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Abstract: Currently, the ability to use remotely sensed soil moisture to investigate linkages between
the water and energy cycles and for use in data assimilation studies is limited to passive microwave
data whose temporal revisit time is 2–3 days or active microwave products with a much longer
(>10 days) revisit time. This paper describes a dataset that provides soil moisture retrievals,
which are gridded to 36 km, for the upper 5 cm of the soil surface at sparsely sampled 6-hour
intervals for +/− 38 degrees latitude for 2017–present. Retrievals are derived from the Cyclone
Global Navigation Satellite System (CYGNSS) constellation, which uses GNSS-Reflectometry to
obtain L-band reflectivity observations over the Earth’s surface. The product was developed
by calibrating CYGNSS reflectivity observations to soil moisture retrievals from NASA’s Soil
Moisture Active Passive (SMAP) mission. Retrievals were validated against observations from
171 in-situ soil moisture probes, with a median unbiased root-mean-square error (ubRMSE)
of 0.049 cm3 cm−3 (standard deviation = 0.026 cm3 cm−3) and median correlation coefficient of
0.4 (standard deviation = 0.27). For the same stations, the median ubRMSE between SMAP and in-situ
observations was 0.045 cm3 cm−3 (standard deviation = 0.025 cm3 cm−3) and median correlation
coefficient was 0.69 (standard deviation = 0.27). The UCAR/CU Soil Moisture Product is thus
complementary to SMAP, albeit with a larger random noise component, providing soil moisture
retrievals for applications that require faster revisit times than passive microwave remote sensing
currently provides.
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1. Introduction

Near-surface (0–5 cm) soil moisture data are used for a variety of applications, such as drought
monitoring [1–3], flood forecasting [4,5], initializing climate models [6], numerical weather prediction [7],
quantifying the linkages between the surface and atmospheric boundary layers [8–10], optimizing
irrigation strategies [11], and predicting infectious disease transmission [12]. All of these applications
require soil moisture data at different spatial and temporal scales. Due to its ability to retrieve soil
moisture over large parts of the globe, satellite remote sensing is often used to provide these data.
Most often, microwave instruments are used due to their ability to see through clouds and penetrate
at least some amount of overlying vegetation. However, even the microwave sensor with the fastest
revisit time (passive radiometer), is constrained to providing data every 2–3 days [13]. While for many
soil moisture applications, such as climate model initialization, a 2–3 day repeat period is more than
sufficient, other applications require a higher density of observations. For example, the quantification
of soil moisture memory is limited to the time scale of observations [10]. Several ongoing efforts are
also using soil moisture as a proxy for other quantities, such as rainfall [14,15] or evaporation [16,17],
and having daily or sub-daily data would increase the success of these techniques.
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A constellation of microwave instruments, the Cyclone Global Navigation Satellite System
(CYGNSS), is currently on orbit over the tropics, and because it is a constellation with numerous
satellites, it can provide data more frequently than currently possible using a single instrument
alone [18]. Although not designed for soil moisture remote sensing, this paper describes a dataset [19]
that has been developed from the CYGNSS constellation that provides soil moisture retrievals for the
majority of the tropics (+/− 38 degrees latitude) at daily and sub-daily time steps. Here, we describe
the algorithm, its assumptions, and validation of the retrievals using in-situ soil moisture observations.
In regions where the algorithm performance is acceptable, the CYGNSS soil moisture retrievals could
be used to augment existing soil moisture satellite data for the aforementioned applications that require
data at a higher temporal resolution.

1.1. CYGNSS

The CYGNSS mission was launched in December 2016. A NASA Earth Ventures Mission,
CYGNSS consists of eight small satellites that orbit the tropics with an inclination of 35 degrees [18].
CYGNSS was designed to retrieve ocean surface wind speed during hurricane intensification events,
and, as such, the receivers and software were optimized for ocean surface remote sensing. Each of the
CYGNSS satellites carries with it two downward-looking antennas and a Global Navigation Satellite
System-Reflectometry (GNSS-R) receiver.

GNSS-R is a form of L-band bistatic radar that utilizes transmitted navigation signals as the signal
source. GNSS is an umbrella term that encompasses constellations like the United States’ GPS, but
also the EU’s Galileo, Russia’s GLONASS, China’s BeiDou, India’s IRNSS, and Japan’s QZSS. In total,
there are over 80 GNSS satellites currently in orbit (32 of which are GPS satellites), with more being
planned in the coming years. To date, GNSS-R most commonly utilizes right hand circular polarized
(RHCP) L-band signals transmitted from GPS satellites, which upon reflection are predominantly left
hand circular polarized (LHCP).

Because L-band signals are commonly used for near-surface (0–5 cm) soil moisture remote
sensing (e.g., NASA’s Soil Moisture Active Passive (SMAP) or the European Space Agency’s Soil
Moisture and Ocean Salinity (SMOS) missions [13,20]), there is significant interest in quantifying
the sensitivity of spaceborne GNSS-R data to changes in soil moisture. There had been evidence
of sensitivity during previous GNSS-R flight campaigns (e.g., [21–25]), though the first analyses
investigating the sensitivity of spaceborne GNSS-R data to soil moisture were only done after the
launch of TechDemoSat-1 (TDS-1) in 2014. TDS-1 carried the same GNSS-R receiver as is used by
CYGNSS, and these preliminary investigations did show that there appeared to be some sensitivity of
GNSS-R to soil moisture [26,27]. Due to the fact that TDS-1 only collected GNSS-R data for one out of
every eight days, however, developing a full soil moisture retrieval algorithm was not attempted.

The sheer amount of data collected by CYGNSS has allowed for an empirical investigation into the
sensitivity of spaceborne GNSS-R data to soil moisture. The dataset that we describe here is the result
of a modified version of the methodology presented in [28]. The full dataset is available online [19].
The results presented here are the outcome of just one of several ongoing efforts investigating the
potential of CYGNSS to retrieve soil moisture. Several of these efforts are also using SMAP retrievals
as a reference data set, though differences arise in assumptions regarding gridding, open water
masking, and vegetation considerations. For example, [29] assumed that the vast majority of CYGNSS
observations have a coarse (>25 km) spatial resolution and spatially averaged the data under this
assumption, whereas in the algorithm described here we assume a 3 km spatial resolution. The authors
of [30] also used SMAP data for retrieval algorithm development, though also made considerations for
changes in vegetation, and [31] incorporated surface roughness data from IceSat-2, neither of which do
we do here. Both [29,32] scale their soil moisture retrievals by knowing a priori the maximum and
minimum values of soil moisture for a particular region, which we also do not do here. Several other
researchers are exploring machine learning techniques for CYGNSS soil moisture retrieval (e.g., [33,34]).
Given the differences in validation data sets and time periods used for validation, it is difficult to
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directly compare the output of algorithms, though most have shown at least moderate success in
retrieving soil moisture from CYGNSS.

1.2. GNSS-R Background

Unlike monostatic radar, which measures backscatter, GNSS-R measures the forward-scattered
signal, which has reflected off of the surface of the Earth and back into space. Figure 1 presents a
schematic of the signal geometry. A satellite in low Earth orbit, with a GNSS-R receiver onboard,
has one or more downward-looking antennas, which record the forward-scattered signals. Information
contained within the scattered signals can be related to land surface parameters, such as the surface
roughness, dielectric constant of the soil, and vegetation properties.
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Figure 1. Schematic of the GNSS-R technique. A GNSS satellite transmits (Tx) a signal towards the
Earth’s surface. Part of this signal reflects in the forward (specular) direction and back into space.
A GNSS-R receiver (Rx) onboard a low-Earth-orbiting satellite, with a downward-looking antenna,
records this signal. The point on the Earth’s surface where the signal reflects depends upon the
positions of the transmitting and receiving satellites. The roughness of the surface at the reflection point
determines the spatial resolution of the signal, with rougher surfaces producing larger spatial footprints.
Nearly always, the receiver integrates the reflected signal over a period of time, which elongates the
spatial footprint in the along-track direction.

