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Automation has proven indispensable to advancing human endeavors. Within the built en-

vironment its evolution and sophistication are on the cusp of moving beyond automatic control

into automated prediction and diagnosis. A data-driven toolchain is developed so human efforts

can be focused on high-value concerns. The research examines smart buildings as a cyberphys-

ical construct and places the Bayesian perspective as paramount. Prior knowledge is leveraged

through common building energy modeling and simulation tools, which are utilized and extended.

An iterative, three-step process is developed to 1) classify building energy performance scenarios,

2) forecast dynamics over a planning horizon of interest, and 3) signal human decision-makers

concerning deviations from ideal behavior. In the classification step, focus is placed on the dis-

crete wavelet transformation of electrical demand profiles, producing energy and entropy feature

extraction from the wavelet levels at definitive time frames, and Bayesian probabilistic hierarchical

clustering. The process yields a categorized and manageable set of representative electrical demand

profiles for smart grid applications. In the forecasting step, a cyclical two-stage model predictive

control process of policy planning followed by execution is evaluated. The results show that even the

most complicated nonlinear autoregressive neural network with exogenous input does not appear to

warrant the additional efforts in forecasting model development and training in comparison to the

simpler models. In the signaling step, a simulation study is considered to assess whole-building en-

ergy signaling accuracy in the presence of uncertainty and faults at the submetered level, which may

lead to tradeoffs at the whole-building level that are not detectable without submetering. Together,

the steps form a data-driven toolchain for the operational performance analysis and optimization

of buildings.
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Chapter 1

Introduction

This chapter provides the background and motivation for why buildings are well-suited for

automated prediction and diagnosis, both decision support mechanisms for operational building

energy performance. There are, of course, major challenges to overcome. First, the built environ-

ment is a complex, ever-changing system. Second, any given building has peculiarities and special

considerations necessary to classify and forecast its performance. Third, economic factors vary with

time and space and must be integrated and harmonized with business processes and encompassing

systems; i.e., the extent of automation should be optimized for signaling human decision-makers.

After the establishment of a basis for research, the organization of the dissertation is given with

research proposed toward: a data-driven tool chain for the operational performance analysis and

optimization of buildings.

1.1 Background

According to present-day architectural vernacular: “buildings must become smart,” with the

phrase being open to countless interpretations. It is the modern-day adaptation to Le Corbusier’s

famous statement (c 1923) “A house is a machine for living in” [1]. Smart buildings could conjure the

vision of a Jetson-esque futuristic utopia, complete with a robot maid who maintains technologies

for every whimsical desire. Or, in contrast to robotic utility, they could enhance the occupants’

health and sense of well-being through sustainable design and building health monitoring. What it

takes to fully establish a smart building will change with time. Smart devices and services currently
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exist and are being refined: from phones and televisions to cloud computing and the next generation

electric grid. Fundamentally embodied in the term smart is the notion of increased functionality

at a reduced effort. Computer hardware that once occupied entire building floors are now but tiny

components of the omni-connected information age. In terms of software, data gathering that once

required hours to ascertain (e.g., at a library) can now be queried and examined at the touch of a

button. The envisioned communication amongst a network of smart devices and services has been

termed the “Internet of Things” (IoT) [2] and, to some extent, is inevitable in the path toward

smart buildings.

Ample opportunities exist for more intelligent building operations, yielding more satisfied

occupants at enhanced energy performance. The built environment is responsible for approximately

41% of primary energy consumption in the United States, greater than transportation, 31%, and

industry, 28%, with building site energy consumption dominated by heating (37% space; 12%

water), cooling (10%), and lighting (9%) end-uses [3, 4]. Furthermore, it is estimated that 15–

30% of commercial buildings’ energy consumption is wasted due to poorly maintained, degraded,

and improperly controlled equipment, necessitating fault detection, diagnostics, and prognostics

(FDD&P) for building systems [5, 6]. Since World War II, energy consumption in the United States

has grown from just over 30 quadrillion BTUs to just under 100 quadrillion BTUs — trending with

industrialized nations and the requirements of an expanding population [3, 7].

The current United States primary energy production comes from approximately 77% fossil

fuels, 11% nuclear, and 12% renewable generation [3]. The limited supply of hydrocarbons is

debated [8] but the irreversible climate change due to carbon dioxide emissions is largely not [9].

Furthermore, the future of water supply is threatened by climate change [10]. This has profound

consequences since, in 2010, thermoelectric power accounted for 45% of total water withdrawals,

38% of total freshwater withdrawals, and 51% of fresh surface-water withdrawals [11]. Reference

case projections from 2010 to 2035 for the United States forecast energy consumption average

annual growth rates of 0.3% (electrical demand growing by 0.7% per year, attributed primarily to

the rising energy consumption in the buildings sector); average annual energy consumption growth
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rates are 0.4% for natural gas and nuclear, 0.1% for coal, and 3.9% for non-hydropower renewable

energy [12]. The variable and uncertain nature of renewable energy, and its expected share of total

generation in 2035 ranging from 10-15% [12], indicate more will have to be done to accommodate

its growth and, in general, electric power system planning, commitment, and dispatch [13]. More

startling, world energy consumption is expected to increase by 53% between 2008 and 2035 [14],

which will influence energy imports, exports, and prices.

Energy efficiency has been seen as a key means for achieving energy policy goals, yet there is

a concern that continued improvements could be eliminated by increased energy consumption [15].

Furthermore, even for the most energy efficient buildings, power demands on the electric grid

have high spatiotemporal correlation; i.e., regional demands are becoming more pronounced due to

more than 80% of residents living in metropolitan areas of the United States [7]. Utilities have a

formidable challenge in optimizing power flows on the electric grid, placing great strain on an aging

infrastructure. From a holistic, system-of-systems perspective, it is possible the built environment

is most energy efficient when buildings participate in managing the concerns of the electric grid;

e.g., demand response, load shaping and modulation, or adaptive control according to renewable

power availability. Building performance thus extends beyond energy efficiency into flexibility and

supply following, with advanced analytics [13] used for integrating smart buildings and grids.

Major elements of the smart grid are illustrated in Figure 1.1; existing power infrastructure is

shown with dashed lines to indicate decreasing centralization, while solid lines indicate an increasing

decentralization. Expansion to the smart grid entails a more flexible and resilient grid which can

more easily transfer power according to local supply-demand mismatch. Although the smart grid

will be primarily centralized due to existing infrastructure, attributed to economies of scale in

electric power generation, movement toward distributed generation is commonplace with rooftop

photovoltaic (PV) systems; however, many types of renewable energy will sit alongside the existing

infrastructure and participate according to availabilities and demands. Variability and uncertainty

associated with renewable power generation, commonly termed “intermittency,” requires buildings’

flexibility while the game-theoretic agents of energy markets will determine dynamic pricing.
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Figure 1.1: Conceptualization of a smart grid: the next generation electric grid for enhanced

communication, renewable energy integration, and whole-system efficiency.

The hierarchy of a typical building automation system (BAS) is shown in Figure 1.2. It is

primarily centralized, echoing contemporary electric power grid control. Minimal communication

is enabled among elements within a given level of the system; i.e., horizontally in the figure. All

necessary control can be accomplished in a top-down fashion; i.e., vertically in the figure. An

energy management and control system (EMCS) acts as a further abstraction of the BAS for the

observation and control of a building portfolio, and is accomplished through supervisory control

and data acquisition (SCADA). Because this strategy mirrors that of the electric power grid, albeit

at a much smaller scale, it is possible the systems will become indistinguishable with the emergence

of smart buildings and grids — especially with publicly and privately owned IoT devices.
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Figure 1.2: Building Automation System (BAS) topology: typical hierarchy for building control.

1.2 Research Motivation

In the development of the modern built environment, engineers have utilized physical mod-

eling and simulation primarily for design purposes. Contemporary methodologies have focused on

deterministic approaches for equipment sizing, the relative comparison of design options, and as

part of obligations for building (performance) certification programs. Straightforward routines are

automated in popular building modeling software; e.g., boiler capacity sized according to the worst-

case scenario of maintaining indoor temperature for an unoccupied building on the coldest day of

the year. For real-world operations such physical models may be too rigid;1 i.e., built on limited

1 The Model-Based Benchmarking (ModBen) project [16] was the impetus for the operational building energy
performance research herein; its outcomes are summarized in Appendix A.
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supporting data and composed of cascading assumptions, the physical (design) models cannot repli-

cate all dynamical behavior. Although countless development years have gone into building energy

modeling tools, there is a dearth of literature or applications showing model predictions matching

measured performance in a time-series fashion for more than individual subsystems. There are

many studies on calibration, as reviewed in the next chapter, but results can be misleading be-

cause model-measurement agreements are only valid for aggregate energy flows. For this reason,

building energy model calibration is thought of as “an art and a science.” In summary, there exists

a great need for thought revision on the suitable mathematical modeling of buildings and related

systems, especially in an operational setting for decision support where uncertainty quantification

is necessary for stochastic optimization of real-world HITL processes.

Combining expert insight, data, and models for decision support is seen as a path forward and

has been generically termed analytics for its reliance on elements of computer science, statistics, and

operations research for business decision making [17]. It is argued that data analytics and physical

modeling are central to smart buildings, herein termed an Operational Building Energy Model

(OpBEM) and denoting a cyberphysical construct for research purposes. The value proposition is

the incorporation of energy performance into, and phrased in terms of, business operations to offer

a substantial internal rate of return by complementing and extending the performance gains from

energy audits, commissioning, and operations and maintenance (O&M). At the building scale,

automated prediction and diagnosis can help focus O&M to save costs while providing superior

comfort, leading to increased worker productivity. On a portfolio scale, costly and ill-performing

buildings can be identified and systematically mended. Research and development (R&D) into the

built environment spans relatively simple devices, such as smart residential thermostats, to the

highly faceted smart grid where neighborhoods of commercial buildings and industrial facilities are

subsystems. The breadth and depth of these R&D concerns, coupled with ever more demanding

expectations, can be addressed from a unified perspective through Bayesian probability.2

2 Dodier [18] identified the various built environment R&D pathways using belief (Bayesian) networks and moti-
vated the Bayesian perspective of later chapters; the fundamentals of Bayesian inference are provided in Appendix B.
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For building owners, operators, and other stakeholders, energy as a commodity is obvious at

large scales; however, it is more common that energy costs are far outweighed by other business

expenditures influencing profit margin; e.g., office worker salaries cost approximately 72 times that

spent on energy [19]. Since faulty building performance often stems from practical O&M issues,

through a scalable software tool it may be possible to optimally focus manual efforts and thereby

save time, effort, and money over a building’s lifecycle. Furthermore, smart buildings’ participation

in the smart grid will require (scenario) forecasting and a portfolio of buildings with flexible loads,

whether shaped with the help of energy storage, advanced controls, or both.3 Although the

definition of “building health and energy performance” will vary and is subjective, defining the

properties of an OpBEM is a worthwhile pursuit. In this research, focus is placed on describing

how buildings operate in the real world by extending popular physical simulations tools, which are

modular and allow quick reconfiguration of components, subsystems, and systems, and combining

these models with relevant data and analytics so queries can be answered that would be difficult

or costly to consider otherwise.

There are numerous modeling strategies for capturing, understanding, and predicting the

patterns observed with respect to building energy performance; however, physical design models

are often dispensed with upon building construction. Here, it is argued the design model is the

“ideal” to be upheld, with its utilization throughout the building’s life cycle. Exploring the OpBEM

cyberphysical construct is crucial to the built environment for three reasons: 1) buildings are

dynamic and some patterns observed in reality are beyond what can be considered with any design

model, 2) a given building might be “outside the norm” (e.g., it contains a sizable computer server

triggered by worldwide requests) and is thus subject to stochastic concerns outside the realm of

traditional, deterministic physical building energy models, and 3) the possible energy and cost

savings from an individual building likely do not outweigh the cost associated with sophisticated

analytics. OpBEMs are feasible only if automated and scalable.

3 Renewable energy integration is anticipated to drive power ramping requirements due to solar and wind power
generators’ influence on supply variability and uncertainty [20]; an examination is provided in Appendix C.
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A data-driven toolchain cannot consider all possible situations involving operational building

energy performance. It is therefore of value to phrase the problem as one of process development

and ensure its adaptability, flexibility, and optimization as data are gathered. Inspiration is taken

from the application of the Deming cycle4 to various business problems. Shown in Figure 1.3, the

iterative Plan-Do-Study-Act (PDSA) method involves: 1) plan: specific objectives are planned,

2) do: they are implemented, 3) study: they are evaluated to understand how they succeeded

and failed, and 4) act: results are acted upon to improve the process in the next iteration. Later

chapters argue that the HITL will always be the one to act, but steps 1–3 can be transformed to

the building science context as classification, forecasting, and signaling, respectively. The PDSA

method has general applicability to the aforementioned OpBEM objectives.

Plan

DoStudy

Act
1

2

3

4

Time

Quality

Figure 1.3: The Plan-Do-Study-Act (PDSA) method (or Deming cycle) is an iterative four-step

management method used to control and continuously improve processes and products.

4 William Edwards Deming (1900-1993) was an American engineer, statistician, professor, and management con-
sultant, born in Sioux City, Iowa. He studied electrical engineering at the University of Wyoming (B.S.), University
of Colorado (M.S.), and Yale University (Ph.D.). He is most notable known for his work in Japan after WWII, where
he adapted statistical process control [21] in a Plan-Do-Study-Act (PDSA) fashion and is credited with propelling
Japanese industry from ruins to the second most powerful economy in the world in less than a decade.
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1.3 Organization of the Dissertation

The research gap is the substantial differences between the reality of buildings’ operational

performance and those envisioned by building modeling and simulation studies. The desired out-

come is a data-driven toolchain for the operational performance analysis and optimization of build-

ings. The dissertation is organized into seven chapters, followed by three appendices informing the

research perspective taken, as described below.

Chapter 2 Operational Building Energy Performance — examines and summarizes pub-

lications relevant to the above discussion, as well as tangent applications providing implicit or

explicit decision support with predictive or diagnostic considerations.

Chapter 3 Development of a Data-Driven Toolchain — a data-driven toolchain for the

operational performance analysis and optimization of buildings, expounded in later chapters, is de-

scribed in terms of an iterative, three-step process utilizing classification, forecasting, and signaling.

Chapter 4 Classification of Commercial Building Electrical Demand Profiles for Energy

Storage Applications — examines the time-frequency electrical demand profiles of the United States

commercial building stock, as modeled from the 2003 Commercial Buildings Energy Consumption

Survey (CBECS) data and simulated using the EnergyPlus building energy simulation engine.

Chapter 5 Comparison of Short-Term Weather Forecasting Models for Model Predictive

Control — evaluates short-term weather forecasting for commercial buildings’ model predictive

control, with prediction accuracy quantified and compared across various geographic locations

using a suite of methods based on traditional time series analyses and artificial neural networks.

Chapter 6 An Energy Signal Tool for Decision Support in Building Energy Systems —

demonstrates the first prototype of an operational decision support system to aid building oper-

ators’ insight to ideal and faulted energy performance. A Bayesian approach is used to quantify

uncertainty, and the decision of signaling normal or abnormal energy use chosen by minimizing the

expected cost of displaying the wrong information.
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Chapter 7 Conclusions and Future Work — summarizes the results of the research and

provides recommendations for its extension, with particular focus on feasible, real-world implemen-

tations of the A Posteriori EXplorer (APEX) system concept.

Appendix A A Summary of the Model-Based Benchmarking (ModBen) Project — de-

scribes project-based outcomes in the development of practical methods and tools to help identify

potential building energy savings in a cost effective, timely, and permanent manner; this project

was the impetus for the operational building energy performance research.

Appendix B Fundamentals of Bayesian Inference — provides supplemental material on

the Bayesian perspective to probability and its wide-ranging implications to the research objectives,

namely uncertainty quantification.

Appendix C Identifying Wind and Solar Ramping Events — describes how wind and solar

power can augment uncertainties in the operation of power systems, specifically through increased

power ramping variability. Renewable energy integration is playing an increasingly significant role

in the electric grid — influencing the need for flexible, smart buildings.



Chapter 2

Operational Building Energy Performance

This chapter reviews the literature pertinent to the stated objective and highlights related

concerns, applications, and research desiderata. Perspectives include qualitative and quantitative

aspects of operational building energy performance. The goal is to provide context and narrow the

scope of research to a thorough, yet manageable examination.

2.1 Buildings in the Digital Age

Building design traditionally starts with architectural planning and programming, moves

on to schematic design, follows with design development, and finally, construction documents are

produced before the project is bid and built. Of course, as the process develops from conception

to completion, there is a decline in the opportunity for modifications which is mirrored by rising

costs to change plans. This has been partially combated in modern times through design-build and

computer-aided design approaches, resulting in some form of a digital model of the building. The

process enhances the speed and accuracy of the building’s design and construction, allowing team

members to better integrate their ideas and communicate more effectively. The technological move-

ment in building design that began with computer-aided drafting has recently incorporated building

information modeling (BIM), which seeks to maintain a digital representation of the physical and

the functional elements of the building (e.g., geometry, materials, and specifications) through its

construction, operational life, and finally to its demolition [22]. BIM is in its infancy and most focus

has been placed on maintaining documentation from conceptional design to as-built construction.
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Nevertheless, it has piqued the interest of architects, engineers, and construction personnel alike.

Integrated designs will greatly benefit as the technology matures.

Decision support concerning the operational performance of buildings is sparse because the

threshold between the proper use and misuse of resources, namely energy, is costly to monitor

and magnitudes are subjective; e.g., occupants’ influence on electrical demand through plug loads

and whether their choices are necessary to operations.1 It is argued that a data-driven toolchain

for the operational performance analysis and optimization of buildings must commence with an

examination of what constitutes a ‘building model,’ as considered in this chapter, and then de-

fine the cyberphysical construct necessary for interfacing BIM (or similar) with operational data,

simulation of physical models, and HITL processes, as is considered in the next chapter. It is

hypothesized the existing set of BAS measurements found in modern, maintained buildings is suf-

ficient for such decision support through an enterprise EMCS; however, the operational data will

take uncountably many forms and a process is necessary. It is envisioned the physical simula-

tions used today, currently not well-integrated with the architectural design development, can be

rephrased as operational simulation models and build upon historic methods for building simulation

and optimization [23].

Operational faults that could be automatically diagnosed are currently left to building oper-

ators for manual resolution. The problem is that many faults go unnoticed due to their insidious

nature; i.e., major equipment failure is typically reported (by occupants) in a timely fashion but

slow moving faults leading to inefficiencies are not. With convergence on a unified, digital building

model for the overlapping needs of architecture, engineering, and construction, it is necessary to

explore how modeling might be combined with operational measurements. Specifically, a building’s

life cycle may be extended, costs reduced, or building health enhanced with ongoing energy perfor-

mance analytics. How operational building energy performance is defined is subjective but closely

aligns with building science subfields of fault detection and diagnostics (FDD) and model-predictive

1 As one might imagine, defining an objective function that involves the value of human actions is controversial
and likely impossible in a complex business setting. Thus, human influences on cyberphysical systems are regarded
as random processes and research focus is placed on engineered systems associated with (commercial) buildings.
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control (MPC) with retrospective and anticipative analyses, respectively. These two research do-

mains make explicit use of building physics models and data; however, abstraction of these tools

into processes for decision support is largely overlooked. The following sections summarize research

progress and key developments.

2.2 Trends in Building Energy Modeling and Simulation

Authors have detailed the history of building modeling and simulation [23, 24, 25]. It can

be summarized to say the sequential developments show its evolution from simple calculations for

design purposes to advanced energy simulation. In the mid-1900’s, heating was the primary con-

cern of building modeling efforts. A steady-state worst-case heating load was calculated under fixed

conditions; e.g., indoor and outdoor temperatures, humidity, etc. Modifications were later made for

transmission of solar irradiance and diurnal internal gains. In the early 1960s through the 1980s,

analytical methods were developed to treat the lagging effect of thermal capacitance. This was cou-

pled to thorough treatment of geometry and the radiative properties of glazing. Building simulation

software was mostly distinguished by its approach to conduction heat transfer through the envelope,

with response factor, admittance, and finite-difference methods being the norm. The 1980’s saw

the development of heating and air-conditioning plant models with simple controls to match energy

flows with setpoint analysis; hygrothermal models were then considered in earnest. Steady-state

equipment models allowed the comparison of performance for design purposes. Some detailed,

dynamic plant models became available; however, with interest placed on longer time horizons

for design purposes, these models were usually specifically associated with control investigations.

In the 1990s there were a sizable number of commercially available and government-sponsored

building simulation codes for use on personal computers. With the wide range of sophisticated

system and component models, modelers began to couple computational fluid dynamics (CFD)

code to building energy models for realistic ventilation studies requiring conjugate heat transfer at

low Reynolds numbers. This “hand-shaking” approach has been considered overkill by some and

necessary (modeled) dynamics by others. From 2000 to present, greater modeling detail and new
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systems have continually been added to building modeling and simulation programs. To stimulate

wider adoption of the software tools, the focus has also been placed on data management protocols

and exchange, graphical user interfaces (GUI), and, in general, ease-of-use.

With evermore complex simulation models and designs, building energy modelers are con-

cerned with possible software bugs, deterministic simulation models programmed according to

limited data, and the overall need to validate the performance as compared to design [26, 27, 28].

Although the building physics are mostly understood for detailed modeling and simulation, there

are considerable uncertainties associated with the use and performance of real buildings [29]. These

include, but are not limited to, occupancy and behavior, micro-climate effects, and significant de-

viations from the assumptions used to build the model. Of course, the overwhelming majority of

building energy models are deterministic even though stochastic considerations are more fitting

in light of unpredictable human influence. Building engineers are looking to reevaluate existing

approaches with measured data toward the enhancement of whole building energy performance. A

few viable ideas include:

(1) Maintain a database of measured building performance [30] and notable events under a

given supervisory control strategy and ambient or internal influences, e.g. typical weather,

known equipment malfunction, etc.

(2) Have systems in place to easily allow occupants to deliver feedback [31] to performance

stakeholders (e.g. building operator, manager, owner, etc.), as well as to quantify the

occupants’ impact on the building for bilateral feedback.

(3) Adapt the supervisory control of the building in real time, and also forecast future events

or probable time series trajectories, according to weather and the needs of the electric grid

or other enveloping systems [32].
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2.2.1 Sensitivity Analysis

Monte Carlo approaches are the most commonly used methods to understand numerical sensi-

tivities [33]. Reddy and Maor [34] used a midpoint Latin Hypercube Monte Carlo (LHMC) stratified

sampling on three levels. The steps are to: 1.) assign probability distributions to each building

model inputs or parameters, in particular, a triangular distribution, 2.) the triangular distribution

is discretized into low, medium, and high according to three ranges leading to equal probability,

and 3.) randomly select LHMC combinations (high/medium/low) for the inputs and parameters.

Each LHMC parameter combination becomes a realization for a building energy simulation. Upon

completion of the Monte Carlo simulation, measured data is compared to the simulated results.

Those with close agreement are included in the calculation of a chi-squared statistic. If the samples

used in the chi-squared calculation are non-uniform, the more sensitive the measured and modeled

data agreement is to a particular high/medium/low combination. An optimization can focus on

adjustments to these influential inputs and parameters.

2.3 Data-Driven Assessments

Dodier et al. [35, 36, 18] researched prediction and diagnosis in engineering systems with belief

(Bayesian) networks, forming the basis for research presented herein because of the uncertainty

quantification aspects. Kaldorf et al. [37] detailed their practical experiences from developing and

implementing an expert system diagnostic tool, with FDD for underperformance or abnormalities.

The faults considered being total or partial component failure, wrong parameter settings, operator

errors, undersized system capacity, changes of building, zone usage, etc. Song et al. [38] examined

the online simulation of whole building energy consumption for the concerns of fault detection

and optimization. It was accomplished through the development of a heating, ventilation, and

air conditioning (HVAC) automation system, embedded in the energy management and control

system.
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2.3.1 Typical Building Energy Performance Data

Before combining energy models with measured data, it is necessary to understand what data

are typically available. In general, from coarse to fine resolution, typical data include the below

descriptions.

Utility Billing Data Are a record of energy performance to an extent [39]. Regression

models can be used to compare and contrast similar buildings, validate pre- and post-retrofit

measures and, of course, the calibration of building energy simulation models according to aggregate

energy flows.

Interval Data Take utility metered, whole-building data to the next level of resolution [40]

with demand or consumption provided at time intervals typically ranging from 15 minutes to 1 hour.

Comparing intervals of sequential days over a time period allows building energy patterns to emerge.

This is helpful for troubleshooting issues associated with whole building energy performance such

as the poor scheduling of equipment; e.g., fully lighting an unoccupied building at night.

Submetered Data Are specific to a particular building or building system [41], with the

time sampling and spatial distribution of the measurements specified according to the needs of a

given project. Typically efforts are made to decompose the energy performance of the building into

end-uses such as heating, cooling, lighting, etc.

Automation System Data Are obtained from the BAS or EMCS [42]. Nearly all control

data can be obtained from local and system controllers. Data are sampled, stored, and trended ac-

cording to user queries. Alarms can be activated according to user-programmed logic or conditions.

Acquiring data is constrained by the bandwidth of the network, the speed and storage limitations

of the acquisition system.

An ongoing measurement campaign may harness all data available and require additional

measurements. It may only require interval data. The answer depends on the application and the

utility of data with regard to decision making. Frequent and spatially diverse data are helpful for

informing a detailed physics model of the building, at least when assessing whole-building energy
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performance. Simple time series models using interval data may be adequate for assessing simple

energy performance (e.g. cost per square foot) or forecasting weather, thermal load, and electrical

demand over some operational horizon. A range of applications exist according to the data available

and model employed.

2.3.2 Calibration, System Identification, and Evidence-Based Approaches

There may be tens to thousands of inputs and parameters, each with considerable levels of

uncertainty, required to calibrate a building energy model. Even so, there will never be a perfect

agreement between model output and measured data. It is most common that the problem posed

is one of optimization, with the objective function using various metrics or distance measures to

quantify the disagreement between model and reality. When the model is calibrated it is typically

up to the user, and that is why some refer to calibration as more of an art than a science. It is a

highly underdetermined problem, and a multitude of solutions may satisfy a minimum according

to the objective function criteria, and that is why so much interest has been put into its solution.

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline

14 [43] standardizes a set of energy, demand, and water savings calculation procedures to provide

guidance on minimum acceptable levels of performance in determining savings; normalized mean

bias error (nMBE) and coefficient of variation of the root mean square error (CV-RMSE) metrics

are utilized.

Reddy and Maor [34] give a comprehensive account of building energy model calibration,

with the identification and summarization of the best techniques and approaches in current prac-

tice. A methodology of parameter estimation and systematic calibration is developed for assessing

and quantifying uncertainty. A four-step methodology was proposed: 1.) identify the most in-

fluential parameters through an audit or heuristics, 2.) perform a Monte Carlo simulation for a

course calibration leading to feasible solutions, 3.) use a fine grid on the feasible solution space to

manually calibrated or via optimization, and 4.) compute the calibrated models prediction error

for uncertainty quantification.
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Evidence-based approaches [44, 45] depend on prior knowledge through blueprints, and other

reliable sources of building information, so that results can be reliably reproduced. This approach

recognizes that adjustments based on poor sources will inevitably lead to problems, and a systematic

approach with concerns for sensitivity is necessary. Raftery et al. [45] proposed three elements

crucial to the calibration: 1.) detailed models that represent the real building accurately, 2.)

methodology reproducibility, and 3.) abundant measured data. Norford et al. [46] suggested a two-

stage manual process: 1.) tune tenant-based inputs and HVAC schedules, and then 2.) tune HVAC

equipment and building envelope parameters. This was based on occupant behavior having the

most significant impact on energy consumption. Lee and Claridge [47] investigated an automated

and iterative calibration routine as part of a building case study, claiming the routine’s ability

to filter local minima was its advantage over manual calibration. Other authors have noted the

helpfulness of interval data due to the ability to discern occupant patterns [48], and the ability of

high-frequency submetered data to complement utility data [49].

Since building energy simulation models typically rely on a small subset of the total number

of inputs and parameters for their calibration, focus on a small number of crucial factors can save

calibration time. Although this can be accomplished using expert experience, it often makes sense

to perform uncertainty and sensitivity studies to understand what impacts the model the most.

Eisenhower et al. [50, 51] studied the influence of approximately 1000 parameters on complex

building energy models, with focus on efficient uncertainty and sensitivity decomposition, allowing

accurate meta-model fits from a handful of parameters and an understanding of which parameters’

sensitivities are best for optimization. Burhenne et al. [52] used a Monte Carlo based methodol-

ogy for uncertainty quantification, using building simulation coupled to cost-benefit analysis, to

determine model inputs that lead to positive net present value investments.

2.3.2.1 System Identification

Building energy modeling and measurement are typically associated with new construction.

However, 93% of the United States commercial building stock was built before 2003 and 74% built
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before 1989 [53]. For the residential stock, 70% of homes were built before 1989 and new construc-

tion annually accounts for approximately 1% of the building stock [54]. These statistics highlight

the impact of existing construction. To truly address energy availability, security, and efficiency,

building modeling and measurement for the enhanced performance of existing construction is a

logical first step. Furthermore, combining insights and lessons learned to new construction will

lead to a shift in the energy performance of the building stock over time. There is a great need for

accurate building energy models combined with measured data. Movement away from theoretical

simulated performance to actual delivered, data-driven performance is necessary to meet energy

goals, codes, and owner requirements.

System identification is used as part of analysis, simulation, prediction, control, optimization,

and fault detection [55, 56, 57]. ASHRAE distinguishes between a forward (classical) approach and

a data-driven (inverse) approach [58]. The former is mere simulation, and the latter constitutes

various forms of system identification. First principle models are extremely helpful for simula-

tion and quantifying expectations for design purposes, but there is often a tremendous amount of

assumptions that go into their development. For design purposes, one can always make conser-

vative assumptions and overengineer a given system. For data-driven models, design assumptions

are replaced by uncertainties in the mathematical description of the model; e.g., parameters, in-

puts, structure, etc. The application of the model and data available will likely drive the system

identification methodology.
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Figure 2.1: Typical multiple-input, multiple-output (MIMO) system identification. Various algo-

rithms are used to tune the model according to its prediction error.
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Figure 2.2: The system identification procedure can be roughly broken into six stages, with the final,

seventh validation stage used for accepting or revising the model as necessary; adapted from Nelles

(2000) and modified according to a Bayesian perspective.
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Figure 2.1 shows the system identification problem to be addressed. The problem can range

from simple single-input, single-output (SISO) identification to complex multiple-input, multiple-

output (MIMO) identification. In most realistic problems there is a limited number of observations

available pertaining to inputs, outputs, variables, and parameters. Prediction error over a given time

period, combined with uncertainty in the measurement of system output, allows the model to be

updated using various algorithms to obtain superior modeling accuracy. The model itself can range

from simple linear time series models to detailed physics models with stochastic considerations.

Using a deterministic, first principle building energy model is possible, often termed calibration, by

using all information available (e.g., blueprints) combined with reasonable assumptions for missing

values unknowns. Since the problem is highly underdetermined, there is an uncountable number of

variables or parameters that could lead to the same observed output, and the model’s accuracy is

a function of the quality of information. It is of interest to quantify these phenomena and provide

a systematic means for evaluating a given model’s appropriateness according to the problem being

addressed.

