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Our understanding of and approach to fire is becoming increasingly important due to popu-

lation increase and climate change. Current management strategies, which are focused mostly on

basic resilience are not enough given the increasing wildland-urban interface and climate conditions

ripe for wildfire. Informing future management strategies requires furthering our understanding of

fire spread at a regional scale – the scale at which management decisions are made. The recent

development of fire records cataloging thousands of fire events at daily and event-level resolutions

has made it possible to investigate fire behavior at the regional scale. This research integrates

remotely sensed data, wildland fire behavior modeling, and machine learning methods to further

our understanding of the patterns and drivers of wildfire. High-resolution remotely-sensed datasets

from several platforms were used to train random forest classification and regression models to

identify drivers that matter at both the daily burned area and fire event scales, across individual

case studies and collectively across thousands of events. WRF-Fire was used to investigate the in-

tersection of drivers and how our current understanding of fire behavior, as represented by numeric

models, compares to what we observe at sub-daily, daily, and event scales. Specifically it addresses

data deficiencies in inhibiting the development of wildland fire behavior models, and identifies the

most influential regional-scale drivers of daily fire growth. This work shows that environmental

heterogeneity plays a critical role in daily fire spread; presents a method for updating fuel data for

use within wildland fire behavior models; and bounds the uncertainty associated with inaccurate

ignition data within burned area and propagation direction forecasts.
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Chapter 1

Introduction

In many parts of the globe our world is burning. Ten of the largest fire years on record have

happened since 2000 [7]. The reasons for this are complicated, though the convergence of climate

change and human activity, particularly the increasing development of the wildland-urban interface

(WUI), has played a significant role [88, 28, 113]. Climate change has shifted fuel characteristics by

changing the suitability of the environment and the mechanisms that determine the rise and fall of

species populations [14, 31]. For example, the deserts of the Western United States (U.S.) are likely

to see a difference in the spread of invasive grasses due to (human-caused) climate change. Cold-

intolerant grasses benefit from a longer freeze-free season (shorter winter). Warmer temperatures

lengthen the fire season, and the earlier onset of fires bring conditions that exaggerate the fire-

invasive feedback loop [14]. In tropical climates, climate-induced droughts decrease photosynthesis,

increase tree mortality and autotrophic respiration (a large source of CO2), promoting wildfire

by providing available fuel in a previously fuel-limited system [31]. Larger, more frequent fires in

these forests results in more greenhouse gases being released in large quantities, magnifying climate

change [29]. There is also a temporal correlation between human-caused and lightning-caused fires

from year to year, suggesting that the total number of fires that propagate is largely dependent

on the fuel and meteorological conditions. Those conditions are becoming more favorable for fire

propagation with climate change [23].

The development of the WUI has contributed to disastrous fires [29], due in part to fire

frequency and ignition probabilities being linked to human population and road density [95]. When
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compared to historic fire regimes, human-related ignitions have more than tripled the length of the

wildfire season. In the US this is especially true during the spring [23], a season with previously low

fire frequency in most regions. Additionally, the number of human-caused ignitions is increasing.

Cattau, Wessman, Mahood, and Balch (2020) [38] found that human-caused ignitions have shown

a 9% proportional increase between 1992 and 2015.

Human-related ignitions have expanded the extent of wildfire by bringing ignitions into re-

gions with higher fuel moisture and net primary productivity (NPP). In the U.S. we see this increase

in fire occurrence in areas with historically low lightning strike density (Mediterranean California

climate) and in areas of low lightning occurrence and dry fuels (Eastern Temperate Forest climate)

[23]. Flammable landscapes with intermediate population densities in the western U.S. and south-

eastern Australia are particularly affected by extreme wildfire events. However, the more densely

populated northern Mediterranean Basin with a similar climate is less prone. This difference is

thought to be due to regional land use, which reduces available fuels [30]. In the U.S., indigenous

and traditional fire management systems (similar to the effects seen in the Mediterranean Basin)

have been replaced by operational, large-scale firefighting and fuel management practices. These

practices have also played a role in increasing the number of fires [29], and have contributed to the

risk of more severe wildfires [128, 92, 53].

The increase in wildfire frequency, severity, and size has motivated discussion on mitigation

and prevention. Current management strategies, which are focused mostly on basic resilience are

not enough given the increasing WUI and climate conditions ripe for wildfire [90]. Response to

active fire is aided by wildfire propagation forecasts generated through operational-use wildfire rate

of spread models. These models help anticipate when and where a wildfire is likely to propagate

given a set of inputs describing weather, terrain, and fuel conditions. Significant effort has been

made to develop accurate forecasting capabilities, however, wildfire behavior models continue to

have uncertainties due to input data and changing fire regimes that lessen their utility. In a 2013

study of 47 different fire behavior models, the mean percent error of fire rate of spread fell between

20-310% [50]. A later study found that while mean errors have decreased overall for fire prediction
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models, models for operational application have not shown significant improvement [51]. Persistent

uncertainties still originate from input data sets, particularly wind speed, wind direction, fuel model

assignment, and ignition location and timing data [26]. [PhD research questions 1 and 2] These

challenges are coupled with recent extreme fire behavior and fires occurring in new regions due

to the convergence of climate change and human activity. Extreme fire behavior, defined here as

unsteady, erratic fire spread [138], is difficult to model due to rapidly changing input conditions.

The advent of fires in new regions exaggerates the problem of uncertainties originating from input

data. Fuel and ignition data are less available from areas not historically prone to fire. Subsequently,

less is known about the interactions between the atmosphere, terrain, and fuels in these areas [36].

Increased remote sensing data and advancements in machine learning have aided our under-

standing of wildfire and its associated drivers. Specifically, improvements have been made in our

ability to model wind over complex terrain [60, 109, 104], describe and map fuel moisture [131, 89],

advance our understanding of the role of fuel scale in modeling [132], as well as the role of fuels in

fire behavior [84]. However, we continue to have gaps in our understanding of fire behavior at the

regional level -the level of operational management during active wildfire. [PhD research questions

3 and 4]

This work utilizes machine learning and remote sensing data to answer research questions

concerning the uncertainties in wildfire behavior modeling due to input data and our understanding

of wildfire behavior at a regional scale. Collectively, this work will contribute to our ability to

respond to increasing wildfire frequency, severity, and size through wildfire forecast improvements

and a deeper understanding of fire at the regional level. Specifically, the research questions are:

(1) How does the use of wildfire detection time and location for behavior model initiation affect
forecast burned area and propagation direction?

(2) Can the fuel inputs used in wildfire behavior models adequately be updated through the
use of remotely sensed data?

(3) What are the most influential regional-scale drivers of fire growth across CONUS?

(4) How fast, and where are the fastest fires across CONUS?
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1.1 Background

1.1.1 Wildfire Modeling

Fons’s Analysis of Fire Spread in Light Forest Fuels was published in 1946. It described

the first in a long line of theoretical models working to describe wildfire behavior [106]. These

theoretical models were generally sets of differential equations with boundary conditions reflecting

the fuel temperature, air temperature, and wind speed, resulting in wildfire rate of spread as the

solution. Despite being theoretical, they relied on observations for measures such as flame length

and fuel diameter. Ultimately, the task of calculating inputs for theoretical models transitioned

into the development of empirical and semi-empirical wildfire behavior models [130]. These models

leaned more into the pragmatic space of providing accurate estimates of important measurements,

such as rate of spread, rather than aiming to describe the underlying physical dynamics. As such,

they were, and continue to be used in the realm of fire management.

One of the most prominent semi-empirical models was developed in the early 1970’s [116].

Rothermel’s set of rate of spread equations are based on a heat sink, heat source ratio that considers

wind, terrain, and fuel characteristics. It allowed fire analysts to estimate fire rate of spread

in the field by providing them with a worksheet and TI-59 calculator equipped with a program

chip containing the set of equations. Rothermel’s model is still widely used in the United States

and Australia for operational-use wildfire behavior modeling, though now it is integrated into

architecture that allows for more nuanced sets of inputs. Modeling systems such as FARSITE and

WRF-Fire are implementations of Rothermel’s rate of spread equations that incorporate data such

as detailed weather forecasts and fine-scale elevation.

As mentioned previously, one of the main knowledge gaps for wildfire behavior modeling is a

lack of data. In particular, fine-scale, sub-seasonal fuel data is needed, as well as accurate ignition

location and timing information. The occurrence of fires in new regions exacerbates the issue of

model uncertainties due to input data. Additionally, less is known about the interactions between

the atmosphere, terrain, and fuels in areas not historically prone to wildfire [36].
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1.1.2 Remote Sensing

At the start of wildfire modeling the observational inputs needed were gathered in situ or

approximated. However, at the time Rothermel was developing the rate of spread equations so

widely used today, the first of the Landsat satellites was being launched into orbit. Landsat 1

was designed for landmass observations. It’s multispectral scanner (MSS) provided data from four

spectral bands (visible green, visible red, and two near-infrared bands) at an 80 m ground resolution

with an 18 day revisit time. While the revisit time was not frequent enough for observing wildfire

for operational firefighting, it did provide information about fuels that could be used in wildfire

behavior models. In fact, the family of Landsat satellites was instrumental in the development of the

fuels data set LANDFIRE, which is commonly used in wildfire behavior models today. Specifically,

imagery from Landsat 7 (2003 - 2012) provided vegetation indices for fuel mapping [120]. The

modern iterations of LANDFIRE in use today still rely on those Landsat-derived indices.

One challenge associated with the use of LANDFIRE data sets is that they are updated

at a rate outpaced by disturbance events. This has the effect of skewing wildfire behavior model

results because the input data no longer reflects the fuel conditions present. Many research efforts

have focused on estimating similar data to describe fuel, terrain, and meteorological conditions

relevant to wildfire. These have included mapping fuel characteristics for fire management [76];

mapping wildfire burn severity, a metric of biological impact [78, 73]; spatio-temporal patterns of

biophysical conditions [90]; canopy fuel characteristics [20]; and fuel moisture content [89, 110].

The key knowledge gap in understanding fuels is geospatial layers at fine enough temporal and

spatial resolution that reflects the conditions that will promote or dampen fire [79, 77, 26].

1.1.3 Machine Learning

Machine learning models are appropriate for modeling complex interactions between systems,

wildfire and its associated drivers included. Several of the aforementioned studies implemented

machine learning to determine their findings. For example, McCandless, Kosović, and Petzke
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(2020) [89] developed a random forest model trained on MODIS reflectance values and hydrol-

ogy forecasts to estimate live and dead fuel moisture values daily across CONUS. Arellano-Pérez,

Castedo-Dorado, López-Sánchez, González-Ferreiro, Yang, Dı́az-Varela, and Ruiz-González (2018)

[20] compared several machine learning models to determine the most accurate estimates of canopy

fuel characteristics.

A main concern surrounding the use of machine learning is that the key interactions between

variables are difficult to interpret (the ‘black box’ problem). This remains an issue, especially when

compared to models traditionally used for inference.

1.2 Research Overview

A combination of remote sensing and machine learning approaches can improve fire behavior

modeling efforts: better constraint of ignition point location and timing and higher temporal and

spatial resolution of fuels. Research question (1) How does the use of wildfire detection time and

location for behavior model initiation affect forecast burned area and propagation direction? focuses

on the initiation point of WRF-Fire. Despite being infrequently considered, the accuracy of the

initiation point is quite important. It determines the wind vector, terrain and fuel at the start of

the model. Yet, models are consistently initiated from inaccurate location and time estimates. The

sensitivity study described in Chapter 1 highlights the importance of obtaining accurate ignition

data and shows that the range of values for burned area and propagation direction forecasts depends

on the heterogeneity of the wind, terrain, and fuel inputs.