The point of reflection on the Earth’s surface is determined by the positions of the transmitting
and receiving satellites. Because these positions are constantly changing, the reflection points are
pseudo-randomly distributed on the Earth’s surface (see Figure 2a for examples), which is different
than traditional remote-sensing techniques, which collect data in repeatable swaths. This means that,
for a given point of the Earth’s surface, observations could be recorded one hour apart, and then there
could be no observations for the next several hours, for example [35]. Observations are recorded at all
times of day, again, unlike traditional remote-sensing techniques, which tend to observe a particular
location at a particular time of day. The pseudo-random distribution of observations, over time,
aggregate such that complete maps of the reflected signal can be made (Figure 2b).
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Figure 2. (a) Illustration of the pseudo-random surface sampling by CYGNSS (ellipses with dots).
Ellipses are approximately 7 × 0.5 km in size, which is the expected footprint if the surface has little
surface or topographic roughness. Dots are the location of the specular reflection points recorded by
CYGNSS. This example shows coverage for one typical 24-hr period. Grid cells are the size of the
EASE2 36-km grid cells. (b) Over time, observations made by CYGNSS completely cover the land
surface, producing maps such as this (CYGNSS observations overlaid on DEM). Here, higher values
could indicate a wet surface or a relatively flat surface.

The spatial resolution of the reflecting signal depends on the roughness of the surface at and near
the reflection point [36]. Here, roughness includes possible contributions from many factors and not
just the micro-scale roughness of the soil, such as roughness introduced from vegetation canopies,
wind-roughened water, and macro-scale roughness from topography. If the surface is relatively rough,
then the reflected signal is incoherent and comes from an area called the “glistening zone,” which is on
the order of several kilometers (~25 km in the case of the ocean surface), though recent research is
beginning to show that where incoherent scattering originates from over the land surface is highly
dependent on the local topography and may not be definable with a simple 25-km radius [37]. If the
surface is relatively smooth, then the reflected signal is coherent and comes from an area defined by
the first Fresnel zone. For a low-Earth-orbiting GNSS-R satellite, this area is on the order of 0.5 km,
though this also depends on incidence angle (0.33 km at 0 deg incidence, 1.3 km at 60 deg incidence) [38].
In practical terms, determining whether the reflecting surface is smooth enough to produce a coherent
reflection is challenging, as surface roughness is an extremely difficult parameter to measure. Existing
measurements show that surface roughness tends to be on the order of 2–3 cm [39–41], though surface
roughness likely varies considerably on scales as large as the first Fresnel zone. There are also likely
complications from macro-scale surface roughness due to topographic variations that are not well
understood. Modelling efforts are beginning to shed light into the role of topography in GNSS-R signal
scattering (e.g., [42,43]), with some studies showing that the sensitivity of the GNSS-R signal to soil
moisture is relatively unaffected by complex topography [42].

In all likelihood, most signals are probably a combination of incoherent and coherent scattering.
In the algorithm presented here, we ignore contributions from incoherent scattering. Assuming that the
reflected signal is always coherent may lead to increased uncertainties in final soil moisture retrievals,
though currently these uncertainties are not able to be quantified without a better knowledge of the
precise conditions that lead to incoherence.

Due to the fact that CYGNSS was designed to be an ocean sensor, where the reflected signal is
relatively weak, the processing software integrates the signal over a period of 1 s for each “observation.”
During that time, the spacecraft has moved approximately 7 km, which means that the smallest
along-track spatial resolution possible over land is 7 km, though the across track resolution could still
be the theoretical 0.5 km. This results in the spatial footprint having a minimum size of 7 × 0.5 km,
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with the signal being smeared out along track (Figure 2a). In mid-2019, the CYGNSS integration time
was decreased from 1 to 0.5 s, which means the minimum spatial footprint is currently 3.5 × 0.5 km.

The reflected GNSS signal is recorded by the receiver in the form of what is called a delay-Doppler
map (DDM). A DDM is created by cross-correlating the received signal with a locally generated replica
that has been modified considering different path delays (resulting from the path distance between
the transmitter, reflecting surface, and receiver, as shown in Figure 1) and Doppler shifts (resulting
from the relative motions of the transmitter, reflecting surface, and the receiver). Two examples of
DDMs are shown in Figure 3. Figure 3a is an example of a DDM recorded by CYGNSS over the land
surface, and Figure 3b is an example of a DDM recorded over the ocean surface. The horseshoe shape
of the ocean DDM is an indication that the reflection is incoherent and comes from a large, rough area.
The absence of a horseshoe shape in Figure 3a indicates that the reflection is mostly coherent, and comes
from a smaller, smoother area. The maximum power of each DDM is affected by surface roughness,
the dielectric constant of the surface, and the vegetation overlying the surface, which is explained
further below.
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DDMs are most commonly used by summarizing them into one metric or observable.
The observables that are commonly used for soil moisture estimation are the peak cross-correlation of
each DDM or the peak divided by the noise floor (signal-to-noise ratio, SNR). The value of the peak
cross-correlation of each DDM is related to surface characteristics at the specular reflection point of the
GNSS signal, including the roughness of the surface, the surface dielectric constant, and properties
related to any overlying vegetation such as vegetation water content and structure of the canopy.
However, the peak of each DDM is also affected by variables unrelated to the reflecting surface, such as
antenna gain and range. We describe our procedure to correct for these effects in the next section.

2. Materials and Methods

2.1. Introduction to the Algorithm

The algorithm presented here uses collocated soil moisture retrievals from the Soil Moisture
Active Passive (SMAP) mission to calibrate concurrent (same calendar day) CYGNSS observations
throughout a calibration period [44]. For a given location, a linear relationship between SMAP soil
moisture and CYGNSS surface reflectivity observations is determined, and the relationship is used to
transform all CYGNSS observations into soil moisture, even at times when there are no corresponding
SMAP data points. Once the calibration is performed, it is applied to data outside the calibration
period such that SMAP data are no longer required for ongoing CYGNSS soil moisture retrievals.
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Using SMAP data for calibration of course comes with many drawbacks, the major one being
that SMAP soil moisture retrievals are not soil moisture observations and have their own error and
uncertainties. One must be careful when using CYGNSS data in areas where it is known that SMAP
performs poorly. In addition, SMAP’s 40 km spatial resolution is likely coarser than that of CYGNSS.
Intelligent upscaling of CYGNSS data to the 36-km EASE-2 grid that SMAP uses is necessary. If the
resolution of CYGNSS is smaller than 36 km, then this effectively degrades the CYGNSS data and does
not utilize it to its full potential. Despite the drawbacks associated with calibrating CYGNSS data with
SMAP retrievals, SMAP data are considered to be one of, if not the, most accurate of the existing soil
moisture products [45,46].

2.2. Algorithm Description

2.2.1. Derivation of Pr,eff

The first step in the retrieval algorithm is to calculate the effective surface reflectivity, which is the
peak value of each delay-Doppler map (DDM) corrected for gain, range, and incidence angle effects.
We call the uncorrected peak value of each DDM Pr.

Pr is affected by surface characteristics, such as the dielectric constant, roughness, and vegetation,
as well as the gain of the receiving antenna, the bistatic range, and the power transmitted by each GPS
satellite. We correct Pr for antenna gain, range, and GPS transmit power assuming a coherent reflection:

Pr =
PtGt

4π(Rts + Rsr)
2

Grλ2

4π
Γrl (1)

where Pt is the transmitted RHCP power, Gt is the gain of the transmitting antenna, Rts is the distance
between the transmitter and the specular reflection point, Rsr is the distance between the specular
reflection point and the receiver, Gr is the gain of the receiving antenna, λ is the GPS wavelength
(0.19 m), and Γrl is the effective surface reflectivity.

