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Hybrid First-Order System Least-Squares Finite Element Methods With The Application To Stokes

And Navier-Stokes Equations

Thesis directed by Prof. Thomas A. Manteuffel

This thesis combines the FOSLS method with the FOSLL∗ method to create a Hybrid method.

The FOSLS approach minimizes the error, eh = uh − u, over a finite element subspace, Vh, in the

operator norm, minuh∈Vh ‖L(uh − u)‖. The FOSLL∗ method looks for an approximation in the

range of L∗, setting uh = L∗wh and choosing wh ∈ Wh, a standard finite element space. FOSLL∗

minimizes the L2 norm of the error over L∗(Wh), that is, minwh∈Wh ‖L∗wh − u‖. FOSLS enjoys

a locally sharp, globally reliable, and easily computable a-posterior error estimate, while FOSLL∗

does not.

The Hybrid method attempts to retain the best properties of both FOSLS and FOSLL∗. This

is accomplished by combining the FOSLS functional, the FOSLL∗ functional, and an intermediate

term that draws them together. The Hybrid method produces an approximation, uh, that is nearly

the optimal over Vh in the graph norm, ‖eh‖2G := 1
2‖e

h‖2 + ‖Leh‖2. The FOSLS and intermediate

terms in the Hybrid functional provide a very effective a posteriori error measure.

In this dissertation we show that the Hybrid functional is coercive and continuous in a graph-

like norm with modest coercivity and continuity constants, c0 = 1/3 and c1 = 3; that both ‖eh‖

and ‖Leh‖ converge with rates based on standard interpolation bounds; and that, if LL∗ has full

H2-regularity, the L2 error, ‖eh‖, converges with a full power of the discretization parameter, h,

faster than the functional norm. Letting ũh denote the optimum over Vh in the graph norm, we

also show that if superposition is used, then ‖uh − ũh‖G converges two powers of h faster than the

functional norm. Numerical tests on are provided to confirm the efficiency of the Hybrid method

and effectiveness of the a posteriori error measure.
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Chapter 1

Introduction

The first-order system least-squares (FOSLS) finite element method has been applied to a

wide class of partial differential equations (PDEs) that arise from a broad range of physics and

engineering problems. For example, second order elliptic equations [19, 24], convection diffusion

equations [27], Stokes [21,22], Navier-Stokes equations [11–13], linear elasticity equations [18,21,22],

neutron transport equations, Helmholtz equations, linear hyperbolic equations, Burgers’ equations

and so on. The method has proved its success not only on prototype research problems, but

also challenging real world problems, such as elliptic problems with discontinuous coefficients, that

arise in the physics of flow in heterogeneous porous media, neutron transport, biophysics etc. [10];

modeling flow in compliant blood vessels, which involves Navier-Stokes equations on the evolving

fluid domain and elasticity equations on the tissue domain [33]; complex fluid problems such as

magneto-hydrodynamics (MHD) equations, which are coupled with Maxwell equations and Navier-

Stokes equations that involve 16 equations and 13 unknowns [2].

The goal a FOSLS researcher wants to achieve is not only to design a successful discretization

scheme, but also a scheme that leads to a nice linear system which can take full advantage of modern

linear solvers, such as the multigrid method [53]. Thus, a deep understanding of modern linear

solvers (stationary iterative methods: Jacobi, Gauss-Seidel, SOR etc.; Krylov subspace method:

CG, GMRES, etc., all variations of multigrid method [48]) is essential. A lot of techniques are

developed, such as introducing additional equations, re-ordering variables, adding slack variables

etc. to re-arrange and fine-tune the PDE system for this purpose. This endows FOSLS with a lot
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of flexibility and potential, but, at the same, presents the designers with great challenges.

FOSLS has also demonstrated its versatility by offering the user a free a-posteriori error

measure that can guide the adaptive mesh refinement with little extra cost [4, 9, 49]. Based on

the locally sharp, globally reliable FOSLS error indicator and the work estimate for algebraic

multigrid (AMG), the user can expect an error reduction with an minimal computational cost.

This methodology has been implemented both serially and parallelly and applied to MHD equations

with over 15 million biquadratic elements [50].

Variations of FOSLS, such as weighted-FOSLS method and FOSLL* method, are also studied

for problems with singularities [23,38–40,43,44].

The general approach of standard FOSLS is as follows:

• First, reformulate the original system of PDEs into a possibly enlarged first-order differen-

tial system, Lu = f . This step generally involves introducing new dependent variables and

adding consistent additional equations

• Then, a least-squares L2-norm principle is applied to this first-order system; that is, we

seek the weak solution by minimizing the FOSLS functional, F(u; f) := ‖Lu − f‖2, in an

appropriate Hilbert space, V (ideally, V ⊂ H1). The minimization problem leads to the

weak problem: find u ∈ V, such that for all v ∈ V,

< Lu, Lv >=< f , Lv > .

• Finally, we cast the minimization problem in a finite element subspace, Vh ⊂ V, and

assemble a matrix based on the discrete weak problem: find uh ∈ Vh, such that, for all

vh ∈ Vh,

< Luh, Lvh >=< f , Lvh > .

At this step, we are ready to hand the classical matrix problem, Ax = b, to the user’s

favorite linear solver.
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By the name of this thesis, “hybrid-FOSLS” is a novel method that combines FOSLS and

FOSLL* method to take advantage of the merits of both. The general approach of FOSLS is

introduced above and the general approach of FOSLL* is as follows.

• First, based on the first-order system obtained from FOSLS (the primal system), form the

adjoint system. Suppose the primal system is

Lu = f ,

the adjoint system will be

L∗w = û,

where L∗ is the adjoint operator of L defined by integration by parts and û is the exact

solution for primal system. We call w the adjoint variable.

• Then, similar to FOSLS method, minimize the FOSLL* functional, ‖L∗w − û‖2, in the

adjoint space, W, that is dependent on V. This also induces a weak problem: find w ∈ W,

such that for all z ∈ W

< L∗w, L∗z > = < û, L∗z > = < f , z > .

Note that the importance of choosing L’s adjoint operator, L∗, is illustrated by the second

equality above.

• Next, solve the minimization problem in the finite element subspace Wh: find wh ∈ Wh,

such that, for all zh ∈ Wh,

< L∗wh, L∗zh > = < û, L∗zh > = < f , zh > .

• Finally, recover the numerical solution, uh, of the primal system by letting uh = L∗wh.

The advantages and the limitations of FOSLS and FOSLL* can be summarized as follows.

For FOSLS method,

its advantages include:
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• since the weak form is derived from a minimization problem, as long as we can prove

its weak form is well-posed (the bilinear form is continuous and coercive), the resulting

linear system is symmetric and positive definite (SPD). An SPD system usually has a great

advantage when it comes to solving the linear system.

• If we can further prove the FOSLS operator, L, is H1-equivalent (the bilinear form is

continuous and coercive in H1-norm), we can show the finite element scheme has the

optimal discretization convergence rate [24].

• An H1-equivalent L also results in the existence of an optimal multigrid solver whose

complexity is of O(n), where n is the number of unknowns in the matrix. See [24] and the

reference therein.

• The Ladyzhenskaya-Babuška-Brezzi (LBB) condition is not needed for Stokes/Navier-Stokes

equations when choosing conforming finite element spaces for pressure and velocity [21,22].

• The FOSLS functional ‖Lu − f‖2 serves as an excellent error indicator for adaptive mesh

refinement [4, 9].

FOSLS’s limitations are

• H1-equivalence generally fails in the presence of discontinuous coefficients, when the prob-

lem is posed in an irregular domain or when the problem involves irrgular boundary condi-

tions. In this case the convergence rate suffers and in some cases convergence may fail [39].

• The standard FOSLS method yields a loss of mass conservation for Stokes/Navier-Stokes

in certain geometries with underresolved grids [34,41].

For FOSLL* method,

its main advantages are

• Application on problem with less smoothness proves to be successful [23,34,40,44].
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• Previous research shows a two-stage method combining with FOSLL* can effectively en-

hance mass conservation in Stokes/Navier-Stokes equations.

However, FOSLL* has the limitation that:

• The a-priori error estimate is lost, since, different from FOSLS functional, the FOSLL*

functional, ‖L∗w − û‖2, involves the exact solution, û, and is not computable.

Hybrid-FOSLS method combines FOSLS, FOSLL* and minimizes the Hybrid functional:

H((w,u); (û, f)) := ‖L∗w − û‖2 + ‖Lw − u‖2 + ‖Lu− f‖2,

that involves a FOSLL* term, a FOSLS term and an intermediate term that draws the two together.

The minimization problem is cast in a product space, W × V. The weak problem of minimizing

the Hybrid functional is: find (w,u) ∈ W × V, such that, ∀(z,v) ∈ W × V,

< L∗w, L∗z > + < L∗w − u, L∗z− v > + < Lu, Lv > = < f , z + Lv > . (1.1)

Hybrid-FOSLS does successfully take advantage of both FOSLS and FOSLL* in that

• it keeps all the major feature FOSLS has;

• it improves performance on problems with reduced regularity;

• the sum of FOSLS and intermediate term also serves a good error indicator for adaptive

mesh refinement.

The reasoning behind this is due to the fact that the homogeneous Hybrid functional,

H((w,u); (0,0)), is elliptic in a elliptic in a graph norm with mild coercivity and continuity con-

stants. This implies that, when the Hybrid functional is reduced, L2-norm of the error is also very

well reduced. We have also shown that minimizing Hybrid functional is very close to minimizing

the graph functional, G(u; û, f) = 1
2‖u− û‖2 + ‖Lu− f‖2.

This dissertation is organized as follows: in Chapter 2, the physics background of Stokes

and Navier-Stokes equations are introduced and the basics of FOSLS and FOSLL* methods are
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presented. We also introduce the variety of FOSLS formulations for Stokes/Navier-Stokes equation

and detail the formulations we will use for our numerical tests. Our main theoretical results

are developed in Chapter 3 which include proof of ellipticity in the graph norm of the bilinear

form associated with the Hybrid functional, the error estimate of both the Hybrid functional and

the L2-norm of the error. The similarity of minimizing the graph functional and minimizing the

Hybrid functional is also illustrated by a set of theorems that show the numerical solutions from

minimizing the two functionals are converging to each other very quickly. The numerical test

for Stokes equations in a longtube is carried out and behaves exactly as the theory expects. We

dedicate Chapter 4 to the problem with a corner singularity and compare the mass conservation

using both Hybrid and FOSLS. We also develop and apply our Hybrid version of adaptive mesh

refinement to this problem. Basic background of analysis tools for problems with singularities is

also introduced. In Chapter 5, we explore the application of the Hybrid method to nonlinear Navier

Stokes equations. We first introduce how to combine FOSLS with Newton iteration to handle the

non-linearity, then develop the Newton-Hybrid FOSLS approach. Numerical results that exhibit

similarities to linear problems are presented in the end. Conclusions of this thesis are made in

Chapter 6.



Chapter 2

Background

In this chapter, we introduce background that is important for the development of this thesis:

the physics behind the equations, the numerical methods available and their pros and cons, the

basics of FOSLS and FOSLL* methods, upon which the hybrid-FOSLS method is developed, and

their advantages and limitations.

2.1 Stokes/Navier Stokes Equations

Through out this thesis, a vector is denoted by a boldface letter and is always assumed to

be a column vector, a tensor (matrix) is denoted by a boldface letter with an underline and a “t”

at the superscript denotes the transpose of a vector. The open domain with a certain smoothness

assumption of the equations is denoted by Ω and its boundary is ∂Ω.

2.1.1 Introduction

For Newtonian fluid, its defining character is that its stress tensor versus strain rate follows

a linear law [46]

σ = η(∇u +∇ut) + (ξ − 2η

3
)I(∇ · u), (2.1)

where σ denotes the stress tensor, u denotes the velocity of the fluid, I denotes the unit tensor

and η, ξ denote the first and second viscosity, respectively. Water, oil, salt solution are common

Newtonian fluids while pasty fluids (e.g. yoghurt, shampoo), blood, rarefied gases are typical

non-Newtonian fluids.
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In this dissertation, we are particularly interested in incompressible flows, whose density

ρ(x, t) is nearly a constant. Following conservation of momentum and conservation of mass, the

incompressible Navier Stokes Equations can be derived and simplified to

∂u

∂t
− ν∆u + (∇ut)tu +∇p = f , (2.2)

∇ · u = 0, (2.3)

where ν = η/ρ is the first viscosity rescaled by density. The pressure, p, and the force, f , are also

rescaled and represent p/ρ, f/ρ. Also, for clarification, for the 3D problem,

u =


u1

u2

u3

 , ∇ut =


u1x u2x u3x

u1y u2y u3y

u1z u2z u3z

 .

Note that, in the literature, η is also referred as “dynamic viscosity” and ν is sometimes

referred as “kinematic viscosity”. The Reynolds number is defined as

Re :=
ρvL

η
=

vL

ν
,

where v is the reference velocity (the mean velocity of the object relative to the fluid, e.g. the

magnitude of the inflow velocity), L is the characteristic length (L ≈ diam(Ω)). Without the loss

of generality, v, L are assumed to be 1. Note that ν is also called “the inverse of Reynolds number”

by some authors.

By its definition, Reynolds number gives the measure of the ratio of inertial force (which

measures how much a particular fluid resists any change in motion) to viscous force (which char-

acterize the resistance of a fluid to the flow). The following table should provide a perceptual idea

about Reynolds number, where the organisms are the fluids and the air or water are the flows [52].

When Re is very large (Re >> 1), ν is very small, the effect from the inertial part of

(2.2), (∇ut)tu, is much stronger than the viscous part, ν∆u. In that case, the incompressible

Navier Stokes Equations can be further reduced to incompressible Euler equations, which describes
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A large whale swimming at 10m/s 300, 000, 000
A tuna swimming at the same speed 30, 000, 000
A duck flying at 20m/s 300, 000
A large dragon fly going 7m/s 30, 000
A copepod in a speed burst of 0.2m/s 300
Flapping wings of the smallest flying insects 30
An invertebrate larva, 0.3mm long, at 1mm/s 0.3
A sea urchin sperm advancing the species at 0.2mm/s 0.03
A bacterium, swimming at 0.01mm/s 0.00001

Table 2.1: A spectrum of Reynolds numbers for self-propelled organisms

inviscid flows

∂u

∂t
+ (∇ut)tu +∇p = f , (2.4)

∇ · u = 0. (2.5)

On the other hand, when Re << 1, the viscous force dominates the inertial force. If we assume

the inertial force is negligible, then the incompressible Navier Stokes Equations gives the Stokes

Equations

∂u

∂t
− ν∆u +∇p = f , (2.6)

∇ · u = 0. (2.7)

The Stokes Equations are widely used to model low Reynolds number fluid, such as swimming

micro-organisms, the flow of viscous polymers, lava etc. Since the steady state Stokes Equations

(where we let ν = 1 without the loss of generality),

−∆u +∇p = f in Ω,

∇ · u = 0 in Ω,

(2.8)

arises in a time discretization of the Navier-Stokes equations, the study of Stoke equations is also

very important to Navier-Stoke equations, whose existance and smoothness in 3D still remain one

of the seven most important open problems in mathematics [26].

Another note before we leave this subsection: for incompressible flows, the incompressibility
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constraint equation (2.3) implies that (2.1) can be simplified to

σ = η(∇u +∇ut). (2.9)

We will refer to this equation later in this section.

2.1.2 Numerical Methods

Before we start the discussion on numerical methods, we first introduce some function spaces

and associated norms. First, we denote the Hilbert space of square-integrable functions on Ω by

L2(Ω), whose inner product and norm are:

< u, v >=

∫
Ω
uv dΩ, ‖u‖0 = (u, u)1/2.

For the convenience of denotation, in the rest of the thesis, we will use ‖u‖ interchangeably with

‖u‖0 without more explanation.

Next, we define the Sobolev spaces Hk(Ω) for any non-negative integer k.

Hk(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀|α| ≤ k},

where Dα is the weak derivative with index α. The norm of Hk(Ω) is defined by

‖u‖k = (
∑

0≤|α|≤k

‖Dαu‖20)1/2,

which is the sum of the L2 norm of all its derivatives up to order k and the function itself. Thus,

H0(Ω) is the same space as L2(Ω). One of the Sobolev spaces that is of special interest is the affine

space:

H1
0 (Ω) := {u ∈ H1(Ω) : u|∂Ω = 0},

where u|∂Ω should be understood as the trace of u on ∂Ω. It is equipped with the H1(Ω) norm as

defined above:

‖u‖1 =

(
‖u‖20 +

d∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

0

)1/2

,

where d = 1, 2, 3, denotes the dimension of the problem.
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Notice that the H1(Ω) semi-norm,

|u|1 :=

(
d∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥2

0

)1/2

,

is equivalent to ‖u‖1 (there exit positive constants c0 and c1, such that c0|u|1 ≤ ‖u‖1 ≤ c1‖u‖1) by

Poincaré-Friedrichs inequality

Theorem 1. (Poincaré-Friedrichs Inequality) For any function u ∈ H1
0 (Ω), there exists a constant

cp > 0, depending only on the domain Ω and the dimension of the problem d, such that

‖u‖0 ≤ cp‖∇u‖0. (2.10)

Remark 1. For the 2D problem, cp ≈ diam(Ω)

The dual space of H1
0 (Ω) is denoted by H−1(Ω), which is the space of all bounded linear

functional on H1
0 (Ω), and the associated norm is defined by

‖f‖−1 = sup
06=u∈H1

0 (Ω)

| < f, u > |
|u|1

.

The trace Sobolev spaces, Hk− 1
2 (∂Ω), are traces of functions that are in Hk(Ω), with the

norm

‖g‖k− 1
2
,∂Ω = inf

u∈Hk(Ω),u|∂Ω=g
‖u‖k.

For vector functions, the according product spaces are denoted using boldface, for example,

H1
0(Ω) = (H1

0 (Ω))d,

where d = 1, 2, 3.

Since our focus of this dissertation is to develop a novel least-squares finite element method

i.e. hybrid-FOSLS which results in a variational problem from a minimization problem of a proper

norm and leads to excellent bound on both the L2 norm and the H1 semi-norm of the error. For

this purpose, we restrict our attention to steady state Stokes (3.58) and Navier-Stokes equations
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(5.23) without any discussion on the time dicretization. The steady state Navier-Stokes equations

are:

−∆u + (∇ut)tu +∇p = f in Ω,

∇ · u = 0 in Ω.

(2.11)

For Stokes equations with a no-slip homogeneous boundary condition,

−∆u +∇p = f , Ω (2.12)

∇ · u = 0, Ω (2.13)

u = 0, ∂Ω (2.14)

the classical Galerkin weak formulation is: for any f ∈ H−1(Ω), find u ∈ H1
0(Ω) and p ∈ L2

0(Ω),

such that ∫
Ω

(∇u · ∇v − p∇ · v) dΩ =

∫
Ω

f · v dΩ, ∀ v ∈ H1
0(Ω) (2.15)∫

Ω
q∇ · u dΩ = 0, ∀ q ∈ L2

0(Ω), (2.16)

where

L2
0(Ω) := {p ∈ L2(Ω) :

∫
Ω
p dΩ = 0}.

The weak problem above is also equivalent to the following constrained problem: for any f ∈

H−1(Ω), find

u ∈ Z := {u ∈ H1
0(Ω) : < ∇ · u, q >= 0, ∀q ∈ L2

0(Ω)} (2.17)

and p ∈ L2
0(Ω), such that (2.15) holds.