Figure 2.2 shows the primary elements required for system identification [55, 56, 57]. During

the model development, prior knowledge (i.e., understanding of the physics or data from previous

experiments) is large at the start of the system identification and decreases with time. Mirroring

the use of prior knowledge, the amount of empirical evidence is small at the start of the model

development and increases with time; i.e., the prior to posterior evidence. Note that a temporal

aspect to the procedure is not explicitly included in the figure, and the validation stage may require

movement back to a previous stage.

With an emphasis on applications associated with building energy models, the required seven

steps for system identification [56] can be summarized as follows. Since all modeling requires unique

considerations, the general approach described below is not exhaustive.

(1) Inputs — the physical processes influencing a given variable are usually known to some

extent. However, some inputs, such as occupant influences, are hard to quantify due to
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their stochastic nature. Some inputs may be recorded, like building temperature setpoints,

while other inputs are known to occur but not directly measured. It is an intractable

problem to measure all building inputs to establish a model, and some combination of

sensitive inputs must be chosen. The crucial inputs necessary can be identified according

to expert knowledge or through (machine) learning, including unsupervised or supervised

approaches.

(2) Application — involving the highest level of engineering expertise, incorporating prior

knowledge toward satisfying the nature of the problem is difficult. The system identifica-

tion might have applications of simulation, classification, diagnostics, etc. Computational

requirements may influence the dimensionality of the problem considered, and offline or

online model usage drives the adaptability and complexity of the model.

(3) Dynamics — the resolution of the model’s dynamical representation will drive the variable

relationships that must be explicitly considered. For instance, the electrical demand of a

given building may be the primary focus, and detailed air distribution system modeling is

required due to very large fans. Or frequency regulation for grid ancillary services [59] may

require detailed fan models only; other variables can be lumped together or parameterized

according to the application of system identification.

(4) Order — increasing the complexity and dimensionality of a model can lead to higher fi-

delity to measured performance, but trade-offs exist between dynamic fidelity and static

approximation accuracy. A higher-order and lower-model may both be inaccurate in differ-

ent senses of bias and variance, but there exists a “correct-order” model according to the

data and the dynamics explicitly modeled.

(5) Structure — if a purely physical model is considered, the model’s structure is fundamentally

tied to earlier steps in the system identification procedure. However, the model may be a

hybrid of physical and statistical relationships. For example, an industrial building may
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have a process that consumes 90% of all energy at the facility. A detailed physics model

of that process may exist, but may only weakly depend on surrounding processes which

can be approximated by simple statistical relationships. An appropriate structure emerges

according to the utility of various subsystems.

(6) Parameters — a given subsystem may consist of numerous variables that can be parame-

terized in various fashions while equivalent model accuracy is maintained. The choice of

parameterization may or may not be important. This is a function of the data that are

available and how the model will be used. If a human must interpret the parameter value for

decision making, it is helpful if the parameter has a physical interpretation. Furthermore,

fiddle parameters may be necessary as part of the model development; e.g., sensitivity to

initialization values.

(7) Validation — the model quality must be evaluated in light of its ultimate goal. Unfortu-

nately, this step is iterative and highly dependent on the problem domain. The utility of a

given subsystem may inform how accurate its model need be; however, errors can propagate

throughout the system as a whole, and the aggregate error is hard to attribute to a given

subsystem. A methodology for model validation must be resolved for the application of

system identification and be specific to the domain of interest.

2.3.2.2 Clustering of Energy Performance

Regression models of steady-state energy performance correlate energy consumption with

average temperatures or degree-days, typically using one to five parameters [58]. They are quite

helpful for validating pre- and post-retrofit energy conservation measures (ECM) [60]. Their use has

been criticized for not being able to simultaneously handle both heating and cooling aspects [61] and

poor performance in the estimation of building parameters [62], with more sophisticated dynamic

models suggested. Nevertheless, for their intended use, successes range from the inclusion and

prediction of non-weather-related variables [63] to HVAC operating mode [64] using occupancy
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rate as a proxy. The effect of time resolution on multiple linear regression was investigated by

Katipamula et al. [65], with results indicating daily time scales are most beneficial for retrofit

savings determination, and hour-of-day models are best for O&M. The uncertainty of measured

energy savings has been investigated [66], but, in general, uncertainty quantification of steady-state

energy performance in the literature is sparse.

Numerous researchers have tried to classify patterns influencing building energy performance

as a function of weather or other variables. Katipamula and Haberl [67] developed a methodology

for day-type identification using monitored non-weather dependent end-use data, allowing typical

load-shape data to be generated. Hadley [68] identified typical weather day types using National

Weather Service data with principal component and cluster analyses. It was possible to group

HVAC system energy consumption into a few typical days. Seem [69] identified day-types of similar

energy consumption profiles using a pattern recognition algorithm. Data features were extracted

from the time series of energy use and grouped into seven clusters after an outlier detection scheme

was used to aid grouping. Applications of supervisory control and abnormal energy consumption

were noted. The research was extended [70] with field tests in buildings having: 1.) poor chiller

control strategy and subsequent failure, 2.) poorly designed HVAC equipment, and 3.) following

an electrical panel change, improper operation of equipment. More recently, Miller et al. [71]

have used a day-typing process based on Symbolic Aggregate approXimation (SAX), motif and

discord extraction, and clustering to detect the underlying structure of building performance data.

Discords, or infrequent daily patterns, are filtered and tagged for future analysis; Motifs, or the

most frequent patterns, are detected and further aggregated using k-means clustering. Results are

correlated with normal and abnormal energy consumption day-types.

It is apparent as researchers strive to assess energy performance on shorter time scales, and

spatially as well, quantification of energy performance maps to whole-building fault detection –

where a fault is any abnormal deviation from expected behavior. Of course, in practical applications,

there are limits on data and the accuracy of physical models. Coupling measured data to simulations

helps impute but comes at the cost of considerable assumptions.
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2.4 Fault Detection and Diagnostics

FDD has mostly been associated with critical processes; e.g., nuclear technology, aeronau-

tics, and the chemical industry. Pioneering research in the automotive industry is attributed to

Isermann [72] and mirrors the noncritical process concerns of building operational performance

analysis and optimization.

2.4.1 Foundational Applications in Buildings

Katipamula and Brambley [6, 5] provided an exhaustive survey of FDD literature as applied

to buildings citing “poorly maintained, degraded, and improperly controlled equipment wastes

an estimated 15% to 30% of the energy used in commercial buildings.” In the first article, a

discussion is provided on FDD, embodied by three key processes, fault detection, fault isolation,

and fault identification, and how these topics have been used in the aerospace, automotive, and

chemical fields, but only limited building applications. They classify diagnostic methods into 1.)

quantitative, 2.) qualitative, and 3.) process history approaches. There are extensive sources

cited according to their classification scheme, and the reader is referred to the treatise for the

breadth and depth of FDD concerns. The second article focuses on FDD in buildings, separated

into refrigerators, air conditioners and heat pumps, chillers, and air-handling units; statistics and

prognostics on failed building equipment are not considered. The current state of diagnostics in

buildings is discussed along with comments on future applications. Typical building energy faults

are described in Hyvarinen et al. [73] as part of an expert survey from the International Energy

Agency (IEA) and, combined with the author’s personal experience, are condensed in the following

tables to illustrate the vast number of faults encountered in building operations.

2.4.2 Building Primary and Secondary Systems

Over 30 years ago, HVAC system fault detection and diagnosis have been studied [74] and

suggestions made concerning the fact that energy management and control systems could be used
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Table 2.1: Common faults found in chillers.

Refrigerant-based Faults Pressure-based Faults

lack of refrigerant loss of vacuum
presence of air in the refrigerating circuit clogging of condenser tubes
presence of refrigerant in the lubricating oil clogging of evaporator tubes

to detect and compensate for failures in HVAC equipment. The field has seen numerous studies

seeking to explore this area in greater depth.

2.4.2.1 Chillers

Braun [75] reviewed research related to automated fault detection and diagnosis for chillers,

packaged air conditioners, and other vapor compression cooling equipment, assessing the state-

of-the-art in FDD for said equipment. Haves and Khalsa [76] provided a similar review. Yu

and Chan [77] investigated the energy signatures of chillers (e.g., kWh per unit floor area of a

building in m2) under various design options and operating strategies. Andersen and Reddy [78]

provide an Error In Variables (EIV) regression approach for chiller performance data. Wang [79]

developed dynamic models of a centrifugal chiller for online control strategies. Wang and Cui [80]

used principal component analysis to capture the correlations among variables in centrifugal chillers,

allowing robust fault detection and diagnosis based on six performance indices describing the health

condition of centrifugal chillers. Other authors have considered parameter-based approaches for

FDD [81], forecasting [82], model-based assessment [83], rooftop units [84], fault isolation [85], and

sensor faults [86, 87]. Table 2.1 provides the most important faults common to chillers.

2.4.2.2 Boilers and Heating Systems

Huang et al. [88] developed a real-time fault detection and diagnosis system for control of

thermal power plants in large-scale industrial applications. However, HVAC field studies of FDD

for heating systems and boilers are sparse. Table 2.2 shows the most important faults common to

heating systems and boilers.
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Table 2.2: Heating system and boiler faults common to practice.

Design-based faults Pressure-based faults Other faults

zone temperature too low defects of manometers (boiler,
gas expansion system)

bad boiler efficiency

boiler, radiator or pump size
wrong

leak of the gas tank defects of sensors (water flow,
gas flow)

defects in valves (three-way
valve, non return valve)

blockage of boiler pipes and
heat exchangers

zone temperature too low

leaks in pipes thermostatic valve defect

defects of manometers (boiler,
expansion system)

2.4.2.3 Air Handling Units

Lee et al. [89, 90, 91] used artificial neural networks for fault diagnosis of air-handling units

(AHU) by uncovering the steady-state relationship between the dominant symptoms and the faults,

as well as for temperature sensor recovery. The research was extended [92], but instead used resid-

ual and recursive parameter identification methods (e.g., ARX and ARMAX) for both SISO and

MISO. Karki and Karjalainen [93] developed AHU performance factors for monitoring and defining

performance criteria. Chen and Braun [94] implemented rule-based FDD for packaged air condition-

ers, having low hardware and software requirements, and showed good performance in laboratory

experiments. Schein and Bushby [95] also developed rule-based approaches for AHUs and vari-

able air volume (VAV) boxes with performance assessment rules and control charts. Other authors

have considered functional testing [96], lifecycle performance [97], economizers [98], calibration [99],

sensors [100], and BAS-based approaches [101].

2.4.2.4 Air Mixing Section

Table 2.3 shows the most important faults common to an AHU’s air mixing section. It is noted

that humidity sensors are not very common in practice, but, when used, relative humidity sensors

are most common in the return air ducts; furthermore, measurements on outdoor air conditions

are more common than on mixed-air conditions.
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Table 2.3: Common faults in AHU’s air mixing section.

Sensor faults; i.e., tempera-
ture or humidity (dew point)
on return, outdoor, and mixed
air

Airflow faults; i.e., damper
and actuator (relief, recircu-
lating, and outdoor air)

Controller faults; i.e.,
mixed air components of
AHU

complete failure stuck (open, closed, interme-
diate position)

control signal (no signal, in-
correct signal)

incorrect reading (offset,
wrong scale, drifting)

incorrect minimum position-
ing of outdoor air damper

software error

excessive noise air leakage past damper when
closed

improper tuning (unstable,
sluggish)

faulty indication of damper
position
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Table 2.4: AHU’s filter-coil section common faults: Part 1 of 3.

Temp. sensor faults; e.g.,
supply air, water entering or
leaving preheating coil, wa-
ter entering or leaving cooling
coil, freeze protection)

Humidity sensor faults;
e.g., supply air

Filter faults

complete failure complete failure partially clogged

incorrect reading (offset,
wrong scale, drifting)

incorrect reading (offset,
wrong scale, drifting)

incorrect/malfunctioning DP
sensor signal

excessive noise excessive noise leakage through or around

2.4.2.5 Filter-Coil Section

Tables 2.4 through 2.6 show the most important faults common to an AHU’s filter-coil section.

It is noted that 1) many functions of the filter section are built-in to a unit, originally set to a value

by the manufacturer and never touched again, and 2) the performance state of the filter is manually

reset when filters are changed. Custom units involving one or more pressure sensors, which can

be read by the BAS, are not usually calibrated correctly and have to be set by the technician.

Furthermore, feedback is unusual on damper positions; packaged units may include this function,

but usually, the command signal is assumed to be correct. While most plumbing tends to be

installed correctly, mechanical contractors sometimes try to hide mistakes or assume the controls

person can work around ‘as-built’ plumbing modifications made during install.

2.4.2.6 Fan Section

Table 2.7 provides the most important faults common to an AHU’s fan section. Contemporary

practice is to run a variable-frequency drives (VFD), which of course need to be configured correctly.

Packaged units are usually set up correctly but there are fewer control options. Some units have

VFDs that need to be manually set up, causing a litany of possible faults. It is noted that pressure

sensors are influenced by the building’s design. For instance, as the tube’s length increases so do

the probability it is pinched or damaged – leading to serious issues.
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Table 2.5: AHU’s filter-coil section common faults: Part 2 of 3.

Valve and actuator faults;
e.g., preheat coil or cooling
coil valve

Coil faults; e.g., preheat or
cooling coil)

Supply air temperature
(components of AHU)
controller faults

stuck (mechanical failure, ac-
tuator/motor failure)

fouled coil control signal (no signal, in-
correct signal)

water leakage past closed
valve

partially plugged coil improper sequencing of valves
and dampers

faulty indicator of valve posi-
tion

wrong coil installed (over-
sized, undersized)

software error

improper installation (in-
stalled backwards, mixing &
diverter ports interchanged)

water leaks poor tuning (unstable, slug-
gish)

wrong valve installed

poor valve authority

clogged valve

Table 2.6: AHU’s filter-coil section common faults: Part 3 of 3.

Plumbing equipment
faults

Plumbing system faults Other plumbing faults

pump failure (3-way preheat-
ing/cooling coil valve applica-
tions)

complete failure cavitation

partially clogged poor efficiency wrong pump installed

piping partially blocked silted up water pressure

too high/low pressure in
hot/chilled water supply line

water temperature too high/low hot water supply
temperature

too high/low hot water supply
temperature

too high/low chilled water
supply temperature

water leaks
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Table 2.7: Faults common to an AHU’s fan section.

Fan; e.g., supply and
return fan

Pressure sensor;
e.g., supply duct

Flow measure-
ment station e.g.,
supply and return
duct

Fan controller
component of
AHU

complete failure complete failure complete failure of
sensor signal

control signal to fans
(no signal-correct
signal)

stuck (full speed, in-
termediate speed)

incorrect reading
(offset, wrong scale,
drifting)

incorrect reading
(offset, wrong scale,
drifting)

improper flow rate
differential set point

inlet/outlet vanes
(stuck, failed actua-
tor)

excessive noise excessive noise improper pressure
set point in supply
duct

wrong fan installed improper location variable speed drive
malfunction

poor resolu-
tion/accuracy

software error

deterioration of sen-
sor with time

poor tuning (unsta-
ble, sluggish)
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2.4.2.7 Building Secondary Systems

House et al. [102] considered air distribution from the perspective of controls and diagnostics,

with a method that enables operational characteristics of individual HVAC components to be

extracted from high-frequency measurements of whole-building power. Schein and Bushby [103]

approached FDD from the system level with a hierarchical rule-based fault detection and diagnostic

method, allowing a human operator to interface with multiple, equipment-specific FDD tools.

2.4.2.8 Variable-Air-Volume Boxes

Seem et al. [104] presented fault detection of VAV boxes in laboratory experiments and from

real building data, using an indices-matching algorithm to isolate faulty actuators and valves.

Schroeder and Bradford [105] presented results from a model-independent FDD approach to VAV

boxes, using performance indices as well. Table 2.8 and 2.9 shows the most important faults

common to VAVs. It is noted that VAV controllers have tubing from the controller to the airflow

ring. As such, tubing caps (i.e., pressure measurement points) can break or plugged incorrectly –

leading to poor damper control due to damaged actuation. Furthermore, shafts can break or come

loose from the attachment, leading to failed control. Although feedback control is used in VAVs,

damper position is only checked at the time of install and can lead to problems if set incorrectly.

2.4.3 HVAC Control Systems

Fasolo and Seborg [106, 107] used statistical quality control charts for fault detection in

HVAC control systems, and monitored performance to determine a controller’s performance index.

Salsbury and Diamond [108] used model-based feedforward control for fault detection in HVAC

systems, with results from testing the controller with a simulated dual-duct air-handling unit. Hao

et al. [109] considered an HVAC monitoring system for fault-tolerant control and data recovery,

using principal component analysis to distinguish between normal and faulty behavior. Other

authors have focused exclusively on sensors and static nonlinearities [110] as part of FDD.
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Table 2.8: Common VAV faults: Part 1 of 2.

Damper and actu-
ator

Reheat coil Plumbing Reheat valve and
actuator

stuck (open, closed,
intermediate posi-
tion)

fouled coil piping stuck (mechanical
failure, actua-
tor/motor failure)

air leakage past
closed damper

partially plugged coil partially blocked water leakage past
closed valve

incorrect minimum
position

wrong coil installed silted up faulty indicator of
valve position

faulty indicator of
damper position

water leaks water/pressure
(high/low)

installed backwards

water temperature
(high/low)

poor valve authority

water leaks plugged valve

Table 2.9: Common VAV faults: Part 2 of 2.

Flow measurement sta-
tion

Zone temperature sensor VAV box controller

complete failure of sensor sig-
nal

complete failure control signal (no signal, in-
correct signal)

incorrect reading (offset,
wrong scale, drifting)

incorrect reading (offset,
wrong scale, drifting)

improper sequencing of valve
and damper

excessive noise excessive noise software error

poor tuning (unstable, over
controlled, sluggish)



Chapter 3

Development of a Data-Driven Toolchain

This chapter explores the research question in greater detail, identifies the theory necessary

to develop the engineered system, and argues that practical progress toward a functioning OpBEM

can be made using a three-step process. Specifically, an iterative, three-step process is developed

to 1) classify building energy performance scenarios, 2) forecast dynamics over a planning horizon

of interest, and 3) signal human decision-makers concerning deviations from ideal behavior.

3.1 Research Statement

Buildings reside at an important juncture between humans and the engineered systems that

support their existence. Prefixing smart to buildings is argued to be most important when both

individual and societal impacts can be changed in a positive manner with seamless transition from

old technologies; e.g., continued progress in obtaining energy from secure, reliable, and renewable

sources, while simultaneously using it in an efficient manner. Smart buildings are a future resource

for cyberphysical optimization, whether at the building or portfolio level, and are an important

HITL system in which to consider health. As such, ‘building health’ could indicate both quanti-

tative, building-like-a-machine aspects and qualitative, human-interpretable aspects. The former

could be daily kilowatt-hours consumption, and the latter some form of “today’s building energy

performance was rated as green,” where metrics map to the color to signify ‘good’ or ‘sustainable’

and opinions (e.g., comfort complaints) can be recorded jointly for analysis. Ultimately, cyberphys-

ical optimization problems will involve many or all business processes.
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Appreciable levels of uncertainty and subjectivity will prevail in the operational performance

analysis and optimization of buildings. Uncertainty is inherent to these mathematical models,

not only due to unobserved dynamics but from occupants’ stochastic behavior and preferences,

weather forecasts and microclimate, as well as uncountable other factors. Subjectivity is embedded

whether considering a building’s impact on humans or, conversely, humans’ impact on buildings.

Automating the discovery of an OpBEM involves the mathematical modeling of whole-building

dynamics, including all system and subsystem information necessary for a smart building, while

considering humans’ input and objectives. It is posited that the next level of automation required

of smart buildings is probably not yet full artificial intelligence (AI), which may not be desirable

due to concerns of the proverbial super-intelligent AI takeover [111], but rather can be expected

to rest on a probabilistic expert system foundation mixed with HITL considerations. Taken a step

further, smart buildings, and the inherent machine-to-machine communications necessary for smart

grid applications, are only as effective as their design for humans and operation by humans. In

broader terms, cyberphysical designs must support not subvert nor supplant humans with AI — a

sort of golden rule of the information age — and the built environment is a natural place to define

human-machine interfaces (HMI) for the better.

Smart buildings can be designed or retrofit to guide building performance under changing

objectives and conditions, with this decision support facilitated by supervisory control and expert

fault intervention (i.e., if needed). However, a distributed approach is necessary for buildings and

will likely built on top of an EMCS. In short, smart buildings will have to co-evolve with the smart

grid and the obvious driver for change is renewable energy integration. Power systems planning

has historically been addressed from a centralized perspective where small counts of large savings

were sought. Energy systems optimization is typically fashioned according to bottom-up planning.

Strategies for each must be better aligned if progress toward any smart system is to be made.

Toward the goal of enhancing building performance with a magnitude relevant to the smart grid,

applications may be managed through software-as-a-service (SaaS) hosted in the cloud.1

1 This research seeks to produce a data-driven toolchain, for the operational performance analysis and optimization
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3.2 APEX Conceptualization

The A Posteriori EXplorer (APEX) system concept is shown in Figure 3.1; it is considered

to be a concept because research herein focuses on the iterative, three-step process it takes to train

the underlying algorithms and framework. In essence, APEX’s allows buildings operators to guide

the Bayesian learning approaches of Appendix B with an OpBEM template of their choosing. It

helps reduce uncertainties in building operations, and thus enhances building health and energy

performance. The tool, like any tool, cannot automatically function at high levels without human

guidance. Experts will always have to be the final decision makers; however, APEX seeks uncer-

tainty reduction is a top-down fashion, as shown in Figure 3.1, to replicate the human learning

process (left-to-right):

data → information → knowledge → insight → wisdom

It is envisioned that measured data, analytics from the simulation of physical models, and expert

recommendations will be used to further define the OpBEM. The design of a template system will

allow replication and aggregation of trained OpBEMs. Automating these evaluations and advis-

ing their enhancement through model-based, whole-building prediction and diagnosis is APEX’s

function; the below subsections examine its qualitative aspects.

3.2.1 OpBEMs for Smart Buildings

Stakeholders interested in the performance of buildings are often dismayed at gaps between

expectations and reality. Although design may have the largest impact over a building’s lifetime,

building health and energy performance is rarely tracked to ensure design goals. OpBEMs could

be a valuable tool to automate and enhance human decision-making processes, largely missing in

practice. Uncertainty and subjectivity act to filter conclusions drawn, muddying both the preci-

sion and accuracy of such tools, and perhaps the difficulties or complexities have dissuaded their

invention. However, the time humans spend indoors, with their direction over controls and subject

of buildings, through a three-stage, interative process of classification, forecasting, and signaling.
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Figure 3.1: A Posteriori EXplorer (APEX) system concept for buildings.
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to the control environment, incentivizes the development of OpBEMs

The ability to act on predictions and diagnoses is of great concern to optimizing a building’s

operational energy performance. Fundamental to decision support is the subjective assessment of

building health and performance at any moment and effective planning over various time horizons

of interest. It is posited that 1) causal models are most helpful because they track human thought

processes, 2) humans should always be in the loop in terms of both occupant satisfaction and

top-down decision making, and 3) automating predictions and fault diagnostics in buildings is

tantamount to smart buildings. Thus, automation to direct humans’ manual effort, concerning

actions they might take, begets manual diagnostics and acts as a force multiplier of nominal O&M.

It also enhances supervisory control, for instance, with advanced topics (e.g., MPC) in response

to spatiotemporal incentive signaling from the electric grid in the form of locational marginal real-

time pricing. Both applications fall under the realm of decision support and could be considered

forms of cyberphysical recommendation systems; i.e., occupants interacting with the building as

HITLs, and operators interacting with the human machine interface for proactive building health

and energy performance.

OpBEMs are thus derived from the practical considerations needed to address the lion’s share

of energy consumption; i.e., on a daily basis for supervisory control purposes, or cumulative over

various retrospective horizons (include over a building’s lifetime). Planning for building operational

performance, focused on energy consumption or otherwise, results in a specific building’s optimum

being achieved at the behest of decision-makers. The mathematical models, in which causality may

be known or is the subject of learning, can be purely physical, referred to as a white-box model,

or purely statistical or data-driven and referred to as a black-box model. The two combined, in

some form, are referred to a gray-box approaches and have garnered considerable interest because

they balance model complexity and information. An alternative explanation to gray-box models

is that they allow uncertainties to be lumped together, but subjectivity still filters the inferences

drawn from the model because the modeler must specify how to do so. All modeling efforts may

be described as some transition “from dark to light,” with inputs mapping outputs through some
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(unknown or unobserved) complex functional relationships such that the end-user may be ignorant

of the black-box details but seeks a white-box causal explanation.

3.2.2 Tool Abstraction for One-of-a-Kind Buildings

Examining the quality of any project output can be defined in terms of the scope, cost, and

time involved. Advanced building energy management is proposed here as an OpBEM. Automated

decision support is thus phrased in terms of predictive and diagnostic objectives, such that human

operators can optimize their actions, or those actions left to machines, according to quantitative

optimization and an operator’s subjective preferences. The particular system they seek to optimize

is likely unique; e.g., one building, a building portfolio, or a heterogeneous cyberphysical business

system. A human machine interface tool capable of dealing with any reasonable abstraction of

questions relevant to the built environment is sought; particularly, occupant preferences, opinions,

or other such beliefs, can serve as data input to some cyberphysical optimization. The uncountable

variations of questions involving the built environment suggest unbounded scope, with many project

specific difficulties that drive cost and time commitments to capture operational dynamics. These

problems are exasperated by severely limited historic data on what may considered ideal, acceptable,

or unacceptable energy performance. Automating the process from BAS data will help guide the

expensive and precious time of humans, participate in smart grid concerns, and facilitate human

productivity and well-being.

Although many building rating systems exist, and sustainable building projects have prolifer-

ated, dynamic recommendation systems for building performance are sparse. Solving the primary

problem of responsible building design and mitigating a range of negative environmental impacts

are, of course, obtained through superior planning and technological advances. The ongoing ser-

vice to building performance concerns, however, are neglected because the BAS or BMS, central

to building operations in the digital era, are largely disregarded because the cost of energy in the

United States is far outweighed by the salary of those humans tasked with its upkeep. However,

modern concepts of cloud computing and SaaS can enable building services akin to a luxury car’s
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diagnostics and human-support systems.

Monitoring expenditures beyond electricity, including but not limited to gas, steam, heat,

and water, are typically accomplished through EMCS software, and are popular with operators

because they are easy to use and can scale the efforts of property managers, commissioning agents,

and other stakeholders. Big data analytics can be thought of as the model-free version of such

a framework or as a data supplement for building portfolio analysis. That is, from a top-down

perspective, building performance optimization can dispatch resources most effectively and guide

actionable initiatives. However, in practice there is confusion surrounding how an EMCS can best

be leveraged when the cyberphysical optimization involves a one-of-a-kind building. Many building

operators are missing out on opportunities to diminish energy impacts while enhancing building

performance.

3.2.3 Building Health and Energy Performance

Many building operators do not distinguish between a BAS and an EMCS, using the terms

interchangeably, because they spend the majority of their time dealing with practical issues, prob-

lems, and faults, leaving little time and budget for experimentation or work flow automation.

Although the BAS automates the control of AHUs, lighting schedules, and dispatch of primary and

secondary equipment, it is usually designed to minimum specifications. Sophisticated analytical

insight is possible with an EMCS, but constrained by cost (licenses and equipment functionality)

and, in practice, the sophistication of users impeding its full potential or power. Continually guid-

ing an operator’s decisions is thus nothing completely new; however, an EMCS has typically only

been used in major installations like university campuses. Recently, EMCS has been scaled down

for smaller installations, primarily driven by sustainability goals associated with building rating

systems, and has been used to deliver energy efficiency and enhanced savings. It is argued this

entry point is where the aforementioned cyberphysical optimization can commence, but the build-

ing health and energy performance is subject to the HMI operators tasked with the problem – and

their lack of an appropriate tool.
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EMCS systems typically work as an abstraction of the BAS; for instance, corporate head-

quarters managing the EMCS and satellite locations with control over the BAS. The ability to

optimize operations at a building or building portfolio level is typically implemented using a rule-

based system. From a top-down perspective, it is possible for the operators to track multiple utility

rates, conduct benchmarking energy consumption according to historic data or nearby buildings

(while adjusting for weather), and executing building-specific supervisory control to minimize util-

ity demand charges or demand response programs. Identifying opportunities for enhanced building

performance, or reducing risks associated with underperforming buildings, is an ongoing task and

building health and energy performance naturally interfaces with the BAS/EMCS. Beyond rules,

an EMCS that automatically calibrates to the actual building operations, allows the building’s per-

formance to be continually assessed without manual or invasive processes. The cost effectiveness

of an EMCS can be further enhanced through machine intelligence, physical models, or through

manual means, enabling cost reduction or any variety of optimization.

3.3 The Piecewise Development of Tools

The time has come to fully harness building energy models; their extension beyond approaches

are termed OpBEMs. With thirty-some years of development, the state of the art in building energy

modeling and simulation has matured beyond a tool for design assistance. There has been little

exploration of the appropriateness of popular modeling tools for operational concerns, even if a

large amount of research has gone into the calibration of energy models according to utility data

or similar. This ongoing research interest has long been considered an art as much as a science

because of its notorious difficulty. Although guidelines and recommendations exist for building

energy model calibration methodology, the lack of uniqueness for a given calibration task does

not allow these insights and specifications to be without caveat. It is of great interest to examine

model uncertainty over time as data are gathered and insights are sharpened. It is argued that

this is inherently a HITL process when dealing with buildings, the people that maintain them, and

occupants of varying, subjective opinions.
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Decision support for sequential decision making is argued to augment traditional building

operations. Building health and energy performance can be systematically assessed on a daily

basis to provide decision support — a prerequisite to remote monitoring of building operations

such that building services provider groups can be dispatched. It can make recommendations based

on ‘big data,’ extend supervisory control with MPC, or reduce deviations from an ideal and steer

the building to more suitable energy performance. Fundamental to this work is that there exists a

great need for thought revision for OpBEMs. For superior energy performance, the importance of

forecasting, diagnostics, and the integration of buildings into the larger energy system requires a

holistic and universal approach with flexibility and adaptability. With building models frequently

discarded upon building construction, they could be used for a myriad of applications, such as

updating it with data toward evidence-based inference of probable energy performance scenarios.

These models could be used for planning and control. The focus here is a data-driven toolchain for

the operational performance analysis and optimization of buildings.

It is argued there are uncountable cyberphysical applications involving smart buildings, and

the concepts discussed thus far only scratch the surface; however, most important to progress is the

process. Figure 3.2 shows the three-step process envisioned for continual improvement of building

operations and training of the OpBEM. With regard to the figure, there is an asymptotic approach,

or centering on, the ‘optimum’ or ‘ideal’ operational performance of a building; this can be thought

of as automated control over the building, whether advanced automatic control or automation of

HITL processes. The first step is classification, which can be thought of as the best estimate a

human expert has on a particular matter using up-to-date data and best-in-class physical models.

The second step is the forecasting of operational performance, over the decision period of interest, in

a sequential fashion that builds on evidence from the previous step. The third step is retrospective

and seeks to understand the errors, which are expected in one sense (e.g., weather forecasts), but

are primarily used to reduce uncertainty through learning while inferring possible faulty behavior.

The three steps combine to provide decision support for buildings. Later chapters explore these

concepts in detail, for particular applications, as enumerated in the figure.
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Ch.4

1) Classification

2) Forecasting
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Ch.7a

Ch.7b

Ch.7c

Figure 3.2: The three-step process envisioned as a spiral graph: continual improvement is made in
process control by the classification, forecasting, and signaling of operational performance analysis.