We then solve for Γrl, which is the term affected by the surface roughness, dielectric constant of
the soil, and vegetation by first converting all terms to dB:

Γrl[dB] = 10 log Pr − 10logPt
− 10logGt

− 10 log Gr + 20 log(Rts + Rsr) − 20 log λ+ 20 log 4π, (2)

Incidence angle is also expected to affect a coherent reflection, though this effect is only significant
when the incidence angle is above 40 or 50 degrees. We correct for incidence angle in a similar way as
in [29] by modelling how the effective surface reflectivity should change as a function of incidence
angle, using established relationships (e.g., [47]). We call Γrl observations that have been corrected for
incidence angle “Pr,eff,” which stands for the effective surface reflectivity.

2.2.2. Outlier Identification

Because CYGNSS was not optimized for remote sensing of the land surface, we remove
observations that are flagged with standard quality measures as well as use empirical quality control
that we have found to increase the effectiveness of our algorithm. Standard quality flags that we use
are the following: “S-band transmitter powered up,” “spacecraft attitude error,” “black body DDM,”
“DDM is a test pattern,” “direct signal in DDM,” and “low confidence in the GPS EIRP estimate.”
Although it has been recommended that observations from the GPS Block IIF satellites be removed due
to larger variations in GPS transmit power and consequently larger uncertainties in Pr [48], we keep
these observations, as removing them reduces data volume by more than 30%.

Any data recorded before December 2017 reflecting from surface elevations greater than 600 m
are removed. Prior to this time, the satellites did not record DDMs that contained the full surface
reflection coming from these elevations.
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We perform additional quality control measures that are not standardized in the analysis of
CYGNSS data over oceans. These measures were developed after a detailed examination of outliers in
regions where the surface is relatively constant over time (e.g., deserts). We remove any observation
where Pr is less than 2 dB above the noise floor (SNR < 2 dB). We remove observations with a receiver
antenna gain less than 0 dB, observations with an incidence angle greater than 65 degrees, any data
with Pr occurring in a delay bin outside of 7–10 pixels (exclusive), and any observations that do not
have a SNR less than or equal to the receiver antenna gain plus 14 dB.

2.2.3. Removal of Open Water Observations

The removal of specular reflection points that are affected by open water is a critical step before
retrieving soil moisture. Even small water bodies ~25 m wide can significantly affect Pr,eff (e.g., Figure 1
from [28]). Our algorithm uses the Global Surface Water Explorer (GSWE) dataset described in [49],
which is a 30-m water mask derived from Landsat data. Because it is derived from optical data,
it cannot sense water beneath vegetation, though the L-band CYGNSS data is likely sensitive to some
amount of water underneath a vegetation canopy. Additionally, because the GSWE is quasi-static in
that it describes open water occurrence or when water occurs seasonally, it is not concurrent with the
CYGNSS observations. The open water masking effort is thus imperfect, though we have found that it
successfully removes a large amount of CYGNSS observations that are affected by open water.

The current algorithm removes open water using the “seasonality” data product provided by the
GSWE. This product indicates how many months out of a year a pixel is inundated (0–12). For our
purposes, we make this product binary by considering any value greater than 1 to be flagged as open
water, and anything below this not to be open water. This is done because occasionally permanent
water bodies are seasonally covered by vegetation, which makes the GSWE represent them as less than
12 (permanent). For each specular reflection point, we find the amount of water within a 7 × 7 km
region surrounding the point. This is a simplification of the actual footprint, but it is computationally
more efficient than rotating axes to form actual ellipses, which themselves are simplifications and not
well quantified. If the amount of water in the 7 × 7 km region exceeds 1%, we remove that CYGNSS
observation from consideration. Changing these thresholds or the size of the 7 × 7 km region does
change the results, though never uniformly increasing or decreasing error across regions. It is possible
that future versions of the soil moisture product will use a different open water masking procedure
or incorporate CYGNSS coherence detectors, such as that described in [37], to aid in the detection of
small water bodies.

2.2.4. Conversion of Pr,eff to Soil Moisture

We now describe how Pr,eff is transformed into soil moisture, using SMAP soil moisture retrievals to
calibrate CYGNSS observations. Our calibration period was chosen to be 17 March 2017–1 October 2018.
This is an extended period beyond what was shown in [28]. In our calibration, we use all SMAP
retrievals regardless of SMAP quality flags to allow for the retrieval of soil moisture from CYGNSS
for the entirety of CYGNSS’ observational area. Of course, users should be cautious to use CYGNSS
soil moisture retrievals from regions regularly flagged by SMAP, such as the dense forests of South
America and Africa, which are indicated in the CYGNSS quality flags.

The algorithm is based on the assumption that Pr,eff is linearly related to SMAP soil moisture.
The linear relationship is allowed to vary spatially, but we assume that it does not change over time.
For a given location, we calculate the slope of the best-fit linear regression between concurrent (same
calendar day) SMAP soil moisture retrievals and CYGNSS Pr,eff, after having removed the mean of
each for the entire time series. Before we can describe this in more detail, however, we must explain
what “a given location” means in this context.

In Section 1.2, we described how the smallest theoretical (no roughness) spatial footprint of
CYGNSS over land is approximately 7 × 0.5 km, or 3.5 × 0.5 km for data recorded after mid-2019.
What the actual spatial resolution is over land is a matter of debate within the GNSS-R community,
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though our own analysis of how Pr,eff varies with small landcover or topographic features indicates to
us that the effective footprint is likely only a few km, much smaller than SMAP’s 40 km resolution [28].
If, for every SMAP observation, the CYGNSS observations completely sampled the 36-km EASE-2
grid cell used by SMAP, then a simple averaging could be used to aggregate CYGNSS observations to
match with the SMAP retrieval. However, this is not the case. For every SMAP observation, there
will likely be several CYGNSS observations within the grid cell, though not enough to completely
sample the grid cell, if the spatial footprint is small (< 10 km). In this case, simple averaging will lead
to variations in the day-to-day signal due to differential sampling of landcover types and topography
within the SMAP pixel, which could be mistaken for variations in soil moisture.

In order to avoid this, we first grid our Pr,eff observations to ~3 × 3 km “subcells,” retrieve soil
moisture from the subcells, and then aggregate the gridded observations to the 36-km SMAP EASE-2
grid resolution (Figure 4a). This subcell approach minimizes the confounding effects of landcover
and topography on Pr,eff. The number of points per subcell in the calibration period are shown in
Figure 5—subcells with less than three observations were not used for calibration.
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in (a). β can be different for each subcell.

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 24 

 

What the actual spatial resolution is over land is a matter of debate within the GNSS-R community, 
though our own analysis of how Pr,eff varies with small landcover or topographic features indicates 
to us that the effective footprint is likely only a few km, much smaller than SMAP’s 40 km resolution 
[28]. If, for every SMAP observation, the CYGNSS observations completely sampled the 36-km EASE-
2 grid cell used by SMAP, then a simple averaging could be used to aggregate CYGNSS observations 
to match with the SMAP retrieval. However, this is not the case. For every SMAP observation, there 
will likely be several CYGNSS observations within the grid cell, though not enough to completely 
sample the grid cell, if the spatial footprint is small (< 10 km). In this case, simple averaging will lead 
to variations in the day-to-day signal due to differential sampling of landcover types and topography 
within the SMAP pixel, which could be mistaken for variations in soil moisture. 

In order to avoid this, we first grid our Pr,eff observations to ~3 x 3 km “subcells,” retrieve soil 
moisture from the subcells, and then aggregate the gridded observations to the 36-km SMAP EASE-
2 grid resolution (Figure 4a). This subcell approach minimizes the confounding effects of landcover 
and topography on Pr,eff. The number of points per subcell in the calibration period are shown in 
Figure 5—subcells with less than three observations were not used for calibration. 