For linear elasticity equations,

−∆u +∇p = f in Ω,

∇ · u + p = g in Ω,

(2.18)

which are very similar to Stokes equations but with a positive-definite weak form, using conforming

finite element spaces is sufficient to ensure the existence and uniqueness of the discrete problem

and an optimal finite element convergence rate. However, this is not enough for Stokes equations.
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Z

Zh

z − zh

θ
z

z
h , |z

h |1
=

1

Figure 2.1: Illustration of the relation between Z and Zh, the constrained space (2.17) of velocity
in Stokes equations and its discrete space. See (2.19).

The choice of conforming finite element spaces, Vh ⊂ H1
0(Ω), for velocity and Sh ⊂ L2

0(Ω) for

pressure is not enough to guarantee a stable solution; that is, the resulting linear system from this

discretization can be singular.

This challenge for Galerkin finite element methods is due to the fact that, using the conform-

ing finite element spaces, the discrete version of Z,

Zh := {uh ∈ Vh : < ∇ · uh, qh >= 0, ∀qh ∈ Sh},

is not a subspace of Z, in general. That is, a discretely divergence free space is not necessarily a

divergence free space.

The difference of Z and Zh can be measured by

γ = sup
zh∈Zh

inf
z∈Z

|z − zh|1
|zh|1

. (2.19)

The value of γ is between 0 to 1. We can think γ = sin θ as the sine of the “angle” θ between

Z and Zh as in Figure (2.1.2), where γ = |z − zh|1 = sin(θ).

To be more general, let ∇ · u = g in place of (2.13) and define the bilinear forms

a(u,v) = ν < ∇u,∇v >, ∀ u, v ∈ H1(Ω),

b(v, q) = − < q,∇ · v >, ∀v ∈ H1(Ω) and q ∈ L2(Ω).

(2.20)
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The weak problem of Stokes equations is now: find (u, p) ∈ H1
0(Ω)× L2

0(Ω), such that

a(u,v) + b(v, p) = < f ,v >, ∀v ∈ H1
0(Ω),

b(u, q) = < g, q >, ∀q ∈ L2
0(Ω).

(2.21)

To guarantee the above weak problem is well-posed, the operators a(·, ·) and b(·) need to satisfy

the following assumptions: there exit constants α > 0 and β > 0, such that

a(v,v) ≥ α‖v‖1, ∀v ∈ H1
0(Ω) (2.22)

sup
v∈H1

0

b(v, q)

‖v‖1
≥ β‖q‖0, ∀q ∈ L2

0(Ω) (2.23)

Notice that Eqn (2.23) is equivalent to the famous inf-sup or LBB (Ladyzhenskaya-Babuška-Brezzi)

condition: there exists γ > 0, such that

inf
06=q∈L2

0(Ω)
sup

0 6=v∈H1
0(Ω)

b(v, q)

‖v‖1‖q‖0
> γ (2.24)

Thus, a more rigorous explanation for the problem using conforming finite elements in

Galerkin formulation is that using Vh ⊂ H1
0(Ω) and Sh ⊂ L2

0(Ω) doesn’t guarantee the discrete

version of LBB condition,

inf
06=qh∈Sh

sup
06=vh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
≥ γ, (2.25)

will be satisfied automatically. Therefore care must be taken when it comes to choosing the right

combination of finite element spaces. For example, denote P0, P1, P2 the finite element spaces

of piecewise constant, linear, quadratic polynomials on triangles; Q0, Q1, Q2 function spaces of

piecewise constant, bilinear, biquadratic polynomials on quadrilaterals.

• LBB condition is satisfied: (uh, p) ∈ P2 × P1, (uh, p) ∈ Q2 ×Q1

• LBB condition is violated: (uh, p) ∈ P1 × P1, (uh, p) ∈ P1 × P1, (uh, p) ∈ Q1 ×Q1

In Subsection (2.3), the readers will that see for FOSLS method, the wellposedness of the discrete

weak problem will be automatically satisfied with the conforming elements.

Another challenge for the Galerkin finite element method for Stokes equation is the increasing

difficulty to solve the linear system as the Reynolds number increases. It is clear to see from (2.21)
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that the linear system after discretization is of the formA BT

B 0


u
p

 =

f
g

 ,

which is known as a “saddle-point problem”, since the solution, (u, p), to this indefinite matrix is

the saddle point. Denote φj the basis functions for velocity. Then the entries of A are the same as

from the discretization of Poisson equation: ν < ∇φj ,∇φi >, and A is symmetric positive definite

(SPD). When the Reynolds number is large, its inverse ν is small. This means the off-diagonal

block B is relatively large, which can slow down the linear system solvers. However by rescaling

p, we can keep B small. Unfortunately, the rescaling trick won’t work for Navier-Stokes equations

due to the u · ∇u term.

All the difficulties we have discussed in Galerkin formulation for Stokes equations also exist in

Navier-Stokes equations. Below, we only present the its Galerkin weak formulation without further

discussion.

For f ∈ H−1, find (u, p) ∈ (H1
0(Ω), L2

0(Ω)), such that

a(u,v) + n(u,u,v) + b(v, p) = < f ,v > ∀v ∈ H1
0(Ω)

b(u, q) = < g, q > ∀q ∈ L2
0(Ω),

(2.26)

where,

n(w,u,v) :=

∫
Ω

w · ∇u · v dΩ, ∀u,v,w ∈ H1(Ω).

2.2 The Framework of FOSLS and FOSLL* Theory

2.2.1 FOSLS

“FOSLS ” stands for the First-Order System Least-Squares finite element method. The

name of FOSLS summaries its two most important features: the original PDEs is reformulated

into a first-order differential system, Lu = f ; the variational problem is obtained by a least-squares

procedure, i.e. to minimize a certain norm of the residual equations, Lu− f .
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In many cases, the PDEs we face are of the second order or higher. To require a first-order

system implies that extra variables will be introduced, which increases the number of dependent

variables. However, this does not mean an increased computational cost, as people might think.

The main reason to use a first-order system is that, the algebraic system from a first-order system

has condition number O(h−2), while for a second-order PDEs, the condition number is O(h−4),

where h denotes the mesh size. A large condition number is problematic for algebraic solvers.

On the other hand, the least-squares minimization leads to a symmetric positive definite (SPD)

algebraic system, which is well-known to have great computational advantages.

To fully understand the FOSLS theory and master the skills to design a nice FOSLS system

may be elusive at the start. In this section, we only present the basics of FOSLS and leave many

details to later discussions.

Suppose the PDEs have already been recast into a first-order system, denote Ω as an open,

connected domain in 2D or 3D with a Lipschitz boundary ∂Ω. An abstract boundary value problem

can be described as

Lu = f in Ω,

Bu = g on ∂Ω,

(2.27)

where Bu can be Dirichlet, Neumann or Robin boundary conditions. Then, we denote the FOSLS

functional by

F(u; f) = ‖Lu− f‖2X

and seek the solution u ∈ V, such that

u = argmin
u∈V
‖Lu− f‖2X ,

where ‖ · ‖X denotes some norm to be determined later. The weak problem from the minimization

is thus:

Find u ∈ V, such that for any v ∈ V

< Lu, Lv >X = < f , Lv >X . (2.28)
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L(V)

Lu

f

This is obtained by taking the Frechét derivative of the FOSLS functional F(u; f)

lim
α→0

F(u + αv; f)−F(u; f)

α
,

or simply by “assuming” that (Lu − f) is orthogonal to the space V and < Lu − f , Lv >= 0 for

any v ∈ V.

Define the bilinear form,

B(u,v) =< Lu, Lv > .

The next important step is to prove the continuity and coercivity of B(·, ·). We say the bilinear

form is continuous and coercive in V if there exist positive constants, c0 and c1 such that, for every

vinV,

B(u,v) ≤ c1‖u‖V‖v‖V ,

B(u,v) ≥ c0‖u‖V‖v‖V ,
(2.29)

where c0, c1 are indepent of u, v and are called coercivity and continuity constants, respectively.

Thus, by Riesz Representation theorem (2), the weak problem is well-posed (i.e. the existance,

uniqueness and continuous dependence on f of the solution).

Theorem 2. (Riesz) If φ is a bounded linear functional on a Hilbert space H, then there is a

unique vector y ∈ H, such that

φ(x) =< y, x >H, for all x ∈ H. (2.30)

Clearly, if Vh is a finite element subspace of V, the dicrecte version of the weak problem:

Find uh ∈ Vh, such that for any vh ∈ Vh

< Luh, Lvh >=< f , Lvh > . (2.31)
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is automatically well-posed. Recall that for the Galerkin formulation of Stokes equations, the inf-

sup condition cannot be automatically satisfied by merely using a finite element subspace, Vh ⊂ V.

In other words, a conforming finite element space itself is not enough to guarantee that a well-

posed continuous problem will lead to a well-posed discrete weak problem. An enormous amount

of research is dedicated to finding the appropriate coupling of the mixed finite element spaces.

While it may be advantageous to use mixed spaces, for a FOSLS formulation, a single continuous

piecewise polynomial space is sufficient for the approximation of all unknowns.

Let {φi}ni=1 denote the finite element basis functions. The numerical solution

uh =

n∑
i=1

uiφi,

is the linear combination of them, where the coefficients ui’s are to be determined. Thus, the

discrete weak form can be written as

< L
n∑
j=1

ujφj , Lφi >=< f , Lφi >

which is equivalent to

Au = f,

where u = (u1, . . . , un)t, f = (f1, . . . , fn)t, fi =< f , Lφi >, and the elements of the matrix A are

aij =< Lφj , Lφi >. Again, notice that A is a symmetric matrix and is also positive-definite by

the coercivity of L. A proper design of FOSLS system will yield an algebraic system with great

computational advantages. We leave the details to later chapters.

When the bilinear form, B(·, ·), is H1-equivalent, that is, the ‖ · ‖V in Eqn (2.29) is the

H1 norm in each dependent variable, we call the first-order operator associated with B(·, ·) an

“H1-equivalent operator”. This, in turn, leads to a optimal finite element convergence rate, using

H1-conforming finite elements such as the most common piecewise polynomials.

Assume that the domain, Ω, and right-hand-side satisfy certain smoothness constraints and

the finite element space, Vh, is defined with respect to a regular triangulation, we have the following

property
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Lemma 1. (Approximation Property) For a conforming finite element subspace, Vh ⊂ V, where

Vh contains the piecewise polynomials of degree p > 0, then for any u ∈ V, there is a constant

C > 0 independent of h, such that

‖u− Ihu‖1 ≤ Chr‖u‖r+1, for 0 < r ≤ p, (2.32)

where Ihu ∈ Vh is the interpolant of u.

By the virtue of “Aubin-Nitsche trick” (duality argument) that is explained in the appendix,

we have

‖u− Ihu‖0 ≤ Chp+1‖u‖p+1. (2.33)

With the help of the lemma above, the error from FOSLS method can be estimated. Let

eh = uh − û be the numerical error, recall c0 and c1 are coercivity and continuity constants,

respectively, and suppose L is an H1-equivalent operator. By the linearity of the operator, we have

‖eh‖1 ≤ 1
c0
‖Leh‖ ≤ C‖L(Ihu− û)‖

≤ c1
c0
‖Ihu− û‖1 ≤ Cc1

c0
· hp‖û‖p+1,

(2.34)

where C denotes a generic positive constant that is independent of h. The inequalities above are

due to coercivity of L, minimization property of FOSLS, continuity of L and the finite element

approximation property, Lemma 1. This error estimate says that we can always employ higher

order of elements to get the best asymptotic rate of convergence up to the smoothness order of the

exact solution û.

Our ultimate goal of the design of a discretization method is to have the optimal “error

reduction per computation cost”. This standpoint has to be twofold: we must have an approach

to quantify the error reduction we can make and achieve optimal discretization convergence rate;

we need the algebraic system to be amenable to linear solvers that are state-of-art. FOSLS not

only does well on the first (optimal finite element convergence rate), but also the second. In fact,

another advantage of the H1-equivalence of L is that the resulting linear system will be amenable

to solution by a multigrid algorithm [51, 53] in O(n) operations [45], where n is the dimension of

the discrete space Vh. If V involves products of H1, H(Div), and H(Curl), effective multigrid
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algorithms may also exist [6–8]. Moreover, the FOSLS functional, ‖Luh − f‖τ , computed on each

element τ is a natrual error indicator that is locally sharp and globally reliable. An adaptive mesh

refinement algorithm based on FOSLS has been applied to challenge problems such as problems

with singularities, magneto-hydrodynamics (MHD) equations (Maxwell equations coupled with

Navier-Stokes equations) etc. and is proved to be very successful (see [4, 9, 49] for details).

In conclusion, FOSLS has the advantages of being able to: yield an SPD linear system with

optimal multigrid convergence rate; avoid the inf-sup condition for Stokes/Navier-Stokes equations

and allow the use of H1-conforming finite elements which are widely used and relatively easy to

implement; achieve optimal finite element convegence rate and provide a nice error indicator for

adaptive mesh refinement. Although the development of FOSLS formulation requires tremendous

analysis skills, the efforts are well paid by its advantages.

2.2.2 FOSLL*

As mentioned earlier, the hybrid-FOSLS method is essentially “hybrid” FOSLS, FOSLL*

and an intermediate term that draws them together. Therefore, in order to really understand the

hybrid-FOSLS method, one has to first comprehend the basic theories of the FOSLL* method. In

this section, the general approach of FOSLL* is introduced in (2.2.2.1); then, a simplified but very

detailed discussion of the core theories of the FOSLL* that validate this method is presented in

(2.2.2.2); finally, in (2.2.2.3), the applications of FOSLL* on different numerical problems and its

pros and cons are summarized.

2.2.2.1 General Approach

The FOSLL* method was first introduced in [23] by Cai et. al. in 2000. It was motivated by

• the success of the FOSLS method in its advantages of resulting the optimal finite elments

convergence rate using H1-conforming elements; yielding an SPD system with optimal

(O(n)) multigrid convergence rate, where similar experience can also apply to FOSLL*;
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• the limitation of standard L2-norm FOSLS for problems with less smoothness, such as

domain with re-entrant corners and discontinuous coefficients.

Other least-squares finite element methods such as inverse-norm versions of FOSLS can over-

come the limitation of standard L2-norm FOSLS. However, it requires the relatively awkward

evaluation of the negative Sobolev norm and brings much larger computation cost ( [16], [18], [22]).

The general approach of FOSLL* method can be summarized in the following three steps.

(1) Based on the primal first-order system, formulate the adjoint first-order system.

Suppose the primal first-order problem, Lu = f , is given and let û denote the exact solution.

The adjoint problem is, thus, formulated as

LL∗w = f ,

L∗w = û.

(2) Seek weak solution by minimizing FOSLL* functional ‖L∗w − û‖2.

That is to find ŵ ∈ W, such that

ŵ = arg min
w∈W

‖L∗w − û‖2. (2.35)

At the first glance, (2.35) looks problematic since it involves the unknown û. However, it

is the same minimizatioin problem as minimizing the functional

‖L∗w‖2 − 2 < w, f >

and both of them lead to the weak problem:

< L∗ŵ, L∗z >=< û, L∗z >=< f , z >, ∀z ∈ W. (2.36)

Notice that the weak problem can be solved without knowledge of the exact solution û.

(3) Solve discretized weak form in Finite Element subspace Wh ⊂ W, recover the

primal solution.
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Find wh ∈ Wh, s.t.

< L∗wh, L∗zh >=< f , zh >, ∀zh ∈ Wh.

Then, recover primal solution: uh = L∗wh.

2.2.2.2 Core Theories

In Subsection 2.2.2.1, the general approach of FOSLL* is introduced with a lot of details

omitted. Taking a closer look at the FOSLL* approach, one would natrually ask questions such as:

how is L∗ defined? How do you guarantee for any solution u, a w exsits, such that L∗w = u? Is

such w unique? etc. These details are essential in validating the FOSLL* method and the subtle

treatment when implementing FOSLL* on a numerical problem. To understand these details

requires a good knowledge of functional analysis. This section is dedicated to explaining the core

theories of FOSLL* in a simplied problem setting.

First, let’s give a formal definition of L∗.

Theorem 3. If A is a bounded linear operator on a Hilbert space H, then there exits a unique

bounded linear operator A∗, such that

< x,Ay >H=< A∗x, y >H, ∀x, y ∈ H

Note that the inner product, < ·, · >H, here depends on the Hilbert space.

Since in almost all the cases, L is a bounded linear operator on some Hilbert space, L∗ that

is defined as above is well defined.

Denote D(A) and R(A) the domain and range of a operator A. In order for FOSLL* to stand

as a valid method, it must satisfy the following two requirements:

• L∗ is onto D(L), that is, for all u ∈ D(L), there exists a w ∈ D(L∗), such that u = L∗w;

• such w should be unique.

The focus of the whole section is to establish a set of theorems and proofs and to validate that

under certain assumptions, FOSLL* does satisfy the two requirements above.
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We first explore under what assumptions, L∗ is onto D(L).

Definition 1. (Closed operator) Let V1, V2 be Banach spaces. A linear operator A : D(A) ∈

V1 → V2 is said to be closed if: whenever every sequence {xn}n∈N ∈ D(A) converging to x ∈ V1

such that {Axn}n∈N converge to y ∈ V2, it holds that x ∈ D and Ax = y.

With the defination of closed operator, we are now ready to prove the following lemma:

Lemma 2. Assume L : V1 → V2 is a linear operator from Banach space V1 to V2 that are equipped

with the norm ‖ · ‖V1 and ‖ · ‖V2 respectively. Denote the domain of L by D(L) ⊂ V1 and the range

of L by R(L) ⊂ V2. If we have:

• L is a closed operator,

• L is coercive, that is, there exists a constant c0 > 0, such that

c0‖u‖V1 ≤ ‖Lu‖V2 , for all u ∈ D(L),

then we have that R(L) is closed in V2.

Proof. To prove R(L) is closed in V2, we only need to show that: for any Cauchy sequence {vn} ⊂

R(L), there exsits (a unique) v∗ ∈ R(L), such that

lim
n→∞

‖vn − v∗‖V2 = 0.

First, by the coercivity of L, for each n, there exists a unique un ∈ D(L), such that Lun = vn.

(Otherwise, if there is an ũn different from un, such that Lũn = vn, then ‖ũn − un‖V1 > ‖Lũn −

Lun‖ = 0, which violates the coercivity.)

Second, also by the coercivity of L, the unique set {un} is a Cauchy sequence in V1. This is

because for any ε > 0

c0‖um − un‖ ≤ ‖Lum − Lun‖ = ‖vm − vn‖ < ε,

when m and n are large enough.
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Finally, since V1 and V2 are Banach spaces, there exists u∗ ∈ V1 and v∗ ∈ V2, such that

un → u∗, vn → v∗ in the norm ‖ · ‖V1 and ‖ · ‖V2 respectively. By the defination of closed operator,

u∗ ∈ D(L) and Lu∗ = v∗. Thus, v∗ ∈ R(L) and the lemma is proved.

The following closed range theorem will be used in the proof of Lemma 3. It can be found in

many classical functional analysis books, for example, [54].

Theorem 4. (Closed range theorem) Let V1 and V2 be Banach spaces, A a closed linear operator,

A : D(A) → V2, with its domain, D(A), dense in V1. Then, the following conditions are all

equivalent

• R(A) is closed;

• R(A∗) is closed;

• R(A) = (N (A∗))⊥ := {y ∈ V2 :< x∗, y >= 0,∀x∗ ∈ N (A∗)};

• R(A∗) = (N (A))⊥ := {x∗ ∈ V ′1 :< x∗, y >= 0, ∀y ∈ N (A)}.