Chapter 4

Classification of Commercial Building Electrical Demand Profiles

for Energy Storage Applications

4.1 Introduction

Progress has been made in the awareness and implementation of renewable energy systems in

a movement toward a sustainable and clean energy future.1 However, a large opportunity exists

for energy efficiency from an integrated, systems engineering perspective. Commercial buildings

in particular can benefit from enhanced interactions with the electrical grid; commonly research

interest lies in the optimization of indoor environmental quality or single building energy/cost

performance. Recognizing that energy efficiency extends beyond building-site boundaries, building

operators can work with utilities and/or third-parties to use the building as an asset in various

forms of load shifting. Largely neglected in many building-as-an-island performance analyses, such

research and demonstration projects are scarce but necessary in growth toward the smart grid.

With commercial buildings being responsible for more than 18% of the annual primary en-

ergy consumption in the United States, there are opportunities for various stakeholders to benefit.

The appropriate incentive signaling will trigger their active participation in whole-system efficiency

and allow utilities to defer capital investments while maintaining operational predictability. Quan-

tifying the shared value among stakeholders is a crucial missing element. Concerns have also been

voiced about uncertainties in securing the raw energy resources needed to maintain “business as

1 Chapter 4 largely derives from Florita et al. [112] and authorship is primarily attributed to Anthony R. Florita;
the other authors contributed ideas and edits during their involvement in the Department of Energy’s (DOE) Faculty
and Student Teams (FaST) Program, where they sought to learn about building energy modeling.
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usual,” energy conversion emissions leading to harmful environmental impacts, and the intelligent

dispatch of renewable energy technologies within the energy infrastructure. Energy storage has

been identified as a vital yet largely neglected support for bridging many engineered systems that

are orchestrated and optimized for multiple objectives. Proper and cost effective energy storage can

be building or utility scale. Confounding the issue is the increased adoption of on-site renewable

generation equipment in commercial buildings, such as photovoltaic (PV) panels or wind turbines,

because the building acts as both a generator and consumer of electricity. Furthermore, higher

levels of renewable penetration with intermittent generation aggravate whole-system instability be-

cause supply is not well-matched to demand. Thus, understanding whole-system interactions and

mobilizing energy storage for superior dispatch of generation equipment are both essential. Ongoing

research seeks a greater functional understanding between commercial buildings and the electrical

grid.

4.2 Literature Review

With focus placed on commercial buildings as an asset for whole-system energy efficiency

within the larger electrical grid context, the examination of literature followed suit. The natural

shared value in this supply-demand system can be expressed in monetary terms. By placing the

true value (cost) of unit energy conversion on unit energy pricing the utilities incentivize demand

response. With proactive energy management this saves consumers utility costs and generators

inefficient expenditures. A number of building-related studies addressed these points in various

forms. Investigations of building thermal energy storage have mostly focused on thermal mass

control and chilled water or ice storage. Electrochemical storage can also be helpful for renewable

technologies and load shifting applications, but due to its relatively high cost current applications

are in their infancy.

Thermal mass control harnesses the inherent thermal capacitance of the building for load

shifting through supervisory control of zone temperature setpoints and existing heating/cooling

equipment. Lee and Braun [113] experimentally evaluated various strategies for a five-hour demand-
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limiting period, reductions in peak cooling load up to 30% were reported with minimal disturbance

to occupant comfort. A simulation study by Henze et al. [114] investigated the sensitivity of

parameters governing the building thermal mass control process and developed a model predictive

control environment for optimizing cost savings.

Exploiting the sensible heat of a water body has long been a strategy for implementing

thermal storage. A tank system can be integrated into a building’s existing hydronic equipment,

and finds its greatest use on campuses because of the economy of scale. Bahnfleth and Joyce [115]

showed improvements in a university’s cooling plant efficiency and achieved demand cost savings

with a nearly 17, 000 m3 stratified chilled-water storage. Sohn et al. [116] shifted 3 MW of electrical

demand from on- to off-peak for an Army installation using stratified chilled-water storage.

With ice storage the energy stored in latent form is a magnitude greater than the amount in an

equal volume of chilled water, i.e., per unit volume the “cool” energy stored is about 83.3 MJ/m3

with ice and about 8.3 MJ/m3 with liquid water. This can be crucial for commercial building

applications where space is usually limited. Furthermore, with storage limitations the control of

systems is of upmost importance for the most (cost) effective load shifting. Henze [117] surveyed

research in the control of ice thermal energy storage, including conventional, near-optimal, and

optimal control. Braun [118] developed a near-optimal control method for charging and discharging

an ice storage system in the presence of real-time pricing, the simplified method was shown to be

within 2% of the optimal solution.

Energy storage for intermittency issues and the integration of renewable energy has become

increasingly important, especially for utility-scale applications. Wind- and solar-generated electric-

ity continually constitutes a larger portion of state renewable portfolio standards. Cavallo [119]

addressed these concerns in the discussion of electrochemical, flywheel, compressed air, and hybrid

utility energy storage approaches; harnessing commercial buildings as a capacitive element was not

considered. Moreover, lacking need for energy conversion, electrochemical energy storage appears

attractive to utilities. Kempton and Tomić [120] considered vehicle-to-grid power, which employs

electric-drive vehicles (e.g., battery, fuel cell, or hybrid) to interact with specific electric markets.
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Strategies and business models were considered, having repercussions for commercial buildings as

plug-in electric vehicles become more common.

4.3 Methodology

This research developed and applied unsupervised classification of commercial buildings ac-

cording to their electrical demand profile. The nonstationary nature of such a time series embeds

diurnal swings from occupancy cycles, and contains both higher frequency (e.g., hour-to-hour)

and lower frequency (e.g., seasonal) electrical demands associated with weather and climate, re-

spectively. A Department of Energy (DOE) commercial building database [121] was employed.

The database contains hourly electrical demand profiles representing the United States commercial

building stock as detailed in the 2003 Commercial Buildings Consumption Survey (CBECS) [53]

and as modeled in the EnergyPlus building energy simulation tool [122] for a typical meteorological

year. Griffith et al. [123] described how the whole-building simulation tool was used for bottom-up

modeling of the entire United States commercial building sector. Results from the 4,820 models

showed good overall agreement with measured site-energy use intensity.

As fully detailed in following sections, the data were processed in three primary steps. The

first step was to perform a discrete wavelet transformation on each electrical demand profile. The

second step was to extract unique and descriptive energy and entropy features (absolute and rel-

ative) from each wavelet level at definitive time frames. The third step was the application of

Bayesian probabilistic hierarchical clustering of the features to classify the buildings in terms of

similar patterns of electrical demand. The process yielded a categorized and more manageable

set of representative demand profiles, inference of the characteristics influencing supply demand

interactions, and a test bed for quantifying the impact of applying energy storage technologies.

4.3.1 Discrete Wavelet Transformation

A common technique to extract time-frequency information from a signal is the windowed

Fourier transform, i.e. in transversing a signal, the Fourier transform is combined with a windowing
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function of appropriate width to ensure the weakly stationary assumption. The width of the

window determines how time resolution is traded for frequency resolution and vice versa, which is

ultimately bounded by the Heisenberg uncertainty principle. Wavelet methods partially overcome

this limitation with multiresolution analysis. They have proven effective in many signal analysis

and engineering applications considering nonstationary transients. Essential discrete wavelet theory

and its applicability to the research problem are presented. The reader is referred to Percival and

Walden [124] for complete development.

The discrete wavelet transform (DWT) is mathematically stated as:

f(x) =
∑

i

∑

j

ai,jψi,j(x), (4.1)

where i, j ∈ Z, ψi,j(x) are the wavelet expansion functions, and ai,j are the discrete wavelet trans-

formation (DWT) coefficients of f(x). The coefficients are calculated as:

ai,j =

∫ ∞

−∞
f(x)ψi,j(x) dx. (4.2)

The wavelet expansion functions are generated through scaling and translation of the mother

wavelet:

ψi,j(x) = 2−i/2ψ(2−ix− j), (4.3)

where i and j are the scaling and translation parameters, respectively. There are numerous mother

wavelet families, e.g. Haar, Daubechies, etc. They are not unique and must satisfy a few mathemat-

ical conditions, the most notable being the multiresolution condition. Ensuring the multiresolution

condition is satisfied allows the successive transformation of the signal at discrete time-scale (≈

time-frequency) while allowing perfect reconstruction of the original signal. A scale is the wavelet’s

width at level j, an approximate Fourier period or inverse frequency. High scale corresponds to

a global view of the data (e.g., the yearly electrical demand profile shape) and the low scale cor-

responds to detail information (e.g., hourly electrical demand fluctuations from HVAC equipment

operation).

Mallat [125] was the first to devise a fast and pyramidal algorithm, deriving the relationship

to filter banks. Figure 4.1 shows how the DWT is computed in practice and as accomplished herein.
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The J−level DWT can be calculated as:

f0(x) =
∑

k

a0,kφ0,k(k)

=
∑

k

aJ+1,kφJ+1,k(x) +
J∑

j=0

dj+1,kψj+1,k(x),

(4.4)

with φ(x) being the scaling function, related to the mother wavelet, and where the coefficients a0,k,

aj+1,n, and dj+1,n are either known or calculated from the previous wavelet level according to:

aj+1,n =
∑

k

aj,kh(k − 2n)

dj+1,n =
∑

k

aj,kg(k − 2n).

(4.5)

At level j, the wavelet coefficients aj and dj are termed approximation and detail coefficients,

respectively. From the figure, in terms of a filter bank, g and h are half band high-pass and low-

pass filters with corresponding filter coefficients. In addition, the figure illustrates that due to

the filtering operation (at each level j) half the samples can be discarded according to the Nyquist

criterion. Downsampling the signal by two (removing every other datum), denoted as ↓ 2, leaves half

the number of points and double the scale. Because the filter removes half the frequencies this can

be interpreted as losing half the information – the resolution of the signal is halved. In general, the

DWT analyzes the signal at different frequency bands, with different resolutions, by transforming

the signal into coarse approximation and detail information – the coarse approximation is further

filtered as possible.

Each level j of the DWT reduces the time resolution by half since the resultant time series

is half the previous level’s number of samples. The frequency resolution doubles since the signal’s

frequency band is half of the previous level’s bandwidth. This reduces the uncertainty in the

frequency by half. As shown in Figure 4.1 the process is repeated until no more data points

remain, with each process iteration sequentially named from level 1 to J . Each level’s bandwidth

F is labeled to shows the reduction of time resolution and increase in frequency resolution.

When the signal strongly correlates with a wavelet of particular scale and time, large ampli-

tudes are observed. Figure 4.2 shows the first three levels of a DWT with the Daubechies-4 wavelet
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utilized in this research; 13 decomposition levels are possible with the 8,760 data points of each

electrical demand profile. The bottom-most subplot is an example of a yearly (sampled hourly)

electrical power demand profile x[n].

g[n] h[n]

↓2  

x[n]

↓2

f=[0→F]

f=[F/2→F] f=[0→F/2]

g[n] h[n]

↓2  

Level 2
DWT coeff.

↓2
f=[F/4→F/2] f=[0→F/4]

g[n] h[n]

↓2  ↓2
f=[F/8→F/4] f=[0→F/8]

...
to J-level

Level 3
DWT coeff.

Level 1
DWT coeff.

Figure 4.1: The Discrete Wavelet Transformation (DWT) performed using a filter bank for mul-

tiresolution analysis of the electrical demand profiles.

As compared to the Fourier transform, the time localization of the frequencies will not be

lost with the DWT; however, the time resolution is dependent on the level. Furthermore, more

information in the signal resides at higher frequencies and this is where time localization is more

precise because of more samples. At low frequencies the frequency resolution is better, but has

low time resolution because of the limited number of samples. Frequency bands (i.e., scales) of

little importance will have low amplitudes and in many cases can be discarded with a small loss of

information. It should be noted that only a portion of the temporal information from the DWT

was used herein because of the nature of unsupervised classification (described below); however, the
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DWT was selected over Fourier methods so ongoing research could further harness time-frequency

information in perturbation studies of individual buildings or building classes – allowing more

focused studies of electrical demand at critical time periods for the development of functional

relationships.
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Figure 4.2: The first three levels of a DWT using the Daubechies-4 wavelet: the magnitude at a

given time indicates the correlation strength at that level, units are not included for visual clarity.

4.3.2 Feature Extraction

Successfully classifying the commercial building according to their electrical demand profiles

rested on the expressivity and the independence of the features extracted from the various wavelet

levels. Reducing the dimensionality of features is crucial for any classification algorithm because

of the “curse of dimensionality.” A number of statistics and/or metrics were considered, but

the following signal energy and entropy features were found most informative for inferences and

effective within clustering algorithms. Furthermore, due to the broad nature of the supply-demand

research concerning (commercial) building-grid interactions the primary focus was: 1) how energy

consumption/demand is patterned, and 2) the extent of disorderedness from patterned behavior.
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Classification results will allow specification of energy storage technologies according to where the

signal energy lies and for smoothing disorderedness during critical time periods of electrical power

demand.

4.3.2.1 Relative Wavelet Energy

With the wavelet coefficients determined, termed cj [k] here for generality, the signal energy

at each resolution level j = 1, 2, . . . , n was:

Ej =
∑

k

|cj(k)|2. (4.6)

The total signal energy was calculated as:

Etotal = ‖x[k]‖2 =
∑

j

∑

k

|cj(k)|2 =
∑

j

Ej . (4.7)

For each resolution level the relative wavelet energy was calculated as:

Ej,rel =
Ej
Etotal

. (4.8)

This ratio indicates the relative wavelet energy contained in each time-scale resolution.

As illustrated in Figure 4.3, a histogram {Ej} for each commercial building was plotted to

compare and contrast the electrical demand profile components for each wavelet level. For clas-

sification purposes all possible wavelet levels were considered – 13 separate signal energy features

were extracted from each commercial building’s electrical demand profile. The signal energy fea-

tures were informative because of their relative sense, i.e., building size (correlating with demand

magnitude) and climate (geographic) influences were effectively considered but standardized. From

the figure, Building #1 had more pronounced relative wavelet energy in level 4 and the latter

wavelet levels; level 4 roughly corresponds to diurnal variations and levels 12 and 13 with seasonal

imbalance. In comparison, Building #4820 contained more relative wavelet energy in the middle

wavelet levels (i.e., levels 5 through 9). Observing the original demand profile signals, only seasonal

imbalances were obvious.
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Figure 4.3: Two typical building electrical demand profiles and their relative wavelet energy com-

parison.

4.3.2.2 Total Wavelet Entropy

Shannon entropy provided a measure of information contained in the signal:

Hwt(E) = −
∑

j

Ej,rel · ln[Ej,rel]. (4.9)

In this context it measured the degree of signal disorder, providing information about the underlying

dynamical processes. Well-ordered signals are more predictable and can be represented with a fewer

number of wavelet levels. Complex signals, usually embedded with stochastic influences, are less

predictable and a larger number of wavelet levels are required for representation. Shannon entropy

provided a means for quantifying these observations and its calculation was termed the total wavelet

entropy of a given electrical demand profile.
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Figure 4.4: Frequency plot of total wavelet entropy for each of the 4,820 commercial buildings.

The frequency plot of Figure 4.4 represents the total wavelet entropy for all 4,820 commercial

building electrical demand profiles. That is, Hwt(E) is one feature extracted for classification

purposes from each commercial building’s yearly electrical demand profile. From the database, the

minimum, median, and maximum total wavelet entropies of 1.072, 1.865, and 2.433 were obtained

for Buildings #1040, #3827, and #1361, respectively. Furthermore, seasonal total wavelet entropies

(i.e., winter, spring, summer, and fall – defined by solstices and equinoxes) were extracted as four

separate features.

4.3.2.3 Relative Wavelet Entropy

Signal disorder in a relative sense was calculated as:

Hwt(Eb|Ea) = −
∑

j

Ej,rel,b · ln
[
Ej,rel,b
Ej,rel,a

]
. (4.10)

Distinctness of commercial building electrical demand behavior was quantified through this relative

wavelet entropy calculation.

Two different varieties of relative wavelet entropy were considered: the outer calculation,

which relatively compared independent entropy distributions, and the inner calculation, which

examined local entropy distributions relative to the signal itself. For the outer version, the relative
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wavelet entropy was conditionally calculated against the minimum, median, and maximum total

wavelet entropies and used as three separate extracted features. For the inner version, the relative

wavelet entropy was conditionally calculated against the time-sequential seasonal total wavelet

entropy, i.e., spring|winter, summer|spring, fall|summer, and winter|fall, and used as four separate

extracted features.

4.3.2.4 Classification Feature Set

In total 25 features were extracted from each electrical demand profile – those found in testing

to most effectively distinguish clusters – and an approximate balance of extracted signal energy

and entropy features was noted. This includes 13 relative wavelet energy features, 5 total wavelet

entropy features (1 yearly and 4 seasonally), and 7 relative wavelet entropy features (3 moment-

based and 4 seasonally). The Bayesian Hierarchical Clustering algorithm summoned the feature

set for the purposes of classifying the commercial building electrical demand profiles.

4.3.3 Bayesian Probabilistic Hierarchical Clustering

Hierarchical data clustering is usually a bottom-up agglomerative algorithm and a common

method for unsupervised learning or classification. Typically, a distance metric is specified to as-

sess the relative “closeness” of clusters and a threshold measure is used for stopping the clustering

process. Each datum (or feature vector) is initially its own cluster and then the two closest clusters

are iteratively merged. The process yields a final number of clusters (or classes) of data containing

similar features. Although choosing definitive features is difficult, the task of specifying meaningful

distance and threshold metrics presents further obstacles. These limitations can be partially over-

come with data standardization, bootstrapping (resampling) methods, and clever project-specific

metric definitions.

Difficulties with the classical approach have been overcome with recent advances. Heller

and Ghahramani [126] employed the powerful Bayesian perspective for probabilistic hierarchical

clustering, where marginal likelihoods are used in assessing which clusters to merge and to avoid
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over-fitting the problem; this was the chosen approach for the unsupervised classification problem

examined in this research. Advantages of the approach are summarized in four main points: 1) a

probabilistic model is defined solely through data and used for computing the predictive distribution

of (unseen) data for cluster inquiries, 2) a model-based criterion is used to assess whether or not

to merge clusters instead of ad-hoc distance measures, 3) Bayesian hypothesis testing is used in

decision making: whether to merge clusters or not and the depth of the tree, and 4) the algorithm

is fast and has been proven to work with real-world (biological) data.

Using the Bayesian approach, all data (feature vectors) are initially their own cluster (sub-

tree) and two hypothesis are considered in the cluster merging process. For data in a possible

cluster, Dc, the first hypothesis, Hc1, is that all data were generated, independent and identically

distributed (IID), from the same probabilistic model, p(x|θ), where parameter θ is unknown. A

prior distribution over the model parameters need to be specified, p(θ|β), with hyperparameter β;

a prior represents a priori knowledge of the parameter, but if it is unknown a uniform distribution

is used. The probability of Dc under Hc1 is calculated as:

p(Dc|Hc1) =

∫
p(Dc|θ)p(θ|β)dθ

=

∫ 
 ∏

x(i)∈Dc

p(x(i)|θ)


 p(θ|β)dθ. (4.11)

This model-based criterion evaluates the degree-of-plausibility that some data belongs to a given

cluster. The alternative hypothesis, Hc2, is that the data Dc has two or more clusters in it. The

probability of the data under Hc2 is a product over the subtrees Ti and Tj . Synthesizing the data

probabilities under both Hc1 and Hc2, it can be shown that the marginal probability of the data in

a tree Tk (recursively defined) is:

p(Dc|Tk) = p(Hc1)p(Dc|Hc1)

+ (1− p(Hc1))p(Di|Ti)p(Dj |Tj). (4.12)

The first term considers the hypothesis that there is a single cluster in Dc, and the second term

sums over all other clusterings of data in the tree. Bayes’s theorem is applied to determine the
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posterior probability of the merged hypothesis:

p(Hc1|Dc) =

p(Hc1)p(Dc|Hc1)

p(Hc1)p(Dc|Hc1) + [1− p(Hc1)]p(Di|Ti)p(Dj |Tj)
. (4.13)

The quantity p(Hc1|Dc) is used to decide which two trees to merge and the final structure of the

hierarchy; the tree is cut at points where p(Hc1|Dc) < 0.5. That is, p = 0.5 is the division between

“yes” and “no” for the cutting of the tree. The Bayesian hierarchical clustering algorithm is efficient,

basing clustering solely on the probability of observed data features.

4.4 Results

This research was programmed in a publicly available computational environment [127] using

publicly available data [121] for the unsupervised classification of commercial buildings based solely

on their electrical demand profile. Using the methodology outlined, the initial dataset of 4,820

buildings was reduced into 114 classes for a compression of greater than 97%. The process yielded

a categorized and more manageable set of representative electrical demand profiles, inference of the

characteristics influencing supply-demand interactions, and a test bed for quantifying the impact

of applying energy storage technologies.

Due to the large number of buildings (4,820) the results of the clustering were nearly impos-

sible to represent in the classic dendrogram format. Nonetheless Figure 4.5 presents the complete

clustering process, while neglecting inclusion of the building labels due to significant overlap, so

the reader might visualize the 4,820 buildings merging into the final 114 classes according to the

extracted features. Figure 4.6 displays a limited portion of the full dendrogram, classes 8 and 9,

demonstrating the merging hierarchy of the buildings within the class. The red dashed lines on

the dendrogram represent merges that the clustering algorithm does not make, while the number

displayed represents the log odds for merging.

Manual inspection of each class represented a significant challenge. Each building has tens

of thousands of variables and parameters, and significant results may be overlooked. Because of
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this challenge, the approach taken herein utilized graphical techniques for the sake of presentation,

as well as simplifications appropriate to the CBECS data [53] utilized. That is, only high-level

characteristics within each class were considered for condensed results presentation and for the

demonstration of general results. For illustration purposes, three primary characteristics were

focused on to demonstrate a subset of possible inferences, as well as to show relevant characteristics

influencing the classification: the climate, the principal building activity, and the building size.

Finally, a simple example is given to exemplify one of many possible ways the identified building

classes might be utilized with respect to energy storage analysis.

Figure 4.5: Dendrogram of the clustering process for the united states commercial building stock:

visualization of the 4,820 buildings merging into the final 114 clusters (building classes) according

to the 25 features extracted from the electrical demand profiles; for visual clarity building labels

not included.
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Figure 4.6: Limited portion of dendrogram (with focus on clusters 8 and 9) demonstrating merging

hierarchy; red dashed lines are merges not made, while the number displayed indicated log odds

for merging.

4.4.1 The Influence of Climate

The first characteristic that was investigated for its influence on the classification of buildings

was the climate region. The CBECS database utilizes five climate regions based on the number

of cooling and heating degree days (CDD and HDD respectively). Figure 4.7 shows the heatmap

based on the climate zone used in the modeling and the resulting classes. The darkest red rectangles

represent classes with a very small number or zero buildings for the given climate region being

represented in the class, while white (or bright yellow) represents a class with a large number of

buildings from a given climate zone. For the sake of discussion, focus was placed on a few classes to

demonstrate the results of the technique. For example, classes 48 and 90 are highly represented by

buildings from climate zones 4 and 1, respectively. Whereas, classes 72 and 103 are most represented

by buildings in zones 3 and 1, respectively, but also were significantly represented in other climates.

From the heatmap it can be seen that climate zone does not necessarily represent a strong

driver for classification. This implies that energy storage control strategies might apply irrespective

of climate and are modified solely by magnitude to ensure coverage of signal energy and entropy
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features. The caveat to this line of thinking is that the utility rate structure for a given building will

vary across the country and will drive the energy storage control strategy. However, it is feasible

that multiple buildings serviced at a given bus might be analyzed for energy storage opportunities

and the appropriate demand profile from each respective class could simply be added. Overall the

heatmap showed climate regions associated with specific classes did not demonstrate any conclusive

patterns. A variety of reasons within the modeled database could lead to this: first, multiple weather

files were used to model buildings within a given climate zone [123]. This leads to more variety

in weather within a given climate zone. Second, differing building sizes and types could lead to

significantly different operating patterns within a given climate zone.

4.4.2 The Influence of Building Type

The second characteristic investigated was based on the principal building activity. The

CBECS database classifies buildings based on their major usage with such categories as office

space, retail, and inpatient health care to name a few. It can be seen in Figure 4.8 that building

type often leads to selection of a load profile for a given class. For example classes 71 and 104 are

predominantly filled with buildings used for inpatient health care. It is of interest to determine:

if principal building activity is so dominant why these two clusters are not merged into the same

cluster? A reason which will be addressed in the next subsection. Additionally classes 48 and

91 were not dominated by one building type but share a variety of building types, but these

classes were made up of buildings primarily from one climate zone. On the other hand, offices,

which are also the largest set of buildings by building type within the database, were dominant

in a variety of classes. Interestingly the majority concentrations were located in adjacent classes,

demonstrating their likely appearance in higher level merges. Although the Bayesian hierarchical

clustering routing does not consider these merges to be highly probable, it did indicate the potential

for similar behavior.
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4.4.3 The Influence of Building Size

Square footage was also a highly revealing result, particularly when the discussion includes

the effects listed in the previous section. For example it was noted that classes 71 and 104 were

primarily made of buildings used for inpatient health care but were not merged. When this result

was combined with Figure 4.9 it could be seen that these two classes were not merged because

of the difference in square footage. Class 71 was primarily made of smaller health care buildings

with class 104 being made up of the largest two square footage categories in the data set; the

difference in classification is likely attributed to vastly different HVAC equipment, even though the

(standardized) occupancy and usage patterns of the buildings are similar. Turning the attention

to classes 48 and 91 again, it can be seen that these classes were made up of mixed results based

on square footage.

Figure 4.7: Clustering heatmap based on united states climate zones: CBECS uses five climate

regions based on cooling and heating degree days. Darkest rectangles represent a cluster with a

small number of buildings (or zero), while white rectangles represent a cluster with a large number.



62

Figure 4.8: Clustering heatmap based on principal building activity: CBECS classifies buildings

according to their major usage, e.g. office, retail, etc. darkest rectangles represent a cluster with a

small number of buildings (or zero), while white rectangles represent a cluster with a large number.

Figure 4.9: Clustering heatmap based on square footage. Darkest rectangles represent a cluster

with a small number of buildings (or zero), while white rectangles represent a cluster with a large

number.
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4.4.4 Perceived Use of the Commercial Building Classes

It should be noted the unsupervised classification represents only the first-level, top-down

approach to uncovering functional relationship between a building electrical demand and its gov-

erning parameters and/or variables. The identified classes of commercial building according to their

demand profile have two perceived uses with respect to demand response and/or energy storage:

Unit Commitment and Dispatch Models —are used to determine scheduling for start

up and/or shut down of power plants in a system area of interest, i.e. usually across multiple states.

Mixed integer programming is used to solve the commitment problem with forecast weather and

demand, with each unit having unique characteristics and constraints (e.g. up and down times,

ramp rates, scheduled maintenance, etc.), and the solution is modified and dispatched on a shorter

horizon according to updated and hopefully more accurate information. Since even percentage

improvement in demand forecasting can save tens of millions of dollars on a yearly basis, there is a

great need to better understand electrical demand at a particular distribution bus and better predict

it. The aggregation of the appropriate building demand profile classes, where perhaps transmission

is constrained and thus power is costly, can provide a starting point for further analysis. This

can help in decision making with respect to demand response incentives or the addition of energy

storage.

On a Building Level —the understanding of how building parameters and/or variables

influence the demand profile is incomplete. The unsupervised approach was helpful for uncovering

correlations and natural grouping. It is noted that the bottom-up, deterministic modeling and

simulation approach used to produce the commercial building demand profiles[123], albeit the

state-of-the-art [122], provided only an estimation of nominal behavior and neglects considerable

uncertainty. However, it is the authors’ belief that since the database[121] was derived from an

elaborate statistical analysis of the building stock [53], it provided a good starting point for this

research. It is apparent there are uncountable combinations of data analyses and regressions that

could be performed to better understand functional relationships – even without considering the
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uncertainty of each parameter and/or variable or the accuracy of the simulation models themselves.

Furthermore, it is apparent building-level thermal perturbations (e.g. thermal energy storage and

release) will influence the demand profile and any given building might shift classes.

4.4.5 A Classified Building Energy Storage Example

An example is given on how a building class might be used to aid the energy storage design for

a particular building. The first step would be to examine all buildings within that class to better

understand possible trends. When examining a single commercial building for the application

of energy storage, one might be interested in a specific energy storage technology, have a good

understanding of the approximate storage capacity needed, and optimize the design according to a

particular utility rate structure to save operating costs.

The representative commercial building demand profile from class #1 (scaled by the mag-

nitude of peak demand from the first building in the class) is considered for the month of July.

In addition, on-site PV panels were added such that the solar fraction was equal to unity if all

energy can be stored, i.e. the total energy needed to operate the building was equal to the PV

production but the supply and demand do not necessarily match. Figure 4.10 shows the building

demand profile, the PV production, and the hourly difference, respectively. The necessity for stor-

age is evident during periods when PV production is high but the building demand is low; this is

especially notable on the weekends. This is a problem of a “highly energy efficient building” where

simply adding an abundant amount of PV without regard to the whole system efficiency leads to

problems. That is, it is possible the power peaks flowing back into the grid make the whole-system

efficiency worse. Furthermore, the utility is only going to buy power back at a fraction of what it

charges for the same quantity.
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Figure 4.10: The building demand profile, on-site PV generation, and difference for the month of

July.

To capture the energy spillage back onto the grid, a generic energy storage was considered.

Simple on/off control to (or from) the storage was based on the hourly difference between building

demand and PV production. The parameters of interest were: 1) the energy storage size as a

fraction of the worst-case design storage capacity, and 2) the maximum charging/discharging rate

per hour as a fraction of the design storage capacity. The design storage capacity [J] was specified

as the greatest diurnal difference between building demand and PV production during the month

of July, i.e. the theoretical ability to store all excess production on the worst-case July day. The

maximum charging/discharging rate parameter allowed the design storage capacity to go from

empty to full in one hour or vice versa. Charging and discharging efficiencies were assumed to be

90%. Temperature degradations were not considered. Although the parameters were for a generic

storage, they represent a range of electrochemical storage technologies.

From Figure 4.11 it is shown that the net energy spillage to the grid was more sensitive to the

rate of charging/discharging than the storage size. In both cases, at fractions above approximately

0.50, the solution does not change. With an adequate storage size (∼ 0.35 design capacity) and
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charging/discharging rate (∼ 0.2 max rates) only 35% of the PV production was sent to the grid

and not utilized on site. The maximum (monthly) demand from the grid is also a big concern

for building operators because of the expensive charges associated with its peak magnitude; it was

interesting to see how much the storage influences peak demand. From the figure, the storage

allowed demand savings of 12.5% without dedicated control. In all energy storage studies utility

rate structures will have a profound influence, and those results offered here are solely to illustrate

classification results.
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Figure 4.11: Energy spillage and peak demand savings as a function of energy storage parameters.
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4.5 Conclusions

Overall the heatmaps presented in Figures 4.7 through 4.9 demonstrated the validity of the

technique to classify similar buildings that one might expect to have indistinguishable electrical

demands, as well as shed light on unexpected classes. The two-way and potentially higher interac-

tions these figures reveal showed the challenging nature of such a technique but also demonstrated

how dynamic building usage can be. This technique and the results presented here represented

just the first level of analysis and demonstrated the need for further research within the identified

building classes. Particularly, the investigation will be extended to look at the impact of weather

from a more detailed level, and the impact of the air-conditioning equipment used. Additionally,

investigating if significant variations in classification occur when real weather data are used, versus

typical meteorological year data, is of concern. Furthermore, observing what happens to the load

profiles when a large suite of advanced technologies, including various on-site generators and energy

storage technologies, are included is of great interest. These impacts in particular are highly rel-

evant to the intelligent integration of commercial buildings with renewable generation and energy

storage capabilities.



