Greibach Normal Form Seen as a Transformation of Trees *

Andrzej Ehrenfeucht
Grzegorz Rozenberg

CU-CS-254-83

:\D ,
Lj?LEJEU1‘1ive>r:«;ity of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by NSF grant number MCS 79-03838.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

GREIBACH NORMAL FORM SEEN
AS A TRANSFORMATION OF TREES

(A preliminary version)
by
Andrzej Ehrenfeucht* and Grzegorz Rozenberg**

CU-CS-254-83 April, 1983

*University of Colorado, Computer Science Department, Boulder, CO 80309

**Institute of Applied Mathematics and Computer Science, University of Leiden,
Leiden, The Netherlands

All correspondence to the second author.

This research was supported by NSF grant number MCS 79-03838.

ABSTRACT

An algorithm transforming an arbitrary context-free grammar into an
equivalent context-free grammar in Greibach normal form is presented. It has
two important features. (1) Given a context-free grammar in which the length
of the right-hand side of any production does not exceed k = 1, the algorithm
produces directly an equivalent context-free grammar in {k +1)-Greibach normal
form. {2) The transformation can be considered as a tree transformation:
given a derivation tree 7 of a word w in the language of an "input" context-free
grammar G one transforms 7' without having any information about &, except
for T itself, into a derivation tree U of w in the "output” context-free grammar

H in Greibach normal form.

INTRODUCTION

Among many normal forms for context-free grammars, Greibach normal
form occupies quite a special place - it turns out to be quite important from
both the theoretical and the practical points of view {see, e.g., [H], [S], and
[AU]). For this reason quite a number of algorithms are available that transform
an arbitrary context-free grammar into a context-free grammar in Greibach

normal form.

In the present paper we present yet another algorithm for obtaining cf
grammars in Greibach normal form. The algorithm seems to be quite different
from other algorithms presented in the literature. In particular it has two dis-
tinct features.

(1) Given a context-free grammar in which the length of the right-hand side of
any production does not exceed k =2 , the algorithm produces an equivalent
context-free grammar that is in {(k +1)-Greibach normal form (that is the length
of the right hand side of any production does not exceed {k +2)).

(2) The transformation we present can be considered as a tree transformation:
transforming derivation trees in the original grammar & into derivation trees in
the new grammar H in Greibach normal form. This transformation is "local” in
the following sense: given a derivation tree 7 of a word w in L{G) one
transforms T without having any information about G, except for 7T itself, into
a derivation tree U of w in L{H). Also the converse is true: given a derivation
tree U of a word u in L{H) one transforms U without having any information

about H except for U itself into a derivation tree 7 of u in L(G).
The paper is organized as follows,

In Section 1 the main construction of the paper is introduced and illus-

trated by an example. Then in Section 2 various basic parameters of the result-

ing context-free grammar {in Greibach normal form) are compared with
{expressed in the terms of) the corresponding parameters of the originally given
context-free grammar. Section 3 presents an algorithm implementing the main
construction and discusses its time complexity while in Section 4 the correct-
ness proof of the main construction is provided. In Section 5 the main construe-
tion is discussed in the case then the input grammar is a complete binary
context-free grammar {that is all productions are of the form 4 » X ¥ where A

is a nonterminal and X, Y are arbitrary symbols).

In Section 8 two classes of trees are considered: complete binary and left
needle trees. These classes of trees are very basic in Section 7 where our main
construction is considered as a tree transformation. In the last section {8) a
short discussion of obtained results is given and moreover various technical
short-cuts are discussed which allow one the obtain "small" context-free gram-

mars in Greibach normal form.

0. PRELIMINARIES

In this section we recall some basic notions and settle the basic notation for
this paper.

We assume the reader to be familiar with basic formal language theory-we
will use many standard notions without defining them here.

For a set Z, #7 denotes its cardinality; ¢ denotes the empty set. For sets
7z, Zz, Z\\Z3 denotes their set theoretical difference. N denotes the set of all

nonnegative integers.

For a word z,|xz| denotes its length; A denotes the empty word. If z is a

nonempty word, then first (x) denotes the first letter of .

4

In this paper we will consider transformations of {(directed) trees where
nodes and edges are transformed independently. For this reason it is con-
venient to specify trees in the form 7 = (V, E, source, target) where V is the set
of nodes of T, F is the set of edges of 7, source and torgef are functions from F
into V; if for e € F, source{e) = v and farget{(e) = u then we say that e is lead-
ing from v and e is leading fo u. The components V, F, source, and farget of T
will be denoted by Vy, £y, sourcer and fargef;, respectively. We consider finite

trees only.

A node labelled tree is specified in the form
T =(V, E, source, target, T', lab) where I' is the label alphabet, lob is a function
from V into k I' and other components are as above; the tree
(V, E, source, target) is called the underlying tree of T and denoted by un(T).
The components V, E, source, target, I’ and lab will be denoted by

Vr, By, sourcey, targety, I'y and laby respectively.

As usual in the formal language theory we will considered only ordered
(node labelled) trees, that is (node labelled) trees where the set of all direct des-
cendents of every node is linearly ordered, to simplify the notalion we will not
specify this ordering when specifying the tree; however in the context of our

considerations this should not lead to a confusion,

Let 7 be a (node labelled) tree.
(i) The root of T is denoted by root (T).
(ii) The meaning of terms: purent, child, sibling (of a node), inside node, leaf,
Jrontier of T, yield of T (for the node labelled case) is standard; the frontier of T
is denoted by front(7) and the yield of T is denoted by yield(T).
(iii) If w € ¥y and ., ..., U, € Vy are all children of w (with their linear order:

Uy, ..., Up) then we say that uw is expanded (in T) using the production

labp(u) » labp(u,) - - - labr(uy).

(iv) If k is a positive integer such that each node of 7 has no more than k chil-
dren, than we say that T is a k-ary tree; a 2-ary tree is called a binary free and a
3-ary tree is called a fernary tree.

(v) For a node u we talk in the standard way about its left(most) child and con-
sequently about a leff path in T (a path involving left children only). A complete
left path is a left path leading from a node that is not a left child to a leaf, the
mazimal left path is the complete left path starting at root {T); since each path
consists of directed edges we can talk about the fop and botffom nodes of a path.
Analogously we have a right(most) child, a right path , a complete right path and

the maximal right path.

Two trees T, and T, are disjoint if Vr,MVr, = ¢ and Er N\ E7, = ¢; the set of
trees is digjoint if any two different trees from it are disjoint. Informally speak-
ing, the sum of a set of disjoint trees {7, ..., T,}, n = 2, is a graph with the set
of nodes equal Vp U - UVr,, the set of edges equal Er) - £, and such

that its source, target and lab function are specified "independently" for each
component 7; in the way they were specified in 7;; this sum is denoted by
TuTU - U,

A context-free grammar (a cf grammar for short) is specified in the form
G =(Z, A P, S) where I is the total alphabet of G, A is the terminal alphabet of
G, P is the set of productions of G and S is the axiom of ; components
Z, A P, S will be also denoted by Zg, Ag, Pp and Sg respectively. Often a cf
grammar will be specified by giving only its axiom {S¢) and its set of productions
(Pg). The language of a cf grammar G is denoted by L(G). The equivalence of
cf grammars is considered modulo A, i.e., we say that cf grammars G, G, are
(language) equivalent if L(G,) UA = L{G2) A} (in the considerations of Sec-
tions 5 and 7 we will consider even a more "liberal” definition of the equivalence

of cf grammars). We write G,~Gg whenever (, is equivalent to Gs.

Let G = (I, A, P, S) be a cf grammar.
(1) A production of the form A » B where B € I\A is called a chain production,
a production of the form A - A is called an erasing production; if G does not
have chain preductions then it is called choin-free and if G does not have eras-

ing productions than it is called A-free.

+ Ld
(2) => => and => denote the direct derivation relation in G, its transitive clo-

sure and its reflexive and transitive closure respectively. For a positive integer

n
n, '-:6> denotes the n-steps derivation relation in G; for each w € £° we have

o
W=,
G

+
(3) If A € ¥\A and w € X" are such that A=G>'w, then there is a derivation of w

Sfrom A (in G); if A =S then we talk about a derivation of w (in G). To each
derivation of w from A (in G) there corresponds a unique derivation tree.

{4) For X € ¥ and a positive integer n, we define
L{(G.Xn) = {w € A*; X=,Z>w for some 0<m < nj
and

L(G.X) = fw € A* - X=;>'w§.

Note that

L(G.X) = |_)L{G.X.n) and L(G.S) = L(G).

n=0

t ls
(5) Let X,Y € . We define binary relations l——;]-——;, and I—G as follows:

X}—;Y if and only if X » a, for some a€X* is a production in P and

Jirst{a) = 7,

le
X}—GY if and only if X=G>(x, for some a € &, and first(a) = ¥,

4 +
Xl——;Y if and only if X-:G)Oi, for some « € &%, and first{x) = Y.

(6) We define mazr{G) to be the maximal length of the right hand side of any
production; i.e., maxr{G) = max{ |a| : 4 » aisin P}.

The size of Gis defined by: size(G) =), |Aal.
AraeP

The norm of Gis defined by: norm (G) = size(G) loge(#2) .

(7) We say that G is in Greibach normal form (abbreviated GNF) if for each pro-
duction A » o of P we have o € Z* and first(a) € A; moreover if there exists a
positive integer k such that maxzr(G) = k+1, then we say that & is in k—GNF.

We say that G is in pseudo Greibach normal form (abbreviated pseudo GNF) if for
each production 4 » o of P we have: either it is a chain production or it is an

erasing production or first{a) € A.