Lemma 3. Assume L satisfies all the assumptions in Lemma 2. In addtion, D(L) is dense in V1,

then R(L) is closed in V2 if and only if R(L∗) is closed in V1.

Proof. The proof is a direct result from Lemma 2 and the closed range theorem.

With the help of Lemma 3, we can now apply Theorem 5 to prove that, under mild assump-

tions, L∗ is onto V1.

Theorem 5. (Fredholm) If A is a bounded linear operator on a Hilbert space H, then

H = R(A)⊕N (A∗),

where, R(A) denotes the range of A and N (A∗) denotes the kernel of A∗.

Thus, if R(A) is closed, then H = R(A)⊕N (A∗).
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Theorem 6. Assume L satisfies all the assumptions in Lemma 3, i.e., L is coercive, closed and

densely defined. Also assume the adjoint operator L∗ is bounded on V2 and (L∗)∗ = L. Without

loss of generality, let V1 = D(L) and let V1 to be a Hilbert space. Then, L∗ is surjective onto V1.

That is, for all u ∈ V1, there exists a w ∈ V2, such that L∗w = u.

Proof. The coercivity of L implies that the null space of L, N (L) = {0V1}. By Lemma 3, since

R(L∗) is closed, R(L∗) = R(L∗). Consider A = L∗ in Theorem 5 and notice that we have assumed

(L∗)∗ = L, we have

V1 = R(L∗)⊕N (L) = R(L∗),

which finishes the proof.

To make sure that such w is unique, notice that by (5), V2 = R(L)⊕N (L∗), we restrict L∗

to R(L), or alternatively consider L∗ to be defined on the quotient space R(L)/N (L∗). Thus, L∗

is coercive on V2; that is, there exists a constant, c∗ > 0, such that

c∗‖u‖V2 ≤ ‖L∗w‖V1 , ∀w ∈ W = D(L∗) ∩R(L). (2.37)

The above discussion leads to the following assumption that will hold for the remainder of

the dissertation.

Assumption 1. Let V1 to be a Hilbert space and the domain of the linear operator L. Denote by

L2 the L2(Ω) space according to some domain Ω. Assume

• (L∗)∗ = L,

• L : V1 → L2 is a coercive, closed linear operator on L2,

• L∗ is a bounded linear operator on L2.

Remark 2. In the assumption above, since we consider D(L) is a subspace of L2, the adjoint

operator L∗ is the L2 adjoint of L, i.e. the inner product in (3) is the L2 inner product.
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Remark 3. In our applications, V1 is always a Hilbert space, such as H(div; Ω), H(curl; Ω) (see

Appendix B.1). Also, to prove the existence and uniqueness of the weak solution, we always prove L

is continuous and coercive in V1. Thus, the assumption that L is coercive on L2 is always satisfied,

since we always have

c0‖u‖ ≤ c0‖u‖V1 ≤ ‖Lu‖.

The details of obtaining the adjoint operator are presented in Appendix C.

2.2.2.3 Applications

In [23, 44],the FOSLL* method has been applied to general diffusion-convection-reaction

problem

∇ · (A∇p)− b · ∇p− cp = f in Ω,

p = 0 on ΓD,

n ·A∇p = 0 on ΓN ,

where ΓD and ΓN denote the parts of boundary that is with Dirichlet boundary condition and

Neumann boundary condition respectively, and A is allowed discontinuity and the domain Ω can

be irregular e.g. with re-rentrant corners.

In [40], 3D eddy current problem

∂µH

∂t
+∇×E = 0 in Ω,

∇×H− σE = 0 in Ω,

with two boundary conditions

n×E = 0,n ·H = 0,

or,

n ·E = 0,n×H = 0.

on a domain with re-entrant corner is studied using FOSLL*.
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It shows a much improved convegence rate than FOSLS method. In [31,32], mass conservation

for Navier-Stokes Equations is highly enhanced by a two-stage combination of FOSLS-FOSLL*

method.

Some heuristic explainations of the feature of FOSLL* are as follows.

• For FOSLS, if primal solution is not in H1, using H1-conforming finite elements (e.g.

piecewise polynomials), discrete solution can never converge to the exact solution.

• On the other hand, for FOSLL*, because it introduces an adjoint first-order system L∗w =

û, such that û ∈ H1, then u = L∗ŵ is with lower smoothness.

However, FOSLL* has a major limitation in adaptive mesh refinement. Recall that for FOSLS

method the error indicator for refinement is ‖Luh− f‖e, which is computable, while the analogy of

FOSLL* ‖L∗wh − û‖e is not computable.

2.3 FOSLS for Stokes/Navier-Stokes Equations

As mentioned ealier, generally, the first step of FOSLS method is to introduce new variables,

possibly to add new equations and boundary conditions and recast the original system into a

first-order differential system. This allows a great flexiblity and questions shall be asked:

• What new variables to introduce?

• What equations/boundary conditions to add?

• What norm to use for each residual equations?

Although the design of a good first-order system may be elusive and involves lots of “fail-and-

try”, there are still some general principles. First, optimally, we want to design an H1-equivalent

operator, that is a first-order operator L which satisfies, for any u ∈ D(L),

c0‖u‖1 ≤ ‖Lu‖ ≤ c1‖u‖1.
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This implies an optimal finite element convergence rate and an optimal multigrid convergence rate.

Second, the work of M. Gunzburger and P. Bochev [11,14,15] shows that with the help of Agmon-

Douglis-Nirenberg (ADN) elliptic theory [5], for general elliptic partial differential equations (such

as Stokes/Navier-Stokes equations in this context), the norm for each residual equations can be

decided to guarantee the well-posedness of the associated weak problem and the existence of the a

priori estimate.

We present several popular first-order formulations for Stokes and Navier-Stokes equations

in this section.

2.3.1 Velocity/Velocity-Gradient/Pressure Formulation:

The velocity-velocity gradient-pressure system for Stokes equations which is product H1-

equivalent for a general dimension is first developed by Cai, Manteuffel, McCormick [21]. (For the

convenience, we will refer to it as velocity-gradient formulation from now on.) We first introduce

the extra variable: velocity-gradient

U = ∇ut = (∇u1,∇u2) =

 U11 U21

U12 U22

 ,

where U11 denotes u1x, U12 denotes u1y and so on. Notice that U is a 2 × 2 tensor matrix in 2D

and 3× 3 matrix in 3D. Also notice that their nonstandard numbering of the elements of U. The

first-order system of velocity-gradient formulation is

U−∇ut = 0, in Ω,

−(∇ ·U)t +∇p = f , in Ω,

∇ · u = g, in Ω,

∇(trU) = ∇g, in Ω,

∇×U = 0, in Ω,

(2.38)

where trU := U11 + U22, stands for the trace of the matrix U. The fourth and fifth equations in

(2.38) are auxiliary equations derived from the first and second equations in (2.38). Notice that
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trU = ∇ · u and ∇ × ∇u = 0 (see the appendix for the details). Thus, it is an overdetermined

system, but with consistent extra equations. By adding these extra equations, (2.38) becomes a

H1 equivalent first-order system [21].

According to the FOSLS formulation above, the FOSLS functional we are minimizing is

F(U,u, p; f , g) = ‖f + (∇ ·U)t −∇p‖2 + ‖U−∇ut‖2 + ‖∇ ×U‖2

+‖∇ · u− g‖2 + ‖∇tr(U)−∇g‖2

It has been proved in [21] that, under general H2-regularity assumptions and with boundary

conditions that are smooth enough, F(U,u, p; 0, 0) is continuous and coercive in the product H1

norm:

‖U‖21 + ‖u‖21 + ‖p‖21.

2.3.2 Velocity/Vorticity/Pressure Formulation

Another popular first-order formulation for the Stokes equation make use of the vorticity

ω = ∇× u and the fact that

∇×∇× u = −∆u +∇(∇ · u).

Several formulations of this kind have been developed for their own merits.

The first-order system

ν∇× ω +∇p = f in Ω

∇× u− ω = 0 in Ω

∇ · u = 0 in Ω

(2.39)

is H1-elliptic with nonstandard boundary condition:

Normal Velocity-Pressure Boundary Conditions

2D: u · n = 0 and p = 0, on ∂Ω

3D: u · n = 0, ω · n = 0, and p = 0, on ∂Ω

or Normal Velocity-Tangential Vorticity Boundary Conditions

2D: u · n = 0 and ω = 0, on ∂Ω
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3D: u · n = 0and ω × n = 0, on ∂Ω

where, the associated FOSLS functional is

F(ω,u, p; f , g) = ‖ν∇× ω +∇p− f‖2 + ‖∇ × u− ω‖2 + ‖∇ · u‖ (2.40)

Unfortunately, this H1-equivalence fails for standard velocity boundary conditions: Standard

Velocity Boundary Conditions:

u = g, ∂Ω∫
Ω pdΩ = 0

The functional we need to minize for this boundary condition is thus

F(ω,u, p; f , g) = ‖ν∇× ω +∇p− f‖2−1 + ‖∇ × u− ω‖2 + ‖∇ · u‖ (2.41)

Another vorticity formulation involves a consistent extra term ∇ ·ω = 0 and a slack variable

φ which makes the system to be a square system that fits the ADN setting.

ν∇× ω +∇p = f in Ω

∇ · ω = 0 in Ω

∇× u− ω +∇φ = 0 in Ω

∇ · u = 0 in Ω

(2.42)

2.3.3 Velocity/Stress/Pressure Formulation

Recall Eqn (2.9) that for imcompressible flows, the stress tensor is

σ = η(∇u +∇ut).

Define the scaled stress tensor

T =
√

2νσ,

and notice

∇ ·T =

√
2ν

2
(∆u +∇(∇ · u)),
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the Velocity-Stree-Pressure formulation is as follows:

√
2ν∇ ·T−∇p = f in Ω

∇ · u = 0 in Ω

T−
√

2νσ = 0 in Ω

(2.43)

The according functional to minize for velocity-stress-pressure formulation is

F (u,T, p; f) + ‖
√

2ν∇ ·T−∇p− f‖2−1 + ‖∇ · u‖20 + ‖T−
√

2νσ‖20 (2.44)

For more details, please refer to [11,14,15] and the reference therein.



Chapter 3

Hybrid-FOSLS for Stokes Equations in a Long Tube

3.1 Motivations

The first-order system least-squares (FOSLS) finite element method has been applied to

numerical solution of a wide class of partial differential equations (e.g., [15, 19, 24]). The general

approach of FOSLS is as follows: first reformulate the original system of PDEs into a possibly

enlarged first-order differential system, Lu = f . Then, a least-squares L2-norm principle is applied

to this first-order system, that is, we seek the weak solution by minimizing the FOSLS functional,

F(u; f) := ‖Lu− f‖2, in an appropriate Hilbert space V. (Here we assume homogeneous boundary

conditions.) The choice of V depends on the particular problem, but is generally chosen based

on the pre-image of L2 under the operator L, that is, the set of functions, u, such that Lu ∈ L2

and satisfy appropriate boundary conditions and assumptions required by the FOSLS framework.

Typical examples are products of H1, H(Div) and H(Curl).

Discrete approximation is accomplished by restricting the minimization to an appropriate

finite dimensional subspace, Vh ⊂ V.

An important property for the FOSLS framework is that the homogeneous functional, ‖Lu‖,

be coercive and continuous in the Hilbert space V. That is, there exist constants, 0 < c0 ≤ c1, such

that .

c0‖u‖V ≤ ‖Lu‖ ≤ c1‖u‖V ∀u ∈ V. (3.1)

This guarantees a unique solution of the associated weak problem via the Riesz Representation

theorem. Moreover, the discrete minimization inherits these properties and, thus, involves a sym-
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metric positive definite (SPD) linear system. This also implies that the discrete system will be

stable, so the Ladyzhenskaya-Babuška-Brezzi (LBB) stability condition is automatically satisfied

and the finite element spaces can be chosen independently. Continuity of the functional implies

that discrete error bounds may be established by standard interpolation bounds in V. In addition,

with sufficient regularity of L∗L, the L2-norm of the error converges at an enhanced rate [42] (see

also Section 3.2.2).

If V is a subspace of product H1 spaces, we say the FOSLS functional is H1- equivalent. In

this case, the resulting linear system will be amenable to solution by a multigrid algorithm in O(n)

operations [45]. If V involves products of H1, H(Div), and H(Curl), effective multigrid algorithms

may also exist [6–8].

Another important advantage is that the FOSLS functional provides a locally sharp, globally

reliable, and easily computed error estimate for local mesh refinement (see [4, 9, 49] for details).

However, the FOSLS methodology also has some limitations. When the solution of the origi-

nal problem is not smooth enough due to discontinuous coefficients, non-smooth domain boundary,

or certain boundary conditions, H1-equivalence and its associated properties may be lost. For ex-

ample, certain components of the solution may be in H(Div)∩H(Curl) but not in H1 [10,29,30].

The use of standard H1-conforming finite element spaces will not result in convergence of the dis-

crete approximation. This difficulty may be overcome by a number of remedies including weighted

least squares functionals [39,43], reformulation in H(Div) or H(Curl) and use of appropriate finite

element spaces (e.g. Raviart-Thomas or Nedelec spaces), reformulation using inverse norms [15,16],

or the use of a FOSLL∗ formulation described below [23,44].

Another shortcoming, one that is a motivation for this paper, occurs when the coercivity

constant, c0 in (3.1), is very small. This may be the result of problem coefficients, the structure of

the system of PDEs, the shape of the domain, or all of these combined. In this case, the discrete

approximation may make the relative functional norm small while the relative L2 norm of the error

remains large. More precisely, let the error be denoted by eh = uh − u. Assume ‖eh‖ ≤ ‖eh‖V ;
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then, (3.1) implies

‖eh‖
‖u‖V

≤ ‖e
h‖V
‖u‖V

≤ c1

c0

‖Leh‖
‖Lu‖

. (3.2)

If c1
c0
� 1, the gap may be large. Despite the fact that, with full regularity, the L2-norm of the

error converges at an enhanced rate, the grid may require excessive refinement before this factor is

overcome.

An example where this occurs is with the velocity-gradient/velocity/pressure formulation of

Stokes equations in a long tube, described in more detail later. If D is the length of the tube,

then c0 ∼ 1/D3. Using standard bilinear finite elements yields small error in the H1-seminorm but

O(1) error in the L2-norm until the grid is highly refined. This shortcoming can be mitigated by

use of high-order finite elements [20], careful treatment of boundary conditions [34], or alternative

formulations [31,32].

To help the readers have a more intuitive feelings on how the L2 error affects the so-

lutions, we show the plots of pressure solving from the steady state Stokes equations 3.58 in

a long tube [0, 16] × [0, 1] with both bilinear and biquadratic elements on different mesh grids

(h = 1/4, 1/8, 1/16, 1/32, 1/64).

3.2 Theoretical Results

3.2.1 Hybrid and Graph Functional

As defined earlier, û denotes for the exact solution of the primal problem, Lu = f , and ŵ

denotes the exact solution of the adjoint problem, L∗ŵ = û. The errors in the primal and dual

problems are e = u− û and ε = w − ŵ, respectively. Let V = D(L) be the domain of L equipped

with the graph norm or any convenient equivalent norm. Likewise, let W = D(L∗) ∩ N (L∗)⊥

equipped with its graph norm. The Hybrid functional on the Hilbert space H :=W ×V is defined

as follows:

H ((w,u); (û, f)) := ‖L∗w − û‖2 + ‖L∗w − u‖2 + ‖Lu− f‖2. (3.3)
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The first term on the right-hand side is the FOSLL* term, the second the intermediate term,

and the last the FOSLS term. The Hybrid functional can be seen as a measure of the error:

H ((w,u); (û, f)) = H ((ε, e); (0, 0)) = ‖L∗ε‖2 + ‖L∗ε− e‖2 + ‖Le‖2. (3.4)

Minimizing H ((w,u); (û, f)) induces the following weak problem: find (w,u) ∈ W ×V, such

that, ∀(z,v) ∈ W × V,

< L∗w, L∗z > + < L∗w − u, L∗z− v > + < Lu, Lv > = < f , z + Lv > . (3.5)

The bilinear form associated with the Hybrid functional is the left-hand side of (3.5):

B ((w,u), (z,v)) :=< L∗w, L∗z > + < L∗w − u, L∗z− v > + < Lu, Lv > . (3.6)

Also, denoting F ((z,v)) :=< f , z + Lv >, then the weak problem becomes: find (w,u) ∈ W × V

such that, for all (z,v) ∈ W × V,

B ((w,u), (z,v)) = F ((z,v)) (3.7)

For convenience of discussion, define the H-norm on W ×V as

‖(w,u)‖H :=
(
‖L∗w‖2 + ‖u‖2 + ‖Lu‖2

)1/2
. (3.8)

This is a norm due to the coercivity bound (2.37) and Assumption 1. We now prove that B(·, ·) is

elliptic in the H-norm.

Theorem 7. For every (w,u), (z,v) ∈ W × V, we have the coercivity bound

1

3
‖(w,u)‖2H ≤

(
‖L∗w‖2 + ‖L∗w − u‖2 + ‖Lu‖2

)
= B ((w,u), (w,u)) (3.9)

and the continuity bound

B ((w,u), (z,v)) ≤ 3‖(w,u)‖H‖(z,v)‖H. (3.10)
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Proof. The continuity bound is obtained first by applying the Cauchy-Schwarz inequality to all

three terms in (3.6) and the triangle inequality to the middle term to yield

B ((w,u), (z,v)) ≤ ‖L∗w‖‖L∗z‖+ (‖L∗w‖+ ‖u‖) (‖L∗z‖+ ‖v‖) + ‖Lu‖‖Lv‖. (3.11)

Next , treating this as an inner product in <3 and using Cauchy-Schwarz inequality again yields

B ((w,u), (z,v)) ≤
(
‖L∗w‖2 + (‖L∗w‖+ ‖u‖)2 + ‖Lu‖2

)1/2
·
(
‖L∗z‖2 + (‖L∗z‖+ ‖v‖)2 + ‖Lv‖2

)1/2
.

(3.12)

The final step comes by using the inequality

(‖L∗w‖+ ‖u‖)2 ≤ 2(‖L∗w‖2 + ‖u‖2), (3.13)

which yields

B ((w,u), (z,v)) ≤
(
3‖L∗w‖2 + 2‖u‖2 + ‖Lu‖2

)1/2
·
(
3‖L∗z‖2 + 2‖v‖2 + ‖Lv‖2

)1/2
.

(3.14)

The bound (3.10) now follows.

The coercivity bound is established by starting with the triangle inequality

‖u‖ ≤ ‖L∗w − u‖+ ‖L∗w‖. (3.15)

Squaring both sides yields

‖u‖2 ≤ ‖L∗w − u‖2 + 2‖L∗w − u‖‖L∗w‖+ ‖L∗w‖2 ≤ 2(‖L∗w − u‖2 + ‖L∗w‖2). (3.16)

Adding ‖L∗w‖2 + ‖Lu‖2 to both sides yields the final result.