Chapter 5

Comparison of Short-Term Weather Forecasting Models

for Model Predictive Control

5.1 Introduction

Model predictive control (MPC) of buildings is highly appealing as it holds the promise

of energy and cost savings through intelligent building operation.1 Progress toward the goal

of real-time optimal control of buildings is made through a systematic inquiry of each process

component. Although a wealth of research has been conducted in building physics, there remains a

great opportunity for the proper integration and control of each of these elements from a supervisory

control perspective. Among the obstacles is the accuracy by which the stochastic local weather

processes can be predicted. It is necessary to investigate suitable forecasting models to uncover the

complexity required for short-term prediction of local weather, while observing the applicability

within a MPC framework. Progress is made toward this goal through a systematic evaluation of

various climates, weather variables, and forecasting models.

Time series prediction of local weather is crucial for many aspects of energy conservation, eco-

nomic operation, and improved thermal comfort in commercial buildings. In particular, significant

motivation exists for HVAC supervisory control applications, e.g., building thermal mass control

to respond to utility pricing signals, increased free cooling through superior economizer control,

and thermal load prediction for uniform chiller loading and improved part-load performance. The

desire is to optimize operation based on a short-term prediction of weather and building utiliza-

1 Chapter 5 largely derives from Florita et al. [128] and authorship is primarily attributed to Anthony R. Florita;
the other author contributed code and editing, specifically concerning the neural network models.
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tion to yield energy and cost savings through the minimization of an objective function over the

prediction horizon. Identifying a MPC strategy and determining the forecasting model complexity

required will support the causes of the example and additional applications. Taking a generalized

data-driven perspective over physical modeling, the relevance ranges from utilization within embed-

ded controllers to high-level setpoint adjustment within the building automation systems (BAS);

the availability of accurate dynamic building energy simulation programs further promotes future

application of MPC in commercial buildings.

It is well known that government and private institutions alike provide forecasting services

involving complex meteorological models and supercomputer computation. The arguments against

relying on these services are the five main concerns: availability of all variables of interest, service

interruption, service availability, system integration, and the data-driven perspective. First, the

presented models can be applied to predicting local solar data such as global horizontal and direct

normal insolation, which is not commonly offered by commercial service providers. Second, service

interruption could seriously negate the benefits of model predictive control, e.g. with electrical

demand charges typically being levied over monthly bill periods, and ratchet clauses extending this

charge to future billing periods, any failure of demand limiting strategy caused by a forecasting

malfunction could have large cost implications. Third, the availability of hourly (or sub-hourly)

weather forecasts is not pervasive. That is, forecast updates required in real-time, necessary for

error minimization, are not available through most forecasting services. Error can additionally be

introduced through localized deviations, e.g. the grid point for which the forecast was generated

does not accurately represent local climatic observations. Fourth, system integration concerns stem

from the authors’ believe that the “smart building” benefits from an on-site weather station for

appropriate model predictive supervisory control. Fifth, a practical, data-driven (on-site) perspec-

tive is favored over devising complex (physical) probability models of, say, solar irradiation and/or

cloud cover. Therefore, a range of weather forecasting models for MPC have been evaluated: from

simple models that only capture the shape of the weather processes to complex models that attempt

to capture the stochastic processes and underlying dynamics.
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5.1.1 Nomenclature

C autocovariance function

d number of days in the past horizon or dimension

df degrees-of-freedom

dL execution (prediction) horizon

Fr Friedman statistic

Igh global horizontal radiation, Wh/m2

i, j indices

k∗ update time instant

L planning horizon or characteristic profile

MA moving average

m,n number of blocks, treatments

Q studentized range statistic

R ranking

Rsd relative standard deviation modification

Rsw swing ratio scaling modification

Tdb dry-bulb temperature, ◦C

Twb wet-bulb temperature, ◦C

t specific hour of the day under investigation

x general variable or weather variable of interest

α discount factor or level of significance

δ deviation

µ mean value

σ standard deviation

τ time lag

φ relative humidity, %
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χ2 chi-square statistic

∇ backshift operator

{x} , ~x vector notation

x mean value

x̂i predicted value

Subscripts, Superscript, etc.

aew absolute deviation and exponentially weighted

asp absolute deviation and simple prior

d number of days in the past horizon or dimension

e external

ew exponentially weighted

i, j indices

k∗ update time instant

M,N total number of terms

m,n indices

rew relative (standard) deviation and exponentially weighted

rsp relative (standard) deviation and simple prior

sp simple prior

sw swing or range

t specific hour of the day under investigation

∇ backshift operator

5.2 Literature Review

A spectrum of relevant case studies with weather prediction aspects was reviewed. Many

studies come from the very active research domain of electrical power forecasting used to optimally

dispatch central power generation equipment, with weather forecasting typically influencing the unit

commitments. Despite overlaps in forecasting strategies and algorithms, the present concerns limit
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the literature review to studies involving commercial buildings with weather forecasting and/or

prediction features to corroborate the unique investigation presented herein. In both domains a

significant fraction of researchers are convinced that nonlinear forecasting models based on neural

networks (NN) provide superior forecasting performance, nonetheless, many have found success

using traditional time series analysis. For a detailed presentation of time series analysis and neural

networks the reader is referred to Box et al. [129] and Bishop [130], respectively.

Time Series Analysis Models: In forecasting hourly cooling loads, MacArthur et al. [131]

used an autoregressive moving average (ARMA) model. A recursive least squares (RLS) algorithm

was used for on-line model parameter adjustment with exponential forgetting factor to ensure a

maximum covariance between the predicted and actual load. The quality of the load forecast was

innately tied to ambient weather prediction because the method used historical data and external

forecasts of maximum and minimum values for rescaling the profile.

Seem and Braun [132] developed a model for electrical load forecasting by combining an

autoregressive (AR) model for the stochastic part of the prediction task and an adaptive look-

up table for the deterministic part. Using an exponentially weighted moving average (EWMA),

hourly electrical power demand was determined using previous forecasts and measured values.

The deterministic look-up table is often referred to as a cerebellar model articulation controller

(CMAC). Its performance showed improvement by introducing electrical load profile temperature

dependence, with daily peak values modified according to the maximal daily temperature forecast

as provided by the National Weather Service (NWS).

Chen and Athienitis [133] discuss an optimal predictive control methodology for building

heating systems in real-time dynamic operation. The system consisted of three loops: a conventional

feedback control loop with predictive regulator, a parameter estimator using an RLS technique, and

a setpoint optimizer. The weather prediction made use of both historical records and local weather

forecasts. Simple rules were devised to modify historic shape factors based on external weather

service forecasts.

Henze et al. [134] investigated the impact of forecasting accuracy on predictive optimal control
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of active and passive building thermal storage inventory. The short-term weather forecasting models

including bin, unbiased random walk, and seasonal integrated ARMA predictors. It was shown that

model complexity does not imply accuracy, and progress is built on these results in the context of

the MPC framework.

Neural Network Models: Ferrano and Wong [135] used a feed-forward NN software pack-

age to predict the next day’s cumulative cooling load by mapping hourly (24 input units) ambient

dry-bulb temperatures, with results subsequently used in a real-time expert system. In order to

allow for adequate generalization and avoid memorization, it was determined that training sets

should contain a difference of at least 3% in the temperature patterns. This effectively reduced

training time and reduced the prediction error from a maximum of 12% to only 4% for the validation

sets.

Kreider and Wang [136] used a feed-forward neural network with nine input units in the

prediction of hourly electrical consumption integrated from 15-minute power values. The network

was capable of responding to unusual weather phenomena, e.g. during a non-cooling month (De-

cember) the weather was unusually hot for two days and the cooling plant had to come on during

that time period. The network picked up this unusual condition and predicted the required power

consumption for this period. Conventional methods of regression missed this event. It was shown

that the quality of the forecast improves when the network is trained on data of the same season

for which the prediction is made, i.e. predicting energy consumption for a non-cooling month such

as December should be done with a network that is trained on November data rather than data

from a typical cooling month such as July.

Gibson and Kraft [137] used a recurrent NN for electric load prediction in conjunction with

a thermal energy storage system. The network was trained using electric and cooling load data

of an office building monitored over a cooling season. The ability to generalize was noted by the

network’s ability to achieve similar prediction errors for atypical days as compared to normal days

when supplied with detailed occupancy load information. Using a recurrent network architecture

allowed the network to not only pick up the steady-state physical processes, but also the temporal
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relationships between system states, i.e. dynamic aspects.

Dodier and Henze [138] used neural networks as a general nonlinear regression tool in pre-

dicting building energy use data as part of the Energy Prediction Shootout II contest (described

below). By combining a NN with a version of Wald’s test, the relevance of free parameter in-

puts were determined. Time-lagged input variables were found by inspecting the autocovariance

function. The strategy was the most accurate predictor in the competition.

Previous Comparative Studies in Prediction: The “1993 Great Energy Predictor

Shootout”, detailed in Kreider and Haberl [139], was a competition in the prediction of hourly

building energy data available to world-wide data analysts and competitors alike. The results

showed that connectionist approaches were used in some form by all winners, i.e. NN approaches

using different architectures and learning algorithms proved to achieve superior accuracy when

compared with traditional statistical methods. Kawashima et al. [140] compared hourly thermal

load prediction for the coming day by means of linear regression, ARIMA, EWMA, and NN mod-

els. The NN models were confirmed to have excellent prediction accuracy and considered by the

authors to be superior methods for utilization in HVAC system control, thermal storage optimal

control, and load/demand management. The “Great Energy Predictor Shootout II” extended the

understanding of prediction methods for building applications, evaluating the prediction of hourly

whole-building energy baselines after energy conservation retrofits. The effectiveness of predic-

tion models was compared for the top entries in Haberl and Thamilseran [141]. NN models were

shown to be the most accurate in nearly all cases, but unique statistical approaches were shown to

compete, in terms of accuracy, with the NN models.

5.3 Description of Analysis

5.3.1 Overview of Short-Term Weather Prediction

To ensure the forecasting models were evaluated for a wide spectrum of geographic locations,

eleven climates in the United States, Europe, and Asia were investigated as shown in Table 5.1. For
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each city, International Weather for Energy Calculations (IWEC) data was used to train and test

the models’ forecasting of weather variables. Due to their prevalence as required inputs to dynamic

building and component simulation models, and for practical engineering purposes, the following

four weather variables have been predicted: global horizontal radiation Igh in units of [Wh/m2],

dry-bulb temperature Tdb [◦C], wet-bulb temperature Twb [◦C], and relative humidity φ [%]. Each

forecasting model was used separately and seasonally to predict each of these weather variables for

each city.

The seasonal testing months were specified as: March (spring), June (summer), September

(fall), and December (winter). To account for realistic, continuous forecasting model operation the

previous two months of the yearly IWEC data were used as training data, and the third month

as unseen testing data in the appraisal of seasonal forecasting performance: the spring evaluation

used January and February for training data and March for testing forecasting performance, the

summer evaluation used April and May for training and June for testing, and so forth in the fall

and winter seasons. To achieve the research goals through a robust evaluation, the reasoning in

the selection of the training and testing strategy follows a tripartite structure: 1.) forecasting

models are globally and seasonally evaluated to ensure their performance is not biased by a single

climate and/or season, 2.) the specified testing months coincides with weather phenomena typical

of the respective season, and 3.) the forecasting models must perform in a data-driven, continuous

manner by training on recent (historic) weather data and operating in contiguous months – on

simple systems such as embedded controllers.
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Table 5.1: Geographic Locations Considered for Short-Term Weather Prediction.

United States Europe Asia

Atlanta, Georgia London, England Beijing, China

Los Angeles, California Paris, France Tokyo, Japan

New York, New York Stockholm, Sweden

Omaha, Nebraska Stuttgart, Germany

Phoenix, Arizona

The discrete prediction occurred in hourly intervals, a typical simulation time-step length.

The metrics used to assess forecasting accuracy are the coefficient-of-variation (CV) and mean bias

error (MBE), both in [%].

CV =

√
1/N

∑
i(xi − x̂i)2

1/N
∑

i xi
(5.1)

MBE =
1/N

∑
i(xi − x̂i)

1/N
∑

i xi
(5.2)

Where x̂i is the predicted value of the monitored dependent variable xi, and the denominator

is the mean of the dependent variable over the testing set. In all cases, the metrics are calculated

for an execution horizon of dL = 6 hours, successively concatenated to encompass the complete

testing period. The execution of the prediction constitutes only a portion of the planning horizon

of L hours because most of the MA models allow for corrections as time progresses, and the NN

models must be compared on the same prediction-task basis.

The length of planning horizon L in a given prediction is primarily a function of the longest

time constant of the dynamics to be controlled; i.e., when performing MPC of building thermal

mass a longer planning horizon is required over which a strategy can be formulated as compared to

the problem associated with faster dynamics such as chilled water plant control involving smaller

time constants. Based on Henze et al. [142], planning horizons in excess of 18 hours (better with

24 hours) were suggested for building thermal mass control. On the other hand, the quality of the
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planned strategy depends on the quality of the forecasts it rests on. This in turn forces the choice

of a planning horizon that accounts for the fact that forecast uncertainty grows with length of time

predicted. Guidance is offered for any MPC within commercial buildings, and thus the choice of

execution horizon dL would be a function of the specific application. A value of dL = 6 hours

was chosen with the thermal mass application in mind and recognizing that forecasts tend to be of

sufficiently high quality for the next 6 hours. However, both shorter and longer execution horizons

could have been chosen for the analysis. It is the belief through considerable testing of reasonable

dL time lengths, however, that the findings would not have changed significantly.

5.3.2 Investigated Forecasting Algorithms

A central question was whether the more computationally intensive requirements of neural

networks are warranted when compared to the performance of simple and easy to implement time

series analysis applied to the cyclical two-stage MPC process of prediction and execution. With

various levels of sophistication, both methods were applied in a comparative analysis. Altogether

14 different short-term forecasting models have been proposed, and Table 5.2 provides the naming

convention. The respective modeling details are outlined in following sections.
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Table 5.2: Labeling of the Various Models Used in the Analysis.

Model SPMA EWMA Neural Network Ext. Mod. Abs. Dev. Mod. Rel. Dev. Mod.

1 x

2 x x

3 x x

4 x x

5 x x x

6 x x x

7 x

8 x x

9 x x

10 x x

11 x x x

12 x x x

13 FTDNN

14 NARX

5.3.2.1 Simple Prior Moving Average (SPMA)

Historic observations are often drawn upon for developing characteristic profiles (forecasts)

of weather variables, generically known as past-horizon predictors. The finite past horizon can

be variable and may encompass the last day, week, month, or season to generate the forecasts.

Equation 5.3 generates a characteristic profile for the next L hour planning horizon on the basis

of a simple prior moving average (SPMA) over the past horizon by performing uniformly-weighted

averages for each hour of the day:

MAsp,t(d) =
1

d

d∑

i=1

xt−∇i (5.3)

The number of days in the past horizon is indicated by d, the weather variable x is of interest,
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t is the specific hour of the day under investigation, and the ∇ = 24 hour backshift operator is

modified by the index i within the summation to account for the diurnal nature of the weather

variables. The investigated SPMA models used d = 60; weighting concerns and dynamic adaptation

are considered below.

5.3.2.2 Planning and Executing Predictions

Due to the stochastic nature of weather, a measured weather variable datum for a particular

hour will deviate from its forecast value. To allow dynamic adaptation to such an event, as the

predictor moves through time it accounts for any discrepancy at update time k∗. It is assumed the

deviation will persist for a number of hours into the future. Therefore, the shape of the forecast

weather variable is determined by the characteristic profile for a planning horizon L, but the forecast

is ‘anchored’ (described below) to the measured current value. In essence, the predictor assumes

persistence of the deviation from the static forecast and adapts to measured values in real-time.

With the dynamic strategy, forecasting of weather variables is accomplished using historic

events in the planning horizon L, adaptation according to current measurements at the update

instance k∗, and then executed over dL. At the end of the execution horizon, it is likely that

another deviation will exist between the measured and forecast weather variables as shown in

Figure 5.1, and the process moves through time. The cyclical two-stage process of policy planning

and execution is highly applicable to the requirements of MPC because recent historic data and

current weather knowledge are considered, but only short-term forecasts are executed, e.g. an

optimal temperature setpoint in MPC.



80

Update n

Developing Forecast 
over Planning Horizon L

Execute Forecast 
over dL hours

Update n+1

Developing Forecast 
over Planning Horizon L

Execute Forecast 
over dL hours

k*

Step 1

Step 2

Step 1

Step 2

Figure 5.1: Cyclical two-stage process of planning and execution horizon.

5.3.2.3 Anchoring of the Characteristic Profile

The deviation of the measured weather variable from its forecast value at time k∗ is described

by:

δxk∗ = xk∗ −MAsp,k∗(d)

Modifying the SPMA based on δxk∗ can be accomplished in a number of ways, but the

underlying assumption is that the deviation will persist for the next dL hours of the execution

horizon and thus the prediction will be improved. Absolute and relative δxk∗ modifications are

considered.

Absolute Deviation Modification: At the instant in time labeled k∗, the actual mea-

surement is compared to the forecast value. The calculated deviation δxk∗ is added to (or subtracted

from) each element of the characteristic profile to produce the forecast for the next dL hours in the

execution horizon. The basic elements described are combined to produce the dynamic short-term

weather forecasting according to the strategy of absolute deviation simple prior moving average
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without external forecasts:

MAasp,t(d) =
1

d

d∑

i=1

xt−∇i + xk∗ −
1

d

d∑

i=1

xk∗−∇i t ∈ [k∗, k∗ + L]

or,

MAasp,t(d) = MAsp,t(d) + δxk∗ t ∈ [k∗, k∗ + L] (5.4)

where δxk∗ will be positive or negative according to the k∗ measured value, and {x̂t} represents

the modified vector used for dL hours in the execution horizon.

Relative Standard Deviation Modification: The absolute vertical translation accord-

ing to δxk∗ neglects the stochastic dispersion of weather data that has occurred in the past horizon.

With the inclusion of standard deviation calculations for each weather variable and each hour of

the day, it is possible capture how much the measurement deviates from its mean value µ in a

relative sense. For example, if the observed deviation is 3 and the standard deviation σ for the

current hour of the day is 4, then the SPMA for each hour in the prediction horizon L is corrected

by moving each hourly average up or down the same number of standard deviations (here 3/4). Of

course, if σ were constant for all hours of the day the relative deviation modification reduces to the

absolute deviation.

The modification factor for any given time k∗ can be described by:

Rsd =
xk∗ − µ
σk∗

=
xk∗ −MAsp,k∗(d)

σk∗

The relative deviation modified SPMA model can then be calculated as:

MArsp,t(d) = MAsp,t(d) +Rsdσt(d) (5.5)

where σt is the standard deviation of weather variable x at time-of-day t.

5.3.2.4 SPMA Including External Forecasts

An on-site, data-driven perspective is taken. However, the literature has shown that external

forecast provided by weather services could aid in performance. Common external predictions are
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typically limited to the next day’s extreme temperatures and dew points. Scaling the SPMA with

external forecast knowledge could yield improved results when the coming day’s weather is irregular

as compared to recent observations; through the use of IWEC data the extremes in weather are

assumed to be perfectly predicted for the next 24 hours.

The swing or range (extreme value difference) of the forecast weather variables is described

by:

δxsw = xmax,ext − xmin,ext

Scaling of the forecast depends on the forecast swing ratio, i.e. external forecast of the swing

to that predicted by the SPMA. Scaling the characteristic profile according to this strategy is

accomplished as:

Rsw =
δxsw

max
t∈[1,24]

{
1
d

∑d
i=1 xt−∇i

}
− min
t∈[1,24]

{
1
d

∑d
i=1 xt−∇i

}

Even with the swing modification, the forecast weather variable for the next hour may deviate

from the measured data. Again, an adjustment for the deviation introduced by updated forecasts

is accomplished by anchoring to the measured value and described by δxk∗ ; this is calculated after

the Rsw scaling due to distortion.

When scaling based on external forecasts is applied to the SPMA, the absolute deviation

model becomes:

MAasp,e,t(d) = RswMAsp,t(d) + δxk∗ t ∈ [k∗, k∗ + L] (5.6)

and the relative deviation model becomes:

MArsp,e,t(d) = RswMAsp,t(d) +Rsdσt(d) t ∈ [k∗, k∗ + L] (5.7)

At time k∗, anchoring can proceed using either the absolute or relative modifications. The

distortion of the characteristic curve, both in terms of the dilation based on external swing forecasts

and absolute (or relative) translation according to δxk∗ , can allow response to recent weather

observations and improve forecast accuracy.
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5.3.2.5 Exponentially Weighted Moving Average (EWMA)

Accurate forecasts may be more heavily influenced by recent observations. Seasonality en-

forces this concept and the chaotic, nonstationary nature of weather may further emphasize it.

The SPMA relied on two months of finite past horizon for developing characteristic profiles. In an

exponentially weighted moving average (EWMA), with a theoretically infinite past horizon, more

recent observations have a larger impact on the characteristic profile. As the weighting tends to-

ward zero, the older observations have a diminishing influence and at some point the infinite past

horizon becomes finite for all practical purposes.

The weighting scheme is a simple exponentially (geometric) decreasing constant applied to

each weather variable according to its temporal distance from t. The discount factor α acts to

diminish the influence of older observations, and weights α(1−α)i are successively applied according

to the forecast model equation:

MAew,t =
∞∑

i=0

α(1− α)ixt−∇i (0 < α ≤ 1) (5.8)

The sum of all weights must be unity, i.e.,

∞∑

i=0

α(1− α)i = 1

The choice of α is influenced by the system under consideration to dampen older observations

in a suitable fashion. For the models considered in this analysis the α value was optimized during

the training phase via an exhaustive search between α = 0.05 and α = 0.95, with δα = 0.05 steps,

to find the minimum CV value.

5.3.2.6 EWMA Including Modifications

The modifications applied to the SPMA, including absolute/relative anchoring and scaling

based upon external forecasts, were also investigated for EWMA models. The absolute deviation

model can be stated as

MAaew,t(d) = MAew,k∗(d) + δxk∗ (5.9)
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and the relative deviation model as

MArew,t(d) = MAew,t(d) +Rsdσt(d) (5.10)

Similarly, the expressions utilizing external weather forecasts are for the absolute deviation

model

MAaew,e,t(d) = RswMAew,t(d) + δxk∗ (5.11)

and for the relative deviation model

MArew,e,t(d) = RswMAew,t(d) +Rsdσt(d) (5.12)

For each of the models t ∈ [k∗, k∗ + L].

5.3.3 Neural Networks (NN)

With the ability to perform any arbitrary nonlinear mapping of input-output patterns, neural

networks appear to be well suited for forecasting that exists in the data-rich and theory-poor domain,

complementing the data-driven perspective. Neural networks set themselves apart from sequential

computation by distributing the computational tasks of a problem onto many identical simple

units (“neurons”) that are highly interconnected and can work in parallel. Neural networks can

approximate any continuous function to a high degree of accuracy, and are therefore well suited

for time series prediction. Time series prediction can be seen as the task of finding regularities

and dependencies in the data set, and neural networks can be taught to emulate the underlying

dynamics of the system. Due to the unpredictable nature of noise, only the deterministic part of

the problem can be predicted; the network establishes the nonlinear functionality.

A network is trained on a time series by presenting it a fixed number of previous data points

xt, xt−1, . . . , xt−n resulting in a fixed time window (or tapped-delay line) to predict the future

values. The parameter n determines the dimensionality of the prediction problem. Increasing

dimensionality increase performance to the point of diminishing returns, which has been formally

described by Takens’ Theorem that states no more than m = 2df + 1 measurements of a variable



85

are necessary to correctly predict the future value of this variable, where df is the effective number

of the system’s degrees of freedom [143]. However, Takens’ Theorem is derived using noise-free

differential equations, and trial-and-error solutions are required for realistic implementation.

Neural networks can be classified into dynamic and static categories. Static (feedforward)

networks have no feedback elements and contain no delays; the output is calculated directly from

the input through feedforward connections. In dynamic networks, the output depends not only on

the current input to the network, but also on the current or previous inputs, outputs, or states of

the network. Moreover, dynamic networks can also be divided into two categories: those that have

only feedforward connections, and those that have feedback, or recurrent, connections. Dynamic

networks are generally more powerful than static networks (although somewhat more difficult to

train). Because dynamic networks have memory, they can be trained to learn sequential or time-

varying patterns.

5.3.3.1 Focused Time Delay Neural Network (FTDNN)

The most straightforward dynamic network, which consists of a feedforward network with a

tapped delay line at the input is called the focused time-delay neural network. This is part of a

general class of dynamic networks, called focused networks, in which the dynamics appear only at

the input layer of a static multilayer feedforward network. The architecture is equivalent to that

of Figure 5.2, but devoid of the (square) exogenous input units. This network is well suited to

time-series prediction and will be thus adopted and named FTDNN.
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Figure 5.2: Recurrent neural network architecture.

5.3.3.2 Nonlinear Autoregressive with Exogenous Input Neural Network (NARX)

The second NN investigated is the nonlinear autoregressive with exogenous input (NARX)

neural network, shown in Figure 5.2, which uses a tapped-delay line for both the recurrent output

as well as clock representation (sine and cosine) of the time-of-the-day and day-of-the-year as

exogenous inputs per the recommendation of Dodier and Henze [138]. The motivation behind the

choice of time lags is as follows: Past values of environmental variables are relevant to prediction

of current variables, so including past values of inputs should improve the accuracy of predictions.

However, it is clear that there are limits to the useful time lag. If the time lag is very long (a month,

say) the time-lagged input will be almost completely uncorrelated with the current variable. If,

on the other hand, the time lag is very short (a minute, say) the time-lagged input will be almost

completely redundant with the current input variable, providing no new information. To choose an
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appropriate intermediate time lag the autocovariance function was inspected:

C(τ) =
1

N

∑

t

(xt − x̄)(xt−τ − x̄) (5.13)

for each input variable at multiples of one hour. The first zero of the autocovariance represents

a time at which the lagged input is uncorrelated with the current value, i.e. the two points are

statistically independent, so it is the shortest time lag which brings in the most new information.

Optimization: For both the FTDNN and the NARX models, the tapped line length was

bracketed around the first zero of the autocovariance function of the dry-bulb temperature Tdb of

11 hours as reported by Dodier and Henze [138]. The optimal network architecture was found by

exhaustively searching in the range of 9 to 13 hours for the lag and 20 to 30 neurons for the size

of hidden layer until a minimum CV was found in training. Limiting the optimization of network

architecture to the stated ranges allowed a balance between the extremely long training times,

the large study, and practical implementation. It should be noted that the Levenberg-Marquardt

training algorithm was adopted for the FTDNN architecture and Bayesian regularization for the

NARX architecture. In addition, early stopping and data scaling have been utilized in both neural

networks.

5.4 Results and Discussion

The 14 different forecasting models of Table 5.2 were programmed in a commercially available

technical computing environment. For each of the 11 geographic locations in Table 5.1, the four

weather variables (Igh, Tdb, Twb, φ) were separately predicted and the performance was described

in terms of the metrics of Equations 5.1 and 5.2; the evaluation was accomplished separately for

each of the four seasons. Nearly 2,500 prediction tasks were conducted to ascertain the required

complexity of short-term weather forecasting model for MPC.

A general impression of each forecasting model’s performance was obtained by collating the

metrics for an exclusive prediction task, e.g. relative humidity, and the expected circumstances, i.e.

yearly basis. Therefore, for each forecasting model’s performances, the mean was taken across all
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geographic locations and all seasonal performances. Given in percentage CV and MBE, Tables 5.3

and 5.4 present the results, respectively. Entries labeled ‘na’ indicate particularly poor prediction

performance, exceeding 100% CV or MBE such that the metrics lose their interpretation other

than signaling inferior performance. Observing Tables 5.3 and 5.4, it may appear the magnitude

of the values is large. However, a formidable challenge of the dL = 6hour execution of prediction

was intentionally put forth to thoroughly examine the forecasting models’ performance; it should

be kept in mind the values are calculated by concatenating all 6-hour predictions for the defined

‘exclusive prediction task’. Furthermore, the largest metrics are associated with Igh and Twb, which

have a diurnal nature exhibiting more sporadic behavior than Tdb or φ.

Table 5.3: Forecasting Models’ Mean %CV over all

Locations for each Weather Variable Predicted.

Model Igh Tdb Twb RH

1 na na na 27

2 69 na na 90

3 91 19 55 12

4 78 19 55 12

5 57 20 92 13

6 83 20 95 13

7 61 39 na 21

8 57 60 na 65

9 49 20 62 11

10 69 21 62 12

11 45 22 92 12

12 67 22 94 12

13 na 78 na 19

14 na 31 93 10

Table 5.4: Forecasting Models’ Mean %MBE over

all Locations for each Weather Variable Predicted.

Model Igh Tdb Twb RH

1 74 na na 22

2 35 na na 76

3 53 13 35 8

4 35 12 36 8

5 32 13 59 8

6 42 13 61 8

7 30 29 na 16

8 24 45 na 49

9 24 13 40 7

10 28 13 40 7

11 21 14 62 8

12 29 14 63 8

13 na 17 50 10

14 56 22 68 7
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5.4.1 Performance Comparison

It was necessary to analyze the performance (metric) variance in order to compare forecasting

models and make recommendations for application in distinct prediction tasks. This investigation

of variance is only possible within a given geographic location, i.e. a unique “data source”, and

furthermore it was assumed the model is used for predicting one weather variable throughout the

entire year. Therefore, changes in seasonal performance of a given model are considered a nuisance

factor effect, i.e. a background effect that needs to be considered but is not the primary interest.

The difference in forecasting performance of the 14 models is the concern and not the difference

in an individual model’s season-to-season forecasting performance, but the latter must still be

considered.

As described in Hollander and Wolfe [144], the Friedman test is a nonparametric randomized

block design. It was used to compare the performance effects of the 14 models while blocking

the nuisance seasonal effects. The two-way analysis of variance (ANOVA) was initially considered,

but the models’ residuals were not normally distributed with equal treatment (forecasting model)

variance as required by ANOVA assumptions. Friedman’s test is a rank sum procedure that relies

on the comparison of parameter location (median), allowing determination of the models’ relative

forecasting performance. The test assumes the data comes from a continuous population distri-

bution (satisfied by IWEC weather data) and all observations are mutually independent (satisfied

by programming independence). The null hypothesis states that apart from minor nuisance block

effects, the parameter location is equal for each treatment, i.e. there is no difference in forecasting

model performance. The alternative hypothesis is that a significant difference exists among the

treatments.

The Friedman statistic can be calculated as:

Fr =


 12

mn(n+ 1)

n∑

j=1

R2
•j


− 3m(n+ 1) (5.14)

where separately within m independent blocks (seasons) the n treatments (forecasting models) are

ranked. The treatment with the best performance is assigned rank 1 and the worst performance
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rank n; there is an adjustment for ties, but it was not a concern here. Ri,j is the rank for the

i-th (i ∈ 1, 2, . . . ,m) block for the j-th (j ∈ 1, 2, . . . , n) treatment. Within a given block, there

are n! possible ranking arrangements, leading to m(n!) ranking possibilities when considering m

blocks. If the null hypothesis is valid then each mean ranking of a treatment is equally likely. The

test statistic Fr is approximately a chi-square distribution with n − 1 degrees of freedom. In an

upper-tailed critical value test, the Fr statistic is compared to the respective χ2 at an α level of

significance when deciding to accept or reject the null hypothesis; a common value of α = 0.05

was selected. Statistically significant differences in (yearly) forecasting performance were found,

using the Friedman test and the stated level of significance, for nearly every combination of weather

variable and geographic location.