 
Figure 4. (a) Depiction of subcells within each 36-km EASE-2 grid cell, along with individual Pr,eff 

observations (simplified as colored circles) used for calibration. (b) Depiction of how 𝛽 is calculated 
for subcells, with four different example subcells shown, which correspond to the different colored 
circles in (a). 𝛽 can be different for each subcell. 

 
Figure 5. The number of CYGNSS observations for each sub-cell that were used for calibration. Fewer 
observations are found in higher elevation areas, which did not have data for most of 2017. 
Observations over open water have already been removed. 

Figure 5. The number of CYGNSS observations for each sub-cell that were used for calibration.
Fewer observations are found in higher elevation areas, which did not have data for most of 2017.
Observations over open water have already been removed.
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Within each subcell, we calculate the linear regression between SMAP soil moisture and Pr,eff

match-ups (occurring on the same calendar day), after having removed the mean values of both SMAP
soil moisture and Pr,eff in that subcell. The slope of the linear regression is β, which is conceptualized in
Figure 4b. The correlation coefficients for these relationships are shown in Figure 6. β varies spatially
(Figure 7). Some of the spatial variability is likely real, and it could be the result of spatial variations in
topography or landcover. Some of it, however, is likely the result of the fact that some arid regions
do not have enough soil moisture variability throughout the year in order to adequately calculate β.
In these regions, β is artificially low because any noise in the CYGNSS observations will significantly
affect the linear regression [28].
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Figure 7. The slope of the linear regression between CYGNSS effective reflectivity observations and
SMAP soil moisture (β). This represents the sensitivity of CYGNSS to soil moisture, with lower values
indicating a higher sensitivity—though low values are also found in regions where soil moisture does
vary significantly. Higher values of β mean that CYGNSS observations are not as sensitive to soil
moisture. Imperfect open water masking will cause an apparent insensitivity to soil moisture.

β is then used to estimate soil moisture from CYGNSS for data falling outside the calibration
period as well as data within the calibration period when there are no SMAP match-ups (since SMAP
has a 2–3 day overpass period) using the following equation:

SMCYGNSS, t = β×
(
Pr,e f f , t − Pr,e f f ,cal

)
+ Soil moistureSMAP, cal (3)
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where SMCYGNSS, t is the soil moisture derived from one CYGNSS observation at time, t, Pr,e f f , t is one
observation of Pr,e f f at time, t, Pr,e f f ,cal is the mean value of Pr,e f f for a particular subcell during the

calibration period, and Soil moistureSMAP, cal is the mean SMAP soil moisture during the calibration
period. The mean values of both SMAP and CYGNSS during the calibration period serve as our
reference values, in order to return an absolute value of soil moisture from CYGNSS. Once retrievals
are made for individual subcells, the mean of the retrievals for all subcells within each 36-km grid cell
is used as the final CYGNSS soil moisture retrieval. Note that not all subcells within one 36-km grid
cell will be sampled for each time step, and there could be times when just one subcell is used for the
retrieval. The timesteps at which retrievals are averaged is described below.

2.2.5. Daily and Sub-Daily Retrievals

Soil moisture retrievals are currently provided on daily and sub-daily (6 hourly) time steps. For the
daily retrievals, we average all CYGNSS soil moisture retrievals within a particular 36-km grid cell that
fall within the 24-hour time period. For the sub-daily retrievals, we average all retrievals for a grid cell
in 6-hour intervals, which are currently midnight–6 am, 6 am–noon, noon–6 pm, and 6 pm–midnight
(UTC). Note that, just because retrievals are provided at 6-hour time steps, it does not mean that there
will be values everywhere at every time step. There will be missing values in some grid cells even
when aggregated to a 24-hour time step.

2.2.6. Quality Control

There is currently only minimal quality control of the soil moisture retrievals themselves.
Soil moisture retrievals that are either less than 0.01 cm3 cm−3 or greater than 0.65 cm3 cm−3 are
removed, though users should apply their own additional thresholds when using retrievals in specific
regions that may have higher or lower residual or saturated moisture contents.

2.2.7. Soil Moisture Retrieval Uncertainty

Figure 8 shows the unbiased root-mean-square difference (ubRMSD) between CYGNSS and SMAP
soil moisture retrievals for the calibration period (18 March 2017–1 October 2018). Semi-transparent
regions are those frequently flagged by SMAP as being poor quality. Higher values of ubRMSD tend
to cluster in areas that flood seasonally, which indicates imperfect open water masking, or have greater
soil moisture variability throughout the year. It is “easier” to have a lower ubRMSD in regions with
lower soil moisture variability.

2.2.8. Quality Flags

Static quality flags are provided in a separate file from the soil moisture retrievals. Examining the
quality flags is a crucial first step before using the CYGNSS soil moisture retrievals or interpreting the
empirical sensitivity of CYGNSS to soil moisture (β). The flags were developed to encourage users to
exercise caution when using soil moisture from certain regions, or to be careful in the interpretation of
β from these regions. The following criteria were used in the development of the flags:

1. Regions where CYGNSS observations were calibrated to SMAP data where a large portion
(>90%) of the SMAP soil moisture retrievals were flagged as “not recommended for retrieval.”
These data tend to be in regions that are forested, with significant topography, or near coastlines.
Although the overall ubRMSE between CYGNSS retrievals and in-situ observations remains
largely unchanged for sites located in these regions, there are fewer instances where the ubRMSE
is < 0.04 cm3 cm−3.

2. Regions where CYGNSS was calibrated to SMAP data with a small range of soil moisture values
(<0.1 cm3 cm−3). This indicates a larger uncertainty in β [28]. The ubRMSE between CYGNSS
and in-situ observations in these regions is low (0.0395 cm3 cm−3) due to the fact that there is
only small variability in soil moisture. In these regions, because there is a larger uncertainty
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in β, we do not want users to make any interpretations about β, or attempt to compare it to
modelled sensitivity.

3. Regions where the ubRMSD between CYGNSS and SMAP was large for the calibration period
(> 0.08 cm3 cm−3). The ubRMSE between CYGNSS and in-situ stations with this condition
was higher than average (0.0561 cm3 cm−3). Users are advised to use caution when analysing
retrievals from these areas. In-situ stations used for validation are described in the next section.

4. Regions with few observations in the 36 km grid cell for calibration, leading to less certain
retrievals outside the calibration period (n < 100). β is also more uncertain in these regions.

5. Regions where Pr,e f f ,cal is low (<5 dB). There is a higher likelihood that roughness or vegetation
effects dominate in these areas. Soil moisture retrievals from these areas are particularly
suspect—the ubRMSE between CYGNSS and in-situ observations located in these regions is
0.07 cm3 cm−3. We advise users against using CYGNSS soil moisture retrievals at these locations.
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Figure 8. Unbiased root-mean-square difference (ubRMSD) between SMAP and CYGNSS soil moisture
retrievals. Regions where SMAP always flags the data as being ‘poor quality’ are semi-transparent,
such as the Amazon, Central Africa, Indonesia, Japan, Southeast Asia, and the majority of the Eastern
United States. Higher ubRMSD in regions with “good-quality” SMAP data tend to be found in regions
that are seasonally flooded or near coastlines. It is possible that in these areas, the seasonal water
influence on CYGNSS effective reflectivity may overwhelm the soil moisture signal. Alternatively,
it is also possible that the SMAP brightness temperature observations are actually responding to the
increase in flooded area instead of soil moisture.

3. Results

We validated the UCAR/CU CYGNSS Soil Moisture Product at 171 in-situ soil moisture sites
from six different networks: COSMOS [50], PBOH2O [51], SCAN [52], SNOTEL [53], USCRN [54],
and OzNet [55]. The time period chosen for validation was 2 October 2018–31 December 2019, so as to
not overlap with the calibration period. However, not all stations had data for the entire validation
time period. In particular, sites within the PBOH2O network (a ground-based GNSS reflectometry
network) only contained data through the first six weeks of the validation time period. Note that the
majority of the validation sites are located in the United States—just because there may be acceptable
agreement between CYGNSS and in-situ observations at these locations, it does not mean that CYGNSS
is expected to perform as well in environments extremely disparate from those typical of the United
States (e.g., tropical rainforests). Before validation, we removed obviously non-sensical soil moisture
data from the in-situ records, for example soil moisture observations below 0 cm3 cm−3 or greater than
1 cm3 cm−3.