Remark 4. Since H ((ε, e); (0, 0)) = B ((ε, e); (ε, e)), this theorem implies that

1

3
‖(ε, e)‖2H ≤ H ((w,u); (û, f)) ≤ 3‖(ε, e)‖2H (3.17)

Thus, ‖(ε, e)‖2H bounds the Hybrid functional from below with the simple constant 1/3, which does

not depend on the mesh size or domain diameter. In fact, (3.16) shows that ‖e‖2 bounds the

functional from below with constant 1/2. Thus, the functional cannot be small unless the L2-norm

of the error in the primal problem is also small.
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Remark 5. By scaling the terms in (3.3) and modifying the definition (3.8) the ratio c1/c0 can

be reduced further. We keep this definition and the factor 1
2 in the definition of the Graph norm

(3.25) for convenience of later proofs.

Remark 6. If L is designed, such that both L and L∗ are H1-equivalent, the H-norm is equivalent

to the H1-norm. Thus, B(·, ·) is also H1-elliptic, and the advantageous properties of FOSLS carry

on to hybrid-FOSLS.

To gain insight, let U = (w,u) and rewrite the system implicit in (3.3) as

LU :=


L∗

L∗ −I

L


 w

u

 =


û

0

f

 = F (3.18)

The formal normal equations associated with this system are

L∗LU =

 2LL∗ −L

−L∗ L∗L+ I


 w

u

 =

 f

L∗f

 = L∗F. (3.19)

Lemma 4. If both L and L∗ are coercive and continuous in H1, then both L∗L and LL∗ have full

H2 regularity and L∗L also has full H2 regularity.

Proof. The proof is straightforward.

3.2.2 Convergence Estimates

This section addresses convergence of finite element approximation of the Hybrid functional.

We begin with the assumptions on the finite element spaces.

Assumption 2. Finite element spaces Vh ⊂ V andWh ⊂ W satisfy standard interpolation bounds:

given u ∈ V and w ∈ W,

inf
uh∈Vh

‖uh − u‖ ≤ Chr+1‖u‖r+1, (3.20)

inf
uh∈Vh

‖L(uh − u)‖ ≤ Chr‖u‖r+1, (3.21)

inf
wh∈Wh

‖L∗(wh −w)‖ ≤ Chs‖w‖s+1, (3.22)
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for 0 < r ≤ p and 0 < s ≤ q where C > 0 is a generic constant, h is a mesh parameter, and p and

q are the degree of the finite element polynomials for Vh and Wh, respectively.

Discrete approximation of the Hybrid functional is achieved by restricting the minimization

of the Hybrid functional (3.3) to Vh×Wh. The above assumptions yield the following convergence

bound. Let (wh,uh) ∈ Wh × Vh minimize the Hybrid functional. Then,

H((wh,uh); (û, f))1/2 ≤ C1h
r‖ŵ‖r+1 + C2h

s‖û‖s+1 (3.23)

for 0 < r ≤ q, 0 < s ≤ p.

Next, enhanced convergence for the Hybrid functional in the L2 norm is established.

Theorem 8. Assume that both L∗L and L∗L have full H2 regularity. If (wh,uh) is the solution

of discrete weak form (3.5), then

‖((wh − ŵ), (uh − û))‖ ≤ ChH((wh,uh); (û, f))1/2. (3.24)

Proof. The proof follows from Lemma 4 and the Aubin-Nitsche trick (c.f. [?], sec 7.7).

Remark 7. For more precise results involving partial regularity, the reader is directed to [42].

3.2.3 Graph Norm Estimates

To explore the relation between the Hybrid functional and graph norm, define the graph

functional on V,

G(u; û) :=
1

2
‖u− û‖2 + ‖Lu− f‖2, (3.25)

and define graph norm on V,

‖u‖G :=

(
1

2
‖u‖2 + ‖Lu‖2

) 1
2

= G(u; 0)
1
2 . (3.26)

(The 1
2 appears as a convenience to the proofs below.) Denote

ũh = arg min
uh∈Vh

G(uh, û) = arg min
uh∈Vh

(
1

2
‖(uh − û)‖2 + ‖L(uh − û)‖2

)
, (3.27)
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which implies, for every vh ∈ Vh,

< L(ũh − û), Lvh > +
1

2
< (ũh − û),vh > = 0. (3.28)

The following lemma shows that, if Vh ⊆ L∗(Wh), then the minimizer of the Hybrid functional

also minimizes the graph functional.

Lemma 5. If, for every vh ∈ Vh, there exists zh ∈ Wh such that vh = L∗zh, then minimizing

Hybrid functional, H
(
(wh,uh); (û, f)

)
, is equivalent to minimizing graph functional, G(u; û), i.e.

uh = ũh.

Proof. Minimizing the Hybrid functional over the space Wh ×Vh ⊂ W ×V yields a weak problem

equivalent to (3.5). That is, (wh,uh) ∈ Vh ×Wh satisfies, ∀(zh,vh) ∈ Wh × Vh,

< L∗wh − û, L∗zh > + < L∗wh − uh, L∗zh > = 0,

< Luh − f , Lvh > + < uh − L∗wh,vh > = 0.

(3.29)

Recall L∗ŵ = û and Lû = f and rearrange (3.29) to obtain

2 < L∗(wh − ŵ), L∗zh > = < uh − û, L∗zh >

< L(uh − û), Lvh > + < uh − û,vh > = < L∗(wh − ŵ),vh > .

(3.30)

Now, it is easy to see if, ∀vh ∈ Vh, there exists zh ∈ Wh, such that vh = L∗zh, we can plug

the left side of the first equation of (3.30) into the right side of the second equation of (3.30) and

get:

< L(uh − û), Lvh > +
1

2
< uh − û,vh >= 0. (3.31)

Comparing with (3.28) yields uh = ũh, which proves the lemma.

Notice that the weak form induced by minimizing the graph functional involves the exact

solution, û, which is not computable, while the weak form associated with Hybrid functional is

computable.

Next, we show that, when Vh is not contained in L∗(Wh), ‖uh − ũh‖G converges faster than

the Hybrid functional. This result requires an addition regularity assumption.
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Theorem 9. Assume that LL∗ has full H2-regularity. If (wh,uh) is the solution of discrete weak

form (3.29), then

‖uh − ũh‖G ≤ ChH
(

(wh,uh); (û, f)
) 1

2 ≤ C1h
r+1‖ŵ‖r+1 + C2h

s+1‖û‖s+1, (3.32)

for 0 < r ≤ q and 0 < s ≤ p, where C1, C2 > 0 are generic constants.

Proof. From (3.30), it is easy to see that the weak problem induced by minimizing the Hybrid

functional can also be written as

< L∗(wh − ŵ)− 1

2
(uh + û), L∗zh > = 0, ∀zh ∈ Wh, (3.33)

< L(uh − û), Lvh > + < uh − L∗wh,vh > = 0, ∀vh ∈ Vh. (3.34)

The weak problem associated with minimizing the graph norm is:

< L(ũh − û), Lvh > +
1

2
< ũh − û,vh >= 0, ∀vh ∈ Vh (3.35)

Subtract (3.35) from (3.34) to obtain, ∀vh ∈ Vh,

< L(uh − ũh), Lvh > +
1

2
< uh − ũh,vh >=< L∗wh − 1

2
(uh + û),vh > (3.36)

Let vh = uh − ũh and use (3.33) to obtain, ∀zh ∈ Wh,

‖L(uh − ũh)‖2 +
1

2
‖uh − ũh‖2 = < L∗wh − 1

2
(uh + û),uh − ũh >

= < L∗wh − 1

2
(uh + û),uh − ũh − L∗zh >

≤ ‖L∗wh − 1

2
(uh + û)‖ · ‖(uh − ũh)− L∗zh‖

Estimate the two terms of the right hand side above separately. For the first term, add and

subtract L∗ŵ = û and use the triangle inequality, and the coercivity bound (3.9) , to obtain

‖L∗wh − 1

2
(uh + û)‖2 =

1

4
‖(L∗wh − û) + (L∗wh − uh)‖2

≤ 1

4

(
‖L∗wh − û‖+ ‖L∗wh − uh‖

)2

≤ 1

2
H
(

(wh,uh); (û, f)
)



41

For the second term, let L∗z = uh − ũh, then

inf
zh∈Wh

‖(uh − ũh)− L∗zh‖ ≤ inf
zh∈Wh

‖L∗(z− zh)‖

≤ inf
zh∈Wh

C‖z− zh‖1 ≤ Ch‖z‖2

≤ Ch‖LL∗z‖ = Ch‖L(uh − ũh)‖

≤ Ch

(
‖L(uh − ũh)‖2 +

1

2
‖uh − ũh‖2

)1/2

.

Note that we get the inequalities above by applying continuity of L∗, finite element interpolation

estimates and the full H2 regularity of LL∗. The proof is completed by combining the estimates of

the two terms and using (3.23) .

Remark 8. If we choose Wh to be of the same order polynomials as Vh, that is let p = q, then

‖uh − ũh‖G is of convergence order O(hp+1).

3.2.4 Convergence of Superposition with Nested Iteration

Using superposition with nested iteration (i.e. use the approximation from the previous

coarser grid, u2h, as superposition function), will remarkably accelerate the convergence rate of

‖uh − ũh‖. Instead of solving the Hybrid first order system

Luh = f

L∗wh = uh

L∗wh = û,

(3.37)

we solve

Luh = f

L∗wh = δuh = uh − u2h

L∗wh = δû = û− u2h.

(3.38)

The corresponding minimization problem now becomes: find (wh,uh) ∈ Wh × Vh such that

(wh,uh) = argmin ‖L∗wh − (û− u2h)‖2 + ‖L∗wh − (uh − u2h)‖+ ‖Luh − f‖2. (3.39)
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The following theorem is the analytically explanation of why superposition achieves higher

order convergence.

Theorem 10. Assume that LL∗ has full H2-regularity. If (wh,uh) is obtained by minimizing the

Hybrid functional with superposition, (3.39), then

‖uh − ũh‖G ≤ Ch2
(

1
2‖u

h − û‖1 + ‖u2h − û‖1
)

≤ Ch2H((wh,uh); (û, f))
1
2 .

(3.40)

Proof. Similar to (3.33) and (3.34), the weak form from of (3.39) is:

< L∗wh − 1

2

(
(uh − u2h) + (û− u2h)

)
, L∗zh >= 0, ∀zh ∈ Wh, (3.41)

< Luh − f , Lvh > + < uh − u2h,vh >=< L∗wh,vh >, ∀vh ∈ Vh. (3.42)

Rearranging (3.42) yields, ∀v ∈ Vh,

< L(uh − û), Lvh > +
1

2
< uh − û,vh > (3.43)

= < L∗wh − 1

2

(
(uh − u2h) + (û− u2h)

)
,vh >

Subtract the weak form associated with the graph functional, (3.28), from (3.42) and apply (3.41)

to obtain, ∀vh ∈ Vh, zh ∈ Wh,

< L(uh − ũh), Lvh > +
1

2
< uh − ũh,vh > (3.44)

= < L∗wh − 1

2

(
(uh − u2h) + (û− u2h)

)
,vh >

= < L∗wh − 1

2

(
(uh − u2h) + (û− u2h)

)
,vh − L∗zh > .

Set vh = uh − ũh to get, ∀zh ∈ Wh,

1

2
‖uh − ũh‖2 + ‖L(uh − ũh)‖2 (3.45)

= < L∗wh − 1

2

(
(u− u2h) + (û− u2h)

)
, (uh − ũh)− L∗zh > .

We next consider two auxiliary problems. Find w ∈ W, such that

L∗w =
1

2

(
(uh − u2h) + (û− u2h)

)
=

1

2
(uh − û) + (û− u2h). (3.46)
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Find z ∈ W, such that

L∗z = uh − ũh (3.47)

Equation (3.41) implies, for 0 < s ≤ q,

‖L∗(wh −w)‖ = inf
wh∈Wh

‖L∗(wh −w)‖ ≤ ‖L∗(Ihw −w)‖ (3.48)

≤ C‖Ihw −w‖1 ≤ Chs‖w‖s+1 (3.49)

= Chs‖1

2
(uh − û) + (û− u2h)‖s (3.50)

≤ Chs
(

1

2
‖uh − û‖s + ‖u2h − û‖s

)
(3.51)

We also get

inf
zh∈Wh

‖(uh − ũh)− L∗zh‖ = inf
zh∈Wh

‖L∗(zh − z)‖ ≤ ‖L∗(Izh − z)‖ (3.52)

≤ C‖Ihz− z‖1 ≤ Ch‖z‖2 (3.53)

≤ Ch‖uh − ũh‖1 (3.54)

≤ Ch

(
1

2
‖uh − ũh‖2 + ‖L(uh − ũh)‖2

)1/2

. (3.55)

Plugging (3.48) and (3.52) into (3.45) yields(
1

2
‖uh − ũh‖2 + ‖L(uh − ũh)‖2

)1/2

≤ Chs+1

(
1

2
‖uh − û‖s + ‖u2h − û‖s

)
. (3.56)

Let s = 1 to obtain(
1

2
‖uh − ũh‖2 + ‖L(uh − ũh)‖

)1/2

≤ Ch2

(
1

2
‖uh − û‖1 + ‖u2h − û‖1

)
. (3.57)

The assumption of regularity implies the result. Alternatively, one may set s = 0 in (3.56 ) and

use enhanced L2 convergence from Theorem 8.

3.3 Numerical Results

In this section, we study cases where FOSLS formulation has limitations, while hybrid-FOSLS

performs well. We give both numerical results and some analysis to explain the observed numerical

phenomena. Our first set of numerical tests are for steady state Stokes equations in a long thin
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tube with width equal to 1 as in Figure (5.1), where E, S, W , N denote east, south, west, north

boundary, respectively, and D denotes the domain length.

The equations are:

−∆u +∇p = f in Ω,

∇ · u = g in Ω,

(3.58)

with boundary conditions:

n× u = 0,n · u = b, [W ];

n× u = 0,n · u = 0, [N,S];

n× u = 0,n · σn = 0, [E];

(3.59)

where p is pressure normalized by viscosity, u = (u1, u2)t is velocity and σ := −pI+ 1
2

(
∇u + (∇u)t

)
is the stress tensor. Right-hand side f is a given vector function, g and b are given scalar functions,

and n is outward unit normal vector. Throughout this paper, all vectors are column vectors; ∇

always takes a scalar function to a column vector function; ∇·, ∇× always operate on column

vectors.

The second order Stokes equations (3.58) are recast to an equivalent first-order system,

the velocity/velocity-gradient/pressure formulation, by introducing an additional variable,

velocity-gradient

U = ∇ut = (∇u1,∇u2) =

 U11 U21

U12 U22

 .

Notice that U is a 2×2 tensor matrix in 2D. Notice also the nonstandard numbering of the elements

of U.

The first-order system is

U−∇ut = 0, in Ω,

−(∇ ·U)t +∇p = f , in Ω,

∇ · u = g, in Ω,

∇(trU) = ∇g, in Ω,

∇×U = 0, in Ω,

(3.60)
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with boundary conditions

U22 = 0, U12 = ∂b
∂y [W ]

U11 = 0, U21 = 0 [N,S]

U22 = 0, U11 = p [E]

(3.61)

where trU := U11 + U22, stands for the trace of the matrix U. The fourth and fifth equations in

(3.60) are auxiliary equations derived from the first and second equations in (3.60). Thus, they are

consistent with the original system. By adding these extra equations, (3.60) becomes a H1 equiv-

alent first-order system [21]. Boundary conditions for U and p are directly derived from original

boundary conditions. From now on, we use velocity-gradient in short for velocity/velocity-

gradient/pressure formulation.

According to the FOSLS formulation above, the FOSLS functional we are minimizing is

F(U,u, p; f , g) = ‖f + (∇ ·U)t −∇p‖2 + ‖U−∇ut‖2 + ‖∇ ×U‖2

+‖∇ · u− g‖2 + ‖∇tr(U)−∇g‖2

It has been proved in [21] that, under general H2-regularity assumptions and with boundary

conditions that are smooth enough, F(U,u, p; 0, 0) is continuous and coercive in the product H1

norm:

‖U‖21 + ‖u‖21 + ‖p‖21.

In our numerical tests, we use a two-stage velocity-gradient formulation:

Stage 1: solve for U and p,

−(∇ ·U)t +∇p = f

∇×U = 0

∇(trU) = ∇g.

(3.62)

Stage 2: solve for u, with U computed from the first stage as a known variable,

∇u = U

∇ · u = g.

(3.63)
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At the first stage, we minimize

F (1)(U, p; f , g) = ‖f + (∇ ·U)t −∇p‖2 + ‖∇ ×U‖2 + ‖∇tr(U)−∇g‖2

and, at the second stage, minimize the functional

F (2)(u; U, g) = ‖∇ut −U‖2 + ‖∇ · u− g‖2.

In fact, F (1)(U, p; 0, 0) is uniformly equivalent to ‖U‖21 + ‖p‖21 and F (2)(u; 0, 0) is uniformly equiv-

alent to ‖u‖21. This implies that solving the Stokes equations in a two-stage process yields the same

optimal finite element convergence as solving them simultaneously.

To simplify the first-order system and to better enforce the conservation constraint, trU =

U11 + U22 = ∇ · u = 0, the constraint U22 = −U11 is enforced throughout this paper. Thus, the

simplified primal first-order system is:

L



U11

U12

U21

p


=



∂x ∂y 0 −∂x

−∂y 0 ∂x −∂y

−∂y ∂x 0 0

−∂x 0 −∂y 0





U11

U12

U21

p


=



f1

f2

f3

f4


= F, (3.64)

with the following boundary conditions,

U11 = 0 [W,N, S,E]

U12 = 0 [W ]

U21 = 0 [N,S]

p = 0 [E].

(3.65)

We specify exact solutions and apply the differential operator to obtain the right hand side,

f , as follows:

The adjoint first-order system is obtained from the primal first-order system by integration

by parts, such that for any w ∈ W, u ∈ V, < L∗w,u >=< w, Lu >. This implies all the

boundary terms coming from integration by parts must be zero to make the equality hold. Applying
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Given Solution Right Hand Side

U11 = sin(πxD ) sin(πy),
U12 = sin(πxD ) cos(πy),
U21 = cos(πxD ) sin(πy),
p = 2(D − x)

f1 = π sin(πy)[cos(πxD )/D − sin(πxD )] + 2,
f2 = −π sin(πxD )[cos(πy) + sin(πy)/D],
f3 = π cos(πy)[cos(πxD )/D − sin(πxD )],
f4 = −π cos(πxD )[cos(πy) + sin(πy)/D]

homogeneous boundary conditions for primal variable u (where, in all our numerical tests, u here is

the solution from superposition), we get boundary constraints for adjoint variable, w. The adjoint

first-order system of (3.64) is:

L∗



w1

w2

w3

w4


=



−∂x ∂y ∂y ∂x

−∂y 0 −∂x 0

0 −∂x 0 ∂y

∂x ∂y 0 0





w1

w2

w3

w4


=



U11

U12

U21

p


, (3.66)

with boundary conditions

w1 = 0 [W,N, S]

w2 = 0 [W,N, S,E]

w3 = 0 [E].

(3.67)

With both the primal and adjoint systems, we are ready to minimize the Hybrid functional

(3.3) and solve the linear system computed from (3.5).

Consider the limitations of FOSLS in this context. The H1-ellipticity of FOSLS only implies

c0‖eh‖1 ≤ ‖Luh − f‖ = ‖Leh‖ ≤ c1‖eh‖1. (3.68)

Ideally, if c0 = O(1), minimizing ‖Luh − f‖ over Vh is essentially equivalent to minimizing ‖eh‖1.

