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Capacity Spectrum Design Approach for Hybrid Sliding-Rocking Post-Tensioned Segmental 

Bridges 

Thesis directed by Assistant Professor Petros Sideris  

In this thesis a capacity spectrum method for hybrid sliding-rocking post-tensioned segmental 

bridges is proposed. A simplified model and two detailed models are derived for the conducting 

pushover analysis on the structure. The derived models are compared with experimental results 

and are used to conduct a parametric study of the design variables pertaining to hybrid sliding-

rocking post-tensioned bridges. Next a capacity spectrum method for design is proposed which 

uses the detailed model. The proposed design method is then verified using nonlinear dynamic 

analysis on the structure using the detailed model for a given hazard.  Results from the study show 

that the proposed Capacity spectrum design method predict the performance of the structure 

reasonably well when compared with nonlinear dynamic analysis.  
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1. INTRODUCTION 

1.1. General  

In the U.S., many of the bridges are in immediate need of retrofit or replacement. In order to speed 

up this process, Accelerated Bridge Construction (ABC) techniques are actively researched. 

Precast concrete segmental construction are one of the ABC techniques. Several bridge 

substructure systems have been recently developed with improved seismic performance and 

construction rapidity. The majority of the systems researched over the years can be divided into 

(i) bents with prefabricated monolithic columns (without post-tensioning) connected with the bent 

cap and the foundation through rigid (or emulative of rigid) connections (Matsumoto et al. 2002; 

Hieber et al. 2005; Matsumoto et al. 2008; Pang et al. 2009; Stanton and Eberhard 2009; Steuck et 

al. 2009; Restrepo et al. 2011), and (ii) bents with segmental or prefabricated monolithic rocking 

columns incorporating internal unbonded post-tensioning (Hewes and Priestley 2002; Chou and 

Chen 2006; Hewes 2007; Restrepo et al. 2011; ElGawady and Dawood 2012) .These unbonded 

post-tensioning systems considerably increase the ductility capacity and self-centering capacity of 

bridge substructures. 

A novel bridge substructure system was recently introduced by Sideris (Sideris 2012, Sideris et al. 

2014b, Sideris et al. 2014c). The proposed system included substructure columns with unbonded 

post-tensioning, end rocking joints and intermediate sliding joints (or slip-dominant joints) along 

the height of the columns. Joint sliding provides energy dissipation with small damage and control 

of the applied seismic loading. Residual joint sliding is small and restorable after an intense 

earthquake event.  
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Force based seismic design of bridge systems incorporating HSR columns is difficult to apply. 

This is due to lack of a representative response modification factor R. In force based design, R-

factors indirectly account for energy dissipation properties and ductility capacity of the system. 

For highly nonlinear systems such as HSR columns, these R factors are difficult to estimate 

(Priestley 1997) . For new systems, R factors can be estimated by using the procedure given in 

(FEMA 2009). However, the methodology mainly focusses on buildings.  

Considering these shortcomings of force based designs, performance-based design methods such 

as direct displacement based design (DDSB) methods (Priestley et al. 2007) can be considered as 

alternative design procedure. The nonlinear properties of the system are incorporated in DDBD 

methods through an equivalent linearization obtained for a target design displacement. The major 

advantages of DDSB methods are  

 Estimation of elastic period of the structure is not required. 

 Primary design parameters are the deformations, which are representative measures of 

damage. 

 Force reduction factors are not required for the design. 

 System performance can be evaluated are various hazard levels. 

Capacity spectrum methods (CSMs) are equivalent to the DDBD methods, and provide prediction 

of response variables for given hazard and a set of trial design/system parameters. A brief literature 

review of CSMs is described in the following section. 

1.2. Literature review 

CSM is a procedure that can be applied in the framework of Performance Based Seismic Design. 

The CSM was introduced initially in 1970s as a rapid evaluation procedure in a pilot project for 
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assessing seismic vulnerability of buildings at the Puget Sound Naval Shipyard (Freeman et al. 

1975). In this procedure, the capacity of the structure is represented in the form of pushover curve. 

This curve is compared with the demand of the structure which is represented in the form of a 

response spectrum. The graphical intersection of the capacity curve and the demand curve provide 

the approximate response of the structure. To account for the inelastic response of the structure, 

the response spectra was reduced due to period lengthening. This was accounted based on the 

observations and studies of buildings and recorded building response (Czarnecki 1975, Freeman 

1978 and Freeman et al. 1977). This procedure was used for several case-studies of buildings that 

had experienced ground motion (Freeman et al. 1976; Freeman et al. 1977, Freeman 1978, 

Freeman 1987). Several buildings were evaluated using CSM after the 1989 Loma Prieta 

earthquake in Mahaney et al. 1993 which also introduced the Sa versus Sd format for response 

spectra instead of Sa versus T. This procedure was incorporated in the Seismic Design Guidelines 

For Essential Buildings Manual (Freeman et al. 1984, Army 1986) as a design verification 

procedure for Army, Navy and Air force. Applied technology council (ATC) as a part of 

developing guidelines for seismic evaluation and retrofit of concrete buildings selected CSM as 

suggested procedure. In order to link the hysteretic damping to equivalent damping values, 3 

categories of reduction factors were suggested. It was noticed by Krawinkler 1995 that a suitable 

value for equivalent viscous damping is difficult to ascertain since a stable relationship between 

hysteretic energy dissipation associated with the maximum excursion and equivalent viscous 

damping does not exist.  Several methods were suggested to overcome this deficiency. FEMA 273 

uses Displacement Coefficient method, where the demand is represented by inelastic displacement 

spectra which are obtained from elastic displacement spectra using a number of correction factors. 

Bertero 1995 recommended the use of smoothed inelastic design response spectra to represent the 



M.S. Thesis  University of Colorado – Boulder 

Sreenivas Madhusdhanan  4 

demand. Chopra and Goel 1999 developed the Capacity Demand Diagram Method which uses a 

constant ductility design spectrum for the demand diagram. Most of the research conducted in 

Capacity spectrum method are applied to seismic assessment of buildings. Casarotti and Pinho 

2007 developed an Adaptive Capacity spectrum method (ACSM), which was applied to bridge 

applications. It was noticed that the results of ACSM matched well with the dynamic analyses. 

The application of CSM for bridges was further verified by Pinho et al. 2007, where different CSM 

procedures were carried out on a wide set of bridge configurations. The research suggested that all 

the methods are able to predict displacement response with good accuracy. As the relationship 

between the demand and capacity can be visualized, CSM has added advantage compared to other 

PBSD methods. (Freeman 2004). The differences in the various methods of CSM mainly arise 

from the material behavior and the quantification of the energy dissipation. (Freeman 1998). 

1.3. Objective and scope 

The major objectives of this thesis are: 

 Develop a model capable of performing quasi-static monotonic and cyclic pushover 

analysis of HSR columns.  

 Verify the proposed model with experimental results 

 Examine the key design variables of HSR columns using the proposed model 

 Develop a capacity spectrum design procedure for HSR column that uses the proposed 

model.  

 Verify the design from capacity spectrum method using nonlinear dynamic analysis of 

HSR column. 
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1.4. Arrangement of Thesis  

This thesis consists of 4 chapters. Following this first introductory chapter, Chapter 2 discusses 

the proposed analytical models. This chapter also includes the results of parametric study 

conducted on the effect of major design variables on the response of HSR columns. In Chapter 3, 

a capacity spectrum design procedure for HSR columns is proposed. The proposed design method 

is verified with the results of incremental dynamic analysis. Finally, Chapter 4 presents a summary, 

major conclusion and scope for future work.  
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2. ANALYTICAL DERIVATION OF MONOTONIC AND CYCLIC PUSHOVER 

CURVES FOR HSR COLUMNS 

In this section, a reference HSR column is presented. A simplified analytical model is proposed to 

compute the monotonic pushover curve for HSR columns. The simplified analytical model is 

implemented computationally to conduct pushover analysis. The results from the analysis is 

compared with experimental results. A detailed analytical model capable of conducting monotonic 

and cyclic pushover analysis is next derived. This detailed model is implemented computationally 

to conduct monotonic and cyclic pushover analysis. The results from the pushover analysis is then 

compared with experimental results. A parametric study is then conducted using the detailed model 

to assess the effect of design variables on the response of HSR columns.  