We calculated the median unbiased root-mean-square error (ubRMSE) between daily averaged
CYGNSS retrievals and in-situ observations for each individual station (Table A1) as well as aggregated
by network (Table 1). Note that here we use ubRMSE, whereas before we used ubRMSD to compare
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SMAP and CYGNSS retrievals. Though we calculated them the same way, we use ubRMSE here to
indicate that this is a validation exercise, whereas the comparison between SMAP and CYGNSS was
only for the purpose of showing where the two products are dissimilar from one another. For context,
we also calculated the ubRMSE between SMAP retrievals and in-situ observations for the same time
period. These values are also contained in Tables 1 and A1. Overall, the median ubRMSE between
CYGNSS and in situ (0.049 cm3 cm−3) and SMAP and in situ (0.045 cm3 cm−3) were very similar,
given that the standard deviations of each were ~0.025 cm3 cm−3. Similar ubRMSEs are expected since
that CYGNSS was calibrated from SMAP retrievals.

Table 1. Median unbiased root-mean-square error (ubRMSE) and correlation coefficient (r) between
CYGNSS and in-situ soil moisture sites, with those from SMAP shown for context. ubRMSE and r
values were calculated for the time period between 2 October 2018, and 31 December 2019, unless an
individual station did not have data for the full time period. Note that the distribution of r values for
SMAP is significantly non-normal, which limits the interpretation of the standard deviation.

ubRMSE (cm3 cm−3) r

Median Standard Deviation Median Standard Deviation

CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP CYGNSS SMAP

All (n = 171) 0.049 0.045 0.026 0.025 0.40 0.69 0.27 0.27
COSMOS (n = 11) 0.054 0.040 0.026 0.020 0.39 0.69 0.19 0.22
PBOH2O (n = 46) 0.033 0.024 0.019 0.025 0.14 0.58 0.26 0.36

SCAN (n = 63) 0.051 0.048 0.023 0.021 0.55 0.78 0.20 0.16
SNOTEL (n = 11) 0.089 0.082 0.016 0.020 0.10 0.36 0.18 0.15
USCRN (n = 38) 0.055 0.047 0.024 0.022 0.45 0.71 0.23 0.26

OzNet (n = 2) 0.043 0.058 0.006 0.013 0.68 0.68 0.02 0.02

A map of all in-situ stations used in this validation exercise along with their respective ubRMSE
values is shown in Figure 9. Note that there is a wide range of ubRMSE values, depending on the
site and network. In particular, SNOTEL sites performed poorly (mean ubRMSE ~= 0.09 cm3 cm−3).
SNOTEL sites tend to be in mountainous areas with surrounding trees. Pr,e f f in these regions tends to
be low, which is an indicator that either topographic roughness or dense vegetation is significantly
affecting the reflected signal. We caution users who are interested in using the CYGNSS retrievals in
such areas, given the high validation ubRMSE at the in-situ sites. The quality flags described in the last
section delineate where these effects are likely to be at play.

Table A1 also includes other validation metrics, such as the correlation coefficient (r) between
CYGNSS and in-situ sites and the mean bias between in-situ observations and SMAP retrievals,
which by extension is also the bias between in-situ observations and CYGNSS retrievals. The median
correlation coefficient across sites is somewhat low (r = 0.4) but with a large standard deviation
(0.27). Figure 10a shows a histogram of the correlation coefficient (r) between CYGNSS and in-situ
observations, with that from SMAP shown for context. Compared to SMAP, CYGNSS has a wider
distribution of correlation coefficients, with a lower median value (Table 1). Similar to what was
discussed in relation to the correlation between CYGNSS effective reflectivity and SMAP soil moisture,
areas with low or no soil moisture variation during the validation time period often results in a
low correlation coefficient, as any effects due to random noise are amplified when there is no soil
moisture variation. CYGNSS retrievals are expected to have more noise than SMAP retrievals, given the
aforementioned imperfections in signal calibration and lack of full grid cell coverage. Figure 10b shows
that the distribution of r values does change significantly when only in-situ sites with moderate or
large soil moisture variability are considered, which helps mask the effect of noise. In addition to the
correlation coefficient, the median absolute bias between SMAP and in-situ observations, which will
also be the bias between CYGNSS and in-situ, is 0.05 cm3 cm−3. This dry bias is a known issue in the
SMAP retrievals [56].
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Figure 10. (a) Distributions of the correlation coefficient (r) between CYGNSS and in-situ observations
(pink bars) and SMAP and in-situ observations (green bars). (b) The distribution of the correlation
coefficient between CYGNSS and in-situ observations (open pink bars, same as in (a)) and the
distribution of the correlation coefficient when only in-situ sites with moderate to high soil moisture
variability are considered (closed pink bars).

Validating a satellite remote-sensing product based off of point measurements, as we have
done here, is an imperfect exercise, as the individual soil moisture probe observations may not be
representative of the larger areal average. The validation effort conducted by SMAP, for example,
averaged in-situ observations from many probes spread out over a large area, for each of their validation
sites [46]. The sites that comprise OzNet do indeed contain multiple probes at each site, though there
are only two sites with data within the calibration time period (see Table A1). In this case, we used
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the mean of all probe measurements within one site to calculate the ubRMSE. CYGNSS soil moisture
retrievals did agree better with the in-situ observations from these sites (ubRMSE = 0.043 cm3 cm−3)
than they did from the point-based observations.

Examples of CYGNSS soil moisture time series that agree well with in-situ observations are shown
in Figure 11. These sites show that CYGNSS has the ability to retrieve both low and high soil moisture
contents. An example of the increased temporal resolution of daily averaged CYGNSS retrievals with
respect to SMAP is shown in Figure 12. In this example, the increased resolution of CYGNSS results in
the observation of increased soil moisture due to two precipitation events in late June and early July of
2018, which are missed by SMAP. Table A1 shows how many daily averaged CYGNSS soil moisture
retrievals were available during the validation time period, which can be compared to the number of
SMAP retrievals for the same time period. On average CYGNSS soil moisture retrievals increase the
temporal revisit time by 63.4%.
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than SMAP currently is able to. 

Figure 11. Examples of CYGNSS soil moisture retrievals that agree well with in-situ probes from
three sites: USCRN Bronte-11-NNE (a), USCRN Monahans-6-ENE (b), and SCAN Knox City (c).
CYGNSS retrievals from USCRN Monahans-6-ENE start in December 2017 because the elevation of the
station is greater than 600 m. The values of ubRMSE shown for each station is for the validation time
period only (2 October 2018–31 December 2019).
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Figure 12. Time series of CYGNSS (pink dots) and SMAP (green dots) soil moisture retrievals and
in-situ soil moisture observations (blue line) from the USCRN Bronte-11-NNE station. Pink and green
lines interpolate between the CYGNSS and SMAP observations, respectively. The shortened time series
shows the increased temporal resolution of the CYGNSS retrievals relative to SMAP.
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For each in-situ site, we calculated the number of rain events during the validation period,
which we defined as an increase in the daily averaged soil moisture greater than 0.02 cm3 cm−3.
We then calculated the number of the rainy days that had CYGNSS observations and the number
that had SMAP observations. From this, we could calculate the percentage of rain events “observed”
by both CYGNSS and SMAP and found that CYGNSS observed a median of 87% of the rain events,
and SMAP observed a median of 43% (distributions shown in Figure 13). At sites with acceptable
CYGNSS performance, CYGNSS would be able to provide more information about soil drying and
wetting than SMAP currently is able to.
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Figure 13. The percentage of rain events during the validation period observed by SMAP (green bars)
and CYGNSS (pink bars). A rain event was defined as the daily averaged soil moisture value increasing
by more than 0.02 cm3 cm−3 with respect to the previous day’s value.

