the condition T!p/T||p > 1, where 

the directional subscripts represent directions relative to the background magnetic field and “p” 

denotes protons.  If this anisotropy is sufficiently large, it will excite growth of the 

electromagnetic proton cyclotron anisotropy instability [Gary, 1993].  The resulting enhanced 

EMIC fluctuations have maximum growth at kxBo = 0, where Bo is the background magnetic 

field and k is the wave vector, with a range of frequencies 0 < " < #p where the latter symbol 

represents the proton cyclotron frequency.  The fluctuations from this instability are further 

characterized by left-hand polarization and weak magnetic compressibility. 

 The enhanced fluctuations are resonant with and scatter the protons so as to reduce 

T!p/T||p and thereby quench the instability.  As a result an upper bound is imposed upon the 

proton anisotropy, which can be written as  

! 

T"p
T|| p

#1=
Sp
$|| p
% p

      (3.1) 

where $||p = 8%npT||p/Bo
2 and Sp and "p are parameters which are obtained by a fit to the 

instability threshold condition derived from linear theory.  For example, choosing the maximum 

growth rate to be &/'p = 10-3 yields Sp = 0.43 and $p = 0.42 for a fit over the range 0.01 ' $||p ' 

10 [Gary et al., 1994]. 

 In the terrestrial magnetosphere, observations show the existence of two or more distinct 

components in ion velocity distributions.  Consider the idealized picture of two proton 
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components, one hot (denoted by subscript h) and one cool (subscript c).  In the plasmasphere, 

nc >> nh and T||h >> T||c; the cool component is relatively dense and collisional so that it is 

relatively isotropic.  Beyond the plasmasphere, the cool component persists but at densities such 

that nc ~ nh.  The presence of the cool component modifies the properties of the proton cyclotron 

instability so that the upper bound on the anisotropy is written as  

! 

T"h
T||h

#1=
Sh
$||h
%h

      (3.2) 

where $||h = 8%nhT||h/Bo
2 and Sh and "h are fitting parameters which are functions of both &/'p 

and nh/ne, where ne is the electron density, which we take to be equal to nh + nc [Gary et al., 

1994].  Equation 3.2 has the same form as Equation 3.1, namely that of a limiting temperature 

anisotropy, though the limit to the instability now has a more complex description.  If we choose 

a fixed value of the maximum growth rate, we can then use linear theory to determine how these 

two fitting parameters vary with the relative hot proton density.  Linear theory shows that both 

parameters are relatively weak functions of nh/ne.  We have quantified this result by choosing the 

forms:  

! 

Sh =" 0 +"1 ln nh ne( ) +" 2 ln nh ne( )[ ]2   (3.3a) 

and 

! 

"h = a0 # a1 ln nh ne( ) # a2 ln nh ne( )[ ]2    (3.3b) 

Then, assuming &/'p = 10-3, we fit linear theory results to these two curves, obtaining %0 = 0.429, 

%1 = 0.124, %2 = 0.0118, a0 = 0.409, a1 = 0.0145, and a2 = 0.00028.  Table 3.1 provides the values 

of the constants ! and a calculated for various other growth rates. 
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Table 3.1  Values for constants !  and a in the expressions for fitting parameters Sh (Equation 3.3a) 
and "h (Equation 3.3b), calculated for three different local temporal growth rates & /'p. 

 

The most direct determination of EMIC wave activity in space plasmas is through the use 

of spacecraft magnetometers, which measure the level of magnetic fluctuations near and below 

the proton cyclotron frequency.  However, the plasma data described below is obtained from 

LANL spacecraft that do not carry magnetometers; thus we have developed a procedure, similar 

to MacDonald et al. [2008] for whistler waves, whereby theory and plasma observations become 

a proxy for direct measurements of wave activity. 

      The procedure is as follows: we define the observational EMIC parameter 

! 

"h =
T#h
T||h

$1
% 

& 
' 

( 

) 
* +||h

,h      (3.4) 

where T!h, T||h, and nh are measured by the plasma instrument, "h is determined via Equation 

3.3b using measured values of nh/ne, and the background magnetic field Bo necessary to calculate 

$||h is taken from the T89 magnetic field model [Tysganenko, 1989].  As "h is a very weak 

function of &/'p, we use the expression for "h associated with &/'p = 10-3 in all calculations of 

#h.  If we then plot experimental values of #h as a function of the relative hot proton density, 

those values can be compared against the theoretical expression for the threshold Sh given as 

Equation 3.3a.  If #h < Sh for a measurement time interval, it is likely that the hot protons are not 
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sufficiently anisotropic to excite the Alfven-cyclotron instability at the prescribed growth rate.  

In contrast, if the observations yield #h > Sh, it is likely that this mode is unstable during the 

measurement.  Thus a comparison of the two quantities #h and Sh becomes a proxy for 

determining the level of enhanced EMIC wave activity.  We expect that the choice of an 

appropriate value of the maximum growth rate will yield an Sh which provides a statistical upper 

bound on the observed #h.  The growth rate needed to bound the observed anisotropies should be 

an indication of how strongly the instability is driven.  Where #h=Sh for a given temporal growth 

rate &, wave growth at this rate is expected.  To help visualize these expressions, Figure 3.1 

shows the dependence of this #h-Sh value on density ratio nh/ne and hot plasma beta $||h for 

&=0.001 for three different temperature anisotropies (defined as  Ahp=T!h/T||h -1). 

   

Figure 3.1 Contours of #h-Sh in the $ ||h – nh/ne plane for three temperature anisotropy values and a 
constant =0.001.  (From Lin et al., 2014) 

 

This proxy is further developed to calculate physical wave characteristics and enable a 

more quantitative comparison to direct wave measurements.  Using Sh expressions for &/'p 



 

  

28 

=0.001, 0.004, and 0.01, and interpolating linearly between these values, a & value is found for 

each #h measurement such that #h=Sh(&/'p).  Next, using the warm plasma dispersion relation 

and following Equation (4) of Kozyra et al. [1984], the group velocity is calculated, and thus the 

convective growth rate (&/vg) for the waves.  Following Jordanova et al. [1997] and Chen et al. 

[2009], the path-integrated gain G is calculated in decibels by integrating the convective growth 

rate along the source region of the field line:   

! 

G = 20log10 e
"
vg#1

# 2
$ ds

     (3.5) 

where !1 and (2 are the lower and upper limits of the source region.  We assume parallel 

propagating waves, a dipole magnetic field, the source region to be +/- 10° magnetic latitude, 

and the growth rate and group velocity to be constant within this region.   

Finally, we adopt the simple scaling model used by Jordanova et al. [2001] to compute a 

wave amplitude Bw:   

! 

Bw = Bsat "10
(G#Gmax ) Gmin     (3.6)          

where Bsat is the saturation amplitude of the waves, Gmax is a maximum gain, above which 

saturation is assumed, and Gmin the minimum gain, below which growth and wave-particle 

scattering is considered to be negligible.  Comparing to statistical studies of EMIC wave 

amplitudes, which typically measure waves to be ~1-3 nT in the inner magnetosphere, with a 

maximum observed magnitude ~10 nT [Erlandson and Ukhorskiy, 2001; Anderson et al., 1992], 

we set Bsat=10 nT, Gmin=13.3 (equivalent to an amplitude of 0.1 nT), and Gmax=40 (10 nT).  

Below this Gmin value, waves drop below magnitudes detectable by the GOES spacecraft.  To 

better match wave amplitudes measured by GOES, our selections for these values differ from 
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those used by Jordanova et al., [2001], who takes Gmin=20 and Gmax=60.  While this 

amplitude calculation includes a number of assumptions, it allows for estimation of physical 

wave characteristics, for quantitative comparison to the wave measurements themselves.  We 

discuss the implications of these assumptions in more detail in the Section 3.4.2. 

3.3 Proxy Validation: Observations 

LANL data from geosynchronous orbit are used to investigate the in situ plasma 

conditions during a set of events.  Using the Magnetospheric Plasma Analyzer (MPA) 

instrument, bulk moments are obtained for the density of cool ions (defined as <100 eV), the 

density of warm ions (100 eV – 45 keV), as well as the warm ion temperature both parallel and 

perpendicular to the background magnetic field (T|| and T!, respectively).  As MPA cannot 

distinguish among ion species, a pure proton population is assumed.  The background magnetic 

field direction is inferred from symmetry in the plasma distributions [Thomsen et al., 1999].  The 

T89 magnetic field model is used to calculate the magnitude of the background field Bo. 

The inferred waves are compared to wave measurements taken by the GOES satellites, 

also at geosynchronous orbit.  Using 0.512-second high-resolution magnetometer data, re-

sampled at a constant resolution of 0.6 s, dynamic spectra are computed for all three magnetic 

field components using a Fast-Fourier Transform (FFT) with a 1 hour window, advanced in 20 

minute steps, following the analysis performed by Clausen et al. [2011].  The instrument 

response is suppressed for frequencies between 0.5 – 1.0 Hz, so only EMIC waves with 

amplitudes > 1 nT are resolvable up to ~0.8 Hz, and amplitudes > 0.1 nT below 0.5 Hz [Fraser 

et al., 2010].  This enables identification of waves in the He+ and O+ bands, and the lower 

portion of the H+ band.  To automate identification of EMIC waves from the spectrograms, an 
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algorithm developed and described by Clausen et al. [2011] is employed.  This algorithm 

selects waves between 0.1 - 0.8 Hz, with total power spectral density in the transverse 

components greater than 10 nT2/Hz above the background noise lasting 15 minutes or more.  

Figure 3.2 demonstrates the output of this algorithm for a single day of GOES data, where the 

red boxes indicate EMIC wave selections.   

 

Figure 3.2 Spectrograms of GOES 0.512 s magnetometer data.  Wave powers are shown in the 
azimuthal, radial, and field-aligned directions, with respect to the background magnetic field.  Red 
boxes indicate activity identified as EMIC waves, as selected by the Clausen et al. [2011] algorithm. 

 

Using these data sets, we perform both single event comparisons as well as a superposed 

epoch study of 52 events.  For the statistical study, a set of energetic electron flux dropouts taken 

from Green et al. [2004] is used, where events were chosen based on a decrease in the >2 MeV 

electron flux, as measured by GOES, by a factor of 100 or greater when compared to the flux on 

the previous day.  On average, these events show a dip in Dst reaching a minimum of -40 nT in 

the day following dropout onset (zero epoch).  Solar wind conditions and geomagnetic indices 

during these events are shown in Figure 3.3.  While Green et al. [2004] looked at these events to 

investigate the potential causes of the relativistic electron dropouts, they are used here as a 
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convenient event list for which both LANL and high-resolution GOES data are available.  

Investigation of the link between the waves and the radiation belt flux dropouts is not the focus 

of the present study.  Below, we first present GOES and LANL data from a single day during 

one such dropout event, and then place it in the larger context of the statistical study.  

 

Figure 3.3 Superposed solar wind conditions and geomagnetic indices during the 52 dropout events 
investigated here.  (From Green et al., 2004) 

3.3.1 January 10th, 2000 

Data are presented from the GOES 10 and LANL-89 (1989-046) satellites for one such 

event on January 10th, 2000, where LANL-89 trails GOES by 2 hours.  This dropout event, with 

zero epoch occurring at 5 UT, takes place just prior to the onset of a geomagnetic storm, with 

minimum Dst reaching -81 nT on January 11 around 22 UT.  This day is selected for comparison 
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because GOES detects EMIC waves at 5 distinct times throughout the day; we investigate the 

accuracy of the plasma-based proxy for each of these instances of wave activity, which are 

distributed across a range of local times.  On the 10th, EMIC waves are measured first by GOES 

at 4 UT, followed by subsequent bursts at roughly 5, 8, 17:30, and 23:10 UT (see Figure 3.2).   

The various plasma parameters measured by LANL MPA and used to calculate the EMIC 

proxy are presented in Figure 3.4.  Figure 3.4a shows the cool plasma density, enhancements 

indicating crossings into plasmaspheric bulge or plume regions.  In Figure 3.4b, we show hot 

proton density, and in c the hot proton temperature anisotropy, defined as T!h/T||h-1.   Elevated 

anisotropies, concurrent with enhanced cool and hot plasma densities, combine to create four 

separate times where the proxy exceeds the instability threshold for a growth rate &/'p = 10-3 

(Figure 3.4d).  For these times, the wave amplitude is calculated (Figure 3.4e) following the 

steps previously outlined in Section 3.2.  Below this panel, in Figure 3.4f, average amplitudes of 

the EMIC waves measured by GOES 10 are shown.  GOES amplitudes are approximated by 

calculating the square root of the wave power, integrated over the frequency range of the activity 

as identified by the Clausen et al. [2011] algorithm described in Section 3.3.  When waves in 

multiple bands are detected simultaneously (e.g., 4-5 UT), the average amplitude of the two 

wave bursts is calculated, as the LANL EMIC proxy does not distinguish the exact frequency of 

the EMIC activity it infers.  Simultaneous waves in multiple bands are measured relatively 

infrequently (during roughly 2% of the GOES wave detections) so we do not expect this to 

greatly affect our statistical results.  From Figure 3.4e and f, it is evident that each EMIC wave 

burst measured by GOES 10 is subsequently detected in the LANL-89 data. 
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Figure 3.4 LANL-89 MPA data for 10 January 2000. (a) Cool proton density, (b) hot proton density, 
and (c) hot proton anisotropy are shown versus universal time (UT). (d) The EMIC wave proxy #h in 
black, calculated following equation (3.4). We have included calculations of the theoretical instability 
threshold Sh for local growth rates of 10-3 (lower red line) and 10-2 (upper red line), following 
equation (3.3a) and using values found in Table 3.1. The instability threshold for a growth rate of 
& /'p = 10-3 is exceeded at four different instances. Grey-shaded regions are periods where MPA data 
are unavailable. (e) The calculated wave amplitude during the four times when the threshold is 
exceeded. (f) The EMIC wave amplitudes measured by GOES 10 are presented for comparison. 

 

3.3.2 52 Event Superposed Epoch Study 

The LANL spacecraft are not equipped with field measurements, and GOES 8, 9, and 10 

do not provide the necessary plasma parameters to calculate the EMIC proxy.  Thus, the 

conclusions drawn from single event comparisons of wave amplitude are limited by the physical 

separation of the spacecraft.  Therefore, we perform a superposed epoch study of 52 relativistic 

electron flux dropout events and compare EMIC wave distributions across both local and epoch 

times.  Following Green et al. [2004], events are superposed to align the onsets of the electron 

dropouts, where zero epoch is set to the time when the >2 MeV electron flux drops by a factor of 

two as compared to the flux level on the previous day.  On average, minimum Dst falls within 
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one day after zero epoch and a small storm sudden commencement (SSC) is observed just 

before zero epoch, so for events associated with storms, the dropouts occur primarily during the 

main phase (see Figure 3.3).  There is also, on average, an increase in AE activity coinciding 

with zero epoch.  These events are often preceded by increased solar wind dynamic pressure and 

a southward turning of the interplanetary magnetic field [Green et al., 2004]. 

Figure 3.5 shows normalized occurrence rates of both the plasma-based LANL proxy 

(Figure 3.5a), as well as the GOES EMIC wave measurements (Figure 3.5b).  The LANL data 

 

Figure 3.5 Distributions of EMIC wave occurrences over local and epoch times from (a) the plasma-
based proxy from LANL MPA data and (b) wave measurements from GOES.  The color bar 
indicates normalized occurrence rates in hourly time bins. 

 

set utilizes measurements from 6 spacecraft distributed in local time, while GOES includes data 

from the GOES 8, 9, and 10 spacecraft depending on availability.  For each dataset, the number 

of measurements made during EMIC activity (measured or inferred), divided by the total number 

of measurements in that time bin, is plotted.  Data is divided into hourly bins, and average values 

within each bin are plotted; grey bins indicate times with no data.  We choose a minimum 

amplitude of 0.1 nT for the lower threshold of the LANL proxy, to best match the GOES 
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instrument sensitivity.  Here, the proxy and wave measurements agree well qualitatively 

across both local and epoch time.  The majority of EMIC waves, ~65% of those measured by 

GOES and 69% inferred by LANL, occur between 12 and 18 MLT, in agreement with other 

statistical EMIC observations from CRRES [Meredith et al., 2003] and GOES [Clausen et al., 

2011].   

3.4 Proxy Validation: Discussion 

3.4.1 EMIC Wave Occurrence Rate Comparison 

We return to the case study previously presented to validate the proxy for individual 

events, with the caveat that wave characteristics may be varying in the two hours of local time 

between GOES 10 and LANL-89.  Figure 3.4 shows the plasma conditions combining to exceed 

the local instability threshold and incite EMIC wave activity at 4 times throughout the day, each 

slightly later in universal time than the wave activity detected by GOES 10.  The first two 

periods of wave activity detected by LANL (just after 4 UT through ~9:30 UT) occur during 

periods of enhanced cool plasma as the satellite passes through the dusk sector.  In contrast, the 

fourth occurrence of EMIC activity, beginning at LANL-89 around 17:30 UT, occurs on the 

morning side, where cool plasma density remains low but hot ion anisotropy is enhanced.  At ~ 

21 UT, as cool plasma density increases again, the hot plasma density drops to very low values, 

elevating the instability threshold (Figure 3.4d) and making wave growth more difficult.  Both 

cool plasma enhancements, as well as a large enough source population of hot ions, are needed to 

exceed the instability threshold and incite EMIC waves.  We see the EMIC instability excited 

under various plasma conditions across a range of local times, in good agreement with observed 
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EMIC waves.  This case study demonstrates the validity of the plasma-based proxy across 

local times, and for a variety of plasma parameters that combine to trigger the instability.   