2.1. Description of the HSR columns 

HSR columns are post-tensioned segmental members consisting of two main components, HSR 

segmental joints and internal unbonded post-tensioned (PT) tendons. The segmental joints are 

friction type connections that mitigate seismic loading through joint sliding and joint opening 

(rocking). The joint sliding provides high energy dissipation with low damage due to the friction 

between the segments. The joint sliding also provides moderate self-centering due to shear 

resistance or the dowel effect of the PT tendons. The joint rocking on the other hand provides low 

energy dissipation and high self-centering. Energy dissipation with low damage are one of the 

salient features of bridges with HSR columns. 

A reference HSR cantilever column is shown in Figure 1. All the joints except for bottom ones are 

designed such that they are allowed to slide and hence are called sliding-dominant (SD) joints. The 

bottom joint whose sliding is restrained is called as rocking-dominant (RD) joint. The sliding of 
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RD joints is restrained by either providing high coefficient of friction or by providing shear keys. 

In the vicinity of SD joints, the duct containing the PT tendons are replaced by tubing with larger 

diameter than that of duct. These are termed “duct adaptors” (Figure 1) and are used to control the 

response of SD joints. After the post-tensioning, the reference HSR cantilever column is subjected 

to a constant vertical force Pv, and a monotonically increasing lateral displacement uh, associated 

with a horizontal force Ph. A typical response of the column to this loading is show in Figure 1 (a). 

 

(a) 
 

(b) 

Figure 1: (a) Typical HSR-SD reference model and (b) Concrete stress and strain 

distribution at the bottom of a typical HSR-SD column. 

2.2. Simplified analytical model 

In this section a simplified model to compute the response of HSR columns subjected to 

monotonically increasing load is proposed. The discrete points of a pushover or moment curvature 

diagram is first computed. The pushover curve is assumed to be linear between these points to get 

a complete pushover curve. . Each stage in the pushover curve is quantified based on the strain 

experienced by the concrete cross-section. The distinct points or stages in the curve are (i) 

decompression, (ii) concrete proportionality limit, (iii) unconfined concrete strength, and (iv) 

Duct 
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ultimate compressive strength of confined concrete. The stress and strain distribution at each stage 

is shown in Figure 2.  

    

(a) (b) (c) (d) 

Figure 2: Stress distribution at various stages: (a) decompression stage, (b) concrete 

proportionality limit, (c) unconfined concrete strength, and (d) ultimate strain of confined 

concrete 

2.2.1. Derivation 

At each stage of the pushover curve the lateral force and displacement of the column is computed 

using a set of equilibrium and compatibility equations. The equilibrium at the bottom joint in the 

vertical direction is given as: 

,v PT i cP N N   (1) 

Here, Pv is the applied vertical load, ƩNPT,i is the sum of the forces of all the PT tendons shown in 

Figure 1 (a), and Nc is the resultant concrete force at the bottom shown in Figure 1 (b). The terms 

ƩNPT,i  and Nc are computed separately for different stages in the curve discussed later in this 

section. The moment equilibrium at the bottom joint is given by: 

,

 
   
 
m h sl j v c PT

j

h P u P M M

 

(2) 
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Here, the term ,sl j v

j

u P
 
 
 
  is the moment due to vertical force Pv resulting from the secondary 

effect due to sliding in all the joints ,sl j

j

u
 
 
 
 , Mc is the moment resistance due to concrete, MPT is 

the moment resistance due to the unbonded post-tensioning and Ph is the horizontal force applied 

at a height hm, where hm is the center of mass of the superstructure. 

For a given strain 
c  and contact length cr (< d), as shown in Figure 2 (b), the concrete axial force 

including confinement effects can be obtained using the equivalent stress block method by (Paulay 

and Priestley 1992) as: 

'( )( ) c cc cc cc r wN f c b
 (3) 

where, bw is the width of the cross-section, αcc and βcc are the stress block parameters obtained 

from Figure 3, f’cc is the strength of the confined concrete obtained from (Mander et al. 1988) and 

εcc is corresponding strain at f’cc discussed in the next section.  

 

 (a)     (b) 

Figure 3: Stress block parameter for any given strain, εc, from (Paulay and Priestley 1992) 

Similarly, the moment resistance due to concrete is given as:  

 c
'

ccf
'

cc cca f

cc rc
cc




c

cc




c

cc

'

'
cc

c

f
K

f

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'( )( )
2 2

cc r
c cc cc cc r w

cd
M f c b


 

 
  
   

(4) 

where d is the total depth of the concrete cross-section. Note that Figure 3 permits use of the 

equivalent stress block method for any strain, εc, and for both the confined and unconfined 

concrete.   

When the maximum concrete stress is smaller than 0.5fc’, the stress distribution over the joint can 

be assumed to be linear and the total concrete force is computed using the analytical integration 

given in (5), instead of the equivalent stress block method (equation (3) and (4)). In that case, the 

total concrete force can be computed by analytical integration as: 

  c

A

N x dA

 
(5) 

Where σ(x) is the value of the concrete stress at distance x from the reference axis.  

Similarly, the concrete moment resistance in that case is given as:  

  c

A

M x x dA

 
(6) 

For a given concrete compressive strain and as long as joint opening occurs (i.e., cr < d), the 

rocking rotation at the bottom, θr, can be obtained by the following compatibility equation:. 


 

 
   

 

c
r r r r

r

l l
c

 

(7) 

where ϕr is the rocking curvature at the bottom joint, and lr is the equivalent hinge length. Different 

researchers have suggested different values for equivalent hinge length. Different values of lr are 

considered at different deformation stages, such as lr = 5.25 cr for εc = 0.003 (Harajli 2010), and lr 
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= cr for εc = εcu (Restrepo and Rahman 2007), where εcu is the ultimate strain of confined concrete. 

If no gap opening occurs (i.e., cr = d), then θr = 0. 

The extension of the i-th tendon which is located at a distance dPT,i from the end compression fiber 

is given as (Sideris 2012; Sideris et al. 2014b; c): 

 , ,

Due to rocking
at bottom Due to joint sliding

1
2 1

cos




 
     

 
PT i r PT i r da

j j

u d c h

  

(8) 

Where, ψj is the tendon deviation angle due to sliding at the j-th joint and is given as:  

 
, ,

,tan sgn
2





sl j sl b

j sl j

da

u u
u

h
 

(9) 

Where < u > are the Macauley brackets (< u > = u for u > 0 and < u > = 0 otherwise), usl,j is the 

current sliding at the j-th joint (with |usl,j| ≤ Dda-DPT, where Dda = duct adapter diameter, and DPT 

= diameter of the PT tendon) and usl,b is the sliding amplitude at which the bearing contact between 

the duct and the tendon initiates. Note that for all SD joints, usl,b = Dd-Dpt, where Dd is the diameter 

of the duct.   

