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Abstract

We study the excitation to Rydberg states in the interaction of the hydrogen and helium atom with a

short strong laser pulse, as it has been analyzed before for monochromatic cw lasers. Utilizing solutions

of the time-dependent Schrödinger equation we have analyzed if the parity of the populated angular

momentum states agrees with the selection rules for multiphoton resonant absorption. We have further

investigated how the results and conclusions depend on the parameters of the laser pulse, such as

intensity and pulse length. Different mechanisms to explain the distributions in the populations of the

angular momentum states are tested by our simulations.1
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tion; population trapping; selection rules.
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Glossary

H Hilbert space.

ε0 = 8.85419× 10−12F m−1 Permittivity of free space.

Ĥ Hamiltonian operator.

~ = 1.05457× 10−34J s Planck constant/2π.

C Complex Number Set.

N = {1, 2, 3...} Natural Number Set.

R Real Number Set.

µ0 = 1.25664× 10−6H m−1 Permittivity of free space.

e = 1.60218× 10−19C Elementary charge.

me = 9, 10938× 10−31C Electron mass.

mp = 1.67262× 10−27C Proton mass.
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Chapter 1

Introduction

A single electron atom, at first glance, has a simple structure: a core with one electron. But as we dive

into the details, we will discover a complex and dynamic structure of energy levels. Since an atom is

too small to be observed directly, we have to use indirect methods to investigate the properties and

structure of such atoms; it is not surprising that lasers provide us a good way to probe those atoms:

lasers interact with the electrons and change the structure of energy levels; most importantly, lasers are

sources of highly coherent light, making them an ideal tool for extracting information from an atom

(molecule, etc.) or preparing the initial state of an atom in an experiment.

The theory of strong field physics is relatively new, and promising, but the theory of light-atom

interaction can be traced back to early 20th century. From Dirac’s golden rule [1] to Einstein’s derivation

of spontaneous emission [2], the theory of the interaction of an atom with light began to shine. More

recently, scientists have been creating shorter and stronger laser pulses to probe more and more details

of the atom in order to extract more information and achieve more applications. One part of the Nobel

Prize in Physics in 2018 has recently been awarded to Prof. Gerard Mourou and Prof. Donna Strickland

for their method of generating high-intensity, ultra-short optical pulses [3]. In 2001, research groups at

Commissariat à l’Energie Atomique (CEA), Saclay (Paris, France) [4] and at the Technical University of

Vienna (Austria) [5] produced the first attosecond (1 as = 10−18 s) laser pulses by using high harmonic

generation (see details of the high harmonic generation process in section 2.2.3). The development of

attosecond laser pulses has opened the way to the investigation of ultrafast processes at the level of

electrons in many fields of science.

Under strong and short fields, processes become highly non-linear and induce some surprising

phenomena. Consequently, the interaction of the electron with the intense light field cannot be described

using perturbation theory, the theoretical approach that we learn in our quantum mechanics courses.

3
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With such short pulses, we can retrieve more detailed information about atoms that was not previously

obtainable with other imaging processes; with help of ultrafast pulses, the Auger decay time [6] and

autoionization lifetime [7] can be measured directly.

In this thesis, we have studied the angular momentum distribution in an atom excited under such

short and strong pulses. We have discovered rather surprising and interesting phenomena, namely the

selection rule, which we know for perturbative single-photon processes, often holds for multiphoton

processes in strong fields as well, even when the interaction becomes non-perturbative. Furthermore,

we propose a population trapping mechanism, which prevents electrons from populating highly excited

states with low angular momentum. In the remainder of the thesis, we will first introduce theory

preliminaries that are required to explain strong field physics. Then, we present and investigate the

numerical results, obtained by solving the Schrödinger equation on the computer, and discuss under

which conditions the selection rule holds in strong fields (section 3.1) and the population trapping

mechanism (section 3.2) .
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Chapter 2

Theory

2.1 Preliminaries

2.1.1 Electrodynamics

The details of a more rigorous introduction to Quantum Mechanics and Electrodynamics can be found

in [8, 1, 9], here we restate the fundamental Maxwell equations:

∇ ·B = 0,

∇×B = µ0

(
J + ε0

∂E

∂t

)
,

∇ · E =
ρ

ε0
,

∇× E =
∂B

∂t
,

where B,E,J, ρ, µ0, and ε0 stand for the magnetic field, electric field, current density, charge density,

permeability of free space, and permittivity of free space, respectively. This report uses semi-classical

theory, which means the dynamics of the laser field follows Maxwell equations, while we treat particles

quantum mechanically.

2.1.2 Quantum mechanics

In early 20th century, the equations that govern the dynamics of electrons in matter via the description

of quantum states (non-relativistic single particles) were discovered. The time evolution of a state in

5
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the Hilbert space |Ψ(r, t)〉 ∈ H, is governed by the Schrödinger equation as:

i~
∂

∂t
|Ψ(r, t)〉 =

[
P̂ 2

2m
+ V̂ (r, t)

]
|Ψ(r, t)〉 , (2.1)

where P̂ is the momentum operator, given by P̂ = −i~∇ in the position basis. Alternatively, if we

can employ the Heisenberg picture in which the operators Â(t) are the dynamical objects (while the

quantum states do not vary with time):

d

dt
Â(t) =

i

~

[
Ĥ, Â(t)

]
+

(
∂A

∂t

)
H

, (2.2)

where [·, ·] is the standard Lie bracket (or the commutator), Â is the operator of some physical observable

such as momentum, parity, energy etc. and Ĥ is the Hamiltonian operator (which usually corresponds

to energy of the state). The latter is defined, for any quantum eigenstate (or eigenvector) in the Hilbert

space |Ei〉 ∈ H with the energy Ei ∈ R, as:

Ĥ|Ei〉 = Ei|Ei〉. (2.3)

In this thesis, we are going to focus on the Schrödinger picture, since it is most convenient one for the

description of the interaction of atoms with (strong) light fields.

