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Abstract. The Neem Platform is a research test bed for Project Neem, concerned
with the development of socially and culturally aware collaborative systems in a
wide range of domains, through development of situated applications that target
specific group cultures and alternative theories. The Neem Platform is a generic
(application neutral) component-based framework that provides functionality that
facilitates building such collaborative applications.
Given the wide variety of target applications, the platform provides more than a
closed set of behaviors - it is itself evolvable. Its functionality can be extended
and adapted through facilities provided by a coordination mechanism that iso-
lates computation from coordination concerns. Application development on top
of this platform is facilitated by reuse of common functionality, as well as from
embedded support for Wizard of Oz experiments.
A novelty of Project Neem is its focus on the dynamic aspects that character-
ize group interaction under a Perceptual Interface paradigm. Participants’ multi-
modal interactions such as voice exchanges, textual messages, widget operations
and eventually gestures, eye gaze and facial expressions are reified and made
available to applications, that apply situated reasoning, using this rich contextual
information to dynamically adapt their behavior. The system presents itself multi-
modally as well, through a set of virtual participants - automated entities that are
perceived by human participants as having personalities and emotions, making
use of animation and voice generation.

1 Introduction

Project Neem at University of Colorado is concerned with the development of socially
and culturally aware collaborative systems. The project explores issues surrounding
such systems in a variety of different domains, targeting different group cultures and in-
teraction styles. These applications range, for instance, from very unstructured “extreme
collaborations” [32] to rigid protocol-based interactions, such as the ones regulated by
Robert’s Rules of Order [44].

The Neem Platform is a research test bed for this project. It provides a generic (ap-
plication neutral) evolvable framework upon which socially and culturally aware appli-
cations are developed. In the present work, we concentrate on describing the platform
and only hint at the complexity and challenges involved in building such applications,
which are explored more in depth elsewhere [18].

Central to the design of the platform is the focus of the project on the dynamic nature
of group work in general, and social and cultural aspects in particular. The platform is



therefore designed to make available to applications rich contextual information and
provide mechanisms to allow analysis and reasoning based on it, so that applications
can elicit timely and appropriate responses that conform to situated social and cultural
norms of a target group. The platform supports and incentives application designs that
are based on dynamic, context appropriate system reaction, situated to specific groups
of users.

Interaction between applications and users is supported under a perceptual interface
[51] paradigm. Perceptual Interfaces are based on how humans communicate among
themselves, exploring verbal and nonverbal human behaviors through the incorporation
of multiple modalities, such as speech, gestures, gaze, both for collection and for pre-
sentation. Perceptual Interfaces take into consideration psychosocial aspects and aim at
presenting a system in such a way as to make it an acceptable social actor.

The platform provides facilities for the integration of functionality for capture and
reification of user actions over a variety of modalities (e.g. speech, text, gestures), as
well as analysis and reasoning based on this reified context. Also included are facilities
that allow applications to present themselves as a set of virtual participants, perceived as
having personalities and opinions, through the use of multiple output modalities such
as animated characters that emote, voice, natural language textual output as well as
conventional widget based communication.

1.1 Platform characteristics

The goal of the platform is to facilitate the development of real-time distributed mul-
tipoint perceptual-based applications that focus on context-appropriate dynamic reac-
tions. To this end, an evolvable component-based infrastructure is provided. Function-
ality embedded in the platform makes development of group-aware perceptual appli-
cations roughly equivalent to the development of singleware (single user applications).
Development is also supported by embedded support for Wizard of Oz experiments.
Wizard of Oz is a traditional technique for testing new features in the field by having
a human participant masquerade as a virtual one, thus allowing for faster development
cycles than possible if everything needs to be coded. This technique is usually employed
by natural language based systems. Here we extend this use to explore issues on group
interaction.

The platform incorporates reusable components that provide extensible support for
basic real-time collaboration, such as session management, consistency control, data
distribution, communication and coordination among components [22]. Its focus is on
functionality that allows user actions to be captured, reasoned upon, and reacted to,
under a perceptual perspective that explores multiple input and output modalities.

The burden of dealing with the above mentioned aspects is taken from the applica-
tions, that are free to concentrate on domain specific requirements. Development cycle
is thus potentially reduced and made amenable to a rapid prototyping approach. Wizard
of Oz experiments can also be easily implemented through simple tools, reducing the
need for coding of highly experimental designs at too early a stage.

Given the varied and unanticipated requirements that are bound to surface during
development of the wide range of proposed applications, the platform provides more
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than a closed set of pre-existing behaviors - the platform itself is designed to be ex-
tensible and adaptable, and its functionality is expected to follow an evolutive cycle
alongside applications. The distinction between application development and platform
refinement is thus blurred.

The platform provides at its core an architectural coordination model that provides
and environment for plugging-in distributed and potentially heterogeneous components.
Computation and coordination concerns are handled separately, to enhance reusability.
Computation is provided by message-enabled components. Coordination is mediated
by a brokering mechanism, that offers functionality to “glue” components together by
manipulating messages. The decoupling of coordination from the computation results
in an architecture that promotes agile and flexible composition of behaviors, that can be
made to fit a variety of styles.

We frame the extensibility problem in terms of aspect-oriented programming (AOP)
[20] and we show that the coordination model adopted in Neem provides potential join
points and the mechanism to transparently combine separately developed aspects, the
hallmarks of AOP [19]. Join points places were independently developed aspects can
we weaved together implicitly, without the writers of the code becoming aware of addi-
tional concerns. We also discuss advantages of using such approach in CSCW systems
(Section 4.3).

Actual implementation of the platform is based on aggressive reuse of existing tools,
standards and technology. Services and functionalities are provided to the maximum
extent possible by off-the-shelf and open source solutions, that are integrated through
wrappers. The immediate advantages are the reuse of robust software, availability of
developers trained in the use of the tools, and possibility of replacing components with
newer and improved technology as it becomes available.

1.2 Neem applications

Neem applications are built on top of the platform and provide those components that
are unique to an application. A business meeting application can, e.g., employ interface
elements that support creating an agenda, and tracking topics as they are discussed by a
group. At the same time, such a meeting application might include active functionality
that e.g. issues warnings whenever the time allocated for a topic is exceeded by some
percentage. In this case, either a visual warning can be employed, or a warning can be
channeled through a virtual participant.