Assuming that all tendons have the same geometric and material properties, the force at the i-th 

tendon is given as:  

, , , , , 0   PT PT
PT i PTo i PT i PT y PT PT i

PT

E A
N N u f A and N

L
 

(10) 

where NPTo,i is the initial post-tensioning force of the i-th tendon, EPT is the Young’s modulus of 

the tendon, APT is the cross-section area of the tendon, LPT is the length of the tendon, and fPT,y is 

the yield stress of the tendon. The total force of the unbonded tendons is given as:  
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,PT PT i

i

N N

 
(11) 

The corresponding moment due to the unbonded tendons is given as: 

, ,
2

 
  

 
PT PT i PT i

i

d
M d N

 
(12) 

At a given deformation stage, the corresponding lateral displacement is given as:  

   
 

23

,

Displacement due to lateralload Rigid bodyrotation effect

3 2 2 2


      
                   


p m p p m pp p r

h h h m p m p sl j

j

h h h h h hh h l
u P P h h h u

EI EI EI EI

 

(13) 

where hp is the height of the deformable part of the column, E is young’s modulus of the concrete 

and I is the moment of inertia of the column cross-section. The first term corresponds to the elastic 

response of the column, the second term corresponds to the rigid body rotation and translation of 

the cap beam and superstructure as a result of the elastic translation and rotation of the top end of 

the column, the third term corresponds to the displacement of the center of mass of the 

superstructure resulting from rigid body rotation due to rocking at the bottom, and the fourth term 

represents the displacement due to sliding at all SD joints. Next each stages considered in the 

pushover curve for a HSR RD and HSR SD column is separately discussed.  

2.2.2. Rocking column without joint sliding 

The response of a rocking column assumes that the sliding remains zero at all the stages of 

pushover curve (i.e., usl,j = 0 and ψj = 0 for all j). The different stages considered in a pushover 

curve of rocking column without joint sliding is given below. 

 Decompression Stage 
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Decompression (Figure 2 (a)) is assumed to occur at low stresses (linear response). By setting the 

stress and strain at the tensile fiber equal to zero and using the expressions for elastic response for 

finding Nc and Mc (using equations (5) and (6)), the lateral force and displacement are computed 

using equations (2) and (13). The stress in the compression fiber is computed such that it satisfies 

the vertical equilibrium condition given in equation (1). If the resulting stresses are found to exceed 

0.5f’c, the “stress-block” method (using equations (3) and (4)) should be used to find Nc and Mc. 

Different values of σc are selected until equilibrium and compatibility equations are satisfied.  

 Concrete Proportionality Limit 

The proportionality limit refers to the transition from the linear elastic response to the nonlinear 

response. This transition is assumed to take place at 50% of the nominal concrete compressive 

strength, f’c. Assuming that the stress equals 0.5f’c at the end compressive fiber (Figure 2 (b)), the 

value of cr is chosen such that equilibrium and compatibility equations are satisfied. The concrete 

proportionality limit is usually reached after some joint opening has occurred.  

 Unconfined Compressive Strength 

The unconfined compressive strength is reached when the strain at the extreme fiber reaches 0.003. 

Confinement effects are neglected in this stage (f’c ≈ f’cc, acc ≈ 0.85, βcc ≈ 0.85 – 0.05< f’c (ksi) - 4 

ksi≥0.65). The value of cr are selected (for the given εc = 0.003) such that the equilibrium and 

compatibility equations are satisfied. 

 Ultimate Compressive Strength of Confined Concrete 

The ultimate compressive strain of the confined concrete occurs when the hoop reinforcement 

provided in the concrete segment fractures. This strain is given as (Paulay and Priestley 1992): 
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where 
s is the volumetric ratio of transverse steel is, yhf is the yield stress of the hoop 

reinforcement. εsm is the steel strain at maximum tensile stress (≈ 0.15 for Grade 40 and 0.10 for 

Grade 60 rebar) and fcc is the compressive strength of the confined concrete. For a rectangular 

column with different transverse reinforcements in two different directions (shown in Figure 4 

(a)), the lateral confining pressure are separately computed in two directions. The confinement 

effectiveness ratio is computed using the equation given below (Mander et al. 1988) 

 
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( ' ) ' '
1 1 1

6 2 2
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i c c c c

e
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b d b d
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   
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



 

(15) 

where w’i is the ith clear distance between adjacent longitudinal bars as show in Figure 4 (a). bc 

and dc are the core dimension to centerlines of perimeter hoop in x and y directions and S’ is the 

clear vertical spacing between spiral or hoop bars. The lateral confining stress on concrete in x and 

y direction (flx and fly) is given as: 

lx x yh

ly y yh

f f

f f








 

(16) 

where 
x and y are the transverse reinforcement ratios in x and y direction respectively. fyh is the 

yield strength of the transverse reinforcements. To find the compressive strength of confined 

concrete, the confined strength ratio is obtained for the computed value of flx and fly using the plot 

given in figure Figure 4 (b). The corresponding strain at confinement is given as: 
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(a) (b) 

Figure 4 (a) Effective confined core for rectangular hoop reinforcement (b) Confined 

strength determination from Lateral confining stresses for rectangular sections (Mander et 

al. 1988; Paulay and Priestley 1992)  

Once the fcc, εcu and εcc is obtained from the above equations, the value of cr is computed such that 

the equilibrium and compatibility condition is satisfied. A typical force vs. displacement response 

of a rocking-only column is given in Figure 5. 
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Figure 5: Force vs. displacement response of rocking-only column. 

2.2.3. Rocking column with joint sliding (HSR Column) 

For an HSR column, joint sliding initiates (by design) before the strength of the unconfined 

concrete (εc = 0.003) has been reached at the bottom joint. Also, sliding is designed to reach its 

maximum at all joints before the ultimate strain of the confined concrete has been reached. 

Furthermore, for economical designs, the decompression (and/or concrete proportionality limit) 

may occur before sliding initiation. 

For an HSR column, the following distinct stages are considered: (i) Decompression, (ii) Concrete 

Proportionality limit, (iii) Sliding Initiation, (iv) End of sliding at each SD joint, (v) Ultimate strain 

of confined concrete after sliding has been reached at all SD joints, and (vi) Complete Unloading. 

The stages of decompression and concrete proportionality limit are evaluated as described for the 

rocking column. If joint sliding initiates before the concrete proportionality limit stage, the 

concrete proportionality limit stage is dropped. Also, if joint sliding initiates before the 
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decompression stage, both the decompression stage and the concrete proportionality limit stage 

are dropped. For evaluation of the force vs. displacement at different stages, Eqs. (1) to (13) are 

considered. 

 Initiation of sliding 

The joint sliding initiates when the lateral force, Ph, becomes equal to the shear resistance of the 

SD joints. For Coulomb friction, this condition becomes: 

h cP N
 

(18) 

Here, all joints are assumed to have the same friction coefficient and the axial force is assumed to 

be constant throughout the height of the column. In this stage, a compressive strain εc, is first 

selected. For this value of strain, the cr satisfying the equilibrium and compatibility is found. For 

the resulting values of Ph and Nc, Eq. (18) is examined. If Eq. (18) is not satisfied, then a different 

value of εc is selected. This strategy continues a value of εc that satisfies Eq. (18) is found. Note 

that for this stage, usl,j = 0 and ψj = 0 for all j. 

 End of Sliding at each Slip-dominant joint  

Sliding at the j-th joint ends when the external lateral force, Ph, is in equilibrium with the frictional 

resistance and the tendon bearing resistance at that joint, as expressed by the following equation: 

sin( )  h c PT jP N N
 

(19) 

It is assumed that the sliding ends at one joint before sliding begins at the next joint. For the 

computation of the total post-tensioning force, the tendon extension due to sliding at the current 

joint and joints that have experienced joint sliding earlier is considered. For the first joint, usl,j (with 

j = 1) is set equal to its maximum value, while usl,j =0 for all other joints. Then, a value of the 

compressive strain, εc, is selected. For this value, the value of cr is computed to satisfy the 
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equilibrium and compatibility conditions. For the resulting values of Ph, Nc, and NPT, Eq. (19) is 

examined. If Eq. (19) is not satisfied, then a different value of εc is selected. This strategy continues 

a value of εc that satisfies Eq. (19) is identified. For the end of sliding at the second joint, usl,j at 

both the first and second joint (j = 1 and 2) receives its maximum value, while sliding is set to zero 

in the rest of the SD joints. Then, a value of the compressive strain, εc, is identified for which Eq. 