Research addressing question (2) Can the fuel inputs used in wildfire behavior models ade-

quately be updated through the use of remotely sensed data? gives a flexible method of updating

the LANDFIRE fuel layers. The fuel layers are gridded data sets where each cell contains a profile

of fuel characteristics such as moisture of extinction and fuel bed depth. As such, wildfire behavior

model architecture relies on those profiles as input. Chapter 2 outlines a method of transitioning

from Sentinel imagery and aerial USGS tree mortality surveys to fuel inputs for use in WRF-Fire.

A case study of Colorado’s 2020 East Troublesome Fire is used as an example. The fuel model data
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(for use in wildland fire behavior modeling) available to incident commanders at the time of the fire

had last been calculated in 2016, and represented healthy conifer forest and shrubland. Post-2016

the area of the fire experienced significant tree mortality due to beetle infestation. A random forest

regression model is used to estimate and update the fuel model layer for the fire domain based

on the satellite imagery and tree mortality surveys. While this example focuses on accurately

representing dead, downed timber, though the method should translate to other conditions.

Scaling from our understanding of fire propagation at the individual event level throughWRF-

Fire to exploration of fire spread across thousands of events detected by remote sensing offers the

opportunity to translate across scales. Research question (3) What are the most influential regional-

scale drivers of fire growth across CONUS? makes use of the Fire Event Delineated (FIRED)

data set to determine regional-scale wildfire drivers. The Rothermel rate of spread equations are

applied indiscriminately to simulate wildfires across CONUS, yet we see an increase in empirical

modeling at a regional-scale, aiming to estimate rate of spread using fuels, weather conditions,

and terrain specific to individual regions. Are there drivers that are region-specific that should be

considered more thoughtfully in behavior models? The drivers are determined by training a random

forest model to estimate burned area based on remotely sensed data representing fuel, terrain, and

meteorological characteristics. This work shows that environmental heterogeneity plays a key role

in daily fire spread across CONUS.

Work concerning the last research question, question (4) How fast, and where are the fastest

fires across CONUS? attaches a forward rate of spread metric to each of the FIRED daily burned

areas. This metric is important to operational firefighting as well as our understanding of fire speed,

as it gives a sense of how fast a fire is travelling. By calculating this metric for the FIRED record,

we can determine where the fastest fires have been historically, which has not yet been done. While

some work has been done to estimate growth, there is no systematic way that the linear rate of

growth has yet been estimated across fire events in the satellite record. This step is critical to our

ability to respond to the most dangerous fires.



Chapter 2

WRF-Fire Simulated Burned Area and Propagation Direction Sensitivity to

Initiation Point Location and Time

2.1 Introduction

How does the time and location of a wildfire detection point affect wildland fire behavior

model forecasts? Wildland fire behavior models are often initiated using an estimated ignition

point (referred to here as a ‘detection point’) with an unknown amount of uncertainty in its time

and location. Actual ignitions (where and when the fire actually started) may never be known with

absolute accuracy, and detection points are frequently used to initiate model simulations in their

absence.

The primary purpose of a detection point, at least initially, is to aid firefighters in locating

a fire after it has been detected. The detection is a best guess at where and when a fire started

and may be adjusted in the fire report as the fire progresses and more information is gained.

For example, the point of origin for the Ryan Fire in Colorado, 2018, was estimated at 39.06757

latitude, -105.1443 longitude. Later in the fire event, that location estimate was shifted to 39.05989

latitude, -105.1439 longitude (a difference of about 855 m). As the precise time of the ignition is

rarely known with certainty, the time of detection is recorded in the fire report with an estimate

of the fire’s size at the time of discovery. Along with the size estimate and time of discovery, the

available fuels, topography, and atmospheric conditions help to give a sense of how long the fire

has been burning. While this means that both the location and time of ignition are estimates

with an unknown amount of uncertainty, they meet the needs of fire management. That is, the
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detection does not have to accurately represent the ignition time and location for effective wildland

fire response, it simply needs to give a sense of the proximity and size of the fire.

However, in the context of wildland fire behavior modeling, the use of a wildland fire detection

will have implications for the initialization parameters of the model. The starting point and time

determine the initial wind, fuel, and terrain conditions for the model simulation. Uncertainties in

the detection translate to uncertainties in how representative the initialization parameters are of

the actual conditions at the location and time of the ignition.

Wildland fire behavior models are used to further our understanding of fire behavior through

experimentation and comparison with observation data [68]. These models are also used for opera-

tional management where fire forecasts aid in determining suppression strategies and the allocation

of resources [103]. However, the uncertainty associated with wildland fire behavior model output

can lead to diminished faith and use of fire forecasts [111].

Both contexts, wildland fire research and operational use, benefit from an improved under-

standing of wildland fire behavior model limitations, including those introduced through input data.

Sensitivity studies have investigated wildland fire behavior model sensitivity to fuel characteristics

[99, 21], the combination of meteorological conditions and fuels [41], and meteorological conditions

[17]. Bachmann and Allgöwer’s (2002) [22] study of uncertainty propagation within Rothermel’s

rate of spread equations comprehensively investigates 17 different input variables. Benali et al,

(2017) [26] examined the uncertainty associated with fuels, winds, and ignition locations. However,

to the best of our knowledge, the sensitivity of wildland fire behavior models to initiation location

and time is yet to be fully explored. This research examines the range of burned area values and

propagation directions resulting from different initiation point locations and times. We examined

the forecasts for ten Colorado 2018 wildland fire case studies, each initiated from a set of 17 dif-

ferent point locations, and three different starting times. Our results show that the location of the

initiation point is important to the simulation results, more so than the time of initiation. A brief

investigation of the range of fuel, wind, and terrain inputs shows that the number of fuel models,

wind speeds, wind directions, and terrain slopes and aspects are important predictors of the range



10

of forecast burned area and propagation direction values. These results align with studies that have

shown that environmental heterogeneity and compounding uncertainty affects wildland fire behav-

ior model forecasts [22, 26]. The methods of this study, including case study selection and model

setup are given in the next section. A discussion of the results, conclusion and recommendations

follow.

2.2 Materials and Methods

2.2.1 WRF-Fire

WRF-Fire [86, 87] integrates the Weather Research and Forecasting (WRF) model [124]

with a wildland surface fire-behavior physics module [44]. WRF is a community model used to

study and forecast land-atmosphere interactions at different scales. Coupled with the fire-behavior

physics module that implements the Rothermel rate of spread equations [116], WRF-Fire forecasts

fire-atmosphere interactions driven by topographic, fuels, and weather data. The chosen model

physics and dynamics options follow the operational WRF-Fire modeling setup, the Colorado Fire

Prediction System, which was developed by the National Center for Atmospheric Research (NCAR).

The simulations for this study are performed using version 4.0.1 of WRF-Fire [85]. The

simulations are run in WRF’s large eddy simulation (LES) [93] configuration following Jimenez

et al. (2018) [72], which allows for the fire to be initiated in a space in which the boundary layer

turbulence is fully developed and generated through interactions with the land surface specific to the

fire domain. The initial and boundary conditions are provided by High-Resolution Rapid Refresh

(HRRR) [27] forecasts from the National Oceanic and Atmospheric Administration (NOAA) at 3

km resolution, downscaled to 1 km over 117 km by 117 km domain centered on the model initiation

point. The extent of the model domain is approximately 13 km by 13 km, with two nested model

domains at grid spacings of 111 m and 27.75 m. The aspect, elevation, and slope inputs come from

the LANDFIRE topography products, a layer with 30 m spatial resolution [121, 114]. The fuel

models are brought into WRF-Fire through LANDFIRE’s 40 Scott and Burgan Fire Behavior Fuel
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Models product, also at a 30 m spatial resolution [123].

2.2.2 Incident report analysis

Detection point information from fire reports was examined to help determine the structure

of this sensitivity study. Integrated Reporting of Wildland-Fire Information (IRWIN) [6] hosts

incident report information for 1705 fires in the state of Colorado for the year 2018. Out of the

1705, 1292 fires (75.8%) show a shift in the detection point location within the fire event’s incident

report. 27.9% of these fires had a detection point that shifted by less than 100 m, 25% had a

detection point that shifted between 100 and 1000 m, and 47.1% had a detection point that shifted

more than 1000 m. These shifts are representative of the uncertainty between the initial detection

and the actual ignition location, and typically occur in the fire report days after the initial detection.

In addition to investigating the detection information in the incident reports, detection points

were mapped alongside the first observed perimeter for fires with available data. This brief visual

analysis shows that the detected location may be outside the first observed fire perimeters. Fig-

ure 2.1 shows an example using the Indian Valley Fire, which occurred in Colorado in 2018 and

is used as a case study in this research. The detected point is approximately 135 m outside the

closest location of the first observed burned area perimeter which was captured less than 5 hours

after the fire was detected. We include this information simply to highlight the uncertainty in the

reported wildland fire detections.
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Figure 2.1: The first observed active fire perimeter (orange) for the Indian Valley Fire, Colorado
2018, and the fire’s initial detection location (black dot).

2.2.3 Case study selection

Ten case studies of 2018 Colorado wildfires were selected from the National Fire Situational

Awareness portal (National Interagency Fire Center) [7]. Out of the viable cases (cases with

available detection data), an effort was made to choose case studies that spanned a variety of fuel

and terrain characteristics, as well as a range of detection times. The search resulted in the cases

mapped in Figure 2.2 and described in Table 2.1.
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Figure 2.2: Ten Colorado wildland fire case studies from 2018, with initial detection locations
(black dots).

Table 2.1: Case study fire names, detection dates, and detection times (UTC).

Fire Name Detection Date Detection Time

416 2018-06-01 1602

Cabin Lake 2018-07-29 2000

High Chateau 2018-07-29 2000

Indian Valley 2018-07-20 2030

Lake Christine 2018-07-03 0011

Ryan 2018-09-16 0136

Silver Creek 2018-07-19 2030

Spring Creek 2018-06-27 2130

Tabeguache 2018-07-07 0434

Weston Pass 2018-06-28 2030

For each of the case studies, a set of model initiation points was derived from the reported
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detection point. Eight points were selected in each of the cardinal and intercardinal directions 100

m away from the detection location, and likewise, eight more points were selected 1000 m away

from the detection location as shown in Figure 2.3. The decision to calculate points 100 m and 1000

m away was determined through examination of the detection points recorded for 2018 Colorado

wildfires, as described above. This covers the range of more than half of the shifts in detection

location observed in the IRWIN record of 2018 Colorado fires.

Figure 2.3: Configuration of derived initiation points, shown for the 416 Fire case study. The
reported detection point is shown in black, derived points 100 m away are shown in blue, and 1000
m away are shown in orange.

In total, each case study has 17 initiation points for simulation; the detection point, along

with the 16 derived points. WRF-Fire simulations were run for each of the case studies, at each

of these 17 points starting from the time of detection. This isolated the changed variable in the

model setup to the initiation point location, providing model output from each case study’s set of

simulations to determine the effects of shifting the initiation location on forecast burned area and

propagation direction. Simulations were also run from each of the 17 points at plus and minus six
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hours from the detection time for each case study. For example, simulations of the 416 Fire were

initiated at 1602 UTC (its detection time), as well as 1002 UTC and 2202 UTC. Simulating the

case studies at these offset times provides data showing how the timing affects the modeled fire

area and propagation direction.

Half of the case studies were detected in the early afternoon (1400 - 1530 MDT), with the

remaining case studies detected either in the evening, late at night, or late morning. Starting

simulations plus and minus six hours from these detection times provides a broad range of times to

examine. The combined effects of shifts in both location and time are observed in the model output

from simulations started at the shifted detection points and the augmented times. Cumulatively,

each case study had 52 resulting forecasts to examine; one set of model output at each of the 17

locations and each of the three initiation times.