Femark. Note that our definition of GNF differs from the usual one in that
we do nol require thal all symbols at the right-hand side of any production
except for the firsi symbol are nonlerminals. We hove decided fo wuse this
definition in order fo owoid o number of rather [rivial technicalilies that
obscure the real picture of the transformations that we consider in this paper.
Thus whenever we say that a given construction yields a grammar in GNF it
may be that a number of symbols at the right-hand side of a production may
belong to a terminal alphabet. Converting such a cf grammar to a cf grammar
satisfying the usual definition of GNF is really easy: for each terminal symbol a
that occurs at the right-hand side of a production not as the first symbol we
introduce a nonterminal N,, replace all "not-first" occurrences of a af all the
right-hand side of all productions by N, and add o production N, -» a. Notfe that
the size of a new grammar differs from the size of the initial one by nol more
than 2t where { is the cardinality of the terminal alphabet, while mazxr(G) does

not change, The size of the alphabet can be increased by af most £,

The ease of this additional adjustment allows us (in our opinion) to con-

sider the simplified version of GNF - the guins in clarity are considerable espe-

cially when we consider fransformations info GNF as tree
transformations, ®

We conclude this section by recalling one of the basic transformations of cf
grammars.

Let G=(L, A P,S) be a cf grammar. Let A €I\A and let
A=y |am, m =1, be all productions for 4 in P. Let m = B - vAR be an
arbitrary production of G where 7,8 € £*. Let ¢ be the following transformation
of G (to a cf grammar ¢(G)): replace @ by m productions,
B - yofB, -, B » yon,B, all other productions in P remain intact. Such a

transformation is referred to as a sub transformation.

It is well known {and easy to prove) that the following result holds.

Lemma 0.1. {{G)~G. =

1. THE MAIN CONSTRUCTION

In this section we provide a construction which given an arbitrary A-free cf
grammar yields an equivalent cf grammar in GNF. The construction is illus-
trated by an example.

Definition 1.1. Let G = (X, A, P, S) be a A-free cf grammar.

(i) Let G =(2, A, P, S)bethe cf grammar such that:

¥ = AUX.Y]X, Y € L and Yﬁ*xguz[x]:x €3,

A=A,

S =[5]and

P' consists of productions obtained as in (1) through (4) below.

(1) For each production m=A4->Y, - Y%, k=2, in P, where Y, €% for

H l '
1=i=<k, each B € £\Aand each o € A such that B}— 4 and Y, —'a, P contains
the production
[Y1. B] > ala, Y;][Ys] - [%:][A4 Bl

(2) For each production m =4 » ¥ in P, where Y € %, and each B € I\A such

i .
that B }——*A, P contains the production
[Y, B] - [4, B].

(3) For each a € A and each X € ¥ such that X}-—l—*a, P’ contains the production
[X] > ala, X].

(4) For each X € %, P contains the production [X, X] - A

(ii) Now let G, be the A-free cf grammar equivalent to G and resulting from G
by applying, e.g., the standard construction (see, e.g, [S]) for removing A rules.
(i) Let H be the A-free, chain-free cf grammar equivalent to G; and resulting

from G, by applying, e.g., the standard construction (see, e.g., [S]) for removing

chain rules. =

10

The productions resulting from (1) through (4) above are referred to as pro-

ductions of fype 1, type 2, type 3, type 4 respectively; their sets are denoted by

P;,P;;,PA,P; respectively. The transformation described in the above

definition will be denoted by const {(and so H will be denoted by const{G)).

Remark 1.1. (1) In Section 3 we will discuss a specific algorithm for remov-
ing A rules (i.e., for getting G, from G) and a specific algorithm for removing
chain rules (i.e., for getting H from G,); these algorithms are devised in the
course of estimating the complexity of an algorithm implementing the construc-
tion from the above definition. In any case we always assume a fixed algorithm
for removing erasing rules and a fixed algorithm for removing chain rules; for
this reason we refer to (; as the grammar obtained in step (ii) above and to H
as the grammar resulting from the whole construction.

(2) Usually we will consider not H itself but its reduced version, i.e., the cf

grammar resulting from A by removing useless nonterminals and productions

for them. =

FExample 1.1.
Let G = (X, A, P, S) be the cf grammar, where
L={A, B, a,b,c,di
A=f{a,b,c, di
S = A, and
P consists of the following productions: A » 4aB | BB | b,
B »0A |BAa | Bd | c.

(This example is from [AU] p. 159, vol. 1).

Then G constructed as in Definition 1.1. is the grammar with the axiom [A]

and the following productions..

11

[4.A] » a[a,a][B][A,4],

[B.A] » ala,B][A,A] | c¢[c,B][A,A] | d[d.d][B,A] | d[d.d][B.5],
[a,A] » a[a,A][B,A] | b[b,A][B.A] | c[c,A][B.A],
[a,B] » a[a,Al[B.B] | b[b,A][B,B] | c[c.,A][B.B].

[B.A] > ala,Al[a][B.4] | b[b.A][e][B.A] | c[c.A]le][B.A]
[B.B] »ala.A][a][B.BF] | bl[a.Alle][B.5] | c[a.A][e][B.B],
[b.A] » [4,4],

[c.B]~[B.B],

[c.A] »[B.A],

[A] » a[a,A] | B[b.A] | c[c.Al

[B]~»ala,B] | ¢[c.B].

[t] - t[t,t], forallt €A,

[X,X] > A, forall X €3,

 Then H = const(G) after removing useless symbols {(and productions for

them) yields the following grammar H .
Axiom: [A],
Productions:

[A.A] » a[B][4.4] | a[B], |
[a,A] » ala,A]|[B,A] | b[A,A][B,A] | b[B.A] | c|[B.A][B.A],
[a,B] > a[a,A][B.B] | a[a,A] | b[AAB.B] | b | b[4.A] |
b[B.B] | ¢[B.Al[B.B] | c[B.A],
[B,A] > a[a,B][A.A] | a[a.B] | ¢[B.Bl[A.A] | c[AA] |
c[B,8] | ¢ | ale.Alle][B.4] | [6[4.A][a][B.A] | b[a][B,A] |
c[B.Alle][B.A] | d[B,A] | d[B,B] | d,
[B.B]»ala.,Al[a][B.B] | ala.Alla] | b[A.A][e][B,B] | b[a]
| 8[AAlla] | b[a][B,B] | c[B,A][e][B.B] | c[B.A]la],

12

[4] » ala,A] | B[A,A] | c[B,A],
[B] ~»ala.B] | c[B.A],
[a] - a.
H' has the following parameters: 8 nonterminals, 41 productions,

mazr(H) = 4 and size(H') = 144.

13

2. ON THE BASIC PARAMETERS OF const(G)

In this section we estimate various parameters of the resulting cf grammar
H = const(G) in terms of the corresponding parameters of a given cf grammar
G. These parameters are also estimated for the "intermediate" grammars (Gl
and G,) introduced in the construction of H.
(i) The cardinality of the alphabet Ty,
Note that ¥ ¢ AUIX]:X € BIUYX.Y]:X.Y €5} and so #I < #A + #5 + (#3)2.
Since in transformations leading from G to G, and from G, to H the size of the

alphabet does not change,

FEu < #A+ #3 + (D)%
(ii) The maximal length of the right hand side of a production in Py,

From the construction of G it follows directly that max’r((}') = mazr(G) + 1.
Since in transformations leading from G to Gy and from) to A the maximal
length of the right hand size of a production does not change,
mazr {(H) = maxr(G) + 1.
(iil) The cardinalily of the setl of productions Py,
(iii.1) For each production 4 » Y7 %,k <2, in Pwhere ¥; €S for 1 <i <k,
we have introduced at most #A#(Z\A) productions in P;.
(iii.2) For each production A » Y in P, where Y € %, we have introduced at most
#{Z\A) productions in Ps.
(iii.3) Pé contains at most #2-#A productions.
(iii.4) P, contains #% productions.
Hence #P < Pp #iA#(E\A) + Pp #(E\A) + #3544 + 43 .

< FPp 2 #5 (#A+1) = #Pp- 4 #Z-#A.

14

Transforming G to Gy increases the number of productions by at most the
factor of 4 because in each production of G the right hand side contains at most
two {occurrences of) letters that can derive Ain G.

Hence #Pg, < fiP 4 < #P; 16 # T #4 .

In transforming G, to H we replace each chain production of G; by no more
than #(Z\A) #Pg, productions and consequently
#Pu < #Pc, + #(ENM# P, < #Pp 2 4%

< #Pp 32-(#)% 44 .
(iv) The size of H.

Note that in constructing G from G the only case when we increase the
length of the right-hand size of a production is when we construct productions in
P; - the size increases then by 1.

Since #P' < #Pp4-#¥ #A, we have
size(G) < size(G) 4 #I-#A + P-4 #5#A< size(G) B 4T #A .
In constructing G; from G the length of the right-hand size of a production
does not increase.
Since #FPg, < #P"LL, we have
size(G,) < size(G) 4 < size(G) 3245 #A .
In constructing H from G, the length of the right-hand size of a production

does not increase.
Since #Py < #Pg 2 #X, we have
size(H) < size(G,) 2 #3 < size(G) 64 (#T)% #A .
(v) The norm of H.
Recall that #3 < #A + #% + (#¥)%. Hence

#) = (# 2)2(14-%% < 2(#X)% Then we have

15

norm(G) = size(G‘)-Iogz# ' < size(G){Rloga# 5 +1)
< size(G) Sloga# S .
Since size(G) < size(G) 8 #Z-#A, we have
norm (G) < size(G) logaff T-24- # 5 #A = norm (G) 24-#E-#A .
Since in transforming G into &z; we do not change the alphabet, we have
norm(G,) = size(G,) loga# T1 = size(Gy) logah T
< 5ize(G) 4'1loge# T = 4norm(G) < norm(G) 98- # 5 #A .
Since in transforming G, into H we do not change the alphabet, we have
norm (H) = size(H) loge# 2s = size(H) loga# 3,
< size(G) 2 # 2 logeft Ly = norm(G,) 242
< norm(G) 192 (#L)2#A .

16

3. AN ALGORITHM IMPLEMENTING cons?

In this section we describe an algorithm implementing const and discuss
the time complexity of the algorithm.

We will use the notation from Definition 1.1, i.e., we start with a A-free cf
grammar G = (I, A, P, S), then we construct G =(Z,A, P, S) then we con-
struct G, = (Z,, Ay, P, S)) and finally we obtain H in GNF.

We assume that the alphabet I is linearly ordered and so Z = {ay, ..., 0y,) for
some m = 2. Let #A = e¢. We assume that a list p(P) of productions from P is
given.