Figure 3.6 compares the statistical occurrence rates of the plasma-based proxy and EMIC 

wave measurements as a function of local and epoch time by averaging the occurrence 

frequencies from Figure 3.5 across epoch (Figure 3.6a) as well as a range of local times (Figure 

3.6b, c, d, and e).  Figure 3.6a shows the distribution of LANL and GOES measurements across 

local time, and demonstrates the coherence between the proxy and wave occurrences over local 

 

Figure 3.6 Smoothed occurrence frequencies of GOES EMIC wave measurements (red) and the 
LANL EMIC proxy (black) versus (a) local time and (b–e) epoch time. (a) the distribution of waves 
over local time, averaged across all epoch days. (b–e) average occurrence rates across four local time 
sectors to show variation over epoch time. The measurements show agreement in both overall shape 
and magnitude. Mean differences as well as linear correlation coefficients between LANL and GOES 
occurrence rates are calculated for each panel. 



 

  

37 

 

 time.  There is a strong peak in both LANL and GOES from ~12 to 18 MLT, with a linear 

correlation coefficient of 0.96 between the two, and a mean difference over all local times of 

1.37%.  At local times beyond this peak, somewhat larger wave occurrences exist in the LANL 

proxy than in GOES.  These slightly elevated LANL values are also revealed when comparing 

across epoch time for various MLTs (see Figure 3.6b, c, d, and e).  This suggests that the plasma 

instability may be triggered without exciting EMIC waves of large enough amplitude for 

detection by GOES. 

We focus on Figure 3.6b, which averages EMIC occurrences from 12 through 17 MLT, 

as this is the region in which the majority of the waves occur.  Occurrence rates are elevated in 

both the LANL proxy and the GOES data beginning half a day before the onset of the dropouts 

and extending one day following, with a peak just after zero epoch.  Peak occurrence rates reach 

20-30%, with a linear correlation coefficient of 0.81 and mean difference of 3.7% between the 

LANL proxy and GOES data.  For events in this data set associated with storms, this occurrence 

peak falls in the main phase of the storms, consistent with other in situ measurements of EMIC 

waves but not necessarily with those from the ground [Halford et al., 2010; Engebretson et al., 

2008].  As is evident from Figure 3.5, the greater coverage of the LANL satellites, both over 

time and longitude, provides an excellent database to draw from for statistical EMIC wave 

studies.  Using the extensive LANL MPA database, it is possible to supplement current wave 

measurements and form a global picture of EMIC wave distributions at geosynchronous orbit 

during a variety of geomagnetic conditions.  
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3.4.2 EMIC Wave Amplitude Comparison 

Next we discuss the wave amplitude calculation and compare the resulting inferred wave 

amplitudes to those measured by GOES.  As mentioned in Section 3.2, we use a source region of 

+/- 10° magnetic latitude, as was used by Jordanova et al. [1997].  This is consistent with EMIC 

measurements from the CRRES satellite which indicate a source region constrained within +/- 

11° magnetic latitude [Loto’aniu et al., 2005].  However, the proxy wave amplitude calculation 

is fairly sensitive to this assumption (a region of +/- 5° produces a wave gain roughly half as 

large as that for +/- 10°), so while our source region choice is accurate statistically, it may be a 

source of uncertainty in gain, and thus wave magnitude, calculations for individual wave events.   

Additionally, we scale Gmin=13.3 to a wave amplitude of 0.1 nT, rather than the 

Gmin=20 used by Jordanova et al. [2001].  When using Gmin=20, there were far lower 

occurrence rates in the LANL data than the GOES, indicating that events with G<20 were still 

able to incite EMIC wave growth.  The Gmin and Gmax values used here are tuned to identify 

these smaller amplitude waves, and agree well with observations as well as theoretical 

calculations by Bortnik et al. [2011] for waves in the few nT range.  However, the sensitivity of 

the scaling model (Equation 3.6) to larger gain values causes small increases in gain to result in 

large amplitude enhancements, potentially overestimating wave amplitudes at the upper end of 

the gain scale.  As seen from the LANL amplitudes calculated for January 10th in Figure 3.4e, the 

proxy saturates on a number of occasions while the GOES measurements remain below ~2 nT.  

Measurements of >10 nT EMIC waves appear relatively rarely in the GOES data.  We choose to 

use these lower Gmin and Gmax values of 13.3 and 40, respectively, in order to calculate accurate 
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occurrence rates, despite the likely larger-than-realistic amplification of values at the upper 

end of the measurements.   

Figure 3.7 compares average wave amplitudes, measured and inferred, across both local 

and epoch time.  As was done in Figure 3.6, the mean wave amplitudes in each hourly bin are 

now averaged across epoch time (Figure 3.7a) and local time (Figure 3.7b) to enable quantitative 

comparison of the LANL predicted amplitudes to those measured by GOES.  Only bins where 

waves are detected are taken into consideration, so the GOES data is sparser, as can be seen in 

Figure 3.7b.  The GOES data here also show more scatter around the mean, most likely due to 

fewer data points from the 2 GOES satellites when compared to all 6 of the LANL.  As GOES 

wave occurrence rates are 0% for a number of hourly bins across the night and morning side, 

Figure 3.7b is not subdivided into four local time sectors, as was done in Figure 3.6.  No obvious 

trends in variation in average amplitude are exhibited in relation to either epoch or local time,  

 

Figure 3.7 Average wave amplitudes measured by GOES (red) and calculated from the LANL EMIC 
proxy (black) across local and epoch time. No significant trends in amplitude variation as functions 
of either variable are observed. Average amplitudes calculated from LANL agree well with those 
measured by GOES. 
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and the average magnitudes of the GOES and LANL measurements are very similar.  The total 

distribution of wave amplitudes is also computed for all GOES wave detections as well as LANL 

proxy calculations, and distribution properties are compared.  The mean amplitude measured by 

GOES across all local and epoch times is 1.12 nT, with a standard deviation of 0.43 nT, while 

the mean amplitude of waves inferred by LANL equals 1.13 nT, with a standard deviation of 1.6 

nT.  The average values agree well, as is also seen in Figure 3.7.  The larger standard deviation 

in the LANL inferred wave amplitudes may be due to a greater sensitivity of the proxy to low 

amplitude waves as compared to the GOES instrument response, as well as to potential 

amplitude overestimation for events at the upper end of the gain range, as discussed earlier. 

3.5 Additional Proxy Applications 

This plasma-based proxy has also been compared to various other measures of EMIC wave 

activity.  As EMIC waves are known to resonate with and scatter keV ions as well as MeV 

electrons (e.g. Carson et al., 2012), we have also compared proton aurora to this EMIC proxy.  

In Spasojevic et al. [2011], we look at events such as the one shown in Figure 3.8, during which 

a localized subauroral proton arc is observed by the Far Ultraviolet (FUV) Spectrographic 

Imager (SI) [Mende et al., 2000] onboard the IMAGE satellite [Burch, 2000].  When mapped 

along magnetic field lines to the equatorial plane, this proton aurora falls within a plasmaspheric 

plume in the afternoon sector, where the plasmapause has been determined from the IMAGE 

Extreme Ultraviolet (EUV) instrument following Goldstein et al., [2003].   

During the July 31 2001 event pictured in Figure 3.8, two LANL spacecraft were at 

locations whose footpoints mapped to within the proton aurora (see Figure 3.9).  The plasma 

conditions at these two geostationary spacecraft are investigated and the plasma-based EMIC  
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Figure 3.8 (a-e) A sequence of FUV SI12 proton aurora and EUV plasmasphere images for an event 
on July 31 2001.  The left panel is the FUV SI12 image mapped to the ionosphere in magnetic APEX 
coordinates.  The middle panel is that same image mapped along geomagnetic field lines, using the 
T96 magnetic field model and prevailing solar wind conditions, to the GSM equatorial plane.  The 
right panel is the closest-in-time EUV image mapped to the equatorial plane.  The location of the 
plasmapause is indicated by the magenta line.  Noon is to the top in all images.  In panel (e), the EUV 
image is contaminated by high background and column density values are invalid. (From Spasojevic 
and Fuselier, 2009) 
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proxy and estimated wave amplitude calculated, following the technique described in Section 

3.2.  Figure 3.10 shows the various plasma parameters as well as inferred wave amplitude 

calculated at satellite 1994-084 (green) and LANL-97a (magenta).  Figure 3.10f shows the mean 

FUV brightness in a 300 km circle around the magnetic footprint of the spacecraft as detected by  

 

Figure 3.9  Sequence of IMAGE FUV SI12 images of the proton aurora along with 300-km circles 
drawn around the magnetic field line footprint of the geostationary spacecraft 1994-084 and lanl-97a.  
The latitude circles are geomagnetic and the 12 MLT meridian is indicated.  These times correspond 
to the dashed vertical lines in Figure 3.10 below. (From Spasojevic et al., 2011) 

 

the IMAGE FUV SI12 instrument.  Vertical dashed lines correspond to the times of FUV images 

shown in Figure 3.9.  For the events presented in Spasojevic et al. [2011], good correspondence 

between proxy predictions of EMIC growth and proton precipitation within the field line 

footprint were found.  A relationship between precipitation and wave intensity (rather than just 

wave growth rate) is expected since in treating the wave-particle interaction as a quasi-linear 

process, the pitch angle diffusion rate is a function of wave amplitude [Kennel and Petschek, 

1966].  The agreement between wave amplitude and FUV brightness is, of course, not perfect, 

demonstrating the uncertainty associated with using either of these measures to infer the wave 

distribution; however, given the considerable number of assumptions upon which the proxy and 

wave amplitude predictions are based and the challenges in comparing those quantities to data 

from the ionospheric footprint, the correspondence between the proxy predictions and FUV 
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brightness is fairly impressive.  These results demonstrate the efficacy of proxy measures, as 

well as the ability to combine them to separate spatial and temporal changes in global EMIC 

wave patterns.   

         

Figure 3.10  For geostationary spacecraft 1994-084 (green) and LANL-97a (magenta): (a) cool (1-100 
eV/q) ion density (log scale), (b) hot (0.1-45 keV/q) ion density (log scale), (c) hot ion temperature 
anisotropy, A=T!h/T||h - 1, (d) EMIC wave proxy, #h - Sh, (e) estimated EMIC wave amplitude (log 
scale), and (f) mean FUV brightness in a 300 km circle around the magnetic footprint of the 
spacecraft as detected by the IMAGE FUV SI12 instrument (log scale).  The vertical dashed lines 
correspond to the times of the FUV images in Figure 3.9. (From Spasojevic et al., 2011) 

 

 This plasma-based EMIC proxy has also been investigated in numerous other studies.  

Chen et al. [2014] find good agreement among GOES measured EMIC waves, LANL inferred 

EMIC waves, as well as wave growth simulated with the kinetic ring current-atmosphere 

interactions model with self-consistent magnetic field (RAM-SCB) and a ray-tracing code 

(HOTRAY).  Figure 3.11 shows an event on June 8th 2001 comparing the modeled waves 

(black), GOES waves (pink and cyan) and LANL proxy #h > Sh (green, blue, orange).  Dots 

along the spacecraft trajectories indicate measured and inferred EMIC wave activity, occurring 
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~12-18 MLT and persisting >10 hours during this event.  These studies demonstrate the 

numerous applications of such a plasma-based proxy for EMIC wave activity, in combination 

with models, wave measurements, and particle precipitation.   

 

Figure 3.11 Comparison between EMIC wave observations and simulated maximum wave gain along 
trajectories of geosynchronous orbiting satellites as a function of UT and MLT.  The dot points along 
the trajectories denote either observation or proxy of EMIC wave event.  Four shaded areas 
represent the MLT distribution of maximum wave path-integrated over all the frequency bands at 
the selected UTs, with scale of 10 dB shown in the upper left corner. (From Chen et al., 2014) 

 

3.6 Summary 

Based on quasi-linear theory and LANL/MPA observations, we have developed a plasma-

based proxy to estimate the occurrence as well as amplitude of EMIC waves in the inner 

magnetosphere.  This proxy is derived from warm (keV) ion temperature anisotropy and warm 

and cool ion population densities as measured by the MPA instruments at geosynchronous orbit.   

To validate the use of this proxy, EMIC wave measurements from the GOES satellites 

are compared to the plasma-based proxy as measured by LANL satellites.  We investigate the 

correspondence between the plasma-based proxy and wave measurements at geosynchronous 
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orbit both for individual cases as well as statistically across local and epoch times.  Statistical 

EMIC occurrence rates from LANL and GOES both become elevated half a day before the onset 

of flux dropouts, peaking during the day following, and in the afternoon sector, consistent with 

theory and past observations.  On January 10th, 2000, as LANL-89 trailed GOES 10 by two 

hours, EMIC wave signatures were detected in the plasma measurements at roughly the same 

local times as those measured by GOES magnetometers.  Each wave burst measured by GOES 

10 is subsequently detected in the plasma conditions at LANL-89 as it passes through the same 

region somewhat later in universal time.  Strong agreement is found between the wave and proxy 

occurrences both statistically as well as for single events.   

The ability to include LANL MPA data to complement wave measurements greatly 

enhances our understanding of EMIC wave distributions across local and storm times.  As the 

LANL database consists of seven spacecraft spanning approximately 18+ years, it contributes a 

vast number of measurements to supplement current EMIC wave statistics at geosynchronous 

orbit.  This proxy validation also enables the use of LANL satellites to provide multipoint 

measurements of equatorial wave distributions, to compare both with other nearby satellites as 

well as to ground based wave measurements (e.g. Posch et al., 2010) or low altitude precipitation 

signatures (e.g., Miyoshi et al., 2008; Millan et al., 2010).  As seen from the EMIC activity on 

January 10th, 2000 in Figure 3.4, as well as from the Spasojevic et al. [2011] study and Figure 

3.9, this proxy can be used in combination with wave measurements and other proxies to study 

the temporal and spatial variation for individual EMIC events.  With the extension of the proxy 

to calculate EMIC wave amplitudes, an estimation of wave-particle scattering rates can be made, 

to aid in the quantification of relativistic electron losses from the outer radiation belt [Bortnik et 
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al., 2011].  Here, we demonstrate the value of plasma measurements to aid in the 

characterization of global EMIC wave distributions. 
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Chapter 4: Inferred Storm-Time EMIC Wave Distributions 

The following chapter is based on work that was published in Blum et al. (2009), Ion 

observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm 

times, J. Geophys. Res., 114, A10214. 

4.1 Introduction 

 Earth’s radiation belts are highly variable, and the processes contributing to their 

enhancements and reductions are an area of active research.  High relativistic electron flux levels 

are found following some geomagnetic storms but not others.  The resultant flux does not seem 

to be correlated to the size of the storm or the pre-storm flux level [Reeves et al., 2003].  Both 

acceleration and loss processes contribute to determining the post-storm populations, with wave-

particle interactions believed to play an important role in these processes.  MacDonald et al. 

[2008] examined whistler waves using a proxy based on the keV electron population and a 

superposed epoch analysis to find that storms resulting in higher radiation belt fluxes had higher 

levels of whistler waves.  Their analysis agreed well with a similar superposed epoch analysis of 

whistler wave distributions using ground-based magnetometers [Smith et al., 2004].  In this 

paper, we focus on electromagnetic ion cyclotron (EMIC) waves and look to see if there is any 

relation between their occurrences and storm-time radiation belt dynamics. 

 EMIC waves have long been observed in space and from the ground.  In general, they 

have been found to be most prevalent in the dusk or afternoon sector [Fraser et al., 2001].  

Ground observations of Pc1-Pc2 waves have indicated consistent local-time distribution, 

however differences, possibly due to ionospheric attenuation, appear when comparing by storm-
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phase; in particular, a distinct lack of these waves is observed during the storm main phase 

[Engebretson et al., 2008]. This contrasts with most in situ observations, including early work by 

Bossen et al. [1976], which observed an increase in afternoon-sector Pc1 events at 

geosynchronous orbit, coinciding with the main phase of geomagnetic storms.  Observational 

evidence for the scattering and loss of relativistic electrons by EMIC waves has been reviewed 

by Millan and Thorne [2007].  Spasojevic et al. [2004] used multiple IMAGE observations to 

show the first direct link between a detached subauroral proton arc and a plasmaspheric plume 

and that instability growth calculations were consistent with the Alfven-cyclotron instability 

causing EMIC waves and proton precipitation within the plume region. 

 In this study we do not use direct observations of EMIC waves.  Rather, we infer the 

existence of the waves from the observed properties of the hot and cool plasma populations using 

statistical analysis and linear theory.  Using the plasma-based proxy for EMIC waves described 

and validated in Chapter 3, we explore the inferred occurrence of such waves relative to 

relativistic electron flux levels during and after geomagnetic storms.  