Clearly, application specific interface elements and augmentation functionality are
highly dependent on cultural and social aspects of a group of users. Even for the same
domain, such as business meetings, what is appropriate support depends on the type
of meeting that is being targeted (formal, informal), how groups are organized (e.g.
hierarchy) and a multitude of social and cultural rules that determine what is to be
expected from each participant, including the system, that must adhere to the social
conventions of the group.

The needs at the application level for cultural adaptation is addressed in Neem by
having generic (and evolvable) functionality provided by a platform upon which specific
applications can be developed for each different kind of domain. The platform thus
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offers a mechanism for reuse of generic functionality and supports rapid application
development by encapsulating common CSCW aspects.
We envision employing the Neem Platform to develop end applications in different
areas:

– Business meeting support - many different meeting models exist, that support in-
formal to formal group collaboration scenarios. Each model would correspond to
a different application layer built on top of the platform, each of them exploring
alternative, perhaps conflicting social theories.

– Distance education - the rich environment potentially provided by perceptual-based
user interfaces can be employed to support learning applications, where the students
learning styles are accounted for.

– Universal access - the ease of integration of devices makes it possible in principle to
support a larger population of users, that rely on specific modalities for information
production or consumption (haptik, speech, for blind users, gesture based for deaf,
and so on).

1.3 Organization of the paper

In the rest of this paper, we describe in further detail the functionality of the Neem Plat-
form. We begin by presenting Related Work (Section 2), followed by the presentation
of features of Perceptual Interfaces and the connection to multimedia and multimodal
technology (Section 3). Section 4 overviews the architecture of the platform. The paper
ends with Summary and Future Work (Section 5) and References.

2 Related work

Related areas (CSCW toolkits, perceptual interface based systems, architectures and
coordination mechanisms) are too broad to be covered in a single section (or even a sin-
gle paper!). We therefore highlight differences and similarities between our approach
and that of others, illustrating with references to representative work by no means ex-
haustive.

The need for flexibility in CSCW toolkits and systems is well acknowledged (e.g.
by [16, 22, 48, 24]. The common lesson is that flexibility requirements surface due to
the varied and dynamic nature of group work, which renders approaches based on a
closed set of behaviors useless, because of the restrictions they impose due to their
closed vocabularies.

Two lines of work pertain to adaptable CSCW infrastructures: 1)“tailorable” sys-
tems, usually meaning that extensions are implemented by end-users (e.g. in [31, 48,
29]) and 2)work on extensibility by developers (e.g. [15, 17, 45, 46]. The Neem Plat-
form follows the latter approach - it is meant to be adapted and extended by developers
following a user-centered approach. We heretofore concentrate on discussing only this
approach.

Flexible CSCW toolkits differ in the functionality they target and therefore in the
kinds of application aspects that they facilitate. As an example of this variety, consider:
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Prospero [15, 14] which concentrates on distributed data management and consistency
control mechanisms; Intermezzo [17] focus on the coordination aspects of collabora-
tion, in support of fluid interactions, offering user awareness, session management, and
policy control; GroupKit [45] offers a basic infrastructure that includes distributed pro-
cess coordination, groupware widgets and session management.

The Neem Platform offers a generic coordination infrastructure that could in prin-
ciple be used to build virtually any kind of system, but the functionality that is built
on top of this generic layer targets real-time distributed multipoint dynamic collabora-
tive systems based on a perceptual interface paradigm. Participants multimodal actions
are reified and this context is made available for analysis and reasoning. Facilities for
multimodal presentation through virtual participants is also offered.

Analysis of a broader range of toolkits under the perspective of functionality and
flexibility can be found e.g. in [16, 22, 13].

From a Perceptual Interface research perspective, Neem differs from typical work
because of its focus on group interaction, as opposed to the focus on single users, as
is typical in the area. Even in systems that target groups of users (e.g. [8, 34, 41]), the
focus is on multimodal command, in which speech and pen, for instance are used to
replace more conventional interface devices.

Neem employs an opportunistic approach where the system dynamically adapts
based on reasoning over a context of (mostly human-to-human) interaction, as opposed
to receiving direct (multimodal) commands from individual users. In this sense Neem is
more closely related to the work presented e.g. by: Jebara et al [26] in which the system
acts as a mediator of the group meeting, offering feedback and relevant questions to
stimulate further conversation; Isbister et al [25], whose prototype mimics a party host,
trying to find a safe common topic for guests whose conversation has lagged; Nishimoto
et al [36] whose agent enhances the creative aspects of the conversations by entering
them as an equal participant with the human participants and keeping the conversation
lively; CMU’s Janus project [40] is somewhat related, in its aim to make human-to-
human communication across language barriers easier through multilingual translation
of multi-party conversations and access of databases to automatically provide additional
information (such as train schedules or city maps to the user) [54]. While Neem shares
the interest in human-to-human mediation, its goals are more ambitious than keeping
a bi-party conversation going. Neem targets social and cultural aspects and is there-
fore concerned with a more detailed view of how groups work, and how collaborative
systems can contribute.

From the perspective of extensibility, different strategies are employed by CSCW
toolkits: in Prospero [15], extensibility derives from a reflective mechanism that makes
use of facilities provided by the host language employed - CLOS. The guiding paradigm
is that of Open Implementation [28], that proposes gaining flexibility by breaking the
encapsulation that is traditional in object oriented development, making them amenable
to meta-level control mechanisms. Intermezzo’s allow code (written in an extended
version of Python) to be dynamically downloaded, and executed at the time it is down-
loaded or as a response to object and database change events described via a pattern
matching language; Groupkit [45] supports programatic reaction not only to system
generated events, but also to application specific ones. Events can trigger application
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notifiers or handlers. Particularly, such notifiers can be associated with changes to en-
vironments - dictionary-style shared data models - that the system automatically keeps
consistent across replicas.

Flexibility and extensibility in Neem are result from its foundation on a core archi-
tectural coordination model. In this model, decoupled components interact indirectly
through message exchanges. A meta-level mechanism mediates access to a Linda-like
tuple-space [4]. This functionality, that we call mediation, allows for explicit control
over component cooperation through message-rewrite rules.

The approach is related to data-centered architectures and is therefore related to
some extent to a great number of similar approaches (see [38] for a comprehensive
survey). Neem differs from these approaches by providing an explicit locus of (meta-
level) coordination control, the mediation functionality mentioned above.

More specifically, Neem shares Laura’s view of components as providers of mul-
tiple services [50]. Unlike Laura, there is not a necessary one-to-one correspondence
between request and provision of services. Requests in Neem can be serviced in paral-
lel by multiple components.