With those combinations found to have statistically significant differences with Friedman’s

test, a (post hoc) multiple comparison technique was used to determine a specific model’s superi-

ority over another. Hochberg and Tamhane [145] recommend the following procedure as the most

powerful for all pairwise comparisons:

∣∣R̄i − R̄i′
∣∣ >

Q
(α)
n,df√
2

√
n(n+ 1)

6m
(1 ≤ i ≤ i′ ≤ n) (5.15)

When the absolute difference of any two mean ranks Ri and Ri′ exceeds a critical value they

are deemed statistically different; Q
(α)
n,df is the studentized range statistic obtained from tables or

computational environments. The method relies on all pairwise difference having the same variance,

i.e. pairwise balanced, and then (1 − α) confidence intervals for all comparison can be calculated.

The method is an extension of Tukey’s honestly significant difference (HSD) method.

The multiple comparison procedure allowed determination of the forecasting models’ statis-

tically significant superiority or inferiority for the yearly prediction of a specific weather variable

within a given geographic location. For example, the EWMA with absolute anchoring (model 9)

was found to be the best CV performer for Atlanta dry-bulb temperature prediction, and for the

same prediction task is (statistically significant) superior to model 2. It is possible that one model

shows statistically significant behavior over another, yet still not have the lowest CV or MBE.
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Figures 5.3 and 5.4 present the frequency of statistically significant superiority or inferiority of

each model for, respectively, CV and MBE metrics. The frequencies are found by summing the

number of significant events (behavior) over all geographic locations. This complements the mean

CV and MBE tables, following discussions, and compactly summarizes the results of the nearly

2,500 prediction tasks.

5.4.2 Discussion

To shed light on the results, Table 5.2 is used to distinguish among forecasting models,

Tables 5.3 and 5.4 provide the mean CV and MBE metric performance, and multiple comparisons

results are summarized in Figures 5.3 and 5.4. For instance, models 9 and 11 differ only in the use

of external (extreme) weather forecasts in the latter. Using the scaling factor Rsw actually causes

a respective 30% and 22% mean increase in CV and MBE for Twb prediction. The corresponding

frequency of superiority investigation shows that the model’s superiority drops from 6 to 0 for

CV and 5 to 0 for MBE. Thus, scaling EWMA forecasts based on external wet-bulb temperature

forecast extremes is generally not recommended, even with perfect prediction.

The short-term forecasting of global horizontal radiation Igh is a difficult task with the best

predictor achieving a mean CV value of 45% and MBE of 21%. The best three predictor models 11,

9, and 8 are all EWMA models, with external forecasts (11, 8) and absolute deviation modification

(11, 9) and no anchoring (8). The fact that an EWMA without anchoring to the current observed

value fares this well comes as a surprise when compared to the other prediction variables. In

Figures 5.3 and 5.4 it appears that EWMA models provide consistently superior performance. It

is interesting to note the FTDNN (13) is consistently inferior. The neural networks do not seem to

provide adept pattern matching for the complex, sporadic behavior of Igh and are not recommended

without exogenous inputs.

The prediction of dry-bulb ambient temperature is without a doubt the most important

forecasting task. The best prediction performances, with mean CV values on the order of 20%

(13% MBE), were achieved by SPMA models 4, 3, 6, and 5. The EWMA models 9, 10, 11, and 12
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Figure 5.3: Multiple comparisons using CV.
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Figure 5.4: Multiple comparisons using MBE.
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offered only slightly inferior performance of about 22% (14% MBE), while the complex NARX (14)

neural network model achieved only 31% CV and 22% MBE. Anchoring, both absolute and relative,

improves prediction performance and is highly recommended for temperature prediction. The

availability of an external forecast of the next day’s extreme values offers insignificant performance

benefits. The FTDNN again fared very poorly.

With the increase in magnitude of CV and MBE values, it becomes apparent that the predic-

tion of wet-bulb temperature alone is an extremely difficult task with none of the models achieving

a mean CV of less than 50% or 35% mean MBE. The frequency of superiority is higher with the

more complex models, but the efforts are futile when observing performance gains. In short, the

use of Twb in determining ambient humidity levels is discouraged, and instead, the use of relative

humidity φ is recommended. This is due to the dependence relative humidity has on dry-bulb

temperature: the prediction task is simplifed when the variables assume a fairly anticipated shape,

rather than the prediction task being a completely stochastic pursuit; the argument extends to

humidity ratio predictions.

Relative humidity emerged as the easiest prediction task with the best model (NARX model

14) achieving a mean CV value of 10% and MBE of 7%. However, a wide range of models provides

only slightly inferior performance: EWMA models 9, 10, 11, 12 offer acceptable performance fol-

lowed by SPMA models 4, 3, 5, and 6. The frequency of superiority enforces these results. Neither

the FTDNN nor MA models without anchoring are recommended for the prediction of relative

humidity. The inferiority is particularly high for models 2 and 8.

Example Weather Predictions: Time series plots are shown in Figures 5.5 through 5.7

to illustrate the closed-loop prediction performance over the dL = 6 hour prediction horizon for

increasingly stochastic weather phenomena. A nearly sinusoidal dry-bulb temperature prediction,

with mild trend, is offered as an example in Figure 5.5 for the location of Stuttgart, Germany

during the summer. For this case, model 4 (SPMA with relative anchoring) achieves CV = 8.6%

and MBE = 5.8%, while model 14 (NARX) yields a CV = 11.2% and MBE = 8.0%. Simple

SPMA models perform as well as, or better than, the much more complex NARX model because
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the daily profiles are close to the characteristic profile and the trend is accounted for through the

anchoring process.

An example of relative humidity prediction in Phoenix, Arizona during the summer season is

shown in Figure 5.6 as a more complex time series. The daily maximum value changes drastically

from 50 to 90% and back from 90 to 30%, and oscillatory behavior on days 2 and 3 complicates the

prediction task. For this case, the best model is the NARX neural network model 14 which yields

CV = 14.9% and MBE = 11.0%, followed by the EWMA model with absolute anchoring (model

9) achieving CV = 19.8% and MBE = 11.0%.

A highly complex prediction task, the forecasting of wet-bulb temperature in Beijing, China

during the spring season is presented in Figure 5.7. The best performer is the NARX neural network

with a very poor performance of CV = 74.6% and MBE = 51.1%. Interestingly, the much simpler

SPMA model 3 follows the neural network with metrics CV = 78.0% and MBE = 44.6% as a close

second.
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Figure 5.5: Forecast prediction in the face of simple, nearly sinusoidal weather variation.
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Figure 5.6: Forecast prediction in the face of complex day-to-day variations in weather.
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Figure 5.7: Forecast prediction in the face of highly uncertain, erratic weather variation.

5.5 Conclusions

The performance benefits of using the much more complicated focused time delay neural

network (FTDNN) or the nonlinear autoregressive neural network with exogenous input (NARX)

does not appear to warrant the additional efforts in predictor model development and training.



96

Simple prior moving average models (SPMA) are superior in predicting dry- and wet-bulb tem-

peratures, whereas the exponentially weighted moving average models show performance gains in

predicting solar radiation and relative humidity. The two methods would be recommended for

the respective prediction tasks. However, for all practical purposes, the differences in performance

between SPMA and EWMA are small. This important conclusion can only be gleaned from this

analysis when it is ensured that forecasts can be updated at every instance dL and anchored to

the known observed value of the prediction variable. Furthermore, the use of MPC in buildings

with a data-driven perspective should rely on variables that vary diurnally and thus reduce the

prediction task difficulty, i.e., favor the prediction of relative humidity over wet-bulb temperature,

as even complex neural networks cannot establish the underlying dynamics solely from data. As

such, the use of simple time series analysis within the cyclical two-stage model predictive control

process of policy planning followed by execution outperforms even the most complicated nonlinear

autoregressive neural with exogenous input (NARX) model.



Chapter 6

An Energy Signal Tool

for Decision Support in Building Energy Systems

6.1 Introduction and Motivation

Stakeholders of assorted interests are increasingly concerned with the energy performance

of the built environment.1 Increasing commitment to energy efficiency, cost-minimal retrofits,

and renewable energy integration has coincided with the availability of commercial and open-

source building energy simulation engines. Model-based approaches have become the norm, with

engineering design accelerating its reliance on software. It is hypothesized that, beyond building

design applications, model-based engineering of buildings can be extended to encompass a building’s

multi-decade life cycle. Of particular interest is the operational energy performance, where tradeoffs

in comfort and energy consumption can be hidden, and the establishment of “normal behavior,” as

distinguished from “faulted behavior,” is nontrivial. Research interests lie in data-driven models for

decision-making processes that are flexible, adaptable, and can evolve with the engineered system.

A balance must be struck between model sophistication and available data. One may have

scores of utility bill data available but little understanding of an appropriate, physically relevant

model. Or one might have an exceedingly detailed physical model available but its real-world

validity is still questionable because calibration has been performed against sparse utility data.

Pattern recognition or classification can be used to ascertain the validity of a model and the

1 Chapter 6 largely derives from Henze et al. [146] and authorship is attributed approximately one-third to Anthony
R. Florita for fault modeling and Bayesian Analysis; the first author contributed decision analysis content, the second
author gray-box modeling content, and the last two author contributed editing.
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value of data; however, building applications are in their infancy. At the building systems level,

monitoring-based heating, ventilation, and air conditioning (HVAC) commissioning [147] and chiller

fault detection [148] have shown promise.

The interpretation of patterns might be further aided by providing real-time, appliance-

level power management and occupant feedback for sociotechnical energy conservation [149]. At

the whole-building level, participation in the smart grid via approaches such as energy storage

may entail value-cognizant electricity demand shifting and shaping [112]; the value to the building

owner is likely different than that to the electricity grid. Data mining and knowledge discovery tasks

have the ultimate goal of predictive diagnostics for buildings and their systems, and have shown

acceptable levels of misclassification in the face of the evolving, nonstationary behavior common

to buildings [150]. Sector-wide studies include modeling the evolution and refurbishment of the

German heating market (for 2050 goals) and its impact on carbon emissions [151].

The goal of the energy signal tool research is to enable owners and operators of commercial

buildings to quickly (in a matter of seconds) attain insight into how their buildings’ energy use

compares against the likely range of expected energy consumption over a given time period (days,

weeks, months, or years). The output of the energy signal tool is a simple traffic light indicator

that summarizes energy consumption relative to model-based expectations. To find the appropriate

value of the indicator, the energy signal tool carries out an analysis of building energy use, taking

uncertainty and misclassification costs into account. As illustrated in Figure 6.1, the energy signal

tool process begins with an operational energy model of a building to provide expected energy

performance, but recognizes that any model only approximates reality.

Previous research explored how gray-box models are obtained and calibrated from noisy

data [152], and results are extended here to include HVAC systems. The term operational derives

from the desire to consider only a few influential variables within the model and to use them in real-

time applications while learning from data as they are gathered. The simplified operational models

are sufficient when coupled to uncertainty analysis and misclassification costs of relatively simple

building types such as big box retail. Work is currently underway to develop an open-source tool
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based on the OpenStudio development effort that would allow the decision analysis to be applied

to arbitrarily complex multi-zone buildings.

Figure 6.1: Energy signal tool flowchart.

A Bayesian probabilistic approach was adopted here to update beliefs about uncertainties

in light of new data. Over time, the energy signal tool learns improved assumptions for input

parameter uncertainties by incorporating measured building data into a Bayesian inference process.
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Unobserved variables are inferred from data and physical modeling. The range of all possible values

is divided into five exhaustive and mutually exclusive intervals, labeled 1–5 in the figure, which

represent predicted energy use that is substantially lower, somewhat lower, more or less the same,

somewhat higher, and substantially higher than observed. The probability that energy use (at

either the whole-building or the end-use level) falls into a given range of values, is computed as

the integral of the energy use probability distribution over that interval. User-defined thresholds

determine the tool’s sensitivity and are driven by the operator’s risk appetite. Then applied utility

theory is applied to find the most appropriate action given an assumed cost of misclassification of

each action (i.e., each traffic light color) in each state (i.e., each energy use interval probability).

The expected cost of misclassification is the cost matrix multiplied by the probability vector. The

element of the expected cost that has the lowest value is chosen.

To illustrate the operation of the energy signal tool, examples are given of its output in

various energy use scenarios and review Bayesian updates to model parameters.
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6.1.1 Nomenclature

~a action vector

aopt optimal action

A,B,C,D state space model matrices

C opaque building shell thermal capacitance

Cc roof thermal capacitance

Cc,1 external node roof thermal capacitance

Cc,2 internal node roof thermal capacitance

Ce exterior wall thermal capacitance

Ce,1 external node exterior wall thermal capacitance

Ce,2 internal node exterior wall thermal capacitance

Cf floor thermal capacitance

Cf,1 external node floor thermal capacitance

Cf,2 internal node floor thermal capacitance

Ci internal thermal capacitance

Ci,1 node 1 internal thermal capacitance

Ci,2 node 2 internal thermal capacitance

Cp air thermal capacitance

Cz zone thermal capacitance

CM zone air capacitance multiplier

COP coefficient of performance

D measured data

DX direct expansion

ek transfer function heat gain history coefficient

E(x) expected value of x

Emeas measured predicted energy consumption

Emod model-predicted energy consumption
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E0,low lower threshold of low deviation

E1,low upper threshold of low deviation

E0,high lower threshold of high deviation

E1,high upper threshold of high deviation

EQP equipment

G central green light action

GM internal gain multiplier

hfg heat of vaporization of water

HVAC heating, ventilation, and air conditioning

i action index

j state index

K cost matrix (decision analysis) or knowledge (inference)

LTG lighting

mair mass of air in the zone

m transfer function heat gain history order

M model output

ṁinf infiltration mass flow rate

ṁSA supply air mass flow rate

ML much lower state

MH much higher state

NSU nighttime setup

n number of past inputs

~P state probability vector

p probability

qocc,lat occupant latent gains

Q̇ep surrogate or measured sensible zone load

Q̇g,c convective portion of internal gains (lighting, occupants, and equipment)
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Q̇g,r,c radiative fraction of internal gains applied to ceiling surface

Q̇g,r,e radiative fraction of internal gains applied to vertical wall surface

Q̇g,r+sol,w radiative portion of internal gains and solar radiation through glazing

Q̇inf infiltration heat gain

Q̇sol,c solar radiation transmitted through opaque ceiling/roof surfaces

Q̇sol,e solar radiation transmitted through opaque vertical exterior surfaces

Q̇sol,w solar radiation transmitted through glazing

Q̇sh sensible convective heat gain to zone air

Q̇zs sensible zone load

Q̇rom reduced-order model predicted sensible zone load

r number of elements in the input vector u

R1 combined heat transfer coeff. to opaque shell mass node

R2 cond. coeff. between mass and internal surface node

R3 conv./rad. coeff. b/w surf. and zone air temp. nodes

Rc roof thermal resistance

Rc,1 roof combined external convection and radiation coefficient

Rc,2 roof conduction resistance

Rc,3 roof internal combined convection and radiation coefficient

Re exterior wall thermal resistance

Re,1 combined external convection and radiation coefficient

Re,2 exterior wall conduction resistance

Re,3 exterior wall internal combined convection and radiation coefficient

Rf floor thermal resistance

Rf,1 ground conduction coefficient

Rf,2 floor conduction resistance

Rf,3 floor internal combined convection and radiation coefficient

Ri internal partition thermal resistance
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Ri,1 internal partition combined convection and radiation coefficient

Ri,2 internal partition conduction resistance

Ri,3 internal partition combined convection and radiation coefficient

Rw glazing thermal resistance

RA return air

RH upper red light action

RL lower red light action

ROM reduced-order model

RTU rooftop unit

S similar state

SA supply air

SH somewhat higher state

SHGC solar heat gain coefficient

SL somewhat lower state

S transfer function input coefficient matrix

t time or time index

Ta outdoor air temperature

Tc ceiling node temperature

Tc,1 external roof node temperature

Tc,2 internal roof node temperature

Te exterior wall node temperature

Te,1 external exterior wall node temperature

Te,2 internal exterior wall node temperature

Tf floor node temperature

Tf,1 external floor node temperature

Tf,2 internal floor node temperature

Tg ground temperature
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Ti internal partition temperature

Tm opaque building shell thermal temperature

Ts (pseudo) internal surface temperature

Tz zone air temperature

T̄z average zone air temperature over timestep

u input variable vector

WBE whole building electricity consumption

Wz zone air humidity ratio

WOA outdoor air air humidity ratio

WSA supply air humidity ratio

x state variable vector

ẋ state variable first derivative vector

Xhigh definition of high level of deviation threshold

Xlow definition of low level of deviation threshold

y output variable vector

YH upper yellow light action

YL lower yellow light action

σε measurement noise

∆τ time step

6.2 Literature Review

Most uncertainties in building energy performance are addressed during the design phase.

The evolution of a given design involves a sequence of decisions by various domain experts and has

implications in thermal, visual, and acoustical performance [153]. Competing objectives such as

energy consumption, environmental performance, and financial costs warrant multi-objective opti-

mization for decision-making [154, 155]. Although engineering tradeoffs lead to numerous optimal

and near-optimal solutions; e.g., Pareto fronts [156], early design choices lead to the building’s
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ultimate sustainability [157]. Confounding the problem is information sharing with conflicting ob-

jectives in the collaborative design process [158]. However, the primary, uncertain drivers in the

design process include (1) (micro)climate variables [159], which may not be appropriately cap-

tured by typical meteorological data; (2) occupancy patterns and dynamics, which may be hard

to capture with traditional diversity factor approaches [160]; and (3) consideration for the existing

infrastructure where the building will be constructed, which may be far from ideal [161]. Judkoff

et al. [162] described the sources of difference between simulation and reality. Recent interest lies

in sustainable designs with renewable energy systems [163], net zero energy buildings [164], and

overall healthy and productive buildings [165, 166].

Energy management or measurement and verification within existing building energy sys-

tems must face a plethora of uncertainties, including (but not limited to) noisy sensors, point

measures of distributed phenomena (e.g., air temperature), and unobserved variables. To capture

complex, nonlinear, and multivariable interactions, mathematical approaches such as Gaussian

processes [167, 168], multi-agent decision-making control strategies [169], and Bayesian-calibrated

energy models [16, 170] have been used. Furthermore, with the proliferation of wireless sensor net-

works in smart buildings [171], interest in assessing performance has extended beyond energy into

mold growth and remediation [172], as well as disaster preparedness and management [173, 174]

for events such as fires [175], earthquakes [176], and bioterrorist attacks [177]. The literature shows

that the need for decision support within operational building settings is vast, yet a balance between

risk and situational usefulness needs to be attained.

Many authors have devised frameworks for decision support in various building energy per-

formance settings. Augenbroe et al. [178] described a tool with an investment strategy for energy

performance decision-making for existing buildings with viable refurbishments via optimization.

Kolokotsa et al. [179] analyzed and categorized buildings for specific actions or groups of plans in a

methodology for decision support of building energy efficiency and environmental quality, including

real-time operation and offline decision-making. Das et al. [180] considered building maintainability

using an analytical hierarchy process to balance budget requirements with performance standards
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for nine building systems, including input from 37 facilities management experts. Gultekin et

al. [181] developed a decision support system for guidance in “green retrofits” to identify key

criteria and feasible alternatives. Mohseni et al. [182] offered a comprehensive decision-making

methodology for condition monitoring to guide building asset managers, aiding capital investments

and expenditures. In a series of papers, Lee et al. [183, 184, 185] detailed process models for decision

support in energy-efficient building projects, and campus-scale infrastructures, and summarized a

“workbench” for uncertainty quantification, respectively. Collectively, i.e., taking this series of

three papers together, a decision support framework was provided.

6.3 Methodology

6.3.1 Modeling Environment

For prototyping the energy signal tool, the simulation study required the validation of the

operational building energy model as detailed in the following sections. In practice, a measurement

campaign combined with system identification techniques would be required before the energy signal

tool is implemented. Because of its Bayesian learning approach, the process could be automated

with a basic knowledge of the model’s structure.

6.3.1.1 Retail Building Simulation Models

The U.S. Department of Energy’s EnergyPlus standalone retail reference building [186, 187],

post-1980 construction, was used as a relatively simple first application for prototyping and testing

the energy signal tool. An isometric view of the original five-zone retail building is shown in

Figure 6.2, along with a plan view of model zoning shown in Figure 6.3. One zone is dedicated

to the entry vestibule, two slender zones to the left and right of the vestibule have glazing and

are assumed to be affected by solar gains, a very large core retail zone occupies about 90% of the

floor area. Finally, a loading and storage zone covers the back of the store. Selected model details

are highlighted in Table 6.1. This five-zone EnergyPlus model was used to generate simulated
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operational data for use in developing the reduced-order building energy models described in the

following subsections. Surrogate data were preferred here over real measurements so that latent

variables could be controlled in the experimental study.

Figure 6.2: Isometric view of five-zone retail building model.

Figure 6.3: Zone plan of five-zone retail building model.
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Table 6.1: Selected EnergyPlus Model Details.

Property Value Units

Vintage 1980 year

Volume 13 984 m3

Conditioned floor area 2294 m2

Bldg. avg. U-value (no film, excluding floor) 0.418 W m−2 K−1

Ext. wall U-value (no film) 0.621 W m−2 K−1

Roof U-value (no film) 0.314 W m−2 K−1

Floor U-value (no film) 12.904 W m−2 K−1

Internal thermal capacitance 450 MJ K−1

Internal thermal capacitance per floor area 196.2 kJ K−1 m−2

Infiltration 1.01 ACH

Glazing fraction 7 %

Glazing U-factor 3.354 W m−2 K−1

Glazing solar heat gain coefficient 0.385 fraction

Lighting power density 32.3 W m−2

Equipment power density 5.23 W m−2

Occupant density 7.11 m2/person

HVAC system CV-DX -

6.3.1.2 Inverse Gray-Box Building Model for Operational Applications

The inverse gray-box modeling approach developed for this work is largely based on methods

described by Braun and Chaturvedi [188, 189]. For the application presented in this work, it is

important to be able to predict transient cooling and heating requirements for the building using

inverse models that are trained using on-site data. Inverse models for transient building loads range

from purely empirical or “black-box” models to purely physical or “white-box” models. Generally,
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black-box (e.g., neural network) models require a significant amount of training data and may

not always reflect the actual physical behavior, whereas white-box (e.g., finite difference) models

require specification of many physical parameters. Braun and Chaturvedi introduced a hybrid or

“gray-box” modeling approach that uses a transfer function with parameters that are constrained to

satisfy a simple physical representation for energy flows in the building structure. A robust method

was also presented for training parameters of the constrained model, wherein (1) initial values of

bounds on physical parameters are estimated from a rough building description; (2) better estimates

are obtained using a global direct search algorithm; and (3) optimal parameters are identified using

a nonlinear regression algorithm. They found that 1 to 2 weeks of data are sufficient to train a

model so that it can accurately predict transient cooling or heating requirements.

Previous to the work by [188, 189], [190, 191, 192, 193, 194], developed a modeling scheme

consisting of several lumped parameters with direct correspondence to reality and correspondence to

a detailed model. The model, used in combination with field data, enabled empirical determination

of the input parameters, thereby reducing model uncertainty.

Inverse gray-box models may be based on the approximation of heat transfer mechanisms

by an analogous electrical lumped resistance-capacitance network. This approximation creates a

flexible structure that allows the modeler to choose the appropriate level of abstraction. Model

complexity can range from representing entire systems with a few parameters to modeling each heat

transfer surface with numerous parameters. Depending on the model structure and complexity,

parameters can approximate the physical characteristics of the system. Model parameters are then

identified through a training period with measured data.

Figure 6.4 shows the 21-parameter thermal network representations that Braun and Chatur-

vedi [188]; Chaturvedi et al. [189] found to work well. Other forms have been considered in this

work and are described below. A separate 3R2C network is used to represent external wall, ceiling,

ground, and internal wall heat transfer. Looking at the 3R2C network for exterior walls, for exam-

ple, Re,1 could be thought to represent a combined external convection and radiation coefficient,

Re,2 wall conduction resistance, and Re,3 internal combined convection and radiation coefficient to
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the zone air node. Solar gains from opaque elements are represented by Q̇sol,e applied to the exter-

nal surface nodes (e.g., Te,1 and Tc,1). Storage is neglected for glazing elements that are represented

by a single resistance Rw. Solar gains directly entering the zone through glazing are distributed

among internal partition nodes Ti,1 and Ti,2 as Q̇sol,w. Internal gains are split into convective and

radiant fractions. Convective fractions are applied directly to the zone air node Tz as Q̇g,c. Radiant

portions are applied to interior surface nodes Te,2 and Tc,2 as Q̇g,r,e and Q̇g,r,c, respectively. (Split

is proportional by surface area.)
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Figure 6.4: Twenty-one-parameter thermal RC network.

When using the inverse gray-box modeling approach described in this work, questions natu-

rally arise about the RC network structure that is most appropriate for the modeling task. Selecting

a very complex model structure results in a difficult parameter estimation task, but too simple a

model may not appropriately capture the desired dynamics. In this research the reduced-order

modeling (ROM) environment was developed to allow for model structure flexibility, so this ques-
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tion may be investigated. As previously mentioned, various RC network forms have been considered

in this work ranging from five to 21 parameters. Because the 21-parameter model was previously

introduced, discussion will begin with the 18-parameter model (see Figure 6.5). This model can

be considered a subset of the 21-parameter model with the internal surface heat transfer elements

simplified to 1R1C. This reduced the parameter estimation procedure three parameters and kept

most of the structure of the 21-parameter model. The 13-parameter model, shown in Figure 6.6,

is also a subset of the 21-parameter model, with a simplified internal surface node and no ground

heat transfer. The initial thought for this model is that for small footprint high-rise buildings the

ground heat transfer may not be a significant contributor to the overall thermal load. Also a subset

of the initial 21-parameter network, the 11-parameter model (Figure 6.7) contains the simplified

internal surface network, as well as a simplified ground heat transfer network and lumped ceiling

and exterior wall networks. The eight-parameter model, shown in Figure 6.8 further simplifies the

11-parameter model by neglecting ground heat transfer. This model contains a 3R2C network for

exterior surfaces, a glazing resistance, and a simplified internal surface/mass network.
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Figure 6.5: Eighteen-parameter thermal RC network.
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Figure 6.6: Thirteen-parameter thermal RC network.
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Figure 6.7: Eleven-parameter thermal RC network.
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Figure 6.8: Eight-parameter thermal RC network.
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Figure 6.9: Five-parameter thermal RC network.

In this work, a five-parameter single-zone model is adopted, shown in Figure 6.9; its structure

was adapted from the thermal RC network used in the CEN-ISO 13790 “Simple Hourly Method”

load calculations [195]. Heat transfer and storage of opaque building shell materials are represented

by R1, R2, and C. These elements link the ambient temperature node to a pseudo interior surface
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temperature node Ts, accounting for potential heat storage of the mass materials. Glazing heat

transfer is represented by a single resistance Rw connecting the ambient temperature node to the

surface temperature node, because thermal storage of glazing is typically neglected. R3 represents

a lumped convection/radiation coefficient between the surface temperature node and the zone air

temperature node Tz. The convective portions of internal gains (lighting, occupants, and equip-

ment) are applied as a direct heat source to the zone temperature node, shown as Q̇g,c, and the

radiant fraction along with glazing transmitted solar gains Q̇g,r+sol,w are applied to the surface

node.

It was decided to adopt the five-parameter thermal model after performing a model com-

plexity analysis including all six thermal RC model structures previously presented. Each of the

six RC networks (five-parameter, eight-parameter, 11-parameter, 13-parameter, 18-parameter, and

21-parameter) was trained using surrogate data from the five-zone U.S. Department of Energy

Stand-alone Retail Reference EnergyPlus model. Table 6.2 summarizes the model performance in

terms of root mean square error (RMSE) with respect to a validation dataset, and in terms of an

objective generalized cross-validation score (GCV). GCV is defined in Equation 6.1 and essentially

weights the mean-squared error based on model complexity [196].

Obviously, the 11-parameter model is superior to the five-parameter model in terms of RMSE

and GCV. Visual inspection, however, proved that the model responses in terms of zone temperature

and sensible zone load are virtually identical; therefore, the simpler five-parameter model were

chosen to reduce sample size in the Monte Carlo analyses.

GCV =

N∑
i=1

(Q̇rom,i − Q̇ep,i)2

N
(
1− p

N

)2 (6.1)

In Equation 6.1, N represents the total number of data points, Q̇rom,i is the model predicted zone

sensible load, Q̇ep,i is the surrogate zone load, and p is the number of parameters in the model.

The number of parameters p is equal to the number of RC parameters plus two, to account for the

internal gain and zone capacitance multipliers that may also be used in model calibration.
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For the retail building the 18-parameter model produced the lowest RMSE; however, the

21-parameter results were inadequate because they should have achieved at least the same score as

the lower order model. The 11-parameter model produced the lowest GCV, which suggests that the

additional improvement made by the 18-parameter model was not worth the additional complexity.

Overall, the RMSE values for the retail building are all relatively low, further suggesting that all

model forms performed well. Because satisfactory performance was observed from all models, the

5-parameter model was adopted to keep the problem dimensionality low.

Table 6.2: Model complexity results.

Retail

Model p N k RMSE GCV

5p 7 504 128 6411 42.3× 106

8p 10 504 1024 5338 29.7× 106

11p 13 504 8192 3087 10.0× 106

13p 15 504 32768 5234 29.1× 106

18p 20 504 1048576 3076 10.3× 106

21p 23 504 8388608 3192* 11.2× 106

*Slightly suboptimal. Should have at least reached 3076 as
the 18-parameter retail model.

A thermal RC network may be represented by a system of linear first-order differential equa-

tions with constant coefficients by performing an energy balance at each node with a storage

element. This system can be represented in traditional state-space form as:

ẋ = Ax + Bu

y = Cx + Du

For the five-parameter model adopted in the retail building modeling effort, state and input

vectors are represented as:

xT = [Tm Ts]

uT = [Tz Ta Q̇g,r+sol,w Q̇g,c]
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where Tm is the opaque building shell thermal temperature, Ts is the (pseudo) internal surface tem-

perature, Tz is the zone temperature set point, Ta is the ambient external temperature, Q̇g,r+sol,w

is the sum of the radiative portion of internal gains and the solar radiation transmitted through

glazing, and Q̇g,c is the total convective internal gains.

The state space equations are then converted to the following heat transfer function form:

Q̇sh,t =

n∑

k=0

STk ut−k∆τ −
m∑

k=1

ekQ̇sh,t−k∆τ (6.2)

where S is a matrix containing input coefficients, ek is a vector containing heat gain history coef-

ficients, n is the number of past inputs in the calculation, and m is the number of past heat gain

values in the calculation.

The transfer function method is an efficient calculation routine as it relates the sensible heat

gains to the space (Q̇sh) at time t to the inputs (ut) of n and heat gains (Q̇sh,t) of m previous time

steps. The input weighting coefficients (STk ) and zone load coefficients (ek) are the results of the

state space to transfer function conversion process described by Seem [197].