4.2 LANL Observations 

In this study, we use LANL Magnetospheric Plasma Analyzer (MPA) particle data to 

calculate the proxy for enhanced EMIC wave activity, #h, defined in Equation 3.4.  We look at 

data from seven satellites at geosynchronous orbit from years 1989 through 2004.  We calculate 

bulk moments, including density and perpendicular and parallel temperature for both the hot 

proton population, defined as 100eV-45keV, and the cool protons, less than 100eV.  

Perpendicular and parallel are in reference to the background magnetic field vector, as inferred 

from symmetry in the plasma distributions [Thomsen et al., 1999].  The ion population is 

assumed to be only protons as the MPA instrument does not distinguish among the various ion 
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species.  While magnetospheric conditions can be quite far from this ideal, the presence of 

heavy ions should not greatly affect our calculations.  Cold He+ can at times constitute a 

significant fraction of the cold magnetospheric ions, but it does not contribute substantially to 

driving the instability. Although helium cyclotron damping creates a stop band in the spectrum 

near the helium cyclotron frequency, the maximum growth rate is only modestly reduced 

[Gendrin et al., 1984; Kozyra et al., 1984].  Hot magnetospheric O+ can also be present during 

magnetic storms.  Such ions can be anisotropic and contribute to instability growth, but the 

resonant frequencies of such waves are near 1/16 the proton cyclotron frequency, 'p, and 

therefore resonate with electrons of energies a few times higher than the MeV ones of primary 

geophysical interest for this study [Meredith et al., 2003]. 

 From these data, we use a superposed epoch technique to examine over 300 storms, 

chosen following criteria first described by O'Brien et al. [2001, 2003] and subsequently used by 

Smith et al. [2004] and MacDonald et al. [2008].   Storms were superposed by setting the time of 

minimum Dst equal to zero epoch.  The storms were chosen to be isolated, not within 4 days of 

another storm's minimum Dst, and to have a minimum Dst of less than -50 nT.  The storm list is 

divided into two categories, termed “events” and “nonevents”, based on post-storm relativistic 

electron flux levels measured by LANL satellites at geosynchronous orbit (see Figure 4.1).  

Storms whose noon-reconstructed 1.8-3.5 MeV electron flux was above 0.5 e-/cm2s sr keV for 

48-72 hrs after Dst minimum were categorized as events, and those with fluxes lower than 0.5 as 

nonevents.  (The so-called noon-reconstruction technique is described by O’Brien et al., 2001).  

These criteria, based only on the post-storm flux, were chosen because the pre-storm flux has 

been shown to be uncorrelated with the post-storm result [Reeves et al., 2003].   
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Figure 4.1 Superposed epoch of the noon reconstructed MeV electron fluxes during the storms 
investigated in this work.  The storms, superposed based on minimum Dst, are grouped into two 
categories.  Storms resulting in noon-reconstructed 1.8-3.5 MeV electron fluxes > 0.5 e/cm2 s sr keV 
(orange) are labeled “events”, and those resulting in fluxes lower than this (purple) “nonevents.”  
Thin orange (purple) traces indicate the median at each epoch time for events (nonevents).  Thick 
traces indicate the upper and lower quartiles.  (Adapted from O’Brien et al., 2003)  

 

Figure 4.2 shows superposed Dst and Kp plots for both the 138 storms constituting the 

events list, having higher post-storm flux levels, and the 183 storms of the nonevents, having 

lower levels.  The Dst profiles for the two groups of storms look fairly similar, while the Kp for 

events storms stays elevated, above a level of 3, for approximately one day longer than 

nonevents.  This suggests that the events storms have extended driving, similar to corotating 

interaction region (CIR) occurrences examined using superposed epoch analysis by Miyoshi and 

Kataoka [2005] and Denton et al. [2006].    

 With this data set, we compare relevant properties of the geosynchronous plasma 

populations for the events and nonevents storm lists.  We examine the effect of these parameters 

on the EMIC wave proxy, described and validated in Chapter 3, for the two sets of storms, 

globally and as a function of storm phase, or epoch time.  
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Figure 4.2 Superposed storm Dst and Kp indices for “events” and “nonevents” storm-sets.  Dst 
profiles look similar, while an elevated Kp (above 3) lasts about a full day longer for the events 
storms.  (Adapted from MacDonald et al., 2008) 

 

4.3 Superposed Epoch Results 

First we perform an observational test of the linear theory proxy formulation discussed 

previously, and we compare the theoretical instability threshold Sh, from Equation 3.3a, to our 

observational EMIC growth parameter #h.  The solid lines in Figure 4.3 show Sh as a function of 

the ratio of the hot proton density to the total density nh/ne for three different growth rates, &/'p = 

0.001, 0.004, and 0.01, where & is the maximum temporal growth rate.  The scatter points show 

#h for the nonevents storm set for two different local times, at noon and at midnight.  Both events 

and nonevents storm sets show similar qualitative behavior when plotted in this manner.  Here,!

data points with increasing #h values relative to an Sh curve correspond to the transition from 

stable conditions to successively stronger growth rates. #h approaches a theoretical limit (e.g. 

&/'p = 0.01 for the noon points) indicating that enhanced fluctuations from the EMIC instability 

are effectively scattering protons near this threshold condition and are imposing a statistical 

constraint on the proton temperature anisotropy.  Figure 4.3 further validates the use of the 

observed #h compared to the theoretical limit of Sh as a proxy for enhanced EMIC waves.  
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Additionally, it tells us that a growth rate of 0.001 is appropriate for data points at midnight, 

while a higher value of 0.01 is approached during local times around noon.  

 

Figure 4.3 Scatterplot of EMIC growth parameter #h versus the density ratio nh/ne (hot proton 
density divided by total proton density) for noon (black points) and midnight (gray points) for the 
nonevents storm set.  The instability threshold Sh is also plotted here as three solid black lines, 
corresponding to three different growth rates & /'p (the lowest line for a growth rate of 0.001, then 
0.004, and highest is 0.01).  We see the #h values approach Sh of different growth rates at different 
local times; & /'p = 0.001 is appropriate for data points at midnight, while 0.01 is approached around 
noon. 

 

 We plot various parameters over local and epoch times to better understand the variations 

of constituent plasma properties for our events and nonevents storm sets.  First we look at the 

different density components of the proton population – the hot and cool, as well as the ratio of 

the hot to total proton density nh/ne (Figure 4.4a, c, e for events, and Figure 4.4b, d, f for 
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nonevents).  Figure 4.4a and b show the hot plasma sheet density, highest around minimum 

Dst from dusk through dawn, extending further both in local and epoch time for the nonevents 

storms, as was seen by Denton et al., [2006].  In Figure 4.4c and d, there is evidence of cold 

dense plasmaspheric plumes in the afternoon sector during storm main phase (prior to minimum 

Dst) and continuing, with a weaker presence and narrower in local time, through the recovery 

phase in both sets of storms.  The density ratio (Figure 4.4e and f) is a variable that affects the 

value of the instability threshold Sh for a given growth rate (see Figure 4.3).  Over most of the 

range of nh/ne, a lower ratio (corresponding to more cool plasma) lowers the instability threshold, 

and enhanced EMIC waves can more easily be obtained.  Both Figure 4.4e and f show that the 

plasma sampled at geosynchronous orbit is dominated by hot plasma in the midnight sector 

throughout the duration of the storms, and that very low levels of hot protons exist on the day 

side.  Starting just prior to one day after minimum Dst, the density ratio is lower for the 

nonevents than events in the region around midnight.  

 We also explore the temperature anisotropy of the hot protons, T!h/T||h, for both storm 

lists (Figure 4.5a and b), as it is the temperature anisotropy in this population that drives the 

Alfven-cyclotron instability responsible for the growth of EMIC mode waves.  Here a difference 

between the events and nonevents is most striking during the recovery phase.  The night-side 

anisotropy increases after zero epoch in the nonevents, while in the events it remains at levels 

around 1.0 on most of the night side.   

 Figure 4.5c and d show the hot proton parallel beta $||h, equal to 8%nhT||h/Bo
2, for events 

and nonevents.  Beta is composed of the hot proton density as well as the hot parallel 

temperature.  The combination of these parameters makes for slightly higher beta levels in the  



 

  

54 

 

 

Figure 4.4 (a and b) Hot proton density nh, (c and d) cold proton density nc, and (e and f) density 
ratio nh/ne across local and epoch times for events and nonevents.  Density ratio nh/ne is lowest in the 
region from approximately noon to dusk, where the cold dense plume is located. 
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nonevents, but the similar profiles suggest that this parameter does not cause significant 

differences between events and nonevents in the observational EMIC growth parameter #h. 

 

Figure 4.5 (a and b) Temperature anisotropy and (c and d) plasma beta $ ||h for hot proton 
populations.  These two parameters are the main components in the calculation of the observational 
EMIC growth parameter #h. 

 

 In Figure 4.6, we plot the theoretical instability threshold Sh, as well as the observational 

EMIC growth parameter #h, for events and nonevents.  Here we use a growth rate of 0.001, as 

suggested by Figure 4.3, to calculate Sh.  Figure 4.6a and b show that Sh has the same variation 

pattern as nh/ne (from Figure 4.4e and f) since the density ratio is the only plasma parameter upon 

which Sh depends.  Figure 4.6a and b show variation of the instability threshold Sh over local and 

epoch times, but the difference between storm sets does not appear to be great.   
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Figure 4.6 (a and b) Theoretical instability threshold Sh, dependent on the density ratio nh/ne only, 
and (c and d) EMIC growth parameter #h, based on measured plasma parameters.  Both are plotted 
for all local and epoch times for a growth rate & /'p = 0.001. 

 

 The observational EMIC growth parameter #h (Figure 4.6c and d), however, shows a 

significant difference between the events and nonevents storm sets, as well as a great deal of 

variation over local time.  Nonevents have a higher value, especially around noon, but 

additionally around dawn in the recovery phase.  The absolute value of this parameter alone, 

though, is not necessarily indicative of higher wave growth, but must be compared with the 

expected Sh at given local and epoch times to be able to infer relative wave growth. 

 To make this comparison, we calculate the percent of #h data points that exceed the 

average Sh for each local and epoch time bin.  Figure 4.7 shows the percentage of time that the 
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observational EMIC growth parameter #h exceeds the average instability threshold for a 

growth rate of 0.001.  Here we see that the percentage is high for both events and nonevents in 

the day leading up to minimum Dst, but it remains elevated longer during the period of 1 to 4 

days after minimum Dst for the nonevents. 

 

Figure 4.7 The percentage of #h values which lie above the average Sh value for a given local and 
epoch time.  For both (a) events and (b) nonevents, this percentage is high from noon to dusk during 
the main phase of the storms.  In the recovery phase, however, there is a significant difference 
between the two storm sets, and the values for the nonevents remain higher than events for a few 
days after minimum Dst. 

 

4.4 Discussion  

Figure 4.8 shows the epoch-time dependence of this percentage averaged from noon to 

dusk, the region of most interest.  Here gray indicates nonevents, black indicates events, and the 

thin solid line shows the quiet time average of both storm sets (from 6-10 days after storm 

epoch), with dotted lines showing the standard deviation averaged for both storm sets.  The 

events storms, which result in elevated relativistic flux levels 48 to 72 hours after minimum Dst, 

show different #h behavior than the nonevents especially 1 to 4 days after zero epoch, during the 

recovery phase of the storms.  Both types of storms appear to have higher occurrence of 
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enhanced EMIC waves, according to our proxy, in the main phase of the storm, which is 

consistent with in situ wave measurements seen in Fraser et al. [2010].  They then both display a 

sharp drop in this measurement immediately after zero epoch, minimum Dst.  In the subsequent  

 

Figure 4.8  An average of the parameters plotted in Figure 4.7 taken from noon to dusk, the period of 
most activity.  The black line represents the events storms, and the gray represents the nonevents.  
Here the difference in the percentage between the storm sets in the recovery phase is even more 
distinct.  The quiet time average is displayed with the thin solid line, along with the standard 
deviation (dotted lines). 

 

days, however, the nonevents recover to levels around 8% (an average quiet time value), while 

the events remain at around 3%.  The quiet time value for both storm sets fluctuates, with an 

average value around 7.5%.  This suggests that the difference in events and nonevents in the 

recovery phase of storms is associated with a suppression of EMIC growth in the events, rather 

than an enhancement in the nonevents.  One possible explanation for this is that CIR storms, 

which show similar properties to our events storms, involve enhanced convection and elevated 

Kp.  Denton et al. [2005] show that temperature anisotropy is typically inversely related to Kp 

index.  As temperature anisotropy is a main component of our calculation of the EMIC growth 
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parameter, a lower anisotropy could lead to suppressed #h values.  As Kp remains elevated 

during the recovery period of our events storms, as seen in Figure 4.2, less anisotropic plasma is 

present during this period, leading to the suppression of EMIC growth seen in our events storms. 

 We return to Figure 4.7 to examine the percentage values over all local and epoch times.  

The most concentrated area of enhanced EMIC fluctuations is shown to be in the region from 

noon to dusk.  This is in agreement with in situ EMIC wave observations, as shown by both 

Meredith et al. [2003] and Bossen et al. [1976].  The distribution of elevated values in these final 

percentage plots (Figure 4.7) differs significantly from those for the observational EMIC growth 

parameter #h alone in Figure 4.6c and d.  This emphasizes the need to compare the observed #h 

to the theoretical instability threshold determined by Sh.  While the temperature anisotropy and 

hot plasma beta parameters cause elevated values from dawn nearly to dusk in our nonevents, the 

density ratio causes the instability threshold to be more easily attained only from noon to dusk, 

where more cold plasma is present.  Therefore we conclude that the Alfven-cyclotron instability 

can grow, and enhanced EMIC waves can arise, most easily from noon to dusk, showing that our 

proxy for such waves corresponds well in local time to wave observations.    

4.4.1 Additional Superposed Epoch Proxy Studies 

As shown in the discussion above, the long-duration multipoint LANL-GEO database 

combined with plasma-based proxies for waves can give insight into the global wave 

distributions under a variety of geomagnetic conditions and local times.  While the study detailed 

here categorized storms by the resulting radiation belt electron response, we can also group and 

examine storms according to their driver. We have applied this superposed epoch and proxy 

technique to study a set of 124 high speed stream (HSS) driven storms, first selected by Denton 

and Borovsky [2008].  Zero epoch time was chosen as the time of magnetospheric convection 
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onset, following the arrival of each HSS at the magnetosphere (via examination of the Kp 

index).  The exact time of the zero epoch was derived at higher time resolution than the 3h Kp 

index by identifying the time of equatorward expansion of the midnight boundary index (MBI; 

Madden and Gussenhoven 1990).  As shown by Thomsen [2004], the Kp index and the MBI are 

highly correlated with the magnetospheric convection onset.  It is also noted that previous studies 

have identified that the MBI provides a cleaner comparison basis for these small HSS-driven 

storms than the Dst index.  The mean minimum Dst for HSS storms is only approximately -20 

nT [Denton and Borovsky 2008].  Dst is not used in the selection criteria for the HSS storms.  

This storm set will be further discussed and investigated in Chapter 5.  

In MacDonald et al. [2010], we compare two plasma-based proxies derived from 

LANL/MPA data – the EMIC proxy defined and discussed previously as well as a similar proxy 

for whistler mode chorus waves, based on anisotropic keV electron distributions [MacDonald et 

al., 2008] – to examine the relative contributions of different wave types across various storm 

types and phases.  The inferred distributions of EMIC and whistler mode waves are examined 

during the 124 HSS storms and compared to their distributions during the previously analyzed 

events and nonevents storm sets.  Figure 4.9 shows the EMIC and whistler wave proxies during 

these sets of storms. 

We see in Figure 4.9 that the relativistic electron fluxes during HSS events start from a 

base level higher than that of the other groups. They also peak higher and slightly later 

(approximately 1.5 days) than the set of events storms.  In addition, the dropout for HSS storms 

is similar in magnitude to nonevent storms, i.e. quite large, although the flux levels for HSS 

storms begin much higher.  Relative to the other two categories, the HSS events have the highest 

inferred EMIC-wave activity in the main phase of storms, with a full 20 percent of observations  
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Figure 4.9  Comparison between relativistic electron flux, EMIC wave growth and whistler wave 
growth from the superposed epoch results of the three storm types: blue, high speed stream (HSS) 
driven storms; black, events; red, nonevents.  Zero epoch is time of convetion onset +0.5 days for the 
HSS events, and time of minimum Dst for the events and nonevents.  (a) SOPA electron flux from 1 
to 1.5 MeV (dashed lines represent quartiles), (b) proxy for EMIC waves, averaged over the peak 
local times from 12.00 to 18.00, and (c) whistler wave proxy averaged over the peak local times from 
24.00 to 12.00.  (From MacDonald et al., 2010) 

 

exceeding a growth rate of 0.001, consistent with the largest observed dropout. In the recovery 

phase, the level of EMIC wave activity during HSSs looks similar to that of the events storms, 

namely that it is suppressed below ‘normal’ levels. This is consistent with a suppressed loss 

mechanism and hence a net gain of relativistic electrons. For whistler waves during the HSS 

events, there is a prolonged, but not dramatic, enhancement throughout the main and recovery 

phases, during the times of fast solar wind and enhanced magnetospheric convection. In the pre-
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storm period for HSS events, whistler waves are significantly reduced below ‘normal’ levels 

seen in either event or nonevent storms.  