WRF-Fire provides model output at a user-defined time window. Model forecasts for this

research are generated at an hourly time resolution. Specifically, the resulting model output from

a six hour lead time (forecast fire area and direction of propagation from the sixth simulated hour)

was examined. A six hour lead time, along with the total number of case studies, initiation time

offsets, and initiation points, was chosen for two reasons; to keep within reasonable computational

limits, and to generate output data with enough difference for comparison. For the sixth hour

of each forecast, we calculated the forecast fire area as well as the direction of propagation. The

direction of propagation is calculated using the direction of the vector from the initiation point to

the centroid of the predicted fire area.

2.3 Results

Figure 2.4 and Figure 2.5 summarize the overall results of this research. The range of simu-

lated burned areas and propagation direction remains more compact for simulations initiated 100

m away from the detection point than for simulations initiated 1000 m away from the detection

point. However, no significant pattern is evident connecting the overall range of simulated fire areas

and propagation directions to the time of day.
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Figure 2.4: Distribution of the range of values for the simulated burned area and propagation
directions by distance from the detection point. Each point represents the the values for a set of
model results initiated from the points 100 m away from the detection point (orange) or 1000 m
away from the detection point (blue) at the detection time, six hours before, or six hours after.
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Figure 2.5: Distribution of the range of values for the simulated burned area and propagation
directions by time of day. Each Time class represents four hours; ”early”: 2:00 a.m.-5:59 a.m.,
”morn”: 6:00 a.m.-9:59 a.m., ”mid”: 10:00 a.m.-1:59 p.m., ”aft”: 2:00 p.m.-5:59 p.m., ”eve”: 6:00
p.m.-9:59 p.m., ”night”: 10:00 p.m.-1:59 a.m..

2.3.1 Effects of initiation point location on forecast burn area

Figure 2.6 summarizes the forecast fire area from cases initiated at their respective detection

times. The range of fire area values has a tendency to broaden with distance away from the detected

fire location. Across all ten case studies (initiated at their detection times), the average difference

in predicted area was 1.29 km2 for simulations started 100 meters away from the detection location,

and 8.49 km2 for simulations started 1000 meters away from their detection point. Simulations of

the Silver Creek Fire had the smallest range of values, a difference between the smallest and largest

simulated area of 0.72 km2, while simulations of the Spring Creek Fire had the largest range, 15.56

km2.
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Figure 2.6: Forecast areas for each case study resulting from simulations initiated at the detection
time and all 17 initiation points. Simulations initiated 1000 m away from the detection location
had a broader range of forecast burn area values than simulations initiated 100 m away from the
detection location.

2.3.2 Effects of initiation time on forecast area

The effect of shifting the simulation initiation time by six hours on the forecast area varies

by case study. Considering simulations started from just the detected locations, the smallest range

of forecast area values was (1.23 km2 - 1.72 km2) from the Silver Creek Fire case study, and the

largest was (6.57 km2 - 29.10 km2) from the High Chateau Fire case study. Forecast fire area values

simulated from the detected location at the detected time, plus and minus six hours for each case

study are summarized in Figure 2.7 below.
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Figure 2.7: Forecast burned area at each case study’s detection location initiated at the detection
time (magenta), six hours before (dark green) and six hours after (blue). The range of forecast
areas differs by case study.

2.3.3 Effects of initiation point location on forecast propagation direction

Figure 2.8 summarizes the forecast direction of propagation from case studies initiated at their

respective detection times. Again, the range of values has a tendency to broaden with distance

away from the detected fire location. Simulations of the Silver Creek Fire had the smallest range

of values (113.51° - 132.00°), while simulations of the 416 Fire had the largest (317.48° - 29.27°).
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Figure 2.8: Forecast direction of propagation for case studies initiated at the time of detection.
The range of propagation directions tends to be wider for simulations initiated 1000 m away (orange
vectors) from the detection location than for those initiated 100 m away (blue vectors) from the
detection location. The direction of the simulation initiated from the detection location is shown
in black.

2.3.4 Effects of initiation time on forecast propagation direction

Forecast propagation direction simulated from the detected location at the detected time,

plus and minus six hours for each case study are summarized in Figure 2.9. Again, the effects vary

by case study. Considering simulations started from just the detected locations, the smallest range

of forecast fire propagation directions was (67.24° - 72.34°) from the Weston Pass Fire case study,

and the largest was (67.77° - 257.54°) from the Cabin Lake Fire case study.
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Figure 2.9: Forecast propagation direction for simulations initiated at the detection location at
the time of detection (magenta), six hours before (dark green), and six hours after (blue).

2.3.5 Effects of both initiation point location and initiation time on forecast area

and propagation direction

Simulations of the 416 Fire are used for a closer look at the combined effects of initiation

point location and time on simulated fire area and propagation direction. The results of this case

study are summarized in Figure 2.10. The range of propagation directions is narrowest at the

time of detection (10:02 a.m. MDT, 1602 UTC, a range of 71.79°), while the range of propagation

directions is wider both six hours before (4:02 a.m. MDT, 1002 UTC, 213.70°) and six hours after

the detection time (4:02 p.m. MDT, 2202 UTC, 162.91°). The range of simulated burned areas

resulting from initiation locations 100 meters away from the detected location are more compact

than those resulting from initiation locations 1000 meters away from the detected location. The

area difference for simulations 100 meters away from the detected location at the time of detection

is 0.81 km2, and 5.98 km2 for simulations 1000 meters away from the detected location. The area

differences for simulations initiated six hours before the detection time are 0.79 km2 and 1.78 km2

for initiation points 100 meters and 1000 meters from the detection location, respectively. The area
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differences for simulations initiated six hours after the detection time are 1.73 km2 and 4.78 km2

for initiation points 100 meters and 1000 meters from the detection location, respectively.

Figure 2.10: Forecast burned area perimeters for the 416 Fire case study. Simulations initiated
at the detection location at the time of detection (magenta, center), six hours before (dark green,
left), and six hours after (blue, right) at initiation points 100 m away from the detection points
(top) and 1000 m away from the detection point (bottom).

2.4 Discussion

As shown, the range of forecast burned area and propagation direction values is strongly

affected by the location of the initiation location, less so, if at all by the time of day. The Rothermel

rate of spread equations implemented in WRF-Fire rely on several input values. Among these, the

initiation location and time determine the fuel model (a set of fuel characteristics including load

depth and fuel type), the wind vectors, and the terrain characteristics. For each domain of the

fire case studies used in this research, the fuel model, 10 m height wind direction, 10 m height
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wind speed, terrain aspect, and terrain slope were collected. The range of values for each of these

variables was calculated for each simulation and used to fit a separate generalized linear model for

each output variable (forecast burned area and propagation direction). Generalized linear models

are used here to estimate the relationship between variables. Summaries for the models are shown

in Table 2.2 and Table 2.3. The range of fuel models, wind directions and speeds, and aspects are

important predictors of the range of forecast burned area values. The same is true of the range

of forecast propagation directions, though the range of slope values is also important in this case.

Essentially, this brief investigation shows that the range of forecast burned area and propagation

direction values is related to the heterogeneity of the fire domain. In a space with consistent fuel

models, slopes and aspects, with little variability in the wind speeds and wind directions across

space and time, forecasts initiated at different locations and different times will result in similar

burned areas and propagation directions. In a space with several different fuel models and more

complex terrain, with variability in the wind speeds and wind directions across space and time,

forecasts initiated at different locations and different times will result in wider ranges of burned

area and propagation direction values.
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Table 2.2: Generalized Linear Model Summary for Modeling the Range of Forecast Burn Area Val-
ues (area range) from the Range of Fuel Models (n fuel), Terrain Slope (slope range), Aspect (as-
pect range), 10 m Height Wind Direction (wdir range), and 10 m Height Wind Speed (wspd range).
P-values and coefficients (in parentheses) are shown for each variable and the model’s constant term.

Dependent variable:

area range

n fuel −0.351∗∗∗

(0.079)
slope range 0.001

(0.009)
aspect range 0.005∗∗∗

(0.001)
wdir range 0.010∗∗∗

(0.004)
wspd range 0.119∗

(0.065)
Constant 1.530∗∗∗

(0.267)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



25

Table 2.3: Generalized Linear Model Summary for Modeling the Range of Forecast Propagation
Direction Values (dir range) from the Range of Fuel Models (n fuel), Terrain Slope (slope range),
Aspect (aspect range), 10 m Height Wind Direction (wdir range), and 10 m Height Wind Speed
(wspd range). P-values and coefficients (in parentheses) are shown for each variable and the model’s
constant term.

Dependent variable:

dir range

n fuel 0.112∗∗∗

(0.027)
slope range 0.057∗∗∗

(0.003)
aspect range 0.002∗∗∗

(0.0003)
wdir range 0.017∗∗∗

(0.001)
wspd range 0.085∗∗∗

(0.023)
Constant 1.395∗∗∗

(0.126)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

While there are other possible sources of uncertainty in wildland fire behavior model inputs,

this study shows the importance of using the best available ignition time and location data. For

implementing wildland fire behavior models in the context of operational fire management, the

detection information and any in-situ observations may be the best available at the time. In the

context of wildland fire research, bounding the ignition information using remotely sensed data, as

done in the work by Benali et al. (2017) [26] will aid in improving the model setup. The ability to do

so will likely improve in the near future as higher-frequency, higher-resolution remotely sensed data

becomes available. This advancement in technology will certainly inform wildland fire research,

and has the potential to help provide near real-time active fire data, including ignition information.

2.5 Conclusions

As shown, the range of forecast burned area and propagation direction values is strongly

affected by the location of the initiation location, and to a lesser degree by the time of initiation.
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This is due to the input data associated with the initiation location and time. The location

determines the fuel model and terrain characteristics, while both the time and location determine

the wind conditions. Incident commanders and wildland fire researchers using wildland fire behavior

models can anticipate that the range of forecast burned areas and propagation directions will be

wider in heterogeneous fire domains, and more compact in homogeneous spaces.



Chapter 3

A Computationally Efficient Method for Updating Fuel Inputs for Wildfire

Behavior Models Using Sentinel Imagery and Random Forest Classification

3.1 Introduction

The coniferous forests of the lower Rocky Mountains are innately disposed to wildfire [71].

Trends toward a warmer, drier climate and rapid development of the wildland-urban interface

(WUI) have increased wildfire risk to human life and property in this region [108]. Additionally,

fuel accumulation through historic fire suppression and the rise in fuel aridity have contributed to

the risk of more severe wildfires [34]. Wildfire frequency and severity are increasing in the Western

United States [105], and the largest, most severe fires have occurred since 2004 [4], motivating

national discussions on risk mitigation [10].

Wildfire behavior models may be used effectively to forecast fire area, propagation direction,

and other metrics essential to operational firefighting, fuel treatment and our overall understanding

of wildfire [36]. Fuel characteristics including fuel load depth, percent moisture of extinction,

vegetation type, particle size, and heat content are important inputs for these models. Quantifying

fuel characteristics in an accurate and timely way has been one of the main challenges of wildfire

mitigation and operational management [77]. These models rely on accurate fuel data, and when

data are available, the behavior models may be used reliably in pre-wildfire mitigation, and in active-

fire suppression and management. However, wildfire fuels are dynamic on multiple time scales, from

their response to hourly atmospheric conditions to their response to multi-year disturbance events

such as drought or insect outbreaks. The publication of the fuel inputs commonly used for wildfire
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behavior modeling may occur at a frequency outpaced by these disturbance events. However, these

datasets provide a robust foundation that may be mindfully adjusted to provide wildfire behavior

models with updated fuel information.