As in Gamma [2], LO [1] and derivatives (e.g. COOLL [5] and ShaDE [6]), Neem’s
explicit control mechanism is based on multiset message rewriting. Unlike these mod-
els, Neem provides a meta-level mechanism that executes transformations according to
a reified composition policy. This mechanism offers control over the “glue” that binds
components together, and provide for recombinations to be performed without compo-
nents knowledge and thus without the need for component recoding.

Neem’s approach to coordination can be also related to some multi-agent platforms,
such as the Open Agent Architecture (OAA) [33] and to some extent to the Galaxy
Communicator Architecture [11], both of which could be classified as data-centered
as well. In these platforms, as in Neem, coordination is mediated by active elements -
Facilitators in OAA and the Hub in Galaxy.

3 Perceptual Interfaces

Perceptual Interfaces are based on a paradigmatic shift from the structured, command
based GUI interfaces to a more natural one based on how humans interact among them-
selves. These new kinds of interfaces have been extensively studied, among others by
Reeves and Nass at Stanford’s Center for the Study of Language and Information (e.g.
[43, 42]). Their findings support the notion that provided that an interface mimic real
life, even if imperfectly, principles that explain perception in real life can be applied
straightforwardly to computers, i.e. that people’s reactions to computers are fundamen-
tally social and perceptual [43]. The reaction to animated characters, for instance, tend
to be similar to real participants, and even gender, ethnicity and similar factors play
similar roles independently of the obvious artificial nature of such characters, and their
imperfections in movements, voice.

The use of such a paradigm seems particularly relevant and appropriate in the con-
text of group collaboration. The bulk of communication is already performed by humans
among themselves. The objective of a group system is in fact to support such human
to human interaction. It is therefore natural to employ a similar communications-based
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paradigm to integrate augmentation functionality in a seamless and transparent way. It
is thus desirable on one hand for a system to extract information from an ongoing in-
teraction among humans, rather than by direct commands given through conventional
GUIs, and on the other hand to present system’s contributions through similar mecha-
nisms as the ones employed by human participants, i.e., through a complex combination
of speech, gestures, facial expressions, gaze, etc.

Perceptual Interfaces are associated to other technology, particularly multimedia
and multimodal, that can be related to each other to form a 4-tiered structure (Figure 1).
Multiple media channels (e.g. audio, video) broaden human perception of others. Infor-
mation carried over these channels are analyzed according to multiple modalities (e.g.,
natural language from voice and text, gestures, prosody, facial expressions, gaze). This
rich information is then used to build context and awareness of the interaction at the
perceptual level. This context allows the system to elicit reactions that are grounded on
psychosocial aspects, allowing the system to be perceived as a meaningful social actor
on its own right [43]. While we concentrate on the present work on discussing support
for perceptual features (the first three levels we just described), social and culturally
aware systems add a fourth layer that is concerned with the social dynamics of a group.
Here we only hint at the issues that surround the development of such systems.

Perceptual

Multimodal

Multimedia

Meaning

Context awareness

Social/Cultural
Social dynamics

Fig. 1. Perceptual Interfaces.

The use of multiple communication channels (multimedia) has been extensively
researched in the last decade and has resulted mainly in improved information presen-
tation capabilities, through the addition of video, animation and sound to the interface.
Multimodal systems take this concept one step beyond. A multimodal system is able
to automatically model the content of the information at a high level of abstraction. A
multimodal system strives for meaning [35].

Most common multimodal interfaces combine speech recognition and lipreading
(e.g. in [39]), or speech and pen based interfaces (e.g. in [37]), but other combinations
are also explored for instance: the integration of speech and gestures (e.g. [47]); of
speech, eye-gaze and hand-gestures (e.g. [30]); face and gesture (e.g. [7]). It is not un-
common to find combination of speech and more conventional user interface modalities,
such as keyboard and mouse related ones as well.

While individual modalities provide a wealth of information that is commonly not
present in conventional interfaces, the combination of modalities provides still richer in-
formation. Fusion is the process that combines individual modality streams into a single
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one, based on time and discourse constraints [27]. Fusion unleashes the full power of
multimodal communication, allowing information on each mode to complement each
other. A classic example of such combination was employed in the Bolt’s pioneer sys-
tem, ’Put-that-there’ [3], that combined speech recognition with gesture analysis that
allowed users to point to objects and locations and issue verbal commands to have them
moved.

The combination of modalities during group interaction opens up possibilities for
analysis never before available. It is for instance possible to combine facial expressions
with voice analysis to determine if a user looked (or sounded) angry or happy while
(or just before) issuing some utterance. Fusion has therefore the potential for adding
context to the interaction that would otherwise go un-noticed.

If fusion combines different modes, fission does exactly the opposite. Given a mes-
sage that needs to be conveyed, it is possible and desirable to pause and consider what is
the most effective way of conveying it, either through some conventional user interface
mechanism, or through a voice message, or through the use of an animated character
that emotes. In other words, multimodal interfaces provide an opportunity for alterna-
tive renderings of the same information, so that it imparts the importance and content
appropriately, taking into account social and cultural rules.

Fusion and fission mechanisms have a potential to liberate users from having to
adapt to system mandated input and output mechanisms. Users can be free to choose
the modality that best fits their styles both when producing information as well as when
being presented with information produced by a system. There is therefore a potential
for adaptation to user needs and styles. To fully realize user adaptation, besides having
some form of user modeling, a system would have to provide support for translations
between modes that may not be trivial. A communication between a visually oriented
user (say a deaf person) with users that prefer to speak would require translation to and
from a spoken language and a visual, gesture-based language that is not in the least
trivial.

Perceptual group applications have, nonetheless, the potential for offering an inte-
gration framework for such technology, once it becomes available, thus making possible
the development of universally accessible systems.

Figure 2 depicts information flow in Neem’s Perceptual Interface. Participants in-
teract in a distributed collaboration environment and their actions are sensed and inter-
preted; multiple interpreted streams are combined during fusion. Reasoning analyzes
the events in context, i.e., it takes into consideration past interaction. A response is
generated (which includes doing nothing), fission determines the most effective way
to react given available modes and taking into consideration user characteristics. This
potentially complex sequence of multiple modality actions are finally rendered at one
or more participants stations (reaction).