Recent efforts (e.g. Huang et al., 2009) have shown that magnetopause shadowing may 

be responsible for the observed major dropout of relativistic electron fluxes at the main phase. 

The results outlined in this study indicate that conditions are ripe for intense EMIC waves around 

storm onset as well. The relative importance of adiabatic and non-adiabatic effects on losses 

during the main phase of storms thus remains open and a subject of future research. 

Radiation belt electron fluxes are lowest for the storms exhibiting the most EMIC activity 

and the least whistler wave activity in the recovery phase. This is consistent with the current 

interpretation that whistler waves are primarily an acceleration mechanism, whereas EMIC 

waves are primarily a loss process for relativistic radiation belt electrons. The inclusion of HSS 

events in this comparison leads to the interesting possibility that the relative suppression of 

EMIC activity in the recovery phase may be more important for radiation belt regrowth than the 

enhanced whistler activity. 

4.5 Summary 

Using the large LANL/MPA database and the plasma-based proxy for EMIC waves 

developed in Chapter 3, we are able to investigate the statistical distributions of EMIC waves 

across various storm types and phases to better understand the role these waves might play in 

storm-time radiation belt dynamics.  We observe that there are differences in the statistical 

behavior of certain relevant plasma properties between storms resulting in higher versus lower 

net fluxes of relativistic electrons.  From these plasma parameters and validated linear theory, we 

find that both the average values of our observational EMIC growth parameter #h, as well as the 

frequency of elevated values, are greater, especially in the recovery phase of the storm, for 
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storms resulting in lower radiation belt fluxes, labeled nonevents.  This is consistent with the 

idea that enhanced EMIC waves scatter relativistic electrons and thereby contribute to the loss of 

such particles from the magnetosphere in the main phase, and for nonevents on into the recovery 

phase, preventing the buildup of substantial post-storm flux enhancements.  Additionally, as 

shown by MacDonald et al. [2010], suppression of EMIC waves as a loss mechanism may be as 

important for some post-storm radiation belt buildups as concurrent acceleration mechanisms.  

This EMIC proxy combined with a similar proxy for whistler chorus waves can be used to study 

the relative contributions of various wave types to overall radiation belt dynamics through a 

balance of acceleration and loss mechanisms.   
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Chapter 5: SAMPEX Rapid Precipitation Measurements  

5.1 Introduction  

We move now from studying storm-time EMIC wave distributions to investigating 

precipitating relativistic electrons themselves.  Understanding the characteristics and sources of 

precipitation is essential to forming a complete picture of global precipitation loss rates.  

Relativistic electron precipitation, as observed from low Earth orbit (LEO), can be divided into a 

few categories: slower, steadier diffusive pitch angle scattering into the edge of the loss cone, 

and more rapid scattering events, filling the loss cone on timescales of milliseconds to seconds.  

The slow decay of the outer radiation belt observed during quiet times has been attributed to this 

steadier pitch angle diffusion by plasmaspheric hiss waves, resulting in electron lifetimes on the 

order of 5-20 days [Meredith et al., 2006].  However, changes in the trapped outer belt electron 

population can occur on much faster timescales as well, especially in response to geomagnetic 

activity.  Rapid depletions of outer belt electrons on ~hour timescales following geomagnetic 

storms are often not fully explained by losses to the magnetopause and outward diffusion (e.g. 

Hudson et al., 2014; Turner et al., 2014), suggesting rapid atmospheric loss must be occurring as 

well.   

Here we focus on two specific types of rapid precipitation and we investigate their 

relative contributions to radiation belt losses.  Sudden enhancements in electron fluxes are often 

observed at LEO on timescales of short bursts lasting less than a second (termed microbursts) to 

longer duration areas of precipitation spanning a few degrees in latitude (precipitation bands).  

Each of these precipitation signatures can be an integral contributor to relativistic electron 
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precipitation loss – microbursts have been calculated to be able to empty the outer radiation 

belt in less than a day [O’Brien et al, 2004; Thorne et al., 2005] – and both microbursts and 

precipitation bands are still not well understood.   

We examine microbursts and precipitation bands using low-altitude measurements from 

Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) to better characterize and 

quantify the contribution of these rapid precipitation events to radiation belt electron loss.  By 

focusing on specific types of precipitation, and investigating the distributions of these rapid 

precipitation events, we gain insight into both potential scattering mechanisms as well as the 

relative roles of various loss processes with respect to overall radiation belt dynamics.  Low-

altitude measurements, such as those from SAMPEX, are necessary to make direct 

measurements of the precipitation loss, as most low-inclination, high-altitude spacecraft cannot 

resolve the electron pitch angle distribution near and inside the loss cone.  The spatial 

distributions of these rapid precipitation features are examined, as well as their occurrences and 

magnitudes during various storm types and phases.  The aim of these investigations is to better 

understand the relative role of these two loss processes in overall radiation belt dynamics, and 

how it varies spatially as well as with storm type and phase. 

5.2 SAMPEX/HILT Observations 

To interpret the SAMPEX measurements, one must first understand some details of the 

mission and instrument as well as the nature of low altitude measurements in general.  SAMPEX 

was launched in July 1992 into a 520-670 km, 82° inclination orbit [Baker et al., 1993].  Initially 

expected to reenter by 2000, a quiet sun and extended solar minimum allowed it to remain in 

operation until November 2012 when it finally reentered.  The HILT (Heavy Ion Large 

Telescope) instrument onboard returned high time resolution measurements of >150 keV and >1 
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MeV electrons.  We focus here on the >1 MeV measurements from the instrument solid state 

detectors (SSDs), as we are primarily interested in these higher energy radiation belt electrons.  

HILT contains of an array of 16 SSDs, arranged in 4 rows of 4, each row with its own signal 

processing chain and labeled SSD1-4 (see Figure 5.1 for an instrument schematic).  The 

instrument was operated in four different modes over the course of the mission, returning 

anywhere between 20-100ms count rates in one to four of these rows.   

 

     

Figure 5.1  Cross-secton of the HILT instrument as mounted on the SAMPEX satellite.  The square 
array of 16 SSDs is shown with the four rows explicitly shown. (From Blake et al., 1996) 

 

The equatorial loss cone in the outer radiation belt is < ~6°, making it difficult to resolve 

precipitating fluxes from low inclination orbits.  At low altitudes, however, this loss cone opens 

up to ~60° or more, allowing SAMPEX to directly measure electrons within and just outside the 

loss cone.  Due to the offset asymmetric nature of Earth’s internal magnetic field, the size of this 

loss cone varies with both longitude and hemisphere.  Particles can thus be categorized as one of 

three types: ones that will be lost to the atmosphere within one bounce period (untrapped, or 

bounce loss cone BLC), ones that are lost within one drift period (quasi-trapped, or drift loss 
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cone DLC), and those that remain trapped in the magnetosphere for timescales larger than 

their drift period.  These three types are visualized in the cartoon in Figure 5.2, left panel 

(adapted from Tu et al., 2010).  With its wide, 68° field of view, SAMPEX/HILT measures a 

combination of these three particle populations at different points along its orbit, as demonstrated 

in Figure 5.2, right panel (adapted from Dietrich et al., 2010).  Measurements around the South 

Atlantic Anomaly (SAA), a region of lower magnetic field strength above the coast of Argentina 

(~60°-0°W), are dominated by trapped particles, while electrons measured at conjugate locations 

in the Northern hemisphere will precipitate within one bounce.   

 

Figure 5.2  (left) Cartoons illustrating the three types of particle populations observed by SAMPEX: 
trapped (green), quasi-trapped (blue), and untrapped (red).  (right) World map showing the 
changing radiation belt populations observed by SAMPEX/HILT, with T indicating trapped flux, 
DLC quasi-trapped (or drift loss cone) and BLC untrapped (or bounce loss cone).  For most locations 
where there are significant radiation belt electrons, it observed a combination of DLC and BLC 
populations. (Adapted from Tu et al., 2010 (left) and Dietrich et al., 2010 (right)) 

 

To help distinguish among these three particle populations in the HILT data, qualitative 

pitch angle information can be extracted by comparing the count rates in SSD1 versus SSD4.  

Due to the rows’ slightly different look directions, a difference in these two count rates suggests 

a more anisotropic distribution and measurements dominated by trapped and quasi-trapped 

electrons, while an isotropic distribution would result in all four SSD count rates converging to 
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the same value [Blake et al., 1996].  While the HILT measurements tend to be dominated by 

trapped and quasi-trapped particles as SAMPEX passes through the outer belt, on certain 

occasions rapid pitch angle scattering occurs, filling the bounce loss cone and causing direct 

precipitation.  In the data, these events appear as rapid flux increases and isotropization of the 

flux, superimposed atop the smoothly varying background anisotropic trapped and drift loss cone 

fluxes (as depicted in Figure 5.3).  The following sections describe two distinct types of rapid 

precipitation events seen in the SAMPEX/HILT data – microbursts and precipitation bands. 

    

Figure 5.3  SAMPEX/HILT data from the SSD1 (red) and SSD4 (blue) detector rows during a pass 
through the outer radiation belt.  Qualitative pitch angle information can be obtained by comparing 
the count rates in these two detector rows.  More anisotropic, 90° peaked populations are observed 
throughout most of the outer radiation belt, while the count rates converge during rapid flux 
enhancement events shown in the dashed boxes. 

 

5.2.1 Microbursts 

Rapid bursts of electron precipitation lasting < 1 second were first observed by balloon 

borne detectors in 1964 [Anderson and Milton, 1964].  These observations were of 10s -100s of 

keV electrons and similar bursts were subsequently seen by low altitude satellites as well.  The 

first similar duration (~100 ms) relativistic electron (>1MeV) precipitation bursts were detected 
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by the low altitude, sun-synchronous S81-1 satellite [Imhof et al., 1992].  These relativistic 

microbursts have been seen by a number of LEO satellites since then, including SAMPEX, and 

are the precipitation features of interest here.  They occur most frequently on the dawn side, 

more often during periods of enhanced geomagnetic activity [Nakamura et al., 2000; Lorentzen 

et al., 2001a].  They are consistently measured to have a sharp rise time with slower decay, 

suggesting that these precipitation bursts are temporal in nature, typically lasting a few 100s of 

milliseconds [Millan and Thorne, 2007].  They are often measured in groups or clumps though 

(see Figure 5.4), and the spatial and temporal extents of these regions of microburst activity are 

still very uncertain.  Figure 5.4 illustrates microburst precipitation detected by the SSD1 detector 

on the SAMPEX/HILT instrument during a pass through the outer radiation belt.  During this six 

minute pass, microburst activity extends from L=4.5-6.5, while each individual burst lasts less 

than one second.   

                   

Figure 5.4  SAMPEX/HILT pass through the outer radiation belt on November 5, 1993.  Microbursts 
up to multiple orders of magnitude above the background flux (shown by the blue curve) are evident.  
Microburst activity extends from ~L=4.5-6.5 (marked by the blue arrow), while each individual burst 
lasts less than one second.  (Adapted from Nakamura et al., 2000) 

 

Whistler mode chorus waves are a primary mechanism believed to produce microburst 

precipitation.  Similar distributions in local time and L-shell between the waves and precipitation 
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suggest that the two phenomena may be related [Lorentzen et al., 2001a; Johnston and 

Anderson, 2010].  Theoretical calculations show that chorus waves near the equator are 

gyroresonant with the keV electrons by which they are generated but that they can resonate with 

MeV electrons at higher latitudes or harmonic numbers [Thorne et al., 2005].  Additionally, large 

amplitude whistler waves propagating obliquely to the background magnetic field, first reported 

by Cattell et al. [2008], have also been suggested as a scattering mechanism through nonlinear 

wave-particle interactions.  While a number of studies have attempted to correlate observations 

of whistler mode waves and microbursts (e.g. Imhof et al., 1992; Lorentzen et al., 2001a; Kersten 

et al., 2011), one-to-one correspondences are difficult to make observationally.   

Thorne et al. [2005] calculate radiation belt electron lifetimes due to microbursts to be on 

the order of one day during the main phase of geomagnetic storms, suggesting that these events 

can contribute significantly to storm-time losses.  However, microbursts are often also detected 

during the recovery phases of storms that result in net enhancements of the outer radiation belt 

[O’Brien et al., 2003].  O’Brien et al. [2004] try to reconcile this inconsistency by examining 

three storms, where they conclude that microbursts during the main phase contribute significant 

losses to the outer radiation belt, while those during the recovery phase were of smaller 

magnitude, and thus concurrent acceleration mechanisms dominate.  Whistler mode chorus 

waves are known to be a strong local acceleration mechanism in the outer radiation belt as well 

as a potential source of microbursts [Bortnik and Thorne, 2007].  For this reason, microbursts 

have been used both as a measure of radiation belt electron loss, and additionally as a proxy for 

chorus waves and acceleration of electrons [O’Brien et al., 2003].  The balance of the losses and 

acceleration, both possibly caused by chorus waves, determine the net effect on outer radiation 

belt electron fluxes.   
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5.2.2 Precipitation Bands 

A second distinct type of rapid precipitation seen in SAMPEX data are broader, typically 

a few degrees in latitude, and are referred to here as “precipitation bands” following Blake et al. 

[1996].  These bands are often seen in conjugate locations and on consecutive orbits [Blake et 

al., 1996], suggesting their 10s of seconds duration, as measured by LEO satellites, is due to 

spatial rather than temporal characteristics.  Figure 5.5 depicts an example precipitation band 

measured by SAMPEX/HILT at the edge of the outer radiation belt.  Other low-altitude 

spacecraft have detected similar features at a range of energies, from 10’s of keV electrons up to 

MeV (e.g. Paulikas et al., 1966).  These measurements often, but not always, show some 

qualitative coherence in band structure among various energy channels.  

          

Figure 5.5  SAMPEX/HILT data from November 25, 1993 showing a strong precipitation 
enhancement at the outer edge of the outer radiation belt around L=6 (marked by the blue arrow).  
(Adapted from Nakamura et al., 2000) 

 

Precipitation bands have been observed during both quiet and more active times, 

spanning the afternoon and night sectors [Brown and Stone, 1972].  It has been suggested that 

those during times of high magnetic activity, often seen near the plasmapause, may be induced 

by electromagnetic ion cyclotron (EMIC) waves [Vampola, 1977; Thorne and Kennel, 1971], 

while those at quieter times may be associated with electrostatic waves or the trapping limit 
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[Koons et al., 1972; Vampola, 1977; Vampola, 1971].  A number of open questions remain 

though regarding the distributions and generation mechanisms of these precipitation features, and 

how these vary with geomagnetic activity.   

5.2.3 Automated Precipitation Identification  

The first step towards investigating these rapid precipitation events was to identify the 

features in ~10 years of SAMPEX data (1996 – 2005) and set up a database to provide the 

framework for further studies.  The features are identified based on their distinct durations and 

profiles: microbursts appearing as sharp spikes lasting less than a second, and precipitation bands 

as rapid enhancements in flux often remaining elevated for ~5-30 seconds.  We have identified 

the microbursts using the following burst criterion developed by O’Brien et al. [2003]: 

- 

! 

N100 " A500( ) / 1+ A500 >10  

where N100 is the number of counts in 100 ms and A500 is a running average over 500 ms.  

Microburst magnitudes are then extracted by taking the difference between N100 and a baseline 

flux, defined as the 10th percentile in 3 second bins. 

After much testing, an algorithm was also developed to detect band precipitation in the 

100 ms SAMPEX/HILT data.  We require: 

- N100 > 4 x B20 for ) 5 seconds 

- 10 second linear correlation coefficient between N100 and B20 < 0.955 

where N100 is the instantaneous 100 ms count rate and B20 is the 10th percentile in 20 sec bins.  

Magnitudes are defined by the difference between N100 and this B20 value.  The correlation 

coefficient requirement eliminates false detections from rapidly rising (falling) fluxes as the 

satellite enters (exits) the outer radiation belt.  These criteria have been tuned to reduce false 

positives, however, this causes some smaller band events to go undetected.  Figure 5.6 illustrates 
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example results of these two algorithms during two passes of SAMPEX through the outer 

radiation belt; we extract the time, location, duration, and magnitude of the microbursts and 

precipitation bands via these automated procedures.   

 

Figure 5.6 SAMPEX/HILT >1 MeV electron measurements during two passes through the outer 
radiation belt.  Rapid enhancements in the flux are visible on millisecond (a) and longer duration (b) 
timescales.  Results of an automated detection and magnitude calculation algorithm for microbursts 
(a) and precipitation bands (b) are shown. 

 

With these two selection methods, we have created a database of both microbursts and 

precipitation bands from the SAMPEX/HILT SSD4 data from 1996 through 2005.  After 

establishing this database, some preliminary studies are performed to investigate the spatial and 

storm-time distributions of these two types of rapid precipitation, described in the following 

sections. 