However, if this is not the case, for example, if coercivity constant c0 is very small, it is possible

for ‖eh‖1 � ‖Luh − f‖. While ‖Luh − f‖ is very small, ‖uh − û‖1 can still stay large.

The following numerical results are for Stokes equations in a long tube and show how the

FOSLS functional and L2 error converge with domain lengths D equal to 16, 24, 32. To exclude

the affect that the the domain length has on the size of the exact solution, the relative FOSLS

functional, ‖Luh − f‖/‖f‖, and relative L2 error, ‖uh − û‖/‖û‖, are examined in Figure [3.7].



48

Figure 3.7 displays the relative FOSLS functional and relative L2 error on a sequence of

uniformly refined grids. Here, bilinear elements are used and, as expected, the FOSLS functional

converges with O(h). The relative L2 error is essentially not reduced until the grid is highly

refined. This phenomenon grows more pronounced as the tube becomes longer. Note that the rate

of convergence of the L2 error eventually becomes enhanced, as predicted by Theorem 8.

The question now is under what conditions will the coercivity constant, c0, be small? How

small it can be? We cannot precisely answer the question. However, for the velocity-gradient

form of Stokes equations, the following example demonstrates c0 ≤ O(D−3).

Denote U = (U11, U12, U21, p)
t. Manipulating the Stokes operator L yields

L



U11

U12

U21

p


=



∂x ∂y 0 −∂x

−∂y 0 ∂x −∂y

−∂y ∂x 0 0

−∂x 0 −∂y 0





1

1

1

−1 1





1

1

1

1 1





U11

U12

U21

p



=



2∂x ∂y 0 −∂x

0 0 ∂x −∂y

−∂y ∂x 0 0

−∂x 0 −∂y 0





U11

U12

U21

p+ U11


Define p̃ = p + U11 and let f(s) be any smooth function. Specify U and apply the differential

operator to obtain the right hand side, F, as follows:

Given Solution: Right Hand Side

U11 = y(1−y)
D2 f ′′( xD ),

U12 = (1−2y)
D f ′( xD ),

U21 = 0,
p̃ = −2f( xD )

f1 = 2y(1−y)
D3 f ′′′( xD ),

f2 = 0,
f3 = 0,

f4 = −y(1−y)
D3 f ′′′( xD )
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Clearly, for this choice of U ,

c0 ≤
‖LU‖
‖U‖

≤ C

D3
, (3.69)

where constant C > 0 is independent of D.

Unlike FOSLS, the hybrid-FOSLS functional controls both the L2 error and FOSLS functional

very well. Recall that hybrid-FOSLS is elliptic in H-norm, which implies

1

3
‖(ε, e)‖H ≤ H ((w,u); (û, f)) ≤ 3‖(ε, e)‖H,

where, ‖(ε, e)‖2H = ‖L∗ε‖2 + ‖e‖2 + ‖Le‖2. Because the continuity and coercivity constants are

mild and independent of the size of the domain, if the hybrid-FOSLS functional is small, the L2

error and FOSLS functional cannot be large.

This is demonstrated in Figure 3.8 where results for FOSLS alone are superimposed with

results for hybrid-FOSLS. FOSLS alone yields the FOSLS functional in green and the L2 error

in red. All three terms of the hybrid-FOSLS results are displayed. Note that the FOSLS term

computed by FOSLS alone (green) and computed by the hybrid-FOSLS (blue) lie almost on top

of each other. However, the L2 error computed by FOSLS alone (red) is much larger than the L2

error computed by hybrid-FOSLS (black). This becomes more pronounced as the tube gets longer.

Finally, Theorem 9 predicts that, with superposition, the solution computed by hybrid-

FOSLS approaches ũh, the optimal finite element solution in the graph norm, much faster than the

Hybrid functional converges to zero. To be precise, Theorem 10 predicts

‖uh − ũh‖G ≤ Ch2
(
‖L∗(wh − ŵ)‖2 + ‖uh − û‖2 + ‖L(uh − û)‖2

)1/2
. (3.70)

Figure 3.9 displays ‖uh − û‖G and ‖uh − ũh‖G on a sequence of uniformly refined grids using

biquadratic elements. The former converges with O(h2), as predicted, while the latter converges

with O(h6), which is faster than the the predicted O(h4). This may be due to the very smooth

exact solution, û.
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(a) bilinear

(b) biquadratic

Figure 3.1: Plot of Pressure from Stokes Equations: D = 16, Bilinear vs. Biquadratic Elements
h = 1/4
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(a) bilinear

(b) biquadratic

Figure 3.2: Plot of Pressure from Stokes Equations: D = 16, Bilinear Elements h = 1/8
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(a) bilinear

(b) biquadratic

Figure 3.3: Plot of Pressure from Stokes Equations: D = 16, Bilinear Elements h = 1/16
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(a) bilinear

(b) biquadratic

Figure 3.4: Plot of Pressure from Stokes Equations: D = 16, Bilinear Elements h = 1/32
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(a) bilinear

(b) biquadratic

Figure 3.5: Plot of Pressure from Stokes Equations: D = 16, Bilinear Elements h = 1/64
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Figure 3.7: Convergence Rate of FOSLS Functional and L2 Error, FOSLS Formulation, q1 Elements
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Figure 3.8: Convergence Rate of FOSLS Functional and L2 Error: FOSLS vs. Hybrid
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Figure 3.9: Convergence Rate: ‖uh − û‖G vs. ‖uh − ũh‖G, Hybrid Formulation, q2 Elements



Chapter 4

Hybrid-FOSLS for Stokes Equations in a Backward-step Domain

Hybrid-FOSLS method is first inspired by the success on mass conservation using a two-stage

FOSLS method combined with FOSLL* [34]. Heuristically, FOSLS method minimizes ‖Luh − f‖

and when L is an H1-equivalent operator, ‖Luh − f‖ ≈ |e|1; while FOSLL minimizes the adjoint

equation ‖L∗wh − û‖ ≈ ‖e‖. Thus, if we use H1 conforming finite elements and the solution is

not in H1, the numerical solution can never converge to the exact solution; while for FOSLL*, the

exact solution û is approximated by L∗wh, with wh ∈ H1, thus FOSLL* allows more flexibility to

find solutions with reduced smoothness.

In this chapter, we first introduce regularity analysis for PDEs on a domain with re-entrant

corner, we then introduce basics of adaptive mesh refinement based on FOSLS, in the last section

we present numerical results.

4.1 Issues with Corner Singularities

Singularities in PDEs solutions exist when

• Certain coefficients in the PDEs are discontinuous (e.g. oil reservoir with different geologic

structures modeled by diffusion equation with jumping discontinuous diffusion coefficient);

• The angle within the domain where Dirichlet and Neumann boundary conditions meet at

the boundary is greater than π
2 ;

• There is a re-entrant corner (i.e. the angle within the domain is greater than π).
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A lot of research has been done in the least-squares finite elements setting, such as based on the

analytical singular solutions, include discrete version of singular basis functions into the standard

finite element spaces [10]; FOSLL* method which minimizes the error’s L2-norm in the range of the

adjoint variable L∗(W), thus allow a certain singular in the solutions gradient [34, 40]; weighted-

FOSLS method [43] which establish the ellipticity in a weighted Sobolev norm, thus the piecewise

polynomial basis functions are dense in the new space.

Our focus in this section is on singularity that is from a re-entrant corner and our approach

is mainly based on the research on FOSLL* and weighted-FOSLS method for singular problem.

We first introduce the analytical solutions for both Laplace and Stokes equations on a domain

with re-entrant corner, then introduce theorems on weighted Sobolev spaces which serve as the

theoretical base for our weighting method in the Numerical Test subsection later.

The backward step domain that is within the region [0, 1]2 is shown below. Notice that the

inner angle γ = 3π
2 , thus the point (0, 0) is a singular point.

γ
x

y

0 1

−1

1

−1

Figure 4.1: Forward Step Domain within the Region [−1, 1]2, with the singular point at (0, 0) and
the Re-entrant Corner of degree: γ = 3π

2 .
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4.1.1 Laplace Equation

Consider the scalar Laplace equation with Dirichlet homogeneous boundary conditions on

the domain shown by Figure (4.1):

∆u = 0, in Ω,

u = 0, on ∂Ω.

(4.1)

Behavior around corner:

To better grasp the nature of the solution in a domain like Fig 4.1, we cast the problem in a polar

coordinates (r, θ) that has the origin at the re-entrant corner. Thus, conventionally, r is distance

between any point in the domain to the re-entrant corner, and θ denotes the angle between the

vector x and the vector pointing from the origin to the point. With the denotation, we let

u(x, y) = φ(r, θ).

We solve the homogeneous Laplace equation by the method of separation of variables, that is to

assume

φ(r, θ) = M(r) ·N(θ).

Since Laplace operator in the polar coordinates is:

∆ =

(
∂rr +

1

r
∂r +

1

r2
∂θθ

)
, (4.2)

Equation 4.1 can be written as(
∂rr +

1

r
∂r +

1

r2
∂θθ

)
(M(r)N(θ)) = 0.

Simplify the equation above,

MrrN + Mr
r N + 1

r2MNθθ = 0

r2MrrN + rMrN +MNθθ = 0.
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Assume M,N are not equal to 0 (since we do not care about the trivial solution φ(r, θ) = 0) and

separate the terms involving different variables r, θ, we have:

r2Mrr + rMr

M
= −Nθθ

N
= λ,

where λ is a generic constant. Thus, we get two ordinary differential equations (ODEs):

r2Mrr + rMr − λM = 0, (4.3)

Nθθ + λN = 0. (4.4)

The second one is the standard homogeneous linear ODE, use its characteristic equation, it is easy

to see the solutions are

N(θ) = C1 sin(
√
λθ) + C2 cos(

√
λθ),

where C1 and C2 can be any constants.

The first one is the Euler’s equation and can be solved through change of variable, i.e. let

t = ln r, M(r) = w(t).

Since,

Mr = w′ · 1
t ,

Mrr = 1
r2 (w′′ − w′),

apparently, Eqn (4.3) is equivalent to

w′′ − λw = 0.

Solve by using the characteristic equation again, we have

w = C1e
√
λt + C2e

−
√
λt,

thus,

M(r) = C1r
√
λ + C2r

−
√
λ. (4.5)

Combine the results above and notice that, without the loss of generality, we can let
√
λ = α, for

certain α > 0, which leads to:

φ(r, θ) =
(
C1r

α + C2r
−α) (C3 sin(αθ) + C4 cos(αθ)) . (4.6)
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At this step, it is clear that the solution is composed of its singluar part:

φs(r, θ) := C2r
−α (C3 sin(αθ) + C4 cos(αθ)) ,

and the non-singluar part:

φ0(r, θ) := C1r
α (C3 sin(αθ) + C4 cos(αθ)) .

φs(r, θ) is a singluar solution, since when r goes to zero (the point get close to the corner), r−α

blows up to infinity. From now on we focus ourselves only on the singular solution φs. Applying

the boundary condition, φs(r, θ) = 0 at θ = 0, we have:

φs(r, θ) = C2C4r
−α = 0.

Thus, we have C4 = 0. For the simplicity, denote C = C2C4 as a non-zero generic constant. When

θ = 3
2π,

φs(r, θ) = Cr−α sin(
3α

2
π) = 0.

Notice we have required that α > 0, the equation above implies that 3α
2 = k, where k = 1, 2, 3, . . . ,

therefore

φs(r, θ) = Cr−α sin(αθ),

where α = 2k
3 , with k = 1, 2, 3, . . . .

Remark 9. We can get more information about C, α by applying other boundary conditions which

do not touch the singluar point. However this is not necessary to study the solutions caused by

the re-entrant corner. For example, think about that we have a domain with boundaries θ = 0 and

θ = 3π
2 and extend to whole R2 plane, it is apparent that boundaries that are far away from the

singluar point do not affect the singluar solution.
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4.1.2 Stokes Equation

Consider Stokes Equations with homogeneous boundary condition on the domain as in 4.1:

−∆u +∇p = 0, in Ω, (4.7)

∇ · u = 0, in Ω, (4.8)

u = 0, on ∂Ω. (4.9)

Since ∇ · u = 0 and trivially,
∫
∂Ω u · n = 0, by Helmholtz Decomposition (Theorem 16,

Appendix), there exists φ ∈ H1 such that u = ∇⊥φ. The boundary condition:

∇⊥φ =

 ∂yφ

−∂xφ

 = 0, on ∂Ω

implies that, on the boundary ∂Ω,

t · ∇φ = 0, (4.10)

n · ∇φ = 0. (4.11)

Eqn (4.10) implies that φ equals to some constant along the boundary ∂Ω. Without loss of gener-

ality, we let

φ = 0, on ∂Ω.

With the help of φ, (4.7) can be recast to

−∆(∇⊥φ) = 0,

which is equivalent to

∇⊥(−∆φ) = 0. (4.12)

Apply ∇× to both sides of (4.12), we have the following biharmonic boundary problem of φ:

−∆2φ = 0, in Ω,

φ = 0, on ∂Ω,

n · ∇φ = 0, on ∂Ω.
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Recall that, the Laplacian ∆ in polar coordinates (r, θ) is with the following form:

∆ = ∂rr +
1

r
∂r +

1

r2
∂θθ.

Assume φ(r, θ) = rαN(θ), use N ′ denote Nθ, N
′′ denote Nθθ and so on, we have:

∆φ = α(α− 1)rα−2N(θ) + αrα−2N(θ) + rα−2N ′′(θ)

= rα−2(α2N +N ′′),

thus,

∆2φ = (α− 2)2rα−4(α2N +N ′′) + rα−4(α2N +N ′′)′′

= rα−4
[
(α− 2)2α2N +

(
(α− 2)2 + α2

)
N ′′ +N ′′′

]
−∆2φ = 0 implies,

(α− 2)2α2N +
(
(α− 2)2 + α2

)
N ′′ +N ′′′ = 0 (4.13)

Again, as for Laplace equation in Subsection 4.1.1, Eqn 4.13 is a standard homogeneous linear

ODE. Solve by using its characteristic equation, we have the generic solution of (4.13):

N(θ) = C1 cos(αθ) + C2 sin(αθ) + C3 cos((α− 2)θ) + C4 sin((α− 2)θ), (4.14)

where C1, C2, C3, C4 are constants to be determined by the boundary conditions.

Apply the boundary conditions:

N(0) = 0, N(3π
2 ) = 0,

N ′(0) = 0, N ′(3π
2 ) = 0,

and combine (4.14), we obtain

cos(0) sin(0) cos((α− 2)0) sin((α− 2)0)

−α sin(0) α cos(0) −(α− 2) sin(0) (α− 2) cos(0)

cos(αγ) sin(αγ) cos((α− 2)γ) sin((α− 2)γ)

−α sin(αγ) α cos(αγ) −(α− 2) sin((α− 2)γ) (α− 2) cos((α− 2)γ)





C1

C2

C3

C4


=



0

0

0

0


.

(4.15)
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Since (4.15) has a non-zero solution if and only if the above matrix is singular, we let the

determinant of the left-hand-side of (4.15) equal to zero and get:

2α(α− 2)−
(
(α− 2)2 + α2

)
sin(αγ) sin ((α− 2)γ)− 2α(α− 2) cos(αγ) cos ((α− 2)γ) = 0,

where γ = 3π
2 as in Figure (4.1). Furthur simplification leads to

α(α− 2) + sin2(αγ) = 0.

Numerical solutions of the above equation can be easily found by finding the intersection

points in Figure 4.1.2. The values of α are given in Table (4.1.2).

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

 

 
−x(x−2)

sin2(3pi/2)

Figure 4.2: Finding Roots of α for Singular Solution of Stokes Equation: φ(r, θ) = rαt(θ) in a
Domain with a Re-entrant Corner

Notice that, φ(r, θ) is of the form, φ(r, θ) = rα · t(θ), where t(θ) is a trigonometric function

of θ. Thus by (C.4), φ ∈ Hα−ε(Ω), for all ε > 0 that is small enough. This implies that, in general,

u = ∇⊥φ ∈ Hα−ε(Ω).



65
α1 α2 α3 α4 α5 α6

0 0.0914708 0.4555516 1.54448 1.90853 2

Table 4.1: Values of α for Singular Solution of Stokes Equation: φ(r, θ) = rαt(θ) in a Domain with
a Re-entrant Corner

4.1.3 Weighted Sobolev Space and Convergence Theory

Define the weighted Sobolev space Hk,β(Ω) as

Hk,β(Ω) = {q ∈ L2(Ω) : for |j| ≤ k, rβ−k+jDjq ∈ L2(Ω)}, (4.16)

where j = (j1, j2, j3) should be understand as the index and |j| = j1 + j2 + j3 and r is the

distance to the singluar point.

Hk,β(Ω) is a Hilbert space with the norm

‖q‖k,β :=

∑
|j|≤k

‖rβ−k+jDjq‖20

1/2

. (4.17)

For example we have the following:

‖q‖0,β = ‖rβq‖0,

‖q‖1,β =
(
‖rβD1q‖20 + ‖rβ−1q‖0

)1/2
,

‖q‖2,β =
(
‖rβD2q‖20 + ‖rβ−1D1q‖20 + ‖rβ−2q‖0

)1/2
.

(4.18)

The weighted norms above can be easily memorized by noticing that they are very similar to the

non-weighted Sobolev norms with the exception that the highest differential order term is weighted

by rβ and the the degree of r reduces as the differential order of the function reduces.

The convergence theory of weighted-FOSLS method for elliptic problems are established

in [39]. The major theorem in [39] is the following:

Theorem 11. If uh ∈ Vh is the minimizer of

Gw(uh; f) := ‖Luh − f‖20,β = ‖rβ(Luh − f)‖20,
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where |1− β| < α, then we have the following error estimates

‖û− uh‖1,β ≤ Chα+β−1‖û‖α+β,β , (4.19)

Gw(û− uh; 0)1/2 ≤ Chα+β−1‖û‖α+β,β , (4.20)

‖û− uh‖0 ≤ Chα (|û|α + ‖û‖α+β,β + ‖û‖α−β+2,2−β) , (4.21)

where α+ β ≤ k + 1 and k is the degree of piecewise polynomial in finite element space Vh.

The theorem above is important for it guides us to choose the right weighting order for

r in order to achieve optimal finite element convergence rate based on the degree of piecewise

polynomials used as basis functions.

The notations and theorems introduced here are enough for the purpose of this thesis. For a

comprehensive introduction on weighted Sobolev spaces, we refer to [37].

4.2 Adaptive Mesh Refinement for Hybrid-FOSLS

The adaptive mesh refinement strategies we use for our numerical tests is the so-called

“accuracy-per- computational-cost-efficiency” (ACE) method, which is based on FOSLS method in

conjunction with algebraic multigrid (AMG) and in the nested iteration (NI) context. Equipped

with the a posteriori error estimates FOSLS offers without extra cost, ACE estimates the AMG

computational cost to solve the linear system; an “error reduction per computational cost” can

thus be estimated to guide the refinement.

This concept can be summarized as:

Solve ⇒ Estimate ⇒ Mark ⇒ Refine

Besides to refine based on both error reduction and computational cost, another core idea of

ACE is to achieve an “optimal” hierarchy of grids, that is to get a certain error on the whole domain

with minimal possible number of elements. In 1D it has been proved that this can be achieved by

equally distribute error on all elements. Numerical results in [4] suggests a similar conclusion.
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The most remarkable advantage of this FOSLS-based adaptive mesh refinement strategy lie

in that the local FOSLS functional ‖Lu− f‖τ computed on each piece of element serves as the error

estimate and there is no need for any additional cost to compute the estimate, which is not the

case for other adaptive mesh refinement strategies.