While Perceptual Interfaces are not new, the use in a collaborative system for ex-
traction, analysis and reasoning about human-to-human interactions in support of social
and cultural awareness is unique to Neem.
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Fig. 2. Perceptual information processing.

4 Architecture

We now turn our attention to the platform’s architecture. The platform’s design is based
on a 3-tiered approach:

1. The platform’s foundation is a generic coordination model that can in principle be
used to implement just about any distributed component-based system. It is at this
core level that flexibility and extensibility are introduced into the platform.

2. A second stage specializes this generic infrastructure to support collaboration and
dynamic reaction based on a perceptual paradigm, as is the goal of the project.

3. The third and final level realizes the collaboration framework as an actual imple-
mentation that makes extensive use of off-the-shelf and open source solutions.

We now discuss in turn each of these thee layers in further detail.

4.1 Coordination model

A coordination model “provides the means of integrating a number of possibly hetero-
geneous components by interfacing with each other in such a way that the collective
set forms a single application that can execute on and take advantage of parallel and
distributed systems” [38].

The advantage of clearly separating coordination from computation comes from the
flexibility in rearranging computational elements to fit new styles without having to
modify the components themselves, just the “glue” that binds them together, enhancing
chances of reuse.

In the coordination model adopted by Neem, decoupled components interact in-
directly through message exchanges. A meta-level mechanism mediates access to a

9



Linda-like tuple-space [4]. This functionality, that we call mediation, allows for explicit
control over component cooperation through message-rewrite rules.

A tuple-space is a shared dataspace, through which cooperating processes commu-
nicate among themselves only indirectly, by posting or broadcasting information into
the medium, and by retrieving information by removing or just copying information off
the medium. Retrieval is based on content-addressing capabilities of the medium [38].

Messages generated by the components and channeled through mediators can be
seen as events, some of which are interpreted as requests for service that will cause one
or more components to be in turn activated thus establishing indirect communication
between the component that generated the original message and the one(s) that got acti-
vated as a result of mediator internal actions (Figure 3). Components react to messages
by performing some computation and eventually sending out one or more messages.

Coordination control

Fig. 3. Neem coordination model. Components communicate indirectly through a coordination
control mechanism that embeds tuple-space functionality and a mediator. The dotted line indi-
cates a separation of reusable components (below the line) from application specific ones (above
the line. The distinction is purely based on reuse, and therefore is not clear-cut.

Changing communication aspects therefore implies exclusively in modifying me-
diator definitions to “rewire” component communication patterns, without having to
touch any of the existing components. The writers of the components are in fact largely
unaware of the actual contextual use of their components beyond required handling of
messages that are received and responses that are generated. The ability to compose
existing behaviors in unanticipated ways results in clear flexibility in their potential for
reuse (for a short and clear comparison of different communication styles, see [49]).

Components are uniformly employed both for the development of core platform
functionality and application layers. The only difference from a developer’s point of
view is the potential for reusability of components at each of these levels - while plat-
form components are expected to have general use, application specific components are
tied to a specific solution and therefore have less chance of reuse. In the following para-
graphs, we describe mostly generic functionality, that therefore corresponds to reusable
platform elements, rather than application level ones.
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We now define more precisely messages, components, component behavior and media-
tors, the basic elements of the coordination model.

Messages Given a set � of keys and � of values, a message � is a set of ��� ��� � �
�� � � � , i.e., messages are structured as frames. The set of keys of � is denoted by
�� ���, and �� ����� denotes the (unique) value that corresponds to key � in message
� .

A pattern � is a sentence in logic of the form ��	
�� 
�� 	 	 	 � 
�, where � is a
message that is matched against the pattern and 
�� � � � 	 	 	 � are atomic terms of the
form � � �� ��� or �� ����� � 
, 
 � � is a constant. A pattern � is said to match a
message � if all its � terms are true for message �, i.e., if all the pattern’s keys are in
the message and their corresponding values, if specified, are the same.

Patterns can therefore be seen as partially instantiated messages/frames, in which
some of the keys have assigned values and others correspond to “wildcards”, i.e., they
can match any values.

Components Components are the locus of computation and are characterized from the
coordination model perspective by their signatures, given by the tuple � � ��� � �� �,
where �� and �� are sets of patterns as specified above.

Each outbound message generated by a component must match one of the patterns
in �� . Conversely, �� describes messages that are serviced by a components, i.e.,
component inbound messages must match a pattern in �� . We will say that components
accept messages that conform to �� and generate messages according to �� .

Component outbound messages serve a dual (and indistinguishable) purpose of sig-
naling events and requesting services from other components. Inbound messages repre-
sent service activation requests originated elsewhere in a system.

Components can be instantiated by the coordination mechanism, meaning that a
new process or thread is started on some machine. A component is said to be active if
at least one instance is in execution at a given time. Each instance has its own private
state, separate from that of other instances.

Multiple active components can have non-disjoint, or even identical signatures. In
practical terms, that means that messages with similar structures (as defined by the
patterns in components’ signatures) might be both produced by multiple components
as well as serviced by multiple components as well. In particular, multiple components
might have identical signatures if they are instances of the same component. A single
message is thus accepted by multiple active components, that process the corresponding
service in parallel, for instance displaying information simultaneously in multiple user
interfaces.

Component behavior can be understood from a “black-box perspective as transfor-
mations that map �� to �� , in the form of non-deterministic rewrite rules:

����� � ��� � ��� � 	 	 	 � ��� � ����
����

� 	 	 	 ����

where � or � but not both are possibly equal to zero, �� is a message that is to be
matched against the rule, ��� � � � � 	 	 	 �� � � � are patterns as defined above and
���

� � � � 	 	 	 � with � possibly equal to zero are messages specified as:
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���
� ����� ���� ���� ���� 	 	 	 � ��� � ����

where ��� � � � 	 	 	 �, �� � � are keys, not necessarily in �� ��� � and �� � � is either
a constant value or some value �� ������� � � �� ��� �, that is, the body of a rule
builds messages by specifying a set of key and value pairs constructed from constants
in the respective domains (��� ) or values extracted from the message �� that is being
matched against the rule.

Rules with empty bodies do not generate any messages, i.e., matching messages are
simply consumed. Rules with empty heads indicate that messages are produced (non-
deterministically) without the need for a matching input. This might happen if messages
are generated as responses to component state changes triggered, for example, by user
interface actions.

Messages �� that match more than one rule head result in a non-deterministic firing
of one of them. Again, the apparent non-deterministic behavior results from (hidden)
component state changes that appear to an external observer (such as the coordination
model) as being random.

