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Consistency and correctness are related but different notions.  We say that two 
statements are inconsistent if they contradict each other; and if they do not, they are 
consistent.  So two incorrect statements may be consistent with each other.  On the other 
hand, we say that a statement is correct if it is true.  But truth may depend on the 
situation.  So a statement that is correct in one situation can be incorrect in a different 
situation. 
 
Teaching school mathematics in a consistent and a correct way is not easy.  
 
Consistency. 
One cause of the difficulty is that theoretical mathematics is partitioned into separate 
theories that are internally consistent when viewed separately, but that are often 
mutually  inconsistent (Kreisel, 1967; Malitz, 1987). 
 
In schools, and also in most applications of mathematics, the results and methods from 
separate mathematical theories such as  Euclidean geometry, graph theory, topology of 
the plane, and the arithmetic of real  numbers, are mixed together and applied at the 
same time.  Such mixtures of results may be inconsistent. 
  
Also, many concepts are clumped together, and they are often simplified.  For example, 
when we look at the four operations, addition, subtraction, multiplication, and division  
on numbers, we have five main axiomatic systems.  But in schools they are taught 
under at most two headings, arithmetic and algebra.  We have these axiomatic systems: 
 (1)  For whole numbers  or natural numbers (whole numbers without zero), 
 called Peano's Axioms (Grassman & Tremblay, 1996). 

(2)  For integers, called axioms for integral domains (Birkhoff & MacLane, 1979). 
 (3)  General axioms for ordered fields (Birkhoff et al., 1979). 

(4)  Axioms for the field of real numbers (there are several versions) (Birkhoff et 
al., 1979; Robinson, 1965). 

 (5)  For complex numbers, called axioms for algebraically closed fields of 
 characteristic zero (Birkhoff et al., 1979). 
 
In modern times, the word number most often refers to real numbers, (4) above. Whole 
numbers, integers, and rational numbers are treated as special types of real numbers.  
But theories (1), (2), and (3) above are mutually inconsistent.  Also, (4) and (5) are 
mutually inconsistent.  Only (4) is a consistent extension of (3).  Thus the modern 
approach does not allow the mixing of  different systems without a careful 
reformulation of definitions.  For example, odd numbers can be divided by two within 
the system of reals. 
 
� We recommend that all statements about numbers that are taught in schools  be 
consistent with the axioms for real numbers, (4), because the system of reals is at 
present the basis for the arithmetic that is used in everyday life and in business,  
industry, and science.  
 



Here are some examples of inconsistencies which creep into school mathematics and 
which are due to a confusion between theories.  In each case, statement b should be 
taught in school, and  statement a should not. 
 
Statement:       Axiomatic system: 
  a.  There is no number between 0 and 1.  (1) and (2) 
  b.  0 < .5 < 1.      (3) and (4) 
 
  a.  0 is the smallest number.    (1) 
  b.  -1 < 0.       (2), (3), and (4) 
 
  a.  You cannot divide 3 by 2.    (1) and (2) 
  b.  3/2 = 1.5.       (3) and (4) 
 
  a.  The number 2 is not a square.   (1) and (2) 
  b.  (√2)*(√2) = 2.      (4) 
  Here, (b) is consistent with (3), but it cannot be proved in (3), because the existence 
  of •2 cannot be proved. 
   
  a.  Multiplication can be defined as  

repeated addition.     (1) 
  b.  Only sometimes can the product of two   
 numbers  be computed by repeated  
     addition.      (4) 
 
All the properties of addition, subtraction, multiplication, and division, including 
operations on fractions, can be derived from (3).  When we move to the solution of 
polynomial equations, we need (4).  Properties of exponentiation, logarithms, 
trigonometric functions, and so on, are consistent with (4), but they may require 
additional axioms. 
 
The causes of inconsistency in school mathematics are historical.  The  systems of 
axioms (1) through (4) were created, and relationships among them were studied, 
between 1850 and 1950.  Earlier arithmetic consisted of two  separate systems: whole 
numbers without 0, whose properties are specified  in (1); and positive fractions, whose 
properties are (mostly) specified in (3) (Pike, 1808; Daboll, 1837; Adams, 1808).    So in 
early arithmetic we had two separate, mutually inconsistent systems of numbers which 
were used together under the name of mixed numbers.  The modern concept  of real 
numbers unified whole numbers, fractions, and also negative and  irrational 
"quantities", which were considered to be part of algebra.  A consistent description of 
the properties of real numbers was provided by  (3) and (4).  But new school textbooks 
are written mostly by rewriting  older ones, so many outdated statements are often 
repeated without adequate revision. 
 