LANDFIRE [114], a program that develops and publishes national geo-spatial datasets, hosts

a suite of wildfire fuel datasets used by fire scientists and forest management teams to suppress ac-

tive wildfire and plan mitigation strategies. The LANDFIRE datasets include the Scott and Burgan

40 fuel models [123], which are commonly used in wildfire behavior modeling. The fuel models are

profiles of fuel characteristics including fuel bed depth, fuel load, fuel moisture of extinction, vege-

tation composition, and surface-area-to-volume ratio. Most fuel data sets are created by mapping

(or ‘crosswalking’ in fuel modeling terminology) remotely sensed data, such as satellite reflectance

values, to fuel characteristics used in wildfire behavior models. To determine the appropriate fuel

model for each location in a 30 m x 30 m grid across the contiguous United States (CONUS), the

fuel data integrate remote sensing data, system ecology, gradient modeling, and landscape simu-

lation. Composing fuel data sets is time consuming, and requires significant planning, resources,

and funding. Understandably, the data sets are infrequently updated, which can be problematic

when used as input for wildfire behavior modeling, particularly when used for operational wildfire

management.

Here we present a method of refreshing fuel layer data using a case study of 2020 East

Troublesome Fire in Colorado. While the most current LANDFIRE data available at the time of

the fire showed the domain as healthy timber, shrub, and grassland, fire records show that the

East Troublesome Fire burned through significant amounts of dead and downed timber. While

this case study requires adjusting the fuel data to reflect beetle infestation and blowdown due to

wind events, the same method could be applied to other scenarios such as representing fuels before

recursive burning or a shift in vegetation type. The overall goals of this work are to estimate

tree mortality severity using a random forest (RF) model trained on C-band Synthetic Aperture

Radar (C-SAR) Sentinel-1 data, raw bands and vegetation indices from Sentinel-2 data, land cover

vegetation classes from the United States Forest Service (USFS) Landscape Change Monitoring
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System (LCMS), and the Insect and Disease Detection Surveys (IDS) from the US Forest Service;

simulate a case study of the East Troublesome Fire using both the generated fuel data and the

LANDFIRE data available at the time of the fire; and to compare the simulations’ results with

observed active fire data.

3.2 Materials and Methods

3.2.1 The East Troublesome Fire Case Study

The East Troublesome Fire was detected on October 14, 2020 northeast of Kremmling, Col-

orado in the Arapaho and Roosevelt National Forests. With low humidity recovery overnight and

high winds, the area was perfectly primed for fast wildfire conditions. Within the first three days,

the fire spread to approximately 10,000 acres. Within nine days, it had covered nearly 200,000

acres and crossed to the east side of the Continental Divide [5].

The East Troublesome Fire is an especially notable case study because it spread upwards of

87,000 acres in one 24-hour period (October 21 – 22, 2020). At the time of the fire, the available

LANDFIRE fuel data set reflected fuel conditions from 2016. In 2016, much of the fire’s domain

was classified as standing healthy timber and shrub. However, between 2016 and 2020, the timber

in the fire domain experienced pine beetle outbreak, drought, and wind storms resulting in fuel

conditions described as jackstraw; a tumble of very dry, downed and standing trees [5]. Thus, we

expect that a simulation of the East Troublesome Fire using the Scott and Burgan 40 fuel model

layer available at the time of the fire would underestimate the burned area, as much of the fire

domain was represented as healthy, standing timber and shrub in the dataset.

3.2.2 Machine Learning Approach

To update the existing fuel layer for the East Troublesome case study, we trained a RF

classifier to estimate severity of tree mortality based on Sentinel-1 and Sentinel-2 imagery [1, 2],

the USFS-LCMS [3]and the USFS Insect and Disease Detection Survey (IDS) conducted in July
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2019 [11]. These data were chosen to capture the greenness, texture, vegetation type, and level of

tree mortality throughout the fire domain.

The Sentinel-1 system consists of two satellites, both in the same orbital plane, carrying

C-SAR instrumentation. This research utilizes data collected in the instruments’ interferometric

wide swath (IW) mode, the main operational mode over land. The system has a revisit time of 5-7

days over the East Troublesome fire location, with a 10 m spatial resolution. C-SAR data is used

effectively for land cover change and classification [8]. In this research, C-SAR data is included

in the set of model inputs to provide information on surface texture; to help distinguish between

features such as shrubs, standing timber, and downed timber.

The Sentinel-2 system also consists of two satellites, each carrying a multispectral instrument

(MSI) that sample 13 spectral bands at spatial resolutions between 10-60 meters. The system has

a revisit time over the case study location of approximately 5 days. Due to its relatively fine spatial

and temporal resolution, data from this system has been used for land and maritime monitoring,

as well as natural disaster management [9]. MSI data from Sentinel-2 is included to provide the

RF with information on vegetation health, and to help distinguish between surface features.

The USFS-LCMS data set contains land cover change, land cover, and land use data at an

annual resolution. These data are calculated by ensemble modeling techniques, using Landsat and

Sentinel-2 imagery, terrain data, and LandTrendr and CCDC change detection algorithm results

as inputs. The USFS-LCMS Land Cover product was used in this research to provide the model

with a distinction between vegetation classes.

IDSs are conducted annually in forested public land across CONUS. Trained surveyors esti-

mate the percentage of dead trees per acre, viewing the forest from fixed-wing planes or helicopters.

The surveyors draw polygons around the affected forest areas on maps and label each polygon as

one of five classes of tree mortality: 1-3% (very light), 4-10% (light), 11-29% (moderate), 30-50%

(severe), and greater than 50% (very severe). The polygons are then matched with ground surveys

to assign the dominant beetle species to each, as these data are primarily used to track beetle

outbreaks across CONUS. The resulting data is a set of irregularly-sized polygons labeled with the
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date of collection, the dominant beetle species, and level of tree mortality [11].

RF was chosen for this application due to its ability to handle both categorical and continuous

variables and to capture complex interactions between several input variables [32]. Confusion

matrices, accuracy scores, and hierarchies of feature importance may be used to confirm model

accuracy and gain insight into feature dynamics. In particular, the Statistical Machine Intelligence

and Learning Engine (Smile) version of RF was applied in Google Earth Engine. Google Earth

Engine hosts a multi-petabyte library of geospatial data, and its code editor platform allows users

to perform analyses over large amounts of data efficiently in the Cloud [65].

We created cloud-free composites of Sentinel-2 imagery from July 2019 (the month of the

2019 Colorado tree mortality survey), and September 2020 (just before the East Troublesome

Fire). Following Meddens, Hicke, Vierling, and Hudak [91], we then calculated the chlorophyll red-

edge index, shortwave infrared to near infrared ratio, tassel cap brightness, tassel cap greenness,

and tassel cap wetness specific to the Sentinel-2 data. To develop training and validation data, we

subset the tree mortality survey data to the fire event area (approximately 60km x 70km). We then

generated 400 m2 polygons randomly located within the tree mortality survey polygons, assigning

them a label that mostly closely translates their USFS-IDS severity class to a representative Scott

and Burgan fuel model (Figure 3.1). The very light and light tree mortality classes are labeled low

load, the moderate and severe tree mortality classes are labeled moderate load, and the very severe

tree mortality class is labeled high load. Each of the three resulting classes represents a fuel model

in the slash-blowdown category of the Scott and Burgan fuel models, a category used to describe

timber slash or downed fuel from wind damage. While ‘crosswalking’ fuel data to fuel models is a

common practice [17, 123], it should be noted that it is a subjective process [79]. Effort was made to

best match the USFS tree mortality classes to the fuel models based on the guidance for choosing

representative fuel models provided in the original Scott and Burgan 40 fuel model publication

[123]. To provide the RF model with data that captures all possible surface features within the

wildfire domain, 400 m2 polygons capturing healthy vegetation, bare ground, urban areas, and

water comprise an additional class of other. Altogether, the RF model is provided multispectral,
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C-SAR, and land cover class input in sample spaces labeled either low load, moderate load, high

load, or other.

Figure 3.1: Insect and Disease Detection Survey (IDS) tree mortality classes mapped to Scott and
Burgan 40 fuel models from the Slash-Blowdown class. Polygons from the IDS were mapped to
their most representative fuel models using guidance from the original publication describing the
fuel models.

The full set of polygons was split randomly into 70% for training and 30% for testing by class.

The image bands, calculated indices, and land cover classes were sampled within the polygons.

The RF classifier was run for the composite July 2019 image and tested for accuracy, before being

applied to the September 2020 composite image. The model configuration that optimized accuracy

of classifying the test dataset included 100 decision trees, 5 variables per node split, a minimum

leaf population of 1, an unlimited maximum number of leaf nodes, and a bag fraction of 0.5. Once

classified, the fuel layer is written in .tif format such that it may be analyzed using Python and

utilized as input for a wildfire behavior model.

3.2.3 WRF-Fire

To examine the impact of the LANDFIRE fuel data on the evolution of the East Troublesome

Fire, we used the Weather Research and Forecasting (WRF) model [124] coupled to a fire behavior

model based on the Coupled Atmosphere-Wildland Fire Environment [42, 43]. The coupled model
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is more commonly known as WRF-Fire [45]. In WRF-Fire, the meteorological grid is defined as

in a typical WRF simulation; however, the fire grid is refined to compute finescale changes in the

fuel properties and track the evolution of the fire perimeter via a level-set method [87, 98]. Using

the Rothermel [116] parameterization, the winds, fuel characteristics, and terrain slope on the fire

grid determine the fire rate of spread. Once a fire is ignited in the model, the burn rate of the fuel

is determined via the parameterization developed by Albini [15], which computes the amount of

heat and moisture released based on the fuel properties. The released energy then feeds back to

the atmosphere such that there is full coupling between the fire and atmosphere.

Our simulations are conducted using a two-domain setup, with the outer (d01) and inner (d02)

domains covering an area of approximately 220,000 km2 and 32,000 km2, respectively (Figure 3.2).

By and large, our chosen model physics and dynamics options follow the operational WRF-Fire

modeling setup, called the Colorado Fire Prediction System, developed by the National Center for

Atmospheric Research (NCAR). Options relevant to this study include: (i) a horizontal grid cell

spacing of 1000 m and 111.11 m, respectively, on the meteorological grid in d01 and d02; (ii) a

horizontal grid cell spacing of 27.77 m on the fire grid in d02 (subgrid ratio of 4 compared to

the meteorological grid); (iii) 44 vertical grid cells in d01 and d02; and, (iv) activating the Mellor-

Yamada-Nakanishi-Niino (MYNN) [100] planetary boundary layer (PBL) parameterization on d01,

while d02 is run in large-eddy simulation (LES) mode. Furthermore, to determine the impact

of meteorology on the wildfire evolution and bolster our results related to fuel model sensitivity,

we test two different meteorological datasets used for initial and boundary condition forcing: the

North American Mesoscale Forecast System (NAM) and the European Centre for Medium-Range

Weather Forecasts Reanalysis v5 (ERA5).
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Figure 3.2: The two-domain setup used in the WRF-Fire simulations. Terrain elevation is color

contoured according to the colorbar (units in m) and state outlines are represented by the solid red

lines.