Earlier research on adaptive mesh refinement is mainly based on the reduction of error itself

with little attention on the computational cost involved. There are several algorithms,

• marking an element for refinement if the estimated error on it surpasses a certain factor of

the largest error on one element at the current refine level.

• a “threshold-hold” based method, which searches a minimal set of elements, such that the

sum of error-squared is bigger than a certain factor of error-squared on all elements in

current level; then all the elements in this set are marked for refinement.

We introduce the basics of ACE applied with FOSLS method in this section and its Hybrid-

FOSLS analog is presented in 4.3.2.

For a PDE system that is already reformulated into a first-order system Lu = f , the FOSLS

functional is

F(u; f) := ‖Lu− f‖20,Ω =
∑
i

‖Lu− f‖20,τi ,

where τi denotes the i’th element.

Denote

Fi(u; f) := ‖Lu− f‖20,τi

and further assume the linear operator L is continuous and coercive with respect to a certain norm

V, that is: there exist the coercivity constant c0 and continuity constant c1 which are independent

of the mesh size h and the function u, such that

c0‖u‖V,Ω ≤ ‖Lu− f‖0,Ω ≤ c1‖u‖V,Ω.

It is shown that as the error indicator, the FOSLS functional is locally sharp and globally
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reliable. By the continuity of L,

Fi(uh − û; 0)1/2 ≤ c1‖uh − û‖V,τi .

Notice that the inequality holds locally on each element and in most cases ‖ · ‖V is ‖ · ‖1. The

locally sharpness implies that when the FOSLS functional is large the error’s H1 norm on the local

element is large, and needs to be refined.

On the other hand, the global reliability

c0‖u‖V,Ω ≤ ‖Lu− f‖0,Ω,

implies if the FOSLS functional is small enough, the H1 error has to be small, too. Thus, if the

error indicator suggests the global error is under control, the refinement process can stop.

Noticeably, the ACE adaptive mesh refinement strategy has also been implemented for paral-

lel machine, with nice load balancing and excellent scalability. Interested readers can refer to [36,50].

4.3 Numerical Results

4.3.1 Mass Conservation

Consider the steady state Stokes equations on a 2D backward-step domain, Ω, shown in figure

(4.3). The domain is of 10 × 1 with a 2 × 0.5 rectangle removed from the corner of bottom left.

Also, denote W, E, S, N, V, H as boundaries indicated in (4.3).

x

y

0 10

1

2

0.5

S

N

W
E

H V

Figure 4.3: Backward Step Domain within the Region [0, 10] × [0, 1], with the Singular point at
(2, 0.5) and the Re-entrant Corner of Degree 3π

2 ;

The simplified FOSLS (primal) system and FOSLL* (adjoint) systems are the same as (3.64)

and (3.66) respectively, with slightly different boundary conditions specified as follows.
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For primal variables, we give parabolic velocity for the inflow, such that its integration along

the inflow boundary equals to 0.8 for the convenience. That leads to the following boundary

conditions for the primal variables:

U11 = 0, [W,N, S,E,H, V ],

U12 = 57.6− 76.8y, [W ],

U12 = 0, [V ],

U21 = 0, [N,S,H],

p = 0, [E],

(4.22)

and

w1 = 0, [W,N, S,H, V ],

w2 = 0, [W,N, S,E,H, V ],

w3 = 0, [E],

(4.23)

for adjoint variables.

Since the domain has a re-entrant corner, the solution has a singularity at the point (2, 0.5)

and the analytic solution is not available. Although we cannot compare FOSLS and hybrid-FOSLS

by looking directly at the error, we can still compare them on mass conservation by measuring the

the fractional change of mass flow:

∫
Γi

(n · u) dΓi −
∫

Γ0
(n · u) dΓ0∫

Γ0
(n · u) dΓ0

, (4.24)

where Γ0 is the inflow boundary and Γi’s are the lines, x = xi, are the outflow boundaries, that are

according to the red lines in Figure (4.4).

x

y

0 1.0 2.5 5.0 7.52.0 10

0.5

1.0

Figure 4.4: Backward Step Domain with Outflow Sections at x = 1.0, 2.5, 5.0, 7.5, 10.0



70

For problems with singularities, such as the backward-step domain problem we have here,

the exact solutions may not be in H1. Thus, in either Galerkin or least-squares formulation,

using H1-conforming finite element spaces may not lead to convergence. Numerical solutions don’t

approximate the exact solutions well, not only in regions near the singular points, but also regions

far away from them, which is known as “pollution effect”. Remedies for the loss of H1-regularity

in FOSLS can be found in [10,23,40,43,44]

By similar approach in [43], we introduce two weighting functions, w1, w2, with the form

wi(r) =


rαi , if r < ε/2

q(r), if ε/2 ≤ r < ε

1, if ε ≤ r

(4.25)

where i = 1, 2 and αi is to be chosen according to the regularity of exact solutions and finite element

spaces.

Instead of standard FOSLS and standard hybrid-FOSLS approach, we minimize weighted

FOSLS and hybrid-FOSLS functionals respectively:

‖w1(Luh − f)‖2, (4.26)

for weighted FOSLS over finite element space Vh and

‖L∗wh − û‖2 + ‖w2(L∗wh − uh)‖2 + ‖w1(Luh − f)‖2, (4.27)

for weighted hybrid-FOSLS over Wh × Vh.

The reason that we are not weighting the FOSLL* term in Hybrid functional is due to the

technical difficulties to weight FOSLL*. If we weight FOSLL* equation to obtain the following:

wL∗w = wû,

and minimize the weighted FOSLL* functional, ‖w(L∗w− û)‖2. The associated weak problem will

be: find w ∈ W, such that

< wL∗w, wL∗z >=< wû, wL∗z >, for all z ∈ W. (4.28)
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We cannot use the < û, L∗z >=< f , z > trick as we did for FOSLL*, since the resulting weak form

involves L(w2û) which is unkown. Thus, using the same approach to weight FOSLL* as to weight

FOSLS is not possible.

Analytical results in [28] show that for Stokes equations on a backward-step domain, the

singular solution is of the form Crsψ(θ) in polar coordinates, where C is a constant, ψ(θ) is a

trigonometric function and s ≈ 1.5445. The analysis in Appendix C.3 suggests that approximately,

û ∈ H0.5445. Thus, by Theorem 11, to get the optimal convergence rate, we need

α+ β − 1 = p,

where p is the degree of the finite element basis functions and β ≈ 0.5445 in this case. Therefore,

we choose α1 = 3/2 when using bilinear elements, α1 = 5/2 when using bi-quadratic elements and

so on.

Although, unfortunately, we cannot weight the FOSLL* term, we can still use the heuristic

based on the following theorem to weight the intermediate term.

Theorem 12. Assume L, L∗ are H1-equivalent first-order operators, wh, uh are solutions in H1-

conforming finite element spaces. Denote û as the exact solution and let C be a generic positive

constant that is independent of domain and mesh size. Then,

‖L∗wh − û‖ ≤ Ch‖Luh − f‖ ≤ Chp+1‖û‖p+1.

If we assume the intermediate term ‖L∗wh−uh‖ has the similar results as the FOSLL* term

‖L∗wh − û‖, then to make the intermediate term have the optimal convergence rate, we choose

α2 = 1/2 when using bilinear elements, α2 = 3/2 when using biquadratic elements.

At the moment, our weighted hybrid-FOSLS method remains immature and how to remedy

this will be left for the future research. However the numerical results below suggests our current

method works well.

Nevertheless, numerical results with our weighted-hybrid-FOSLS are very encouraging as

indicated in Table 4.3 and Table 4.2. These two tables compare weighted-FOSLS and weighted-
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lev ne x= 1.0 x = 2.5 x = 5.0 x = 7.5 x = 10.0

Weighted-FOSLS with Uniform Refinement

1 576 -37.4104% -98.4042% -100.8601% -97.3274% -95.1921%
2 2304 -32.5437% -89.6799% -99.8621% -99.5952% -97.3708%
3 9216 -22.5485% -68.0978% -86.2746% -95.4464% -100.3462%
4 36864 -10.5741% -31.2673% -35.0491% -34.7209% -33.9610%
5 147456 -3.4330% -10.8240% -12.5968% -12.1150% -10.5229%
6 589824 -1.0555% -3.7119% -6.4604% -7.7685% -7.5111%
7 2359296 -0.1724% -0.7272% -1.5229% -1.9391% -1.9741%

Table 4.2: Mass Loss on Different Sections of the Tube, Weighted-FOSLS, Steady State Stokes
Equations on Backward Step Domain with q2-elements.

lev ne x= 1.0 x = 2.5 x = 5.0 x = 7.5 x = 10.0

Weighted-Hybrid with Uniform Refinement

1 144 -19.7440% -202.7332% -0.4175% -0.5353% -0.4497%
2 576 -0.9627% -98.8571% 0.3498% -0.0207% -0.0008%
3 2304 0.4686% -27.9483% -0.0111% -0.0042% -0.0002%
4 9216 0.0653% -5.0429% -0.0191% -0.0006% -0.0000%
5 36864 -0.0018% -0.7265% -0.0033% -0.0009% -0.0009%
6 147456 -0.0040% -0.1827% -0.0024% -0.0001% 0.0000%

Table 4.3: Mass Loss on Different Sections of the Tube, Hybrid, Steady State Stokes Equations on
Backward Step Domain with q2-elements.

Hybrid formulation on relative mass loss described in (4.24). In the first column are refinement

levels and in the second column are number of elements.

For hybrid-FOSLS, we start with mesh size h = 1/4, number of elements ne = 144 at Level

1. Since we use uniform refinement for this set of tests, h = 1/8 at Level 2 and so on. To better

compare FOSLS with Hybrid formulation, we carry out our FOSLS tests on IBM Blue Gene/L

parallel computer, tested with 256 processors and start with h = 1/8, ne = 576 at the first level.

According to the tables, clearly, hybrid-FOSLS performs much better than FOSLS. Even

though for Hybrid formulation, the linear system is doubled, the numerical benefit is much more

than offset the extra computation work. For example, with the same number of elements ne =

147456, at x = 2.5, the mass loss is 0.1827% for Hybrid while 10.8240% for FOSLS, which is a

O(102) improvement.
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Since the singularity point is at (2, 0.5), we expect mass conservation will be the worst at

section x = 2.5. While this is true for hybrid-FOSLS, it is not always the case for FOSLS. More

noteworthy, while for FOSLS mass conservation is about the same at different sections of the

domain; for Hybrid, mass conservation is much better away from the singularity. i.e. the pollution

effect is much stronger for FOSLS than for Hybrid.

The comparison of FOSLS and Hybrid method is illustrated more clear in the following set

of plots. The vertical green line is the west (inflow) boundary and the vertical red lines are the

boundaries at which we measure the loss in flux, as in Eqn (4.24). The y-axis is the percentage of

mass loss while the x-axis is the degrees of freedom (DOF), i.e. the number of unkonwns we use in

our computation. Notice that, since in the Hybrid system, adjoint variables are introduced and the

size of the linear system is doubled, using DOF instead of number of elements is a fair comparison

measure.

We start our computation from the same mesh size. Due to the fact that, on the same grid,

the Hybrid method has two times as many unknowns as the FOSLS method requires, plots below

show that those points do not vertically line up together. Also because of the memory constraint

of the computer, FOSLS can go to a finer mesh grids than Hybrid.

There are two interesting observations that can be drawn from the set of plots.

• First, except at the line section that is right after the singular point, Hybrid-FOSLS con-

serves mass very well (almost zero mass loss).

• Second, FOSLS suffers much more on mass loss near the re-entrant corner (x = 2.5) and

the pollution effect still heavily affects its mass conservation even when the flow is far away

from the singular point.

Hybrid displays more robust quality on the issue of mass conservation. Although this should not

come as a surprise, given our analysis in Chapter 3, where we have shown minimizing Hybrid

functional is roughly minimizing the graph norm of the error, which gives it excellent control on

L2 error and leads to good control of mass conservation; the fact that using our heuristic weighting
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Figure 4.5: Mass conservation versus number of elements at x = 1.0, steady state Stokes equations
in a backward-step domain.

scheme for Hybrid and leaving the FOSLL* term unweighted has led to success on irregular domain

is still inspiring.

4.3.2 Adaptive Mesh Refinement

For any given element, τ ∈ T , define the local error estimate as

ε2τ := ||L∗wh − uh||2τ + ||Luh − f ||2τ . (4.29)

The local sharpness of the error estimate follows directly from the continuity, i.e.,

ε2τ ≤ Hτ ((wh,uh); (û, f)) ≤ 3||(wh − ŵ,uh − û)||H. (4.30)

However, we do not have the global reliability bound for the error estimate (4.29). In Section

3.2.2, under mild assumptions, we established the results that the numerical solution obtained
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Figure 4.6: Mass conservation versus number of elements at x = 2.5, steady state Stokes equations
in a backward-step domain.

through minimizing the Hybrid functional is very close to the numerical solution which minimizes

the error in the graph functional (3.25) (see Lemma 5 and Theorems 9 and 10). Define the local

error measured by the graph norm as

η2
τ :=

√
1

2
||uh − û||2τ + ||Luh − f ||2τ . (4.31)

Write ε =
√∑

τ∈T ε
2
τ , the global error approximated by the error estimate (4.29), and η =√∑

τ∈T η
2
τ , the global error measured in graph norm. We want to demonstrate that the local

error estimate, ετ , provides a sharp approximation to the true error, ητ , on relatively coarse grids

through numerical results. To illustrate that, we list the maximum and minimum ratios between

the local error estimate and true error, ετ
ητ

, on various mesh sizes for the test problem described

in section 3.3, i.e., the Stokes equations in a long tube for which exact solutions are trigonometric
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Figure 4.7: Mass conservation versus number of elements at x = 5.0, steady state Stokes equations
in a backward-step domain.

functions; see table 4.4. The local error estimate approximates the true error very well on mesh

mesh size 1
4

1
8

1
16

1
32

1
64

maxτ
ετ
ητ

2.421e+02 1.115e+02 7.298e+00 1.005e+00 1.036e+00

minτ
ετ
ητ

1.178e+01 1.021e+00 1.001e+00 1.000e+00 1.000e+00

Table 4.4: Local error estimate versus true error for the Hybrid method applied to Stokes equations
in a long tube, [0.0, 16.0]× [0.0, 1.0]. Exact solutions are given in Table 3.3.

size h = 1
16 , with lower and upper bound 1.001 and 7.298, respectively. On the finer grid with

mesh size h = 1
32 , the local error estimate provides almost perfect approximation to the true error.

Apparently, this leads to the conclusion that the global error estimate, ε, approaches the true global

error, η, which is stronger than the global reliability. However, to prove theoretically the local and

global sharpness of the error estimate, ετ , is rather difficult. That remains future research.
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Figure 4.8: Mass conservation versus number of elements at x = 7.5, steady state Stokes equations
in a backward-step domain.

The test problem is the steady state Stokes equations on the backward-step domain described

in section 4.3.1. The refinement process starts with a uniform coarse grid containing 8 biquadratic

elements per unit length, i.e., mesh size h = 1
8 . On each refinement level, elements are split equally

into two in each dimension. Refinement decisions are made by minimizing the “accuracy-per-

computational-cost” efficiency (ACE) measure as described in [4]. Refinement patterns in Figure

4.10 show that most refinements are made near the re-entrant corner, where the singularity is

located. The refinements also follow the flow downstream. The mass loss at the vertical line,

x = 2.5, which is right after the flow hits the singularity, is given in Figure 4.11. Adaptive mesh

refinement based on the local error estimate (4.29) is able to reach almost zero mass loss with nearly

5,000 elements. Compared to that, uniform refinement takes close to 30,000 elements to have the

same mass loss.
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Figure 4.9: Mass conservation versus number of elements at x = 10.0, steady state Stokes equations
in a backward-step domain.
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(a) X-velocity and grid alignment

(b) Grid alignment near the corner singularity

Figure 4.10: Stokes on backward-step Domain: Computed Numerical Solution and Locally Refined
Mesh
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Figure 4.11: Mass conservation versus number of elements at x = 2.5, steady state Stokes equations
in a backward-step domain.



Chapter 5

Hybrid-FOSLS for Navier-Stokes Equations in a Long Tube

5.1 FOSLS for Nonlinear PDEs

For a general nonlinear first-order PDE system:

L(u) = f ,

two approaches can be applied within the FOSLS context. One is called FOSLS-Newton, the

other is called Newton-FOSLS. FOSLS-Newton seeks the minimizer of the nonlinear FOSLS

functional,

‖L(uh)− f‖2V ,

by solving it with a Newton iteration; while Newton-FOSLS first linearizes the problem then casts

the resulting linear problem as a standard FOSLS problem. The two methods only differ by a

second Fréchet derivative term. Futhermore, when the numerical solution is close to the exact

solution, the lower order derivative terms dominate and the two methods are essentially equivalent.

Due to the simplicity of its numerical implementation, Newton-FOSLS is adopted for our numerical

tests in later sections. For an application using Newton-FOSLS in a nested iteration context and

combined with ACE adaptive refinement, we refer to [2,3], where a study on incompressible resistive

magnetohydrodynamics is presented.

First, let’s provide some basics of functional calculus.

Definition 2. (Fréchet Derivative) Suppose we have Banach spaces X and Y . A functional F :

X → Y is Fréchet differentiable at x ∈ X, if there exists a bounded linear functional A : X → Y
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such that

lim
h→0

‖F (x+ h)− F (x)−Ah‖Y
‖h‖X

= 0.

If such A exists, then it is unique, and it is called the first Fréchet derivative of F at x, denoted by

DF (x) = A.

Another weaker definition of differentiability is Gâteaux differentiable.

Definition 3. (Gâteaux Derivative) Suppose X and Y are Banach spaces. A function F : X →

Y on a Banach space X is Gâteaux differentiable at x ∈ X, if for any h ∈ X the limit

δF (x;h) = lim
α→0

(
F (x+ αh)− F (x)

α

)
exists and δF (x;h) is called the first Gâteaux derivative of F at x along the direction h.

Fréchet differentiable is a similar concept as “differentiable” in Rn, while Gâteaux differen-

tiable is a similar concept as “directional differentiable”. Similar to what we have for Rn, we have

the following theorem.

Theorem 13. If a functional F : X → Y from Banach space X to another Banach space Y is

Fréchet differentiable at x ∈ X then it is also Gâteaux differentiable at x. And for any direction

h ∈ X

DF (x) = δF (x;h).

In this chapter, we assume the nonlinear functional is always Fréchet differentiable and we

use Gâteaux derivative to compute all the derivatives of the nonlinear functional.

The Taylor expansion of L(u) can be written as

f = L(û) = L(u)− L′(u)[u− û] +
1

2
L′′(v)[u− û,u− û], (5.1)

where v = αu + (1− α)û with some constant α ∈ [0, 1].

For any w ∈ V, L′(u)[w] is the first Fréchet derivative along “direction” w and is defined as

L′(u)[w] = lim
α→0

L(u + αw)− L(u)

α
.
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Notice that L′(u)[·] is an unary operator dependent on u and L′′(v)[·, ·] is a binary operator that

depends on v.