There are no inconsistencies in teaching geometry (which does not mean that it is 
always taught correctly).  School geometry evolved from Euclidean geometry (e.g., 



Chauvenet, 1888), from informal, practical geometry which was taught as a part of 
vocational mathematics (e.g., Hawney, 1813) (metric geometry, in modern terms), and 
from analytic geometry (e.g., Todhunter, 1874).  And these three  systems were 
mutually consistent. 
 
Correctness. 
The main cause for making errors is taking a statement that is correct in one  situation 
and using it in another situation in which it is false.  Incorrect teaching is rarely due to 
an explicit error made by the teacher.  Children in early grades do not learn by 
listening; they learn mainly through activities, observation, and imitation.  But 
improperly chosen examples often cause false generalizations and errors. 
 
A classroom study from our research. 
In the early grades, kindergarten through second, children measure lengths mostly in 
non-standard units (paper clips, footsteps), and length is always a whole number.  
Students in the fourth grade were given the task of measuring a popsicle stick (in inches 
or centimeters) and putting a mark half way up, and one quarter and three quarters of 
the way up.  The main  topic they were studying at that time was common fractions, 
and rulers and calculators were available.   The actual length of the stick was about 4.5 
inches, or 11.3 cm. 
�   Most students rounded the length to a whole number (4 inches or 5 inches, or 11 
centimeters). 
�   Students who recorded the length as 4 inches computed one half of four correctly.  
Most students who recorded the length as 5 inches, or as 11 cm, said that they could not 
compute half of 5 (or of 11), because 5 (or 11) is an odd number.   
�  Many students correctly placed a mark  half  way up  the stick.  Some cut a strip of 
paper the length of the stick, found the midpoint of the paper by folding it in half, and 
used the fold in the paper to mark the midpoint of the stick.   
�   Most students marked 1/4 and 3/4 of the length of the stick incorrectly.  One 
student said, �Forget the math.  I will fold my strip of paper into four equal parts and 
use them to mark my stick.�  This student marked his stick correctly. 
 
This small study shows two things: 
(1)  Prolonged experience with length as a whole number had a lasting influence on 
some students which led to an incorrect generalization, "The length of something is 
always a whole number." 
(2)  Children try to reason using mathematics, but they abandon mathematical 
reasoning when they �know� something is the case, but they cannot get it through 
mathematics.   
 
The most common error due to misleading and prolonged experience with whole 
numbers is that children think that a number that has more digits is always bigger, and 
they use this idea for comparing decimals (so .13 is bigger than .3). 
 
Word problems. 



We note that word problems have been a topic of some discussion recently in this 
journal (Toom, 1999; Boote, 1998; Thomas & Gerofsky, 1997; Gerofsky, 1996; see also 
Usiskin, 1995).  We too have our concerns about them.  The main offenders in providing 
incorrect answers are word problems that wrongly relate mathematics to the physical 
world.  Using mathematics correctly requires that the mathematical process is 
appropriate for the  situation at hand, and such a match is rarely preserved in word 
problems.  Let's look at three examples. 
 
Example 1  (fictitious). 
a.  If you pour .75 liter of water into a large container that already contains 1.5 liters of 
water, what is the total volume of water? 
   Correct answer:  1.5 + .75 = 2.25 liters of water. 
 
b.  If you pour .75 l of water into a large container that already  contains 1.5 l of dry 
sand, what is the total volume of the  mixture? 
   Incorrect answer:  1.5 + .75 = 2.25 liters of mixture. 
(The operation of addition is not appropriate in this situation.) 
 
Example 2  (found in a textbook). 
If you stacked up 1 million pennies, how tall would the stack be? 
A suggested solution (metric).  
Measure a short stack of pennies (there are 8 pennies in a 1 cm stack).    
So 1,000,000/8 is the height of the stack in centimeters,  and 1,000,000/8/100 = 10,000/8 
= 1,250 is its height in meters.   
Answer:  The stack would be 1,250 m tall (3/4 of a mile). 
 
Is this a correct answer? 
No.  Such a stack cannot be built.  It would topple over before we reached a height of a 
few meters.  So any conclusions about a stack that cannot exist are unreliable. 
 
Comment. 
�  In everyday life, and in science, we reason starting with premises that we believe are 
true. 
�  Sometimes we start with a hypothesis that we are not sure about and that we suspect 
to be false, hoping to derive a conclusion that we know is false, and so to reject the 
hypothesis.  (This is the basis for indirect proofs, and for forming statistical inferences.) 
�  We refuse to reason on the basis of false assumptions, because we know from practice  
and from logic  that any such conclusion may be false (Kleene, 1962; Church, 1956). 
 