2.1.3 Energy levels of hydrogen-like atoms

We know that the hydrogen atom consists of one proton with charge +e (≈ 1.6 × 10−19 C) and one

electron with charge -e. Furthermore, the positively charged proton will attract the negatively charged

electron, with the force between being the Coulomb force, and the corresponding potential is (in spherical

coordinates):

V̂ (rN − re) = − e2

4πε0|rN − re|
,

where rN and re are the positions of the proton and the electron, respectively. Using center-of-mass

and relative coordinates, this two particle system can be transferred into a one particle system with the

effective potential

V̂eff = V̂ (r) +
~2l(l + 1)

2µr2
(2.4)

where ~ is the reduced Planck’s constant, l being the angular momentum of the electron and the reduced

mass µ = memp

me+mp
. me and mp stand for the mass of the electron and proton, respectively. Using single

6
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Figure 2.1: Energy spectrum of the bound states in the hydrogen atom.

particle quantum mechanics we can write the Hamiltonian in spherical coordinates as:

Ĥ0 =
P̂ 2

2m
+ V̂eff = − ~2

2µr2

d

dr

(
r2 d

dr

)
+ V̂ (r) +

~2l(l + 1)

2µr2
(2.5)

and, hence, the Schrödinger equation as

i~
∂

∂t
|Ψ(r, t)〉 =

[
P̂ 2

2m
+ V̂ (r)

]
|Ψ(r, t)〉 =

[
− ~2

2µr2

d

dr

(
r2 d

dr

)
− e2

4πε0r
+

~2l(l + 1)

2µr2

]
|Ψ(r, t)〉 (2.6)

The actual solution method is complex but given in many standard quantum mechanics textbooks,

so we will state the result here, for the details, see e.g. [10]. For hydrogen atom, there exist discrete

levels with negative energy, the electron can occupy to form a bound atom. These states are given by

(for convenience, we will now also use Hartree atomic units, ~ = e = me = 1):

En = − 1

2n2

(
e2

4πε0

)2
µ

~2
= − 1

2n2
, (2.7)

where n ∈ N. Figure 2.1 shows the energy level structure of the bound states in the hydrogen atom.

Furthermore, for each quantum number n, we have another two sets of quantum numbers l and

m, which must satisfy l ∈ {0, 1, 2, ..., n− 1}, and m ∈ {−l, ..., l}. The quantum number l describes the

angular momentum of the state and m describes the projection of angular momentum to a particular

direction (for example, the z direction in Cartesian coordinates). A given energy level in the hydrogen

atom is degenerate with respect to the quantum numbers l and m.

The full set of quantum numbers n,l, and m represents a spinless particle state in Hilbert space (the

property spin is the intrinsic angular momentum of a particle), since {|nlm〉} form an orthonormal basis

7
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set of Hilbert space:

〈n′l′m′|nlm〉 = δn′nδl′lδm′m , (2.8)

and these are simultaneous eigenvectors of Ĥ, L̂2, and L̂z, i.e. the standard Lie bracket (or the

commutator) of any two of the three operators vanishes:

[Ĥ, Ĥ] = [Ĥ, L̂2] = [Ĥ, L̂z] = [L̂2, L̂z] = 0. (2.9)

From the Heisenberg picture, Equation (2.2), we can therefore conclude that the three physical corre-

sponding observables are independent of time. And, |nlm〉 are hence eigenstates of the Hamiltonian,

also called stationary states.

2.1.4 Semi-classical field interaction

To explore the interaction of intense laser radiation with atoms, we treat the electromagnetic field

classically, governed by the Maxwell equations, and the particle quantum mechanically. The Schrödinger

equation for a hydrogen-like one-electron system interacting with an external laser pulse, represented by

the quantum state |Ψ(r, t)〉, is then given by:

i~
∂

∂t
|Ψ(r, t)〉 =

[
1

2m
(−i~∇+ eA(r, t))2 − Ze2

(4πε0)r

]
|Ψ(r, t)〉 , (2.10)

where Z is the number of protons in the atom, i.e. for hydrogen atom, Z = 1, hydrogen-like ion He+

(two protons and one electron), Z = 2, etc.. For the case of helium atom, that we also study below, we

use so-called single-active-electron potentials, in which all but one electron of an atom are assumed to

be frozen.

In general, whether or not Equation (2.10) can be solved analytically depends on the form of A(r, t)

we apply. Typically, atomic wave functions extend over distances of about one Angström, meanwhile

the fields we apply usually have wavelengths of several thousand Angström. Thus, we can treat the

field across the atom as a function of time only, independent of the spatial variables. This gives us the

so-called dipole approximation (for details on dipole approximation, see [2]).