(19) is satisfied. The same procedure is repeated until sliding at all joints is completed.  

 Ultimate Strain of Confined Concrete after Sliding Completion at all Slip-dominant Joints 

This response stage is similar to the corresponding stage of the rocking column. However, it 

considered that the sliding, usl,j, has been completed at all SD joints contributing to the tendon 

extension and the equilibrium and compatibility equations. In this stage, the value of cr is selected, 

for the given εc = εcu and for usl,j = max at all SD joints) until equilibrium and compatibility is 

satisfied. 

 Complete Unloading 

The damage to the column due to rocking at the bottom is assumed small and is neglected. Thus, 

upon removal of the horizontal load, Ph, residual rocking is zero. However, residual joint sliding 

cannot be neglected because the dowel effect of the tendons is not sufficient to provide complete 

sliding self-centering. The residual sliding will be the same at all joints and can be obtained when 

the following condition is satisfied: 

sin c PT jN N
 

(20) 

This condition is obtained from equation (19) by setting Ph = 0 and considering reversal of the 

friction force. In order to find the residual displacement, the value of usl,j is varied. As a result, ψj 

is varied (through Eq.(9)) and NPT is varied (through Eq. (8)). The value of usl,j (same for all j) 
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satisfying the equilibrium  (equation (20)) will be the residual joint sliding when the horizontal 

load is completely removed (Ph = 0). For unloading after sliding has been completed for some of 

the joints, the same approach is followed. However, in the computation of NPT (through Eqs. (8) 

and (10)), only the joints that have completed their sliding are included. A pushover curve for a 

typical HSR-SD column is shown in Figure 6. Each point in the pushover curve after the sliding 

initiation represents the end of sliding in SD joints. The point corresponding to joint 5 is the stage 

where the maximum sliding is achieved in all the SD joints. To predict the hysteretic behavior of 

the curve, unloading in this model is assumed to follow the same path as that of loading point till 

the point corresponding to end of sliding at joint 5. After this, the pushover curve is assumed to 

vary linearly connecting the end of sliding point. The area enclosed by the loading and unloading 

curve represents that energy dissipated due to joint sliding. 

 

Figure 6: Typical Load vs. displacement curve of HSR-SD column. 
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2.2.4. Computational implementation 

In this section, the computational implementation of the simplified model is discussed. The 

solution strategy for each stage of pushover for rocking-only and HSR columns is discussed 

separately. For both the pushover curves, the cross sectional area between the tension fiber and 

compression fiber is divided into small areas. The concrete reaction force Nc is then computed 

using numerical integration of the areas and the stress based on the stress distribution for the given 

stage.  

2.2.4.1. Computational implementation for rocking-only columns 

 Decompression Stage 

In this stage, the primary unknown is the stress σc at the compression fiber. A bisection method 

algorithm is used to find the of σc (i.e., the solutions), that satisfies the equilibrium and 

compatibility equations. The steps in bisection algorithm is given below.  

i. Find stresses σa and σb such that σa < σb and f(σa).f(σb) <0, where f(σa) and f(σb) is defined 

as the difference of the LHS from the RHS of equation (1) computed for σa and σb. 

ii. Find 
2

a b
m

 
 


  

iii. If  mf tolerance  , then 
m is the solution. Compute the horizontal force and lateral 

displacement for this strain. 

iv. If  mf tolerance   and    . 0bmf f   , then 
ma   

v. Otherwise, If  mf tolerance   and    . 0amf f   , then 
mb   

vi. Go back to step ii. 
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Repeat this process until  mf tolerance  . 

 Proportionality limit Stage 

In this stage the primary unknown to be solved is cr. The stress in the extreme compression fiber 

is taken as 0.5f’c. Bisection method discussed in previous section is used to find cr that satisfies 

the equilibrium condition given in equation (1). 

 Unconfined Compressive Strength 

The method of finding cr is similar to that of the previous stage. However, equivalent stress block 

method is used to find the stress distribution across the cross section. 

 Ultimate Compressive Strength of Confined Concrete 

Similar to the previous stage cr is the primary unknown to be solved. Ultimate compressive strength 

and the stress block parameters of confined concrete is computed using the equations (14) to (17) 

and using Figure 3 (a) and (b). 

2.2.4.2. Computational implementation for HSR column 

The evaluation of the decompression and proportionality limit stages are similar to that of HSR-

RD column. The computational implementation of other stages is given below. 

 Initiation of sliding 

In this stage, the strain εc which satisfies the equilibrium condition given in equation (18) is 

computed. At each guess of strain, another bisection algorithm is implemented to find the right cr 

that satisfies the equilibrium condition given in equation (1). The resulting cr is used to find Ph and 

Nc which is then used to evaluate equation (18). 
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 End of Sliding at each Slip-dominant joint 

In this stage, the end of sliding at each SD joint is evaluated separately. At each point, one of the 

SD joint reaches its maximum. Similar to the previous stage, strain εc which satisfies the 

equilibrium condition given in equation (19) is computed. A bisection algorithm to find the right 

strain is used. At each guess of strain, another bisection algorithm to find cr that satisfies the 

equilibrium condition given in equation (1) is implemented. The resulting cr is used to find Ph, Nc 

and NPT which is then used to evaluate equation (19).  

 Ultimate Strain of Confined Concrete after Sliding Completion at all Slip-dominant Joints 

Evaluation of this stage is similar to the ultimate strain of confined concrete for rocking-only 

column. The sliding at all the joints is set to its maximum and stress block parameters of confined 

concrete is computed. A bisection method is then used to compute cr that satisfies the equilibrium 

condition given in equation (1). 

 Complete Unloading 

The primary unknown in this stage is usl,j, this value is varied such that the equilibrium condition 

given in equation (20) is satisfied. Bisection method is used to find usl,j, that satisfies equation (20). 

2.2.5. Validation of Simplified Method 

In this section, the proposed model is compared with the test data from quasi-static cyclic 

testing on HSR columns as part of an extensive experimental program that also included shake 

tables testing of a large-scale single-span bridge specimen (Sideris 2012; Sideris et al. 2014b; c). 

The specimen included a box-girder segmental superstructure and two piers (see Figure 7(a)). Each 

pier included a five-segment HSR column with hollow square cross section and a cap beam of 

trapezoidal solid section (see Figure 7(b) and (c)). The box girder included #3 hoop reinforcements 
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provided in 3” spacing, The PT system included eight straight internal unbonded tendons of 

diameter of 0.6 inches and initial post-tensioning of 20 kips per tendon. The ducts had interior 

diameter of 0.9 inches. The duct adaptors had interior diameter Dda = 1.375 inches and height hda 

=1.5 inches. A thin layer of silicon material was applied at the interface of all pier joints to achieve 

a target coefficient of friction in the range of 0.08 to 0.1. For loading in the lateral direction, hm = 

158 inches, while hp = 120 inches (per Figure 7(a)). The specimen was subjected to a quasi-static 

cyclic loading. The resultant pushover curve is compared with the results of the proposed 

simplified model.  