Performing an energy balance on the zone air node in Equation 6.3 provides a basis for sensible

zone load calculations where Cz is the zone air (or node) capacitance, Tz is the zone air temperature

node, Q̇sh,t is the zone-sensible heat gain, Q̇inf represents infiltration heat gain, and Q̇zs,t is the

required sensible zone load. In effect, the RC network model describes the transient heat transfer

through opaque and transparent envelope components as well as internal gains from occupants,

lighting, and equipment. This network is used to compute the heat gains from these sources to the

air node. The complete energy balance is provided in Equation 6.3, including infiltration, zone air

mass, and HVAC heat addition and extraction rates.

Cz
dTz
dt

= Q̇sh,t + Q̇zs,t + Q̇inf (6.3)

If the differential in Equation 6.3 is approximated by:

dTz
dt
≈ Tz,t − Tz,t−∆

∆τ
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it can be rearranged to develop an algebraic “inverse” transfer function for computing zone tem-

perature predictions from a known zone load shown in Equation 6.4.

T̄z =

r∑
l=2

S0(l)ut(l) +
n∑
j=1

Sjut−j∆τ −
m∑
j=1

ejQ̇sh,t−j∆τ + 2 Cz
∆τ Tz,t−∆τ + ṁinfCput(2) + Q̇zs,t

2 Cz
∆τ − S0(1) + ṁinfCp

(6.4)

where r is the number of inputs in input vector u, here r = 4. An assumption of this formulation

is that the heat gains are computed using the average value over the time step so the actual

temperature at a given time step can be determined from:

Tz,t = 2T̄z,t − Tz,t−∆τ

An ideal load calculation scheme for a dual set point with a dead band scenario can be

described by using the previous equations according to the following procedure:

for t = simstart : simend do

Calculate Q̇sh,t using Equation 6.2;

Calculate Q̇zs,t to maintain Tz = Tcool,set using Equation 6.3 (assume cooling first);

if Q̇zs,t < 0 (heating required to maintain cooling set point) then

Set Q̇zs,t = 0. Compute floating temperature using Equation 6.4;

if Tz < Theat,set then

Recompute Q̇zs,t to maintain Tz = Theat,set using Equation 6.3

end

end

end

To compute zone humidity, the simulation also includes a moisture balance as described in

Equation 6.5:

mair
dWZ

dt
= ṁinf (WOA −WZ) + ṁSA(WSA −Wz) +

qocc,lat
hfg

(6.5)

where mair is the mass of air in the zone, ṁinf is the mass flow rate of air from infiltration, ṁSA

is the supply air (SA) mass flow rate, qocc,lat is the occupant latent gain, and hfg is the heat of
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vaporization of water. Wz, WOA, and WSA are the humidity ratios of the zone, outdoor air, and

SA, respectively.

6.3.1.3 Envelope Model Calibration

When using the inverse gray-box thermal modeling approach, it was necessary to determine

the values of R and C parameters that bring the simple model into the closest agreement with

the more detailed EnergyPlus model. Sum of squares minimization was used to identify model

parameters that minimize the RMSE, defined by Equation 6.6, between the ROM predicted (Q̇rom)

and the surrogate or measured (Q̇ep) sensible zone load.

J =

√√√√√
N∑
i=1

(Q̇rom,i − Q̇ep,i)2

N
(6.6)

In this work, the two-stage optimization presented by Braun and Chaturvedi [188] was imple-

mented that first performs a direct search over the parameter space to identify a starting point for

local refinement. The direct search is performed on k uniformly random points located within the

bounds of the parameter space. The local refinement, subject to the same parameter constraints,

is performed via nonlinear least squares minimization implemented using the MATLAB optimizer

lsqnonlin based on trust-region Newton methods. The implementation in this environment also

allows local refinement to be performed around several good starting points from the direct search.

For higher complexity models the local optimization can be sensitive to the initial starting point.

Good results have been found when the 12 best direct search points are given to separately executed

least squares algorithms to simultaneously explore several attractive regions. Table 6.3 presents

the calibrated parameters for the five-parameter model used throughout this work. The zone air

capacitance multiplier CM represents furnishing and other mass associated with the air node; the

internal gain multiplier scales the assumed internal gains from lights and equipment. These were

considered the nominal parameter values to which uncertainty was applied later in the work.
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Table 6.3: Calibrated Five-Parameter Network RC Parameters.

Parameter Value Units

R1 4.989 (m2K)/W
R2 0.164 (m2K)/W
R3 0.183 (m2K)/W
Rw 3.000 (m2K)/W
C 279.6 kJ/(m2K)
CM 3.5 -
GM 0.788 -

6.3.1.4 HVAC System Modeling

For the standalone retail building a typical constant volume packaged rooftop unit (RTU)

was modeled. Figure 6.10 provides an overview of the system configuration. The RTU model fea-

tures a temperature- or enthalpy-based outdoor air economizer, constant-volume fan, single-speed

direct expansion (DX) cooling coil, and gas heating coil. Component models were based on the

quasi-steady-state physical formulations used by several mainstream whole-building simulation pro-

grams [198, 199]. Component models were programmed such that a full air loop can be simulated,

allowing system air states to be included in a zone moisture balance for computing zone humidity

levels.

Next, the fidelity of the new HVAC models were assessed against the EnergyPlus model.

EnergyPlus outputs were used as inputs to the new HVAC models to compare with the HVAC

system performance only. Comparing the EnergyPlus with the HVAC model implementations used

in this work, Figures 6.11 and 6.12 show annual SA temperature and humidity ratio, respectively,

for an annual simulation. In Figure 6.11, the top panel shows the SA temperature for occupied and

unoccupied periods. To better visualize the information, weekly comparison plots are offered for

a winter week and a summer week. Overall performance is very good during summer conditions.

Mostly slight temperature deviations were noted during winter periods; however, early morning

startup periods are visible where the ROM shows SA temperature values that are 10 K higher than

the values found by EnergyPlus. After further review it was discovered that this is an artifact of
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Figure 6.10: Packaged RTU.

using average hourly rather than subhourly EnergyPlus outputs as validation data, and the fact

that the ROM was simulated at hourly time steps.

During unoccupied periods the fan and heating coil cycle ran in unison to meet the required

heating loads. During this operating mode the RTU model reports the SA temperature as the air

temperature leaving the heating coil, which is near 50◦C when the coil is operating. In the case

of the ROM, this temperature is reported for the entire hour even though the RTU does not run

constantly for the hour. Because the EnergyPlus model was simulated at subhourly time steps,

time intervals existed where they were not necessary for the heating coil and fan to run, and thus

much lower supply temperatures were reported for some time steps. Thus, the hourly average SA

temperature reported by EnergyPlus was 10 K lower. Had detailed (i.e., subhourly) EnergyPlus

outputs been plotted for validation, several higher spikes near 50◦C would have been observed along

with lower values near 20◦C during the hour.

Figures 6.13 and 6.14 highlight the calculated return air (RA) temperature and humidity

ratio. Slight differences in the RA humidity can be observed in the results of the simplified zone

moisture balance. As with SA temperatures, this is likely an artifact of using average hourly rather

than subhourly EnergyPlus outputs as validation data. Simple first-order methods were used to

implement the moisture balance and may also contribute to numerical differences between the two

models. However, overall the model is a good approximation. Figures 6.15 and 6.16 show the

predicted RTU energy consumption for an annual simulation.
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Figure 6.11: Validation of packaged RTU SA dry

bulb temperature.
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Figure 6.12: Validation of packaged RTU SA hu-

midity ratio.
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Figure 6.13: Validation of packaged RTU RA dry

bulb temperature.
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Figure 6.14: Validation of packaged RTU RA

humidity ratio.
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Figure 6.15: Validation of packaged RTU elec-

tricity demand.
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Figure 6.16: Validation of packaged RTU gas de-

mand.

6.3.1.5 Overall Retail Building Model Validation

The following results provide a comparison of overall gray-box retail building model perfor-

mance compared to its five-zone EnergyPlus counterpart. That is, the RTU HVAC models described

and validated in Section 6.3.1.4 were coupled to the five-parameter thermal RC network that was

developed in Section 6.3.1.2 and calibrated in Section 6.3.1.3, to evaluate the ROM in its entirety.

To provide better insight into the model performance under various conditions, it was simulated

using typical nighttime setup (NSU) operation during a mild week and a precooling heuristic for

a hot week. (These are validation time periods; i.e., neither was included in model calibration.)

Sensible zone load, temperature, and HVAC electricity consumption are in fairly good agreement

for NSU and the precooling scenarios in Figure 6.17 through 6.22.
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Figure 6.17: Retail sensible zone load compari-

son for NSU scenario.
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Figure 6.18: Retail zone mean air temperature

comparison for NSU scenario.
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Figure 6.19: Retail sensible zone load compari-

son for precooling scenario.
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Figure 6.20: Retail zone mean air temperature

comparison for precooling scenario.
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Figure 6.21: Retail HVAC electricity consump-

tion comparison for NSU scenario.
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Figure 6.22: Retail HVAC electricity consump-

tion comparison for precooling scenario.

6.3.2 Uncertainty Quantification

To illustrate the capabilities of the energy signal tool, the five-parameter envelope (single-

zone) ROM was adopted; its parameters were identified from hourly surrogate training data derived

from an EnergyPlus simulation of a five-zone retail building near the Chicago Midway Airport.

This model has five parameters for the building shell; however, 20 parameters are required for the

building, its use, and HVAC systems; each parameter is considered to be uncertain.

6.3.2.1 Model Input Parameter Uncertainty

Input parameter distributions are characterized in this work using Gaussian distributions;

faults are modeled with triangular distributions, although any other probability distribution may

be selected. In this work, uncertainties are known varieties that are correctly quantified by an

energy analyst using input distributions of choice; faults are effects of unobserved uncertainties

that affect the measured building performance but not the modeled predictions.

The chosen distributions represent the best available knowledge of each uncertain model

parameter. Input parameters are distributed around a mean that equals the nominal parameter
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value found from the parameter estimation process that has resulted in the validated ROM presented

above. A standard deviation of 10% of the mean is adopted for the uncertain input parameters.

Adopting the five-parameter ROM, 11 parameters are associated with the building shell and

use and an additional nine parameters are associated with the HVAC system. The seven nominal

building envelope parameters are shown in Table 6.3, the four use parameters are shown in Table

6.4, and the nine nominal HVAC-related model parameters are shown in Table 6.5.

Table 6.4: Retail Building Use Parameters.

Parameter Value Units

Lighting power density 32.30 W/m2

Equipment power density 5.23 W/m2

Occupant density 7.1 m2/per
Infiltration flow rate 3.9 m3/s

Table 6.5: Retail Building HVAC Parameters.

Parameter Value Units

Supply fan efficiency 57 %
Maximum supply fan airflow 13.5 m3/s
Supply fan pressure rise 883 Pa
DX coil rated capacity 319 kW
DX coil rated sensible heat ratio 70 %
DX coil rated coefficient of performance (COP) 3.2 -
DX coil rated air mass flow rate 16.0 kg/s
Gas heating coil-rated capacity 457 kW
Gas heating coil efficiency 80 %

To demonstrate the tool, five of the 20 input parameters are considered uncertain: lighting

power density, equipment power density, occupant density, DX coil-rated COP, and gas heating coil

efficiency. The remaining 15 input parameters are taken at their nominal values. In reality, most

of these 20 parameters would be uncertain at different levels of uncertainty.
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6.3.2.2 Operational and Equipment Faults

In spite of an energy analyst’s best intentions and a belief that the model accurately reflects

the building with all uncertainties, undetected faults may affect building performance. In this

work, a fault differs from a parameter uncertainty in that it is present without the knowledge of the

energy analyst or building operator; i.e., it is unobserved, yet still affects the measured conditional

distributions of building energy end use.

An additional six model parameters were chosen to represent such a faulted state. Tehse

are modeled by triangular distributions, which may be asymmetrical. The outdoor air fraction’s

nominal value is 24.5%, but may vary from 0% to 100%. The airside economizer high limit temper-

ature is nominally 28◦C, but can vary between 12 and 40◦C. Essentially, at very low values of the

high limit temperature the economizer is disabled; at high values the economizer operation is not

overridden. Heating and cooling temperature set points may differ from their assumed values with

a random offset from -1.5 to +1.5 K. Moreover, the internal gains schedules may be expanded by

up to 3 hours or contracted by up to 3 hours from the nominal building operation schedule. Finally,

the schedules for internal gains from lighting and equipment may be shifted by up to 4 hours in

each direction; i.e., to earlier and later onsets. Because the environment uses hourly time steps, the

schedule contraction/expansion and shift are rounded to the nearest full hour. For the fault-free

scenario the six fault parameters are kept at their nominal values. For the faulted case, all six fault

parameters are randomly perturbed concurrently; i.e., a very wide range of fault combinations is

explored.

Table 6.6: Fault Ranges.

Parameter Nominal Minimum Maximum Units

Outdoor air fraction 24.5 0 100 %
Airside economizer high limit 28 12 40 ◦C
Cooling temperature set point 22.8 -1.5 +1.5 ◦C
Heating temperature set point 21.7 -1.5 +1.5 ◦C
Internal gains contraction/expansion 10 -3 + 3 h
Internal gains shift 8am-6pm -4 + 4 h
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Random sampling of 10,000 annual samples for each case is presented here. Because pa-

rameter combinations randomly drawn from the input distributions described above may lead to

infeasible model configurations for which no solution can be computed, only valid model results are

retained. The sample rejection was put in place to deal with parameter combinations that cause

simulation errors such as non-convergence and subsequent crashes. Crashes are most often observed

when randomly sampling a wide range of HVAC equipment-rated parameters, because the random

sampling may not always produce physically consistent rated conditions. Thus, the wider the input

parameter distributions, the more frequently invalid model results are generated. In the fault-free

scenario 99.94% of all samples were valid (six of 10,000 failed); in the faulted scenario 99.88% of

all samples were valid (12 of 10,000 failed).

The resultant conditional distribution of whole-building, HVAC, lighting (LTG), and plug

electricity EQP consumption is shown in Figure 6.23; Table 6.7 shows pertinent statistics of the

same in units of [MWh/a]. In the figure and table, whole-building electricity (WBE) please define

and add to nomenclature is the sum of HVAC, LTG, and miscellaneous electric loads EQP. For

fault-free and faulted cases, the table shows the mean, 10th, 50th (median), and 90th percentiles,

along with the deterministic mean without consideration of any parameter uncertainty.

It is evident that the uncertainty associated with the five selected parameters only slightly

affects the mean but strongly affects the variance in the whole-building and submetered end uses.

The central 80% of the WBE consumption can be found within -7% and +8% from the deterministic

mean in the fault-free case, and within -24% and +20% from the deterministic mean in the faulted

case. The influence of faults is stronger in the HVAC and LTG end uses compared to the EQP

end use. Given the dominance of HVAC and LTG end uses on whole-building consumption WBE,

faults strongly affect WBE as well. Above all, faults widen the energy distributions.
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Figure 6.23: Distributions of whole-building, HVAC, lighting, and plug electricity consumption.
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Table 6.7: Summary Statistics of Conditional Distributions of Whole-Building, HVAC, Lighting,

and Plug Electricity Consumption in [%] in [MWh/a].

Percentile

End-Use Case Mean 10th 50th 90th

WBE Deterministic 416.3

Fault-free 100% 93% 100% 108%

Faulted 99% 76% 99% 120%

HVAC deterministic 156.5

Fault-free 100% 96% 100% 105%

Faulted 96% 79% 97% 112%

LTG deterministic 215.8

Fault-free 100% 87% 100% 113%

Faulted 100% 71% 99% 130%

EQP deterministic 44.1

Fault-free 100% 87% 100% 113%

Faulted 100% 78% 100% 123%

6.3.3 Decision Analysis

Comparing monitored data against a probable range of expected energy use is more insightful

than comparing against a single number, because it allows a building owner to assess the urgency

of corrective actions that need to be taken. If the measured energy use lies at the edge of the

probable range of expected values, given all the uncertainties in the model inputs, the owner can be

very confident that an issue requires attention. In this work, a decision-making tool was developed

based on the probability distribution of model predictions to determine the expected utility of a

range of available decisions, suggesting the one that maximizes the expected utility. The tool takes

on the form of a modified traffic light with red, yellow, and green lights. The perspective that a

red light is shown both for high levels of overconsumption and high levels of underconsumption
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was adopted, because a building consuming significantly less energy than expected may indicate an

operational problem as significant as a building consuming too much. A yellow signal is similarly

used for cases of mild overconsumption and mild underconsumption. A green light is reserved for

measured building energy consumption that is in line with model expectations.

As a first step, a distribution of the model-predicted energy consumption (called Emod) was

generated using Monte Carlo simulation as described in Section 6.3.2.

Second, the cases falling on the 5th, median, and 95th percentiles of the modeled energy dis-

tributions were selected to represent low, medium, and high estimates of actual measured energy

consumption (called Emeas) for fault-free and faulted scenarios. The decision analysis compared the

distribution of model-predicted energy consumption with Emeas to determine appropriate actions;

thus, to illustrate the decision tool these three values of Emeas were taken from the sampled dis-

tributions. When physically implemented, the measured energy consumption would be determined

directly from building metering data.

Third, boundaries were computed from the measured energy consumption to define mean-

ingful ranges of low and high levels of deviation in energy consumption. Beginning with a low level

of deviation, let us define E0,low such that it is Xlow percent below Emeas and E1,low such that it

is Xlow percent above Emeas.

E0,low = Emeas(1−Xlow)

E1,low = Emeas(1 +Xlow)

Similarly, for a high level of deviation, let’s define E0,high such that it is Xhigh percent below Emeas

and E1,high such that it is Xhigh percent above Emeas.

E0,high = Emeas(1−Xhigh)

E1,high = Emeas(1 +Xhigh)

Of course, Xlow < Xhigh and arbitrarily defined Xlow to be 5% and Xhigh to be 10%, i.e., a small

deviation around the metered end use is ±5% and a large deviation ±10%. It would be easy
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to adopt different values for Xlow and Xhigh for each building energy end use depending on its

temporal variability. Once a conditional probability distribution of expected energy consumptions

is in hand, various kinds of statements can be made. Here, to report that the actual energy use is

much higher, somewhat higher, similar, somewhat lower, or much lower than anticipated is desired.

Further, to assign costs to making correct and incorrect statements, and report the statement that

has lowest expected cost is desired.

Fourth, the empirical cumulative distribution of expected energy consumption was used to

find the cumulative probabilities for the anticipated energy consumption to be below E0,high (called

P1), between E0,high and E0,low (called P2), between E0,low and E1,low (called P3), between E1,low

and E1,high, (called P4) and above E1,high (called P5). Together, these probabilities form the state

probability vector ~P = (P1, P2, P3, P4, P5)T as shown in Figure 6.24.

Figure 6.24: Relationship between deviation thresholds Xlow and Xhigh and state probability vector

~P .

Fifth, a cost function K is defined, where cost is a function of state and action with a finite

number of states and a finite number of actions. Therefore, this cost function can be represented as
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a matrix. Let us agree that there is one row per action and one column per state K(i, j); i.e., cost

of action i in state j. Let action i = 1 display the lower red light (RL) on the modified traffic signal,

action i = 2 the lower yellow (YL) signal, i = 3 a green (G) signal, action i = 4 the upper yellow

(YH) signal, and finally i = 5 be displaying the upper red (RH) light. Let j = 1 be the state that

the model predicts a much lower (ML) energy consumption, j = 2 a somewhat lower (SL) energy

consumption, j = 3 about the same (S), j = 4 a somewhat higher (SH) energy consumption, and

j = 5 a much higher (MH) energy consumption than the actual building. Action vector ~a has thus

five elements.

Table 6.8: Decision Analysis State and Action.

State j: Anticipated Model Energy

Action i: Much Lower Somewhat Lower Similar Somewhat Higher Much higher

Lower red K(RL,ML) K(RL,SL) K(RL,S) K(RL,SH) K(RL,MH)

Lower yellow K(YL,ML) K(YL,SL) K(YL,S) K(YL,SH) K(YL,MH)

Central green K(G,ML) K(G,SL) K(G,S) K(G,SH) K(G,MH)

Upper yellow K(YH,ML) K(YH,SL) K(YH,S) K(YH,SH) K(YH,MH)

Upper red K(RH,ML) K(RH,SL) K(RH,S) K(RH,SH) K(RH,MH)

An advantage of the presented decision analysis tool lies in its ability to individually set the

costs of actions given certain states. Here, a reasonable but somewhat arbitrary assumptions on

the values of the cost matrix elements: Showing an RL light when the model predicts ML energy

consumption is assumed to have a cost of 4 (strong false negative, lost savings opportunity), when

the model predicts an SL energy consumption a cost of 3 (false negative), when the model predicts a

similar energy consumption a cost of 2 (weak false negative), when the model predicts an SH energy

consumption a cost of 1 (weak false negative), and finally, when the model predicts MH energy

consumption a cost of 0 (correct identification). Showing an RH light when the model predicts ML

energy consumption is assumed to have a cost of 0 (correct identification), when the model predicts
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an SL energy consumption a cost of 1 (weak false positive), when the model predicts a similar energy

consumption a cost of 2 (weak false positive), when the model predicts an SH energy consumption

a cost of 3 (false positive), and finally, when the model predicts MH energy consumption a cost

of 4 (strong false positive, unnecessary alarm). Similar arguments can be made for the remaining

signals of a lower yellow (YL), a green, and an upper yellow (YH) light, and yields the following

cost matrix.

K =




K(RL,ML) K(RL,SL) K(RL,S) K(RL,SH) K(RL,MH)

K(Y L,ML) K(Y L, SL) K(Y L, S) K(Y L, SH) K(Y L,MH)

K(G,ML) K(G,SL) K(G,S) K(G,SH) K(G,MH)

K(Y H,ML) K(Y H, SL) K(Y H, S) K(Y H, SH) K(Y H,MH)

K(RH,ML) K(RH,SL) K(RH,S) K(RH,SH) K(RH,MH)




=




4 3 2 1 0

3 2 1 0 1

2 1 0 1 2

1 0 1 2 3

0 1 2 3 4




(6.7)

The expected cost vector for each action is found by multiplying the cost matrix K with the

probability vector ~P :

E(~a) = K · ~P
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

E (RL)

E (Y L)

E (G)

E (Y H)

E (RH)


=



K(RL,ML) K(RL, SL) K(RL, S) K(RL, SH) K(RL,MH)

K(Y L,ML) K(Y L, SL) K(Y L, S) K(Y L, SH) K(Y L,MH)

K(G,ML) K(G,SL) K(G,S) K(G,SH) K(G,MH)

K(Y H,ML) K(Y H, SL) K(Y H, S) K(Y H, SH) K(Y H,MH)

K(RH,ML) K(RH,SL) K(RH,S) K(RH,SH) K(RH,MH)





P1

P2

P3

P4

P5



=



K(RL,ML)P1 + K(RL, SL)P2 + K(RL, S)P3 + K(RL, SH)P4 + K(RL,MH)P5

K(Y L,ML)P1 + K(Y L, SL)P2 + K(Y L, S)P3 + K(Y L, SH)P4 + K(Y L,MH)P5

K(G,ML)P1 + K(G,SL)P2 + K(G,S)P3 + K(G,SH)P4 + K(G,MH)P5

K(Y H,ML)P1 + K(Y H, SL)P2 + K(Y H, S)P3 + K(Y H, SH)P4 + K(Y H,MH)P5

K(RH,ML)P1 + K(RH,SL)P2 + K(RH,S)P3 + K(RH,SH)P4 + K(RH,MH)P5


(6.8)

As suggested by utility theory, the last step is to select the best action aopt in the face of

uncertainty; i.e., activate that light, which minimizes the expected cost.

aopt = argmin
i
E(~a)

6.3.4 Bayesian Updating

Thus far, the distributions of the uncertain model parameters were assumed to be Gaussian

with a standard deviation equal to a fixed fraction of the parameter mean, here 10%. The choice

of these distributions was made somewhat arbitrarily, before any operational data was available

from the actual building performance and termed before data because of its consideration prior to

observation. It is believed that building performance measurements collected over an extended time

period (i.e., after data) can be used to infer improved input parameter distributions by applying

probability theory in general and Bayes’ theorem in particular. See Jaynes [200] for full development

of Bayesian probability. A brief explanation is provided below for information pertinent to this

research.

High-dimensional integrals associated with problems in computational physics lead to the

development of Markov Chain Monte Carlo algorithms, which can efficiently sample from proba-

bility distributions by exploiting the Markov property. This has led to the explosion of Bayesian
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techniques, with the Metropolis Algorithm as the breakthrough approach (named as one of the top

10 algorithms of the 20th century) [201]. A probabilistic perspective not only provides insight into

the relationship between sets of model parameters, revealing tradeoffs and compensating interac-

tions, but also lends itself to a continuous model uncertainty quantification and tuning where the

posterior distribution of an initial parameter estimate can be used as the prior for a subsequent

parameter estimation update once new building performance data have been collected.

Dodier used Bayesian (belief) networks for whole-building energy diagnostics [36, 35]. Lauret

et al. [202] demonstrated improvements over traditional parameter estimation methods by applying

Bayes’ theorem to determine better estimates of convection coefficients for a radiant barrier roof

system model. More recently, Booth [203] used London housing stock models for hierarchical

modeling, with considerations of internal heating set points, fraction of space heating, air leakage,

heating system COP, window U-value, and window-to-wall ratio.

In this work, the Bayesian inference of uncertain model parameters relies on the extension

of a previously developed technique [16]. It has benefits over traditional methods because prior

knowledge of the system can be directly incorporated into the estimation task and methods for

addressing sensor noise are inherent to the Bayesian approach. The inference can essentially be

thought of as fitting a joint probability distribution to a measured dataset. Specifically, conditional

probabilities are related through the product rule to derive Bayes’ theorem and allow consideration

of “before data” and “after data” states of knowledge. The prior probability distribution is updated

with any measured data to form the posterior probability distribution, which represents the state of

knowledge in any inference task. A periodic process where model input parameter distributions are

updated daily, weekly, monthly, or for a similar period of interest is proposed. As new measurements

become available, data effectively shape the distribution of expected building energy use according

to the information gleaned from a combination of prior knowledge and sensor data; uncertainty is

still present but should decrease with additional data and understanding of the relationships among

variables.

The probability of parameter set Θ given measured data D and knowledge of the system
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K can be written as posterior probability p(Θ|DK). Bayes’ theorem then allows the conditional

probability p(Θ|DK) to be computed from p(Θ|K), p(D|ΘK), and p(D|K) as shown in Equation

6.9,

p(Θ|DK) = p(Θ|K)
p(D|ΘK)

p(D|K)
(6.9)

where p(Θ|K) represents prior knowledge about parameter values, p(D|ΘK) represents the likeli-

hood of observing the measured dataset D given a particular parameter set Θ and knowledge of

the system K, and p(D|K) is the probability of observing the dataset. Ignoring the reference to

system knowledge K, the relation can be written in alternate form where the numerator remains

the product of likelihood and prior, and the denominator is a normalization factor so that posterior

probabilities sum to unity.

p(Θ|D) =
p(Θ)p(D|Θ)∑

i
p(Θi)p(D|Θi)

(6.10)

Assuming random Gaussian noise about a measured datum Di, the likelihood of an observa-

tion can be determined from its location within the normal distribution with standard deviation

σε this is not in nomenclature, centered at µ equal to the measured datum,

p(Di|Θ) =
1

σε
√

2π
exp

(−(Di −Mi)
2

2σ2
ε

)
, (6.11)

where Mi is the model output given the parameter set Θ.

Further, assuming independent errors, the likelihood is that the entire dataset is simply the

product of the likelihoods of all individual points. The assumption is likely valid for common

HVAC sensors (e.g., temperature probes), but correlated errors could be handled with a slightly

different formulation that is indicative of a fault model. Measurement errors are often correlated

because of, for example, hysteresis error or linearity error. If such correlated errors are of concern,

a Bayesian (or other probabilistic) method may be used that can accommodate correlated measure-

ments. This work nonetheless assumes uncorrelated energy consumption measurements; thus, it

ignores autocorrelation of errors, which is estimated to be small. For the dynamics and time range
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considered in this problem, model structure is considered more important, with respect to data

fit, than noise correlation. From this model assumption, the easily computable likelihood function

given by Equation 6.12.

The likelihood function is maximized when the exponential term is minimized, which occurs

as the modeled data approach the measured (or surrogate) data. When uniform priors are used

with Equation 6.12 in a Bayesian calibration context, the most likely parameters are equivalent to

those that would be found using a least squares approach, because the exponential term in Equation

6.12 is essentially the sum of squared errors [152].

p(D|Θ) =
1(

σε
√

2π
)n exp

(
−1

2σ2
ε

n∑

i=1

(Di −Mi)
2

)
(6.12)

Evaluating Equation 6.12 directly can pose numerical issues, because a small range of σε

values results in a large range of likelihoods. Double precision computing environments are typically

capable of evaluating floating point numbers on the order of 10−308 to 10308. This means that when

using 3 weeks of hourly data (i.e., n = 504), σε must approximately be in the range of [0.1, 1.5].

Values outside this range will cause the likelihood (and consequently the posterior) to evaluate to

“Inf,” “NaN,” or “0,” regardless of the time series fit. These numerical issues can be alleviated by

computing the natural logarithm of the posterior rather than the posterior directly [202, 204].

To compute the natural log of the posterior, first, the log of both sides of Equation 6.10 is

taken.

ln (p(Θ|D)) = ln


 p(Θ)p(D|Θ)∑

i
p(Θi)p(D|Θi)


 (6.13)

The right-hand side of Equation 6.13 can be separated using logarithm product and quotient

rules.

ln (p(Θ|D)) = ln (p(Θ)) + ln (p(D|Θ))− ln

(∑

i

p(Θi)p(D|Θi)

)
(6.14)
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The log-likelihood term of Equation 6.14,

ln (p(D|Θ)) = ln

(
1(

σε
√

2π
)n exp

(
−1

2σ2
ε

n∑

i=1

(Di −Mi)
2

))
(6.15)

can be further simplified by applying product and quotient rules as shown in Equations 6.16 and

6.17, respectively.

ln (p(D|Θ)) = ln

(
1(

σε
√

2π
)n
)

+ ln

(
exp

(
−1

2σ2
ε

n∑

i=1

(Di −Mi)
2

))
(6.16)

ln (p(D|Θ)) = ln (1)− ln
((
σε
√

2π
)n)

+ ln

(
exp

(
−1

2σ2
ε

n∑

i=1

(Di −Mi)
2

))
(6.17)

With ln(1) = 0, and the power rule can be applied to the middle term of the right-hand

side. The last term of the right-hand side simplifies, because of to logarithmic identity, to produce

Equation 6.18.

ln (p(D|Θ)) = −n ln
(
σε
√

2π
)

+
−1

2σ2
ε

n∑

i=1

(Di −Mi)
2 (6.18)

Recombining the simplified log-likelihood of Equation 6.18 with the log-posterior equation of

Equation 6.14 yields:

ln (p(Θ|D)) = ln (p(Θ))− n ln
(
σε
√

2π
)
− 1

2σ2
ε

n∑

i=1

(Di −Mi)
2 (6.19)

− ln

(∑

i

p(Θi)p(D|Θi)

)

The last term of the right-hand side of Equation 6.19 is ultimately a constant number sub-

tracted from each individual ln(p(Θi)p(D|Θi)) value. Because the value of this constant term does

not impact the shape or relative information of the posterior, it could be thought of as an arbitrary

constant C.

ln (p(Θ|D)) = ln (p(Θ))− n ln
(
σε
√

2π
)
− 1

2σ2
ε

n∑

i=1

(Di −Mi)
2 + C (6.20)
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The constant term can be moved to the left-hand side of the equation, producing Equation

6.21.

ln (p(Θ|D))− C = ln (p(Θ))− n ln
(
σε
√

2π
)
− 1

2σ2
ε

n∑

i=1

(Di −Mi)
2 (6.21)

Because the objective is to avoid numerical underflow or overflow, prescribing

C = max

(
ln (p(Θ))− n ln

(
σε
√

2π
)
− 1

2σ2
ε

n∑

i=1

(Di −Mi)
2

)
(6.22)

shifts all points so that the maximum is 0. A maximum value of 0 in the ln space ensures that all

values will be mapped to the interval [0, 1] when taking the exponential. After taking exponentials,

the values can be scaled by a constant so that probabilities sum to unity.