Rewrite rules conceptually describe the observable behaviors of components in
terms of messages consumed and generated. Component cooperation patterns result
from the chaining of messages, as components react to messages generated by others
and in turn generate messages that will cause further component activations. In Neem,
these cooperation patterns can be modified without the need to recode components,
through a reflective mechanism that we present next.

The mediator offers a mechanism through which control can be exerted over a sys-
tem’s cooperation pattern, by transparent message transformations. The mediator there-
fore offers control over the “glue” that binds components together, and provides for
recombinations to be performed without components knowledge and thus without the
need for component recoding.

The mechanism is based on the isolation of component writes and reads, that are
(conceptually) done on two distinct tuple-spaces, that we will call � and � respectively.
Components are required to write exclusively to the �-space and read exclusively from
the �-space. The mediator bridges the � and the � spaces by executing mirrored reads
and writes, i.e., by reading exclusively from the �-space and writing exclusively to the
�-space (Figure 4).

A reified composition policy dictates transformations that are applied by the medi-
ator - messages read by the mediator from the �-space are transformed before being
written to the �-space. A Composition policy is a explicit script that lists composition
rules, that we take to have the same form as the rewrite rules described above, with the
understanding that here �� is a message read from the �-space, that we denote in this
context as ��; the patterns ��� refer to �-message structures, that we denote as ��� and
the generated messages ���

are written to the �-space, heretofore denoted as ��� .
The execution mechanism consists of matching �-messages to cooperation rules

heads and generating �-messages according to matching rules’ bodies. In the context of
mediation, rule execution has a deterministic semantic: a single �-message that match
multiple rules cause all of them fire; empty rule heads are not allowed; empty rule
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Fig. 4. Components and mediators apply reads and writes to complementary spaces � and �.

bodies consume messages, as usual; �-messages not matched by any rule are written to
the �-space without transformations.

From an extensibility point of view, coordination rules provide for flexibility by al-
lowing redirections and introduction of new service activation requests without the need
to recode components, thus letting behaviors be recombined to suit different application
styles.

Service activation All active component whose �� -signatures match each of the �-
messages generated by a rule will have the corresponding service activated. Since mul-
tiple active components can match the same messages, a single �-message can result
in a broadcast, or more usually in a multicast. Unicasts, resulting from having a mes-
sage match a unique component, are usually performed by including some identification
value in a message, that corresponds to a unique pattern in some �� -signature of an ac-
tive component, e.g., by having a key “id” that uniquely identifies each component that
needs to be addressed unequivocally.

4.2 An example

We now present an example that illustrates the functionality of the coordination model.
We start by defining an application that uses a simple user interface components that we
then modify to show the model’s extensibility features. In the following paragraphs, key
names in patterns and composition rules are prefixed by a “�”, to visually distinguish
them from values.

Distributed user interface updates To illustrate how a distributed user interface can
be kept updated, consider a simple tool that has one button �� and a textual field �� , that
displays an identification of the participant that last clicked on the button. The goal in a
distributed user interface is to keep all users aware of each others actions, here, button
clicks.
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A component CLICKER implements the shared interface. Its signature is
����	
�� � ��� � ��������� ���
������� ��� �� � �� �.
CLICKER thus produces and accepts the same kind of messages. The key ������

identifies the component’s type; �� carries a user identification. Multiple instances of
CLICKER can be active, one per user in a group. Unique �� values are assigned to
each of these instances.

Whenever a user clicks on the button �� at her interface, the component instance
posts a message to the �-space announcing this event, through a message that carries
the identification of the user attached to �� .

The mediator at this point has no rules concerning this kind of message, so every
such message is copied unchanged to the �-space.

All active instance of CLICKER accept each of these �-messages because of the
match with their �� -signatures. All instances retrieve the message in parallel and pro-
vide the associated service, in the particular case, each instance updates the textual field
�� by displaying the value attached to the �� of the message that was retrieved. All
users get thus notified of every user (including their own) button clicks.

Contextual use of messages We now extend the application by introducing a compo-
nent TALLY that illustrates how a message can be used in additional contexts without
modifications of existing components. Suppose we want to add functionality that counts
clicks from each user and generates a notification once a user clicks on �� a predefined
number of times, say five. Users that clicked that many times have their id’s displayed
in a list kept by another interface component, HIT5, to be described momentarily.

TALLY has a signature
�
���� � ��� � ��������� ���
������� �� �� � ��������� !���"���� ��

TALLY accepts messages that comply to CLICKER generated messages, but in a
different context. TALLY keeps a count of individual user clicks. This count gets in-
cremented each time a message generated by a user gets accepted (in parallel to being
accepted by all other instances of CLICKER). When individual counts reach the thresh-
old (five), TALLY generates a message announcing this event, formatted according to
its �� signature.

HIT5 is the interface component that displays users that reached the threshold.
HIT5’s signature is

����� � ��� � ��������� !���"���� �� �� � ���

HIT5 accepts messages that comply to TALLY’s generated messages and upon re-
trieval of one such message, updates the user interface to include the user’s id in a list
that is displayed. The empty �� -signature signifies that no messages are generated by
HIT5.

Reuse of components with incompatible signatures We just saw how an applica-
tion can be extended by adding functionality that is based on the same messages, that
are interpreted in a different context. We now show how the mediator can be used to
make possible the reuse of existing components whose signatures do not match desired
messages.
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Suppose we are interested in saving in a log the sequence of user clicks generated by
CLICKER instances. We could of course write a a new component that accepts messages
compatible with CLICKER’s, but here we want to reuse an existing (generic) component
that was not built with CLICKER’s functionality in mind. Suppose that LOGGER is a
component that already does the required logging, but has a signature

������� � ��� � ��������� #$%%�����&������������ �� � ���

LOGGER saves whatever is informed in �&���� and ����� into a log. Since
LOGGER’s �� -signature is different from that of CLICKER’s, a transformation needs to
be performed. We employ a mediator composition rule for that purpose:

��������� ���
������� � � �

��������� ���
����� ��� � ���� ���,
��������� #$%%���� ��&����� ���
����� ������� ���� ���

This rule’s head matches CLICKER generated messages and its body causes two
messages to be written to the �-space: 1) a copy of the original message, so that com-
ponents that depend on this message will continue to have access to it, and 2) a mes-
sage that matches LOGGER’s �� -signature. In the rule above, ���� � is shorthand for
�� ��� ���� given that a rule is always matched against a single message �� at a
time.