       

  (a)     (b)        (c) 

Figure 7:(a) Photo of the test specimen, (b) substructure column, and (c) column cross-

section 

Figure 8 given below shows the comparison between the two pushover curves. It can be noted 

from Figure 8 (a) that the peak horizontal force is predicted reasonably well. After the unloading 

begins, the displacement corresponding to zero horizontal force is the residual displacement. It can 

be seen from the Figure 8 (b) that the residual displacements are under-predicted. One of the main 

reasons for under-predicting the peak displacement is due to the fact that the experiment conducted 

was a continuous cyclic pushover test with increasing amplitude in each cycle. Due to the damage 

in concrete in previous cycles, the stiffness properties of the structure may have changed. 
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Moreover, the fact that friction between tendons and ducts has not been considered in the model 

has also contributed to the lower residual displacements predicted by the model. 

 

(a) 

 

(b) 

Figure 8: Comparison between the simplified model and experimental results, (a): complete 

cycle, (b): last cycle. 

2.3. Detailed Analytical models 

In this section, a more general and detailed analytical model is presented. In the previous simplified 

model, only key stages of the column deformation were considered, while consideration of 

different sets of equations at different stages was found to lack robustness under random selection 
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of design/system variables. Also, the lack of the cyclic pushover capability did not allow 

predictions of hysteretic energy dissipation. 

The new model is generalized and capable of predicting the response for any given lateral 

deformation through the same set of equations throughout the analysis, while it is also capable of 

conducting cyclic pushover analysis. The column area is divided into two sections, an interior 

section having a confined concrete material behavior and an exterior section having unconfined 

concrete section behavior. A typical cross-section discretization considered in the model is shown 

in figure below 

 

Figure 9: Cross-Section discretization for the detailed model. 

Two types of detailed analytical model is discussed in this section. The first model considers 

curvature as the input parameter whereas the second model considers displacement as input 

parameter. The reason for transitioning from the first to the second model is that, in the presence 

of softening materials, the curvature does not always increase with the lateral displacement, 

making it an unsuitable control parameter for pushover analyses.  



M.S. Thesis  University of Colorado – Boulder 

Sreenivas Madhusdhanan  26 

The second model, because it uses displacement as its input, can be used to conduct a dynamic 

analysis of HSR columns considering them as single degree of freedom systems. The detailed 

models are discussed further in the following subsections. Since this model is generalized for any 

state of deformation, some of the terms discussed in the previous model are revisited again. Lastly, 

a robust modified Newton-Raphson solver is adopted to solve the model. 

2.3.1. Detailed Analytical Model – Model 1 

In this section, a model that considers curvature ϕ as the control input parameter is formulated. 

The individual terms related to the compatibility and equilibrium condition is discussed. First, the 

equations related to computation of the concrete reaction force is discussed. Second, the equations 

for finding the forces in the PT tendons are discussed. Lastly, the set of equilibrium equations and 

the primary unknowns to be solved for is identified.  

For a given curvature ϕ, and strain 
0 at mid-section of the column show in Figure 10, the strain 

c  in a fiber located at a distance x from the mid-section is given as  

0c x   
 (21) 

Once the confinement properties of the concrete section are computed, the stress 
cf  in the concrete 

for any given value of strain 
c  can be computed from a compression-only hysteretic law bounded 

by the envelope curve from Mander et al. 1988: 

1

cc
c r

f r
f

r






   
(22) 

where   is the ratio c

cc




, with 

cc being the strain at concrete confinement and 
ccf being 

compressive strength of confined concrete. Also, r is given as: 
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(23) 

where 
cE is the tangent modulus of elasticity of concrete and 

secE is given by the ratio cc

cc

f


. Using 

the above equations, the stress distribution along the column cross-section can be computed and 

hence the concrete reaction force Nc and moment Mc can be computed from integration.  

 

Figure 10: Variation of strain along the concrete cross-section 

Based on the change in sign of concrete strain, the contact length cr can be estimated as shown in 

Figure 11. The rocking rotation 
r can be expressed as a function curvature and equivalent plastic 

hinge length 
rl  as given below 

r rl 
 (24) 

where, the plastic hinge length 
rl is estimated as a function of 

rc  using an equation originally 

proposed by (Roh 2007) and later modified by Sideris 2012: 
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Using the rocking rotation, the extension in PT-tendon due to rocking can be computed. The 

extension in PT-tendon due to rocking is given as: 

   
, ,0 ,

r r

PT i PT PT i ru u x  
 

(26) 

Here, ,PT ix  is the distance of the PT tendon ‘i’ from the mid-section and 
 

,0

r

PTu is the extension in 

the tendon at the mid-section of the column shown in Figure 11:  

   ,0

r

PT r peak ru x c 
 

(27) 

The total extension in the tendon is given as : 

     0
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1
Due to Due to 
initial rocking Due to 
PT at bottom joint sliding

jN

r sl

pt PT i PT i PT i j

j

u u u u

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(28) 

In above equation, the term 
 0

,PT iu is the extension in the tendon due to initial Post-tensioning and 

 
, ,

1

jN

sl

PT i j

j

u


 corresponds to the extension in the tendon due to sliding across all the joints and is given 

as  

 

 , ,

1
2 1

cos

sl

PT i j da

j

u h


  
   

      

(29) 

Here ψj is the tendon deviation angle due to sliding at the j-th joint and is defined in equation (9). 

In this model, it is assumed that the current sliding usl,j is the same at all joints. This assumption is 

made in order to simplify the complexity of the model.   
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Figure 11: Relation between concrete compressive strain and contact length 

Once the total extension in the tendons are computed, the strain in the tendons can be easily 

computed. The response of the tendons was obtained by a tension-only stress vs. strain hysteretic 

law by Sideris et al. 2014a bounded by the envelop curve from (Mattock 1979) given as: 
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(30) 

where 
PT is the axial tensile stress of the PT tendon, 

PT is the tensile strain of the PT tendon, 
PTr

is the ratio of post-elastic to elastic modulus of the PT tendon, K is the ratio of actual yield stress 

to nominal specified yield stress (usually slightly larger than 1), and R is a dimensionless factor 

that determines the smoothness in transition from elastic to inelastic range. A typical stress strain 

curve obtained from Mattock model with important features are given in Figure 12. The behavior 

of the concrete model and the PT tendon model subjected to loading and unloading is given in 

Figure (14). 
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Figure 12: Typical Mattock model with key features. 

 

(a) 

 

(b) 

Figure 13 : (a) Typical cyclic behavior of concrete model, (b) Cyclic behavior of PT 

tendons. 

Once the stresses in the tendons are computed, the total PT force (Npt) can also be calculated. The 

terms NPT and Nc for any given state of damage can be computed using the set of equations 

discussed in this section. However, the values of Nc and NPT computed should also satisfy the 

equilibrium and compatibility conditions. The equations for vertical and moment equilibrium 

presented in the simplified model are generalized enough to be used for any state of damage. 

However, the equilibrium equations relating the horizontal force and joint-shear force of a SD joint 
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are applicable only for the unloading stages. In the improved model, a more generalized relation 

for joint shear equilibrium applicable for any state of damage is used.  

At the SD joints, the applied horizontal force is resisted by the joint shear force given as (Sideris 

et al 2014): 

       
, , ,

, , , , ,

, , , ,

sin sgn

j j j
R f R b R L

j j c sl j PT tot j l sl j sl l sl j

Friction Force V Bearing Force V Locking Force V

V N Z u N K u u u 

 
 

    
 
   

(31) 

The first term is the above equation is the shear resistance at the joint due to friction force. The 

term  ,sl jZ u is an elasto-plastic hysteretic function (Z = ±1 at sliding initiation) to capture the 

effects of sliding. The variation of Z with sliding displacement is shown in Figure 14. The second 

term is the shear resistance due to tendon bearing force, which is initiated once tendons are in 

contact with the ducts. Due to the dowel effect of the PT tendon, the bearing forces are activated. 