We give now the description of our algorithm which consists of eight steps.

STEP 1.

Construct the incidence matriz M ! for the relation |——l.

This is done as follows.

First we construct the mxm matrix M° with m rows indexed by
Uy, Gg, ..., Oy and m columns indexed by o, ..., 0, and such that for each
1=<4,j=<m, ¥%o;, 0;) = 0.

Then we read the list of all productions from P and when we read off a pro-

duction of the form A -» o with first(a) = ¥ then we set the entry Ml—l(A Y)to1;

hence if we start with #° and go through all productions from P then we get the

incidence matrix M .
'_

Consequently the time complexity of STEP 1 is bounded by O(size(G) + m?).

STEP 2.

l
Construct the incidence matrix M | for the relation }——*.
I_lE

17

Obviously # | is the reflexive and transitive closure of Mkr Using, e.g., the
]__%

Warshall algorithm (see, e.g., [AU]) we can accomplish STEP 2 in no more than
0(m?) steps.
STEP 3
Construct P
This is done as follows.
We read the list p(P) from left to right, production after production.

Assume that we currently scan production 7. We distinguish several cases.

(1) If 7 is of type 1, then for each pair of symbols @ € A and B € Z\A we check

i i
(using ¥ L*) whether or not Yz—a and B A. If the answer is positive, then
}_~

we output the production

[Y1.B] - ala,Yp][Ys] - - [%][A.B].

If the answer is negative, then we do not have an output for this production .
The processing of all productions 7 of type 1 will take no more that

O(size(G)m e) steps.

(2) If mis of type 2, then for each B € X\A we check (using ¥ :,) whether or not

B }—i*A. If the answer is positive then we output production [Y,F] - [A4,5]; oth-
erwise we do not have an output.

The processing of all productions 7 of type 2 will take no more than
O(size(G) m) steps.

After the reading of p(P) is completed (according to rules (1) and (2)

above) we do the following.

]
(3) For each a € A and each X € ¥ we check, using # 1, Whether or not Xa.
'.._

If the answer is positive, then we output the production [X] -» a[a,X]; otherwise

18

we do not have an output.

The action (3) above can be accomplished in no more than O{me) steps.

(4) For each X € ¥ we output the production [X,X] » A.
This action can be completed in no more than O(m.) steps.

Hence the time complexity of STEP 3 {constructing P from P) is bounded
irom above by:
O(size{G)me) + O(size(G) m) + O(me) + O(m) = O(size(G)me) steps.

Thus the time complexity of our algorithm for constructing P from P
equals
O(size(G)+m?) + O(m?®) + O(size(G)me)
O(size(G)me + m3).

We can assume now that a list o(#') of all productions from P’ is given.

STEP 4

For each X € ¥ construct the mxm boolean malriz My with rows and columns

indexed by the elements of ¥ and such that, for all T, 0 € T,

|1 it[rz] oo z]ds in P,
Mx(1.0) = | o otherwise.

This is done as follows.

Given X € ¥ we construct the mXm boolean matrix M; with rows and
columns indexed by the elements of £ and such that, for all 7, ¢ € Z, M;(é) =0.

We can construct all M)? matrices in no more than 0(m?) steps.

Now we scan the list p(P') and whenever we encounter a chain production
[7, z] » [0, z] we change the entry (7, 0) of partially constructed (starting with
MXO) matrix My to 1.

Thus to construct all My matrices starting from M}? takes no more than

O(size(G)) steps.

19

Hence the time complexity of STEP 4 is bounded from above by
0(size(G) + m3) = O(size(G)me + m3); recall from Section 2 that
size(G) < O(size(G)me).

STEP 5

For each X € ¥ construct matriz M; equal to the transitive and reflexive

closure of matriz My,

Since for each X the construction of #; takes no more than 0{m?) steps
(see STEP 2), the time complexity of STEP 5 does not exceed O(m?).

STEP 8

Construct boolean arrays Ag, A g, Aggs, Ay Ag, Az defined below.

To define these arrays we need a number of definitions first.

Let & = S\(AU{[X]: X €5}); hence & is the set of all letters from % of the

z i
type [X,Y] where X,Y € ¥ and Y}-—*X. We will partition £ into 3 subsets as fol-

lows:
%, consists of all letters ¢ from ¥ such that L(G, o) = (A,
S consists of all letters o from & such that L{(G, o) # {\} and A € L(G, o),

Zg = I\, UZg) -

The following result follows directly from the definitions of P, E;', Eé' and Z;;' v

Lemma3.1. Leto =[X,¥Y] €% . Then
(1) ¢ €%, U, if and only if X, Y) = 1.
(2) 0 €3I, USs if and only if there exists a Z € & such that My{X,Z) =1 and
either P contains a production for [Z,Y] of type 1 or P' contains a production

for [Z,Y] of type 3. =

20

Now we are ready to define boolean arrays Ag, 4,3, Az A), Ap Az as follows.
Fach of them has #2” entries indexed by elements of g {we assume a fixed
order of elements of £). The boolean value of an entry ¢ = [X,Y] is defined by:
Ag(0) = 1 if and only if either P has a production of type 1 for & or

P has a production of type 3 for g,
A2(0) = 1ifand only if o € I; UZs,
Ags(0) = 1if and only if 0 € 55 (T3,
A(o) = 1if and onlyif o € I,
Ax(c) = 1if and only if 0 € &g,
As(o) = 1if and only if o € 5.

To construct Ag we fill all its entries initially with 0’s and then we make a

scan of p(P') and each time that we meet a production for ¢ € " that is either of

type 1 or of type 3 we fill in the g-entry in Ap with 1.

Hence we construct 4g in no more than
0(m? + size(G)) = O(m? + size(G)me) steps:
recall (see Section 2) that size(G) < O(size(G)me).

To construct A;; we fill all its entries initially with O’s and then for each
[X.Y] € 2" we check whether or not MHX,Y) = 1. If My(X,Y) = 1, then we set
A1([X,Y]) =1 (see Lemma 3.1.(1)). Hence, the construction of 4, can be
accomplished in no more than O{m? + m?) = 0(m?) steps.

To construct Ags we fill all its entries initially with 0's and then for each
[X,Y] €L" we check for each Z €% whether or not MyX,Z)=1 and
Ao([Z.Y]) = 1. If both answers are positive, then we set 4Az5([X,Y]) = 1. Hence,
the construction of Azg can be accomplished in no more than

0(m? + m3) = O(m?) steps.

21

To construct A4, we notice that, for each [X,¥]€X,
A[X.Y]) = A o([X, Y]) =42 5([X. Y]), where = denotes the boolean substraction.

Hence A4, can be constructed in no more than 0(m? + m?) = O(m?) steps.

To construct Az we notice that, for each [X,Y] €%, Ag([X,Y]) is the con-
junction of 4, 2([X,Y]) and Az 5([X, Y]).

Hence A; can be constructed in no more than O(m? + m?) = O(m?) steps.

To construct Az we notice that, for each [X,Y] € 2,
A([X,Y]) = Ags([X, Y)41 2([X. Y]).

Hence Ag can be constructed in no more than O(m? + m?) = 0(m?) steps.

Consequently STEP 6 of our algorithm has time complexity bounded from
above by
O(mP+size(G)me)+ 0(m?P)+ 0(m3)+ O(m?)+0(m?)+ 0(m?) = O(m +size(G)me).
STEP 7

Construct G,
This is done as follows.

We scan the list p(P') and when reading a production 7 we do the following.
(1) If wis of type 1,
m=[Y1,B] > ala,Ye][Ys] - [%][4.B]
(see point (1) of Definition 1.1) then we distinguish nine cases.
(1.1) It A[a,Ye]) =1 and A{[A,B]) =1, then we output the production
[YuB] »alYs] - [%]
(1.2) It Ay[a,Yz]) =1 and Ax([4.B]) =1, then we output productions
[YL.B] »a[Y5] - [%]and [Y1.B] > a[Ys] - [%][A.B].
(1.3) If A([a,Y2]) =1 and A3([A.B]) =1, then we output the production
[Y.B] » a[Ys] - [%][A.B].
(1.4) It Ax([a,Yz]) =1 and A,([4,B])=1, then we output productions

[Y1.B] > a[Ys] - - [Ye]and [Y1.B] » a[a, Ypl[Ys] - - - [%].

22

(1.5) If Ax([e.Yz]) =1 and Ay{[A,B])=1, then we output productions
[YW.B]-alYs] - [Ye] . [Y1.B]->ala,Ye][Ys] - [%],

[Y1.B] » a[e. 7][Ys] - - - [%e] and [Y1,B] » aa,][Ys] - -+ [Y][4.B].

(1.68) It Ap{[e.Yz]) =1 and As([4,F])=1, then we output productions
[Y1.B] - a[Ys] - [Y%e][AB] and [Y1,B] - a[a, Ye][V3] - - - [%][4.B].

(1.7) If Ag{[a,Y2]) =1 and A){[A.B])=1, then we output the production
[Y1.B] » ala,YR][Ys] - - []

(1.8) I As([e,Yz]) =1 and Ax([4.B])=1, then we output productions
[T1.B] »e[a.Ye][¥5] - - [%e] and [Y1.B] » ala, Ye][Ys] - - - [][4.B].

(1.9) It As([e.Yz]) =1 and As([A,.B]) =1, then we output the production
[Y1.B] »ela,Ye][Ys] - - [Y%][4,B].

(2) If 7 is a production of type 2,

n=[Y,B]-[ARB]

{see point {2) of Definition 1.1), then we distinguish two cases.

(1.1) It A([A,B]) = 1, then we do not have an output.

(1.2) It A([A.B]) = 0, then we output 7 itself.

(3) If mis a production of type 3,

m=[X]-a[e,X]

(see point (3) of Definition 1.1), then we distinguish three cases.

(3.1) If A4y([a,X]) = 1, then we output the production [X] - a.

(3.2) If Ax([e,X]) = 1, then we output productions [X] » a and .

(3.3) If As([e,X]) = 1, then we output .

(4) If mis a production of type 4, then we do not have an output.