If we want to add logging of TALLY events as well, we can modify the rule to make
it more generic:

��������� ���
������� ��

��������� !���"���� � � �

��������� ����������� ��� � ���� ���,
��������� #$%%���� ��&����� ����������� ������� ���� ���

Now both CLICKER and TALLY notifications are included in the log. Notice that we
made the bodies more generic by replacing constants with keys.

4.3 Design style

Before proceeding to the next architectural layer, we discuss issues related to design
style. Component reusability depends on more than the existence of a coordination
model. Clearly, depending on the services that are provided by components, and de-
pending on the decomposition that is chosen, components might need to be recoded
and modified when some extensions are introduced. We here discuss two factors that
impact reusability, the use style that is embedded in protocols and decomposition crite-
ria.

Message protocols The enhancements that we introduced in the example depend on
the existence of a protocol that has to be followed by components. The ability of com-
ponents to cooperate depends on availability or required information, that must be em-
bedded in messages, not only for processing, but also for message routing.

While we do not dictate a specific message content and services, and the coordina-
tion model itself does not make any assumptions about that, we found useful to structure
messages according to the following:
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– We require components to send out messages announcing they have just been in-
stantiated (alive message) and that they are about to terminate (dying message).
Components that require detailed knowledge about which actual instances are ac-
tive at any time make use of these messages. The messages inform class and unique
identifier of instances.

– Components are also required to respond to shutdown messages by terminating, to
allow remote deactivation. User interface components are required in addition to
respond to hide and show messages, by making themselves invisible and visible
respectively.

– All messages are required to identify the component that generated the message
by including class and instance identification attached to ������ and �� respec-
tively. Class identifiers are useful in multicasts, while unique instance identifiers are
useful for unicasts. We require all components to be directly addressable through
this field by declaring �� patterns that that are uniquely matched by each compo-
nent instance. Every service offered by a component should be accessible through
one such “unicast” pattern.

– Since message activation is asynchronous. it is useful to have component services
announce service completion through a message. Synchronous behavior can then
be emulated by watching for these completion notifications. This kind of messages
are useful for meta-level components, that do other types of synchronization, for
instance, wait for all instances of a service to terminate and then initiate some other
action, for instance activating a second service that is constrained to start only after
a first service terminates, for example.

(De)composition - an Aspect-oriented view Components that embed assumptions
about aspects that are bound to change are subject to potential need for recoding. Take
for instance a component that is built on the assumption of centralized data distribution
- it cannot be reused in applications that require distributed replicas, for example.

This is an old problem, addressed by techniques that are based on separation of con-
cerns. One such technique - Aspect-Oriented Programming (AOP) - proposes a style of
programming that goes beyond object-orientation, in the sense that it tackles the prob-
lem of cross-cutting concerns. Cross-cutting concerns are those that cannot be clearly
localized within a structural piece of code, for instance a class in an object-oriented
system. Typical examples of cross-cutting concerns include coordination itself, and e.g.
security and auditing, which are usually spread throughout multiple code units, making
maintenance harder.

A variety of techniques, mainly programming language related, address this issue
in different ways (see [20] for a comprehensive overview). What these techniques have
in common is that they offer mechanisms that make possible to code aspects in isola-
tion and then transparently recombine these different related behaviors automatically
into a single larger system [19]. This mechanism is based on 1) specification of join
points, places where aspects need to be weaved together and 2) transparent invocation
of additional behaviors that correspond to the separately defined aspects at these points.

In the model we are describing, each �-message processed by a mediator implicitly
offers a potential join point. Composition rules triggered by �-messages can activate
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functionality that relates to multiple aspects, by generating multiple �-messages that
cause components related to aspects to be transparently activated. Selected messages
can for instance trigger the activation of encryption services, start access control oper-
ations and data distribution services where these different aspects, implemented as one
or more components, can be applied transparently to code that is unaware of these dif-
ferent repercussions. This allows for aspects to be added, replaced or evolved without
affecting existing functionality.

In our example, we showed how logging can be transparently added to an applica-
tion, thus weaving in a concern that was not originally considered by the application.
Similarly, other concerns can be added without the need for recoding existing compo-
nents.

AOP is particularly appropriate in the context of collaborative systems, given iden-
tified common themes and aspects, such as consistency control, data distribution, con-
currency control, access control, and fault tolerance for example. The literature of the
area acknowledges both the importance and pervasiveness of these aspects, as well as
the varied ways in which they have to be dealt with in the context of collaboration,
depending on the target applications (and possibly even within a single application).

4.4 Framework

In the previous section, we examined the foundation of the platform - the coordination
model. This model, while flexible, offers no specific support for the perceptual inter-
face based dynamic collaborative applications that are targeted by Project Neem. In
this section, we examine how the generic foundation is specialized to offer necessary
services.

Given Neem’s focus on real-time distributed multipoint perceptual interface-based
applications, the framework embeds the following functionality:

– Multimodal input and output - extraction and presentation of multiple modality
information.

– Multimodal processing - such as fusion, fission, parsing of natural language streams.
– Multimedia processing - audio mixing and video switching.
– Session management - creation, joining, leaving, meetings or sessions.

Application development support covers the areas:

– User interface components - for building shared artifacts.
– Support for reasoning - for implementing dynamic context-based reaction.
– Support for Wizard of Oz experiments - to allow experimentation without coding.

We start to address these issues by specializing components into interface and aug-
mentation components. Even though conceptually similar (both are message enabled
component types), Neem Interface Components (NICs) are characterized by their at-
tachment to one or more interface devices, which makes them suitable for collecting
and relaying interface events generated by each participant, in the form of standard
messages. A Neem Augmentation Component (NAC), on the other hand, does not have
this constraint and is purely a message processing device.
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NICs provide means for the integration of multimedia devices, such as conventional
monitor, keyboard, mouse, consoles, audio and video. Other less conventional devices
(e.g. Virtual Reality (VR) goggles, haptik devices) can also be integrate through NICs.
All that is required to integrate a new device is a set of NICs that interface with a device,
extract events commanded by users and modify its state (for devices with output capa-
bilities) according to commands received as messages. A NIC may for instance attach
to an audio source (e.g. microphone) and do speech-to-text conversion, or extraction of
prosodic features, or attach to a video source and do gesture or facial expression extrac-
tion. NICs also react to messages they receive, causing changes to the associated state
of the interface, for instance rendering at users stations of textual messages, graphics or
full animations including gesture and/or voice.