5.1.1 FOSLS-Newton and Newton-FOSLS

The FOSLS-Newton method parallels the approach we use for linear problems and seeks

the weak solution by minizing some norm (usually L2-norm) of the residual from the nonlinear

equations. That is we find the solution by solving the following minimization problem

Problem 1. For a certain Hilbert space V, find u ∈ V, such that

u = argmin
v∈V
‖L(v)− f‖2

Generally, analogous to the operator L in the linear case, if L′(v) (note again, L′(v) is a

linear operator that is dependent on v) is also continous and coercive in V. Therefore, the solution

u exists and is unique.

Define the FOSLS functional

G(u; f) = ‖L(u)− f‖2.

Since G(u; f) is a quadratic functional with respect to u, we only need the first Gâteaux derivative

to be zero in any “direction” v in the appropriate Hilbert space V. Let

lim
α→0

G(u + αv; f)− G(u; f)

α
= 0 (5.2)

and notice that

G(u + αv; f)− G(u; f) = ‖L(u + αv)− f‖2 − ‖L(u)− f‖2

= ‖L(u) + αL′(u)[v] + h.o.t− f‖2 − ‖L(u)− f‖2

= α2 < L′(u)[v],L′(u)[v] > +2α < L(u)− f ,L′(u)[v] >,

where “h.o.t” denotes the “higher-order-term” with respect to α, that is quadratic and higher

order terms of α which go to zero when α approaches to zero. The second equation is from Taylor

expansion of nonlinear functional as mentioned earlier.
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The minimization of the FOSLS functional leads to the following weak problem: find u ∈ V,

such that, for all v ∈ V,

< L(u)− f ,L′(u)[v] >= 0. (5.3)

On the other hand, the Newton-FOSLS approach is more straight-forward. Denote un as the

solution of n’th Newton iteration,

rn = f − L(un),

which is the residual equation from the n’th Newton iteration. Also, denote,

δun = un+1 − un,

as the update equation. Ignore the second derivative term in (5.1), re-arrange (5.1), we obtain the

equation to be solved:

L′(un)δun = rn.

For the simplicity of the denotation, we denote Ln = L′(un) as the Jacobian of n’th Newton

iteration for the rest of the dissertation.

Next, we use standard FOSLS method for this linear problem: find δun ∈ V, such that,

min
δun∈V

f(δun, rn) := ‖Lnδun − rn‖2.

The minimization problem induces the weak problem: find δun ∈ V, such that

< Lnδun, Lnv > = < rn, Lnv >, ∀ v ∈ V. (5.4)

It is easy to see (5.4) can also be written as

< L(un) + L′(un)[δun]− f ,L′(un)[v] >= 0. (5.5)

Notice that L(u) + L′(u)[δ] is the Taylor expansion of L(u) ignoring the higher order terms; thus,

(5.5) is only different from (5.3) by higher order derivative terms.

Easy to see that the discrete analogous of 5.5 and 5.3 in finite elements implementation are:
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Newton-FOSLS: weak form in finite element space:

find δh ∈ Vh, such that for all vh ∈ Vh

< Lnδu
h
n, Lnv

h > = < f − L(uhn), Lnv
h >; (5.6)

FOSLS-Newton: weak form in finite element space:

find δh ∈ Vh, such that for all vh ∈ Vh

< L(uhn+1)− f , Lnv
h > = 0. (5.7)

While the weak form of Newton-FOSLS is ready to implement, we have to carry out Newton

iteration to actually solve Eqn (5.7), which brings complexities to implementation. Thus, we use

Newton-FOSLS method in this dissertation for nonlinear problem,s which should give similar results

as FOSLS-Newton method, as we have explained earlier.

5.1.2 Error Estimate for Nonlinear Problems

Under some mild assumptions, the finite element error estimate for the nonlinear problems

turns out to be similar to the linear case. The error estimate of the nonlinear FOSLS functional

itself is of the same order as the linear FOSLS functional. Moreover, with sufficient regularity, we

can still carry out the Aubin-Nitsche trick and get one-order higher error estimate for the L2 norm

of the error. We present our results with more detail in the following theorem and provide proof

thereafter.

Theorem 14. Let V be a Hilbert space and Vh ⊂ V is a shape-regular and quasi-uniform finite

element space that satisfies the standard interpolation bounds. Denote uh as the unique solution

from either Newton-FOSLS or FOSLS-Newton method. Suppose L′(u) is a bounded linear operator

for any u ∈ V and assume we have done enough Newton iterations, such that the error from

nonlinearity is within the order of mesh size, h, then we have

‖L(uh)− f‖ ≤ Chp‖û‖p+1, (5.8)
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where p is the degree of finite element piecewise polynomial basis functions.

Furthermore, if we assume that L′(v)∗L′(v) is H2 regular for any v ∈ V, we have one order

higher convergence for the L2 norm of the error:

‖uh − û‖ ≤ Chp+1‖û‖p+1. (5.9)

Proof. Since we have explained earlier that Newton-FOSLS and FOSLS-Newton method are dif-

ferent only by higher order nonlinear terms and asymptotically the same when enough Newton

iterations are done, we prove the theorem above using Newton-FOSLS formulation, i.e., we denote

by uh the unique solution from the minimization problem, we now have:

‖L(uh)− f‖ = ‖L(uh)− L(û)‖

≤ ‖L(Ihû)− L(û)‖

= ‖L′(ũ)(Ihû− û)‖

≤ C‖Ihû− û‖1

≤ Chp‖û‖p+1,

where Ih is the interpolant operator to a certain grid Ωh; ũ = û + αδ, with α ∈ [0, 1]. That is, ũ’s

value is somewhere between the exact solution û and numerical solution uh.

To prove the second half of the theorem, let L(uh)− L(û) = L′(ũ)[uh − û], where ũ’s value

is between û and u. Note that, in general, ũ here is different ũ in the proof above. Denote by eh

the numerical error from solving the residual equation,

L′(ũ)eh = L(uh)− f .

Consider the dual problem,

L′(ũ)∗L′(ũ)w = eh, (5.10)

whose Galerkin closure is

< L′(ũ)w,L′(ũ)v >=< eh,v >, for any v ∈ V. (5.11)
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Since eh ∈ Vh ⊂ V, substituting v with eh in (5.11), we have

< eh, eh > = < L′(ũ)w,L′(ũ)eh >

= < L′(ũ)w,L(uh)− L(û) >

= < L′(ũ)[w − zh],L(uh)− L(û) >, for all zh ∈ Vh

≤ ‖L′(ũ)[w − zh]‖ · ‖L(uh)− L(û)‖

(5.12)

Use the error estimate we developed earlier for the nonlinear FOSLS functional and notice that we

have assumed L′(ũ) is a bounded linear operator,

< eh, eh > ≤ (C · hp‖û‖p+1)
(
C · h‖w − zh‖1

)
≤ C · hp+1‖û‖p+1‖w‖2

≤ Chp+1‖û‖p+1‖eh‖.

(5.13)

Note that, the last inequality is obtained by using the H2 regularity of L′(v)∗L′(v).

5.2 FOSLL* for Nonlinear PDEs

The research on FOSLL* method for nonlinear PDEs is relatively new and no publication is

available for the moment. In [38], the framework is laid out and the challenges are also discussed.

Recall that for a linear problem, Lu = f , FOSLL* method minimizes the FOSLL* functional,

‖L∗w − û‖2, and solves the weak problem

< L∗w, L∗z >=< f , z >, for allz ∈ W.

While for a nonlinear problem, at each Newton step, we minimize

G(δwh
n;L−1

n rn) := ‖L∗nδwh − L−1
n rn‖2, (5.14)

which leads to the weak problem:

Find δwh
n ∈ Wh, such that

< L∗nδw
h
n, L

∗
nz

h >=< rn, z
h >, ∀ zh ∈ Wh. (5.15)
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Thus, the solution for Newton iteration at Step (n+ 1) is

un+1 = un + L∗nδw
h
n. (5.16)

So far, we have been vague about the finite element space Wh we use. Apparently, Wh

should be a subspace of the domain of L∗n D(L∗n). However, this restriction might not be enough in

general. A common piecewise polynomial finite element space is in C0. Thus, L∗nδw
h 6∈ C0, which

may cause problems when the Newton iteration continues and the operator L′(un+1) needs to be

computed. Several possible solutions to this problem are proposed in [38].

The first thought is to use C1-elements. Although it can circumvent the problem, implemen-

tation of C1-elements is generally much harder and software libraries with such elements are not

widely available.

The second approach is to apply L2-projection; that is, at each Newton step, after we have

obtained δwh from FOSLL*, we first compute L∗nδw
h then solve the minimization problem:

Find δuhn ∈ Vh, such that

min
δuhn∈Vh

‖L∗nδwh
n − δuhn‖2.

This induces a weak problem:

< L∗nδw
h − δuh, vh >= 0, ∀ vh ∈ Vh.

To be more exact, let {φi}ni=1 be the basis functions of finite element space Vh; thus, δuh =∑n
i=1 aiφi and the linear system to be solved is

<

n∑
j=1

ajφj , φi > = < δwh
n , L′(uhn)φi > = < L′(uhn)∗δwh

n , φi > .

Another approach proposed in [38] is to combine the FOSLL* and the L2-projection and

solve the extended system together. We introduce a weight β and the functional

J(δw, δu) = ‖L∗nδw − L−1
n rn‖2 + β‖L∗nδw − δu‖2. (5.17)

The minimization problem is thus: find (δwh
n, δu

h
n) ∈ Wh × Vh, such that

min
(δwh

n,δu
h
n)∈W×V

J(δwh
n, δu

h
n).
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This leads to the the discrete weak problem:

Find (δwh
n, δu

h
n) ∈ Wh × Vh such that, ∀ zh ∈ Wh, vh ∈ Vh,

< L∗nz
h , L∗nδw

h
n − L−1

n rn > + < L∗nz
h , L∗nδw

h
n − δuhn > + < L∗nδw

h
n − δuhn , vh >= 0, (5.18)

which can be simplified as ∀ zh ∈ Wh, vh ∈ Vh,

2 < L∗nz
h , L∗nδw

h
n > + < Lnδw

h
n , vh > = < zh, rn > + < L∗nz

h , δuhn > + < δuhn,v
h > .

(5.19)

5.3 Newton-Hybrid FOSLS for Nonlinear PDEs

Similar to Newton-FOSLS and Newton-FOSLL* methods, for Newton-Hybrid FOSLS, we

• first, linearize the original PDEs, carry out the Newton iteration;

• second, solve the linearized PDEs at each Newton step via Hybrid-FOSLS.

The Hybrid functional at Newton step n is

Hn
(
(δwh, δuh); (L−1

n rn, rn)
)

:= ‖L∗nδwh − L−1
n rn‖2

+ ‖L∗nδwh − δuh‖2 + ‖Lnδuh − rn‖2.
(5.20)

Equivalently, we can think that we have an enlarged first-order system,

L∗nδw
h = L−1

n rn,

L∗nδw
h = δuh,

Lnδu
h = rn.

(5.21)

The weak problem from minimizing the Hybrid functional (5.20) is: find (δwh, δuh) ∈ Wh × Vh,

such that, for any (zh,vh) ∈ Wh × Vh,

< L∗nδw
h, L∗nz

h > + < L∗nw
h − uh, L∗nz

h − vh > + < Luh, Lvh >=< f , zh + Lvh > . (5.22)
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5.4 Numerical Tests

Consider steady state Navier-Stokes equations:

∆u− λu · ∇u−∇p = f in Ω,

∇ · u = g in Ω,

n · u = 0 on ∂Ω,

(5.23)

on the follwing domain:

x

y

0 D

1

S

N

W E

Figure 5.1: Navier-Stokes Equations in a Long Tube

Although for Stokes equations a two-stage velocity-gradient formulation has theH1-equivalence,

for Navier-Stokes equations, due to the nonlinear convection term, u · ∇u, u has to be included

in the formulation, which means the two-stage scheme, which was used for Stokes equations in

Chapter 3, cannot be used anymore. Thus, in this chapter, we apply velocity-vorticity-pressure

formulation for our numerical tests.

Define vorticity ω := −∇×u. Also, notice that the velocity field is divergence free, we have:

• in 2D, ∇⊥ω = −∇⊥(∇× u) = ∆u−∇(∇ · u) = ∆u;

• in 3D, ∇⊥ω = −∇× (∇× u) = ∆u−∇(∇ · u) = ∆u.
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Define the total pressure P := λ
2 u ·u+p. The Velocity-Vorticity-Pressure (VVP) Formulation

in 2D is as follows:


1 ∇× 0

∇⊥ 0 −∇

0 ∇· 0




ω

u

P

+ λ



0

−ωu2

ωu1

0


=


0

f

0

 in Ω,

n · u = 0 on ∂Ω,

ω = 0 on ∂Ω,

(5.24)

where velocity u = (u1, u2)t and λ is the Reynolds number which is set to 5 in our test.

Construct an exact solution as follows:

u1 = sin(πx/D) cos(πy),

u2 = − 1
D cos(πx/D) sin(πy),

ω = −π(1 + 1
D ) sin(πx/D) sin(πy),

P = λ
2 (u2

1 + u2
2)− λ1+D2

8D2 ,

(5.25)

where −λ1+D2

8D2 is a constant, such that the integration of total pressure, P , is 0 on Ω. By enforcing

this, we eliminate the null space of any constant in P . Thus, the RHS can be computed:

f1 = 0,

f2 = −π2
(
1 + 1

D2

)
cos(πy) sin(πxD )− λπ

D cos(πxD ) sin(πxD ),

f3 = π2
(

1
D3 + 1

D

)
cos(πxD ) sin(πy)− λπ

D2 cos(πy) sin(πy),

f4 = 0.

(5.26)

For Eqn (5.24), the linear operator Ln := L′(un) at n’th Newton iteration is

Ln



ω

u1

u2

P


=



1 −∂y ∂x 0

∂y 0 0 −∂x

−∂x 0 0 −∂y

0 ∂x ∂y 0





ω

u1

u2

P


+ λ



0 0 0 0

−u2 0 −ω 0

u1 ω 0 0

0 0 0 0





ω

u1

u2

P


. (5.27)
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Define the adjoint variables associated with (ω, u1, u2, P )t by (z1, z2, z3, z4)t. Then, the ad-

joint operator L∗n := L′(un) at Newton Step n is

L∗n =



1 −∂y ∂x 0

∂y 0 0 −∂x

−∂x 0 0 −∂y

0 ∂x ∂y 0





z1

z2

z3

z4


+ λ



0 −u2 u1 0

0 0 ω 0

0 −ω 0 0

0 0 0 0


. (5.28)

Since the boundary conditions are normal velocity - (tangential) vorticity boundary

conditions, we use (2.40) as the functional to be minimized for standard FOSLS method.

The comparison of the L2-error, ‖uh−û‖, and the nonlinear functional, ‖L(uh)−f‖, is shown

in the following tables. We vary the domain length D = 1, 4, 8, 16, 24 and use both standard

FOSLS and Hybrid methods. Note that, a little different from the quantities we measured in

Chapter 3, we do not use relative functional or relative error. This is because ‖f‖ = 0 in this test,

which precludes the use of relative functionals. Also, since ‖û‖ increases mildly as D increases, we

should be able to expect similar results using relative L2-error or not.

D 1 4 8 16 24

‖û‖ 2.54648 5.41127 10.3451 20.4514 30.6108

Table 5.1: Mild increase of the L2 norm of the exact solution û as the domain length D increases,
using (5.25). This suggests that we can measure the L2 norm of the exact error, instead of the
relative error

The following tables suggest that, while for the nonlinear functional both FOSLS and Hy-

brid achieve very similar results, for the L2-error Hybrid achieves much better results, between

O(10−2) ∼ O(10−3) better.

To take a closer look at the convergence rate of the nonlinear functional and L2-error, we

plot the cases when D = 8, 16, 24. Since we use q2 (bilinear elements) in our tests, if we assume

that the error from Newton iteration can be ignored, we expect the functional converges with

order O(10−2) and the L2-error with order O(10−3). The following 2 sets of figures show that,

the nonlinear functional reduction for both FOSLS and Hybrid methods are exactly as expected.
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‖L(uh)− f‖

h 1/4 1/8 1/16 1/32 1/64

FOSLS 5.3853e-01 1.4660e-01 3.7618e-02 9.4691e-03 2.3714e-03
Hybrid 5.3863e-01 1.4661e-01 3.7618e-02 9.4691e-03 2.3714e-03

‖û− uh‖
h 1/4 1/8 1/16 1/32 1/64

FOSLS 5.5941e-02 7.8741e-03 1.2788e-03 3.0018e-04 7.5306e-05
Hybrid 4.4910e-02 5.0651e-03 4.4786e-04 4.3838e-05 5.0022e-06

Table 5.2: Steady state Navier-Stokes equations in a long tube, FOSLS vs. Hybrid: ‖L(uh) − f‖,
‖û− uh‖. Domain length D = 1, q2-elements

‖L(uh)− f‖
h 1/4 1/8 1/16 1/32 1/64

FOSLS 5.8223e-01 1.6123e-01 4.1192e-02 1.0350e-02 2.5906e-03
Hybrid 5.8507e-01 1.6132e-01 4.1193e-02 1.0350e-02 2.5906e-03

‖û− uh‖
h 1/4 1/8 1/16 1/32 1/64

FOSLS 2.0155e-01 5.1986e-02 2.6125e-02 1.3389e-02 6.7799e-03
Hybrid 9.6904e-02 8.0832e-03 6.0613e-04 5.2688e-05 5.6198e-06

Table 5.3: Steady state Navier-Stokes equations in a long tube, FOSLS vs. Hybrid: ‖L(uh) − f‖,
‖û− uh‖. Domain length D = 4, q2-elements

‖L(uh)− f‖
h 1/4 1/8 1/16 1/32

FOSLS 8.2899e-01 2.2959e-01 5.8628e-02 1.4728e-02
Hybrid 8.3660e-01 2.2983e-01 5.8632e-02 1.4728e-02

‖û− uh‖
h 1/4 1/8 1/16 1/32

FOSLS 4.8198e-01 9.7988e-02 4.5827e-02 2.3326e-02
Hybrid 1.3247e-01 1.0989e-02 8.3125e-04 7.3519e-05

Table 5.4: Steady state Navier-Stokes equations in a long tube, FOSLS vs. Hybrid: ‖L(uh) − f‖,
‖û− uh‖. Domain Length D = 8, q2-elements

However, while using FOSLS method, the convergence for L2-error is much slower than O(h3).

With Hybrid method, the convergence rate for L2-error is, in fact, slightly faster than what is

expected.
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‖L(uh)− f‖

h 1/4 1/8 1/16 1/32

FOSLS 1.1757e+00 3.2536e-01 8.3075e-02 2.0868e-02
Hybrid 1.1881e+00 3.2578e-01 8.3083e-02 2.0868e-02

‖û− uh‖
h 1/4 1/8 1/16 1/32

FOSLS 1.1261e+00 1.8069e-01 7.0906e-02 3.5847e-02
Hybrid 1.7772e-01 1.4567e-02 1.1195e-03 1.0155e-04

Table 5.5: Steady state Navier-Stokes equations in a long tube, FOSLS vs. Hybrid: ‖L(uh) − f‖,
‖û− uh‖. Domain Length D = 16, q2-elements.