Figure 14 shows three examples of soil moisture time series from CYGNSS and SMAP where
CYGNSS does not agree well with in-situ observations. Generally, if SMAP does not perform well
at a site, CYGNSS is likely to perform poorly, too. However, there are other sites where SMAP
performance is significantly more acceptable than that from CYGNSS (e.g., Figure 14c). Understanding
why CYGNSS soil moisture retrievals at some locations do not perform as well as SMAP is one subject
of future research, though preliminary analyses indicate that inadequate open water masking could be
one contributing factor.

Figure 15a shows a histogram of the ubRMSEs between CYGNSS and in-situ observations (values
in Table A1), with that from SMAP shown for context. Although the median ubRMSE for both CYGNSS
and SMAP retrievals are lower than 0.05 cm3 cm−3, it is important to note that ubRMSE statistics are
correlated with the variability of soil moisture at a particular site. Figure 15b shows the ubRMSE of
CYGNSS and SMAP as a function of the interquartile range (IQR) of soil moisture for each site. As soil
moisture variability increases, so does the ubRMSE. This means it may be unreasonable to assume an
error of 0.04 cm3 cm−3 in areas that undergo extreme fluctuations in soil moisture throughout the year.
For context, the median IQR at validation sites was 0.07 cm3 cm−3, and the IQR of USCRN station
Bronte-11-NNE shown in Figures 11 and 12 is 0.071 cm3 cm−3.
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is for the validation time period only (2 October 2018–31 December 2019).
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Figure 15. (a) Histograms of ubRMSE statistics for CYGNSS and in-situ observations (pink) and SMAP
and in-situ observations (green). (b) The relationship between the interquartile range (IQR) of soil
moisture at individual stations and the ubRMSE between CYGNSS and observations from that station
(pink) and SMAP and observations from that station (green).

4. Discussion

As with all remote-sensing techniques, there are limitations to what information retrieval
algorithms can provide. Below are some of the more significant limitations of the UCAR/CU retrieval
algorithm. We avoid commenting on limitations of CYGNSS in general and instead only address the
specific algorithm presented here.
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1. Errors in SMAP retrievals will propagate into CYGNSS soil moisture retrievals. Because CYGNSS
is calibrated using SMAP, any systemic errors in the SMAP retrievals (particularly, persistent bias)
will also be present in CYGNSS retrievals. As discussed above, at validation sites with poor
SMAP performance, CYGNSS also performs poorly.

2. As with all empirical approaches, investigation into the “true” sensitivity to soil moisture is
difficult. As mentioned above, unless there is enough soil moisture variability, calculation of β is
difficult due to noise in the CYGNSS observations. Additionally, if there is variability of Pr,eff

within a subcell due to, for example, spatial variations in land cover, then βmay appear artificially
high (i.e., low sensitivity to soil moisture).

3. The relationship between Pr,eff and soil moisture may not actually be linear. Although we
approximate the relationship as being linear, it may not be—it may appear to be linear either
due to noise overwhelming an obvious non-linearity, or it may appear linear because in many
regions soil moisture does not often fluctuate between 0.02 cm3 cm−3 and 0.5 cm3 cm−3 or
higher, which would be necessary to elucidate significant non-linear relationships. The empirical
linear relationships may thus not match those eventually derived from a model and should not
be compared.

4. The assumption that the sensitivity of Pr,eff to soil moisture does not change over time is likely
incorrect. Fluctuations in vegetation water content, particularly in agricultural regions, will likely
change β, though we currently ignore that possibility.

5. Aggregating CYGNSS observations to 36 km does not take advantage of the finer spatial
resolution. Any advantages CYGNSS might have vis-à-vis providing higher spatial resolution
soil moisture retrievals is not permitted by the approach that we use here. Other approaches
using either machine learning methods or models could be successful, if provided with accurate,
high-resolution ancillary data.

5. Conclusions

This paper described the UCAR/CU CYGNSS Soil Moisture Product [19], which uses spaceborne
GNSS-R reflections, calibrated to SMAP soil moisture, to produce soil moisture retrievals. Validation
of the product at 171 in-situ soil moisture stations resulted in a median ubRMSE of 0.049 cm3 cm−3.
This product can be used by hydrologists who are interested in soil moisture data at a higher temporal
resolution than currently available using other products. As was shown in Figures 12 and 13,
CYGNSS can observe changes in soil moisture due to precipitation events that may be too quick for
the SMAP overpass period. The quantification of soil moisture memory, observation of moisture
conditions giving rise to flooding, and the inverse estimation of precipitation using soil moisture time
series all require soil moisture data on short time scales, and a daily soil moisture product may be able
to provide more complete information on soil moisture dynamics at needed time scales.

GNSS-R researchers interested in developing independent CYGNSS soil moisture retrievals using
model-based approaches may also benefit from using this product, as it can provide an indication
of where simple algorithms like this one can successfully retrieve soil moisture and where more
complicated approaches may be warranted.
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Appendix A

Table A1. Location information and statistics for each in-situ soil moisture station used for validation. Unbiased root-mean-square errors (ubRMSEs) for CYGNSS are
shown as well as those for SMAP, which are shown for context. The correlation coefficient (r) between CYGNSS soil moisture retrievals and in-situ observations is
shown. The bias between SMAP retrievals and in-situ observations is the same as for CYGNSS retrievals and in-situ observations, since CYGNSS retrievals are already
bias-corrected with respect to SMAP. The number of CYGNSS and SMAP observations used for calculation of ubRMSEs, r, and the bias are also shown.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

COSMOS COSMOS_064 35.19 −102.10 0.054 0.056 0.61 0.16 182 91

COSMOS COSMOS_101 −22.68 −45.00 0.033 0.022 0.06 −0.08 220 125

COSMOS COSMOS_023 33.61 −116.45 0.051 0.037 0.17 0.01 289 167

COSMOS COSMOS_057 29.95 −98.00 0.086 0.079 0.50 0.12 269 105

COSMOS COSMOS_067 34.26 −89.87 0.042 0.050 0.50 −0.19 301 164

COSMOS COSMOS_055 0.28 36.87 0.071 0.040 0.50 0.09 152 88

COSMOS COSMOS_050 0.49 36.87 0.062 0.031 0.50 −0.10 113 60

COSMOS COSMOS_034 37.07 −119.19 0.129 0.087 0.34 −0.03 98 154

COSMOS COSMOS_044 −21.62 −47.63 0.057 0.030 0.04 −0.18 90 57

COSMOS COSMOS_014 36.06 −97.22 0.049 0.038 0.39 −0.07 237 118

COSMOS COSMOS_033 37.03 −119.26 0.053 0.041 0.31 −0.07 21 12

PBOH2O bkap 35.29 −116.08 0.016 0.016 0.20 0.01 33 20

PBOH2O crrs 33.07 −115.74 0.077 0.069 -0.01 −0.10 36 14

PBOH2O csci 34.17 −119.04 0.052 0.054 0.05 −0.04 33 14

PBOH2O ctdm 34.52 −118.61 0.034 0.023 −0.14 0.09 26 14

PBOH2O fgst 34.73 −120.01 0.046 0.034 0.03 0.05 22 19

PBOH2O glrs 33.27 −115.52 0.032 0.084 −0.04 −0.18 35 15

PBOH2O gnps 34.31 −114.19 0.022 0.010 0.38 −0.02 35 19

PBOH2O hunt 35.88 −120.40 0.020 0.013 0.33 −0.02 22 19

PBOH2O hvys 34.44 −119.19 0.036 0.079 0.00 −0.30 34 19

PBOH2O imps 34.16 −115.15 0.019 0.021 0.51 0.04 34 19

PBOH2O masw 35.83 −120.44 0.069 0.056 0.08 0.01 22 19

PBOH2O ndap 34.77 −114.62 0.021 0.016 0.40 −0.01 32 17
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Table A1. Cont.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