The third term is the locking force, which are the stiffening forces that initiate once the sliding 

capacity ( ,sl lu ) is reached and the tendons are in contact with the bottom and top duct adaptor. The 

above three terms are visualized in Figure 15 (Sideris et al. 2014c) and the typical variation of the 

joint shear force with joint sliding is show in Figure 16. In the next subsection, the detailed model 

is formulated highlighting important equations and the primary unknowns to be solved for are 

defined. 
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Figure 14: Variation of Z with sliding displacement usl. 

 

Figure 15: Response of SD joint showing Tendon bearing and locking forces. (Sideris et al. 

2014c) 

 

Figure 16: Variation of joint-shear force Vj with joint sliding usl.( Sideris et al. 2014c) -0.5 0 0.5
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2.3.1.1. Model formulation and computational implementation 

In this section, the equilibrium equations to be solved, primary unknowns and the solution 

procedure are discussed. The input variable that determines the state of deformation in the system 

is ϕ, while the primary unknown are 
0 and 

slu . The equilibrium equations to be solved are  

,1

2

{ }
v PT tot c

h j

P N Nf
f

P Vf

     
    

      

(32) 

For a given value of ϕ, the individual terms in the above set of simultaneous nonlinear equations 

are computed and solved for 
0 and 

slu . A Newton-Raphson algorithm is used to solve the above 

set of equations. The Newton-Raphson method is an iterative procedure where the unknown 

variables are estimated in each iteration using the derivatives of the equation. This procedure can 

be written in form of equation as  

       
1

1i ix x J f


  
 

(33) 

where,  ix is the guess of 
0 and 

slu in the iteration step i, and  J  is the Jacobean of the function 

 f  defined as: 

 

1 1

0

2 2

0

sl

sl

df df

d du
J

df df

d du





 
 
 
 
 
   

(34) 

Here, the entries of the Jacobean matrix are the partial derivatives of  f  with respect to 
0 and

slu . Once the right solution for to 
0 and

slu is found, the horizontal displacement is then computed 

using the equation (13). Since the model is highly nonlinear, a robust Newton-Raphson solver was 

very important. In this solver, whenever the algorithm fails to find a solution within a given number 

of iterations, the target ϕ is scaled down. In this way, the algorithm solves with more points of 
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input ϕ the sections of the pushover curve that do not have smooth transitions. This situation mainly 

occurs during sliding initialization stage of the pushover curve. The model proposed in this section 

is generalized enough to be applicable for cyclic pushover analysis.  

A typical cyclic pushover curve from the detailed model is shown in Figure 17 below. Since the 

pushover curve consists of many states of stress, the resultant pushover curve much smoother than 

the previous model. Further it can be noticed that the sliding behavior of the column and unloading 

stages are captured well in this model. 

 
Figure 17: Typical pushover curve from detailed model. 

2.3.2. Detailed Analytical model - Model 2 

The motivation for the development of the second analytical model is: (i) in the presence of 

softening materials (e.g., concrete), the curvature does not always increase monotonically with the 

lateral displacement, making it an unsuitable control parameter for pushover analyses, (ii) for 

implementation within a structural analysis framework or software (as a simplified nonlinear 

spring), a model that provides column lateral force for given lateral displacement is typically 

required. For this reason, the second model uses lateral column displacement as the input/control 

Sliding

Rocking 
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parameter. Most of the equilibrium and compatibility equations are similar to the previous model. 

However, some of the terms and equations had to be reformulated. The model is graphically shown 

in Figure 18. The model includes a constant strain/curvature plastic/rocking hinge at the bottom, 

in series with an elastic column member and a rigid element to connect the top of the column with 

the center of mass of the superstructure. 

  

Figure 18: Free body diagram showing the displacements and forces in HSR column. 

 

2.3.2.1. Equivalent Plastic hinge length 

In this model, the equivalent plastic hinge length (due to rocking) is considered to be a constant 

fraction of the cross-section depth (0.8~0.9d). This approximation makes the estimation of rocking 

angle simpler (and more robust) and was found to have small influence on the predicted response. 

2.3.2.2. Kinematics and strain-displacement equations. 

The Error! Reference source not found. given below is the free body diagram of the HSR 

column. The extension in the tendon due to rocking is given as: 
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0r ru l  
 (35) 

Rotation due to plastic deformation is given as r rl   (36) 

The displacement due to resultant plastic deformation is given as 

1

2
r r rv l 

 
(37) 

The relation used for relating horizontal displacement and horizontal force is given as 

 3 2 2 3 2hv or u v h h  
 

(38) 

where  

    
2

2 2 3 2 2
2

h h
r r r

P P
h l h h h l

EI EI
      

 
(39) 

and 

    
3 2

2 2 3 2 2 2
3 2 2

h h r
r r r

P P l
v h l h h h l h

EI EI


 
       

   
(40) 

The extension in the column due to rocking at mid-section is now given as  

 
 2

3 2

r

r c

h l
u u u N

AE


  

 
(41) 

2.3.2.3. Moment equilibrium equation 

The moment equilibrium condition in previous models considers the secondary effects of the 

column sliding. In this model, the secondary effect due column displacement is considered instead 

and is given by equation: 

,c PT tot v h

h

m

M M Pu
P

h

 


 
(42) 
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2.3.2.4. Formulation of the model and computational implementation 

In this model, the parameter that determines the damage of the column is horizontal displacement 

uh. The primary unknowns in this model are
0 , ,

slu and
hP  The equilibrium equations to be 

solved in the Newton-Raphson solver are: 

         
,

1

, , , , , ,

2

3
3

,
4

cos sin sgn

v PT tot c
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h
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h
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P N N

f
P P N Z u N K u u u

f

v uf

M M P uf P
h

  

  
  

      
   

   
   

    
   

   

(43) 

It is noted that in the last equation large deformation effects have been considered using in entire 

lateral deformation, rather than the effect of joint sliding only. 

The Jacobian to be used for solving the above equation are: 

 

1 1 1 1
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(44) 

The material models and procedure used to find the solution are similar to the previous model. The 

figure given below is the plot of cyclic pushover curve. It can be noticed that the pushover curve 

obtained from both the models are very similar. However, the peak forces for the model-2 are 

lesser because of the fact that secondary effect due to total displacement is considered in model-2. 
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Figure 19: Comparison in pushover curves obtained from model-1 and model-2 

2.4. Validation of the models 

In this section, both the proposed model-2 is compared with the results of quasi-static cyclic testing 

described in section 2.2.5. Figure 20 given below shows the results from the detailed model 2 and 

the experimental results. Since we can input the displacement pattern similar to the experiment 

(continuous cyclic pushover with increasing amplitude) in the detailed model, it can be seen that 

the results from this model is much better than that of the simplified model. The peak horizontal 

force and displacements are predicted better when compared with the previous model. However, 

the residual displacements are still underestimated by about 70%. Since the overall cyclic behavior 

of the model is captured fairly well by this model, it can be used to estimate the hysteretic damping 

of HSR columns. The variation of joint shear with sliding displacement at each joint is also 

compared in Figure 21. Since the model assumes same sliding displacements in all the joints. The 

estimates for joint sliding match well only with some joints. However, the estimation of peak joint 

shear force is predicted well for most of the joints. In the next section, various design variables are 

examined and their effect on the behavior of the column are discussed. 
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Figure 20: Comparison of experimental result with detailed model.  

 
 

 
 

  

Figure 21: Joint shear force Vs joint sliding at each joint. 

2.5. Assessment of Design variables 

In this section, a single cycle pushover analysis is conducted by varying major design parameters 

– one at a time – of the HSR parameters. This assessment provides a better idea on how some of 
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the design parameters affect the performance of HSR columns. The effect of coefficient of friction 

(COF) at the SD joints is investigated first. From Figure 22(a) it is observed that the response of a 

HSR columns with high COF is similar to response of rocking-only columns. Increasing the COF 

increases the forces in tendon causing them to break. Therefore it can be noticed that allowing the 

column to slide provides a more ductile response. Figure 22(b) shows the effect of COF on joint 

shear force and joint sliding. Having high COF delays initiation of sliding, which also occurs at a 

larger shear force, and reduces the peak sliding. 