8
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2.2 Interaction of atoms with laser pulses

2.2.1 First order perturbation theory and selection rules

For the general form of electromagnetic fields, describing the interaction with realistic light pulses, it is

impossible to find an analytic solution for Equation (2.10). Therefore, we need to use approximations

in order to extract some physical phenomena. Using the dipole approximation and assuming that the

interaction with the light field is weak, we can solve Equation (2.10) analytically by using perturbation

theory. Although this assumption does not hold for a strong laser pulse, it is instructive to first consider

this case.

Perturbation theory is widely used in physics from big scale, for example, the prediction of the

famous gravitational wave arises from linearization (first order perturbation) of the space-time [11], to

the small scale, for instance, people push to more than 10 dimension in string theory in order to apply

perturbation theory properly [12]. Perturbation theory also gives explanations for phenomena related to

single-photon and multiphoton processes. To get to the details of perturbation theory, let us recall the

Schrödinger Equation (2.2), which we write here as:

i~
∂

∂t
|Ψ(r, t)〉 = [H0 + V (r, t)]|Ψ(r, t)〉 , (2.11)

where H0 is the unperturbed Hamiltonian (for example, the kinetic energy term and the Coulomb

interaction between electron and core in hydrogen atom) and V is the perturbation (for example, a weak

electromagnetic field). Writing

|Ψ(r, t)〉 = e−
iH0t
~ |ψ(r, t)〉 (2.12)

and inserting Equation (2.12) back in Equation (2.11), we have

i~
∂

∂t
|ψ(r, t)〉 = e

iH0t
~ V̂ (r, t)e−

iH0t
~ |ψ(r, t)〉 . (2.13)

If we define the change of basis for operator:

Ṽ (r, t) = e
iH0t
~ V̂ (r, t)e−

iH0t
~ , (2.14)

the dynamics is described as

i~
∂

∂t
|ψ(r, t)〉 = Ṽ (r, t)|ψ(r, t)〉 . (2.15)

9
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Equation (2.15) implies that if we have some initial unperturbed state |I〉, it propagates in time as:

|ψ(r, t)〉 = |I〉+
−i
~

∫ t

∞
Ṽ (t′)|ψ(r, t′)〉dt′ . (2.16)

To see that Equation (2.16) solves Equation (2.15), recall the Fundamental Theorem of Calculus and

take the partial derivative of time. Now from Equation (2.16) we see that the unperturbed state is

evolving in time, and we can define an evolution operator T̂ (t) such that

T̂ (t) = 1 +
−i
~

∫ t

∞
Ṽ (t1)T̂ (t1)dt1 , (2.17)

where 1 is the identity operator. Equation (2.17) can be solved successively by substituting the expression

for T̂ into the integral on the right hand side. We obtain

T̂ (t) = 1 +
−i
~

∫ t

∞
Ṽ (t1)T̂ (t1)dt1 = 1 +

−i
~

∫ t

∞
Ṽ (t1)

{
1 +
−i
~

∫ t1

∞
Ṽ (t2)T̂ (t2)dt2

}
dt1 . (2.18)

Repeating this step we have

T̂ (t) = 1 +
∞∑

N=1

T̂ [N ](t) , (2.19)

where

T̂ (N)(t) =

(
− i
~

)N ∫ t

−∞
Ṽ (t1)dt1

∫ t1

−∞
Ṽ (t2)dt2 · · ·

∫ tN−1

−∞
Ṽ (tN)dtN . (2.20)

If we want to know how the Nth order term in this perturbation series for the time evolution applies to

the initial state |I〉, we just use T̂ [N ](t) to obtain

|ψ(N)(t)〉 = T̂ (N)(t)|I〉 . (2.21)

Moreover, we get the probability of being in some desired final state |F 〉, via projection onto that state:

〈F |ψ(N)(t)〉 . (2.22)

For the interaction with an electromagnetic field, we can use any pair of vector potential A and

scalar potential V from the equivalent class that corresponds to the same pair of E and B. If we choose

length gauge [2], we will have

Ṽ (t) = e
iH0t
~ Ê(t) · D̂e−

iH0t
~ , (2.23)

10
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where the atomic dipole polarization operator D̂ is defined as:

D̂ = −er̂. (2.24)

and

Ê(t) =

(
Ê

2
e−iωEt +

Ê

2
eiωEt

)
(2.25)

Where ωE is the frequency of the E field. Now we are ready to analyze the first order perturbation

theory term for the interaction with an external electromagnetic field to obtain some insights into the

transition between |I〉 and |F 〉:

〈F |ψ(1)(t)〉 = 〈F |T̂ (1)(t)|I〉 =

=
−i
~

[∫ t

−∞
e−i(

EI
~ −

EF
~ −ωE)t1

E

2
〈F |D|I〉dt1 +

∫ t

−∞
e−i(

EI
~ −

EF
~ +ωE)t1

E

2
〈F |D|I〉dt1

]
, (2.26)

where EI , and EF stand for the energy eigenvalues of |I〉 and |F 〉. D = ε̂ ·D, where ε̂ represents the

polarization of the light field. Taking the limit of t to ∞, we will get the first order transition amplitude

as:

lim
t→∞
〈F |T̂ (1)(t)|I〉 =

−2πi

~

[
δ

(
EI

~
− EF

~
− ωE

)
E

2
〈F |D|I〉+ δ

(
EI

~
− EF

~
+ ωE

)
E

2
〈F |D|I〉

]
. (2.27)

Those two delta functions show that the probability is non-vanishing if and only if

EI

~
− EF

~
− ωE = 0 or

EI

~
− EF

~
+ ωE = 0. (2.28)

or

EF − EI = −~ωE or EF − EI = ~ωE. (2.29)

We realize EF − EI = ±~ωE represent absorption or emission of one photon with energy ~ωE. We

obtained one-photon transition process from the first order perturbation theory.