5.3 Spatial Distributions of Rapid Precipitation Events 

With the database of precipitation events described in Section 5.2.3, we are now able to 

investigate the spatial distributions of microbursts and precipitation bands.  We look at both the 

occurrences and magnitudes of these two precipitation features across geographic latitude and 

longitude, as well as local time and L shell.   
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Figure 5.7 shows the magnitude of the flux measured by SAMPEX/HILT at all times 

(a), during microbursts (b), and during precipitation bands (c) across geographic latitude and 

longitude from 2003 through mid-2004, the end of the primary mission.  Panel a illustrates the 

variations in trapped flux measured by a LEO satellite due to the longitudinal asymmetries of 

Earth’s internal magnetic field.  Outer radiation belt electrons are measured at high latitudes, 

while inner belt particles are measured only when the satellite passes over the SAA (at 

longitudes ~300-360°).  The microburst and precipitation band magnitudes do not follow this 

same pattern in flux variation; instead the largest magnitude precipitation events, with fluxes 

~104, are scattered throughout the outer radiation belt at all longitudes and in both hemispheres.  

This acts as a further confirmation of the general isotropization during these precipitation 

features, as otherwise one would expect their magnitudes to have a similar geographic 

dependence as in Figure 5.7a.   

Figure 5.8 shows scatter plots of the location and magnitudes of microbursts (a) and 

precipitation bands (b) for this same year-and-a-half period now across magnetic local time 

(MLT) and L shell, calculated using the IGRF field model.  Microbursts are clustered on the 

morning side, between midnight and noon, in good agreement with past statistical findings 

[Lorentzen et al., 2001a].  Occurrences remain constrained primarily between L=4-6, indicated 

by the dashed circles, and magnitudes vary across this whole region and all local times.   

The precipitation bands on the other hand, occur primarily on the evening and night sides, 

again in good agreement with past surveys (e.g. Imhof et al.,1986).  This agreement in spatial 

distribution between our findings and other studies helps confirm our precipitation detection 

criteria.  Magnitudes are observed to peak between 18 and 24 MLT and drop off with increasing 

L.  The difference in the spatial distributions of the two precipitation types is quite distinct here,  
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Figure 5.7 (a) Distribution of the >1MeV electron flux measured by SAMPEX/HILT over geographic 
latitude and longitude.  The magnitudes of microbursts (b) and precipitation bands (c) are also 
shown across these coordinates. 
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suggesting that these precipitation features are caused by different scattering mechanisms or 

wave modes.  While there are fewer small magnitude microbursts as compared to the 

precipitation bands, this is likely due to our selection criteria. 

 

Figure 5.8 Distributions of microbursts (a) and precipitation bands (b) in L shell and magnetic local 
time (MLT).  Precipitation magnitude is shown on the color scale.  These data are collected from 
2003-mid 2004, the end of the primary mission.  The events are searched for within the same data set, 
so local time differences between the two precipitation types are not due to sampling. 

 

While other studies have also investigated MeV precipitation events, selection criteria or 

the nature of the observations often differ, making it difficult to determine whether the same 

phenomena are being examined.  Balloon campaigns have observed MeV electron precipitation 

at low altitude, constrained primarily to the duskside and thus termed “duskside relativistic 

electron precipitation” or DREP [Millan et al., 2007].  As compared to LEO satellites, which cut 

across L shells at ~7 km/s, balloon measurements are relatively stationary, remaining at roughly 

constant geographic coordinates.  The DREP events last minutes to hours as seen by balloons 

and, while precipitation events were observed at all local times by the MAXIS balloon campaign 

[Millan et al., 2002], the harder MeV events occurred exclusively on the dusk side (see Figure 

5.9).  Comess et al. [2013] have also surveyed SAMPEX data for “REP” events, using data only 
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when the spacecraft is conjugate to the SAA and measuring purely bounce loss cone electrons, 

rather than selecting on the band-like features in the data as we have done.  They find similar 

occurrence distributions in L and MLT to those shown here, with these studies all suggesting that 

MeV electron precipitation occurs preferentially in the dusk sector.  What the structure of that 

precipitation is, as well as the exact relation between balloon measured “DREP” and the 

precipitation bands seen by LEO satellites, will be investigated further in Chapter 7.   

 

Figure 5.9  The distribution in magnetic latitude and magnetic local time of MeV events (asterisks) 
and soft precipitation (triangles) measured by the MAXIS balloon campaign.  Noon is to the left now, 
and the solid line shows the balloon trajectory. (From Millan et al., 2002) 

 

5.4 Storm-Time Precipitation Distributions  

We next explore how these precipitation features, both their occurrences and magnitudes, 

evolve in time during periods of changing geomagnetic activity, looking both at individual 

events as well as a set of high speed stream (HSS) driven storms. 
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5.4.1 Event Studies 

We look in detail at a few individual storms to investigate the location and magnitude of 

precipitation bands and microbursts in relation to other plasma populations and magnetospheric 

phenomena. In particular, we investigate an event in June 2001, which was selected by the 

Plasmasphere-Magnetosphere Interactions focus group at the Geospace Environment Modeling 

(GEM) 2012 workshop as a GEM challenge event. A small disturbance occurred on June 9th, 

with Dst reaching a minimum of ~ -40 nT around 21:00 UT. During this period, the IMAGE 

satellite provided global images of the plasmaspheric dynamics and there are a number of in situ 

and ground based wave measurements available. Figure 5.10 shows the distributions of 

microbursts and precipitation bands surrounding this event in L shell and UT (Figure 5.10a) as 

well as MLT (Figure 5.10b).  Local time sampling of SAMPEX during this period was restricted  

 

Figure 5.10 The magnitudes and distributions of microbursts and precipitation bands across (a) 
universal time, in hours since 06/08 00:00, and (b) MLT for an event in early June, 2001. 

 

to the dawn and dusk.  A Dst-dependent model for the plasmapause location [O’Brien and 

Moldwin, 2003] is overplotted as well (black solid line). The local time distributions of the two 

precipitation types, as well as their relation to the plasmapause location, again suggest different 
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source regions and mechanisms for the pitch angle scattering.  

 We look briefly at the source region of the precipitation bands during this event to help 

determine the scattering mechanism causing these precipitation signatures. Ground 

magnetometers in Antarctica (data courtesy of Mark Engebretson) show Pc1-2 activity occurring 

in the afternoon sector during this event, where EMIC waves often develop as the ring current 

overlaps the cold, dense plasmaspheric bulge or plume [Spasojevic et al., 2004].  

Geosynchronous satellites from the Los Alamos National Laboratory (LANL), measuring the 

equatorial source regions for EMIC waves, saw plasma conditions indicative of EMIC wave 

growth [Blum et al., 2009] during passes through the afternoon sector, and Chen et al. [2014] 

find simulations of EMIC wave growth to be in this region as well (see Figure 3.11). We find 

good general agreement in the universal and local time of precipitation bands and EMIC waves 

during this event, in support of the theory that EMIC waves may be one main scattering 

mechanism responsible for producing these precipitation signatures [Vampola, 1977; Thorne and 

Kennel, 1971].  While the precipitation bands tend to appear close to the plasmapause, as 

inferred from the MLT-independent O’Brien and Moldwin [2003] model, further investigation of 

the location of the precipitation bands with respect to the measured global plasmapause and 

plasmaspheric plumes from IMAGE may shed light on the cause of the structure of these radially 

narrow precipitation features. 

 We have also looked at two other individual storms of varying size.  Rapid precipitation 

distributions are shown for a small storm, Dstmin ~-40 nT (Figure 5.11a) as well as a major 

coronal mass ejection (CME) driven event in November 2003 with Dstmin ~-450 nT (Figure 

5.11b).  As a rough estimate of the relative loss due to microbursts as compared to precipitation 

bands, we sum the magnitudes of the precipitating count rates to estimate the average loss rate as    
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Figure 5.11 Dst (top panel), microburst magnitude (middle), and precipitation band magnitude 
(bottom) across L shell and time during two geomagnetic storms – a small storm in 2001 (a) and 
much larger superstorm in Nov 2003 (b).  A model for the plasmapause location is plotted with the 
dashed black line.   

 

well as total loss, as measured along the SAMPEX orbit, for the main and recovery phase of each 

storm.  Table 5.1 displays these relative loss rates, as well as the total loss summed during each 

storm due to each precipitation type.  While general trends are apparent among all three storms 
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shown here (increasing precipitation band magnitude during the main phase, microbursts 

constrained outside the plasmasphere, etc.), the overall occurrence of the events, as well as the 

relative occurrences and magnitudes of microbursts versus precipitation bands, varies 

tremendously.  During the July-Aug 2001 storm, precipitation bands dominate the loss by an 

order of magnitude over microbursts, while during the Nov 2003 storm they are larger by only a 

factor of two.  The total loss due to microbursts increases by an order of magnitude from the 

smaller Dstmin~-40 nT 2001 storm to the large Dstmin~-450 nT 2003 storm, showing a relation 

between storm size and microburst losses.  Precipitation band loss on the other hand is similar 

between these two storms, indicating that even during relatively small storms this mechanism 

can produce significant loss.  These findings emphasize the need to understand how the 

distributions and magnitudes of rapid precipitation events vary for different types of storms and 

storm phases. 

Precipitation Type: Main Phase: Recovery: Total Loss: 

July 30-Aug 3 2001 Storm (Dstmin=~-40 nT) 

Microbursts 27 e-/s 115 e-/s 44 x 106 e- 

Precipitation Bands 2700 e-/s 190 e-/s 600 x 106 e- 

Nov 20-23 2003 Storm (Dstmin=~-450 nT) 

Microbursts 6000 e-/s 195 e-/s 400 x 106 e- 

Precipitation Bands 9000 e-/s 1000 e-/s 700 x 106 e- 

Table 5.1 Precipitation rates due to microbursts and precipitation bands during main and recovery 
phases of the two storms shown in Figure 5.11. 

 

5.4.2 Superposed Epoch Study 

As shown in the previous section, the relative occurrences of both precipitation bands and 

microbursts, as well as their magnitudes, can vary dramatically from storm to storm.  We choose 
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next to focus on a single storm type and, using superposed epoch technique, to look for 

systematic patterns in rapid precipitation events across storm phase as well as L shell.  A set of 

41 high speed stream (HSS) driven storms from 2003-2005 are investigated, selected from a 

larger list of HSS storms originally studied by Denton and Borovsky [2008] and introduced 

earlier in Chapter 4.  Characteristic dropouts are observed during the main phase of these storms, 

followed by a subsequent build up of outer belt fluxes a few days later.  A number of studies 

have attempted to determine the cause or causes of these dropouts.  Studying the plasma 

conditions measured at GEO during these events, Borovsky and Denton [2009] suggest high ring 

current density and anisotropy, concurrent with extended plasmaspheric plumes on the duskside 

during the main phase, could contribute to EMIC wave growth and relativistic electron scattering 

associated with the observed dropouts in the trapped population.  Morley et al. [2010] find the 

magnetopause remains beyond ~8RE during a similar set of HSS from 2005-2008, suggesting 

that other mechanisms must be producing the losses seen across the entire outer belt, down to L 

shells of ~3.  Meredith et al. [2011] look at precipitating electrons seen by POES satellites at 

LEO during a subset of these same HSS storms, however, and find little indication of significant 

MeV loss to the atmosphere.  Finally, Hendry et al. [2012] use ground instrumentation, sensitive 

to ~10s-100s keV electrons, to quantify precipitation instead and find that the precipitating flux 

inferred by the ground measurements can be ~10x larger than that observed by POES. 

Figure 5.12 shows the superposed results from the Meredith et al. [2011] study, 

comparing >1 MeV count rates measured by the POES 90° telescope (panel a) and 0° telescope 

(panel b), superposed at storm convection onset.  The POES Medium Energy Proton and 

Electron Detector (MEPED) instrument used here has 3 electron channels, >30keV, >100keV, 

and >300 keV [Evans and Greer, 2004].  However, its highest energy proton channel has been 
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shown to be sensitive to electrons > ~1MeV [Yando et al., 2011] and is thus often used for 

radiation belt studies during times when solar proton events are not occurring.  The MEPED 

instrument consists of two 30° field of view telescopes, one looking roughly along the field line 

(0° or T0) and one looking perpendicular (90° or T90).  The 90° telescope responds to trapped 

and drift loss cone electrons, while the 0° one measures precipitating electrons.  However, with 

its 30° field of view, this telescope covers only a small fraction of the total loss cone, anywhere 

from 2-10% [Hendry et al., 2012].  Additionally, count rates have two-second resolution, so 

POES is not able to detect more rapid microburst precipitation.  For these reasons, we look to see 

if SAMPEX/HILT, with its large geometric factor and field of view and high time resolution, can 

reveal anything more regarding precipitation loss during these HSS storms.   

             

Figure 5.12  Superposed POES energetic electrons and Dst index during 42 HSS-driven storms.  
(Adapted from Meredith et al., 2011) 

 

Using our database of rapid precipitation features from Section 5.2.3, a statistical study is 

performed to investigate the distributions of energetic electron microbursts and precipitation 

bands during HSS storms across L shell and storm phase, looking both at occurrence rates as 

well as magnitudes of the precipitation types.  Figure 5.13 shows the distributions of the rapid, 
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milliseconds-long microbursts (left panels), as well as the longer duration precipitation bands 

(right panels), with respect to L shell and epoch time, over 41 HSS-driven storms.  While 

microburst occurrence rates increase dramatically during the recovery phase period, the 

magnitudes remain fairly independent of storm phase.  The precipitation bands, on the other 

hand, show an increase in magnitude right around zero epoch as well as through the recovery 

phase, especially at lower L shells.      

 

Figure 5.13  Superposed epoch results from 41 HSS-driven storms in 2003-2005.  Occurrence rates 
(top panels) and magnitudes (bottom) are shown for microbursts (left) and precipitation bands 
(right) across L shell and storm phase, or epoch time. 

 

Certain patterns are observable here, indicative of the role microburst and precipitation 

band losses play during these HSS-driven events.  Microburst activity shows a dramatic increase 

during these storms, beginning in the main phase but continuing through the recovery as the 

trapped outer belt fluxes are built back up.  More detailed investigations into the timing and 
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magnitude of this process must be performed to determine the balance between acceleration 

and loss that these features may indicate.  It appears, however, that magnitudes do not vary much 

across storm phase, in contrast to the patterns observed by O’Brien et al. [2004] during three 

large CME driven storms, which showed microburst magnitudes peaking during storm main 

phase.  The observed increase in precipitation band magnitude around zero epoch is consistent 

with enhanced EMIC wave activity during this time, as suggested by Borovsky and Denton 

[2009], as well as the MacDonald et al. [2010] study discussed briefly in Chapter 4, and suggests 

this mechanism may play a role in the main phase losses observed throughout the outer belt, 

especially at lower L shells.  These findings also suggest that POES does not fully capture the 

loss of MeV electrons to the atmosphere occurring during these events, in agreement with 

ground observations of lower energy electron precipitation.   

5.5 Summary 

Here we have used the extensive SAMPEX/HILT database to study rapid precipitation 

events, their spatial distributions, and their relation to storm-time radiation belt dynamics.  In 

particular, millisecond-long microburst precipitation as well as longer duration precipitation 

bands are investigated.  Using automated criteria to detect these features, in the SAMPEX/HILT 

>1 MeV database, we perform both statistical and event studies to better understand the relative 

contributions of these precipitation events to radiation belt losses.   

Local time occurrence distributions find microbursts constrained to the morning side of 

the magnetosphere, between L shells of 4-6, in good agreement with measured whistler mode 

chorus wave distributions in the inner magnetosphere.  Precipitation bands have a peak both in 

magnitude as well as occurrence rate on the dusk and night side, strongest from 18-24 MLT.  

While they extend across a somewhat larger range of radial distances, L~3-8, band magnitudes 
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are significantly lower at these further radial distances.  These distributions shed light on the 

potential scattering mechanisms causing these features, and support past hypotheses of whistler 

mode wave scattering producing microbursts and EMIC wave activity responsible for some 

precipitation bands. 

Investigation of the storm-time distributions of microbursts and precipitation bands help 

illuminate both when and where the different precipitation mechanisms contribute most to 

radiation belt depletions. Here we’ve investigated distributions of these rapid precipitation 

features and shown that they play a clear role in storm-time radiation belt dynamics.  Event 

studies indicate that the relative roles of these two precipitation mechanisms can vary 

tremendously during different storm types and phases, and that these losses are not necessarily 

directly related to storm magnitude.  In a superposed epoch study of 41 HSS-driven storms, we 

find evidence for significant atmospheric losses and propose that large geometric factor and field 

of view measurements as well as high time resolution are necessary to fully capture this loss.  

This work not only pins down the role precipitation plays in radiation belt losses, but also which 

type of precipitation is active and when.  
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Chapter 6: New CubeSat Measurements to Study MeV Electron Dynamics  

The following chapter includes work that was published in Blum and Schiller (2012), 

Characterization and testing of an energetic particle telescope for a CubeSat platform, Small 

Satellite Conference, AIAA/USU, SSC12-VIII-4. 

6.1 Introduction: The CSSWE CubeSat 

The Colorado Student Space Weather Experiment (CSSWE) is a Cubesat designed and 

built by University of Colorado (CU) students, launched in September 2012 and still returning 

data.  With reentry of the SAMPEX satellite in November 2012, after 20 years of operation and 

valuable data return, this CubeSat provides new, differential measurements of MeV electrons at 

low altitude to continue investigation of radiation belt losses to the atmosphere.  Additionally, 

with the successes of the Van Allen Probes, launched August 2012, and the BARREL balloon 

campaigns in Jan-Feb 2013 and 2014, a constellation of radiation belt monitors are currently 

providing multipoint measurements at a wide range of locations within the inner magnetosphere.   