 

(a) 

 

(b) 

 Figure 22: Effect of COF on (a) Pushover, (b) Joint shear-force and sliding. 

Next, the effect of diameter of duct adaptor is examined. In Figure 23, it is observed that reduction 

in duct diameter reduces the peak sliding capacity. This causes the initiation of tendon bearing and 

locking forces earlier when compared to higher duct diameters. This leads to failure of tendons. 

This parametric study shows that the performance of the HSR column is greatly affected by the 

choice of design parameters. Efficient designs can be achieved with the right choice of these 

parameters.   
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(a) 

 

(b) 

Figure 23: Effect of diameter of duct adaptor on (a) Pushover, (b) Joint shear-force and 

sliding. 

Next, the effect of the vertical force Pv and initial force of PT tendon is examined. Figure 24 given 

below shows the effect of vertical force and initial PT on Pushover curve. It can be noticed that 

increasing the vertical force and PT force increases the horizontal force. However, it can be noticed 

that the effect of increase in lateral force due to increase in PT tendon is much higher when 

compared with the horizontal forces. This clearly shows that there is a significant contribution to 
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the pushover curve from the PT tendons. From the above parametric study it can be noticed that, 

the diameter of the duct adaptors, coefficient of friction and initial PT force are some of the 

important design parameters. These parameters must be chosen appropriately for optimal designs. 

 

(a) 

 

(b) 

Figure 24: Effect of Vertical force (a) and Initial PT force (b) on Pushover curve. 

2.6. Major findings 

In this chapter, a simplified model to estimate the pushover curve of HSR column was derived. 

The simplified model was compared with experimental results. It was observed that peak 

horizontal forces were estimated well but the unloading section of pushover did not match well. 

In order to have a more generalized pushover curve capable of conducting cyclic pushover 

analysis, detailed models were developed. Two detailed models were developed, one with 

curvature as input and one with horizontal displacement as input. Both the detailed models use 

concrete and PT tendon hysteretic material models that match well with experimental results. The 

detailed models were then compared with experimental results. It was observed that the detailed 

models perform much better than the previous model. The cyclic behavior of HSR columns are 

predicted well in the detailed model. Lastly, a small parametric study is conducted to examine the 
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effects of various design parameters. In the next section, the detailed model is used in a Capacity 

spectrum design framework to propose a design methodology for HSR columns. 
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3. CAPACITY SPECTRUM DESIGN METHODOLOGY FOR HSR COLUMNS 

In this section, a capacity spectrum design methodology is presented for the HSR columns. In the 

first sub-section, the design procedure for HSR columns is discussed. The design procedure is 

applied for a typical column to estimates the performance point of the column for given level of 

hazard. In the second sub-section, a nonlinear dynamic analysis is conducted on the typical column 

to verify the results of design methodology. 

3.1. Design methodology 

A general flow chart of the capacity spectrum method shown in the flowchart given below in 

Figure 25.  

 

 

Figure 25: Capacity Spectrum Method Flow-Chart 
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In capacity spectrum design, the nonlinear pushover curve is converted to the so-called spectral 

capacity curve, which is a spectral acceleration vs. spectral displacement curve (Discussed in 

section 3.1.2) . Next a seismic demand curve from typical design response spectra is scaled to 

account for hysteretic damping affects (Discussed in section 3.1.1). The point of intersection of 

the spectral capacity curve with the spectral demand curve is termed the performance point. This 

indicates the performance of the system when it is subjected to a hazard represented by the demand 

curve. If there is not a point of intersection, this means that the system will fail at the given hazard. 

In order to incorporate capacity spectrum design, the nonlinear pushover curve of the structure is 

required. This procedure also requires the estimation of variation of equivalent viscous damping 

with lateral displacement (and spectral displacement). In this section, a capacity spectrum design 

methodology is proposed for HSR columns. In the first subsection, procedure to obtain the seismic 

demand curve is explained. Next the seismic capacity curve is estimated. Finally the numerical 

procedure to find the performance point is presented. 

3.1.1. Seismic demand 

In performance based seismic design, establishment of seismic demand is an important step. Two 

levels of seismic hazard are considered in this study. The first is the Design earthquake (DE, 10% 

probability of exceedance in 50 years), and the Maximum considered earthquake (MCE, 2% 

probability of exceedance in 50 years). The response spectra for any given level of hazard is 

computed per AASHTO LRFD Bridge design Specifications 2007: 
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(45) 

This spectrum refers to the seismic event with 10% in 50 years probability of exceedance and soil 

profile type I and II. The acceleration coefficient is obtained from seismic hazard map and S is the 

site coefficient which represents the soil profile type. To scale the response spectra for any given 

value of damping, equation (46) (European Committee for Standardization 1994) is used. Here, 

eq is the equivalent damping in the system. In this study, the bridge under study was assumed to 

be located at a moderate to high seismicity area in California with A=0.25, with a soil profile of 

type II (S=1.2 per table 3.10.5.2) of AASHTO LRFD Bridge design Specifications 2007. 

,

0.07

0.02eqA A

eq

S S





 

(46) 

 

3.1.2. Seismic capacity 

The seismic capacity for the capacity spectrum method is computed by conducting a monotonic 

pushover analysis on the structure. The resultant force versus displacement curve is then expresses 

as spectral acceleration vs. spectral displacement curve, which for a single degree of freedom 

system is given by:   

, ,A c D c

P
S and S u

m
 

 
(47) 

where, P is the horizontal load obtained from pushover curve, m is the mass of the structure and u 

is horizontal displacement of the structure. 
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3.1.3. Damping curve 

Damping ratio for a system for any given displacement u can be estimated using the cyclic 

pushover curve is given as.  

   o hystu u   
 

(48) 

where 
o is the inherent damping in the system (~ 3-5%), and  hyst u is the damping ratio due to 

hysteresis obtained as:   

 
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s

E u
u

E u





 

(49) 

where  hystE u  is the energy dissipated due to hysteresis, and  sE u  is the elastic energy that 

equivalent elastic secant stiffness system. The energy dissipated and stored are shown in Figure 

26 (a) given below. For each point in the curve, a cyclic pushover curve is conducted to get a 

smooth variation of damping ratio with displacement. 

 

(a) 
 

(b) 

Figure 26: (a) Energy stored and dissipated in a typical hysteretic curve, (b) Variation of 

Damping curve with displacement. 

3.1.4. Performance point 

As mentioned earlier, the displacement at which the capacity curve meets the demand curve is 

called the performance point. The demand curve at a given spectral displacement is scaled due to 
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the damping ratio at that displacement given by the damping curve (Figure 26 (b)). Therefore, in 

order to find the performance point, this scaling should be taken into account. The mathematical 

problem can be stated as:          ,c dH SD SA SD SA SD SD  , where SD is the spectra 

displacement that is equal to the lateral column displacement for a single degree of freedom 

system. To find the performance point, the demand, capacity and damping curves are first 

computed. Then, a bi-section method is formulated as:  

i. Start with a small and large initial guess of spectral displacement at the performance point. 

ii. Find the damping ratio corresponding to both spectral displacements 

iii. Find the value of the spectral demand at that spectral displacements corresponding to the 

computed damping ratios 

iv. Find the value of the spectral demand at that spectral displacements 

v. Find the displacement where capacity curve meets the demand curve 

vi. Select a new initial guess as the average of the two spectral displacements and check if 

 H SD tolerance . If not, repeat the process from step ii in accordance with the Bi-

section method, until convergence is achieved 

Computationally, a bisection algorithm was used find the performance. 