‖L(uh)− f‖
h 1/4 1/8 1/16 1/32

FOSLS 1.4425e+00 3.9864e-01 1.0178e-01 2.5567e-02
Hybrid 1.4565e+00 3.9918e-01 1.0179e-01 2.5567e-02

‖û− uh‖
h 1/4 1/8 1/16 1/32

FOSLS 1.7420e+00 2.7371e-01 8.9738e-02 4.5013e-02
Hybrid 2.2869e-01 1.7482e-02 1.3507e-03 1.2349e-04

Table 5.6: Steady state Navier-Stokes equations in a long tube, FOSLS vs. Hybrid: ‖L(uh) − f‖,
‖û− uh‖. Domain Length D = 24, q2-elements

The comparison of FOSLS and Hybrid on convergence rate of the nonlinear functional and

L2-error is more clear in the Figures (5.4) . Note that, at the coarsest grid, while using FOSLS,

‖uh − û‖ starts at O(1), for Hybrid, it starts at O(10−2). Hybrid method controls the L2-error

from the beginning while FOSLS fails to do so.

We have to also note here that, although the numerical results are in line with most of our

expectations, the L2-errors from FOSLS method should converge one order faster than FOSLS

functional when the solutions get to the asymptotic region. Future work will investigate this.
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Figure 5.2: Convergence rate of nonlinear functional, ‖L(uh) − f‖, using FOSLS and Hybrid,
D = 8, 16, 24, q2 elements

2 2.5 3 3.5 4 4.5 5
−16

−14

−12

−10

−8

−6

−4

−2

0

2

log
2
(1/h)

lo
g 2(|

|u
h −

u|
|)

FOSLS: Convergence Rate of L2−Error: ||uh−u||, q2 Elem

 

 

D = 8
D = 16
D = 24
slope: −3

(a) FOSLS

2 2.5 3 3.5 4 4.5 5
−16

−14

−12

−10

−8

−6

−4

−2

log
2
(1/h)

lo
g 2(|

|u
h −

u|
|)

Hybrid: Convergence Rate of Relative L2−Error: ||uh−u||,q2 Elem

 

 

D = 8
D = 16
D = 24
slope: −3

(b) Hybrid

Figure 5.3: Convergence rate of L2-error, ‖uh − û‖, using FOSLS and Hybrid, domain length
D = 8, 16, 24, q2 elements
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Figure 5.4: Convergence rate of L2-error, ‖uh − û‖, using FOSLS and Hybrid, domain length
D = 8, 16, 24, q2 elements



Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, based on the first-order system least-squares finite element method (FOSLS)

and one of its variations, the FOSLL* method, we propose a novel hybrid-FOSLS method that

takes advantage of both FOSLS and FOSLL*. We motivate the new method by observing that,

while FOSLS and FOSLL* each has its own merits and limitations, they complement each other

at the same time. After a lot of work on numerical tests, using different version of Hybrid (e.g.

involving the intermediate term or not), testing on different problems, the numerical results suggest

a good prospect for this method. To understand the mathematics behind the scene that leads to

nice results, we explore both analytically and numerically and finally reach the conclusion that the

excellent control over L2-error, one of the main strengths hybrid-FOSLS has is essentially due to

the fact that the Hybrid functional is elliptic with a mild coercivity constant in the H-norm that

involves the primal variable’s L2-norm. To better understand it, we introduce the graph functional

and compare results from minimizing the Hybrid functional to minimizing the graph functional.

To offer a rigorous theory of this new method, error estimate of the Hybrid functional’s L2-norm

error and the superposition version of them are presented. Efforts are also made to accelerate

the convergence, both by using the superposition technique and by fine-tuning parameters in our

AMG-preconditioned-Conjugate Gradient solver. Since our standpoint is to develop a discretization

scheme that can take full advantage of state-of-art linear system solvers, we studied hybrid-FOSLS

in an adaptive mesh refinement setting, where, through a set of numerical tests, it demonstrates
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its great potential. Preliminary research of Hybrid method has also been carried out for nonlinear

equations, such as Navier-Stokes equations. New challenges arise, due to the use of Newton iteration

combined with hybrid-FOSLS.

6.2 Future Research

Since the hybrid-FOSLS method developed in the thesis work, and presented in [41], is the

first research result in this area, there are a lot of problems to explore.

First, for Hybrid for nonlinear Navier-Stokes equations, although some theoretical numerical

results are already presented in this dissertation, work should also be done to develop a rigorous

theory for Newton-Hybrid FOSLS method, that should include error estimation that is parallel to

what we have developed for the linear problem.

Second, we would like to take more consideration on the linear solver side and possibly

modify the first-order formulation and linear solver together and make the solving of the resulting

linear system more efficient. For example, we have observed that for weighted hybrid-FOSLS,

adding weights into the formulation can slow the solver down and the linear solver convergence

rate and becomes unsatisfactory. Also, in nonlinear problems, experience suggests that the number

of Newton iterations is generally small (less than 5, on average less than 3). Especially, when it gets

to a fine mesh grid, we can further reduce the number of Newton iteration. In [2], one of the core

ideas is to solve the complicated MHD equations to the accuracy necessary without over-solving at

each level of mesh grid. We can borrow the idea there and implement it with the Hybrid method.

Currently, we use the velocity-vorticity formulation for Navier-Stokes equations. This formulation

is H1- elliptic because we use the nonstandard tangential vorticity boundary condition. With

the more common velocity boundary conditions, this formulation is not H1-elliptic. In that case,

one can use the velocity gradient-velocity-pressure formulation presented in [12, 13]. However, the

adjoint equations become cumbersome. Thus, new formulations for Navier-Stokes equations that

are more menable to the Hybrid FOSLS methods are also a interesting direction for future research.

Third, the success of hybrid-FOSLS inspires us to hybrid not only at the functional level but
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also at the equation level. By careful study of the equations, we can have part of its equation as

primal FOSLS equations and other parts using FOSLL* or intermediate equations. Some prelimi-

nary tests have already been carried out and to draw any confident conclusions more tests need to

be done.
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Appendix A

Vector Calculus

A.1 Notations

In 2D, denote:

• n: the unit exterior normal vector along ∂Ω;

• τ : the unit tangent vector.

The direction of τ depends on the direction of ∂Ω. Convetionally, ∂Ω is counter clockwise,

thus, if n = (n1, n2), then τ = (−n2, n1) as illustrated in the following plot.

x

y

n

τ

n1

n2

−n2

n1

Thus for a 2D vector v = (v1, v2),

v · τ = −v1n2 + v2n1 =
n1 n2

v1 v2

= n× v
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Let the curl operator ∇× be

∇× u = ∂xu2 − ∂yu1, in 2D,

∇× u =

î ĵ k̂

∂x ∂y ∂z

u1 u2 u3

,

where î, ĵ, k̂ are unit vectors in the x, y, z directions respectively. Denote the “Grad-perp” operator

∇⊥ as

∇⊥q =

 ∂yq

−∂xq

 . (A.1)

∇⊥ maps a scalar function q to a vector function in 2D.

The concept of the “adjoint operator” or “dual operator” is used a lot in FOSLS theory.

Recall that if < Lu,v >=< u, L∗v >, L∗ is called the adjoint (dual) of L and < ·, · > is genrally

the L2-innerproduct. The most common adjoint pairs are

• ∇ and −∇·,

• ∇× and ∇⊥ in 2D,

• ∇× and ∇× in 3D,

which are straight forward by the virtue of Green’s formula (Theorem 15).

A.2 Calculus Facts

Let u denote to be a vector function with enough smoothness in 2D or 3D and q to be a scalar

function, we have the following facts that is used multiple times in this thesis. Zero operators:
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∇ · ∇⊥ = ∇ ·

 ∂y

−∂x

 = ∂yx − ∂xy = 0 (A.2)

∇ · ∇× =

∣∣∣∣∣∣∣
∂x ∂y ∂z

∂x ∂y ∂z

∣∣∣∣∣∣∣ = 0 (A.3)

∇×∇ =

∣∣∣∣∣∣∣
∂x ∂y

∂x ∂y

∣∣∣∣∣∣∣ = 0 (A.4)

Some equations:

∆u = ∇ · ∇u (A.5)

∇⊥∇× u = −∆u +∇ (∇ · u) (A.6)

∇×∇× u = −∆u +∇ (∇ · u) (A.7)

Eqn(A.6) can be verified as follows and the readers should be able to verify the others

similarly.

∇⊥∇× u = ∇⊥
∂x ∂y

u1 u2

= ∇⊥(∂xu2 − ∂yu1)

=

 ∂xyu2 − ∂yyu1

−∂xxu2 + ∂yxu1

 =

−∆u1

−∆u2

+

∂x∇ · u
∂y∇ · u


= −∆u +∇ (∇ · u)



Appendix B

Functional Analysis Results

B.1 Function Spaces

Denote Ω as an open subset of Rd, where d = 2, 3 in this dissertation. Define D(Ω) to be the

linear space of infinitely differentiable functions which are defined on Ω and with compact supports,

and

D(Ω̄) = {φ|Ω̄ : φ ∈ D(O)for some open subset Ω ⊂ O ⊂ Rd}.

Let

H(div; Ω) = {v ∈ L2(Ω)d : ∇ · v ∈ L2(Ω)},

H(curl; Ω) = {v ∈ L2(Ω)d : ∇× v ∈ L2(Ω)2d−3},

which are Hilbert spaces with the following norms respectively

‖v‖H(div;Ω) :=
(
‖v‖20,Ω + ‖∇ · v‖20,Ω

) 1
2 ,

‖v‖H(curl;Ω) :=
(
‖v‖20,Ω + ‖∇ × v‖20,Ω

) 1
2 .

B.2 Some Theorems

Theorem 15. Green’s Formula:

Let φ ∈ D(Ω̄) and v ∈ D(Ω̄)d,

• Gradient-Divergence Form:

< v,∇φ >= − < ∇ · v, φ > +

∫
∂Ω

n · vφ, (B.1)
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• Curl-Curl Form:

< v,∇⊥φ > = < ∇× v, φ > −
∫
∂Ω

n× vφ, (B.2)

< v,∇× φ > = < ∇× v,φ > −
∫
∂Ω

n× v · φ. (B.3)

Remark 10. The theorem above can be extended to less smooth functions by interpreting functions’

values on the boundary as their traces. For example, for Gradient-Divergence Form, v ∈ H(div; Ω),

φ ∈ H1(Ω); for Curl-Curl Form, v ∈ H(curl; Ω), φ ∈ H1(Ω), φ ∈ H1(Ω)3 are also sufficient

assumptions for the theorem. For the details, please refer to Chapter 1, [29].

Theorem 16. (Helmholtz) Let Ω be a bounded Lipschitz domain with boundary ∂Ω. There exists

u ∈ (L2(Ω))3 satisfying

∇ · u = 0 in Ω,

∫
∂Omega

u · n = 0,

if and only if there exists w ∈ (H1(Ω))3, such that u = ∇×w. Furthermore, w can be chosen to

satisfy ∇ ·w = 0 and

‖w‖(H1(Ω))3 ≤ C‖bu‖(L2(Ω))3 .

Aubin-Nitsche Trick:

The Aubin-Nitsche trick (also called the Aubin-Nitsche duality argument) can be used to estimate

the convergence rate of the error’s L2 norm. We have mentioned it in Chapter 3 without giving

the proof. Here we provide more details on the method.

First, consider the Galerkin weak form of L∗Lw = eh, where eh = uh− û. Also, assume that

L∗L is an H2 regular operator.

< L∗Lw,v >=< Lw, Lv >=< eh,v >, ∀v ∈ V. (B.4)

Second, note that minimizing FOSLS functional, ‖Lu− f‖2, leads to weak form,

< Luh − f , Lvh >=< Leh, Lvh >= 0, ∀vh ∈ Vh. (B.5)
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Let v = eh in (B.4), note that Ihw ∈ Vh and use (B.5) we have

‖eh‖2 = < Lw, Leh >

= < L(w − Ihw), Leh >

≤ ‖L(w − Ihw)‖‖Leh‖

≤ c2
1‖w − Ihw‖1‖uh − û‖1

≤ c2
1cIh‖w‖2‖uh − û‖,

where, c1 is continuity constant of operator L, cI is interpolation constant.

Now, assume we have H2 regularity of L∗Lw = eh, that is ‖w‖2 ≤ cr‖L∗Lw‖ for some

regularity constant cr. Also notice that from (B.4), it is easy to get ‖L∗Lw‖ = ‖eh‖,then,

‖eh‖2 ≤ c2
1cIcrh‖eh‖ · ‖uh − û‖1

Eliminate ‖eh‖ both sides and apply standard finite element estimate, we obtain the final estimate:

‖uh − û‖ ≤ Chq+1‖û‖q+1 (B.6)



Appendix C

Obtaining Adjoint Operator L∗

Obtaining the adjoint operator is an important step in FOSLL* and Hybrid-FOSLS methods.

It is not only to get L∗ itself, but also to get boundary conditions of adjoint variables based on

primal variables. One of the key points is that we always assume homogeneous boundary conditions

for primal variables and recover the numerical solution of primal variables with non-homogeneous

boundary conditions by superposition. In this chapter, we illustrate the solving process by an

example and present a matlab script which can automate the sometimes tedious process.

C.1 An Example

Integration-by-parts formula is essential in both obtaining the L∗ operator itself and the

boundary conditions for adjoint variables. We will use the theorem repeatedly in the example

later.

Theorem 17. (Integration-by-parts) Let u, v ∈ C1(Ω). Then∫
Ω
uxiv dx = −

∫
Ω
uvxi dx+

∫
∂Ω
uvnIti dS, (C.1)

where i = 1, . . . , k, unit normal vector n = (n1, . . . , nk).

Recall that the adjoint operator L∗ is defined by < Lu,w >=< u, L∗w >, with properly

assigned boundary values of w. It is easy to see from the theorem that to obtain L∗ is trival, since

for a differential operator, ∂xi, on a primal variable, we simply nagate the sign for the according

adjoint variable; for a function or constant that is the coefficient of the primal variable, we keep
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the function(constant) unchanged for the adjoint variable. Thus L∗ is transpose of L, with all its

differential operators’ sign negated.

Suppose we have the primal variable, u = (U11, U12, U21, U22, p, q)
t and the adjoint variable,

w = (W11,W12,W21,W22, r, s). Boundary conditions for primal variables are

τ · (U11, U12) = τ · (U21, U22) = 0,

n · (U11, U21) = n · (U12, U22) = 0.

Given the domain Ω is as follows:

S

N

W
E

H V

The homogeneous boundary conditions can be further written as

U11 = 0, on [N,S,E,W,H,V],

U12 = 0, on [E,W,V],

U21 = 0, on [N,S,H],

U22 = 0, on [N,S,E,W,H,V].

The primal operator L in its simplied form is:

L =



U11 U12 U21 U22 p q

(1) ∂x ∂y −∂x

(2) ∂y −∂x −∂x

(3) ∂x ∂y −∂y

(4) ∂y −∂x −∂y

(5) ∂x ∂y

(6) ∂x ∂y


. (C.2)
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Easily, we have,

L∗ =



W11 W12 W21 W22 r s

(1) −∂x −∂y −∂x

(2) −∂y ∂x −∂x

(3) −∂x −∂y −∂y

(4) −∂y ∂x −∂y

(5) ∂x ∂y

(6) ∂x ∂y


. (C.3)

To get boundary conditions for adjoint variables, integration-by-parts formula is needed.

Boundary conditions for W11 is obtained using Eqn (1) of (C.2).∫
Ω

(∂x(U11) + ∂y(U12)− ∂x(p)) ·W11 =

∫
Ω
−∂x(W11)U11 − ∂y(W11)U12 + ∂x(W11)p

+

∫
∂Ω
U11W11nx + U12W11ny − pW11nx,

where the unit normal vector n = (nx, ny) (For instance, on Boundary [S], (nx, ny) = (0,−1)).

Setting the boundary term,
∫
∂Ω U11W11nx + U12W11ny − pW11nx = 0 and conduct the same

approach to other equations of (C.2), we have

W11 = 0 on [N,S,E,W,H,V],

W12 = 0 on [E,W,V],

W21 = 0 on [N,S,E,W,H,V],

W22 = 0 on [N,S,H].

C.2 Matlab Script

The following matlab script that computes the boundary conditions of adjoint variables is

based on the solving process described in previous section. The comments and the code should be

self-explanatory.
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%====================================================

% AdjointBC: compute BCs for adjoint variables

%====================================================

% Author:

% Kuo Liu, University of Colorado at Boulder,

% Date:

% November, 2011

%====================================================

%INPUT:

% m:

% number of primal/adjoint variables (they should be the same)

% s:

% number of sides/boundaries

% A(m,m):

% Stores primal operator matrix L.

% A(i,j) = 0 : if constant in L(i,j);

% = 1 : if dx in L(i,j);

% = 2 : if dy in L(i,j)

% B(m,s):

% Stores BCs for primal variables.

% B(i,j) = 0 : i’th primal variable has value on Side j

% = 1 : otherwise

% C(2,s):

% Stores unit normal vector’s info: |nx|,|ny|

% C(1,j) = 0 : nx = 0 on Side j;

% = 1 : otherwise

% C(2,j) = 0 : ny = 0 on Side j;

% = 1 : otherwise

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

%OUTPUT:

% D(m,s):

% Stores BCs for adjoint variables

% D(i,j) ~= 0 : i’th adjoint variable = 0 on Side j

% = 0 : no BC for the variable on Side j

A = dlmread(’Ac2.mat’);

B = dlmread(’Bp.mat’);

C = dlmread(’C1.mat’);

m = size(B,1);

s = size(B,2);

D = zeros(m,s);

for i=1:m

for j = 1:m

if A(i,j)==0

continue;
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elseif A(i,j)==3

D(i,:)=D(i,:) + C(1,:).*B(j,:) + C(2,:).*B(j,:);

else

D(i,:)=D(i,:) + C(A(i,j),:).*B(j,:);

end

end

end

D

C.3 Relation of rα and Hm(Ω)

A function, say u at the singular point can always be expanded as u = rα · (trig-functions).

If we require u ∈ Hm(Ω), since u(m) = c · rα−m · (trig-functions), we need∫∫
(rα−m)2 · r dr dθ =

rα−m+1

2(α−m+ 1)
|R0 <∞, (C.4)

that is, m < α+ 1.

Let φ(r, θ) = rα sin(αθ).

∇φ =
∂(r, θ)

∂(x, y)

(
∂r
∂θ

)
φ

=

 cos θ −1
r sin θ

sin θ 1
r cos θ

(∂r
∂θ

)
φ

= αrα−1

(
cos θ sin(αθ)− sin θ cos(αθ)

sin θ sin(αθ) + cos θ cos(αθ)

)
= αrα−1

(
sin(α− 1)θ

cos(α− 1)θ

)
Therefore, ∫∫

(∇φ)2 = α2

∫ R

0
r2(α−1)rdr

∫ ω

0

(
sin2(α− 1)θ

cos2(α− 1)θ

)
dθ

• If we require φ ∈ H1,∫ R

0
(r2(α−1))rdr =

∫ R

0
r2α−1dr =

r2α

2α

∣∣∣∣R
0

=
R2α

2α
<∞

That is, we need α > 0
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• If we require φ ∈ L2, ∫ R

0
(rα)2rdr =

∫ R

0
r2α+1dr =

r2α+2

2α+ 2

∣∣∣∣R
0

<∞

we need 2α+ 2 > 0, that is α > −1.

Equation C.4 offers a quick reference for the regularity of a singular solution in its expanded

form. We can tell which Sobolev space the function lives in by simiply looking at the leading term

of its expanded form with the help of C.4.