Using data from the CSSWE CubeSat, in conjunction with other new missions and 

measurements, we can continue to study MeV electron precipitation.   

This CubeSat project has provided me with invaluable hardware and management 

training as well as the unique experience of seeing a space flight hardware project from design 

and testing through launch and data analysis phases.  As this was a large team effort including 

over 60 students and professionals, I would like to acknowledge and thank all the team members 

involved.  My initial involvement in this project was as a team member on the Electrical Power 

System and Science Instrument subsystems, testing solar cells and instrument electronics and 
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designing a test plan for the instrument detectors.  In January 2011 I took over as Ground 

Station Lead and that May as Project Manager of the team.  I have acted in these roles for the 

past three years, seeing the project through flight build, system testing, delivery, launch, and 

operations.  In the following sections, I give an overview of the system as a whole, as well as 

some more detailed information regarding the science payload onboard.  In particular, I include 

aspects of the system design and performance that have directly affected our data processing and 

interpretation of the scientific measurements.  Additionally, I try to highlight here the specific 

areas in which I had a direct role.  Having been involved in these earlier stages of the project 

helped inform my analysis of the CubeSat data and my understanding of the instrument 

capabilities and limitations.  On all accounts the project has been a huge success, demonstrating 

not only the value of CubeSats as educational tools but also that valuable scientific 

measurements can be achieved from such small platforms. 

6.2 Mission and System Overview 

The CSSWE CubeSat, for which Xinlin Li is the principal investigator (P.I.) and Scott Palo 

a Co-P.I., was designed and built primarily by students at the University of Colorado, with 

advising from CU and Laboratory for Atmospheric and Space Physics (LASP) professionals.  

Funded by the National Science Foundation (NSF) for $840,000 over the course of three years, 

starting in January 2010, the CubeSat was delivered January 2012 for integration as a secondary 

payload onto an Atlas-V launch vehicle, and launched September 13, 2012 into a high 

inclination, low altitude orbit.  Mission operations were performed by students using a ground 

station and control room at LASP built specifically for the project.  CubeSat beacons were 

received and decoded on the spacecraft’s first pass over Boulder following deployment.  A 

timeline of the project is provided in Figure 6.1. 
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Figure 6.1 A timeline of the CSSWE mission, from design through build of both the CubeSat and 
Ground Station (G. S.) at LASP, through launch and operations.   The extended mission is 
continuing through the present time (as of June 2014).   

 

CSSWE was designed to address critical space weather questions.  The sole science 

payload onboard is the Relativistic Electron and Proton Telescope integrated little experiment 

(REPTile) instrument, which measures protons in the energy range of 9 - 40 MeV, and electrons 

from .58 - >3.8 MeV in differential energy channels.  This instrument is a miniaturized, 

simplified version of the Relativistic Electron and Proton Telescope (REPT) instrument [Baker et 

al., 2012] designed and built at LASP onboard NASA’s Van Allen Probes [Kessel et al., 2012].  

From its low altitude, high inclination orbit, CSSWE measures both trapped and precipitating 

MeV protons and electrons from the radiation belts as well as solar energetic particle events.   

The project employed a “keep it simple” approach combined with rigorous system testing 

to minimize risks associated with low budget, student-built projects.  Commercial off-the-shelf 

(COTS) components and subsystems were used where possible.  Attitude is maintained with a 

passive magnetic attitude control (PMAC) system, consisting of a small bar magnet and six 

hysteresis rods [Gerhardt et al., 2010].  This system aligns the long axis of the spacecraft with 

the background magnetic field to within ~15°, to both improve the RF communication link with 

the ground station as well as for instrument science requirements.  Except for battery heaters, 

thermal control is passive as well, relying on thermal radiative apertures to release heat from the 
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electronics stack.  Numerous full system tests were performed prior to delivery, including 

vibration testing, a 10-day 8-cycle thermal vacuum (TVAC) test, and “day-in-the-life” testing of 

full functionality over the RF link.  The robust design and thorough testing helped verify on-orbit 

performance and build confidence in the success of the system. 

6.3 Instrument Design 

General design of the instrument and instrument electronics began in 2008-2009 and was 

already largely determined when I joined the project in Fall 2010.  However, much testing and 

characterization of the instrument performance was still needed.  Instrument Scientist Quintin 

Schiller and Instrument Electronics Lead Abhishek Mahendrakumar led these efforts with 

advising from LASP professionals Vaughn Hoxie and Chris Belting.  As a team member on the 

Instrument subsystem, I participated in much of this testing, including electronics component 

performance characterization, detector test plan development, and discussions regarding the 

science drivers behind design requirements and decisions.  The challenges of miniaturizing an 

instrument to fit within the constraints of a CubeSat dictated a number of the REPTile design 

features.  Strict mass and volume budgets for CubeSats restrict REPTile’s size, and the resulting 

space, power, and data transmission limitations played a large roll in the design of the 

electronics.  Thus, careful preflight testing and calibration was all the more critical to 

understanding and optimizing instrument performance. 

The REPTile instrument is a loaded-disc collimated telescope designed to measure 

energetic electrons and protons with a signal to noise ratio of two or greater. The instrument 

consists of a stack of four solid-state doped silicon detectors manufactured by Micron 

Semiconductor. The front detector has a diameter of 20mm, while the following three are 40mm 

across. The detector stack is housed in a tungsten (atomic number Z=74) chamber, which is 
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encased in an aluminum (Z=13) outer shield.  Tantalum (Z=73) baffles within the collimator 

prevent electrons from scattering into the detector stack from outside the instrument’s 52° field 

of view, and give the instrument a geometric factor of 0.52 sr·cm2.  The materials were chosen 

based on a combination of their ability to shield energetic particles and minimize secondary 

electron generation within the housing.  The 0.5mm thick beryllium foil at the front of the 

detector stack acts as a high-pass filter, stopping all electrons < 400keV and protons < 8MeV 

(see Figure 6.2 for the instrument geometry).  The total instrument mass is 1.25kg, with a 

cylindrical envelope of 4.6cm (diameter) x 6.0cm (length).  As beam testing was not within the    

   

Figure 6.2 A Solidworks rendering of the REPTile instrument onboard CSSWE. 

 

$840,000 budget of the CubeSat, detailed modeling of the instrument, as well as radioactive 

source testing, was conducted to characterize its performance [Schiller and Mahendrakumar, 

2010; Blum and Schiller, 2012].  The PMAC system maintains the boresight of the instrument 

pointing roughly perpendicular to the background magnetic field, so measurements are 

dominated by locally mirroring particles. 

 The REPTile electronics system acts to process and interpret the signals coming from the 
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detectors and calculate electron and proton count rates in each of the four energy channels. A 

block diagram of the signal chain is depicted in Figure 6.3, showing the stages the signal passes 

through before count rates are calculated. The chain is duplicated for each of the four detectors. 

 When a particle hits a detector, it produces a shower of electrons in the silicon. This 

charge pulse is collected on the anode and passed to a charge sensitive amplifier (CSA), which 

acts to amplify the signal and convert it to a shaped voltage pulse. The CSA selected was the 

A225 from Amptek Inc., which is a space grade component but very sensitive to noise and other 

environmental factors. Due to this sensitivity, a number of measures were taken to remove 

background noise from the signal. Details on the testing and correction methodologies are 

discussed in Section 6.5. 

      

Figure 6.3  Instrument electronics block diagram.  (From Blum and Schiller, 2012) 

 

 Following the CSA, a secondary amplification is performed by a pulse-shaping amplifier 

(PSA), which amplifies the signal by 3.4x and further shapes it. The output of this stage ranges 

from !0-4V depending on the species and energy of the incident particle. These voltages are 

passed into a three-stage discriminator chain, which is used to identify whether the particle is an 

electron or proton based on the voltage measured. Each discriminator compares the output of the 

PSA to a predefined reference voltage. The reference voltages are set to 0.29, 1.35, and 3.88 V, 

equivalent to energy deposition in the detectors of 0.25, 1.5, and 4.5 MeV respectively, and are 
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adjustable from the ground during operations. The first discriminator in the chain returns a 1 if 

the input voltage exceeds the equivalent of 0.25 MeV deposited in the detector, and a 0 

otherwise. The second returns a 1 when the second voltage threshold is exceeded, and similarly 

for the final discriminator and third threshold. Thus a discriminator chain output of 100 indicates 

a particle has deposited 0.25-1.5 MeV in a given detector.   

 In the final signal processing stage, the Complex Programmable Logic Device (CPLD) 

interprets the discriminator values and classifies the particle by species and energy. Particles 

depositing between 0.25 and 1.5 MeV in a detector are classified as electrons, and those 

depositing > 4.5 MeV as protons. Discriminator outputs of 1.5 – 4.5 MeV are discarded, as this 

energy range is contaminated by both electrons and protons. The number of detectors a particle 

hits determines the energy of the particle, as described by the binning logic applied by the CPLD.  

6-second count rates are calculated for each energy channel for both electrons and protons, and 

these rates are passed on to the Command and Data Handling (C&DH) system to be stored and 

transmitted down to the ground. 

 Instrument commissioning began in early October 2012, a few weeks after launch, and 

consisted of turning on the high voltage to each detector one at a time.  After a few days, it was 

determined that the third detector was not behaving properly, so it was turned off for the 

remainder of the mission.  The onboard binning logic was designed to account for failure of one 

detector, so CSSWE returns three energy channels per species rather than the four originally 

designed.  The current in-flight instrument energy channels as well as the four original channels 

are listed in Table 6.1. 
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Pre-Launch Energy Channels: 
Species: Channel 1 Channel 2 Channel 3 Channel 4 
Electrons 0.5-1.5 MeV 1.5-2.2 MeV 2.2-2.9 MeV >2.9 MeV 
Protons 8.5-18.5 MeV 18.5-25 MeV 25-30.5 MeV 30.5-40 MeV 

Post-Launch Energy Channels: 
Species: Channel 1 Channel 2 Channel 3 
Electrons 0.58-1.63 MeV 1.63-3.8 MeV >3.8 MeV 
Protons 9-18 MeV 18-30 MeV 30-40 MeV 
Table 6.1  REPTile energy channels pre- and post-launch.   

 

6.4 Ground Station and Operations 

To operate the CSSWE CubeSat and collect data, a ground station was built specifically 

for the mission on the rooftop of LASP.  Trade studies had been performed and equipment 

selected and purchased when I took over as Ground Station Lead in January 2011.  My main 

responsibilities were thus to construct the ground station, test it thoroughly, and coordinate 

mission operations after launch.  This included installing the hardware both on the roof of LASP 

and in the control room, and testing the antenna tracking and alignment as well as the 

communication link between the ground station and onboard CubeSat radio.  

 

Figure 6.4  CSSWE ground station antennas during construction on the LASP rooftop. 
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The CSSWE ground station operates in half-duplex mode, communicating at a rate of 

9.6 kbps at 437.345 MHz (UHF) for the uplink and downlink, the frequency designated to us by 

the International Amateur Radio Union (IARU). Commands are packetized and sent through 

Instrument and Spacecraft Interface Software (ISIS), commanding software that was inherited by 

LASP from the NOAA GOES-R program and has been customized for our uses. The Kantronics 

KAM XL terminal node controller (TNC) modulates/demodulates the signal, and the Kenwood 

TS-2000 radio is used to communicate at the UHF band. Two 18 foot M2 436CP42 cross Yagi 

antennas are used, each with a gain of ~17 dBdc and a circular beamwidth of 21°. The antennas 

are pointed using a Yaesu G5500 azimuth-elevation rotator controlled by SatPC32, a software 

package developed for use with amateur satellites. This program also controls radio frequency to 

account for Doppler shift during passes. The antennas and rotator are mounted on an 8-foot 

tower installed on the LASP roof and connected to the ground station control room with just over 

200 ft of low-loss cabling, adding a total of - 5.4dBm loss to the RF signal. A block diagram of 

the ground station command and control chains is illustrated in Figure 6.5.    

The ground station was fully tested before CubeSat delivery and launch, and was used to 

command the satellite in a simulated on-orbit scenario. We successfully sent commands and 

received data over the RF link with the CubeSat at an off-site location running off of its battery 

and solar panels, with attenuators in the signal chain to simulate on-orbit losses. The ground 

station continued to be tested after delivery with a functionally identical, spare version of the 

satellite (our “flatsat”) built specifically for testing and calibration purposes.  Tracking 

capabilities and antenna alignment were also confirmed by tracking, listening to, and decoding 

beacons from other spacecraft already in orbit, including University of Michigan’s RAX2 
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CubeSat.  Local HAM Radio operators Rick Kile and Rob Strieby helped us test and debug 

the system. 

       

Figure 6.5  Ground station block diagram. (From Li et al., 2012) 

 

The operations team was composed of a handful of undergraduate and graduate CU 

students, with whom we developed a commissioning plan and manned passes (~6 per day) 

during the primary mission.  Beginning in December 2012, CSSWE Systems Engineer David 

Gerhardt developed and implemented an Automated Commanding System to command and 

control CSSWE during passes without any human involvement.  This system has been critical to 

our continued operations of CSSWE and has helped maximize the data we are able to retrieve.  

While our ground station is the only one able to send commands to CSSWE, stations around the 

world have helped track and collect beacons from our CubeSat.  This was particularly helpful 

during the first few weeks after launch while we were trying to determine the object number and 

two line element (TLE) of our orbit and determine the system state of health. 
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Figure 6.6 Ops team members Colin Stewart (left) and Wayne Russell (right) running a pass in the 
CSSWE ground station control room.  

 

6.5 Data Processing 

After colleting REPTile measurements, a number of processing steps are necessary 

before the data can be used.  In particular, noise due to RF transmission and high temperatures 

must be removed.  Additionally, count rates are corrected for saturation effects during periods of 

high fluxes.  These processing steps are briefly outlined below to give better insight into the 

measurements obtained from REPTile.  As instrument scientist, Quintin Schiller has developed 

the code to process raw instrument counts and convert them into flux.  Sam Califf has also 

contributed by calculating the ephemeris data, including L shell and MLT, from the CubeSat two 

line elements (TLEs).  As Project Manager I coordinated many of the system tests, such as 

TVAC, which alerted us to some of these potential noise sources.  I have also been involved in 

some of these data processing steps, determining what features must be removed or corrected for 

and, through discussions and testing, how best to do so. 

The raw, 6-second count rates received on the ground are processed to remove 

transmission noise by deleting data points within 12 seconds of a transmission event.  This noise, 
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prior to removal, can be seen in Figure 6.7 as the red dots scattered above North America that 

clearly stand out from the measured outer belt fluxes.  These transmission events contaminate 

some of our measurements of outer radiation belt electrons, particularly in the area above 

Boulder.  Due to this, we intentionally limit communications during some passes to improve the 

collection rate of usable data from this region and increase our sampling of the outer radiation 

belt. 

           

Figure 6.7  Ground tracks of CSSWE, with measured electron flux in the second energy channel on 
the color scale.  Scattered red dots can be seen in the data above North America, which are due to 
transmission events and contaminate the true measurements. 

 

Furthermore, during periods of high solar beta angle (the angle between the Sun-Earth 

vector and the satellite orbital plane), the spacecraft interior temperature increases, causing an 

increase in the leakage current created from the biased detectors.  This temperature-dependent 

noise was observed during TVAC testing performed on the system at LASP before delivery and 

was anticipated to be an issue during periods when the detector temperature reached >25°C (as 
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seen in Figure 6.8).  As there was no radiation source inside the TVAC chamber, all counts 

registered in REPTile here are due to background noise.  This noise is largest on Detector 2 and 

is subtracted from the data during these hot, high beta angle periods.        

          

Figure 6.8  Measured singles count rates during thermal vacuum (TVAC) testing as a function of 
detector temperature for all four REPTile detectors.  Maximum operational temperature is ~25° C, 
at which point system noise potentially overwhelms science data.  (From Blum and Schiller, 2012) 

 

Orbit beta angle varies on month timescales, as shown by the green line in Figure 6.9.  

Also shown here is the REPTile duty cycle (blue).  The spacecraft is not power positive during 

certain orbital configurations, and over the course of the mission, as the power system continues 

to degrade, REPTile on-time has decreased.  Due to this duty cycling, coordination with other 

missions was required to better allow for conjunction studies such as the one detailed in the 

following Chapter.  I led the coordination with the BARREL balloon team (campaigns in Jan-

Feb 2013 and 2014) as well as the Firebird CubeSat (Jan-Feb 2014) to ensure that REPTile was 

on, data collected by the ground station, and transmit noise minimized during periods of interest 

and overlap among missions.  The gap from early March through late June 2013 during which 

REPTile remained off full time was due to an anomaly causing us to lose contact with the 
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spacecraft for three months.  This is discussed in more detail in Schiller et al., [2014a] as 

well as in internal documents by David Gerhardt. 