Hence in executing STEP 7 while reading a production 7 from p(P’) we will

output at most 4 productions for it (see case 1.5 above). Consequently STEP 7

may be accomplished in no more than O(size(G)) = O(size(G)me) steps.

23

Thus the time complexity of constructing G; from G equals the time com-
plexity of steps 4 through 7. Consequently it can be accomplished in no more
than
O(size(G)me + m3) + O(m*) + O(size(G)me + m3) + (O(size(G)me) =
O(size{G)me + m?*) steps.

We can assume now that a list p(P;) of all productions from P, is given.
STEP 8
Construct H from G,

This is done as follows.

We scan the list p(P,) and when reading off a production 7 we do the follow-
ing
(1) If mis a production of type 1,
m=[Y.B] » ala. Y[¥s] - - - [%][A.B]

{see point {1) of Definition 1.1) then:

for each pair X,Y € X we check whether or not

My,(a,X) = 1 and Ao(X,Yz) = 1 and M4(A,Y) = 1 and 4¢(Y,B) = 1.

If the answer is positive then we output the production

[Y1.B] » a[X,Yz][Ys] - - - [%][Y.B], otherwise we do not have an output.
(2) If m is a production from P, resulting from a production of type 1 in P and
of the form

m=[Y1.B] »alYs] - [%][A.5]

(see point (1) of Definition 1.1 and STEP 7 of our algorithm)

then for each ¥ € ¥ we check whether or not

Mz(A,Y) = 1and 4¢(Y,B) = 1.

If the answer is positive then we output the production

[Yn.B] - al[Ys] - [%][Y.5],

otherwise there is no output.

24

(8) If 7 is a production from P; resulting from a production of type 1 in P and
of the form

m=[Y.B] > ala,Y][Ys] - [%]

(see point (1) of Definition 1.1 and STEP 7 of our algorithm)

then for X € X, we check whether or not

My,(a,X) = 1and Ay(X,Yp) = 1.

If the answer is positive then we output the production

[Yi.B] = a[X.Ye][Ys] - - [Ye].

(4) If 7 is a chain production from P, then we do not have an output.

(5) If 7 is a production from P, obtained in point (3) of STEP 7, then we distin-
guish two cases.

(6.1) m=[X] - a[a,X]foranX € Zand a € A.

Then for each ¥ € ¥ we check whether or not

Mx{a,¥) = 1and 4g(Y.X) = 1.

If the answer is positive then we output the production [X] - e[Y,X], otherwise
we do not have an output.

(6.2) m=[X]->aforanX c€Yanda €A

Then we output .
In this way H = const(G) have been constructed.

Hence in executing STEP 8 while reading a production 7 from p{P;) we will
output no more than m® productions for it. Consequently STEP 8 may be
accomplished in no more than
O(size(G,)-m?) = O(size(G)m3e) steps - recall that size(G,) = O(size(G) me).

Thus the total time complexity of our algorithm is bounded from above by
O(size(G)me + m3) + O(size(G)me + m*)+0(size(G)m3e) =

O(size(G)m3e + m*).

25

4. THE CORRECTNESS OF THE. MAIN CONSTRUCTION

In this section we will prove that const(G), which is obviously in GNF, is

equivalent to . Let G be an arbitrary A-free cf grammar and let H = const ().
Theorem 4.1. H is in GNF and H~G.
Proof,

It follows directly from the construction of H from G that H is in GNF'.

Clearly, to prove that H~(G it suffices to prove that G~G. In order to prove
this we introduce the "auxiliary” cf grammar G = (", A, P, 8"y where 3" =%,
A=A S"=5" and P = P\ UP2\UPs\JP,, where P, is the set of productions

obtained as follows:

for each production m =AY, - ¥,k =2, in P, each # € 2\Aand eacha € A

i i —
such that B }—*A and Y, I—*a, P, contains the production

[Yu.B] -~ [Y2l[Ys] - - [%][A, Bl

Lemma 4.1. G~G .

Proof of Lemma 4.1

Note that G results from G by the finite number of applications of the fol-
lowing sub transformation.

Take a production m =[Y;, B] = [Yz] - - [Y%][4, B] from P, and consider
all productions for [¥3] in P", ie., the set of productions from P of the form
[Y2] » ala, Y;] where @ € A. Now replace m by the set of productions
i{Yy, Bl - ala, Yu][Ys] - - [%][4, B] : [Y2] - a[a,¥,] € P'}. Clearly this is a
sub transformation.

Now the result follows from Lemma 0.1. =

26

Lemma 4.2. For each X € &, L(G.X) = L(G .[X]).

Proof of Lemma 4.2

(i) For each X € %, L(G.X) ¢ L(G [X]).

To prove this statement we notice that it is equivalent to the statement:
(i) For each X € ¥ and eachn € N, L{G.X,n) c L(G [X)).

This is proved by induction on n as follows.
Basis: n = 0. Let X € ¥ and consider L(G,X,0). If X € £\A, then L{GX,0) = ¢
and the statement trivially holds. If X € A, then L{G,X,0) = {X}. But in G we

have [X]=>X[X,X]=>X and so X € L(G .[X]).
e]

Induction step: assume that (i) holds forall 0 < m < n.

Now let X € ¥ and consider L{G,X,n). If X € A then L(G,X,0) = {X] and, by
the argument as above, the statement holds. Assume than that X € Z\A. Let
w € L{G,X,n) and let us consider.a derivation tree 7 in & corresponding to a
derivation of w in & from X in no more than n steps.

7 has the following form:

Figure 4.1.

where we use, in the obvious way, vectors of nonnegative integers as nodes,
X is the label of the root of T, symbols 4,, ..., 4 label all other inner nodes on
the maximal left path of T (that is depicted in the bold face), a is the label of
the leaf on the maximal left path and symbols 4; ; label all nodes that are not on
the maximal left path but are children of nodes on the maximal left path. For

l=r<i{+landl=<s =u, T, isthe subtree of 7 rooted at < r,s >.

1 1t
We will construct now a derivation tree 7 in G corresponding to a deriva-

tion of w in G from [X]. We start by considering the tree {not a derivation

27

tree!l) T, constructed on the set of {unlabelled) nodes

§<0,0>, <1,0>, ..., <Lu;>, .., <t+1,0>, ..., <t +1,2541>}

from T (that is nodes that either lie on the leftmost maximal path in T or are
children of nodes on this path) and two additional nodes v and 7; the original

nodes from 7 get in T, new labels. T, looks as follows:

Figure 4.2.

where the maximal right path is depicted in bold face.

Now notice that all the expansions of nodes on the maximal right path of T,
(except for v which is not expanded) correspond to productions from P : v is
expanded using a production from Pg and all other nodes {except for ¥) on this
path are expanded using productions from Pjccueiieeeeeeeeeeseeeeeeeeeeeeneninn (*

It is also easily proved (by induction on the length of the maximal left path)
that if 7 denotes the tree obtained from 7 by deleting all subtrees

Tite oo, Thugs oo Tevr1s 0 T4y, eXcept for their roots then
(ield (T X, X] = YILA{T1) coeeeeeeeeeee e, (*%)

Next, starting from 7, we will obtain the desired tree T" as follows.
(a) Expand the node ¥ by using production [X,X] - A.
(b) Consider the node <7,s>where 1=<7r <f+1 and 1 <s < u,. Notice that this
node contributes in 7 a subword We,gs to w, where W gy € L{G A 5,f) for
some f <n. Thus by the inductive assumption W, ¢» € L(G“, [4- s]) and conse-
quently using productions from P" we can construct a subtree of T, rooted in
<r,s> such that its yield equals Wy g>.

After the above construction has been applied to all nodes <r,s> in T'; we

obtain the tree T .

28

Now: yield(T“) = yield(T) follows from (**); the fact that T is a derivation
tree of w from [X] in G follows from the construction of 7 and the observation
(*).

Thus (i') and hence (i) holds.

(ii) Foreach X €%, L(G, [X]) ¢ L(G, X).

To prove this statement we notice that it is equivalent to the statement:

(ii') For each X € L and eachn € N, L(G, [X], n) € L(G.X).

This statement is proved by induction on n as follows.

Basis: note that forn = 0andn = 1, L(G , [X], n) = ¢ for each X € 5. Hence we

may start our induction from n =2 Let X e€Z If X <INA then
L(G", [X]2) = ¢ and so L(G ", [X].2) € L(G.X). If X € Athen L(G", [X], 2) = §X].

But X € L{G.X) and so L{(G , [X], 2) < L(G.X).

Induction step: assume that (ii') holds for all 2 < m < n.

Now let X € L and consider L(G , [X], n). If X € A, then L{G, [X], n) = {X]}
and so {by the argument as above) the statement holds. Assume then that
X € Z\A and consider a word w € L(G , [X], n). Let us consider a derivation
tree U in G corresponding to a derivation in G of w from [X] in no more than

n steps. By the form of preductions in P", U" must have the following form:

Figure 4.3.

where we use, in the obvious way, vectors of nonnegative integers as nodes,

[X] is the label of the root of U and the labelling of nodes follows from produc-
tions used to expand nodes in U'. For2<i<tand 1 < i =<y, Ui" is the sub-

tree of U rooted at <i,j>. The maximal right path of U is depicted in the bold

29

face.

Now if U is the tree resulting from U by removing subtrees
Ug_l, vy Ug, Ugﬂ, Ut':l, Utf:ut except for their roots, then starting from _L?”,
the reader should have no difficulties in "reversing” the construction from the

proof of (i') - this will yield a derivation tree U corresponding to a derivation of

w from X in . We leave this construction to the reader.
Hence w € L{G,X).
Consequently (ii) and hence (ii) holds.

Now Lemma 4.2 follows from (i) and (ii). =

If in the statement of Lemma 4.2 we set X = S, then we get L(G) = L(G).

Thus by Lemma 4.1, G~G and consequently G~H.

Thus the theorem holds. =

30

5. COMPLETE: BINARY CF GRAMMARS

In this section we will consider the effect that our construction has for com-

plete binary cf grammars.