During the pre-processing step for WRF-Fire, the fuel categories of the Scott and Burgan

40 fuel class model are assigned to each fire grid cell. For the purposes of this study, we generate

two different input files: one that contains the default Scott and Burgan 40 fuel class model and

one that contains the modified Scott and Burgan 40 fuel class model following our RF results, as

described above. We refer to the former simulation as Control and the latter simulation as ML

(abbreviation for Modified Layer). The original and modified Scott and Burgan fuel model layers

used in our WRF-Fire simulations are shown in Fig. 3.3. We also utilize the 3 arc second Shuttle

Radar Topography Mission (SRTM) terrain data for the fuel grid. Recent developments by NCAR

allow us to apply heterogeneous fuel moisture content (FMC) values to our fire domain [89]. As an
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additional sensitivity test, we evaluate the impact of FMC by also conducting a simulation with

constant FMC set to 9%, which is approximately equal to the domain-averaged value computed

from the heterogeneous FMC data set (not shown).

In summary, we conduct a total of five simulations based on the various model sensitivities

discussed above: (1) NAM Control, (2) NAM ML, (3) NAM ML + Constant FMC, (4) ERA5

Control, and (5) ERA5 ML. Each of our simulations begins at 21 October 2020, 1800 UTC and

ends at 22 October 2020, 1500 UTC. The fire is ignited from an active perimeter (provided by the

National Interagency Fire Center and shown in Fig. 3.3) measured at 22 October 2020, 0020 UTC

(6 hours and 20 minutes after the simulation start time to ensure sufficient spin-up time). We now

show results from the various WRF-Fire simulations to highlight the relative impact of varying the

fuel categories, meteorological forcing data set, and FMC.

Figure 3.3: The original (left) and modified (right) Scott and Burgan fuel model layers used in the

WRF-Fire simulations. The active fire perimeter used to initiate the simulations is shown in white.

Fuel categories represent the fuel type of the fuel model; Slash-Blowdown (SB), Timber Litter (TL),

Timber-Understory (TU), Shrub (SH), Grass-Shrub (GS), Grass (GR), and Nonburnable (NB)
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3.3 Results

The RF algorithm correctly classified over 84% of the test data in the fire domain, and

performed well at separating the tree mortality classes from the other class. The RF misclassified

6.1% of the low load, <1% of the moderate load, and 8.7% of the high load classes as other. The

confusion matrix for the classifier’s performance on the test dataset is given in Table 3.1. Table 3.2

shows the precision (positive predictive value), recall (true positive rate), and F1-score (weighted

average of precision and recall) for each class.

Table 3.1: Confusion matrix for the classifier’s performance on the test dataset.

other low load moderate load high load

other 8505 337 257 52

low load 31 256 120 105

moderate load 8 232 457 196

high load 38 148 179 72

Table 3.2: Precision, recall, and F1-scores for the classifier’s performance on the test dataset.

precision recall F1-score

other 0.927 0.992 0.958

low load 0.520 0.252 0.340

moderate load 0.489 0.471 0.480

high load 0.162 0.157 0.160

The fuel updating process resulted in changing a significant amount of the Timber Litter and

Timber-Understory fuel classes in the original fuel model layer to Slash-Blowdown fuel classes in the
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modified fuel layer. Timber Litter and Timber-Understory are fuel model classes in which the main

fire carriers are litter such as pine needles or hardwood leaves shed from timber, and grasses, shrubs,

litter and moss respectively. These are classes typically designated to healthy timber systems with

finer fuels under the tree canopy. In the semi-arid climate of the East Troublesome Fire case study,

the wildfire rate of spread generated from these fuel models is low to moderate. In contrast, the

wildfire rate of spread resulting from the slash-blowdown fuel models is moderate to high.

The WRF-Fire results from all sensitivity simulations are shown for two observed times in

Figure 3.4 and Figure 3.5, with time series of various burn area and burn rate statistics given in

Figure 3.6. Table 3.3 summarizes the forecast and observed areas for each of the simulations.

Overall, WRF-Fire underpredicts the East Troublesome Fire burn area regardless of the

model setup explored in this study. Nonetheless, we find that modifying the fuel layer has the

largest, positive impact compared to modifying meteorological forcing data set or the FMC. Con-

ducting simulations using the default Scott and Burgan fuel model (the fuel data that was available

to incident commanders at the start time of the fire) results in a much more substantial underpre-

diction of the fire’s burned area compared to using the updated fuel layer. As a result, the burned

area prediction better matches the observed burned area, shown visually in Figs. 3.4 and 3.5 and

quantitatively in Fig. 3.6 and Table 3.3. Additionally, our results show that forcing WRF-Fire with

NAM leads to better agreement with observations than when using ERA5, likely due to enhanced

wind speeds in NAM (further explained below). For this particular case, the influence of FMC is

very small compared to that of the fuel layer or meteorological forcing.
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Figure 3.4: The sensitivity simulation results (solid yellow colorfill) using NAM meteorological
data with the original fuel inputs, the modified fuel inputs, and the modified fuel inputs with a
constant 8% fuel moisture content (labelled NAM Control, NAM ML, and NAM ML + Constant
FMC respectively), and the simulations using ERA5 with the original fuel inputs and the modified
fuel inputs (labelled ERA5 Control and ERA5 ML respectively). The observed fire perimeter (solid
magenta line) was captured aerially at 06:40 UTC on 2020-10-22.

Figure 3.5: As in Figure 3.4, though for 0240 UTC on 10/23/2020.
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Figure 3.6: Time series of (a) burn area (km2), (b) burn area fraction (ratio of ML to Control),
(c) burn rate (km2 hr-1), and (d) burn rate difference (ML minus Control). Model results are
shown by the lines (according to the legend), while NIFC IR perimeters are shown in the magenta
diamonds (labeled ‘Obs’ in the legend). The legend for panel (a) also applies to panel (c).
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Table 3.3: Summary of the forecast burned area values, compared with observations occurring at
the two timestamps within the simulation time frame. All forecast values in the table result from
the simulations using NAM meteorological data.

date simulation
Forecast
Area
(km2)

Observed
Area
(km2)

Overlap
Area
(km2)

10/22/20
0640
UTC

Control 188.92 508.59 179.62
Updated Fuels 285.34 508.59 258.31
Updated Fuels &
constant FMC

284.63 508.59 259.04

10/23/20
0240
UTC

Control 293.87 689.57 272.17
Updated Fuels 624.72 689.57 532.33
Updated Fuels &
constant FMC

608.39 689.57 531.15

A comparison of 10-m wind speeds along the fire front from the NAM Control, NAM ML,

and ERA5 ML simulations are shown in Fig. 3.7. This figure shows that the low-level wind speeds

are stronger in NAM ML compared to ERA5 ML supporting the notion that the WRF-Fire sim-

ulations with NAM initial and boundary condition forcing produce faster fire spread largely due

to enhanced low-level wind speeds. In fact, the largest differences in the NAM ML and ERA5 ML

lines correspond well with the largest difference in burn rate between NAM ML and ERA5 ML

(Fig. 3.5c). Furthermore, we find that the 10-m fire front wind speeds are quite similar between

NAM Control and NAM ML. This result suggest that the large differences in the burned area

forecasts between the Control and ML simulations may be confidently attributed to the differences

between the original and modified fuel model layers and the resultant differences in fuel properties.
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Figure 3.7: Time series of fire front-averaged 10 m wind speed at model grid cells with active
burning. We average across all horizontal grid cells where the fire rate-of-spread is > 0.05 m s−1.
Results from three select simulations are shown according to the legend.

3.4 Discussion

Examining the confusion matrix of the RF classifier output shows that the model correctly

classifies approximately 92.7% of the other category correctly, most frequently mistaking it for the

low class (4.2% of the time) in the test data set. 52% of the low class was correctly classified,

and misclassified as the moderate class 21% of the time. The RF correctly classified 48.9% of

the moderate class, mistaking it for the low class 28.8% of the time. Finally, the high class was

correctly classified 16.2% of the time, while mistaken for the moderate class 41.2% of the time. This

analysis shows that while the model performs well at distinguishing between the other class and

the slash-blowdown classes, it has not been provided enough information to excel at classifying the

different severity levels. This is likely due in part to uncertainty in the training data, particularly

in the tree mortality surveys as the aerial collection practices are subjective in nature [47]. Similar

issues may arise in applying this method to other scenarios, which highlights the importance of

including ancillary data when available and understanding the limitations of any included datasets.

The data used to train the RF classifier and to classify images were chosen with the intent of
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capturing information on tree mortality throughout the fire domain. In the context of a different

set of known conditions, it would be necessary to choose data representative of those conditions.

Regardless, the operator would need an understanding of available data and how it translates to on-

the-ground conditions. Providing the RF classifier with additional information about the particular

conditions just before a fire will likely improve classification accuracy when implemented mindfully.

The development and implementation of the RF in this study was performed in Google

Earth Engine, which gives the Gini impurity decreases of each random forest node as a metric

of feature importance. Examining the hierarchy of these values for the RF features shows that

the chlorophyll red-edge index suggested by Meddens, Hicke, Vierling, and Hudak [91] is the most

important feature (Figure 3.8). This index is particularly sensitive to chlorophyll, carotenoids,

and anthocyanin production [64], which indicate vegetation senescence. There is an inevitable

change in senescence simply due to the seasonal changes between July 2019 (the time of the tree

mortality surveys) and September 2020 (the time just before the East Troublesome Fire). As the

chlorophyll red-edge index is important to classification, senescence may be confounded with the

intended classification of tree mortality in this case. However, the C-SAR bands, which contribute

information on the surface texture and were intended to help distinguish between vegetation types

and standing and downed timber, were also highly important to the classification. Given the

high degree of classification accuracy, this indicates that collectively the input data provided was

adequate to train the RF, and that any cells classified as tree mortality due to the signature of

senescence are of minimal consequence.
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Figure 3.8: The sum of the Gini impurity decreases across all node splits for each individual
random forest feature. The bars represent the importance of each feature, measured through the
sum of all the Gini impurity index decreases for each feature included in the random forest classifier.

Google Earth Engine runs in the Cloud and houses several relevant remote sensing data sets.

Based on the methodology described in this study, it would be possible to develop an operational

system that provides fuel updates in real time on an on-demand basis, and which would be available

to fire behavior analysts and incident commanders. We would advise becoming familiar with

the available data sets that are most relevant to the region being simulated. Moving forward

more remote sensing data will become available, and may be used fruitfully for this purpose.

Two additional Sentinel-1 satellites, both equipped with C-SAR instrumentation, are scheduled for

launch in 2022 and 2023, and are expected to shorten the current revisit time for the system. One

additional Sentinel-2 satellite is scheduled for launch in 2024, and will likewise shorten the revisit

time and contribute multispectral imagery to the already established Sentinel-2 system. The fuel

model data currently available provides a solid foundation for mindfully adjusting fuel layers prior

to running simulations using wildfire behavior models. The incoming wealth of remote sensing data

and modeling tools will only provide more opportunity for refreshing this data as needed.
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3.5 Conclusion

This work presents an effective workflow for updating fuel data used in wildland fire behavior

modeling. It builds on available fuel data and provides a solution to quantifying fuel characteristics

in an accurate and timely manner. While the East Troublesome case study focuses on dead, downed

timber due to beetle infestation and wind events, the workflow presented here may be applied to

several types of disturbance events that affect wildland fire fuels, given the availability of relevant

data. These methods were intentionally developed using freely available data and the analysis and

modeling platform, Google Earth Engine to make them accessible to a broad user base, including

wildland fire researchers and incident commanders. We anticipate that with the increase in wildland

fire activity, research, and response, as well as the increase in availability of remotely-sensed data,

that these methods will aid in improving wildland fire forecasts.