Thus there is a chance for an electron originally (before the interaction with the field starts) in state

|nlm〉 to be found in the state |n′l′m′〉 after the end of the pulse. In other words, we see that the field

can transfer some population probability from |nlm〉 to |n′l′m′〉 by absorption or emission of one photon

by the atom:

|nlm〉 one photon process−−−−−−−−−−−→ |n′l′m′〉. (2.30)

11
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Analyzing the matrix elements 〈F |D|I〉 one finds the following relations between the quantum numbers

of the states, which are the so-called selection rules (for linearly polarized fields):

n′ − n 6= 0, l′ = l ± 1, m′ = m. (2.31)

2.2.2 Multiphoton processes

The first order theory only works for relatively weak fields, where the expansion can be well approximated

by the first order term in the Taylor expansion. But as we increase the field strength, the first order

perturbation is not sufficient to explain the physical picture accurately enough and we have to use higher

order terms. Analyzing the second order term limt→∞〈F |T̂ (2)(t)|I〉 we can show that it involves terms

with three Dirac delta functions (the derivation is similar to that shown above):

δ

(
EI

~
− EF

~
+ 2ωE

)
, δ

(
EI

~
− EF

~

)
, δ

(
EI

~
− EF

~
− 2ωE

)
. (2.32)

We can see from the delta function in Equation (2.32), that the second order theory involves processes

corresponding to an absorption of two photons with energy ~ωE each, an emission of two photons with

energy ~ωE, and no net absorption or emission (in this case, we need EI = EF , which says we are

staying in the original state.). Moreover, we have constraints on quantum numbers in the case of the

absorption and emission process as:

n′ − n 6= 0, l′ = l ± 2, m′ = m. (2.33)

Similarly we can show for Nth order theory, we will have at most a N -photon process. Moreover, if

N is an even number, the possible processes described in Nth order perturbation involve 0, 2, 4, ..., N

photons, while if N is an odd number, the possible number of photon involved are 1, 3, 5, ..., N . We

will discuss the selection rules for multiphoton processes, specifically for the angular quantum numbers,

which are central for this thesis, in Chapter 3.

2.2.3 Strong field interaction

Ever since the invention of the laser in the 1960s, lasers with higher intensities and shorter pulse

durations have been developed. High intensities and ultrashort pulse durations are often related. One

part of the Nobel Prize in Physics in 2018 has been recently awarded to Prof. Gerard Mourou and Prof.

12
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Figure 2.2: Tunneling Ionization: The blue dashed dotted line represents the Coulomb interaction
potential between electron and the core, the green dotted line stands for the field potential that is
applied to the atom, while the combination of those two potentials is shown by the red solid line. Ee is
the energy of the electron prepared in the ground state.

Donna Strickland for their method of generating high-intensity, ultra-short optical pulses [3]. Even more

recent developments have shown that high intensity lasers also open the way to generating pulses with

the shortest durations to date, giving birth to the field of attosecond science (1 as = 10−18 s) [4, 5].

When the intensity of the field is larger than 1012 W/cm2 for lasers with a wavelength in the visible

or infrared regime, the strength of the interaction Hamiltonian is comparable to that of the Coulomb

interaction between core and the electron, and we cannot treat the field as a perturbation anymore. This

means under such strong field, the perturbation theory breaks down and we have to use other strong field

theories, which revealed in the past unexpected phenomena such as High Harmonic Generation (HHG)

[13, 14], Above Threshold Ionization (ATI) [15], and non-sequential double and multiple ionization [16].

We briefly discuss the strong field mechanism of tunneling ionization which also is part of the

explanation for the phenomenon of HHG. As shown in Figure 2.2, under the strong field, the Coulomb

potential gets greatly distorted by the external electric field and we see that there is a suppression of

the potential on the positive side and enhancement on the negative side. Notice the electron’s energy is

still lower than the peak of the suppressed potential, but electrons have nonzero probability of being

located in the continuum (the right side of the suppressed potential in the Figure 2.2); a process known

as tunneling. This process cannot be described by perturbation theory. It has been long investigated,

the first tunneling ionization theory formula for a static field was derived by Landau [17], an extension

to oscillating electromagnetic fields was first discussed by Keldysh [18].

Tunneling ionization is the first step in the mechanism of HHG. The intuitive picture of HHG

can be built by considering the process semi-classically (see Figure 2.3, [19]). First, we prepare the
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Figure 2.3: Semi-classical picture of high harmonic generation picture taken from https://en.

wikipedia.org/wiki/High_harmonic_generation.

electron in the ground state, then through tunneling the electron is ionized and located in the continuum.