Could the penny word problem be redone to be meaningful?  One million pennies is 
worth  $10,000, and such amounts of pennies are often  handled by mints and banks.  So 
let's ask about the volume and weight of a shipment of 1,000,000 pennies. If we stacked 
pennies on a square grid of 2 cm by 2 cm (a penny is 1.9 cm wide),  arranging them in a 
50 by 50 by 400 array, it would have a dimension of 1 cubic meter (37 cubic feet).  One 
penny weighs approximately 2.5 g; thus 10^6 pennies weigh 2,500 kg (5500 LB).  So we 
can package them into 40 boxes, each 25 cm x 25 cm x 10 cm, and each weighing 62.5 kg, 



plus the weight of the box (~140 LB).  Thus we see that a volume of one million pennies 
is rather small, but their weight can be a  problem.  So saying that a million is a big 
number is meaningless if we do not say  a million of what and in what respect.  One 
million pennies are worth $10,000; they  don't take up much space, but they are quite 
heavy. 
 
Unfortunately, such problems, which require that the student abandon logic and 
common sense and that he or she carry out a prescribed or suggested mathematical 
procedure, are common.  Some are intentional, based on the mistaken belief that writing 
problems about impossible situations shows imagination and originality.  Some are 
accidental, due to  lack of knowledge or oversimplification on the part of the author.   
 
Oversimplification in word problems is very common.  For example, most cities and 
states have sales tax, at least on some goods.  But most problems dealing with buying, 
selling, discounts, and so on, don't take this into account.  This often leads to incorrect 
answers. 
 
Example 3 (fictitious). 
You have $1.80.  Can you buy 2 items, each costing 89c? 
2*89 = 178 < 180; but if there is a sales tax, let's say 3.5%, we should compare  2*89*1.035 
= 184.23, rounded to the nearest cent, 184, to 180.  But 184 > 180, so $1.80 is not enough. 
 
Using false assumptions in word problems, and in other "practical" problems, has two 
negative effects.  First, it forces students to suspend their world knowledge  and their 
common sense, and to follow blindly some mathematical procedure.  This is 
unfortunate  because errors in real life are rarely due to incorrect computation; they  are 
very often the result of  choosing an incorrect mathematical procedure.  Second, it 
portrays mathematics as a verbal game that is divorced from reality, and it suggests 
that mathematics ignores both reason and logic. 
 
The correctness of geometry. 
When students learn spatial geometry, some attention needs to be paid to the standard 
definitions from planar geometry.  These definitions may require some changes. 
Example. 
�A square is a figure with four equal straight sides and at least one right angle.�  This is 
an acceptable definition in planar geometry.  But in space, a figure with four equal 
edges and one right angle may be a square bent along one diagonal.  So in order to have 
an acceptable definition of a square in space, we should say:  �A square is a figure with 
four equal edges and at least three right angles.� 
 
Statements concerning the meaning of mathematical concepts. 
Statements explaining the meaning of mathematical concepts, for example, �Numbers 
are ratios of quantities," or statements relating mathematics to other domains of life, 
such as  "Mathematics is the language of science," or "Mathematics investigates patterns 
in nature," are not part of mathematics.  But such statements are often made, and we 
need to pay attention to them.  They are opinions, and if they are treated as such, they 



can help to paint a broader picture of the role of mathematics.  But opinions may differ, 
and often two opposite opinions can be equally valid, acceptable, and insightful. 
 
The problem arises when an opinion is presented as  truth, and any opposite opinion is 
labeled as false.  So, when in doubt, hedge, in order not to present an opinion as 
something it is not.  Let's look at some examples. 
 
(1)  There are many opinions about the nature of numbers.  One opinion is that numbers 
are "data", written down, or recorded in some other medium.  Another opinion claims 
that numbers are "abstract entities", and that these "data" are merely  symbols 
representing abstract numbers.  Both opinions seem reasonable, and the same person 
can even hold both of them, depending on the context.  But during the New Math 
period, there was an attempt to teach that data that you write down are not numbers, 
and to deny legitimacy to the first  belief.  
 
(2)  When we introduce real numbers (or just irrational numbers) as infinite decimals, 
we often say categorically, "Real numbers are infinite decimals," instead of hedging a 
little and saying, "Real numbers are represented by infinite decimals."  The problem 
arises when students start looking at  different bases.  One third is different in bases 10 
and 2, 
   1/3 =  .33333333333333333333333333333333...  (base 10) 
and   1/3 =  .01010101010101010101010101010101...  (base 2). 
 