Chapter 4

Regional-Scale Drivers of Daily Fire Growth Across the Contiguous United

States

4.1 Introduction

From the chaparral ecosystems and Santa Ana winds of California to the conifer forests and

steep slopes of the Rocky Mountains, the United States varies greatly in combinations of wildland

fire drivers. As such, we see a diverse range of fire behavior across the contiguous United States

(CONUS). Several studies have investigated the physical mechanisms of fire growth in laboratory

experiments [118, 37, 18, 61, 19, 56]. Significant research has also been done to investigate the

drivers of fire growth at the event scale [46, 75]. However, very little is known about continental

and regional-scale drivers of day-to-day fire growth.

Small-scale experiments within labs and prescribed burns focused on the interaction of fuels,

heat and oxygen have shown that temperature directly affects fire behavior through heat require-

ments for ignition. Fuels that are already warm need less energy to ignite. Fuels exposed to sunlight

will be warmer and drier than fuels in the shade, directly affecting fire rate of spread. Likewise,

fuels are typically warmer during mid-day than in the morning, evening, and nighttime. Rising

temperatures during the day decrease the relative humidity and fuel moisture [77]. Relative hu-

midity has a direct, positive relationship with fuel moisture [77], and fluctuates throughout the day

with more moisture in the coolness of the morning and evenings, less moisture during the heat of

the mid-day. Moreso, precipitation has an immediate and direct effect on fuel moisture [57], and a

suppressing effect on active fire.
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Other experiments have focused on fire regimes through long-term or large-scale investigation

of ignition, vegetation, and climate. Recent studies have shown climate change has shifted fuel char-

acteristics by changing the suitability of the environment and the mechanisms that determine the

rise and fall of species populations [14, 31]. For example, the deserts of the Western United States

(U.S.) are likely to see a difference in the spread of invasive grasses due to (human-caused) climate

change. Cold-intolerant grasses benefit from a longer freeze-free season (shorter winter). Warmer

temperatures lengthen the fire season, and the earlier onset of fires bring conditions that exag-

gerate the fire-invasive feedback loop [14]. In tropical climates, climate-induced droughts decrease

photosynthesis, and increase tree mortality and autotrophic respiration (a large source of CO2),

promoting wildfire by providing available fuel in a previously fuel-limited system [31]. Larger, more

frequent fires in these forests result in more greenhouse gasses being released in large quantities,

magnifying climate change [29]. There is also a temporal correlation between human-caused and

lightning-caused fires from year to year, suggesting that the total number of fires that propagate is

largely dependent on the fuel and meteorological conditions. Those conditions are becoming more

favorable for fire propagation with climate change [23].

While this research has propelled our understanding of wildland fire and its drivers at small

and large scales, there is room to investigate the combination of daily fire growth at a continental

scale. In this research we ask, what are the key drivers of daily fire spread across CONUS, and

how do they differ across ecoregions? Previous research on fire behavior at a continental scale was

limited by the lack of a long-term record of daily fire growth. We paired a twenty-year record of

daily fire progressions for over tens of thousands of events, across CONUS with weather, fuel, and

terrain information to assess the drivers of fire area increase on a daily time scale. To determine

the most important drivers for each region, we developed a set of random forest models for each of

ten ecoregions estimating the daily burned area increase as well as the peak burned area increase

(the largest daily area increase for each event). We used each model’s feature importance values

determined through permutations to define the hierarchy of drivers for each region across CONUS.
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4.2 Methods

4.2.1 Dataset

4.2.1.1 FIRED daily burn area

To capture daily burn area by fire event across a twenty-year record, we used data resulting

from the Fire Events Delineation (FIRED) algorithm developed by Balch et al. (2020) [24]. The

FIRED algorithm clusters “burned” pixels in the MODIS MCD64 Burned Area Product [63] that

are close together in space and time in order to delineate fire events across CONUS. The dataset

used in this research was generated using a spatial parameter of 5 pixels, and a temporal window of

11 days. These parameters were determined through matching Monitoring Trends in Burn Severity

(MTBS) fire events with the burned area pixels from MODIS MCD64 [24]. The resulting data set

includes x fire events, each with active fire perimeters at a daily timescale, spanning November

2001 through March 2021.

4.2.1.2 Environmental Protection Agency Level I Ecoregions

The FIRED dataset was subset by the Environmental Protection Agency (EPA) Level I

Ecoregions. The Level I ecoregions were developed in 1987 through pattern analysis incorporating

the spatial correlation of physical and biological factors [101, 102]. These factors include geography,

land use, hydrology, vegetation, climate, soils, physiography and wildlife. Other levels (II, III, and

IV) exhibiting finer granularity in their distinctive features are nested within the Level I ecoregions,

meaning that in the hierarchy of the ecoregions, it is the broadest distinction between physical and

biological factors in the United States. Level I includes 15 ecoregions, 10 of which intersect the

FIRED dataset in the Continental United States (CONUS). Dividing the analysis by ecoregions

allows for generalizations to be made about wildfire behavior at a regional scale. The CONUS EPA

Level I Ecoregions and FIRED daily growth areas are shown in Figure 4.1
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Figure 4.1: EPA Level I Ecoregions subset to CONUS with the FIRED daily burned area polygons

shown in white.

4.2.1.3 Drivers Dataset

Daily perimeters from each fire event were paired with data describing the meteorological

conditions, terrain, and fuel characteristics present. The wind speed and wind direction provide

the wind conditions across each daily burned area. 100-hr and 1000-hr fuel moisture content

represent the amount of water in the vegetation present [12]. Vapor Pressure Deficit (vpd) is an

absolute measure of the moisture deficit of the atmosphere, and is closely related to water stress

on vegetation [12]. The Palmer Drought Severity Index is a regional drought index representing

the severity of drought episodes [12]. Elevation, aspect, and slope provide information on the

terrain [62]. The Rumple Index, the ratio of surface and projected area, provides information on

the terrain complexity. The Multi-Scale Topographic Position Index (mTPI) distinguishes between

ridges and valleys [136]. The Continuous Heat-Insolation Load Index (CHILI) provides a proxy
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for the effects of insulation and topographic shading on evapotranspiration [136]. Physiographic

Diversity provides information on land facet patterns within each daily burned area [136]. Each

regional dataset was compiled in Google Earth Engine [65].

4.2.2 Random Forest Regression Model

Two individual random forest models were fit to each ecoregion’s dataset, one to estimate

the overall daily fire growth, and one to estimate the peak burn days’ fire growth (defined as the

day with the maximum area of growth for each fire event). This allows a comparison between the

drivers of daily fire growth and the drivers during the day when each fire event grew the most.

The main wildfire behavior drivers for each model in each ecoregion were determined as the drivers

with the greatest permutation feature importances. The permutation feature importances help to

identify the main wildfire behavior drivers for each model in each ecoregion. Feature importance

is measured by observing the effect on model accuracy through randomly shuffling each predictor

variable. The mean decrease in impurity importance of a feature is computed by measuring how

effective the feature is at reducing variance when creating decision trees within random forest

regression models. This method can be informative only if the features are independent of each

other. If two or more features are collinear, their importance is split. So, care was taken to remove

highly correlated features by examining a correlation matrix of all features. Table 4.1 gives the

features used, along with their spatial scale, the metric used (mean, mode, variance, standard

deviation), units and data source. Categorical features were represented through one-hot encoding,

a method of representing each category as a binary value. Hyperparameters were selected through

cross validation to optimize the model fit. The coefficient of determination (R2), mean absolute

error (MAE) and mean standard error were used to assess the accuracy of each model. Partial

dependence plots show how each of the most important features relate to the models’ predictive

capability, and scatter plots show the relationship between the important features and the predicted

variables. Models were developed and implemented in Python’s Sci-Kit Learn library [107].
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Table 4.1: Data, spatial scale, metric, units, source, and de-
scription of the data used to describe fire drivers. Datasets
were used as features within random forest regression models
trained to estimate daily fire growth and peak fire growth
within the EPA Level I Ecoregions across CONUS.

data
spatial
scale

metric units source description

aspect 10.2m
weighted
mean

deg

USGS
3DEP
National
Map

weighted average as-
pect in the burned
area

Continuous
Heat-
Insolation
Load Index

90 m
weighted
mean

-

Conservation
Science
Partners
product,
JAXA’s
ALOS
DEM

represents the effects
of insolation and
topographic shading
on evapotranspira-
tion

date - - - FIRED day of the year

100-hour fuel
moisture

4638.3 m
weighted
mean

pct GRIDMET

weighted average ig-
nitability of fuels 1-
3” in diameter and
moisture of fuels ¾-4”
below surface

Level III ecore-
gions

- mode - EPA

the dominant Level
III Ecoregion, a rep-
resentation of sub-
regions within each
Level I ecoregion

Multi-Scale
Topographic
Position Index

270 m mode m

Conservation
Science
Partners,
JAXA’s
ALOS
DEM

represents the domi-
nant landform

Palmer
Drought
Severity Index

4638.3 m
weighted
mean

-
GRIDMET
Drought

represents the
severity of drought
episodes (level of
moisture) in each
burned area

Physiographic
diversity

270 m
weighted
mean,
variance

-
Conservation
Science
Partners

represents the land
facet patterns within
each burned area
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Slope 10.2 m
weighted
mean

deg

USGS
3DEP
National
Map

weighted average
slope in the daily
burned area

Vapor Pres-
sure Deficit

4638.3 m
weighted
mean

kPa GRIDMET

represents the mois-
ture deficit of the at-
mosphere, and water
stress on vegetation

Wind direction 4638.3 m
weighted
mean

deg GRIDMET
weighted average
wind direction in
each burned area

Wind speed 4638.3 m
weighted
mean

m/s GRIDMET

weighted average
wind velocity at
10m height in each
burned area

4.3 Results

The variance in physiographic diversity is important to the model fit for the full set of

burned areas and the peak burn days for all of the ecoregions. The range of daily growth generally

decreases as physiographic diversity increases, and the presence of high physiographic diversity

variance is particularly important for skillful model predictions of daily growth as evidenced by

partial dependence plots.

Aside from the variance of physiographic diversity, other important features vary by ecoregion

and the models fit for either burned area or peak burned area. Notable (highest ranking) features

are discussed by ecoregion below.

4.3.1 Marine West Coast Forests

The EPA Level III ecoregions are important to the model fit for the Marine West Coast

Forests. The partial dependence plot shows that the model fit relies heavily on the California

Coastal Sage, Chaparral, and Oak Woodlands and Cascades Level III ecoregions, but does not

rely heavily on the Coast Range, Klamath Mountains, Willamette Valley, Strait Of Georgia/Puget

Lowland, and North Cascades. The Level III ecoregions were not important to the model fit for
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peak burned areas, the only notable feature in the model fit being physiographic diversity variance.

Figure 4.2 shows the permutation feature importances for the features included in the random

forest regression model estimating daily fire growth for the EPA Level I Marine West Coast Forest

Ecoregion. Figure 4.3 shows the partial dependence plot for the model’s EPA Level III Ecoregions

feature and Daily Fire Growth.

Figure 4.2: The EPA Level III Ecoregions are important to the random forest regression model
fit for the Marine West Coast Forest Ecoregion.
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Figure 4.3: The random forest regression model fit for the Marine West Coast Forest Ecoregion
relies heavily on the California Coastal Sage, Chaparral, and Oak Woodlands and Cascades Level
III ecoregions.

4.3.2 Mediterranean California

The Rumple Index, a metric of terrain complexity, is important to the model fit for the

Mediterranean California Level I ecoregion. The model fit becomes more important as the com-

plexity of the terrain increases. Figure 4.4 shows the permutation feature importances for the

features included in the random forest regression model estimating daily fire growth for the EPA

Level I Mediterranean California Ecoregion. Figure 4.5 shows the partial dependence plot for the

model’s Rumple Index feature and Daily Fire Growth.
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Figure 4.4: The Rumple Index is important to the random forest regression model fit for the
Mediterranean California Ecoregion.
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Figure 4.5: The random forest regression model fit for the Mediterranean California Ecoregion
relies heavily on the higher values of the Rumple Index.