The σε value is a noise term with physical interpretation. Here there are three energy signals

of interest: HVAC, lighting, and equipment–all electrical terms with the error associated with

minor fluctuations not incorporated in the physical model. As previously stated, prescribing an

appropriate σε is necessary to prevent underflow or overflow, which causes the inference task to

crash from numerical issues. The most appropriate σε value can be found by maximum a posteriori

(MAP) estimation. MAP is used to obtain a point estimate of σε by placing a prior distribution

over σε and finding the maximum posterior mode according to the empirical data. Because the

HVAC, lighting, and equipment energy signals are considered independent in this study, the MAP

estimate of σε, HV AC , σε, LTG, and σε, EQP were performed separately with a uniform prior on each

σε set between 0% and 15% of the magnitude of the full, individual signals.

With the appropriate and optimal σε set for each signal, it was then possible to calculate the

probability of observing various energy signals as a function of the uncertainty parameters. Because

the signals are considered independent, the joint probability of the building state is a product of

the individual probabilities:

p =
∏

i

pi = pHV ACpLTGpEQP . (6.23)

With the joint posterior probability distribution available from the equation above, it was then

possible to sample from the posterior directly or marginalize over all parameters not of interest
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and form a new prior. That is, the updating process is prior → posterior → prior. The optimal

updating period is a function of the building energy dynamics and available data.

6.4 Results

Results are presented that (1) exemplify the decision support aspect of the tool; and (2)

illustrate the updating of the uncertain model parameters based on measured data.

6.4.1 Decision Support Case Studies

The decision analysis results presented here are separated into fault-free and faulted scenarios.

In the fault-free scenario, the high, medium, and low consumption values (surrogates of measured

building energy consumption) are drawn from the conditional energy consumption distributions

without faults and the decision analysis is based on the same distribution. In contrast, in the faulted

scenario, the high, medium, and low consumption values are drawn from the conditional energy

consumption distributions including faults and the decision analysis is based on the distribution

excluding faults.

The results are shown as a matrix of figures. The first row shows the whole-building electricity

WBE consumption results for the last year, then last month, then last week, followed by the last

day. The second row shows the HVAC energy consumption results for the time periods, the third

row shows the lighting LTG results, and lastly, the fourth row shows the EQP results. Each of the 16

figure panels reveals a box plot2 Larger and smaller values, respectively, are shown as outliers of the

expected energy consumption value for the time period of interest, a diamond marker superimposed

on the box plot to indicate the surrogate actual consumption value Emeas, and on the left margin

the energy signal tool with the signal chosen for the resultant cumulative probabilities ~P , cost

matrix C, and deviation thresholds Xlow and Xhigh. The central green light separates cases of mild

(YH) and strong (RH) overconsumption above the green light from the cases of of mild (YL) and

2 Box plots shown adopt the common notation that the box occupies the interquartile range (IQR) from the lower
(25th percentile) to the upper (75th percentile). The whiskers extend to the minimum and maximum values if these
are less than 1.5 times the IQR below the lower or 1.5 times the IQR above the upper quartile.
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strong (RL) underconsumption below the green light. The particular traffic signal-inspired design

is one of many possible designs chosen for illustration here; thus, many other valid designs can be

conceived. Moreover, the planned field implementation of this energy signal tool would likely not

show the box plots but only the signals. Finally, if only whole-building energy WBE measurements

are available, the tool would reveal only the top row of WBE versus the four time periods. In

contrast, when submetering of HVAC, LTG, and EQP is available, the lower three rows would be

shown and the top WBE row omitted, because it would not offer additional insight.
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6.4.1.1 Fault-Free Scenario

High Energy Consumption Case Beginning on August 30 with the high energy con-

sumption case at the 95th percentile, a mild overconsumption is shown for all time scales for WBE

and HVAC; LTG and EQP show strong overconsumption for all time scales.
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Figure 6.25: Fault-free high consumption case beginning August 30 (measured consumption data

are indicated by diamonds in each figure).

Medium Energy Consumption Case The medium consumption cases for August and

February show consistency between WBE, HVAC, and LTG; green lights are shown for all time

scales and the EQP consumption is low. Because the EQP contribution to the total is small, the

WBE signal is not swayed to show a low yellow light.
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Figure 6.26: Fault-free medium consumption case beginning August 30 (measured consumption

data are indicated by diamonds in each figure).

Low Energy Consumption Case In the low consumption case, it is interesting to note

that the WBE signal shows a strong underconsumption (low red), driven by the corresponding

LTG signal, even though HVAC consumption is similar to the model expectation (green) and EQP

is only a mild underconsumption. This case reveals the importance of submetering: Without it, it

would not have been possible to isolate that LTG causes the warning, HVAC could be ignored, and

EQP could be given less consideration.
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Figure 6.27: Fault-free low consumption case beginning August 30 (measured consumption data

are indicated by diamonds in each figure).

6.4.1.2 Faulted Scenarios

In the faulted scenarios, the three cases are drawn from much wider distributions, as shown

in Figure 6.23.

High Energy Consumption Case The high consumption case for August 30 shows

consistency between WBE, HVAC, and LTG. RH lights are shown for all time scales and the EQP

consumption is close to model expectation. However, because the EQP contribution to the total is

small, the WBE signal is not swayed to show a low green light.
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Figure 6.28: Faulted high consumption case beginning August 30 (measured consumption data are

indicated by diamonds in each figure).

Medium Energy Consumption Case On an annual basis, the medium consumption

case leads to the expected green lights. On time scales of months and shorter, we can observe

HVAC mild and strong underconsumption.
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Figure 6.29: Faulted medium consumption case beginning August 30 (measured consumption data

are indicated by diamonds in each figure).

Low Energy Consumption Case The low consumption case at the 5th percentile of the

faulted distribution shows a consistent RL light for all end uses and time scales, independent of

season.
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Figure 6.30: Faulted low consumption case beginning August 30 (measured consumption data are

indicated by diamonds in each figure).

Finally, a sample illustration of how such a decision analysis tool would be deployed in

the management of distributed commercial buildings is presented. Imagine, a building operator

is responsible for the energy-efficient operation of four buildings in a city. Building 1 appears

to be healthy; all end uses show green signals for all four time scales; building 2 suffers from

overconsumption problems in the HVAC system that manifest themselves in the last day, week,

and month; building 3 exhibits underconsumption in LTG, especially during the last week, which

could speak to failed light sources or delamping measures not yet accounted for in the model;

finally, building 4 suffers from multiple symptoms: overconsumption in HVAC and EQP, and

underconsumption in LTG.
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Figure 6.31: Example of four buildings managed by a building operator.

6.4.2 Bayesian Parameter Updating Case Studies

Results related to the probabilistic inference and updating of the uncertain model parameters

are presented for September 21, at which point measurements over the past 30 days are used to up-

date the five input parameter distributions that are deemed uncertain. The high consumption case

representing the 95th percentile of the fault-free conditional distributions is used to compute the
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likelihood functions for HVAC, LTG, and EQP for each of the nearly 10,000 parameter combina-

tions. Based on the simplifying assumptions articulated above, the marginal posterior distribution

for each selected uncertain parameter can be found. Please note that white Gaussian noise with

a signal-to-noise ratio of 25 was added to the time series data of the high consumption case to

simulate common measurement noise affecting building measurements. Recent work by the same

authors has shown the Bayesian inference approach to be robust with respect to a wide range of

signal-to-noise ratios and noise colors [152].

Table 6.9 shows the nominal values used to generate the prior input parameter distributions

as well as the parameter values associated with the low, medium, and high cases investigated in

this section. The latter represent the ground truth values that will be compared to the posterior

distributions for each model parameter to determine whether the measured data are used to update

our belief of the uncertain parameters in a way that is consistent with the ground truth data.

The table shows that several individual parameters appear inconsistent with the case they

belong to. As one example, in the low consumption case, the DX coil-rated COP is 3.1, which

is below the nominal value. One would expect a higher COP to be associated with the low con-

sumption case. However, given the tradeoffs between lighting and equipment power consumption

and the efficiency of the cooling equipment, the low consumption case, at the 5th percentile of

10,000 simulation runs, was the result of a less efficient RTU with strongly reduced lighting and

equipment power densities. The median consumption case resulted from a slightly higher lighting

power density, lower equipment power density, lower occupant density, and higher RTU COP, all

relative to the nominal values. The high consumption case, at the 95th percentile of all cases, is

characterized by higher lighting, equipment, and occupancy densities, and lower HVAC equipment

efficiency. In this case of higher consumption, the individual parameter values are all consistent

with the theme of the case.
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Table 6.9: Building Model Truth Parameters.

Parameter Nominal Low Medium High Units

Lighting power density 32.30 26.99 33.09 36.15 W/m2

Equipment power density 5.23 4.92 4.96 5.94 W/m2

Occupant density 0.141 0.149 0.137 0.151 per/m2

DX coil rated COP 3.20 3.10 3.39 2.94 -
Gas heating coil efficiency 80 74 70 77 %

Figure 6.32: Lighting power density prior (blue) and posterior (red) distributions on September 21

based on past 30 days of high energy consumption. Truth value is shown as a green vertical line.
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Figure 6.33: Equipment power density prior (blue) and posterior (red) distributions on September

21 based on past 30 days of high energy consumption. Truth value is shown as a green vertical line.

Figure 6.34: Occupant density prior (blue) and posterior (red) distributions on September 21 based

on past 30 days of high energy consumption. Truth value is shown as a green vertical line.
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Figure 6.35: DX Coil Rated COP prior (blue) and posterior (red) distributions on September 21

based on past 30 days of high energy consumption. Truth value is shown as a green vertical line.

Figure 6.36: Gas heating coil efficiency prior (blue) and posterior (red) distributions on September

21 based on past 30 days of high energy consumption. Truth value is shown as a green vertical line.
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Figure 6.37: Lighting power density prior (blue) and posterior (red) distributions on September 21

based on past 30 days of medium energy consumption. Truth value is shown as a green vertical

line.

Figure 6.38: Equipment power density prior (blue) and posterior (red) distributions on September

21 based on past 30 days of medium energy consumption. Truth value is shown as a green vertical

line.
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Figure 6.39: Occupant density prior (blue) and posterior (red) distributions on September 21 based

on past 30 days of medium energy consumption. Truth value is shown as a green vertical line.

Figure 6.40: DX Coil Rated COP prior (blue) and posterior (red) distributions on September 21

based on past 30 days of medium energy consumption. Truth value is shown as a green vertical

line.
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Figure 6.41: Gas heating coil efficiency prior (blue) and posterior (red) distributions on September

21 based on past 30 days of medium energy consumption. Truth value is shown as a green vertical

line.

Figure 6.42: Lighting power density prior (blue) and posterior (red) distributions on September 21

based on past 30 days of low energy consumption. Truth value is shown as a green vertical line.
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Figure 6.43: Equipment power density prior (blue) and posterior (red) distributions on September

21 based on past 30 days of low energy consumption. Truth value is shown as a green vertical line.

Figure 6.44: Occupant density prior (blue) and posterior (red) distributions on September 21 based

on past 30 days of low energy consumption. Truth value is shown as a green vertical line.
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Figure 6.45: DX Coil Rated COP prior (blue) and posterior (red) distributions on September 21

based on past 30 days of low energy consumption. Truth value is shown as a green vertical line.

Figure 6.46: Gas heating coil efficiency prior (blue) and posterior (red) distributions on September

21 based on past 30 days of low energy consumption. Truth value is shown as a green vertical line.

Later sections discuss that whatever tradeoffs were at play in leading to the low, medium,
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and high cases, the Bayesian parameter updating process is changing the posterior parameter

distributions toward the ground truth values that form the basis of the measured (here surrogate)

consumption data. To that effect, each of the following figures 6.32 to 6.46 shows the sampled

prior distribution of the uncertain parameter as blue bars, the sampled posterior distribution as

red bars, and the ground truth value that formed the basis of the surrogate measured data as a

green vertical line.

Gas heating efficiency should have no impact on electricity consumption; thus, increased elec-

tricity consumption should be independent from gas heating coil efficiency. All the figures showing

gas heating efficiency distributions illustrate that the gas heating efficiency posterior distribution

is being smeared out; i.e., becoming less informative, because the evidence used in the likelihood

function does not offer any clear clues about how to shape the posterior. Although the prior and

posterior distributions for gas heating efficiency for all three cases are shown, the independence of

electricity consumption from gas heating efficiency is seen in a widening posterior in each case.

6.4.2.1 High Energy Consumption Case

Figures 6.32 through 6.36 clearly illustrate how the measured data would be harnessed to up-

date our belief about the uncertain parameters. Each figure shows the empirical prior distribution

as blue bars; the empirical posterior distribution is shown as red bars. Where the two distribu-

tions overlap, a darker, purple hue appears. As stated above, in the high energy consumption

case, all individual building parameter truth values are consistent with the theme of high energy

consumption. Lighting and equipment power density posteriors move to higher values relative to

the nominal values that served as the mean of the normal prior distributions and gravitate toward

the truth values (green vertical lines) used to generate the surrogate measured data. Similarly, oc-

cupancy densities in people per square meter are also slightly higher and the DX coil-rated COP is

significantly lower than the nominal value, gravitating toward the truth values. Thus, the Bayesian

inference “learns” the truth values that form the basis of the measured data.
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6.4.2.2 Medium Energy Consumption Case

Figures 6.37 through 6.41 show how in the medium consumption case, the data reveal the

tradeoffs that form the basis of the medium consumption case: A slightly higher lighting power

density is compensated for by a significantly lower equipment power density, because these two

have the identical effects of adding convective internal gains to the sensible energy balance, paired

with slightly higher COPs. Occupant density distribution has not materially changed from prior

to posterior in the medium consumption case. As in the high consumption case, the posterior

distributions (except for gas heating efficiency, as explained above) have moved in the direction of

the truth values that form the foundation of the surrogate measured data.

6.4.2.3 Low Energy Consumption Case

Figures 6.42 through 6.46 again clearly illustrate how the measured data would be harnessed

to update our belief about the uncertain parameters. In the low consumption case, the data suggest

significantly lower lighting and equipment power densities, although occupant density seems to

materially impact the measured data, which lead to a virtually unchanged posterior.

As shown in Table 6.9, the truth value of the DX coil-rated COP is slightly lower than the

nominal value, which is opposite to the theme of lower energy consumption. As explained above, the

slightly inferior COP is more than compensated for by significantly lower lighting and equipment

power densities. The posterior COP distribution is close3 to the prior but slightly less than it,

feels like something is missing here suggesting that the Bayesian inference has “learned” the truth

value.

As before, electricity consumption should not and does not have informative power for gas

heating efficiency, leaving the posterior smeared out relative to the prior.

3 A very heuristic, visual interpretation of “close” was used. The reader is simply encouraged to determine in
which direction the posterior distribution mass has been moving: to the left, to the right, or virtually unchanged
relative to the prior distribution. In particular, the point of using such loose language is to avoid comparing the
empirical prior and posterior distributions with a more rigorous metric such as the maximum distance of the two
cumulative distribution functions as used in the two-sample Kolmogorov-Smirnof test. Future work will look into
more rigorous metrics to automate the update process. The point to make in this work, however, is that evidence is
collected and used to inform updates of the input parameter distributions.
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6.5 Summary and Conclusions

A prototype energy signal tool was demonstrated for operational whole-building and system-

level energy performance assessment. The purpose of the tool is to give an assessment that a

building operator or other user can quickly comprehend. Toward this end, the energy signal tool

estimates energy use for various end uses from a low-order lumped-parameter model, taking into

account uncertainty (via a Monte Carlo method) in model parameters and inputs. The result of

the modeling phase is a probability distribution over estimated energy use. The range of estimated

energy use is divided into intervals based on the observed energy use, and the probability that

energy use is in an interval is computed as the mass of the estimated energy use distribution in

that interval. An indicator (traffic light color) is chosen to minimize misclassification cost. Model

parameter distributions are adjusted over time via Bayesian updating.

The experimental study investigated whole-building energy signal accuracy in the presence

of uncertainty and faults at the submetered level, which may lead to tradeoffs at the whole-building

level that are not detectable without submetering. Submetering of end uses is recommended to

avoid confounding underconsumption and overconsumption among various end uses. An example

of four building energy signal displays is offered to illustrate energy performance features that could

be detected by the energy signal tool. The Bayesian inference results presented show that obser-

vations can be used to periodically update model parameter distributions and that the posterior

distributions indeed gravitate toward the ground truth parameter values that formed the basis of

the surrogate measured data. Results for a 30-day learning cycle are presented .

Future improvements in the inference process would eliminate the assumptions of temporal

independence of subsequent observations of a particular variable and structural independence of

multiple observed variables. Accounting for covariance among observed variables will help to better

attribute observations to individual model parameters.



Chapter 7

Conclusions and Future Research

This chapter summarizes the high-level outcomes from research into a data-driven toolchain

for the operational performance analysis and optimization of buildings. Due to its cumulative na-

ture, individual contributions have been provided on a chapter-by-chapter basis. Chapters 4–6

form the main components of the data-driven toolchain by addressing classification, forecasting,

and signaling, respectively. Combining these process components, the APEX system concept is per-

ceived as the terminal decision support application; however, complications arise from two sources:

1) whether the iterative process will work for every one-of-a-kind building, and 2) whether the

iterative process converges on a suitable OpBEM for prediction and diagnosis? Research outcomes

showed promise but a complete software and hardware solution was beyond the scope of research.

In addition, as evident from results of the ModBen project (Appendix A), automation is helpful

but human experts are irreplaceable. The following sections discuss the big picture implications of

the research.

7.1 Overview

It was determined that operational building energy performance can be conceived as a combi-

nation of prediction and diagnosis tasks for the purposes of decision support involving a building’s

HITL processes. The subjective nature of how an ideal building’s performance can be defined

remains an open question. A scalable and automated abstraction of operational building energy

performance was therefore sought. A three-step process was proposed for the continual improve-
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ment of building operations; i.e., the APEX system was posed as a concept to facilitate data-driven

developments that are impactful, transferable, and meaningful to the smart grid and end-users

alike. Classification, the first step of the process, can be thought of as the best estimate a hu-

man expert can obtain on a particular query using best-in-class, data-driven physical models. The

second step in the process, Forecasting, makes it clear that planning over any horizon of interest

involves uncertainties (i.e. forecast versus actual) in operational performance; any decision period

of interest, whether day-ahead forecasting for weather-driven thermal loads or intra-day rooftop

PV generation, inherently involves decisions in a sequential fashion and builds evidence over time.

Signaling, the third step in the process, is retrospective in the sense of trying to seek and un-

derstand the errors, which are expected in one sense (e.g., weather forecasts), but are primarily

used to reduce uncertainty through learning while inferring possible faulty behavior. The three-step

process combines to provide decision support for buildings, and it is envisioned to be iterative. The

following paragraphs summarize the process steps as applied to particular engineering problems.

Classification: Commercial buildings have a significant impact on energy and the envi-

ronment, being responsible for more than 18% of the annual primary energy consumption in the

United States. Analyzing their electrical demand profiles is necessary for the assessment of supply-

demand interactions and potential; of particular importance are supply- or demand-side energy

storage assets and the value they bring to various stakeholders in the smart grid context. This

research developed and applied unsupervised classification of commercial buildings according to

their electrical demand profile. A Department of Energy (DOE) database was employed, contain-

ing electrical demand profiles representing the United States commercial building stock as detailed

in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) and as modeled in the

EnergyPlus building energy simulation tool. The essence of the approach was: 1) discrete wavelet

transformation of the electrical demand profiles, 2) energy and entropy feature extraction (absolute

and relative) from the wavelet levels at definitive time frames, and 3) Bayesian probabilistic hier-

archical clustering of the features to classify the buildings in terms of similar patterns of electrical

demand. The process yielded a categorized and more manageable set of representative electrical
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demand profiles, inference of the characteristics influencing supply-demand interactions, and a test

bed for quantifying the impact of applying energy storage technologies.

Forecasting: Model predictive control applied to commercial buildings requires short-term

weather forecasts to optimally adjust setpoints in a supervisory control environment. Review of

the literature reveals that many researchers are convinced that nonlinear forecasting models based

on neural networks (NN) provide superior performance over traditional time series analysis. This

research seeks to identify the complexity required for short-term weather forecasting in the context

of a model predictive control environment. Moving average (MA) models with various enhance-

ments and neural network models are used to predict weather variables seasonally in numerous

geographic locations. Their performance is statistically assessed using coefficient-of-variation (CV)

and mean bias error (MBE) values. When used in a cyclical two-stage model predictive control

process of policy planning followed by execution, the results show that even the most complicated

nonlinear autoregressive neural network with exogenous input (NARX) does not appear to warrant

the additional efforts in forecasting model development and training in comparison to the simpler

MA models.

Signaling: This project demonstrates a prototype energy signal tool for operational whole-

building and system-level energy use evaluation. The purpose of the tool is to provide a summary

of building energy use that allows a building operator to quickly distinguish normal and abnormal

energy use. Toward that end, energy use status is displayed as a traffic light, which is a visual

metaphor for energy use that is either substantially different from expected (red and yellow lights)

or approximately the same as expected (green light). Which light to display for a given energy end

use is determined by comparing expected to actual energy use. As expected, energy use is necessarily

uncertain; we cannot choose the appropriate light with certainty. Instead, the energy signal tool

chooses the light by minimizing the expected cost of displaying the wrong light. The expected

energy use is represented by a probability distribution. Energy use is modeled by a low-order

lumped parameter model. Uncertainty in energy use is quantified by a Monte Carlo exploration of

the influence of model parameters on energy use. Distributions over model parameters are updated
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over time via Bayes’ theorem. The simulation study was devised to assess whole-building energy

signal accuracy in the presence of uncertainty and faults at the submetered level, which may lead

to tradeoffs at the whole-building level that are not detectable without submetering.

Next, the anticipated difficulties in practical application of the research are considered to

motivate future R&D.

7.2 Uncertainty Quantification

Any model, whether physical, statistical, or some hybrid, can be feasibly considered for use as

an OpBEM; however, uncertainties will always exist in one form or another. The below subsections

explore the implications of this fact with regard to its preceived influence on the APEX system

concept in practice.

Two Extrema for Learning The research takes the premise there are theoretical extrema

regarding the task of learning causality; the minima being no data and no physical model, and

the maxima being an infinite amount of data coupled to an infinitely detailed physical model.

What can be accomplished, say, using brute force sampling approaches and physical simulation, for

different data-model resolution between these extrema? At what point can one learn causality? It

is argued the existing set of measurement data found in modern commercial buildings is sufficient

for learning causality because they were specifically designed with building system control in mind.

In addition, when appropriately-detailed physical models are available it is possible to diagnose

faults influencing whole-building energy performance; i.e., latent variables that are part of the

physical model but not the measurement dataset. However, although these statements seem valid,

the infrequency by which physical models matched empirical time series data (ModBen discussion

of Appendix A) could lead one to believe the signal-to-noise ratio was too small to maintain faith

in the accuracy of the physical model. On the contrary, these buildings may be too coupled to the

ambient (microclimate) to benefit from physical modeling for prediction and diagnosis. It is thus

argued that greater focus should be placed on built environment R&D: one that makes progress

from data-to- models and less focus on models-to-(simulated)data.
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Ideal Building Energy Performance Ideal operational building energy performance

can be specified according to a building energy performance rating/scoring program, model-based

benchmark, or similar measures. It is assumed there exists some building energy simulation model

that establishes an ideal energy performance. Any deviations from that ideal are considered faulty

and symptomatic of a causal relationship to be inferred. That is, in fault diagnostics the concept of

a ‘fault’ is phrased in terms of any deviation from the ideal. The prevalence of energy performance

codes and standards, as well as model-based approaches for energy performance simulation and

prediction, allows the ideal, and what constitutes faulty building energy performance, to be precisely

defined. Measurement uncertainty and the subjective nature of metrics for one-of-a-kind buildings,

however, do not allow straightforward application of these components to serve as a mechanism

for energy performance guidance. Additional R&D is necessary to establish databases of nominal

and fault behavior for one-of-a-kind buildings. It is envisioned this will take the form of some risk

minimization simulation rather than worst-case deterministic evaluations.

Shades of Gray in Physical Modeling It is apparent there are many “shades of gray”

between a pure, first principle model and a completely empirical one. Authors involved in building

energy performance modeling [188, 28] distinguish between white box, gray box, and black box

approaches. The categorization has been present in the literature for years, with a detailed account

provided by Karplus [205], and briefly summarized as follows.

White Box Models are completely derived from first principles. Theoretical modeling allows

all equations and variables to be defined mathematically, either implicitly or explicitly.

However, due to practical considerations even most white models contain some parameters

that are estimated from data. Even so, these parameters should be directly related to first

principle modeling.

Black Box Models are completely derived from measured data. The structure and parameters of

the model are completely informed from experiments and/or other measurement campaigns.

Because of the automation available in the computer age, very little prior knowledge is
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necessary to implement a black box model. Furthermore, because of the numerical nature

of the model, its direct relationship to physical observation is severely limited.

Gray Box Models are a mixture, combination, or compromise between black box and white box

model. Differences between the various shades of gray box models can be attributed to

the validation stage of the system identification process, where adjustments are made to

enhance the accuracy of model. It is typical that the model structure is strongly driven by

prior knowledge, whereas parameter values are primarily determined from measure data.

As one can imagine there are practically no purely white box or black box models. That is,

for realistic, complex models there are always subjective aspects inherent to the modeling process

(i.e., no completely automated system identification), and some data are inevitably used even

for equation-based model building (e.g., properties of materials). The shade of gray employed

also implies understanding of the physical mechanisms important to the problem; i.e., a detailed

simulation is overkill if a linear regression on experimental data answers the question posed. In

any case, aspects of semi-physical (gray box) modeling are helpful, and in accordance with the

scientific method, for using both first principles and measured data in two crucial ways. The first is

to validate models, or replicate results, from seemly disparate research. The second is to condition

analysis, or further research, on state of the art models and understanding of physical processes.

In addressing the energy concerns of the built environment, movement must be made away from

simulated energy performance and toward measured energy performance.

7.3 Future Research

In summary, the iterative, three-step process of Figure 3.2 shows there is much to be done

with regard to the classification, forecasting, and signaling of building energy performance; i.e., the

research has made it one time around the spiral graph. Future work will look define the OpBEM in

greater detail and implement it within the APEX system concept for uncountable HITL objectives.
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Appendix A

A Summary of the Model-Based Benchmarking (ModBen) Project

The ModBen project [16] had the objective of developing practical methods and tools to help

identify potential building energy savings in a cost effective, timely, and permanent manner. A top-

down methodology was invented to allow the automated analysis of operational building energy

performance data. Simple approaches were seen as fundamental to the scalable optimization of

energy-efficient building operations, and were verified through monitoring. The four-step procedure

for ModBen’s continuous quality control system, progressing from course to finely-detailed analytics,

can be broken down as follows:

(1) Benchmarking — to establish current operational building energy performance

(2) Data acquisition and storage — utilizing existing systems and specified measurements

(3) Fault detection and optimization — driven by human experts familiar with the building

(4) Operations monitoring — to verify the operational building energy performance

To evaluate the methods and tools, five demonstration buildings were evaluated. In terms

of assessing their whole-building energy performance, the core focus was on steps 3–4 of the top-

down procedure; however, experts’ specification of a clearly defined scope of measurements (step

2) was essential, and savings are calculated relative to current performance levels (step 1). The

methods and tools for each building’s fault detection and optimization were developed on the

basis of a “minimum data set,” assumed to span and observe all major energy processes, and tested
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accordingly. Tools were integrated during the project with the help of industrial partners, including

their products and services.

The following bullet points summarize the ModBen project’s key findings with respect to the

five demonstration buildings.

• Through the continuous monitoring of operations, energy savings of 5-10% could be achieved

in the demonstration buildings with simple methods. The investment in data collection and

processing yielded static payback periods ranging from 1–3 years. The simple methods were

deemed suitable for buildings whose yearly energy costs are e30,000 or more.

• Despite the relatively sparse nature of the minimum data set, the data acquisition, process-

ing, and transmission system proved to be a major obstacle for the approach — whether a

building automation system (BAS) was present or not.

• The continuous acquisition and storage of data, concerning energy consumption and oper-

ational parameters, is by no means the state of the art.

• Extending BAS data with additional high time-resolution data streams has proven to be

complex and costly. In general, BASs are unprepared for operational analyses. Existing

systems are helpful, however, in vetting data and cross-validation.

• Manual fault detection and diagnosis by means of intelligent data visualization has been

used extensively and successfully in the initial analysis of a given building’s energy per-

formance. However, despite the automatic generation of visualizations, experts’ insight

and knowledge cannot be understated. A systematic application of the insights into daily

operations is unavoidable and an open research question.

• From a practical perspective, black-box models have proven effective for simple and auto-

matic detection of unusual operating conditions.

• With model-based methods for fault detection and diagnosis, followed by optimization, it

was apparent white-box or gray-box models offer great potential for operational analyses;
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however, in realistic applications, and with regard to model preparation and calibration,

they are both still too expensive (i.e. time investment) for practical applications.

• Interoperability is an important aspect for the standardized and seamless electronic ex-

change of information, although generally not critical for building sector applications.

• Static measurements and metadata, as related to the building’s structure, envelope, me-

chanical equipment, and floor plans, can be immensely helpful to understanding operations.

• Energy performance rating systems or certifications are not widely adopted due to their

voluntarily nature, and do not include the data necessary to perform the analyses; they are

typically not suitable for deriving target (energy consumption) values either.

• In addition to technical issues, a number of organizational concerns had to be addressed;

e.g., privacy, data protection, and general organizational bureaucracy. These impediments

have hindered and slowed processes. Within the demonstration buildings, there was clearly

an art to process – drawing on the participation of both the organization and staff – beyond

operational analyses, pure technical processing of data traffic, and performance assessments.

To be successful it was necessary to be thoroughly involved in all processes.

• Adaptation to ever-changing circumstances was crucial, even with short notice and unan-

ticipated circumstances. Investments in energy performance measures for existing buildings

must have correspondingly short refinancing periods. Here the focus was the optimization

of operations, even under difficult and dynamic usage constraints.

The following future research has been noted as being of interest to extending the results of

the ModBen project.

Whole-Building Fault Detection and Diagnosis (FDD): To apply whole-building FDD it

may be necessary to focus on typical and common systems, including their subsystems,

like heating circuits, ventilation, etc. The minimum dataset was found to be a great start-
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ing point for analysis; however, further standardization and representations are required

for a wider range of typical systems.

Interoperability: Many operational approaches suffer from the lack of complete, current, and

accurate documentation of the building and its systems. Thus, the ability to harness state of

the art modeling and simulation tools for model-based approaches is limited. Development

of calibrated and validated models is too costly and inaccurate in practical applications.