By saying that real numbers are infinite decimals, we choose the first representation as 
the "basic definition", and we deny equal status to the second one (which is an infinite 
binary, not decimal, fraction).  Choosing a representation is just like an opinion; many 
are possible, and often, as in the example above, there is no reason to claim that one is 
better that the other. 
 
This problem is aggravated because in the introduction to calculus, Dedekind  cuts are 
often introduced as a definition of real numbers (Royden, 1968).  We often say, "The real 
numbers are  Dedekind  cuts," rather than that they can be represented by Dedekind 
cuts. 
 
(3) "A proof of a theorem shows that the theorem is true." 
For many centuries, mathematicians and philosophers believed that theorems of 
geometry and arithmetic represent true knowledge about the  world around us which 
are not only independent of observation, but also superior to any other form of 
knowledge.  The discovery of other geometries and their applications in physics, the 
development of other number systems,  and even the development of other systems of 
logic, have shown how naive this belief was.  According to the modern view, no proof is 
absolute; every proof relies on some assumptions.  And we can only claim that, "If all 
the assumptions are true in a given situation, then a theorem that is proved based on 
them is  also true." 
 



(4) "A fraction is one of the equal parts of a whole, or a collection  of such parts."  "A 
number is a unit or a collection of units." 
These statements are relics of the past, when there were two separate systems of 
numbers: whole numbers and broken numbers (fractured numbers) (Pike, 1808).  At 
that time many mathematicians  believed not only that mathematics contains absolute 
truth, but also that all mathematical concepts can be precisely defined, removing any 
ambiguity as to their meaning.  This again happens to be false.  Any chain of definitions 
has to start with some undefined terms.  (In the  examples above: What is a part?  What 
is a whole?  What is a collection?)  And undefined terms, even very simple and very 
well described, are always open to different interpretations (Ehrenfeucht & Mostowski, 
1956).  This applies to the most basic concepts, such as  number, quantity, and space.  
Thus each mathematical concept may be viewed in many different ways.  And there is 
no unique, correct way of understanding it (Malitz, 1987; Hintikka, 1995). 
 
So the statements above are better paraphrased as:  
"Some time ago, people looked at fractions as one or more parts of  �a whole thing� 
divided into equal parts.  For example, 1/3 was one  third of something, maybe an 
apple, and 2/3 were two such parts."  And, "You may think about positive whole 
numbers as being collections of some units, which can be concrete, such  as a penny  or 
a pebble, or abstract, such as one second.  You may look at one unit as a special case of a 
collection that contains just one item.  Even zero can by looked at in this way.  If 
someone asks you how many pine cones you have collected, rather than answering 
none, you may say zero.� 
 
Confusion between mathematical facts that must be mutually consistent, and opinions, 
which can contradict each other, can hamper the learning of  mathematics in more than 
one way. 
 
(1)  A discussion of numbers in different contexts makes some students think that the 
question of whether a whole number is even or odd is a matter of  opinion. ("Three is 
usually odd, but when you write 3/2 = 1.5, you make it  even."  Here, the fact that 3 is 
odd is treated as opinion, "We may view 3 as odd, but when we divide it by 2, we 
change our opinion and think that 3 is even.") 
 
(2)  Students who learn only one view, for example, the view that a whole number is the 
number of elements of a set, have difficulty with operations that do not agree with their 
point of view.  (�What is 3 - 5?  I cannot give away five candies, if I have only 3.�) 
 
(3)  Students who confuse points of view with facts may think that mathematics 
contains contradictions, and therefore it is pointless to try to understand it.  (�A fraction 
is a part of a whole.  And a fraction is the ratio of two quantities.  But the ratio of two 
quantities is not a part of something; it is a relationship.  This makes no sense.�) 
 
(4)  Some students think that having different representations, for example, decimal and 
binary, indicates that there are different kinds of numbers, "decimal numbers" and 
"binary numbers".  (Some university students in a School of  Engineering did not know 



whether addition of "binary numbers" is commutative.)  Properties of operations, such 
as commutativity, are facts that do not depend on representations, which are points of 
view. 
 



Conclusions. 
Proposing broad educational reform is always unrealistic, but some things can be done 
on a local level. 
 
�  Courses offered for current and future teachers by mathematics departments should 
be mutually consistent, so that any definition used in one course can be used without 
any changes in all other courses. 
 
�  Mathematical facts, and opinions about mathematics, should be clearly differentiated. 
 
�  Word problems based on incorrect premises should not be used in classrooms.  They 
should be replaced by design and measurement problems which provide opportunities 
to verify the correctness of conclusions experimentally. 
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