The Rumple Index was also an important feature in the model fit for peak daily fire growth

in the Mediterranean California ecoregion. Here the values for the Rumple Index are slightly more

compressed, but show a similar relationship to the daily fire growth model’s partial dependence.

Figure 4.6 shows the permutation feature importances for the features included in the random forest

regression model estimating peak daily fire growth for the EPA Level I Mediterranean California

Ecoregion. Figure 4.7 shows the partial dependence plot for the model’s Rumple Index feature and

Peak Daily Fire Growth.
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Figure 4.6: The Rumple Index is important to the random forest regression model fit for the
Mediterranean California Ecoregion.
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Figure 4.7: The random forest regression model fit for the Mediterranean California Ecoregion
relies heavily on the higher values of the Rumple Index.

4.3.3 Tropical Wet Forests

The Rumple Index is also important to the model fit for Tropical Wet Forests, though here

the range of values is much more compact, and the model fit becomes less dependent for values

higher than 1.001. Figure 4.8 shows the permutation feature importances for the features included

in the random forest regression model estimating daily fire growth for the EPA Level I Tropical

Wet Forests Ecoregion. Figure 4.9 shows the partial dependence plot for the model’s Rumple Index

feature and Daily Fire Growth.



58

Figure 4.8: The Rumple Index is important to the random forest regression model fit for the
Tropical Wet Forests Ecoregion.
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Figure 4.9: The random forest regression model fit for the Tropical Wet Forests Ecoregion relies
heavily on the higher values of the Rumple Index.

In the model fit to peak burned area in the Tropical Wet Forests ecoregion, the Rumple

Index is still important to model fit. Again, the model fit becomes less dependent for values higher

than 1.001. Figure 4.10 shows the permutation feature importances for the features included in the

random forest regression model estimating peak daily fire growth for the EPA Level I Tropical Wet

Forests Ecoregion. Figure 4.11 shows the partial dependence plot for the model’s Rumple Index

feature and Peak Daily Fire Growth.
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Figure 4.10: The Rumple Index is important to the random forest regression model fit for the
Mediterranean California Ecoregion.
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Figure 4.11: The random forest regression model fit for the Tropical Wet Forests Ecoregion relies
heavily on the higher values of the Rumple Index.

4.4 Discussion

The results show that the variance of physiographic diversity is an important driver of daily

wildland fire growth across CONUS. The data for this feature in the set of random forest models

originates from the physiographic diversity dataset developed by Theobald et al. (2015) [136]. A

diversity index value is assigned to each 270 m grid cell in their dataset based on landforms (natural

features of the earth’s surface), estimates of incident radiation and heat load, and lithology (i.e.

mineralogical and chemical composition of rocks and soil). High index values represent high levels

of physiographic diversity, low index values signify little physiographic diversity. The variance of

the physiographic diversity index value within each daily fire growth area represents the dispersion
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of values from the mean value, a metric of the overall heterogeneity of physiographic diversity.

High values of the physiographic diversity variance represent the daily fire growth areas with a

high amount of environmental heterogeneity, low values represent daily fire growth areas that are

more homogeneous in their overall physiography.

A wide range of daily growth values occur within the spaces that are environmentally ho-

mogeneous (low values of physiographic diversity variance). That is to say daily growth may be

large, small, or in between in spaces that are physiographically homogeneous, where the surface

features are somewhat uniform. However, high values of daily growth are less and less likely as

the environmental heterogeneity increases (high values of physiographic diversity variance). This

indicates that daily growth is inhibited in complex landscapes where the land features are varied,

and diverse rock and soil compositions support a variety of vegetation patterns.

These results coincide with what we know to be true about wildland fire behavior. Weather,

fuel, and terrain are considered the three broad categories of features driving wildland fire behavior

at a daily temporal scale [116]. The variance of physiographic diversity lives within the terrain cat-

egory, though it certainly bridges and interacts with weather and fuel. Indirectly, terrain influences

fire spread through fuel moisture, vegetation composition, and continuity [114, 134, 126]. Slope

directly affects fire behavior through preheating; energy transfer from the flaming front to upslope

fuels accelerates fire spread [117]. South-facing slopes receive more energy and warmth from sun-

light, in turn affecting fuel moisture quantity through evaporation, which in turn influences fuel

quantity. Namely, fuel moisture and fuel quantity may be greater on the north vs. south facing

slopes [114].

The heterogeneity, or texture, of the terrain influences both the flow of winds and the presence

of natural barriers. Wind is deflected over mountains and ridges, flows through ravines, funnels into

saddles, and bursts out of box canyons. The interface between contrasting aspects will be natural

fire spread barriers [70, 58, 59], as are lakes, swamps, roads, burn scars, and spaces generally devoid

of fuels.

While these results are consistent for the Level I ecoregions across CONUS, smaller subregions
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are likely to have their own unique drivers. The ecoregions with additional important drivers were

among the smallest ecoregion spaces. That is, out of the ten Level I ecoregions that intersect

CONUS and the FIRED dataset, the Marine West Coast Forests, Mediterranean California, and

Tropical Wet Forests cover comparatively smaller spaces. The random forest models for these

ecoregions are highlighting additional important features because the features and daily fire area

represented in their respective datasets are less broad. This indicates that dividing the dataset into

smaller subregions, perhaps the Level II ecoregions, will scale the models in a way that captures

regional variability across CONUS, and will result in determining specific drivers for each ecoregion.

In Southern California for example, where Santa Ana winds are present, we would expect wind speed

would be a main driver. In the Pacific Northwest, a climate-limited system, the main wildfire drivers

are expected to be moisture-related variables such as vapor pressure deficit, fuel moisture, and

drought index. The main drivers of fuel-limited systems in the Western United States are expected

to be fuel-related; again, physiographic diversity as well as the Level III Ecoregions. Regions that

are between fuel-limited and climate-limited may have drivers of competing importance.

It is important to note that the daily area growth modeled in this research is an areal metric,

rather than a linear metric. This areal unit is related to and slightly different from the linear unit

of forward rate of spread. Understanding the drivers of linear rate of spread is also of importance,

as fast fires can be very destructive and wildland fire management practices are strongly tied to

linear units of progression. Work is underway to calculate the forward rate of spread for each daily

fire perimeter in the FIRED dataset. Having that metric in hand will allow for the important

drivers of the daily linear rate of spread across CONUS to be modeled and identified. Calculating

the linear rate of spread, and dividing the complete dataset into smaller subregions will likely give

specific insight into management practices for each subregion. Broadly, however, the results of this

study show that at the daily scale, wildland fire growth is inhibited in complex landscapes.
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4.5 Conclusion

The important features of random forest models were used to determine drivers of daily

fire growth in the Level I ecoregions across CONUS. Physiographic heterogeneity is an important

driver of daily wildland fire growth across CONUS. This indicates that daily wildland fire growth

is inhibited in complex landscapes with a variety of surface features, rock and soil compositions,

and vegetation patterns. The smaller Level I ecoregion spaces showed additional important drivers,

suggesting that modeling the daily fire growth of smaller spaces will result in identifying drivers

specific to each subregion.



Chapter 5

FIRED Linear Forward Rate of Spread; How fast are our fastest fires?

5.1 Introduction

Linear rate of forward fire spread (RoS) is an important fire behavior metric indicating when

fires are most dangerous and difficult to control, meaning that our understanding and ability to

forecast RoS is critical. Several factors contribute to creating dangerous wildfire conditions. A

history of fire suppression and fuel accumulation have provided large, severe fires with abundant

fuels [95]. The expansion of the WUI has broadened the fire niche by bringing ignition sources into

environments not prone to fire in recent history with both high wind patterns and available fuel

sources [108, 23]. This has facilitated the growth of larger human-caused fires [13, 38]. In 2018,

a human-caused wildfire in Attica, Greece resulted in over 100 civilian fatalities [80]. The same

year, the Camp Fire resulted in 85 fatalities, and destroyed the towns of Paradise and Concow,

California [33]. In both cases extreme wind gusts, 30-34 m/s and 25 m/s for the Attica and Camp

Fires respectively, interacted with complex terrain, causing rapid fire spread.

Our current understanding and ability to forecast RoS is founded on several decades of liter-

ature resulting from various wildfire experiments. Several studies have considered the relationships

between terrain, weather and fuel as they pertain to fire behavior, and have been used to forecast

the rate of spread (RoS) through empirical-based modeling [130]. The physical mechanisms of fire

RoS have been examined in controlled environments either in small-scale laboratory experiments

[119, 37, 18, 61, 19, 56] or in prescribed burns [48, 40, 94, 39]. These examinations of fire drivers and

their interactions, along with our developed understanding of combustion through experimentation
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have allowed us to investigate movement of the fire front through time. We have conceptualized

the progression of wildfire as a perimeter, the outer edge of the fire that moves through space over

time. Commonly, we describe this in context of the dominant wind direction, expecting the head

or front of the fire to be the fastest section of the fire perimeter [140, 129]. The velocity of this

section of the perimeter is typically called the forward rate of spread.

Here we will calculate the forward RoS metric for the FIRED daily burned area record.

The daily area has been calculated for each fire event in the data set, and while comparing each

consecutive day gives an indication of fire growth, it is not quite the same as RoS. Additionally,

the relationship between the two (RoS and area increase) changes with time differently for each set

of conditions. (Close to the ignition time of a fire, while it is still small, the heat flux is generally

low and as such its RoS is slow. As the fire grows the combustion rate will increase, and the RoS

will also increase. The fire will eventually reach a quasi-steady state of combustion for its set of

conditions.) So while the measurements are related, one does not necessarily infer the other.

The RoS measurement will then be used to determine which were the fastest fires and where

they were located in CONUS throughout the FIRED record (2001-2019). The goals of this research

are to provide an accurate metric of RoS appropriate to the FIRED record, determine the upper

5% of fire speeds, and place the fastest fires in geographic context. The calculation of forward RoS

across a twenty-year fire record at the daily growth level has not yet been accomplished, nor have

the fastest fires and their locations been identified, making this research especially novel.

5.2 Methods

5.2.1 Bounding Fire Area and Calculating RoS Using Ellipses

This research is in its early stages of development. One challenge is that the data may show

dispersion between points during the initial stages of an event, as shown in the first day of the

FIRED record for the Rim Fire in Fig. 5.1.
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Figure 5.1: Day 1 of the Rim Fire in California from the FIRED record.

However, the daily FIRED burned areas generally coalesce and show a clear direction of

growth within a couple days (during the time that the heat flux is low, and the fire is still building

toward a growth equilibrium). Again, the Rim Fire is given as an example in Fig. 5.2, Fig. 5.3, and

Fig. 5.4.
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Figure 5.2: Day 2 of the Rim Fire in California from the FIRED record.
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Figure 5.3: Day 3 of the Rim Fire in California from the FIRED record.
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Figure 5.4: Day 4 of the Rim Fire in California from the FIRED record.

The approach to calculating forward RoS tested bounds consecutive days’ burned area in

ellipses, as shown in Fig. 5.5, as this shape has been found to adequately describe fire propagation

[17, 16]. This idea is similar to the way a confidence ellipse is drawn over distributed data points,

but is instead applied to the burned area pixels and their spatial locations [137].

