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Spatial resolution of spin waves in an ultra-cold gas
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We present the first spatially resolved images of spin waves in a gas. The complete longitudinal
and transverse spin field as a function of time and space is reconstructed. Frequencies and damping
rates for a standing-wave mode are extracted and compared with theory.
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Macroscopic collective behavior can arise in a quan-
tum gas even above the onset of degeneracy. When in-
distinguishable atoms collide, the scattering can be sig-
nificantly altered by the need to symmetrize the scat-
tered waves. Examples of quantum scattering effects are
seen in the strong polarization dependence of heat con-
duction and viscosity coefficients in spin polarized 3He [1]
and of thermalization rates in nondegenerate Fermi gases
[2]. Quantum collisional effects can also produce spatio-
temporal spin oscillations known as spin waves. In a re-
cent experiment, we observed in an ultra-cold atomic gas
a startling spin migration effect which we called “anoma-
lous spin-state segregation” [3]. Several theory groups
have shown that this effect can be thought of as a half-
cycle of a large-amplitude, over-damped spin wave [4]. In
this Letter we verify experimentally their viewpoint and
present spatially resolved images of coupled transverse
and longitudinal spin perturbances propagating through
a magnetically trapped atomic cloud. Frequencies and
damping rates for the standing-wave excitations are stud-
ied as a function of density and temperature.

Although the concept of spin waves in ferromagnets
dates back to Bloch’s predictions in 1930 [5], the theory
of spin waves in liquids and in dilute gases was not for-
mulated until the much later [6]. The first evidence for
spin waves (in the form of extra resonances in nuclear
magnetic resonance spectra) occurred in spin polarized
hydrogen and soon after in polarized 3He and dilute mix-
tures of 3He in 4He [7]. On a microscopic level, spin waves
arise from interference effects in lowest partial-wave colli-
sions. When identical particles collide, the 180◦ backscat-
tering event causes a scattered atom to propagate along
a trajectory indistinguishable from that of either a for-
ward scattered atom or an unscattered atom. When the
two atoms are spin aligned, the backward scattering con-
tribution is indistinguishable from the forward scattering
contribution, which adds a factor of two to the mean-field
collisional energy shift. When the spins are antiparallel,
the backward scattering event is distinguishable and the
mean-field shift arises from the forward scattering event
only. In the case of intermediate spin alignment, the
backward scattering event is only partially distinguish-
able from the unscattered event, and one needs to add
coherently two unparallel spin amplitudes, leading to a

rotation of the spins of the scattered atoms. The cumu-
lative effect of many such spin-rotating collisions is such
that inhomogeneities of spin propagate like waves rather
than diffusively. The characteristic frequency scale for
the spin rotation effect is the exchange collision rate,
ωexch = 4πh̄an/m, where m, n, and a are the mass of
the atoms, the number density, and the s-wave scatter-
ing length respectively.

The experimental apparatus and spectroscopy method
used to prepare and probe the ultra-cold gas are de-
scribed in [3] and briefly will be summarized here. 87Rb
atoms are precooled and trapped in a magneto-optical
trap, transferred to a Ioffe-Pritchard magnetic trap via
a servo-controlled linear track, and cooled further using
forced radio-frequency evaporation. The trapping fre-
quencies are {7, 230, 230} Hz, and typical atom cloud
parameters are n ∼ 1013 cm−3 and T ∼ 600 nK, several
times the Bose-Einstein condensation temperature. The
radial frequency is high enough that for the effects con-
sidered here it is sufficient to average the cloud over the
radial dimensions, effectively reducing the cloud to a one
dimensional density distribution. There are two conve-
niently trapped atomic hyperfine sates, labelled |1〉 and
|2〉, which together make up a pseudo-spin doublet [8].
The spin state is manipulated using a two-photon cou-
pling transition [3]. Typical Rabi frequencies are around
3 kHz.

The transition frequency ∆(z) is in general a function
of the axial position z, due to the spatial inhomogeneity
of the Zeeman shift and of the density-dependent mean-
field shift. In Ref. [3] we describe in detail how the bias
magnetic field can be tuned so as to cause the Zeeman
shifts to cancel in whole or in part the mean-field shifts.
As a consequence, the spatial curvature of the frequency,
∂2∆(z)/∂z2, is a controllable parameter of the experi-
ment which may be tuned in real time, even as a wave is
propagating.