M.S. Thesis  University of Colorado – Boulder 

Sreenivas Madhusdhanan  49 

 

Figure 27: Plot showing capacity vs. demand curve and damping vs. displacement. 

 

3.2. Validation of proposed methodology using Incremental Dynamic Analysis (IDA) 

In this section, the performance points obtained from the proposed capacity spectrum design 

methodology is verified using the results of nonlinear dynamic analysis on the structure. To 

conduct nonlinear dynamic analysis, the HSR column is considered as a single degree of freedom 

system (SDOF). This SDOF is subjected to a set of ground motions and analyzed to find the peak 

displacement of the structure. The applied ground motions (GM) are then scaled until the structure 

fails. This procedure is called incremental dynamic analysis (IDA). A plot of a peak response 

parameter for a given GM vs. intensity measure (usually the spectral acceleration) is called an IDA 

curve. The peak response corresponding to the scale that is representative of the hazard is the actual 

performance of the structure for the given hazard. In the following subsections, the incremental 

dynamic analysis is further explained in detail.  

3.2.1. Dynamic analysis of HSR column as SDOF system 

The HSR columns can be simplified as a SDOF system with a lumped mass acting at the top of 

the column. The force displacement relation for the SDOF system is obtained from the detailed 
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analytical model proposed in section 2.3.2. The solution for the dynamic analysis is for ground 

excitation is computed numerically using Newmark’s beta method. 

3.2.2. Ground motion records 

For the dynamic analysis of HSR columns all the records of (FEMA) 2009 Far-field ground motion 

set was considered in this study. For the ground motions to represent the seismic demand curve, 

the scale factor corresponding to the ground motions are estimated. Three different methods were 

followed in this study 

 Method-1: According to ASCE 2010, the mean spectrum of ground motions must envelop 

the design spectrum between 0.2Tn and 1.5 Tn, where Tn  is the elastic fundamental period 

of the system. 

 Method-2: Mean spectrum of ground motions enveloping the design spectrum at Tsec, 

where Tsec is the secant period of the structure at the performance point predicted by the 

proposed CSM. This must give a better estimate of demand curve, as the spectrum accounts 

for the damage in the structure at performance point. 

 Method-3: Mean spectrum of ground motions enveloping the design spectrum at the elastic 

period Tn. Results corresponding to this scale would have the most discrepancy as it 

corresponds to the undamaged state of the structure.  

The design spectrum and the Mean spectrum of ground motions scaled using the above 

three methods are shown in Figure 28. 
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(a) 
 

(b) 

Figure 28: Scaling of ground motion ensemble to represent demand curve (a: MCE, b: DE). 

3.2.3.  Incremental dynamic analysis 

To develop IDA curves, the structure is analyzed for each ground motion for increasing scale 

factors until failure. A plot of mean of peak displacement of the structure (at a given scale factor) 

versus the intensity measure (can be scale factor or spectral acceleration at natural frequency Tn)is 

a mean IDA curve. From the mean IDA curve, the performance of the structure for a hazard is then 

obtained.. 

3.2.4. Comparison of results 

Figure 29 shows the IDA curve for the structure. The plot shows the peak displacement for ground 

motion versus the spectral acceleration (intensity measure) at Tn, where Tn is the natural frequency 

of the column. The plot also shows the mean and the geometric mean of these results. For a given 

level of hazard, the scale factors are computed using the three methods discussed in previous 

section. The peak displacements for each ground motion pertaining to the computed scale factor 

is obtained from Figure 29. The mean and geometric mean of these displacements are then 

compared with the performance point obtained from capacity spectrum method. 
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Figure 29: IDA curve showing Peak displacements versus Sa(Tn) for all the ground motions 

and mean peak displacements. 

For the column dimensions and materials properties discussed in section 2.2.5, the performance 

points for DE and MCE, and comparison with IDA results are summarized below: 

 Performance point at DE (from CSM) : 5.61 in 

o Geometric mean peak displacement  from Method 1: 2.47 in 

o Mean peak displacement from Method 1: 2.71 in 

o Geometric mean peak displacement from Method 2: 4.81 in 

o Mean peak displacement from Method 2: 5.22 in 

o Geometric mean peak displacement  from Method 3: 2.32 in 

o Mean peak displacement from Method 3: 2.59 in 

 Performance point at MCE (from CSM) : 7.56 in 

o Geometric mean peak displacement  from Method 1: 4.21 in 



M.S. Thesis  University of Colorado – Boulder 

Sreenivas Madhusdhanan  53 

o Mean peak displacement from Method 1: 4.53 in 

o Geometric mean peak displacement from Method 2: 9.69 in 

o Mean peak displacement from Method 2: 11.08 in 

o Geometric mean peak displacement  from Method 3: 3.18 in 

o Mean peak displacement from Method 3: 3.38 in 

It can be noticed that the estimates obtained from the capacity spectrum method corresponding to 

method 2 are reasonable. However, further investigation is needed as to the reasons for the 

observed discrepancies.  

3.3. Major findings 

In this chapter, a capacity spectrum method was proposed to determine the performance of HSR 

columns. The proposed method was used to estimate the performance of HSR columns at DE and 

MCE hazards. The results obtained with the CSM were compared with nonlinear dynamic analysis. 

The results of the proposed design method were reasonable when compared to the results from 

dynamic analysis. 
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4. SUMMARY, CONCLUSIONS AND SCOPE OF FUTURE WORK 

4.1. Summary  

In this thesis, a simplified model to perform monotonic pushover analysis on HSR columns was 

derived and validated against experimental data. Next, a more detailed and generalized model 

capable of computing monotonic and cyclic pushover of HSR column was derived. This detailed 

model – Model 1 – had the curvature at the column bottom as input/control parameter, and its 

application was only limited to pushover analysis. This model was subsequently modified with the 

lateral column displacement as input/control parameter – Model 2 – and became suitable for cyclic 

pushover analyses and for random loading. Using the detailed model, a parametric study on the 

design variables was conducted. A capacity spectrum design methodology was also proposed to 

determine the performance of HSR column for a given hazard. This design methodology was 

verified through an incremental dynamic analysis of a selected HSR column.  

4.2. Conclusions 

The major findings of this thesis are: 

 The pushover analysis from the proposed simplified model could predict the response 

reasonably well, particularly in terms of peak forces. The unloading and residual 

displacements were under-estimated. 

 The monotonic and cyclic pushover results from the detailed model were found to better 

estimate the behavior of HSR columns. The unloading sections and residual displacements 

were better estimated when compared to the previous model. 
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 Comparison of the results from the detailed model with the results from past experimental 

studies showed that the joint sliding behavior was captured reasonably well, despite 

assuming the sliding response at all joints to be the same. 

 Parametric study on the design parameters of HSR columns showed that, the coefficient of 

friction and the diameter of the duct adaptors control the response characteristics. 

Specifically, when these parameters are chosen such that sliding is allowed, the HSR 

columns are observed to be able to accommodate higher displacements without failure.  

 The capacity spectrum method proposed in this study can be used to determine the 

performance of HSR columns fairly well, yet further improvements are needed. By varying 

the system geometric and material properties (in an iterative manner), economical designs 

can be explored. 

4.3. Scope for future work 

On the basis of the findings of this work, suggestions for future research include:  

 Incorporate more detailed models for concrete and PT tendon behavior 

 Propose a more detailed model, where sliding amplitude in each joint is considered 

individually. 

 Include the effects of friction between the tendon and duct. 

 Improve the Capacity Spectrum Method to better capture response of HSR Columns 

 Incorporate the capacity spectrum method in an optimization framework to efficiently 

design for various parameters of HSR columns. 
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