This method removes any outliers, such as the pixels we see north of the main fire location

in Fig. 5.1. These pixels are not part of the flaming front, and do not contribute to the forward

RoS for this fire. This is identified by looking ahead at Day 2 (Fig. 5.2) and co-locating the first

and second days’ burned areas. Bounding the pixels using ellipses helps identify the forward front
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in a way that aligns with how we conceptualize fire perimeters.

Figure 5.5: Bound the consecutive days’ burned areas in ellipses as a first step in calculating the
linear rate of spread.

After bounding subsequent days’ pixels, we then draw a centerline through the second day’s

longest axis. The vector describing the daily forward RoS is the section of the centerline that

intersects the first day’s ellipse and the far edge of the second day’s ellipse. This is shown in

Figure 5.6 and Figure 5.7.
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Figure 5.6: Draw a centerline through the second day’s longest axis.

Figure 5.7: The vector describing the daily forward rate of spread is the section of the centerline
that intersects the first day’s ellipse and the farthest edge of the second day’s ellipse.

A couple of concerns and limitations of this approach include sparse validation data and
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computation accuracy. As a method of validation, it would be helpful to compare the resulting

forward RoS calculations to those of comparable data sets. Unfortunately, there are not many data

sets of daily burned area delineated by event (which is what makes FIRED so novel and valuable).

The Global Fire Atlas (Andela et al., 2019) is a global record of fire size, duration, speed, and

direction, which is to say, it includes a RoS metric. The RoS for each daily burned area in the

Global Fire Atlas record is calculated by finding the most likely path between two burning points

from two subsequent days by finding the shortest route between them. For clusters of pixels the

assumption is made that the center point of the moment of the cluster is the origination point.

This method results in the potential of several RoS metrics for a given day depending on how many

individual pixels and clusters of pixels exist. This RoS measure does not represent the forward RoS

because it does not focus on the flaming front of the fire. So, it is unclear how useful this metric

is for validating the FIRED daily forward RoS. However, it is one of the only daily burn area fire

records, so it would be useful to see if there is a general match in the RoS calculations, perhaps by

comparing the FIRED RoS vector to the average direction and longest distance of the Global Fire

Atlas RoS.

There is some concern of computation accuracy with the approach of bounding using ellipses.

This method necessitates determining a spatial bounds for excluding the outlier pixels, and fre-

quently the ellipse drawn around the main fire will not touch all sides. That is to say, the vertices

may touch only two pixels. (Alternatively, an ellipsoid could be used, and the centerline drawn to

divide the mass of the area in half the long way. This is not difficult to implement and compare

with the ellipses, and will be explored.) However, it is helpful to remember that this calculation is

for daily forward RoS, it is a generalization of a very dynamic measurement. As such, it should be

sufficient to calculate the RoS in the way described.

Single day fires with only one pixel will be assigned a RoS of zero, as they will not have a

subsequent day of growth. Fires with more than one day but only one pixel (at the same location)

will also be assigned a value of zero as they have not moved through subsequent days.
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5.2.2 Determining Fires of Unusual Size

To determine which are the fastest fires, we plan to examine the distribution of the RoS

calculations. We will adopt the same approach as Tedim et al. (2018) [135] in their publication on

extreme events, and examine the 90th, 95th, and 99th percentiles. We would expect that each region

would have its own unique distribution of RoS, so it will be useful to divide the RoS calculations

by the MODIS IGBP Land Cover classes and examine the percentiles for each region.



Chapter 6

Conclusion

6.1 Introduction

This chapter concludes the work contained in this dissertation by summarising the key re-

search findings in relation to the research goals. A discussion of its societal and research contribu-

tions, as well as ongoing and future research opportunities follow.

6.2 Overall Findings

This research aimed to integrate remotely sensed data, wildland fire behavior modeling, and

machine learning methods to further our understanding of the patterns and drivers of wildfire.

High-resolution remotely-sensed datasets from several platforms were used to train random forest

classification and regression models to identify drivers that matter at both the daily burned area

and fire event scales, across individual case studies and collectively across thousands of events.

WRF-Fire was used to investigate the intersection of drivers and how our current understanding of

fire behavior, as represented by numeric models, compares to what we observe at sub-daily, daily,

and event scales. The results indicate that environmental heterogeneity is important to fire spread

in all regions across CONUS, at sub-daily and daily scales. Through this work we are better able to

characterize fires that matter in terms of spread rate, which has implications within fire forecasting

and future policy development.
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6.3 Contributions

6.3.1 Fire Forecasting

Wildland fire behavior models have been used to further our understanding of fire behavior

through experimentation and comparison with observational data [68], as well as for operational

management where fire forecasts aid in determining suppression and evacuation strategies and the

allocation of resources [103]. Uncertainty in model output can lead to a loss of faith and use

of fire forecasts [111]. Persistent uncertainties still originate from input data sets, including fuel

model assignment, and ignition location and timing data [26]. We currently lack data on the built

environment, which is necessary for modeling and understanding fire spread through developed

areas. These are the most critical spaces in terms of the danger presented to life and property,

so it is imperative that data capturing the built environment are developed and integrated into

fire forecasting and behavior research. Additionally, wildland fire behavior models are applied

indiscriminately to simulate wildfires across CONUS, despite regional differences in fuel, terrain,

and meteorology. We previously lacked the data necessary to investigate regional-scale drivers to

inform the development of region-specific fire behavior models. This research contributes a method

to resolve the gap in fine-scale, sub-seasonal fuel data, it contributes to our understanding of model

limitations due to the lack in accurate ignition data, and it identifies regional-scale fire drivers.

Wildland fire behavior models currently used in the U.S. were developed based on laboratory-scale

experiments and prescribed burns, but are applied to scenarios spanning several days and thousands

of acres. This work challenges the appropriateness of scaling fire mechanisms at the seconds and

meters scale to the scale of days and kilometers. The drivers of fire in a laboratory setting are not

necessarily the drivers of fire at a larger scale. At the very least, this work highlights the importance

of integrating more physiographic diversity information into current behavior models to capture

the effects of environmental heterogeneity on daily rate of spread. Models should be initiated using

the best possible initiation data, including accurate ignitions and updated fuel layers.
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6.3.2 Future Policy Development

In the U.S., the governance system that determines wildfire response is nested at local, state,

and federal levels. While U.S. federal policy has acknowledged that wildfire has a critical ecological

role to play, the practice of wildfire suppression has become normalized more than mitigation or

acceptance [127], which has led in part to a more flammable landscape due to fuel accumulation.

Additionally, indigenous and traditional fire management systems have been replaced by fuel man-

agement practices. These practices have played a role in increasing the number of fires [29], and

have contributed to the risk of more severe wildfires [128, 92, 53]. Our understanding of and ap-

proach to fire is becoming increasingly important due to population increase and climate change.

Current management strategies, which are focused mostly on basic resilience are not enough given

the increasing WUI and climate conditions ripe for wildfire [90]. Little is known about the inter-

actions between the atmosphere, terrain, and fuels in areas not historically prone to wildfire [36],

which are essentially the spaces now exposed to ignition due to human activity. Future fuel and

fire management policies are informed by our current understanding of fire behavior, as well as our

anticipation of how that behavior will change under different conditions. The research presented

here contributes to our understanding of fire behavior in different ecoregions across CONUS and it

bolsters our ability to accurately model fire behavior. The work presented on regional-scale drivers

may be used to inform policy development at a regional level. The method of updating fuel data

for use within wildland fire behavior models may be used to forecast fire behavior under different

fuel scenarios, which helps inform policy development with regard to fire and fuel management.

6.4 Future Work

Accurate ignition data is essential for modeling fire in heterogeneous fire domains. Future

work that bounds the ignition location and time would greatly benefit modeling efforts, which

in turn benefits our understanding of fire behavior. Identifying the drivers for the EPA Level II

Ecoregions will further our understanding of fire behavior at a local level. Lastly, calculating the
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forward rate of spread metric for the FIRED daily burned area record will distinguish between

areal growth and the linear RoS commonly used in operational firefighting. The RoS measurement

may be used to determine which were the fastest fires and where they were located in CONUS

throughout the FIRED record (2001-2021). The calculation of forward RoS across a twenty-year

fire record at the daily growth level has not yet been accomplished, nor have the fastest fires and

their locations been identified, making this research especially novel.

6.5 Closing Summary

To conclude, this research has contributed to our understanding of fire behavior through the

integration of remotely sensed data, machine learning and wildland fire behavior modeling. Specif-

ically this work shows that daily fire rate of spread is impeded in by environmental heterogeneity

across CONUS; it presents a method for updating fuel data for use within wildland fire behavior

models; and bounds the uncertainty associated with inaccurate ignition data within burned area

and propagation direction forecasts. Collectively this research has improved our characterization

of fires that matter as well as our ability to forecast fire behavior.
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Pereira. Fire spread predictions: Sweeping uncertainty under the rug. Science of the total
environment, 592:187–196, 2017.

[27] Stanley G Benjamin, Stephen S Weygandt, John M Brown, Ming Hu, Curtis R Alexander,
Tatiana G Smirnova, Joseph B Olson, Eric P James, David C Dowell, Georg A Grell, et al.
A north american hourly assimilation and model forecast cycle: The rapid refresh. Monthly
Weather Review, 144(4):1669–1694, 2016.
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Thomas T Veblen, Julian Stahl, and Bryce Currey. Landscape drivers of recent fire activity
(2001-2017) in south-central chile. PloS one, 13(8):e0201195, 2018.

[91] Arjan JH Meddens, Jeffrey A Hicke, Lee A Vierling, and Andrew T Hudak. Evaluating
methods to detect bark beetle-caused tree mortality using single-date and multi-date landsat
imagery. Remote Sensing of Environment, 132:49–58, 2013.

[92] Jessica Miesel, Alicia Reiner, Carol Ewell, Bernardo Maestrini, and Matthew Dickinson.
Quantifying changes in total and pyrogenic carbon stocks across fire severity gradients using
active wildfire incidents. Frontiers in Earth Science, 6:41, 2018.

[93] CH Moeng, Jimy Dudhia, Joe Klemp, and Peter Sullivan. Examining two-way grid nesting for
large eddy simulation of the pbl using the wrf model. Monthly weather review, 135(6):2295–
2311, 2007.



86

[94] Frédéric Morandini and Xavier Silvani. Experimental investigation of the physical mechanisms
governing the spread of wildfires. International Journal of Wildland Fire, 19(5):570–582, 2010.

[95] Max AMoritz, Tadashi J Moody, Meg A Krawchuk, Mimi Hughes, and Alex Hall. Spatial vari-
ation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical
Research Letters, 37(4), 2010.

[96] F. C. Mulick. Rotational axisymmetric mean flow and damping of acoustic waves in a solid
propellant. AIAA J., 3:1062–1063, 1964.

[97] F. C. Mulick. Stability of four-dimensional motions in a combustion chamber. Comb. Sci.
Tech., 19:99–124, 1981.
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[106] Elsa Pastor, Luis Zárate, Eulalia Planas, and Josep Arnaldos. Mathematical models and cal-
culation systems for the study of wildland fire behaviour. Progress in Energy and Combustion
Science, 29(2):139–153, 2003.

[107] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–
2830, 2011.



87

[108] Volker C Radeloff, David P Helmers, H Anu Kramer, Miranda H Mockrin, Patricia M
Alexandre, Avi Bar-Massada, Van Butsic, Todd J Hawbaker, Sebastián Martinuzzi, Alexan-
dra D Syphard, et al. Rapid growth of the us wildland-urban interface raises wildfire risk.
Proceedings of the National Academy of Sciences, 115(13):3314–3319, 2018.

[109] Raj K Rai, Larry K Berg, Branko Kosović, Jeffrey D Mirocha, Mikhail S Pekour, and
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