While in the continuum the electron can further gain energy from the oscillating field, and return with

some probability to the ion. If the electron recombines to the ground state, due to the conservation of

energy’ the energy in this process is released in the form of a single photon with high energy (thus high

frequency). HHG was first observed in 1977 [20], for more details on HHG, see e.g. [13, 14].

Thus, we see that for the interaction with strong fields, perturbation theory is not suitable to describe

the full physical picture; and in this thesis we study if the selection rules for the angular momentum,

that can be derived for multiphoton processes, still hold at high intensities.

2.2.4 Numerical methods

In order to understand the dynamics of a physical system under the interaction with a strong laser

pulse, we need to the solve the Time Dependent Schrödinger Equation (TDSE). Since for our system an

analytical solution of the TDSE is not known, we make use of numerical solutions of the TDSE.

To this end, we have used a numerical code that is based on the Crank-Nicolson method [21] to

solve the TDSE. Crank-Nicolson is a unitary, energy conservative and stable method for solving partial

differential equations with second order accuracy. In general, the evolution of states governed by the

Schrödinger equation can be approximated as:

|Ψ(r, t+ ∆t)〉 ≈ e−iĤ(t)∆t|Ψ(r, t)〉. (2.34)
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Using the Crank-Nicolson method, the time evolution operator is approximated as:

e−iĤ(t)∆t =
1− i∆t

2
Ĥ(t)

1 + i∆t
2
Ĥ(t)

, (2.35)

and we obtain a computationally much easier equation

(
1 + i

∆t

2
Ĥ(t)

)
|Ψ(r, t+ ∆t)〉 =

(
1− i∆t

2
Ĥ(t)

)
|Ψ(r, t)〉. (2.36)

Thus, the Crank-Nicolson method is a finite-difference method, which solves the differential equation

by approximating the derivatives as finite differences. The TDSE is then solved on a space-time grid.

To obtain and represent the initial state on the grid we can use various methods, such as the spectral

method [22], the random shooting method [23], or the matrix diagonalization method [24]. In the code

used in this work we utilize the Krylov-Schur method provided through SLEPc as our eigensolver [25].

Moreover, in order to prevent the reflection of the wavefunction from the boundary of the spatial grid

(which would cause unphysical changes in the observables), we use the exterior complex scaling (ECS)

method as an absorbing boundary [26].

To obtain the results for atomic hydrogen and helium shown in this work, we have used the following

parameters in our numerical calculations.

Hydrogen atom: The grid size in atomic units was (in polar coordinates) ρ = 750 a.u. and z = ±750

a.u. with a grid spacing of ∆x = 0.1 a.u. in both directions and a time step of ∆t = 0.15 a.u.

Helium atom: Here, we utilized a 450 a.u. × 900 a.u. grid with grid spacing ∆x = 0.1, and time step

∆t = 0.15.
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Chapter 3

Results and Discussion 1

Excitation of an atom is known to play an important role in processes induced by a strong laser pulse.

Resonant enhancement in the population of excited states [27, 28, 29] and structures in the energy

spectrum [30, 31, 32] and in energy-resolved angular distributions [33] of photoelectrons have been

observed. These resonance effects have been explained by multiphoton absorption through Rydberg

states, which are AC-Stark shifted [2] in the presence of an intense laser field. Theoretical studies

of the excitation mechanism in strong fields mainly consider the distribution of the population as a

function of the principal quantum number of the excited states [34, 35, 36, 37, 38]. On the other hand,

analysis of the angular momentum distribution in the Rydberg states is less advanced. Predictions of

Floquet theory for a monochromatic laser field [39] and results of numerical calculations for laser pulses

with a trapezoidal envelope [40] yield that the angular momentum of the excited Rydberg states has

the same parity as Np − 1, where Np is the minimum number of photons needed to ionize the atom.

Here, we consider excitation in laser pulses with more realistic laser pulses having sine squared and

Gaussian envelopes. This gives us the opportunity to study if the parity of the populated angular

momentum states in such pulses agrees with the selection rules for perturbative multiphoton processes

in monochromatic fields and how the results depend on laser parameters such as the pulse length and

intensity.

1Part of the results presented also appeared in J. Venzke, R. Reiff, Z. Xue, A. Jaroń-Becker and A. Becker, Angular
momentum distribution in Rydberg states excited by a strong laser pulse, Phys. Rev. A 98, 043434 (2018).
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3.1 Selection rules for multiphoton processes

3.1.1 Generalization of selection rules for multiphoton processes

We start our study by generalizing the selection rule, discussed above for single photon excitation, to

the multiphoton process. In the perturbative regime, we just to apply the single photon selection rule

successively. Thus, the multiphoton selection rule leads to a change in the quantum numbers n, l,m for

Np-photon absorption process as follows:

En′ − En = Np~ωE , (3.1)

|l′ − l| =


1, 3, 5, ..., Np, for odd number of photons

0, 2, 4, 6, ..., Np, for even number of photons ,

(3.2)

and

m′ −m = 0. (3.3)

Since under the influence of a strong field, the interaction with the field becomes highly nonlinear and

perturbation theory no longer works well, we want to know whether or not the above selection rule still

applies. To this end, we have to consider that in a strong laser field the highly excited states are shifted.