PBOH2O p035 34.60 −105.18 0.088 0.078 0.69 0.07 38 19

PBOH2O p038 34.15 −103.41 0.041 0.016 0.70 0.05 38 15

PBOH2O p039 36.45 −103.15 0.068 0.046 0.54 0.18 32 16

PBOH2O p070 36.04 −104.70 0.058 0.039 0.79 0.02 40 19

PBOH2O p094 37.20 −117.70 0.019 0.012 0.27 0.04 21 15

PBOH2O p107 35.13 −107.88 0.050 0.043 0.40 0.05 30 19

PBOH2O p123 36.64 −105.91 0.052 0.055 0.52 0.04 30 16

PBOH2O p250 36.95 −121.27 0.043 0.032 −0.11 −0.05 21 19

PBOH2O p284 35.93 −120.91 0.030 0.024 −0.04 0.00 33 18

PBOH2O p288 36.14 −120.88 0.018 0.019 0.26 −0.01 34 19

PBOH2O p472 32.89 −117.10 0.039 0.027 −0.03 −0.01 34 19

PBOH2O p474 33.36 −117.25 0.055 0.035 −0.14 −0.01 34 20

PBOH2O p475 32.67 −117.24 0.040 0.079 −0.11 −0.15 36 19

PBOH2O p498 32.90 −115.57 0.015 0.025 0.14 −0.08 37 15

PBOH2O p505 33.42 −115.69 0.048 0.083 0.07 −0.11 27 12

PBOH2O p508 33.25 −115.43 0.036 0.081 −0.21 −0.19 35 15

PBOH2O p511 33.89 −115.30 0.021 0.015 0.14 0.03 34 18

PBOH2O p514 35.01 −120.41 0.036 0.026 0.26 0.00 36 19

PBOH2O p525 35.43 −120.81 0.066 0.085 0.40 −0.25 25 19

PBOH2O p530 35.62 −120.48 0.026 0.015 0.15 −0.01 22 19

PBOH2O p532 35.63 −120.27 0.024 0.015 0.26 −0.01 22 19

PBOH2O p536 35.28 −120.03 0.024 0.023 0.02 0.04 23 19

PBOH2O p537 35.32 −119.94 0.013 0.013 0.19 0.01 23 19

PBOH2O p538 35.53 −120.11 0.033 0.020 0.18 0.03 26 19

PBOH2O p553 34.84 −118.88 0.022 0.028 0.33 0.04 32 19

PBOH2O p565 35.74 −119.24 0.014 0.020 −0.02 −0.04 36 19

PBOH2O p568 35.25 −118.13 0.020 0.013 −0.01 0.02 23 15

PBOH2O p569 35.38 −118.12 0.018 0.020 0.10 0.02 23 15

PBOH2O p591 35.15 −118.02 0.012 0.008 0.19 0.00 33 15

PBOH2O p742 33.50 −116.60 0.035 0.021 −0.11 −0.02 25 20
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Table A1. Cont.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