A single NIC can attach and service multiple devices, as is typical, for instance, in
conventional GUI-based ones, where a single component attaches to a video monitor,
keyboard and mouse. Conversely, one device can be tapped by multiple NICs. Informa-
tion from a video source can for example be extracted by a set of NICs, each specializing
in one modality, e.g. facial expressions, or gestures.

Wizard of Oz functionality is supported straightforwardly by NICs that offer an in-
terface through which a human participant can activate the generation of messages that
cause other components to react. One can, for instance, send messages to components
that control animated characters, making them move, speak, emote, and so on. Simi-
larly, any other component can be made to react by issuing appropriate messages from
a wizard interface.

Neem Augmentation Components (NACs) provide mostly back-end functionality,
i.e., they are mostly responsible for processing the multiple modality streams, e.g. pars-
ing natural language streams, fusion, fission of different streams and so on, as well as
providing session management and multimedia processing capabilities.

NACs are also responsible for providing support for reasoning about the perceived
context of an ongoing interaction and generating appropriate responses. Responses
themselves are dependent on the specific application that is built on top of the platform.

NACs typically collaborate on refining messages. Some NACs receive and process
messages that represent participants actions directly. These NACs typically apply an
initial transformation that is further refined by other NACs, obeying a cycle depicted in
Figure 2. At the end of the cycle, one or more responses might have been generated.
Responses are implemented as messages, that take effect as NICs react causing changes
to one or more participants interfaces.

In actual use, multiple instances of the same NICs are usually active, normally one
instance per participant. Each participant’s audio channel, for instance, has a speech-to-
text NIC attached to it, that is responsible for transcribing that participant’s utterances.
Some of these instances will correspond to NICs that perform generic (platform) func-
tions, such as multimodal i/o, while others will correspond to shared artifacts through
which a group interacts.

NACs, on the other hand, tend to be instantiated just once, and usually provide ser-
vices to many (or all) participants. NACs offer therefore a convenient way to factor
out common functionality. While NICs are necessarily deployed on participants’ sta-
tions, NACs can be deployed anywhere (including on participants’ stations), due to the
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Fig. 5. Neem component deployment. Boxes surrounding components represent machines.

distributed nature of the multi-agent environment that supports intercommunication.
Because of the heavy weight processing associated with multimodal processing, and
for ease of administration, it is convenient to deploy NACs in one or more server ma-
chines, rather than on users’ stations. Figure 5 shows a deployment mapping of NICs
and NACs.

4.5 Prototype

A prototype of the platform has been implemented. Actual development leverages as
much as possible on existing, field tested technology, based on open standards (Fig-
ure 6).

The reuse of existing technology leads to a rearrangement of components given that
some single packages, such as the Multipoint Control Unit (MCU) embeds functionality
that we mapped to multiple NACs in the framework, in this case, session management
and multimedia processing functionality.

A messaging infrastructure is implemented as two distinct environments - a collabo-
ration and a multi-agent environment that are connected through a coupler component.
The distributed collaboration environment provides support for participants’ interaction
through NICs and the multi-agent environment supports back end augmentation func-
tionality, such as multimodal processing and reasoning, which are typically provided
by NACs. The reason for this split has to do with the different communication patterns
that are typical of NICs and NACs. The collaboration environment offers the broadcast
and multicast that are required by many NICs, while the multi-agent environment better
supports that cycle of incremental refinements that characterize multimodal process-
ing (see Figure 2). In this cycle, components typically apply a partial transformation,
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that is posted back to the environment for further processing by other components, in a
pipeline fashion.

Distributed collaboration environment Provides message delivery to groups of dis-
tributed participants (or rather to the NICs through which they interact), either through
broadcasts or selective delivery. This environment is implemented by DC-Meeting Server
and also embeds support for session management and multimedia processing.

DC-MeetingServer is a commercial H.323 Multipoint Conference Unit (MCU), pro-
duced by Data Connection Limited [12]. H.323 is a family of multimedia conferencing
protocols published by the International Telecommunication Union [52]. These pro-
tocols establish a set of services that can be employed as a basic multimedia confer-
encing support layer. It includes, among others, services for conference creation, han-
dling client connection and disconnection, file transfer, white-board, application shar-
ing, video and audio communication and transfer of data between two or more con-
nected clients. Also included is support for remote launching of applications in selected
connected clients. A variety of server and client software based on this protocol is read-
ily available in many platforms.

Multi-agent environment This environment is organized in a hub-and-spoke config-
uration. The mediator (hub) controls the flow of information among other components
(spokes). The mediator keeps a state that can dynamically influence the flow of infor-
mation among the spokes. The spokes can trade information among themselves through
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the Hub. Spokes and hub can either be on the same machine or distributed. This is the
environment that supports NACs. This environment embeds the mediator that handles
the coordination model functionality and is implemented by the DARPA Communicator
Architectural platform.

DARPA Communicator [9], based on MIT’s Galaxy architecture is an open source
hub-and-spoke architecture that provides a distributed, scriptable message passing sys-
tem with special emphasis on building language-enabled dialogue systems. A Hub, im-
plemented in C, mediates connections between Communicator servers (such as speech
recognition and synthesis, parsing, dialogue management, etc.). The distribution in-
cludes server libraries for constructing Communicator-compliant servers in C (and C++),
Java, Python, and Allegro Common Lisp [11].

DARPA Communicator’s coordination is based on a hub script that specifies which
servers (components) should be activated, according to matching rules. There are im-
portant semantic differences between the coordination model described in this paper
and the model implemented by the DARPA Communicator. The hub is based on a fixed
(and predefined) set of servers that are activated as messages posted to the hub match
certain patterns. Our model requires that certain messages be delivered to multiple ac-
tive components, and furthermore, that these active components may dynamically vary
throughout an interaction. To compensate for these differences, we introduced function-
ality in the coupler that provides for dynamic multicasting and selective delivery.

Coupler Is the component that binds these two distinct environments together - it trans-
lates between message formats and is responsible for: 1) relaying collaboration events
to the multi-agent environment for analysis and 2) propagating messages originated at
the multi-agent environment among those components whose signatures comply to the
messages.