To figure out the number of photons corresponding to a certain transition for a given intensity and

frequency, we assume that the energy shift of high-lying excited states under the influence of an intense

laser field is approximately equal to the ponderomotive shift [32] and the shift occurs instantaneously

during the pulse [41]. The number of Np photon process for a laser pulse with peak intensity I and

central frequency field ωE is determined by the resonance condition:

I = 4ω2
E(NpωE + Ei − En) , (3.4)

where Ei is the energy of the initial state and En is the exited state energy we want to be in resonance

with. Using the ground state of the atom as the initial state to be e.g. the n = 8 state (E8), the photon

number is given by

Np =
I + 4(E8 − E0)ω2

E

4ω3
E

′ (3.5)

where E0 is the atomic ground state energy.

In our calculations we have considered peak intensities such that the n = 8 states of an atom are in

resonance at a central frequency ωE with different number of photons Np. Since we study the interaction
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Figure 3.1: Excited state distribution in hydrogen atom as function of n (vertical axis) and l (horizontal
axis) at the end of 20 cycle pulses with sin squared envelope and peak intensities: (a) I0 = 3.4× 1013

W/cm2, (b) I0 = 6.0× 1013 W/cm2, (c) I0 = 8.6× 1013 W/cm2, and (d) I0 = 1.12× 1014 W/cm2. Left
(right) column corresponds to cases in which the Rydberg states are resonant with an even (odd) number
of photons.

with laser pulses, instead of monochromatic fields, more than one manifold of states can be resonantly

excited. For example, for hydrogen atom the bandwidth of a 20 cycle sine squared pulse at 800 nm

covers all excited states n ' 6 within the same Np photon process. We further note that for hydrogen

atom, the n = 3 and n = 2 states are approximately resonant via Np − 1 and Np − 2 photon processes,

respectively, assuming that the energy shift of these states equals the ponderomotive shift as well.

3.1.2 Selection rules: Parity effect in interaction with pulses

We first study the angular momentum distribution in Rydberg states of the hydrogen atom. The

population in each quantum state (n, l) at the end of the pulse is shown in Fig. 3.1 (20 cycle pulses

with sine-squared envelope) and Fig. 3.2 (14 FWHM cycle pulses with Gaussian envelope) for peak

intensities between 1013 and 1014 W/cm2. In the results we indeed observe signatures of the selection

rules resulting in dominant population of states with an even (odd) angular momentum quantum number

for the absorption of even (odd) photons in the plots on the left (right). This shows that in the intensity

regime of 1013 to 1014 W/cm2 the multiphoton selection rules are effective for long pulses of about 20

cycles. Furthermore, we see that the parity effect is found to occur independent of the form of the

envelope. We therefore restrict ourselves below to pulses with a sine-squared envelope.
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Figure 3.2: Same as Fig. 3.1 but for pulses with Gaussian envelope and 14 cycles FWHM. The pulse
duration approximately matches that for the sine-squared pulses in Fig. 3.1 at FWHM.

Figure 3.3: Excited state distribution in helium atom as function of n (vertical axis) and l (horizontal
axis) at (a) 267 nm and peak intensity of 5.0× 1014 W/cm2 (6 photon process), and (b) 267 nm with
peak intensity of 1.2× 1015W/cm2 (7 photon process) of a 10-cycle laser pulse.
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Figure 3.4: Same as Fig. 3.3 but for laser pulses at (a) 400 nm with intensity of 2.3× 1014 W/cm2 (9
photon process), (b) 400 nm with intensity 4.4 × 1014 W/cm2 (10 photon process), (c) 400 nm with
intensity 6.5× 1014 W/cm2 (11 photon process), (d) 400 nm with intensity 8.6× 1014 W/cm2 (12 photon
process).

Figure 3.5: Same as Fig. 3.3 but for laser pulses at (a) 800 nm with intensity 8.3 × 1013 W/cm2 (19
photon process), (b) 800 nm with intensity 1.1 × 1014 W/cm2 (20 photon process), (c) 800 nm with
intensity 1.4× 1014 W/cm2 (21 photon process), (d) 800 nm with intensity 1.6× 1014 W/cm2 (22 photon
process).
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We further confirm the selection rule by studying the angular momentum population distribution in

helium atom excited with 10 cycles sin squared pulses with various frequencies and intensities. The

numerical results are presented in Figs. 3.3 - 3.5. From those results, we can see that the multiphoton

selection rule applies in general: For odd number photon process there is suppression in the population

of states with even l number and enhancement for those with odd l number. In contrast, for even

number photon processes there exists a suppression for states with odd l number and an enhancement

for those with even l number. In particular, for odd photon processes Fig. 3.4 (a) shows excited states

with l = 1, 3, 5 populated while population in the states with l = 0, 2, 4 are strongly suppressed, and for

even photon processes, there results presented in Fig. 3.3 (a) clearly reveal that the l = 2, 4-states got

populated and the other l-states are suppressed. A potential explanation why l = 0 state got suppressed

even for the even photon number process will be given later in the report.

3.1.3 Dependence on intensity and pulse length

To investigate the domain over which multiphoton selection rules, that are derived from perturbation

theory, can be used in the non-perturbative regime, we have to study the excitation process at different

intensities and pulse lengths. From the results in Figs. 3.3 - 3.5, most specifically those at 800 nm, we

can see that for increasing intensity of the field, the population distribution begins to blur. The contrast

between the population in even and odd l-states gets less strong and so the selection rule appears to be

no longer valid. This is because the energy of the states shifts with the ponderomotive energy Up ∝ I
ω2
E

,

which increases with increasing intensity and hence varies over the pulse. So, during the rising and

falling edges of the pulse, a particular energy level will shift several times in resonance for odd as well

as even number photon process. Thus, the shift of the energy level is rather dynamic and complex

at high intensities and each state can be resonantly populated once or several times during the pulse.