Definition 5.1. A cf grammar G = (&, A, P, S) is called a complete binary cf

grammar {abbreviated cb grammar) if each production of P is of the form

A->XY whereAcZ\Aand X, Y cX. =

Remark 5.1, In all considerations in the sequel of this paper where we deal
with converting a cb grammar G to an equivalent cf grammar H in GNF we
will neglect all words of length 1 generated by G. This will allow us to skip a
number of technicalities that obscure the total picture of the silualions encoun-
tered. (learly, once we get H, it suffices to add to it a finite number of produc-
tions (not exceeding the sum of the number of productions in H for its axiom

and the number of one-letter words in L{G)) so that the resulting grammar will

be equivalent to G and it will also be in GNF'. =

The reason that we consider cb grammars separately is that they obviously
generate all context free languages (see the remark above) and the derivation
trees in cb grammars are complete binary trees (their definition is recalled in
Section 6) - a very natural and often considered class of trees. Later in the
paper we will consider our construction of converting a cf grammar to a GNF as
a tree transformation - in the case when an initial c¢f grammar is a ¢b grammar

we will deal with transformations of complete binary trees.

Assume that G is a ¢b grammar. Then it is easily seen that (with obvious

modifications) const (&) can be written as the following grammar H.

31

Definition 5.2. Let G =(L,A P, S) be a cb grammar. Let A be the cf

grammar defined as follows.

5 = AUIS)US,, where 8, = {[V,B]:Y €5, B € 5\A and B 7},
A=A S = 8 where § £ Az,

P is obtained as in (i) and (ii) below.

() Let[¥,B] €%,

(i.1) Forall [a,C], [A,B] €%, suchthat A € E\Aand a € A,
[Y,F] > a[a,C][A,B] € P whenever A » YC € P.

(i.2) Forall [A,B] €%, suchthat A € Z\Aand all @ € A,
[Y,B] » a[A,B] € P whenever A » Yo € P.

(i.3) For all [a,C] € &, such that a € A,

[Y.B] » ala,C] € P whenever B » YC € P.

(i4) Foralla €A,

[Y.B] » a € P whenever B » Ya € P.

(ii) P contains the following productions for &:

foralla €A, 8 »ala,S]cP. =

The transformation described in the above definition will be denocted by
const' (and so H will be denoted by const(G)). Note that this transformation
yields directly a grammar in GNF : neither chain nor erasing productions are
introduced.

The above description of the construction of A (based on the division of
productions in P into A » YC and A - Ya types) will be quite useful in the proof
of the main theorem of Section 7.

From Definition 5.1 and Theorem 4.1 we have immediately the following

result.

32

Theorem 5.1. Let G be a cb grammar. Then const (G) is in GNF and
const (G)~G. =
FErample 5.1.

Let G be the ¢b grammar with the axiom A; and the following productions:
A > AgAg | 14s | A0 | 10,
Ag» AAz | AL,
Ag > AjAg | A, 0
(This is the grammar from [H] p. 113 modified in the obvious way to an

equivalent ¢b grammar).

Then the grammar H = const (G) has the axiom § and the following produc-
tions:
B - 1[1,4,],
[A14g] » 1[1,4:][44,] | 1[4z A4:] | 1[1.4z][42.45] | 1[424z] | 1[1.4.] | 1,
[42,A1] » 1[1,45][A1,A;] | O[414:] | 1[1.45] | O,
[Az.Az] » 1[1,43][41.4e] | O[A14e],
[A1.45] » 1[1.4.][4z.A5] | 1[4z A4s] | 1[1.45] | O,
[A2As] » 1[1,45][A,43] | O[A;,Az],
[1.A:] - 1[1.43][A1A1] | O[A1Ai] | 1[LA4s] | O,
[1,4z] » 1[1,45][4A1.42] | O[4,.4z],
[1,45] » 1[1,435][A1,45] | O[A;,4s].

Hence H has the following parameters: 10 nonterminals, 27 productions,

mazr (H) = 3 and size(H) = 86. =

We conclude this section by estimating basic parameters of A = const'(G)
in terms of the corresponding parameters for G.
(i) The cardinality of the alphabet Ty,

It follows directly form the definition of A that

33

Frg < #TH#(ENA) + 1 + #L < (#T)

(ii) The mazimal length of the right hand side of a production in Pg.
It follows directly from the definition of H that mazxr(H) = 3.

(iii) The cardinality of the set of productions Py,

We note that, for each production 7w € P:

(1) points (i.1) and (i.2) of Definition 5.2 will yield no more than #(X\A)-#A pro-
ductions, and

(2) points (i.3) and (i.4) of Definition 5.2 will yield no more than #A productions.
For the axiom & we have #A productions in Ppg.

Hence

#Pg < #P#(ENA)#A + #P-#A + #A< 2EPE(INAEA .

(iv) The size of H.

Since for each m = A » a € Pp, |Aa| < 4, we have

size(H) < 4Py < 8P} (I\A) #4 .

But G is a binary cf grammar and so we have

size(G) = 3 4P, .

Consequently

size(H) < g—s'i,ze(G)'#(E\A)v#A .

{(v) The norm of H.

norm(H) = size(H) logs(#27) .

Since #Zg < (#2)%,

norm.(H) < 2size(H)loga(#3) < %gsize(G)#(Z\A)-#A

=

ize(G)f# (INA)# Arloga(#X) =

—
caio._,

—

= é—;—norm(G)#(Z\A)'#A .

We conclude this section by discussing an algorithm implementing const .

This algorithm consists of three steps.

34

We will use the notation form Definition 5.2, i.e., we start with a ¢b grammar

G = (%, A, P, S) and we construct a cf grammar H = (3,A, P, S) in GNF.

We assume that the alphabet X is linearly ordered and so & = {0y, ..., 0y,) for
some m > 2. Let #A =e. We assume that a list p(P) of all productions in P is

available.

STEP 1

Construct the incidence matriz M | for the relation]J :
!,_

This is done exactly as in Section 3. The time complexity of this algorithm
is bounded from above by O{size(G) + m?).

STEP 2

i
Construct the incidence matriz M | for the relation]—-—+,
+

1_
Again, as in Section 3, we can use here the Warshall algorithm and accom-
plish this step in no more O(m3) steps.

STEP 3

Construct Pp.
This is done as follows.

We scan the list p(P) and when reading a production 7 we apply one of the
rules (i.1) through (i.4) from Definition 5.2 to output a production in P. Finally
we output productions for S. Clearly, the most work is required when following
rule (i.1) of Definition 5.2 and so it suffices to estimate the number of steps for
doing it.

To implement rule (i.1) we consider all pairs B € ¥\A and @ € A and for

i i
each such pair we check using M 1, Whether or not Bl—+A and C}-—-+a, where
}_‘

m=A > YC in the notation of Definition 5.2. If the answer is positive, then we

cutput productions

35

[Y,B] » ala,C][A,B]and [Y,B] - a[a,C]

(the second one satisfies point (i.3) of Definition 5.2).
1
If the answer is negative but }——+a then we output only the production
[Y,B] - ala,C].
Hence STEP 3 can be accomplished in no more than O(size(G)me) steps.

Consequently the time complexity of our algorithm is bounded from above

by O(size{G) + m¥) + O(m?) + O(size(G)me) = O(size(G)me + m?B).

36

6. COMPLETE BINARY AND LEFT NEEDLE TREES

This section considers two classes of trees: complete binary trees and left
needle trees. The first class arises when derivation trees in ¢b grammars are
considered and the second class arises when derivation trees in grammars
resulting from converting cb grammars to cf grammars in GNF (using our
method) are considered. In this and the next section it will be very convenient
to consider trees with edge labelling by labels I, m, r (corresponding to left,
middle and right, respectively). This will simplify considerably the description
of the transformation of trees that we will introduce.

The main aim of this section is to consider specific tfansformations of com-
plete binary trees into left needle trees; these transformations will form an
important tool in the considerations of the next section.

We start by recalling the definition of a complete binary tree.

Déﬁnit'ion B.1. A complete binury tree (a cb free for short) is defined induc-
tively as follows:

(0) A tree consisting of one node only is a ¢b tree.

(1) Let T be a cb tree and let v be a leaf of T.

Let Ty, Ty be disjoint ¢b trees such that their sumn is disjoint with 7. Let T be a
tree resulting from taking 7\ JT,|J7Ts and adding two new edges: one leading

from v to 7roof(T,) labelled I and the other one leading from v to root(7T,)

labelled 7. Then T is a ¢b tree. =

The only difference with the standard definition of a ¢b tree is that we have
now the labelling of edges by [and r symbols. This labelling automatically
assigns the linear order among children of any node: the leff child (the node to

which an edge labelled is leading) precedes the right child (the node to which

37

an edge labelled 7 is leading). Note that according to the above definition each
inside node has exactly one left and one right child. Hence (taking into the
account the consistency of labelling by { and r with the ordering of children of
each node as out lined above) the usual notion of a left (right) path coincides

here with the notion of a path going through left (right) labelled edges only.

In a more informal way the above definition can be paraphrased as follows.
{0) A tree of the form is a cb tree.

{1) A tree of the form

Figure 86.1.

where T, Ty, Tz are cb trees and v is a leaf of 7T, is a ¢b tree.

Erample 6.1. The following tree is a ¢b tree:

Figure 6.2.

We introduce now the class of left needle trees.

Definition 6.2. A left needle tree (a In tree for short) is a ternary tree
defined inductively as follows.
(0) A tree consisting of two nodes connected by an edge labelled I is a In tree.
(1) Let m=1, Ty .., T, be pairwise disjoint In trees and let v, T be two
different nodes that do not belong to the set of nodes of T = T, - - - \UT,. Let
[7 be the tree constructed as follows.
(i) Let T' be the tree consisting of two nodes, v and ¥, and an edge labelled
leading from"u to 7.

(ii) Let U be the tree resulting from T'JT by adding an edge labelled m lead-

38

ing from v to root(T,) and , for 1<1i <n-1, an edge labelled r leading from

root (7,;) to root (T4,); root(u) =v. =

In a more informal way the above definition can be paraphrased as follows.
{0) A tree of the form is a In tree.

(1) A tree of the form

Figure 8.3.

wheren = 1land 7, ..., T are In trees, is a In tree.