To describe the effective two-level system, we use the
language of the Bloch sphere (see [9]) and take the axis w

as the “longitudinal” population inversion, and the axes
u and v as the “transverse” coherences [10]. In a typical
experiment, the atom-preparation cycle concludes with
the atoms initially all in the |1〉 state, along the w -axis.
Applying a π/2 pulse starts the evolution of the wave
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by rotating all the spins to lie along the v -axis. When
∆(z) is set to have nonzero curvature, the spins along
the long axis of the cloud begin to fan out in the u-v

plane as the relative phase of the (|1〉 + |2〉) coherent
superposition develops a spatial dependence. Optionally
at this point in the evolution, we can tune ∂2∆(z)/∂z2

back to zero or leave it unchanged and watch the spins
evolve in an inhomogeneous potential. In either case,
the atoms’ thermal motion now carries spin information
back and forth along the length of the cloud, and spin-
rotating collisions can tilt the spins up out of the u-v

plane [11]. Eventually, spin-currents develop that drive
oscillations about an equilibrium spin distribution. Our
driving potential, determined by the curvature of ∆(z),
is even in z, and we predominantly drive the lowest order
symmetric mode: a two-node standing wave.

The longitudinal and transverse components of the
Bloch vectors are measured as a function of time and
space. The method for projecting the longitudinal com-
ponent is similar to that described in [3]. After an ini-
tial resonant π/2 pulse, the Bloch vectors are allowed to
evolve for times up to t = 800 ms, and then the atoms
are imaged, thereby projecting the Bloch vectors along
the cloud onto the two spin states |1〉 and |2〉. The cloud
is radially averaged and broken up into 25 equal bins
along the axial direction for spatial resolution of the spin
dynamics. The |1〉 and |2〉 populations are measured on
separate experimental shots, and the longitudinal angle
θ of the Bloch vector is extracted. (θ = π/2 corresponds
to equal populations, and θ = 0 or π correspond to all
the atoms in |1〉 or |2〉 respectively.) The evolution is
traced out by repeating the experiment for many values
of evolution time. Fig. 1a shows the time evolution of
the longitudinal component of the spin across the cloud.
The initial oscillation appears to be “spin-state segrega-
tion” [3] but in fact is the first half-cycle of a spin wave
as the Bloch vectors in the cloud center tip up from the
transverse plane and the vectors near the cloud edge tip
down.

The transverse spin measurement consists of a two-
pulse π/2− π/2 Ramsey pulse sequence separated by an
evolution time t [12]. For each time evolution time t and
for each spatial bin along the trap axis, we measure the
final density of the atoms in |1〉, resulting in a set of
roughly sinusoidal (but with slightly time-varying phase
and amplitude) Ramsey fringes for each location in space.
The transverse phase and amplitude of the Bloch vector
are extracted from the fringes at each time t for each
radially-averaged section of the cloud by performing a si-
nusoidal fit over a small window centered about t in each
spatial bin [13]. Fig. 1b shows typical phases extracted
with this method. The spatial and temporal oscillations
around the mean phase are the transverse projections of
the spin waves.

The complete trajectories of the Bloch vector can be
determined for each spatial bin by combining the trans-

FIG. 1: False color plots of the a) longitudinal and b) trans-
verse components of the Bloch vectors across the cloud as a
function of time for a density of 2 × 1013 cm−3 and a tem-
perature of 800 nK (corresponding to a 380 µm full width,
half maximum cloud size). The angles have been interpolated
between bins and time steps of a) 10 ms and b) 3 ms.

verse and longitudinal components. Normalizing the
length of each vector to the length at time t = 0 re-
moves any effects of decoherence (e.g. from inelastic loss
and magnetic field fluctuations) and allows for a study of
the equilibrium phases of the Bloch vectors as a function
of the position across the cloud for various ∆(z). Fig. 2
shows the trajectories of the reconstructed Bloch vectors
in each spatial bin. Each bin has been offset by 1 rad in
the transverse direction from the adjacent bins for clarity
and to depict schematically the position across the cloud.
The oscillations can be fit to extract spin wave frequency,
amplitude, and damping rate.

The steady-state Bloch vector arrangement is deter-
mined by the curvature of the potential. In order to
equilibrate, the Bloch vectors across the cloud must ar-
range themselves so that the torque from the driving po-
tential ∆(z) (which tends to spread the vectors in the u-v

plane) is balanced by a torque from the local curvature
in the spin field, which is spread out in the v-w plane. In
the presence of a nonuniform potential, the equilibrium
configuration of the Bloch vectors is curved longitudi-
nally across the cloud to match the curvature of ∆(z),
i.e. the Bloch vectors lie in the v-w plane but are not
all collinear with the v -axis. However, if the bias mag-
netic field is chosen to cancel the density shift, then ∆(z)
is predominantly flat across the cloud, and the equilib-
rium corresponds to the Bloch vectors everywhere in the
cloud collinear with the v -axis. These equilibrium con-
figurations are illustrated in Fig. 2a and Fig. 2b, which
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FIG. 2: Bloch vector trajectories across the cloud for T = 600 nK and n = 2× 1013 cm−3. Each spatial bin (∼ 40 µm/bin) is
shifted by 1 rad from the adjacent bins (see text). In each bin, the path traced by the Bloch vectors is shown starting with the
red points near time t = 0 and spiralling towards the blue points at t = 0.3 s as the Bloch vectors precess about the equilibrium
position. a) Spin waves at ∂2ν/∂z2 ≈ 90 Hz/mm2. The equilibrium position (center of precession) has a curvature to match
the curved potential. b) Spin waves are excited for 70 ms at the same curvature, and then at t = 0 the bias magnetic field is
ramped quickly so that ∂2ν/∂z2 ≈ 0, giving an approximately flat equilibrium configuration near the v -axis for all spatial bins.

show spin-wave evolution in curved and flat potentials
respectively.