Energy performance rating systems and certifications are helpful on the whole-building

level and confirm, or partially confirm, the overall state of the building. Combining these

insights with a model-based approach suffers from the availability of comprehensive and

conclusive data, as well as uniform standards for labeling measurement data or control

points.

Treatment of Modeling Uncertainties: The modeling and simulation of buildings requires a

number of inputs that are inherently uncertain. A typical example is occupant behavior;

e.g. presence of occupants, loading density, heating and ventilation behavior, etc. In the

context of these uncertainties, stochastic optimization approaches are an open research

topic for buildings. Such approaches are fundamentally different from classic, deterministic

simulations and have the advantage of explicit uncertainty quantification or prediction

with ranges. It is envisioned probabilistic approaches will become the norm for forward

and inverse building energy modeling tools.

Organizational Aspects: In addition to the technical aspects of integrating operational build-

ing energy performance, organizational aspects play an important role in the success of

the operational analysis of buildings. Responsibilities need to be clarified, with necessary

processes documented and tracked. There seems to be a need for unification with other

business processes, including the development of appropriate tools and tracking processes.



Appendix B

Fundamentals of Bayesian Inference

In this appendix, the necessary background on Bayesian inference is provided as review; its

development summarizes Bayesian-focused research as expounded by Jaynes [200], Bretthorst [206],

and Laredo [207].

B.1 Derivation of Bayes’ Theorem

With the development of probability theory being attributed to Bernoulli and Laplace, Bayes’

theorem can be derived through the familiar axioms. The sum rule states that the probability an

even is true or false must sum to unity. That is, assuming an even is known to exist in space ‘Z’,

what is the probability that it also exists in space ‘X’ or (mutually exclusive) space ‘Y’ when it is

known that ‘X’ and ‘Y’ are subspaces of space ‘Z’? The sum rule can be stated as:

p(X|Z) + p(X̄|Z) = 1, (B.1)

where the horizontal bar represents the negation of the proposition, and the vertical bar a condi-

tional statement.

The product rule is also helpful. It expresses the relationship between spaces as various

subspaces of each other. For instance, what is the probability that an event exists in ‘X’ and

(mutually inclusive) ‘Y’ if one knows the event is a subspace of ‘Z’?

p(XY |Z) = p(X|Y Z)p(Y |Z) (B.2)
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All relationships between probabilities can be derived using these two equations. For instance,

the probability that an event exists in ‘X’ or ‘Y’, if one knows the event is a subspace of ‘Z’, can

be calculated as:

p(X + Y |Z) = p(X|Z) + p(Y |Z)− p(XY |Z). (B.3)

It should be kept in mind that the arguments for a probability symbol are propositions and

not numbers. Furthermore, the operations inside the parentheses are logical operations: the logical

‘and’ is the multiplication of probabilities and is represented by placing propositions side-by-side,

and the logical ‘or’ is the sum of probabilities and represented by the ‘+’ symbol.

To derive Bayes’ theorem we recognize that XY and Y X are equal, and Equation B.2 can

be rewritten as p(X|Y Z)p(Y |Z) = p(Y |XZ)p(X|Z) and solving for p(X|Y Z) we get:

p(X|Y Z) = p(X|Z)
p(Y |XZ)

p(Y |Z)
(B.4)

This is Bayes’ theorem.

The theorem is used for hypothesis testing. To see how this can be done we let X = H, a

hypothesis we want to test, Y = D, some data that is relevant to hypothesis testing, and Z = K,

some knowledge-base that indicates the way in which H and D are related. Bayes’ theorem can

now be written as:

p(H|DK) = p(H|K)
p(D|HK)

p(D|K)
(B.5)

This allows the plausibility assessments regarding states of knowledge to be adjusted with the

acquisition of data, and represents a form of learning. The posterior probability of H is obtained

by multiplying the prior probability p(H|K) by the probability of data assuming a true hypothesis,

p(D|HK), and dividing it by the probability that the data would have been observed nonetheless,

p(D|K). This is just the state of knowledge-base before and after the observation of data.

The knowledge-base ‘K’ is the space where the physics of interest will be explored. Of all the

physical phenomena, we are interested in exploring a small space of unknown physical relationships

– our hypothesis space ‘H’. The data ‘D’ either reinforces or negates the hypotheses that have been

formed through Bayes’ theorem.
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B.2 Bayesian Parameter Uncertainty Quantification

Many hypotheses are possible, and inferences can be made about a parameterized model. The

parameters can be discrete or continuous, but as an example we will take Θ as a single parameter

for descriptive purposes. As an uncertainty quantification problem, a model is assumed true for

some unknown parameter value with constraints imposed as necessary. The hypothesis space is

therefore all the possible values that the parameter may take. The data is in a form that allows

inferences to be made and the probability, in distribution form, of any given Θ.

Bayes’ theorem can be used to address the uncertainty quantification problem by calculating

the probabilities directly. If ‘D’ represents a proposition asserting the values of data observed, and

‘H’ the proposition that Θ = Θ′ asserting that a possible parameter value is the true value, the

probabilities can be calculated. It should be noted that ‘K’ represents the knowledge-base necessary

to convey all the necessary relationships (e.g., physics), constraints, and prior information. Bayes’

theorem can therefore be written:

p(Θ|DK) = p(Θ|K)
p(D|ΘK)

p(D|K)
(B.6)

In order to use the equation, the three probabilities on the right-hand side must be specified.

The prior p(Θ|K) and the likelihood p(D|ΘK) must be assigned a priori. That is, the prior

represents already known information about the problem that can be specified in the model in

parameter form. The likelihood is calculated using the measured data and expectation according

to the model. The model must be true for some value of its parameter(s). Therefore, one proposition

of Θ = Θ1′ or Θ = Θ2′ or Θ = Θ3′, etc. must be true. This is written as:

p(D[Θ1 + Θ2 + . . . ]|K) = p(D|K)p(Θ1 + Θ2 + . . . |K)

= p(D|K) (B.7)
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Expanding the left-hand side, the following is true:

p(D[Θ1 + Θ2 + . . . ]|K) = p(DΘ1|K) + p(DΘ2|K) + . . .

=
∑

i

p(DΘi|K)

=
∑

i

p(Θi|K)p(D|ΘiK). (B.8)

Equations B.6 and B.7 can be combined in the following form:

p(D|K) =
∑

i

p(Θi|K)p(D|ΘiK). (B.9)

Equations B.8 express p(D|K) as we desire, and is expressed in terms of a prior and likelihood.

In the uncertainty quantification problem, the denominator is just a normalization constant for

the posterior. It expresses the all possible scenarios for the parameter. The calculation of the

normalization constant is what makes Bayesian inference difficult to implement in practice, as the

simulation of millions of building energy models are necessary to ensure that the normalization

constant is calculated fully in that it converges. Monte Carlo approaches are necessary to fully

explore the parameter space. The results are summarized by considering the marginalization of

the parameter over all possible parameter values. When dealing with continuous parameters, the

summation becomes an integral and can be written:

p(D|K) =

∫
p(Θ|K)p(D|ΘK)dΘ. (B.10)

To summarize the inferences, the posterior can be visualized graphically or in table form.

This is complicated by the fact the parameter space can be high dimensional. When dealing with

numerous parameters, we may be interested in only a subset of these parameters. To average over

parameters:

p(Θ|DK) =
1

p(D|K)

∫
p(β|K)p(Θ|βK)p(D|ΘβK)dβ. (B.11)

We marginalize over nuisance parameters. That is, if a problem has two parameters: Θ and

β, but we are only interested in Θ. This of great practical use because the dimensionality can be

reduced and posterior distributions can be plot two-dimensionally for any given Θ. Marginalization
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is the advantage of the Bayesian perspective because it allows the summarize of simulation results

and inference in a compact form.

B.3 Bayesian Model Comparison

The Bayesian methods presented thus far assume that the model used for parameter infer-

ence is the correct model. However, it may be the case that numerous models can approximate the

physics of any given system and it is of interest to assess which model is the superior model for pre-

diction. The results follow Ockham’s razor: simpler models are preferred unless more complicated

models provide significantly better fit to the data.

To use Bayes’ theorem for model comparison, the knowledge-base asserts that one of the set

of models must be the “true” model. For m models (m=1 to M), Bayes’ theorem can be used to

calculate the probability a model is the true model:

p(m|DK) = p(m|K)
p(D|mK)

p(D|K)
, (B.12)

where, if no model is favored over the others a uniform prior distribution is specified.

To calculate p(D|mK), the marginal likelihood for model m must be calculated. The param-

eters of model m are known beforehand:

p(D|mK) =

∫
p(Θm|Km)p(D|ΘmKm)dΘm. (B.13)

To calculate p(D|K), a marginalization over the m models must be calculated:

p(D|K) =
∑

m

p(m|K)p(D|mK). (B.14)

Just as will the uncertainty quantification problem, p(D|K) is simply the normalization

constant. However, in model comparison problems its calculation can be avoided by considering

the ratio of probabilities of the models, rather than directly the probabilities themselves. This ratio

is called the odds, and the odds for favor of model m1 over model m2 can be calculated from:

Om1,m2 =

[
p(m1|K)

p(m2|K)

] ∫
p(Θm1 |Km1)p(D|Θm1Km1)dΘm1∫
p(Θm2 |Km2)p(D|Θm2Km2)dΘm2

=

[
p(m1|K)

p(m2|K)

]
Bm1,m2 , (B.15)
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where the factor in brackets is called the prior odds. The Bm1,m2 is called the Bayes’ Factor, which

is just the ratio of prior predictive probabilities.

The approach presented is different to the model parameter uncertainty quantification, but

is necessary for not only determining what the most probable parameters are but also the most

probably model. Using both of these tools allows the most accurate representation of any building

energy process through the use of data.

B.4 Requirements for Computation

B.4.1 Integral Estimation via Monte Carlo Method

With a range of faults that can be observed in building operation and in recorded data, a prac-

tical method for statistical inference is required for the concerns of whole-building fault detection

and diagnosis. The construction of probability models for observed quantities, and for quanti-

ties that inferences are desired, are quite helpful in detecting whole-building faults and pointing

toward the most probable diagnosis. Bayesian methods explicitly use probability for quantifying

uncertainty, and therefore are useful for the present concerns.

The Bayesian data analysis process is divided into three general steps:

(1) Set up the full probability model for all observable and unobservable quantities in the

problem.

(2) Calculating and interpreting the posterior distribution – the conditional probability distri-

bution of the unobserved quantities given the observed data.

(3) Evaluating the fit of model and the implications of the posterior distribution.

A major issue in Bayesian analysis is the required conditioning on known data y, as part of

Bayes’ rule, to yield the posterior density so that inferences can be made. This requires evaluating

complex integrals.
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Monte Carlo simulation is a stochastic technique to evaluating complex problems. That is,

random numbers are used to build probability models that are used to investigate problems which,

due to their nature, can have multiple “solutions” due to uncertainties in variables/parameters that

are beyond the control (or prior knowledge) of the investigator. The goal is to determine likely

scenarios, which can be based on measured data for model fitting (e.g. building model calibration)

or could be based on external disturbances that affect the likely bounds of the “system” output

that influences the decision making process (e.g. investment risk analysis).

The mean value of a given stochastic variable can be expressed as the integral of the product

of a variable and its probability density function. The process can be viewed in reverse, such that

random numbers are generated, evaluated, and estimations of the mean can be made by simple

averaging. From either viewpoint, the theory is to evaluate an integral of the form:

G =

∫

D
h(x)f(x)dx (B.16)

where the domain, D, with coordinates x is too large and complex for analytic solution, and f(x)

is a non-negative function that satisfies:

∫

D
f(x)dx = 1. (B.17)

Thus, f can interpreted as a probability density function, and Equation B.16 as the expectation of

h(x), where x is the random variable of interest.

For low-dimensional spaces, the Monte Carlo method is inefficient, and there are better

(non-random) numerical approximations for computing the integral of Equation B.16. The typical

methods is to discretize the space D by xk for k = 1, 2, . . . , n, and approximate the area under the

curve. For an M dimensional space in domain D, the error in the approximation decreases with N

as N−1/M , and is too slow for practical use in complex problems. However, it can be proved that

the error in the Monte Carlo method decreases as N−1/2 regardless of the dimension of D. This is

the main advantage of the Monte Carlo method.

Markov Chains are helpful for proving that the Monte Carlo simulation converges to the

target distribution, and that is why they are helpful. Proof to come.
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B.4.2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) simulation is a general means toward developing the

probability model. The probability model building process is iterative: θ values are drawn from

an approximate distribution and corrections are made to better approximate the target posterior

distribution, p(θ|y). The sequential sampling depends only on the previous draw, and thus the draws

form a Markov chain. The Markov property is needed to prove that the approximate distribution

converges to a stationary distribution that is equal to the target distribution. Each sequence starts

at a chosen θ0, and for each t a new θt is determined from a transition distribution Tt(θ|θt−1) that

only depends on the previous draw.

The following subsections briefly discuss three major MCMC methods.

B.4.3 Metropolis Algorithm

The first method developed for acquiring a sequence of random samples from a probabil-

ity distribution was the Metropolis algorithm. A variation of a random walk, it uses an accep-

tance/rejection rule until the approximate distribution converges to the target distribution.

Pseudocode for the Metropolis algorithm is as follows:

• From a starting distribution p0(θ) use a starting point θ0, such that p(θ0|y) > 0.

• t = 1, 2, . . .

∗ Sample a proposal θ∗ from a jumping (proposal) distribution Jt(θ
∗|θt−1) at time t.

∗ Calculate the ratio of densities,

r =
p(θ∗|y)

p(θt−1|y)
. (B.18)

∗ Set

θt =





θ∗ with Pr(min(r, 1))

θt−1 otherwise.

(B.19)
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The Metropolis algorithm requires that the jumping (proposal) distribution is symmetric.

That is, Jt(θa|θb) = Jt(θb|θa) for all θa, θb, and t. The jumping distribution seeks to find a point at

random in a specified area close to the previous θ; This is directly related to Simulated Annealing

in Optimization Theory. An issue with the Metropolis algorithm is finding a suitable jumping

distribution so that the random search is effective. Otherwise, if there is poor scaling, the algorithm

could take a very, very long time to converge to the target distribution. Standard practice is to

“tune” the variance of the jumping function until there is a proper acceptance rate for the algorithm.

B.4.4 Metropolis-Hastings Algorithm

The Metropolis-Hasting algorithm generalizes the Metropolis algorithm so that the jumping

rule Jt is not required to be symmetric. The asymmetric jumping rule is possible by replacing the

ratio r in Equation B.18 of the Metropolis algorithm with a ratio of ratios:

r =
p(θ∗|y)/Jt(θ

∗|θt−1)

p(θt−1|y)/Jt(θt−1|θ∗) . (B.20)

Allowing for an asymmetric jumping rule can increase the speed of the random walk.

B.4.5 Gibbs Sampler

Gibbs sampling, also known as alternating conditional sampling, can be thought of as a special

case of the Metropolis-Hasting algorithm. It is particularly useful in multidimensional problems,

and achieves this via conditional sampling of the variable/parameter vector that has been divided

into k components or subvectors, so that θ = (θ1, θ2, . . . , θk). At each iteration, the Gibbs sampler

cycles through the components/subvectors of θ and draws conditional on the other values; this

requires k steps for each iteration t. An ordering of the k components/subvectors is done at each

iteration t, and each θtj is conditionally sampled given the other components:

p(θj |θt−1
¬j , y), (B.21)

where θt−1
¬j is all the components of θ, not including θj , at their current value:

θt−1
¬j = (θt1, . . . , θ

t
j−1, θ

t
j+1, . . . , θ

t−1
k ). (B.22)
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The components/subvectors θj are therefore conditionally updated according to the latest values

of the other components/subvectors.



Appendix C

Identifying Wind and Solar Ramping Events

Wind and solar power are playing an increasing role in the electrical grid, but their inherent

power variability can augment uncertainties in the operation of power systems. One solution to help

mitigate the impacts and provide more flexibility is enhanced wind and solar power forecasting;

however, its relative utility is also uncertain. Within the variability of solar and wind power,

repercussions from large ramping events are of primary concern. At the same time, there is no clear

definition of what constitutes a ramping event, with various criteria used in different operational

areas. Here, the swinging door algorithm, originally used for data compression in trend logging,

is applied to identify variable generation ramping events from historic operational data. The

identification of ramps in a simple and automated fashion is a critical task that feeds into a larger

work of 1) defining novel metrics for wind and solar power forecasting that attempt to capture the

true impact of forecast errors on system operations and economics, and 2) informing various power

system models in a data-driven manner for superior exploratory simulation research. Both allow

inference on sensitivities and meaningful correlations, as well as quantify the value of probabilistic

approaches for future use in practice.1

C.1 Introduction

The increasing amounts of wind and solar power capacity being installed in the electrical

system are causing more concern from system operators about the variable and uncertain nature of

1 Appendix C largely derives from Florita et al. [20] and authorship is completely attributed to Anthony R. Florita;
the other authors contributed editing.
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these generators. To an extent, power system operations are already able to handle variability and

uncertainty, e.g., power demand. Existing techniques include regulation reserves, load-following

reserves, and sub-hourly economic dispatch. However, in simplistic terms, the uncertainty in load,

now coupled with increasing levels of uncertainty in generation, can lead to wider distributions of

uncertainty for all variables and parameters of interest; responding to variability under increased

uncertainty is all the more difficult. Enhanced wind and solar power forecasting can help address

some of these concerns through the reduction of uncertainty faced by the system of interest. Because

there are mechanisms in place to handle small amounts of uncertainty and variability, power system

operators place primary emphasis on better understanding the impact of extreme events (e.g., large

ramps), which can have significant influence on system economics and reliability. Secondary concern

is for uniform power forecasting improvements for enhanced planning applications.

Wind and solar ramps can occur at different timescales, geographic scales, and in both

the positive and negative directions. Variable generation forecasting can help remove some of the

uncertainty involved with the power supply, but may have trouble forecasting large ramping events.

The numerical weather prediction models often used for forecasting are generally good at predicting

roughly when a ramping event may occur; however, there are two main ways in which inaccurate

forecasting of ramp events can lead to large errors: ramp magnitude and timing errors. In ramp

magnitude errors, a ramp is forecast, but the actual value changes significantly more/less than was

forecast. In ramp timing errors, the actual ramp in power significantly leads/lags the forecast time.

Of course, both errors can occur simultaneously, which indicates a poor forecast. It is the hope that

offline ramp analyses, coupled with extensive unit commitment and dispatch simulation studies,

will allow the synthesis of knowledge for enhanced dispatch in cases of large variable generation

power ramps.

The automated identification of ramping events must be computationally inexpensive to

justify online applications, but can also help facilitate the improvement of forecasting algorithms

by providing metrics on how well ramping events are captured. Kamath analyzed wind ramping

events in the Bonneville Power Administration area using two definitions of ramping [208]. The
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first definition was simply the slope of change between two points; the second considered the

minimum and maximum values of generation between two points. Zheng and Kusiak [209] focused

on forecasting wind power ramping events. They employed the rate of change of wind plant power

over a 10-minute interval to define ramps. Hodge et al. [210] used similar fixed-point definitions to

identify and characterize the number of ramping events that occurred for solar power at different

timescales. Hansen et al. [211] used the swinging door algorithm to characterize irradiance time

series data in the Southwest United States. Because of the flexibility and simplicity of the algorithm,

both wind and solar power ramps over varying time frames can be identified.

C.2 Swinging Door Algorithm

In this work, we propose the application of an algorithm from the area of data compression,

known as the swinging door algorithm [212], to identify wind and solar power ramping events. Its

computational and structural simplicity, requiring only one parameter in its definition, are favorable

attributes considering its robustness in the face of noisy data.

Ramps are typically extracted through a linear piecewise approximation to the original time

series of data. If extracting ramps from measured data, the approximation can be thought of as

a disregard for the noise inherent to the measurement process and/or insignificant changes. If

extracting ramps from simulated data, the approximation can be thought of solely as disregard for

the insignificant changes. In either case, the focus of ramp extraction is placed on the significant

linear ramps (in terms of magnitude and duration) present in the dataset.

Mathematically speaking, a ramp is quantified by its instantaneous rate of change, its deriva-

tive, dG
dt , and is approximated initially by a local ratio of differences: dG

dt = G(k)−G(k−1)
k−(k−1) . The

discrete-time nature of either the measured or simulated data easily allows such a calculation.

However, the point of ramp extraction is to determine a trend in a sequence of local derivatives and

the magnitude and duration of such a trend. For example, when considering a time series of power,

the local derivative (ramp) from the first two points may be 3.0
2−1 = 3MW and from the second and

third points 3.2
3−2 = 3.2MW . The trend is apparent and the average ramp is 3.1 MW over the three
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discrete-time samples. The question of interest is when a particular ramp has started and/or when

the local derivative has changed to the point it can no longer be considered part of a particular

ramp.

Figure C.1 illustrates a simplified example of a signal and the ramps that may be extracted.

Of course, a realistic time series of wind or solar power is much more complicated, but the same

strategies and goals for the extraction of ramps apply as described here. The measurement points

are discrete-time samples, and the spline fit is included in the figure to show what the continuous

process may resemble. The identified ramps are nearly of equal magnitude, but in general this will

not be the case. It is somewhat easy to visually discern the ramps (trends) even though it is apparent

the sign of the slope can change within a particular ramp. Although noise is inherent to any real

measured data, here there are no assumptions about the probability density of a realization and

the piecewise linear approximation to the time series is anchored to dominant points. Considering

a threshold for the ramp trend and anchoring the piecewise linear approximation to measurement

points allows for reduced sensitivity to inflection points and other insignificant fluctuations.

The swinging door algorithm allows the extraction of ramps in a signal, in a piecewise linear

fashion, while allowing for consideration of a threshold parameter influencing its sensitivity to ramp

variations. The only tunable parameter is ε, the width of one door in the algorithm (as shown in

Figure C.2) that directly allows the (threshold) sensitivity to noise and/or insignificant fluctuations

to be specified. If the tolerance is very low (a small ε value), the ramp extraction algorithm will

identify many small ramps as it basically traces the original signal, violates the threshold, and starts

over. If the tolerance is very high (a large ε value), the algorithm will identify a few large ramps as

it is under constrained and a large fluctuation is required for the threshold to be violated. In the

figure, it should be noted the scale is arbitrary for the purposes of explanation, and in general the

signal magnitude is much larger than the scale of the threshold bounds.

From Figure C.2, the swinging door algorithm is briefly described: 1) the initial (dominant)

point, or new (ramp segment) iteration of the algorithm, is on the y-axis and threshold doors of

width ε are placed above and below it; 2) a new point A is acquired and the doors “swing open,”
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Figure C.1: Example of the piecewise linear approximation to a time series for ramp extraction
and analysis; the scale is arbitrary for explanation purposes.

Figure C.2: The swinging door algorithm for the extraction of ramps in power from the time series;
the scale is arbitrary for explanation purposes.
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as indicated, to include the point i.e., lines are drawn from the doors’ hinges to the point; 3) a

new point B is acquired and lines are again drawn (updated) to intersect at B; 4) a new point C

is acquired, but there has been an inflection in the signal, and the swinging doors open only to

accommodate new points in a ramp segment iteration, so the top door (extended line) remains in

its angle position above C and the lower door line is drawn to point C further extension of the lines

would result in an intersection at some point in the future; 5) a new point D is acquired; again the

top door (line) angle position is not updated, and the lower door line is drawn to point D. The lines

are now parallel (or do not intersect in the future), which starts a new iteration of the algorithm i.e.

the threshold has been exceeded when the line angle from the hinges to their most open position

is greater than or equal to parallel. The threshold could be violated somewhere between C and D,

but because of the discrete-time nature of the approximation, a new iteration would still start at

D. The piecewise linear approximation (the ramp, shown in red) starts at the end of the previous

iteration (dominant point) and ends when the threshold is exceeded (next dominant point).

Ramp sign changes are an indicator of fluctuation, but it is not obvious what an insignificant

fluctuation is when considering noisy measured data and/or actual (but slight) power variations.

There are two applications that are noted for defining the threshold and thus what is considered

an insignificant fluctuation: 1) according to the accuracy of the measurement device as defined by

its distribution of measurement uncertainty, or 2) according to the utility of the measure as defined

by power system economics and its relative importance in driving operations. In this work, neither

application is explicitly employed, but the ε value varied to explore the sensitivity of ramp events

extracted according to its value. Specifically, the ε value is set to a percentage of the maximum

capacity observed in the time frame of interest.

Figure C.3 shows a typical example in the extraction of ramps from a large wind farm over

a two-day period. The power profile, composed of hourly data, is variable but somewhat smooth

because of the diversity in power from individual turbines aggregating to cancel high-frequency

variability, combined with time-averaged power output over the hour. Therefore, a rather high

tolerance, ε value of 10% of maximum capacity, was used and provided an accurate piecewise linear
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Figure C.3: Typical example of ramp extraction from two days of power at a large wind farm,
showing up and down ramps of large, medium, and insignificant nature.
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Figure C.4: Typical example of ramp extraction from the first of two days of power at a PV solar
plant, showing a clear day leading to a smooth profile.

approximation to the wind power profile.

Figures C.4 and C.5 show typical examples in the extraction of ramps from a solar plant over

a two-day period, both using data sampled on a one-minute basis; first, the clear day of Figure C.4,

followed by the somewhat cloudy day of Figure C.5. The power profile is smooth in Figure C.4 and

shows high-frequency variability in Figure C.5. A rather low tolerance, ε value of 1% of maximum

capacity, was used and provided an accurate piecewise linear approximation to the solar power

profile. However, it is apparent the ε choice introduces tradeoffs between the count of ramps and

their approximation accuracy. That is, a clear day may be adequately described by fewer piecewise

segments, whereas a cloudy day may require more for an adequate description. Economics of the

system under consideration will likely determine the choice of ε.

C.3 Wind and Solar Data

To showcase the use of the swinging door algorithm for wind and solar power ramp detection,

it was applied to various datasets. Wind data came from a wind plant in the Xcel Colorado territory

with an approximate capacity of 300 MW; the discrete-time sample was 1 minute. The solar data
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Figure C.5: Typical example of ramp extraction from the second of two days of power at a PV
solar plant, showing up and down ramps because of clouds.



206

came from Oahu and Maui, Hawaii, in association with the Hawaiian Solar Integration Study; the

discrete-time sample was 1-second.

C.4 Results

The resolution of the extracted ramp events is a function of ε, which is informed by applica-

tion specifics. The utility of a given magnitude of ramp event (as part of power system economics)

was not considered here, but it is the subject of ongoing research toward understanding the prob-

abilistic relationships of various systems. Typical wind and solar power examples were provided

in this section, but the time resolution, geographic diversity, and extent of smoothing from plant

aggregation were limited to the data available.

Ramp extractions were visualized by rise-run distributions. Figures C.6 and C.7 give the

bivariate distributions of wind and solar power, respectively, as a function of various ε values; in

both figures, the ε value was, from top-to-bottom subplots, equal to 1, 2, 3, and 5% of the maximum

capacity observed in the month of December.

From the wind power ramp extraction of Figure C.6 (i.e., rise [MW] versus run [min]), it

is noted that with lower tolerance, more ramps of longer duration were extracted. This would be

expected, but it is also interesting to note how the distribution spreads within the more immediate

(quick) ramp region. In the solar power ramp extraction of Figure C.7 (rise [kW] versus run [s]), the

same trends as the wind example were noted; however, there appeared to be a correlated “what goes

up, must come down” pattern to the ramps because of the diurnal nature of solar irradiance. That

is, there was an approximate balance of up and down ramps of similar magnitude and duration.

Furthermore, the dispersion of ramps was driven by the plant (area) size and the December cloud

cover.

As might be expected, smoothing from aggregation was observed in both power datasets and

varied according to the size (area) of the total plant. In wind power, the downstream turbines

generally experienced slower and more turbulent wind, and spatial correlations in power variability

diminished with distance. In solar power, cloud cover seemed to have only influenced a portion of
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Figure C.6: Bivariate distribution of wind power, ramp rise versus run, as a function of the ε value;
top subplot is ε = 1% maximum capacity in December, followed by ε = 2, 3, and 5%, respectively.
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Figure C.7: Bivariate distribution of solar power, ramp rise versus run, as a function of the ε value;
top subplot is ε = 1% maximum capacity in December, followed by ε = 2, 3, and 5%, respectively.
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Figure C.8: Bivariate distribution of wind power, ramp rise versus run, as a function of the aggre-
gation level of wind turbines; top subplot is ε = 25% total wind farm, followed by ε = 50, 75, and
100%, respectively. An ε = 3% of the maximum capacity was used for the month of December.
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Figure C.9: Bivariate distribution of solar power, ramp rise versus run, as a function of the aggre-
gation level of PV modules; top subplot is ε = 25% total plant, followed by ε = 50, 75, and 100%,
respectively. An ε = 3% of the maximum capacity was used for the month of December
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the array, and spatial correlations in power variability diminished with distance. In either case,

and as is frequently observed, variability was smoothed with increasing plant (area) size.

It was of interest to determine the extent of smoothing observed in the extracted ramp

events. Figures C.8 and C.9 give the bivariate distributions of wind and solar power, respectively,

as a function of levels of aggregation in either percentage of wind turbines or PV modules; in both

figures, the percentage was, from top-to-bottom subplots, equal to 25, 50, 75, and 100% of the

total fleet in the month of December. As shown by the wind power ramp extraction of Figure C.8

(i.e. rise [MW] versus run [min]), there was a slight reduction in the dispersion of ramps as the

aggregation level increased. In the solar power ramp extraction of Figure C.9 (rise [kW] versus run

[s]), the same trends as the wind example were noted; however, the correlated nature caused by

diurnal behavior became more pronounced with increasing levels of aggregation. In addition, the

frequency of more immediate (quick) ramps seemed to level off around one-half the total capacity

of the PV solar plant.

C.5 Conclusions

The forecasting of solar and wind power ramps is a major area of concern in the field of

variable generation forecasting. In this work, the application of a data compression technique to

the identification of solar and wind power ramps was shown. Because these ramping events are

one of the most pressing concerns of system operators in balancing areas with large penetrations of

variable generation, this automated identification process is helpful toward creating algorithms and

assessment metrics that can better forecast variable generation ramps and their economic impact.

One of the critical issues in wind and solar power forecasting is that the metrics used to assess

forecasting techniques are simple statistical measures that do not take into account the factors that

are most critical for power system operations. For example, because power systems have means by

which they can compensate for small forecast errors, and large forecasting errors are both expensive

and can present reliability concerns, it would be better to improve the forecasting for these extreme

events, even at the cost of slightly decreased performance during the rest of the times. This is
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something that is very difficult to capture with the currently used statistical techniques in which

the impact of a large number of small error events can overwhelm the impact of a small number

of large error events. Because ramping events comprise a large percentage of these large error

events, their automated identification is an important step toward developing metrics that can be

used to tune forecasting algorithms to consider their importance. In addition, similar identification

techniques could be used actively in system operations. One possible example of how this could

be used to improve operations would be an increase in reserves being triggered by the signal when

a down ramp in power output had begun. The automated identification would also be useful in

assessing probabilistic forecasts. Some system operators currently request that downward ramps in

wind power are forecast in a probabilistic manner, in a separate forecast product from the normal

forecasts. These forecasts indicate degree-of-belief, giving the likelihood of a down ramp occurring

in the specified time frame, and the automated identification techniques advocated here could lead

to improvements in assessing system performance.