Consequently, odd and even l-states get populated and for the overall distribution at the end of the

pulse the selection rule does not longer apply. Moreover, we see that the population distribution with

highest intensity for 800 nm is more blurred out than the population distribution with highest intensity

for 400 nm. This is because 800 nm field has lower frequency ωE than 400 nm field, therefore larger

shift (approximated by the ponderomotive energy Up ∝ I
ω2
E

) of states is expected for 800 nm than 400

nm field. Since the shift of states for 800 nm field is stronger, the states will be more often in resonance

over the course of the pulse than for a 400 nm pulse. Consequently, the contrast due to population in

odd vs. even number photon process is less strong at the longer wavelength and we see more blurred

out population distribution for 800 nm than 400 nm.
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Figure 3.6: (Color online) Excited state distribution as function of l (horizontal axis) and n (vertical
axis) at the end of 2 cycle (panels on the left), 10 cycle (panels in middle), and 20 cycle (panels on right)
pulses, at low peak intensity I0 = 3.4× 1013 W/cm2(top row), and high peak intensity I0 = 1.64× 1014

W/cm2(bottom row).

We further have studied how the angular momentum distribution varies with the number of cycles

at a given peak intensity. The results of our calculations for the effect of pulse length on population

distribution are shown in Fig. 3.6. The time-frequency uncertainty relation yields that a pulse spectrum

broadens as the number of optical cycles decreases. Consequently, in an ultrashort pulse an excited

state can be reached via absorption of different number of photons. Due to this mix of even and odd

number of photon processes one may expect that in such pulses a separation in population of odd vs.

even angular momentum quantum states cannot be achieved. This is confirmed by the results of our

numerical calculations at low and high intensities, shown in Fig. 3.6(a) and (d). For a 2 cycle pulse

there is a smooth distribution over the lower angular momentum states for each principal quantum

number at low (3.4× 1013 W/cm2, panel (a)) and high (1.64× 1014 W/cm2, panel (d)) peak intensity.

In contrast, the narrowing of the energy spectrum as pulse duration increases does not necessarily lead

to an increase of the population in the angular momentum states that are allowed by the multiphoton

selection rule. For the low intensity 10-photon resonant process (3.4× 1013 W/cm2, Fig. 3.6, upper row)

we observe that Rydberg states start to be populated based on the multiphoton selection rule when the

pulse duration is increased to 10 and 20 cycles. On the other hand, at the higher intensity (1.64× 1014

W/cm2, Fig. 3.6, lower row) we observe the states are not following the multiphoton selection rule.

Within the interpretation of resonant excitation the loss of the multiphoton selection rule effect

22



JILA and Department of Physics Ultrafast AMO Theory Group

Figure 3.7: The ionization probability for the absorption of one 800 nm photon for a flat-top pulse of 5 fs
duration at the intensity of 1014 W/cm2 calculated using first-order perturbation theory. Note that the
probability scales linearly with laser intensity and pulse duration in this model. Figure taken from [35].

for long pulses with high peak intensities can be understood as follows. As mentioned above, at the

higher peak intensity the highly excited states are shifted into resonance for 10 - 14 photon processes

over the rising and trailing parts of the pulse, before they are resonantly excited with a 15 photon

process at the peak intensity. Although the excitation probability raises with an increase of the intensity

during the pulse, the time intervals over which the states are in resonance with a certain photon-order

process increase with the pulse length. Thus, there is a significant excitation of the Rydberg states

due to the absorption of odd as well as even numbers of photons in a pulse at high peak intensity and

long duration. Furthermore, excitation channels driven by absorption of different numbers of photons

with the same parity may interfere, leading to the enhancement or suppression of population in certain

angular momentum states and the loss of the parity effect. Interference effects in excitation have been

studied extensively in the few-photon regime [42, 43, 44, 45, 46].

3.2 Population trapping

3.2.1 Resistance to ionization for high l states

In Figures 3.1 - 3.6, we see that the high angular momentum states (l > 7) are not much populated

for all cases, in agreement with previous studies [47] and semi-classical estimates [48]. We also see

that the low l states are not populated, this is in agreement with the results presented by Li et al.

[35], who conjectured that electrons in the low angular momentum states more easily absorb additional

photons resulting in suppression of population in these states due to ionization. They showed (Figure

3.7) by using first order perturbation theory that as l increases, the ionization probability decreases.

The reason for this trapping of population is that lower-n and lower-l states that can be efficiently
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Figure 3.8: The absorption pathways (left) and population distribution (right) at 270 nm and peak
intensity I = 1.2 × 1015 W/cm2 field (7 photon process). In the absorption pathway picture, green
squares represent virtual states with energy NωE above the ground state and angular momentum l.
The yellow squares represent real states labeled by the quantum numbers. Solid lines refer to open
pathways while dashed lines represent pathways which are suppressed due to population trapping in a
lower excited state.