In a In tree we use labels I, m and r to label edges. Hence for each inside
node we can classify each child of it as either left, or right or a middle child
(depending on whether an edge labelled I, 7 or m respectively is leading to it).
Again this labelling induces the linear order among children of each node if we
assume that "leff precedes middle" and "middle precedes right". Note that the
above definition guarantees that among all children of a given node at most one

can be left, at most one can be right and at most one can be middle child.

Thus now we talk about a leff (right) path in a In tree as a path going
through I labelled (r labelled) edges. Then all other related notions such as a

complete left (right) path and the mazimal left (right) path carry over accord-
ingly.
FErample 6.2,

The following three trees are In trees:

39

Figure 6.4.

We will describe now a transformation from the class of ¢b trees into the
class of In trees; for a ¢b tree 7 this transformation is denoted by &7.

Definition 6.3. Let T be a cb tree.
(0) If T is a one node tree, then §7(7) is a in tree consisting of two nodes con-
nected by an edge labelled {.
(1) Let 7 contain at least three nodes and let v vg, ..., Un, Uns1, @ = 1, be the
sequence of nodes corresponding to the maximal left path of T, where
vy = 100t (T), Upy, is a leaf, and 7y, ..., T}, are subtrees of T rooted at the right
children of vy, ..., U, respectively. Let us assume that 87(7)), ..., 67 (T) are
pairwise disjoint, v is a node different from v, ;; and neither v nor v, is included
in the set of nodes of T' = 67 (T1)U - - 07 (7). Let T' be the In tree consist-
ing of nodes v , ¥y 4; and an edge labelled ! leading from ¥ to v, 1. Let 67(7) be
the tree resulting from 7'JT by adding an edge labelled m leading from v to

root(7,) and , for 2<1i=mn, an edge labelled r leading from 7root{7T;) to

r00t(T;1). =

In a more informal way the above definition can be paraphrased as follows.

(0) If T is of the form , then 67(T) is of the form

(1) If T is of the form

Figure 6.5.

40

where the maximal left path is depicted in the bold face, then 8;(7) is of the

form

Figure 6.6.

Now we will make our mappings d7 more specific {detailed) by providing, for

each ¢b tree T, the correspondence between Vy and Var(T) and the correspon-

dence between Er and Es,(r). We need some additional terminology first.

Let T be a cb tree. An edge of T incident with a leaf is called an outside
edge (of T); all other edges are called inside edges (of T). An inside edge
labelled by I is called a left inside edge and an inside edge labelled by 7 is called
a Tight inside edge. The sets of outside, left inside and right inside edges of T
are denoted by out (7), lin(T) and rin(T) respectively.

Definition 6.4. Let T be a cb tree.

(1) pr is the function from Vy into Vy,(r) defined as follows.

(1.0) If T is a one node tree, say Vy = {v}, then up(v) is the leaf of 6 (7).

(1.1) Let T contain at least three nodes. In the notation from the definition of
87(7) we have:

Mr{Uns1) = Un s,

for 1% = n, ur(ws) = root (67,(T) and

foru € Vg, ur(u) = pr,(w).

() ¥r is the function from Ey into Es,.(r) defined as follows. Let T be a cb tree
with at least three nodes.

(i) If e € out(T) is incident with a leaf u, then ¥7(e) is the edge (labelled by 1)
of 67{T) leading to ur{w).

(i) If e € lin(T) is leading to a node u, then Y7{e) is the edge of 8,7(T) labelled

by 7 and leading from ur{u).

41

(i) If e € 7in(T) is leading from a node w«, then ¥y(e) is the edge of 67(7T)

labelled by m and leading from ur(u). ®

It is easily proved by induction (following the inductive definition of §,{7))
that functions g7 and %7 are well defined, i.e., for each v € Vg, up(w) exist (and
is unique) and for each e € Fy, ¥r(e) exists (and is unique).

In the sequel we will write 6, & and ¥ rather than é¢, py and ¥7 whenever it

will not lead to confusion.
FErample 6.3

Let 7 be the following cb tree:
Figure 8.7.

where we have identified each node by a positive integer (from 1 through 15) and
each edge also by a positive integer {from 1 through 14). This will allow us to

demonstrate easily functions wy and %7.

Then 67(7) is the following In tree:

Figure 8.8.

Here, again, nodes (except for the root) and edges {except for the edge
labelled m leaving the root) are identified by positive integers. In this way this
figure gives functions ur and Y7 if we assume the following equalities:
for 1 =1 < 15, up(i) =14, and
for 1=j <14, ¥p(j) = 7.

The following two properties of transformations ¢ follow easily frorh the

definitions.

42

Lemma 6.1. If T is a cb tree with front{(T) =w, ' 4, where £k = 1, and

Uy, ..., U leafs of 7, then front (§{7T)) = u(u,) - - u{wg). =

Lemma 6.2. Let T be a cb tree. Let E' = E; (r)\le,,] where e,, is the edge
of 6(7) labelled m and leading from roof(6(7)) and let V' = Vo, (r\iroot (8(T))3.
Let 4': Ey » E be such that, for each e € 7, Y(e) = y(e) and let p':Vy » V be
such that, for eachu € Vp, w({u) = p{u).

Then %' and w' are bijections {injective onto functions.) ®

Now one can define, in the obvious way, the inverse transformation that for
a given In tree U yields the ¢b tree 6 1(U). It is easily seen that the following
result holds.

Lemma 6.3. (1) Let 7 be a cb tree and let U = §(7T). Then 6 Y{u) = T. (2)

Let Ube ailntreeand let T = ¢"Y{U). Then&(T)=U. =

Finally we extend our transformation to the case of node labelled cb trees

{nich tree for short).

We remark here that we consider only such nicb trees where the set of
labels used to label leafs (called leaf labels) is disjoint with the set of labels

used to label insider nodes (called inside labels).

Definition 6.5. Let T be a nlcb tree. Then 6{T) is the node labelled In tree
(nlin tree for short) such that
(1) un(6(7)) = 6(un(T)),
(&) Tsyn= I'U{8} where $£T, labg,(ry(root (6(T)) =) and, for each
u € Vs r\iroot (6(T)), labsrfu) # § ,

(3) for eachu € Vp, labp(u) = labg,(n{u(u)). =

43

The symbol § above is referred to as the roof symbol and it is a reserved
symbol used to label roots of the trees of the form §(7) where 7 is a nlch tree

(recall also that this symbol is the axiom of const (G) - see Definition 5.2).

Note that Lemma 6.2 and the definition of lab é,(r) yield the following result.

Lemma 6.4. Let T be a nlch tree. Then yield(T) = yield(6(T)). =

Obviously Lemmas 6.2, 6.3 and 6.4 carry over to nicb and niln trees.
Now we define a transformation which relabels nich trees.

For an alphabet X,) denotes the alphabet {{X,Y]:X,YeX). If
o =[X,Y] € 2® then we refer to X as the first component of ¢ and denote it by
fic(o), and we refer to Y as the second component of ¢ and denote it by sec(o).
Definition 6.6. Let T be a nich tree.
{1) The pair labelling function induced by T, denoted by lab?(,g), is the function
from Vr into 1—'2("2) defined by:
for each leaf u of T, laby(,g)(u) = labp{u),
for each inside node w of T, lab®(u) = [labyp(w,), labr(us)] where u, is the left
child of w4 and u;z is the top node of the complete left path on which « lies.

(2) The pair wversion of T, denoted 7®), is the mnlcb tree such that

U?’L(T(Z)> = 'wn,(T), PT(g) = 1—‘;2) and labT(g) = laby(.g). =

For a nich tree T, puiry will denote the transformation leading from T to
T®),

Erample 6.4. Let T be the following nich tree:

Figure 6.9.

44

(Note that un(T) is the cb tree from Example 6.3). Then 7® is the following

nlchb tree:

Figure 8.10.

Lemma 8.5, Let T be a nich tree.
(1) If u,, ug are inside nodes of (7)) that lie on the same right path and oy, o5
are labels of u;, ug respectively, then sec{o,) = sec{og).
(2) If u, is a middle node of 8(T®), wu, is the left sibling of u,; and 0,,05 are
labels of w,, up respectively, then fic(o,) = fic(oz) (moreover fic(o,) is a leaf

label). =

7. TRANSFORMING DERIVATION TREES

In this section we will consider the effect of const on the derivation trees of
a given A-free cf grammar. As a matter of fact we will demonstrate that const

can be considered as the transformation of ¢b trees into In trees.

In order not to complicate the (already involved) notation and terminology,
in this section we will restrict ourselves to the case of cb grammars; that is we
will consider the transformation const' rather than consf. It is rather easy
{although notationally tedious) to extend the considerations of this section to
the case of arbitrary A-free cf grammars (hence to the case of const transfor-

mation). At the end of this section we comment briefly on the general case.

Before we state and prove the main result of this section we need an addi-
tional terminology. For a node labelled tree T and its node w we define (i) the
structure of w in T to be the full subgraph of T spanned on the node u, its
parent and all its children, (ii) the lower structure of w in T to be the full sub-

graph of 7 spanned on the node w and all its children.
Let G be an arbitrary complete binary cf grammar and let # = const'(H).

Note that a derivation tree in H is obtained by starting at its root and
expanding successively its nodes by productions from H. In order to get deriva-
tion trees in H to be In trees we have to assign labels I, m and r to edges lead-
ing from the node being expanded. This rule is given, somewhat informally, as

follows.

(1) if a production [¥,B] > a[a,C][A,B] from group (i.1) of Definition 5.2 is

used, then the labelling is as follows:

Figure 7.1.

46

() if a production [Y,B] - a[A4,B] from group {(i.2) of Definition 5.2 is used,

then the labelling is as follows:
Figure 7.2.

(3) if a production [¥,B] - a[e,C] from group (i.3) of Definition 5.2 is used,

then the labelling is as follows:
Figure 7.3.

(4) if a production [Y¥,B] - e from group (i.4) of Definition 5.2 is used, then the

labelling is as follows:
Figure 7.4.

(5) if a production § - a[a,S] from group (ii) of Definition 5.2 is used, then the

labelling is as follows:

Figure 7.5.