PBOH2O p807 30.49 −98.82 0.056 0.069 0.68 0.01 30 19

PBOH2O p811 35.15 −118.02 0.014 0.012 0.02 −0.01 33 15

PBOH2O qcy2 36.16 −121.14 0.024 0.017 −0.31 0.01 31 14

PBOH2O sdhl 34.26 −116.28 0.038 0.010 0.41 0.01 31 20

SCAN AAMU-jtg 34.78 −86.55 0.045 0.044 0.69 −0.13 386 202

SCAN AdamsRanch#1 34.25 −105.42 0.056 0.048 0.29 0.03 365 190

SCAN AllenFarms 35.07 −86.90 0.065 0.063 0.70 0.02 174 94

SCAN BraggFarm 34.90 −86.60 0.067 0.065 0.42 −0.01 385 202

SCAN BroadAcres 32.28 −86.05 0.050 0.030 0.47 0.08 75 41

SCAN Charkiln 36.37 −115.83 0.077 0.069 0.36 0.05 364 200

SCAN CochoraRanch 35.12 −119.60 0.051 0.033 0.66 −0.01 313 199

SCAN DeathValleyJCT 36.33 −116.35 0.027 0.032 0.39 −0.04 285 139

SCAN DesertCenter 33.80 −115.31 0.023 0.028 0.28 0.00 116 61

SCAN Dexter 36.78 −89.93 0.045 0.075 0.78 −0.06 389 197

SCAN Essex 34.67 −115.17 0.042 0.031 0.46 −0.03 257 104

SCAN FordDryLake 33.65 −115.10 0.028 0.017 0.36 −0.04 288 148

SCAN FortReno#1 35.55 −98.02 0.060 0.051 0.78 0.08 398 199

SCAN GoodwinCreekTimber 34.23 −89.90 0.064 0.031 0.62 −0.10 374 201

SCAN GuilarteForest 18.15 −66.77 0.134 0.136 NaN −0.16 107 70

SCAN KnoxCity 33.45 −99.87 0.037 0.042 0.85 −0.04 385 198

SCAN KoptisFarms 30.52 −87.70 0.046 0.040 0.67 −0.17 378 202

SCAN Levelland 33.55 −102.37 0.042 0.058 0.28 −0.01 394 200

SCAN LittleRiver 31.50 −83.55 0.039 0.032 0.18 −0.10 154 83

SCAN LosLunasPmc 34.77 −106.77 0.046 0.050 0.23 0.05 399 187

SCAN LovellSummit 36.17 −115.62 0.090 0.087 0.31 0.06 310 200

SCAN MammothCave 37.18 −86.03 0.065 0.045 0.64 −0.05 298 200

SCAN MaricaoForest 18.15 −67.00 0.049 0.051 NaN −0.18 310 151

SCAN Mayday 32.87 −90.52 0.139 0.128 0.73 0.03 333 201

SCAN McalisterFarm 35.07 −86.58 0.079 0.059 0.74 0.00 387 202

SCAN MccrackenMesa 37.45 −109.33 0.061 0.051 0.43 0.08 35 181

SCAN MonoclineRidge 36.54 −120.55 0.095 0.067 0.64 −0.02 357 199



Remote Sens. 2020, 12, 1558 21 of 26

Table A1. Cont.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

SCAN MorrisFarms 32.42 −85.92 0.055 0.043 0.55 −0.03 378 202

SCAN MtVernon 37.07 −93.88 0.038 0.050 0.52 0.01 297 197

SCAN NorthIssaquena 33.00 −91.07 0.051 0.063 0.41 −0.03 397 155

SCAN Onward 32.75 −90.93 0.048 0.041 0.17 −0.08 169 176

SCAN PeeDee 34.30 −79.73 0.039 0.049 0.63 −0.11 267 133

SCAN PerdidoRivFarms 31.12 −87.55 0.059 0.042 0.73 −0.04 392 202

SCAN PineNut 36.57 −115.20 0.058 0.051 0.24 0.00 273 171

SCAN Riesel 31.48 −96.88 0.110 0.088 0.70 0.03 164 76

SCAN RiverRoadFarms 31.02 −85.03 0.040 0.044 0.62 −0.13 291 149

SCAN SanAngelo 31.55 −100.51 0.073 0.066 0.60 0.07 387 152

SCAN SandHollow 37.10 −113.35 0.031 0.025 0.50 −0.06 258 190

SCAN SandyRidge 33.67 −90.57 0.048 0.070 0.66 −0.17 371 201

SCAN Scott 33.62 −91.10 0.039 0.057 0.70 0.00 388 151

SCAN SellersLake#1 29.10 −81.63 0.031 0.048 0.04 −0.39 351 202

SCAN Sevilleta 34.35 −106.68 0.040 0.033 0.36 0.00 223 100

SCAN SilverCity 33.08 −90.52 0.049 0.041 0.68 −0.11 333 201

SCAN StanleyFarm 34.43 −86.68 0.084 0.052 0.74 0.04 394 202

SCAN Starkville 33.63 −88.77 0.040 0.030 0.67 0.04 396 200

SCAN Stephenville 32.25 −98.20 0.076 0.048 0.74 0.02 400 159

SCAN Stubblefield 34.97 −119.48 0.076 0.050 0.39 0.05 144 113

SCAN SudduthFarms 34.18 −87.45 0.082 0.051 0.53 −0.06 389 156

SCAN Tidewater#1 35.87 −76.65 0.078 0.072 −0.05 −0.18 221 125

SCAN TidewaterArec 36.68 −76.77 0.054 0.043 0.72 0.00 228 129

SCAN Tuskegee 32.43 −85.75 0.061 0.049 0.43 −0.27 389 163

SCAN UAPBDewitt 34.28 −91.35 0.061 0.039 0.67 −0.08 256 186

SCAN UAPBLonokeFarm 34.85 −91.88 0.046 0.037 0.73 −0.02 381 202

SCAN UAPBMarianna 34.78 −90.82 0.057 0.064 0.65 0.03 384 151

SCAN UAPBPointRemove 35.22 −92.92 0.040 0.038 0.37 −0.07 241 130

SCAN Uvalde 29.36 −100.25 0.058 0.052 0.56 0.04 385 202

SCAN WTARS 34.90 −86.53 0.046 0.030 0.80 0.02 87 44

SCAN Wakulla#1 30.30 −84.42 0.021 0.030 0.42 −0.43 381 204
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Table A1. Cont.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

SCAN WalnutGulch#1 31.73 −110.05 0.043 0.036 0.60 0.00 395 147

SCAN Watkinsville#1 33.88 −83.43 0.082 0.040 0.33 −0.05 274 132

SCAN Wedowee 33.33 −85.52 0.053 0.035 0.21 −0.22 349 141

SCAN Weslaco 26.16 −97.96 0.056 0.051 0.34 0.04 335 198

SCAN YoumansFarm 32.67 −81.20 0.040 0.051 0.53 −0.16 391 201

SNOTEL BRISTLECONETRAIL 36.32 −115.70 0.117 0.117 0.01 0.09 361 188

SNOTEL BarM 34.86 −111.61 0.067 0.052 0.50 0.14 310 159

SNOTEL ElkCabin 35.70 −105.81 0.082 0.074 0.30 −0.03 239 129

SNOTEL LEECANYON 36.31 −115.68 0.082 0.080 0.08 0.06 361 188

SNOTEL MormonMountain 34.94 −111.52 0.115 0.118 0.45 0.09 310 159

SNOTEL NAVAJOWHISKEYCK 36.18 −108.95 0.110 0.074 0.11 0.21 283 109

SNOTEL PALO 36.41 −105.33 0.085 0.093 0.06 −0.06 333 111

SNOTEL RAINBOWCANYON 36.25 −115.63 0.099 0.094 0.11 0.04 361 188

SNOTEL SantaFe 35.77 −105.78 0.089 0.089 0.07 0.03 239 129

SNOTEL TresRitos 36.13 −105.53 0.098 0.082 −0.03 0.03 122 109

SNOTEL VacasLocas 36.03 −106.81 0.082 0.081 0.31 0.03 322 159

USCRN Asheville-13-S 35.42 −82.56 0.092 0.068 0.33 −0.01 361 192

USCRN Austin-33-NW 30.62 −98.08 0.103 0.088 0.74 0.11 381 147

USCRN Batesville-8-WNW 35.82 −91.78 0.048 0.044 0.65 −0.07 395 198

USCRN Blackville-3-W 33.36 −81.33 0.049 0.032 0.62 −0.11 81 45

USCRN Bowling-Green-21-NNE 37.25 −86.23 0.054 0.051 0.67 −0.04 248 168

USCRN Bronte-11-NNE 32.04 −100.25 0.023 0.036 0.86 −0.07 394 179

USCRN Brunswick-23-S 30.81 −81.46 0.020 0.066 0.40 −0.38 336 193

USCRN Durham-11-W 35.97 −79.09 0.097 0.058 0.45 −0.11 366 195

USCRN Edinburg-17-NNE 26.53 −98.06 0.030 0.033 0.42 0.00 368 196

USCRN Elgin-5-S 31.59 −110.51 0.033 0.028 0.72 −0.03 382 145

USCRN Everglades-City-5-NE 25.90 −81.32 0.059 0.058 0.16 −0.13 188 96

USCRN Fairhope-3-NE 30.55 −87.88 0.062 0.095 0.13 −0.33 267 141

USCRN Fallbrook-5-NE 33.44 −117.19 0.065 0.029 −0.03 0.05 355 198

USCRN Gadsden-19-N 34.29 −85.96 0.057 0.036 0.72 −0.12 384 199

USCRN Goodwell-2-E 36.60 −101.60 0.060 0.056 0.67 0.08 361 193
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Table A1. Cont.

Network Station Latitude (deg) Longitude (deg) ubRMSE CYGNSS
(cm3 cm−3)

ubRMSESMAP
(cm3 cm−3)

r CYGNSS Bias SMAP # Obs CYGNSS # Obs SMAP

USCRN Goodwell-2-SE 36.57 −101.61 0.064 0.059 0.66 0.14 361 193

USCRN Holly-Springs-4-N 34.82 −89.43 0.039 0.044 0.72 0.07 380 197

USCRN Joplin-24-N 37.43 −94.58 0.081 0.076 0.24 0.04 127 194

USCRN Lafayette-13-SE 30.09 −91.87 0.074 0.097 0.09 −0.11 351 149

USCRN Las-Cruces-20-N 32.61 −106.74 0.027 0.031 0.38 0.00 382 147

USCRN Los-Alamos-13-W 35.86 −106.52 0.087 0.084 0.29 0.04 23 115

USCRN McClellanville-7-NE 33.15 −79.36 0.089 0.093 −0.04 −0.41 291 149

USCRN Merced-23-WSW 37.24 −120.88 0.050 0.060 0.46 −0.18 285 155

USCRN Mercury-3-SSW 36.62 −116.02 0.028 0.024 0.41 −0.03 345 198

USCRN Monahans-6-ENE 31.62 −102.81 0.020 0.023 0.56 −0.03 382 199

USCRN Muleshoe-19-S 33.96 −102.77 0.037 0.042 0.57 0.08 383 187

USCRN Newton-5-ENE 32.34 −89.07 0.067 0.047 0.57 −0.09 392 198

USCRN Newton-8-W 31.31 −84.47 0.077 0.094 0.09 −0.08 369 197

USCRN Panther-Junction-2-N 29.35 −103.21 0.038 0.029 0.45 0.01 347 199

USCRN Socorro-20-N 34.36 −106.89 0.038 0.042 0.22 0.00 368 191

USCRN Stillwater-2-W 36.12 −97.09 0.092 0.069 0.47 0.09 383 196

USCRN Stillwater-5-WNW 36.13 −97.11 0.073 0.047 0.49 0.03 379 195

USCRN Stovepipe-Wells-1-SW 36.60 −117.14 0.016 0.018 0.37 −0.05 333 198

USCRN Titusville-7-E 28.62 −80.69 0.057 0.058 0.18 −0.29 196 123

USCRN Tucson-11-W 32.24 −111.17 0.027 0.025 0.66 −0.04 400 196

USCRN Watkinsville-5-SSE 33.78 −83.39 0.046 0.035 0.34 −0.20 345 180

USCRN Williams-35-NNW 35.76 −112.34 0.050 0.048 0.66 0.00 362 138

USCRN Yuma-27-ENE 32.83 −114.19 0.064 0.048 0.21 0.03 123 68

OzNet Yanco −34.85 146.12 0.038 0.049 0.66 −0.02 405 200

OzNet Kyeamba −35.32 147.53 0.047 0.068 0.69 −0.02 224 128
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