Figure 3.9: Same as Figure 2.12 but for 800 nm with intensity I = 8.3× 1013 W/cm2 field (19 photon
process).

tunnel ionized. In contrast, high-n, high-l Rydberg states can only be eliminated through multiphoton

ionization (according to Keldysh theory [49]). However, since the electron density in these states is

located far enough from the core of the atom the electron behaves like a free electron, which do not

absorb photons. Therefore electron in states with high angular momentum resist ionization and cause

the population to be trapped in high-n, high-l states.

3.2.2 Trapping in lower excited states

In general, in our results for an odd parity process (right column of Figure 3.1 and Figure 3.2)

predominantly one angular momentum state (l = 5) is populated. This is in agreement with the

mechanism presented by Li et al. [35]. However, our results (left column of Figure 3.1 and Figure 3.2)

for even parity processes exhibit a pattern, alternating in l, showing that both low and high angular
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Figure 3.10: Population in 8l states (normalized to the population in the l = 5, the most populated
state) for the interaction of helium atom with 10-cycle laser pulse at various wavelengths. Green dashed
line: 500 nm, 1.55× 1014 W/cm2 field; red dashed dotted line: 525 nm, 2.8× 1014 W/cm2 field, blue
solid line: 550 nm, 2.0× 1014 W/cm2 field, and black dotted line: 575 nm, 1.4× 1014 W/cm2 field.

momentum states, except for the s-states, remain populated at the end of the pulse.

Therefore we propose an alternative explanation. In the Figures 3.8 and 3.9, the panels on the left

show the various pathways leading to a resonant population in the Rydberg states for helium atom

upon absorption of Np photons in an even or odd photon process. The yellow squares represent real

states labeled by their quantum numbers while the empty green states represent virtual states. Starting

from the 1s ground state, the absorption of successive photons proceeds through virtual states. If the

population reaches any real state via resonance (that is, the energy difference between states are equal

to several ~ωE), then we assume that part of the population will be trapped during the pulse and the

further pathway will be suppressed. Solid lines refer to open pathways while dashed lines represent

pathways which are suppressed due to population trapping in the lower excited states. We use Equation

(3.4) to predict which state is in resonance.

This trapping picture can explain most of the results for the population distributions we have

obtained. For example, in Figure 3.8, the 2s state is resonant with Np − 1 photon process. Hence, the

further pathway to p states will be suppressed, and indeed we see in the population plot (on the right)

that p-states (l = 1) for large n are partly suppressed. It appears that this mechanism can also explain

the results in Figure 3.9, where the pathways leading to Rydberg p-states are both suppressed and one

of the two pathways to the f -states are suppressed. We therefore expect that the population in the
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p-states (for large n) will be more suppressed than that in the f -states, and both of them should be less

populated than the h-states. Indeed, we see this in the population plot on the right.

Moreover, based on the number of total pathways leading to states with a given angular momentum,

we can explain why we observe, in general, that s-states are always suppressed even for the even number

photon process. As one can see from our diagrams there are less pathways to s-states than to those

with higher angular momentum. As a result, it is likely that the population of s-state is suppressed due

to the lack of absorption pathways.

To further explore the proposed trapping mechanism, we have studied the change in the population

as we change the wavelength of the laser. Using Equation (3.4), we expect that if we increase the laser

wavelength (i.e., decrease the frequency) from 500 nm to 575 nm for interaction with helium atom, the

3s and 3d state will shift more and more into resonance with the laser field. Thus, according to our

picture more population will be trapped in the 3s and 3d states for an increase of the wavelength, which

will lead to a suppression of the pathways to the Rydberg p- and f -states. In our results we indeed

see this suppression in the p- and f -states for the n = 8 state in helium atom, when the wavelength is

changed from 500 nm to 575 nm (Figure 3.10). The intensities are adjusted to ensure resonance with

the n = 8 manifold in helium atom.
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Chapter 4

Summary and future goals

We have analyzed the angular momentum distribution in the Rydberg states of hydrogen atom and

helium atom excited by short strong laser pulses, based on numerical results of the time dependent

Schrödinger equation, which we solved using a second order Crank-Nicolson scheme. At low intensities

the pattern in the population across the angular momentum states can be explained via a parity effect

due to the selection rules in multiphoton absorption along with the suppression of pathways due to

population trapping in low excited states, if the applied laser pulse is not too short. At high intensities

the parity effect gets lost even for long pulses, potentially since the Rydberg states are in resonance

with photon processes of different orders for a significant time during the rising and trailing parts of the

pulse.

In this work, we only tested multiphoton selection rules for the interaction with linearly polarized

pulses; in future work we also are interested in studying the multiphoton selection rules for other kinds

of pulses such as circularly and elliptically polarized fields. For the proposed trapping mechanism, we

did not provide a mechanism under which conditions part of the population for any real state in the

pathway may be trapped during the pulse. Thus, a future goal is to address this question in more detail

to further understand the suppression of population in certain angular momentum states. Furthermore,

the shift of a state is, in general, very dynamic and highly dependent on the parameters of the field. In

this work we assumed that each state shifts with the ponderomotive energy, which may not be sufficient

enough to describe the real physical situation. Thus, finding a more systematic state shifting scheme

will be crucial for further studies of the proposed trapping mechanism and potential applications. In

fact, we plan to use Floquet theory [50] to investigate the shift of states in a more accurate way.
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