Theorem 7.1. Let w € L{G), where |w| =2 and let T be a derivation tree
corresponding to a derivation of w in G. Then 6(7®) is a derivation tree of w in
H and yield (6(T®) = w.

Proof.

Clearly T is a cb tree node labelled by Z {with leafs labelled by A).

(i) wyield(6(T®) =w follows from Lemma 6.4 and from the -equality

tabp{u) = lab g(u) for each leaf u of 7.

47

(ii) To prove that 6(7%®) is a derivation tree in H we proceed as follows.

(i.1) For each inside node % in Ve \root (Vye) we will consider its (lower) struc-
ture in 7, then its (lower) structure in 7® and then the lower structure of u(w)
in 6(7%®). We will conclude that the node wu(w) in 6(7®) is expanded using a pro-
duction from P. The following cases exhaust all possibilities.

(ii.1.1) Let u be a left inside node of T with the following structure in T:

Figure 7.8.
where 5 is a leaf, up is an inside node, ¥ is the top node of the complete left
path on which u lies; it may be that ¥ = v and it may be that p = us. The struc-
ture of u is depicted by using the rectangular frame.
Then the structure of u in 7® is:

Figure 7.7.

Then the lower structure of u(u) in 8(7®) is

Figure 7.8.

Hence MTiz)(u) is expanded using production [¥,B] -» a[a,C][4,5].

Since the production A » YC (used to expand u in T) is in P, the definition
of H (see (i.1) of Definition 5.2) implies that the production [¥,B] » a[e,C][4,B]
is in P; consequently u{u) is expanded using a production from P.

(ii.1.2.) Let u be a left inside node of T with the following structure in 7T

Figure 7.9.

48

where uy is a leaf, ¥ is the top node of the complete left path on which w
lies; it may be that ¥ = v. The structure of u is depicted by using the rectangu-
lar frame.

Then the structure of w in 7® is:

Figure 7.10.

Then the lower structure of u{w) in 6(7®) is:

Figure 7.11.

Hence u{u) is expanded using production [Y,B] » a[A,F].

Since the production A -» Ya {used to expand « in T) is in P, the definition
of H (see (i.2) of Definition 5.2) implies that the production [¥,B] » a[4,B] is in
P; consequently u{u) is expanded using a production from P.

(ii.1.3.) Let u be aright inside node of T with the following lower structure in T:
Figure 7.12.
where § is a leaf, %z is an inside node and it may be that p = u,;. The lower
structure of 4 is depicted using the rectangular frame.
Then the lower structure of « in T® is:
Figure 7.13.

Then the lower structure of u(w) in 8(7%®) is:

Figure 7.14.

49

Hence u({u) is expanded using production [Y,B] - a[a,C].

Since the production B - YC (used to expand w in T') is in P, the definition
of H (see (i.3) of Definition 5.2) implies that the production [Y,B] -» a[a,C] is in
P; consequently u(u) is expanded using a production from P.

(ii.1.4.) Letu be aright inside node of T with the following lower structure in 7:

Figure 7.15.

where ug is a leaf.

Then the lower structure of w in 7 is:

Figure 7.186.

Then the lower structure of u(u) in 6(T®) is:

Figure 7.17.

Hence u{u) is expanded using production [¥,5] - a.

Since the production B - Yo (used to expand v in T) is in P, the definition
of H (see (i.4) of Definition 5.2) implies that the production [Y,B] - a is in P;
consequently u{w) is expanded using a production from P.
(i.2) To complete the proof that 6(7®) is a derivation tree in H one has to show
that the production used to expand the root of 6(7®) is in P (and then use

Lemma 6.2). This however follows immediately from the definition of P.

The theorem follows now from (i) and (ii). =

50

We will demonstrate now that the "converse' of Theorem 7.1 also holds, i.e.,
given a derivation tree in H one can directly transform it into a derivation tree

{of the same word) in G.

Let T';, I'; be finite alphabets and let § £ I';| U, {recall that § is a reserved
root symbol). Let ' =T Ul Ut} .

Definition 7.1. Let U be a nln tree such that
lab y(root (U)) = § ,T'y = T® T8}, leafs of U are labelled by elements of I,
inside nodes of U are labelled by elements of I'® and moreover the following
conditions are satisfied.
(i) I w;,uz are nodes of U that lie on the same right path, then
sec (laby{u,) = sec(lab y(ug)).
(ii) If u, is a middle node of U and wu, is the left sibling of wu; then
Fie(laby(ur)) = fic (laby(uz).

Then
(1) The single labelling function induced by U, denoted lab é.l) , is the function
from Vy into I, defined by :
tab M(roat (U)) = laby(root (U)) = 8,
for each leaf u, lab ,S,”(u) = lab éu)(u),
for each Dbottom node « of a complete inside right path,
lab é,l){u) = sec(laby(u)),
for every other node u of U,lab é.l)(u) = fic(laby(ug)),
where Uy is the right child of w«.

(2) The single version of U, denoted U®), is the nich tree such that

un (U = un(U), [y =T'and lab 4y = lab,gl) =

For a nick tree U as above, singy will denote the transformation leading

from U to UW,

51

Using Lemma 6.5 one easily proves the following result.
Lemma 7.1. Let U be a nlin tree satisfying the assumptions of the state-

ment of Definition 7.1. Let 7 = 6 (UMW), Then 6(7®) = U, =

Quite analogously to the proof of Theorem 7.1 {and using Lemma 7.1) one

can prove the following result.

Theorem 7.2. Let w € L(H), where |w]| =2 and let T be a derivation tree
corresponding to a derivation of w in A. Then 6 Y(7(") is a derivation tree of w
in G and yield (6" {(T1)) =w. =

As we have indicated already, in this section we have discussed the const
transformation as the transformation of derivation trees. To avoid the burden-
ing of our {already involved) notation, this discussion was carried on for the case
when a given grammar is a ¢b grammar - in this way we have been dealing with a

transformation of ¢b trees into in trees.

The reader should be able to extend these considerations to the case of
arbitrary cf grammars (the proof of Theorem 4.1 gives basic intuitions of the
general situation). We would like now to discuss briefly, and rather intuitively,

few points pertinent to such a general situation.

First of all the range of our tree transformations will be the class of trees
more general than left needle trees. A generalized left needle tree {(a gln tree
for short) is a tree such that each inside node u of it has precisely one leaf
among its children and moreover this "leaf child” is the leftmost among all the
children of w.

The transformation d for a tree T will be defined as follows. As before we

identify the nodes of 7 with positive integers so that by using the equality

(i) = i, when we depict 6(T) the function u is also shown.

o2

{0) For a one node tree , 6{T) is of the form ,

(1) For atree T of the ‘forrn
Figure 7.18.

where the maximal left path is depicted in the bold face, 6{T) is of the form
Figure 7.19.

where for the node i(1<1% <n) the root of ¢ is identified with i {(and gets the

label of i) while the roots of 8(Tz), ..., 6(Tim,) become children of 1.

Ezample 7.1. If T is of the form
Figure 7.20.
then 8(7) will be of the form

Figure 7.21.

Note that nodes 10 and 11 are new 'root' nodes; they are not in the range of y. =

83

8. DISCUSSION

In this paper we have defined a transformation {const) which given a A-free
cf grammar G yields a cf grammar H = const{G) in GNF. H is such that
size(H) < size(G) 64 (#2)* #A, moreover mazr(H) < mazr(G) +1. Thus in par-
ticular, if the initial grammar is binary {(e.g. in Chomsky normal form or in com-

plete binary normal form) than the resulting grammar is in 2-GNF.

The transformation consf that we have introduced has another important
feature. It can be viewed as the transformation of derivation trees. That is
given a derivation tree T of a word w in G one can transform it directly (without
having any other information about either G or H) into a derivation tree of a
word w in H. In this sense size(G) (or norm(G)) may be considered to be
irrelevant: given a derivation tree of w in & one constructs a derivation tree of
w in /I without looking either at A or G at alll This transformation of labelled
trees (in a setting more general than the family of derivation trees of cf gram-
mars only) was defined and studied. It has also turned out that using the "dual”
of this transformation one can apply it to an arbitrary derivation tree U of a
word w in // and obtain a derivation tree T of w in G; again, in this process nei-

ther H nor G is looked up; U contains enough information to construct 7.

This situation was discussed in detail for ¢b grammars. In this case we have

proved that the following diagram commutes:
Figure 8.1.
where T, is the family of all derivation trees for words in L(G), Ty is the family of

all trees of the form 7® where T € Ty, D is the family of all derivation trees for

words in L{H), D is the family of all trees of the form 7! where T € Dy, pair is

o4

the family of all mappings of the form puairy, d is the family of all mappings of
the form 67 , sing is the family of all mappings of the form singy and 6! is the

family of all mappings of the form (5;1.

We would like to conclude this paper by discussing possible improvements
("short-cuts") when applying our algorithm {const). The aim of this discussion is
to suggest rather informally certain short-cuts that are dependent on the form
of the grammar rather than on the form of the generated language. These

short-cuts will be discussed on the hand of a concrete example.

Let G = (I, A, P, E) where
T=$E, T, F,a, () % +}, A={a, %, +,(,)} and
P consists of the following productions
E-E+T | T,
T->TxF | F,
F(E) | a.
Hence G is the 'classical” grammar for the generation of arithmetic expres-

sions.

If we apply const (see Definition 1.1) then we first get G' which has the

axiom [£'] and the following productions:

[B.E] > +[++][T][£.E],

[T.E] - *[xx][FI[T.E] | [E.E]

[7.7] » x[*.x][F][7.T],

[CEY - (LCEIDILF.E] | ala, EIDIF.E],
(7T~ {CEIDIF.T] | ele, EIDIF.T],
[CFT - (CEIDILFFT | ala, EIDIF.F],
[F.E]-[T.E],

[F,T]~[T.T],

[a,£] - [F,T],

bb

[a.F] - [F.F],

[£]- ([(.£] | a[e.Z],

[T]1- (7] | a[a,T],

[F1-((F] | al[a,F],

[6]- b[b,b], for every b €A,

[X,X] = A, for every X € 5.