       

Figure 6.9  Daily averaged percent of time the REPTile instrument was on (blue) and daily averaged 
orbit beta angle magnitude (green).  (Image courtesy of David Gerhardt) 

 

  Finally, during periods of high count rates, certain components in the instrument 

electronics become less efficient at counting the number of incident particles.  Specifically, the 

baseline of the Amptek A225 charge sensitive amplifier drifts downward with increased input 

pulse rate, causing particles near the lower binning threshold to go uncounted.  Figure 6.10 

shows the recorded count rate versus input count rate during a lab test performed on the flatsat 

for a variety of pulse sizes (referenced here by the equivalent deposited energy in a detector, 

using 22mV/MeV, taken from the A225 spec sheet, to convert from pulse size to energy 

deposited in the silicon).  Perfect counting is shown for 1 MeV deposited energy pulses, but as 
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pulse size decreases and count rates increase, the undercounting effect is enhanced.  This 

effect is corrected for by characterizing the performance of the A225s to determine the lowest 

energy of measurable particles as a function of count rate.  Thus, with knowledge of the lower 

energy limit on each channel, particles that are not counted can be corrected for by assuming an 

energy spectrum and adding the missing fraction of counts back in.  An E-& spectrum, where &=2 

(determined by comparison to Van Allen Probes/MagEIS Medium [Blake et al., 2013] energy 

spectra), is assumed for convenience, although in reality the spectrum changes as a function of 

time and space.  Quintin Schiller has led the data processing effort and conversion from raw 

count rates to flux using Monte Carlo simulations to estimate efficiency curves for each energy 

channel.  The full count rate to flux conversion procedure is described in Li et al., [2013a].  

     

Figure 6.10  Measured versus incident count rate, as determined from lab tests on the CSSWE 
flatsat.  Curves are given for various pulse sizes ranging from the equivalent of 0.4 MeV up to 1 MeV 
deposited in a detector. 

 

Great care has been taken to ensure that we can accurately remove transmission noise so 

as to distinguish it from real features in the data, such as precipitation bands as were observed by 
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SAMPEX.  Additionally, the current saturation correction methodology is sufficient for more 

qualitative comparisons between energy channels, but a detailed study of the changes in energy 

spectrum over time, especially during periods of high flux, would require a more detailed 

treatment and correction of this saturation effect.  The study presented in Chapter 7 has kept 

these characteristics of the data products in mind to best accommodate for the strengths and 

limitations of the REPTile measurements. 

6.6 On-Orbit Science Measurements 

Figure 6.11 shows daily averaged measurements from the lowest energy electron 

channel, 0.58-1.63 MeV, and second energy channel, 1.63-3.8 MeV, over the first six months of 

the mission.  The bottom panel shows the Dst index, a measure of geomagnetic activity, during 

this same period.  The dynamic nature of the outer radiation belt is clear from these plots, and 

already within the first six months of the mission numerous different events have been 

investigated, including a large storm in October just after the instrument was first turned on [Li et 

al., 2013a], an extended quiet period in December-January over which slow decay of the outer 

belt is observed [Jaynes et al., under review], an electron enhancement around mid January not 

associated with a major storm [Schiller et al., 2014b], and a precipitation event observed by both 

CSSWE and the BARREL balloons [Blum et al., 2013].  The CubeSat continues to operate and 

return science data, long after its nominal 3-month mission lifetime.  After careful data 

processing, enabled in part by the thorough instrument testing and modeling, we are able to study 

energetic electron dynamics in the outer radiation belt using the CSSWE mission.  These 

measurements have resulted in numerous scientific publications in addition to engineering papers 

and conference presentations.  The following Chapter details one scientific result using CSSWE 
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data, in combination with magnetically conjugate BARREL balloon measurements, to 

characterize and quantify precipitation losses. 

 

Figure 6.11  Daily averaged fluxes (log scale) from the 0.58-1.63 and 1.63-3.8 MeV electron channels 
of REPTile (top and middle panels, respectively), and the Dst index (bottom) for the first ~6 months 
of the CSSWE mission.  Several data gaps are due to anomalies that sent the spacecraft into safe 
mode, turning off the science instrument.  The instrument did not operate at 100% duty cycle during 
some periods, leading to some irregularity, such as the on-off appearance of the inner belt.  (From Li 
et al., 2013a) 
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Chapter 7: Precipitation Event Characterization and Quantification 

The following Chapter is based on work that was published in Blum et al. (2013), New 

conjunctive CubeSat and balloon measurements to quantify rapid energetic electron 

precipitation, Geophys. Res. Lett., 40, doi:10.1002/2013GL058546. 

7.1  Introduction 

Particle precipitation into the atmosphere is a critical part of radiation belt electron loss; 

without quantified understanding of this loss mechanism, we are unable to fully understand 

acceleration mechanisms.  In particular, rapid electron precipitation is often observed at low 

altitude extending a few degrees in latitude (termed precipitation bands, following Blake et al., 

1996).  These precipitation bands have been hypothesized to be an integral contributor to storm-

time relativistic electron precipitation loss [Bortnik et al., 2006], but quantification of their net 

contribution is still needed. 

Precipitation bands, also referred to as “spikes” historically (e.g. Brown and Stone, 1972), 

have been observed by a number of satellites in low Earth orbit (LEO).  They occur both during 

quiet and more active times, primarily across the afternoon and night sectors [Imhof et al., 1986; 

Nakamura et al., 2000].  Their 5-30 sec duration, as observed by LEO satellites, is thought to be 

spatial rather than temporal, as precipitation bands are often seen on consecutive orbits and in 

conjugate hemispheres [Nakamura et al., 1995].  Their exact temporal duration is difficult to 

estimate from a single LEO satellite alone. 

Wave-particle interaction theory predicts rapid precipitation events to occur on the 

duskside due to pitch-angle scattering of MeV electrons by electromagnetic ion cyclotron 
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(EMIC) waves [Thorne and Kennel, 1971].  Vampola [1971] suggested that a subset of the 

precipitation bands measured by the OV3-3 satellite at LEO were the observational signatures of 

EMIC wave-MeV electron interactions.  Imhof et al. [1986] found a correspondence between the 

radial location of precipitation bands and the plasmapause, as well as concurrent keV ion 

precipitation on a few occasions, further supporting EMIC waves as a cause of the bands.  

Electrostatic waves and pitch-angle scattering at the trapping boundary have also been proposed 

precipitation band generation mechanisms [Koons et al., 1972; Brown and Stone, 1972].  Data 

from the SAMPEX/HILT instrument, which measures a combination of trapped and precipitating 

> 1 MeV electrons and provides some pitch angle distribution information, suggest fluxes 

become more isotropic during these band features, indicating a rapid scattering mechanism and 

precipitation of the electrons into the atmosphere [Blake et al., 1996; Li et al., 1997].   

Historically, electron precipitation has also been investigated by balloon campaigns 

measuring bremsstrahlung x-rays produced by precipitating electrons as they collide with 

neutrals in the atmosphere (see Parks et al., 1993 for a review).  Foat et al. [1998] presented the 

first reported measurement of x-rays extending up to MeV energies, indicating relativistic 

electron precipitation, or “REP”.  Using measurements from the MAXIS balloon payload, Millan 

et al. [2002] found that REP events were constrained to the afternoon sector, between noon and 

midnight, while softer precipitation was measured across the full range of local times.  

SAMPEX/HILT measurements also indicate that harder precipitation events preferentially occur 

in the afternoon, night and dawn sectors, with a peak occurrence around 22 MLT at an L shell of 

5-6 [Comess et al., 2013].  However, due to the inherently different nature of the observations, 

the exact relationship between the precipitation bands observed at LEO and the REP events seen 

by balloons is still uncertain.   
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Here we investigate precipitation bands, as measured at LEO by the Colorado Student 

Space Weather Experiment (CSSWE) CubeSat [Li et al., 2012, 2013b].  Two precipitation bands 

were observed by CSSWE on Jan 18-19, 2013, concurrent with relativistic electron precipitation 

seen by the BARREL balloon array [Millan et al., 2013].  These magnetically conjugate 

observations confirm the link between precipitation bands and balloon-measured REP and can be 

used to constrain the duration and extent of the precipitation bands.  We calculate the net 

electron loss due to these precipitation bands and compare to the total radiation belt content at 

the time.  The newly available differential flux measurements from CSSWE, combined with the 

spatial coverage of the array of BARREL balloons, allow a detailed quantification of 

precipitation band loss for the first time.   

7.2 Rapid Precipitation Observations 

7.2.1 Instrument Descriptions 

As introduced above, the CSSWE CubeSat, designed, built, and operated by students at 

the University of Colorado, was launched from Vandenberg Airforce Base on Sept 13, 2012 into 

a 65° inclination, 480 x 780 km altitude orbit [Li et al., 2013b].  The sole science payload 

onboard is the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), 

a miniaturized version of the REPT instrument [Baker et al., 2012] onboard NASA/Van Allen 

Probes [Kessel et al., 2012].   This instrument provides 6-second directional, differential electron 

flux in three energy ranges: .58-1.63, 1.63-3.8, and > 3.8 MeV.  With a field-of-view of 52° 

pointing within 15° of perpendicular to the background magnetic field, REPTile measures a 

combination of trapped and precipitating particles, similar to the SAMPEX/HILT instrument.  

Details on the instrument design and calibration can be found in Schiller and Mahendrakumar 
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[2010] and Blum and Schiller [2012], and the data processing and conversion to flux is 

described in Li et al. [2013a].  Care has been taken to remove noise due to temperature variations 

and radio transmissions. 

Data from the 2013 Balloon Array for Radiation belt Relativistic Electron Losses 

(BARREL) campaign are also examined here.  Roughly five balloons, distributed in local time 

and magnetic latitude, were taking measurements at 27-37 km over Antarctica on any given day 

throughout the Jan-Feb 2013 campaign.  These balloons carry x-ray spectrometers sensitive to 

bremsstrahlung x-rays ranging from 20 keV up to 10 MeV.  Using GEANT4 simulations and a 

forward-folding technique, described in detail in Millan et al. [2013], one can estimate the 

energy spectrum of the incident precipitating electrons from the measured x-ray spectrum (e.g., 

Foat et al., 1998; Millan et al., 2007).  Here, however, we use the x-ray measurements simply as 

an indication of energetic electron precipitation, and the CSSWE measurements to determine 

exact electron energies and fluxes. 

7.2.2 Jan 18-19 2013 Precipitation 

Late January 18th and early on the 19th, 2013, CSSWE observed two large precipitation 

bands of MeV electrons.  Concurrently, payload 1C of the BARREL balloon array measured x-

rays due to energetic electron precipitation.  The top panels of Figure 7.1 show the electron flux 

during two passes of CSSWE through the outer radiation belt on consecutive orbits.  

Superimposed atop the smoothly varying background of trapped and drift-loss-cone electrons (as 

indicated by the dashed black curve), a distinct rapid flux enhancement is seen at 23:03 UT 1/18 

and again around 00:39 UT 1/19.  The bottom panel of Figure 7.1 shows the x-ray spectrum 

measured by BARREL balloon 1C during this same time period.  Three large precipitation 

events are seen, the second two extending to energies > 0.5 MeV.   
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Figure 7.1  (top) Measurements from the CSSWE CubeSat and (bottom) BARREL balloon 1C 
during a precipitation event on 18–19 January 2013. CSSWE measures two precipitation bands 
(labeled A and B and indicated by the shaded grey regions) on two consecutive passes through the 
outer belt. The dashed black line suggests the background trapped and bounce loss cone flux upon 
which the precipitation bands are superimposed. (bottom) X-ray spectra from balloon 1C are shown 
from 18:00 UT 18 January through 06:00 UT 19 January. During this time, three main precipitation 
events are measured by the balloon, the second two showing X-rays of energies >0.5 MeV. No 
background subtraction has been applied here to either the BARREL or CSSWE measurements. 

 

Figure 7.2 shows the location of the two precipitation bands along the ground track of the 

CubeSat, as well as the balloon 1C position from 22:00 UT 1/18 – 01:00 UT 1/19.  The 

background color indicates 0.5-1.63 MeV electron flux measurements from CSSWE over a two-

week period, to demonstrate the typical sampling of the outer and inner radiation belts from the 

CubeSat orbit.  CSSWE is in the Northern hemisphere during both the precipitation band 

observations, while BARREL is in the Southern, supporting the idea that the bands are an 
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indication of rapid pitch angle scattering causing simultaneous electron precipitation in both 

hemispheres.   

   

Figure 7.2 The ground track of CSSWE from 22:00 UT 18 January through 01:00 UT 19 January is 
shown in dark blue, with the location of precipitation bands A and B in pink (band labels are 
consistent throughout all figures). BARREL balloon 1C was located in the Southern Hemisphere at a 
conjugate location during this period. The 0.58–1.63 MeV electron measurements from CSSWE 
during a 2 week period are plotted on the color scale in the background to show typical inner and 
outer belt sampling by the CubeSat from its low-altitude orbit. 

 

To better investigate the location and timing of the precipitation observed by CSSWE and 

balloon 1C, their positions are mapped to the magnetic equatorial plane using the T89 magnetic 

field model [Tsyganenko, 1989], with real-time Kp as input (Kp varies between 2 and 3+ during 

this period).  The T89 model has been shown to perform well on the dusk side during quiet to 

moderate geomagnetic conditions such as these [McCollough et al. 2008].  Figure 7.3 shows the 

CubeSat and balloon locations in this plane in L shell and magnetic local time (MLT).  The color 

bar here indicates universal time of their positions.  The periods of precipitation have been 

marked with black circles; these include the two precipitation bands measured by CSSWE and 

the second two precipitation occurrences measured by BARREL around 23:15 UT 1/18 and 
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00:35 UT 1/19.  The first precipitation band measured by CSSWE at 23:03 UT 1/18 lines up 

with the third precipitation region seen by BARREL balloon 1C almost 2 hours later.  The 

second band, measured by CSSWE at 00:39 UT 1/19, is aligned with the precipitation measured 

by balloon 1C ~23:15 UT 1/18.  From this figure, it is evident that the precipitation bands agree 

in both L and MLT with precipitation seen by BARREL.  These magnetically conjugate 

observations suggest that at least some precipitation bands measured at LEO are the same 

phenomenon as the REP events seen by balloons.  

 

Figure 7.3 The location of CSSWE and balloon 1C mapped to the magnetic equatorial plane, with 
local noon at the top. Universal time of the locations is shown on the color bar. The balloon drifts 
across the dusk sector at a fairly constant L ~ 5.5–6, while the CubeSat cuts across this track every 
roughly 90 min. The locations of the precipitation bands, as measured by CSSWE, are indicated by 
the open black circles. The tracks of solid black circles indicate when balloon 1C measures >0.5MeV 
X-rays due to precipitating electrons. The dotted boxes outline the two precipitation regions as 
determined from the conjunctive measurements, (exact dimensions of these regions are listed in 
Table 7.1). 
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7.3 Discussion 

7.3.1 Loss Quantification 

The balloon and LEO satellite measurements combine to constrain the temporal and 

spatial features of the precipitation bands.  The balloons measure the azimuthal extent of the 

precipitation in local time, while the bands measured by CSSWE indicate a narrow radial width 

of the precipitation regions, consistent with a lack of precipitation observed by additional 

balloons at L~4 and L~8 also in the dusk sector.  Combined, they bound the physical dimensions 

of the precipitation regions, as well as place constraints on the duration of the event in UT.  The 

dashed black boxes in Figure 7.3 outline the precipitation regions estimated from the balloon and 

CubeSat measurements, with exact dimensions listed in Table 7.1.  While the end time of the 

events is fairly well constrained by subsequent CubeSat passes through the region, these 

measurements provide only a lower bound on the UT duration, as the precipitation may have 

begun before the CubeSat and balloons moved into this duskside region.  

 

Table 7.1  The parameters used to calculate area and total loss for precipitation bands A and B (as 
labeled in Figure 7.1-Figure 7.3). 

 

Using these estimates of the dimensions and duration of the precipitation bands, we are 

thus able to calculate a lower limit to the overall loss of energetic electrons into the atmosphere 

during this event.  Following the technique used by Lorentzen et al. [2001b] and O’Brien et al. 
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[2004] to estimate losses measured by SAMPEX, we calculate the electron flux through the 

area of the precipitation regions at the altitude of CSSWE using the following equation: 

! 

#e" = 2# $f # $T# A# 2%            (7.1) 

where *f is the magnitude of the precipitation band above the background trapped and drift-loss-

cone flux (e.g., solid minus dashed line in Figure 7.1a), *T the duration of the precipitation in 

UT, and A the area of the precipitation region at the CubeSat altitude.  The factor 2 comes from 

assuming conjugate precipitation in both hemispheres and 2$ from an assumption of isotropy 

over the down-going hemisphere.   

Table 7.1 lists these parameters estimated for precipitation bands A and B, as determined 

from Figure 7.1-Figure 7.3.  For band A, we calculate an area of  8.35*1014 cm2 and a loss of 

2.5*1024 electrons in CSSWE’s first energy channel and 6.6*1022 in the second channel.  Band B 

gives an area of 2.6*1014 cm2 and a loss of 2.2*1023 electrons in the first energy channel and 

5.8*1021 in the second.  Combined, these bands produce a total loss of ~2.7*1024 .58-1.63 MeV 

electrons and 7.2*1022 1.63-3.8 MeV electrons.  For this analysis we have chosen to group the 

precipitation measurements by physical location (MLT) rather than UT and magnitude.  