The latter functionality complements the hub’s by providing the (conceptually equiv-
alent) tuple-space message distribution mechanism. For efficiency reasons, this mecha-
nism is based on message push, rather than on a database that is polled by components,
and is based on the programming style that is employed in applications, which makes
easy to map messages to components. The result is conceptually equivalent to the de-
scribed tuple-space based mechanism, even if perhaps less flexible.

Coupler promotes the illusion, necessary in a perceptual interface based system, that
responses originated by NACs are being generated by regular participants. Coupler does
that by providing a “virtual station” capability through which NACs can command the
execution of actions that modify the state of one or more participants’ interfaces as if
they came from some other human, thus providing the uniform, low impedance contact
between system and humans which is at the foundation of a perceptual user interface.

About ten thousand lines of code (mainly C/C++) implement the connection, trans-
lation between environments, as well as a highly abstracted API that is used to develop
application layer components.

The operational environment involves a variety of operating systems: Linux (run-
ning DARPA Communicator), Windows 2000 (running DC-MeetingServer) and Win-
dows XP (on the workstations).
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Multimodal support in this initial phase consists of console i/o (monitor, keyboard,
mouse) as well as natural language through typed and spoken messages. Natural lan-
guage text output and animation, including voice production can be employed as output
modalities, besides the activation of conventional widgets. Natural language process-
ing capabilities running on the back-end are provided by language processing modules
produced by Colorado University’s Center for Spoken Language Research (CSLR) un-
der the CU Communicator Project [21]. The open source CU Communicator system,
is a DARPA Hub compliant system [53]. Robustness and portability of spoken dialog
systems are two of the issues addressed in the project.

Currently, conventional interface components are developed in Visual Basic. Speech-
to-text is built on top of SAPI (Speech API). A variety of speech-to-text engines are
compliant with SAPI. We currently employ IBM’s ViaVoice 9.0’s engine [10]. Anima-
tion is currently built using Haptek’s VirtualFriends [23].

White board, file transfer and application sharing, audio and video communication
are provided directly by the H.323 infrastructure functionality.

4.6 Proof-of-concept application

A proof-of-concept application layer has been developed to validate the platform. This
application includes the following interface components: a Chat for textual messages,
an Agenda that registers topics and keeps track of time, a Speak queue that handles
requests for talking, a Mood tool through which participants can anonymously register
their emotions (bored, confused, etc.).

A simple NAC illustrates context-aware reaction. This NAC monitors the clicks on
the Mood NIC instances that are active at the different participants’ workstations, and
either produces a private message to a participant letting her know that her feeling (e.g.
bored) is not shared by other participants or by suggesting to all participants taking
a break, depending on what the majority of participants has expressed over a period
of time. These messages are delivered through two virtual participants (Kwebena and
Kwaku), whose animated characters are displayed on participants’ stations.

A Wizard of Oz interface to the animated characters allows them to be controlled
remotely, basically by having them say a strings typed through the Wizard interface.
These messages can be directed either to the whole group or to sub-groups or individual
participants.

Experience developing these components shows that the platform does indeed sup-
port a rapid application development cycle that was expected and allows for consistency
of the shared interface elements, dynamic context dependent system reaction and mul-
timodal support, in tune with the goals of the project.

4.7 Currently implemented aspects

The introduction of common CSCW cross-cutting concerns is directly supported by the
aspect-oriented use of the coordination model, as discussed in Section 4.3, can be easily
composed into applications by weaving in additional service activations at appropriate
join points (in Neem, potentially at any message received by the mediator).
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Here we just briefly describe how some key aspects are handled in the current ver-
sion of the platform.

– Data distribution - a distributed model is employed by the current application, i.e.,
each component is responsible for keeping a private copy of the data space and to
update it.

– Consistency control - is guaranteed by the message serialization that takes place at
the coordination mediator. Changes to the local data space replicas are applied only
as a response to messages that are received from the mediator, even in cases where
the action that caused the change is local. Even though it guarantees consistency,
this approach suffers from potential latency problems that are typical of centralized
serialization.

– Interface Coupling - a low coupling is currently employed. The results of user ac-
tions are broadcast to other interface components so that they can update their state,
but there is no effort at this point to make users aware of mouse moves, detailed
widget selection and operation, other than on application sharing mode, provided
by the underlying H.323 infrastructure.

– Access control - different roles may operate different sets of interface elements,
which might be useful for protecting information in the sense that other participants
would lack the tools to access this information. No other provisions are considered
at this point, and in particular, no protection against malicious users is implemented.

– Concurrency control - a social protocol is assumed as the resolution method for
user conflicts at this point.

Alternative ways of handling these aspects will be developed to meet specific appli-
cation requirements.

5 Summary and future work

The Neem Platform is a research test bed for University of Colorado’s Project Neem,
which is concerned with the development of socially and culturally aware group collab-
oration systems. The use of perceptual interfaces is a cornerstone of this project. One
of the research hypotheses of the project is that social mediation systems can benefit
from the low impedance provided by perceptual interfaces, that blur to some extent the
distinction between human and system participation in an interaction.

The Neem Platform is a generic framework for the development of collaborative ap-
plications. It supports rapid development of augmented real-time distributed multipoint
group applications that employ a perceptual interface paradigm, based on how humans
communicate among themselves.

The platform is an extensible, open-ended, application neutral infrastructure that
offers communication services necessary to integrate new functionality on two levels:
1) Integration of new platform functionality, such as new devices/modalities and 2)
Development of specific applications. The platform thus offers a mechanism for reuse
of generic functionality and supports rapid application development by encapsulating
communications details.
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Neem’s coordination model is based on a pair of tuple-spaces to which components
are allowed to write to and read from, respectively, and mediation functionality that is
driven by reified composition rules that specify transformation of messages into zero or
more messages that in turn activate potentially multiple services provided by compo-
nents.

We showed that this model can be usefully employed to support an Aspect-Oriented
development paradigm. Cross-cutting concerns are common in collaborative applica-
tions, and each class of applications might require adaptations to one or more flavors of
these aspects.

A prototype of the platform has been implemented. Actual development leverages
as much as possible on existing, field tested technology, such as H.323 MCUs, the
DARPA Communicator architecture and commercial speech and animation engines.

Future work will enhance the platforms capabilities by expanding its multimodal
functionality, including facial analysis, gestures, including American Sign Language
capabilities in a robust way.

Different applications are being developed and deal with the challenging aspects of
building culturally and socially adequate tools and virtual participants. Planned appli-
cations include business meetings and distance education applications.
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