Then the grammar H' resulting from H = const({G) by removing useless nonter-

minals (and productions for them) looks as follows.

Axiom: [£],

Productions:

[£.E] > +[T][E.E] | +[T],

[T.E] » *[F][T.E] | *[FI£.E] | *[F],

[7.7] » %[FI[T.T] | *[F],

[CE] - (EIDNT.£] | (ICEIDIEE] | (CEID] |
o[TEIDIT.E] | o[T.EIDIE.E] | o[T.£]D] |
al ELEIDIT.E] | o[E.EIDIE.E] | al£.E][)] |
eDIT.2] | eDIE.E] | aD)],

[T - (C&IDIr.7] | (LCELD] |
o[T.EIDIT.T] | [T.E]D] |
o[E.EIDIT.T] | al£.E£]D)] |
aDI[T.T].

[CF] = TCEID] | e[T.£21D] | a[£.£1D] | aD)],

[£] > ([(E] | o[T.E] | o[E.E] | a,

[T]-{(T] | al[7.7T] | a,

[F1-(I{(F] | o,

DI=).

H' has the following parameters:

10 nonterminals, 41 productions, mazr (H') = 4 and size(H') = 153.

b6

Now we make the following general observation {the easy proof of the follow-

ing result is left to the reader).

Lemma 8.1, Let G=(X, A P,S) be a Afree cf grammar. Let
A€INA Z CEY and W C X* be such that
(i) for each w € W, first{(w) is such that {z € A*: first(w)=>z]} is a singleton
containing a word of length 1; let ter (first{w)) be this one letter word,
(ii) for each z € Z and eachw € W, A » 2w is in P; let P, 7 v denote this set of

productions.

Let F = P\Py z v\JP,, where
Pi={A-2X:A-2wisinPyzy, z€ Zandw € W
WX = (ter (first (w)))w': A » 2w isin Py gy, 2 € Z,
w € W and w' results from w by removing its first letter §,

where X is a new nonterminal symbol not in Z.

Let 7 = (ZUX}, A, R, S). Then L{I) = L(G). =

Note that the transformation described above yields a cf grammar / in
pseudo GNF if the given grammar {(G) is in (pseudo) GNF; also
mazxr (I) < mazr (G).

This observation can be applied {twice) to &' as follows:

(1) set Z ={[(.F), a[a.E]}, W =§{)][F.E]} and A = [(,EF], where the involved
productions are:

[CE] - [CEIDIF.E] | ele,EID]F.E],

() set Z = {[(£].ala.2R.W = {DIF.T]

and A = [(,T], where the involved productions are:

LT~ (CEIDIF.T] | ele,EIDIF.T].

57

Applying the construction from the lemma above (X will be a new nontermi-
nal symbol used in (1) above and Y will be a new nonterminal symbol used in (2)
above) to G' we get G' which after removing chain and erasing productions {(and

removing useless nonterminals) yields the following grammar H : equivalent to G
and in GNF'.
Axiom: [F].
Productions:
(B8] » +[T][E.E] | +[T].
[T.B] > %[FI[T.E] | *[FI[£.E] | *[F],
[T.7] » *[FI[T.T] | *[F],
[CE] - ([CEIX | o[T.E]X | o[E.E]X | oX,
[(CT] - ([(£]Y | o[T.E]Y | a[E.E]Y | oY,
(CFT - ({CEIDD | e[7.E21D] | e[£.£1D] | eD],
X-)T.E] | NEE] |)
Y-)[7.7] |).
[£] - ([CE] | o[T.E] | alE.E] | @,
[(T]->({(T] | o[7.7] | @,
[FI-({F] | e,
DI-).
H' has the following parameters:
12 nonterminals, 34 productions, mazr(H) = 3 and size(H) = 109; thus A is in
2—GNF.

Now we make a digression and state an easy to prove general result an cf
grammars. We need a definition first.

Definition 8.1.
(1) Let G, =(Z,, A, Py, Sy), G = (3,85, Py, S3) be a cf grammars such that

(ZN\ADM{(Z2\Ag) = ¢. Then the (G, Gg)-composition of G, and Gy is the cf gram-

o8

mar.
(Z1UZ2 AN(Z2\A2) UANENA,), PrU P, Sy);

it is denoted by comp (G, G2).

(2) Let Gy = (21, Ay, P1, S1) and Gp = (8, Ag Pa, Sp) be cf grammars such that
(2.1) for each X € T there exists a ¥ € &' such that L(G,X) = L(G",Y), and
(2.2) L{Gy) = L(Gg).

Then Gy is an extension of G,.

(3) Let Gy = (X1, Ay, Py, 5,) and G = (Zy, As, P, S3) be cf grammars such that
(3.1) ¥, C 3y,

(3.2) Sg=8,, and

(3.3) foreach X € &, L(G,X) = L{Go,X).

Then Gy is a strict extension of G. ®

It is easily seen that if Gp is an extension of G, then by appropriately
renaming nonterminals of G one gets G;; such that Gé is a strict extension of
(.

Also the following result is easy to prove.

Lemmuo 8.2. Let Gy, Gz be cf grammars and let G = comp(G,, Gg). Let G;
be the strict extension of &; and Gé be the strict extension of G, such that the
sets of nonterminal symbols of G; and Gé are disjoint. Then

L(G) = L{comp(Gy, Gg)). =

Note that if G; and Gp' from the statement of the above lemma are in

pseudo GNF', then still comp(G;,Gé) = G does not have to be in pseudo GNF.

However, the following transformation of G yields an equivalent cf grammar G

which will be in pseudo GNF' (if G; and Gé were in pseudo GNF').

59

Let Gy = (24, A, P,, S,) and Gy = (Sa As, Py, Sb) and let G = (3, &, P, §).
A production from P is called bad if m= A » o, a € I*, and first{a) £ A; not
that in this case if me€ P;, then first(a) € ¥p\Ay and if 7€ Py, then
First (o) € 5,4,

Let G result from G by the following construction:

(i) if = A » a is a bad production from P such that € P, then remove 7 from

G and introduce instead all productions of the form A - B where
o = (first (o))& and @ is such that first(a) - 8 is in P,
(ii) if 7= A - a is a bad production from P such that 7 € P, then remove =
from G and introduce instead all productions of the form A - B where
o = (first(a))@ and B is such that first(a) » g isin P;.

It is clear that G is in pseudo GNF whenever G; and Gé are in pseudo GNF.

Now let us go back to our original grammar G.
Clearly G = comp (G, Gs) where
Gy = (21, Ay, PLE), Gp = (Zg, bg, P, F),
Sy =B T, F. + %) A = {+.%}, P,={E > E+T,E > T, T » TXF, T - FJ,
L=t F.(). ad e =1(), af, Pp={F > (E), F-al
For Gp we get immediately an equivalent cf grammar Ez’g = (fa 52, 153, F)in GNF,

where
Yo =48, F.D1 () a}, Bz = §(,), ai,
Pe={F > (EDL F »a,[)])

Clearly ég is a strict extension of Gs.

Applying const to G; (and removing useless nonterminals) we get the following cf

grammar H ; which is in GNF' and equivalent to G;.

Axiom: [E].

60

Productions:

[E.E] - +[T][E.E] | +[T],
[T.E] > %[F][T.E] | *[FI[E,E] | *[F],
[7.7] - %[F][T,T] | *[F],

[£] - F[T.E] | FIE.E] | F,

[T]- F[T.T] | F.

[F] > F.

Clearly H; is an extension of G,, where £ in G, corresponds to [E£] in H,
and T in G, corresponds to [T] in #,. Now if in H, we replace [£] by E and [T]

by T then we get H;' such that H;' is a strict extension of Hi.

Now we let G = comp(H, , G) and applying comments following Lemma 8.2
we get the following grammar G in GNF and equivalent to G.
Axiom: [£]
Productions:
[E,E]l-> +T[EE] | +T,
[T.E,] » %xF[T.E] | %F[E,E] | %F,
[T, 7] » %F[T,T] | *F,
E~{(EDIT.E] | o[T.E] |
(EDIE.E] | olE.E] |
(D] | a,
- (E2IDI7. 7] | ((EID] |
a[7.7] | a,
F-(£ID] | e,
D1-).
G has the following parameters:

7 nonterminals, 20 productions, maxr(G) = 4 and size(G) = 69.

61

Notice that we can again apply the construction of Lemma 8.1 to G obtain-
ing the following grammar H that is in GNF and equivalent to G.
Axiom: [F]
Productions:
[E.E] > T[E.E] | +T,
[T.E]~»%F[T,E] | * F[E,E] | %F,
[T,T]» %F[T,T] | *F,
E-(FX | o[T,E] | alE.E] | =,
r-(£]Y | a[T.T] | a,
P (@ED] | A
D1-).
X -)T.E] [)EE] |),
Y-)[7.7] |).
H has the following parameters:
9 nonterminals, 22 productions, mazr(H) = 3 and size(H) = 67; thus H is in

2—GNF,

Thus we have demonstrated that various short-cuts lead to a considerable
simplification of const{G). The above discussion was rather informal, however it
points out that techniques of Lemma 8.1 and Lemma 8.2 can lead to a "smaller”
grammar. The use of these short cuts in the general methodology of getting
"small" grammars in GNF' deserves further study. This topic is a subject of our

current research and we hope to be able to report on it is a future paper.

REFERENCES

[AU]Aho, AV. and Ullman, J.D., The theory of parsing, translation and compil-

ing, Volumes 1 and 2, Prentice Hall, Englewood Cliffs, 1972.

< 0. O3>,

Figure 4.1

—M3

Figure 4.2

Figure 4.3

[X1

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

10

Z6

Figure 6.8

Figure 6.9

Figure 6.10

Figure 7.1

a (7, 7]

Figure 7.2

[7,B]

a La,C]

Figure 7.3

[7,5]

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

[v,B]

a | [4,B]

Figure 7.11

Figure 7.12

Figure 7.13

[¥,B]

[a,C]

Figure 7.14

Figure 7.15

=

Figure 7.16

[v,B]

Figure 7.17

Figure 7.19

Figure 7.20

5 o

NS

patr

A

Figure 8.1

V

sing

N~

o