However, if instead we group precipitation measurements by UT (band A measured by CSSWE 

paired with precipitation seen by BARREL ~23:15 UT on 1/18) and interpret the events as two 

shorter duration (~30 min) precipitation regions spanning the duskside from 17:30-20:00 MLT, 

we get a total loss within a factor of 1.5 of the above calculation.  While the observations cannot 

necessarily distinguish between these two scenarios (two longer duration but narrower in local 

time precipitation regions versus more extended, but shorter duration, regions), the exact 

interpretation of the precipitation structure does not significantly affect the estimates here. 
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For comparison, Millan et al. [2002] estimated that a precipitation event measured by 

the MAXIS balloon in January 2000 produced a loss of ~ 5*1025 >0.5 MeV electrons over the 

course of eight days.  Another type of rapid precipitation, microbursts, were found by O’Brien et 

al. [2004] to contribute ~1023 >1 MeV electrons during one pass of SAMPEX through the outer 

belt, while Lorentzen et al. [2001b] calculate a loss of ~1024 for the same pass using a less 

sophisticated calculation method.  

To put these numbers into context, a quick estimate of the total radiation belt content can 

be made following O’Brien et al. [2004].  Using CSSWE measurements of the trapped outer belt 

population and assuming a sinn form of the pitch angle distribution with n=2.5 [Gannon et al., 

2007], we integrate flux over pitch angle and L shell volume from L=3-6.5.  This produces a 

total electron content of ~7*1025 for .58-1.63 MeV electrons and 2*1024 1.63-3.8 MeV electrons.  

If we look at just the drift shells right around the precipitation region (~L=5.5-5.8), we estimate 

the content to be ~1/10 that of the whole belt.   

As shown by these calculations, the precipitation events on Jan 18-19 2013 produced a 

significant amount of loss, precipitating roughly half the content of their given drift shell and at 

least 5% of the total outer radiation belt content at the time.  Events such as these could easily 

empty entire drift shells in a few hours, and approximately 20 of them could empty the outer 

radiation belt.  While geomagnetic conditions were relatively mild during this event (Dst ~ -20 

nT following a moderate storm on 1/17) and precipitation band occurrence rates are expected to 

be low during quiet times, ~1-10% [Nakamura et al., 2000], occurrences have been observed to 

increase during more active periods.  During a large storm on November 20, 2003, over 60 

precipitation bands were measured by SAMPEX over the three-day storm [Bortnik et al., 2006].  

During that storm, as well as others, precipitation bands potentially contributed a large amount of 
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radiation belt electron loss.  Whether these losses lead to radiation belt dropouts and 

depletions depends upon competing acceleration mechanisms and will be the focus of future 

work.  This study indicates that precipitation losses must be taken into account when studying 

outer radiation belt dynamics and that precipitation bands, more specifically, can contribute 

significant rapid losses that may not be fully accounted for if looking only at longer time-

averaged precipitation rates.   

7.3.2 Potential Scattering Mechanisms 

One remaining open question involves the scattering mechanism or mechanisms 

responsible for rapid precipitation events, and we can use the characteristic spatial features of the 

precipitation regions investigated here to help shed light on the scattering mechanism.  The Jan 

18-19 2013 precipitation event extended across the dusk, lasting over an hour in UT, but 

confined narrowly in L shell.  Recent studies [Mann et al., 2014; Paulson et al., 2014] have 

found electromagnetic ion cyclotron (EMIC) waves showing similar structures, extending a few 

hours in MLT and UT, but restricted to narrow radial regions.  By combining ground and in situ 

measurements, they confine the EMIC activity to widths of a few tenths of an RE, but persisting 

multiple hours in local or universal time (see Figure 7.4).  

We have taken a preliminary look at the wave environment during the Jan 18-19 2013 

precipitation event.  Wave activity from GOES and the Carisma ground magnetometer network 

(courtesy of M. Engebretson and M. Usanova, respectively) are shown in Figure 7.5a. EMIC 

activity in the H+ band is observed from ~12-20 MLT (Figure 7.5b), lasting from ~16 UT on Jan 

18 through 02 UT on Jan 19, concurrent with the precipitation observed by CSSWE and 

BARREL.  A more detailed investigation into the potential relationship between the observed 

EMIC waves and precipitation bands will be performed in future studies. 



 

  

115 

 

    

Figure 7.4  Spectrogram of the (top) Bx GSM magnetic field component power from Van Allen Probe 
B and the (bottom) D-component induction coil magnetometer spectrogram from the Dawson City 
(DAWS, L=6.09) station of the Carisma ground magnetometer network from 13 to 16 UT on 11 
October 2012.  The black line shows the local helium gyrofrequency, and the red line shows the 
electron plasma density derived from spacecraft potential measurements.  (Adapted from Mann et 
al., 2014) 

 

   

 

Figure 7.5 (a) Magnetic field spectrograms from the GOES 13 satellite at GEO and the Fort 
Churchill ground station from Jan 18-19 2013.  EMIC wave activity has been circled in red.  (b) The 
location of the GOES 13 (pink), Van Allen Probes A and B (green and red) and THEMIS A, D and E 
(magenta, cyan, and blue) orbits during this time period.  EMIC wave activity as observed by GOES 
13 has been indicated in red along the GOES orbit. 
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7.4 Conclusions 

This study combines differential energy measurements of rapid energetic electron 

precipitation observed by the CSSWE CubeSat at LEO with precipitation measured at lower 

altitude from the BARREL balloon array.  Magnetically conjugate measurements of 

simultaneous precipitation observed by the CubeSat and balloon 1C on Jan 18-19 2013 help 

constrain the dimensions and duration of the precipitation regions.  The combination of these 

new measurements enables a detailed estimate of MeV electron loss due to precipitation bands 

for the first time, to our knowledge.  We find that the loss of 0.58-1.63 and 1.63-3.8 MeV 

electrons during this event was at least 5% of the total outer radiation belt content.  The 

following points summarize the findings of this study: 

1. Conjunctive measurements confirm the association between “precipitation band” 

measurements made by satellites at LEO (e.g. Brown and Stone, 1972; Vampola 1971; Imhof et 

al., 1986; Blake et al., 1996) and relativistic electron precipitation “REP” measured by balloons 

at lower altitude (e.g. Foat et al., 1998; Millan et al., 2002). 

2. New measurements from CubeSat and balloon payloads are combined here to estimate the 

spatial and temporal characteristics of two dusk-side precipitation events. 

3. Quantification of the MeV electron loss due to the measured precipitation bands indicates that 

~20 such events could empty the entire outer radiation belt.    

Using newly available measurements from the CSSWE and BARREL missions in 

support of the Van Allen Probes, this study demonstrates that precipitation bands, commonly 

observed during geomagnetic storms, play an important role in outer radiation belt dynamics and 

losses. 
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7.5 Statistical Extensions 

Some preliminary work has been done to expand this event study and look statistically at 

conjunctions between CSSWE and the 2013 BARREL balloons to understand the frequency and 

extent of precipitation events like the one studied above.  Following the technique outlined in 

Section 7.2.2, to better understand the relative locations and timing between balloon and CubeSat 

measurements we map their positions along magnetic field lines to the magnetic equator using 

the T89 model with Kp=2.  Figure 7.6 shows the balloon and CubeSat locations on January 17 

2013 looking down on this plane, with local time indicated by azimuth (noon towards the top) 

and L shell shown by radial distance from the center.  The universal time of these locations is 

indicated by the color scale, in hours throughout the day.  While five BARREL balloons were up 

on this day, we include only two in this Figure for clarity.  By finding places where the CubeSat    

         

Figure 7.6  The location of CSSWE and two BARREL balloons mapped to the magnetic equatorial 
plane, with local noon at the top. Universal time of the locations is shown on the color bar.  Black 
circles indicate periods of close magnetic conjunction between the CubeSat and balloons. 
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and balloon trajectories approach each other, at similar times (colors), we can find periods of 

close magnetic conjunction between the measurements.  The black circles in Figure 7.6 indicate 

a few such times. 

To get a rough idea of the total number of conjuction periods throughout the 2013 

BARREL campaign, we can scale the average number of conjunctions per day per balloon by the 

total length of the campaign as well as the number of balloons up each day.  Other considerations 

include the L shell of the balloons – we are concerned here only with L shells of ~3-8, as we are 

focused here on radiation belt precipitation and the inner magnetosphere – as well as the duty 

cycle of the REPTile instrument onboard CSSWE.  Figure 7.7 demonstrates the percent of time 

REPTile was on during the first 6 months of the missions (in blue).  The orbit beta angle is 

overplotted in Figure 7.7 in green.  During periods of large beta angle, and thus longer portions  

 

Figure 7.7  The percent of time REPTile was on during the first 6 months of the missions (blue).  This 
duty cycle is highly dependent on the amount of insolation versus eclipse time on a given CubeSat 
orbit, which varies on roughly month timescales as the orbit precesses.  A measure of this changing 
insolation time, the orbit beta angle (angle between the Sun-Earth line and orbital plane), is 
overplotted here (green). The period of overlap with the 2013 BARREL campaign is shaded in 
orange, during which the REPTile instrument was on anywhere between ~20-100% of the time. 
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of the orbit in illumination, the REPTile instrument is able to remain on full time.  The period of 

overlap with the 2013 BARREL campaign is shaded in orange, during which the REPTile 

instrument is on anywhere between ~20-100% of the time.  When taking all these variables into 

account, we get an average of five conjuctions per balloon per day, 180 balloon-days where 

balloons are at L<8, and the REPTile duty cycle ranging between ~20-100% during this period.  

Combining these variables, there are a total of approximately 500 conjunctions between the 

CSSWE CubeSat and a BARREL balloon over this month-and-a-half campaign.   

Moving forward from this analysis, we plan to perform a more rigorous and flexible 

conjunction finding for the 2013 and 2014 BARREL campaigns.  Using a simple Matlab routine, 

which has been used in the past to calculate conjunctions between the CSSWE CubeSat and Van 

Allen Probes, we can search routinely for periods of magnetic conjunction between CSSWE and 

the BARREL balloons now.  Defining our search domain to be in L-MLT space, we use an 

understanding of the physical extents of various processes that may contribute to MeV electron 

precipitation to define what we consider a conjunction.  Starting with criteria of <1 hour MLT, 

<1 L shell, and <2 hrs UT, we can also vary these parameters to tighten or loosen the conjunction 

criteria.   Examining over what spatial and temporal extents we observe precipitation at both the 

CubeSat and one, or more, balloons will potentially give insight into the physical extents of 

precipitation regions.  Similarly, finding periods when either the CubeSat or a balloon does not 

see precipitation while the other one does can also help constrain the area and duration of 

precipitation events.  Our recent studies suggest precipitation regions can persist for hours in 

regions constrained to narrow radial distances, and this will be tested in a more thorough, 

statistical manner through future investigations.  Putting constraints on the physical extents and 
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durations of precipitation regions will help in the quantification of MeV electron 

precipitation loss, a critical open question remaining in the understanding of radiation belt 

dynamics.  
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Chapter 8: Summary and Future Work 

8.1 Summary and Conclusions 

The work in this thesis is motivated by some of the following open questions in radiation 

belt physics: What processes control the dynamics of the outer radiation belt?  When and where 

do losses dominate over acceleration mechanisms?  What role does precipitation into the 

atmosphere play in these losses, and what mechanisms or wave modes are primarily responsible 

for the precipitation?  We have investigated these questions through a number of techniques and 

data sets, and a summary of our findings is provided below.  Additional ideas for extensions to 

these studies are also outlined. 

In Chapters 3 and 4, we focus on electromagnetic ion cyclotron (EMIC) waves, which are 

able to resonate with MeV electron and scatter them into the atmosphere.  Studying the 

distributions of these waves, as well as their generation conditions, gives insight into when this 

particular loss mechanism may be active.  In Chapter 3, we develop a plasma-based proxy for 

EMIC waves and validate the use of it for future investigations of EMIC wave distributions in 

the inner magnetosphere.  Good agreement is found both in the statistical distributions of the 

inferred and measured waves, as well as for specific case studies investigated.  This study 

demonstrates the powerful applications of plasma data to infer wave distributions in space and to 

understand the source populations and growth mechanisms of EMIC waves.  In Chapter 4 we 

then use this wave proxy to investigate plasma conditions as well as inferred wave distributions 

in local time and storm phase during two different sets of storms – ones resulting in post-storm 

enhancements of outer radiation belt MeV electrons, and ones resulting in no enhancements.  We 
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find statistically significant differences in the various plasma populations during the two sets 

of storms, as well as a suppression of EMIC waves during the recovery phase of the storms 

resulting in higher electron fluxes.  This is consistent with the idea that EMIC waves can cause 

increased loss of MeV electrons to the atmosphere, preventing build up of the outer radiation belt 

during the recovery phase of storms.  It also underlines the importance of the balance of loss and 

acceleration mechanisms in radiation belt dynamics, and suggests that it may often be a 

suppression of losses rather than increased acceleration that leads to radiation belt enhancements. 

We then move to examine precipitating electrons directly, with studies enabled by low 

altitude measurements from both the 20 year SAMPEX mission as well as the more recent 

Colorado Student Space Weather Experiment (CSSWE) CubeSat, on orbit since September 

2012.  Through high-cadence low-altitude measurements from the SAMPEX satellite, we 

investigate the distributions of millisecond (microburst) as well as longer duration (band-type) 

precipitation and the relative contributions of these two precipitation features to overall radiation 

belt dynamics.  Dramatically different local time and radial distributions of the between 

microbursts and precipitation bands support different wave modes as the causal scattering 

mechanisms for the two precipitation types.  In a superposed epoch study of precipitation losses 

during high speed stream driven storms, we find evidence for significant main and recovery 

phase losses to the atmosphere, especially at lower L shells, that are not fully captured by 

instruments with lower time resolution and smaller geometric factors and fields of view than 

SAMPEX/HILT. 

Then using new measurements from the CSSWE CubeSat, built and operated by students 

here at University of Colorado, we have quantified loss to the atmosphere during some such 

precipitation events.  Careful testing, calibration, and data processing of the CSSWE/REPTile 
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instrument, outlined in Chapter 6, was required to enable such scientific investigations.  

Combining CSSWE measurements with those from the 2013 BARREL balloon campaign, we 

find MeV precipitation constrained narrowly in L shell but occurring across the dusk sector 

during an event in January 2013.  An estimate of the loss due to precipitation during this event 

indicates that precipitation bands can contribute significant loss of MeV electrons from the outer 

radiation belt.  These conjugate measurements combine to help disentangle the spatial versus 

temporal extents of precipitation and allow for quantification of loss to the atmosphere during 

such events.   

These studies combine to form a more cohesive picture of the relationship between 

electromagnetic waves, their source populations, and the interactions of these waves with 

relativistic electrons in the outer radiation belt.!  The interplay and energy transfer between 

particle populations in the inner magnetosphere is especially critical for many of these studies.  

In particular, it is important to emphasize the role of cold plasma in mediating the generation of 

electromagnetic waves as well as the interaction of these waves with MeV electrons.  Studying 

specific types of MeV electron precipitation helps answer the question not only of how much 

loss is due to precipitation events, but what wave modes are responsible for this loss, and how 

this varies with local time and storm type and phase.  We can thus understand the contribution of 

individual loss mechanisms to the net response of the outer radiation belt.  Together these studies 

aid in understanding the dynamics of the outer radiation belt and the relationship between 

precipitating energetic electrons and global magnetospheric conditions. 

8.2 Potential Extensions and Future Work 

There are a number of directions I would like to expand and extend this work, a few of 

which are outlined briefly below. 
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8.2.1 EMIC Wave Generation Conditions 

 Our studies of EMIC wave generation conditions and development of a plasma-based 

proxy in Chapters 3 and 4 were limited by a number of factors due to the LANL instrumentation 

that may now be remedied with new Van Allen Probe data.  Simultaneous plasma and wave 

measurements onboard the Van Allen Probes enable a more detailed examination of the validity 

of such a proxy, as the LANL spacecraft are not equipped with magnetometers and GOES do not 

provide the necessary plasma parameters to calculate this proxy.  Additionally, ion composition 

measurements provided by the Van Allen Probes/HOPE instrument [Funsten et al., 2013] allow 

for more in depth investigation into the role of heavy ions in EMIC wave growth.  It would also 

be interesting to compare plasma conditions during EMIC waves occurring in different 

frequency bands, as waves in the H+ versus He+ band have been shown to have distinctly 

different local time distributions [Min et al., 2012].   

8.2.2 Further Precipitation Investigations 

I would also like to look more directly and quantitatively into the link between 

electromagnetic waves and radiation belt precipitation in the inner magnetosphere.  A few such 

studies have been initiated and suggested earlier in the text.  Are the distinct temporal and spatial 

characteristics of rapid precipitation events determined by wave distributions?  Or does cold 

plasma structure dictate some features, such as the narrow radial extent of precipitation bands 

observed at LEO?  Comparisons between the global plasmaspheric images from the IMAGE 

satellite and precipitation distributions observed by SAMPEX may shed light on some of these 

questions.  Additional comprehensive wave, cold plasma, and radiation belt measurements in the 

inner magnetosphere from the Van Allen Probes, combined with BARREL and CSSWE 

precipitation measurements, will also be valuable in this effort.  Resonance conditions at the 
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equator will be investigated to more directly connect wave activity to pitch angle scattering 

and compare expected precipitation characteristics (energy spectrum, temporal and spatial 

features, etc.) with measured ones.   
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