Next, the density dependence of the excitation fre-
quency was studied using transverse spin waves. The ex-
citation frequency exhibits a strong density dependence,
scaling roughly as 1/n, shown in Fig. 3a. The linear
regime for these excitations occurs only at extremely
small amplitude, where spin waves are difficult to ob-
serve due to signal-to-noise limitations. In the nonlinear
regime there is a dependence of frequency on amplitude.
In order to remove this dependence, we excite spin waves
over a range of amplitudes by controlling the curvature
of the potential, ∂2∆(z)/∂z2, and we extrapolate the fre-
quency to the low amplitude limit for each density. The
solid line is a numerical calculation predicting the fre-
quency obtained from solving the one-dimensional Boltz-
mann transport equations [14]. The two dotted lines rep-
resent the weak and strong coupling limits, ωexch ≪ ω◦

and ωexch ≫ ω◦ respectively:

ωw = 2ω◦ −
ωexch

2
(1)

ωs =
k2

eff
(kbT )

m ωexch

. (2)

where ω◦ is the axial trap frequency and keff is an ef-
fective wave vector. The spatial wave vector k = 2π/λ
of the spin waves is studied by finding the distance λ/2
between the spatial nodes, i.e. the bins where the orien-
tation of the Bloch vector remains constant. The wave
vectors k and keff differ by a numerical factor of order
unity due to the finite size of the sample. For all the
work discussed here, the lowest order symmetric mode,
η = 2, is excited by the symmetric inhomogeneous poten-

tial [15]. The wavelength of the η = 2 mode is observed
to be directly proportional to the size of the trap. As
predicted by Eqs. 1 and 2, there is no temperature de-
pendence for the excitation frequency, since we observe
k to scale inversely as the size of the cloud, i.e. as T−1/2.
The numerical calculation agrees well with experiment
(see Fig. 3a).

The Bloch vectors initially precess about the equilib-
rium value with some initial amplitude. As the Bloch
vectors precess, their trajectories spiral towards the equi-
librium configuration due to damping of the spin wave
excitation. The damping is predicted to be a combina-
tion of two effects: spin diffusion and Landau damping
[18]. Spin diffusion dominates in the high density, or hy-
drodynamic, regime. For intermediate densities, there is
a maximum in the damping rate due to the combination
of the two effects. It near this intermediate regime that
these experiments are performed. We observe a relation-
ship between spin wave lifetime and density which is good
agreement with theory (see Fig. 3b).

Our original motivation to explore spin dynamics in
uncondensed clouds arose from our plan to extend to fi-
nite temperatures our earlier studies of spin coherence
in a condensate [16] and in particular to understand the
extent to which an unpolarized normal cloud acts as a de-
cohering thermal reservoir. The existence of spin waves
will complicate these studies. A pure condensate cannot
support spin waves, but it will trivially separate due to
small differences in the scattering lengths [17]. Spin os-
cillations in the thermal cloud can have a considerable
effect on the spin dynamics of a finite temperature con-
densate, and conversely, having a small stationary cluster
of condensed atoms will significantly perturb spin waves
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FIG. 3: a) Frequency of the transverse spin wave compo-
nent as a function of the peak density. Each frequency is
an extrapolation to the limit of small amplitude spin waves
to remove the dependence on driving amplitude. The solid
line is the predicted dispersion relation, and the dotted lines
show the weak and strong coupling limits. All data is for
T = 600 nK except for the three tightly clustered points at
n = 2 × 1019 m−3 which correspond to T = 350, 600, and
1000 nK. b) Damping rate as a function of density, includ-
ing a numerical calculation (solid line) which includes elastic
collisions and Landau damping.

in a thermal cloud. Such a two component system is
a rich system for studying spin dynamics in ultra-cold
gases [18].

In conclusion, we have observed collective spin exci-
tations in a nondegenerate ultra-cold gas. Particle in-
distinguishability and the need to symmetrize collisions
between like particles in coherent superpositions give rise
to spatial and temporal oscillations of the Bloch vectors
across a cloud of trapped atoms. We have separately
imaged both transverse and longitudinal components of
these spin waves and studied the effects of temperature
and density on the spin wave frequency, paving the way
for studying spin dynamics in a finite-temperature con-
densate system.
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